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Project Summary

Light curve inversion (LCI) has proven valuable in using photometric measure-

ments to optimize various physical parameters of a resident space object (RSO) such

as rotational period about its own spin axis, pole orientation and others. Other

characteristics such as shape and size are dependent on the surface brightness. To

accurately determine size, shape, spin rate, or attitude information of an unresolved

resident space object, photometry is required to capture the relatively rapid changes

in brightness that these objects can exhibit. LCI has been developed significantly

for asteroids, although not fool-proof for artificial RSOs. Satellites and space debris,

unlike asteroids, are dynamic in lighting and viewing geometry because they are closer

to Earth. Additionally, while asteroids are roughly round, smooth, and have stable

rotations, the opposite is true of man-made space objects, which often have sharp edges

and flat surfaces that produce distinct specular glints. The minimal studies performed

for satellites utilize a priori information on attitude and a simplified geometric model

such as a cuboid. The objective is to determine the sidereal rotation period and shape

of the RSO and subsequently, classify the object using these parameters.

Optical measurements for space object tracking are sensitive to shape, attitude,

angular velocity, and surface parameters. Current state-of-the-art in RSO characteriza-

tion relies heavily on nonlinear estimation theory which is computationally expensive.

A data-driven approach for improved accuracy with a large volume of objects employs

the use of deep neural networks. Given an unresolved object’s light curve, in low earth

orbit (LEO), we can characterize it by shape and spin rate using a Hidden Markov

model (HMM) and Long Short-term Memory Recurrent neural network (LSTM RNN).
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The tumbling rates are computed using the Lomb-scargle periodogram, which performs

more accurately as opposed to other signal processing methods, and the synthetic

light curves are generated using the Lebedev quadrature. This integrated model has

been developed to identify tumbling and stabilized objects by testing for aliasing,

periodicity, and feature extraction.

The application of photometric light curves has been extended to model Triton’s

atmosphere. To quantify the distortion required to reproduce the measured light curve

(stellar occultation), a global model of the atmosphere of varying ellipticity can be

constructed and fit using least-squares method. We can use the operations concept

of a space probe releasing hundreds of small satellites into orbit around Triton in

delayed succession to improve data collection capability and provide redundancy due

to power constraints. The simulated data (with additional astrometric data of Triton)

can be 3D mapped to generate the atmospheric model and validate predictions of

Triton’s expanding atmosphere due to thermal properties of the surface and increase

in pressure.
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Chapter 1

Introduction

In recent years, there has been an increase in the number of active and defunct

objects in space, leading to a large amount of space debris. Space situational awareness

(SSA) requires active awareness of all objects in the Earth’s orbit. The characterization

of these Resident Space Objects (RSOs) is very important to national security, as

drifting objects could cause collisions, or adversaries could maneuver objects so as

to capture potentially confidential or classified data [6]. Due to the limited number

of sensors available to track them, it is difficult to maintain persistent surveillance,

and, therefore, there is inherent uncertainty and latency in the knowledge of the RSO

population [7]. The space object catalog maintained by Joint Space Operations Center

(JSpoC) currently includes more than 22,000 RSOs, with 1,100 of these objects being

actively controlled and operated [8]. These aforementioned objects are of size 10 cm

or larger, however objects less than and down to 2 cm have not been categorized

and possibly may be in the range of a quarter-million. Researchers are interested

in a detailed understanding, although the current space object catalog comprises of

simplified characteristics such as solar radiation pressure and drag coefficients. For a

comprehensive and reliable understanding, we need information on other characteristics

that can provide insight into their dynamics such as shape and attitude play a vital

role. Attitude (state of control) can in turn be used to accurately predict trajectory

and behavior.

The use of optical sensors to track RSOs in near Earth orbits are supportive to

provide both astrometric and photometric measurements. Photometric measurements,

1



more specifically light curves, are extremely significant in understanding the behavior

of an RSO using ground-based measurements. Light curves measure the flux of photons

across a wavelength (from the Sun) reflected by the object as collected by the observer

on Earth. Typically, the light curve inversion procedure [9, 10] has been employed

for asteroids, which is in its own domain for object modeling and characterization.

Asteroids approximate to an ellipsoid shape (either convex or concave) with exceptions

to uniquely-shaped ones. The surveys of celestial and stellar bodies [11, 12] are

dissimilar to artificial space objects. The material properties of man-made objects are

not always uniform throughout the surface. Additionally, the presence (or absence)

of sharp glints in the light curve can indicate whether the object has flat reflective

surfaces, and can constrain the rotation rate [13]. Hence, it is essential to determine a

method to correctly analyze light curves of artificial RSOs.

Researchers have differed in their techniques utilized to estimate and model

objects in the space catalog. After exploring several period estimation methods ranging

across Fourier and phase-folding techniques, the method (or methods in conjunction)

that performs most consistently for all applications, with an emphasis on artificial

LEO object is selected. These methods were tested using ground-based observations of

light curve data for various resident space objects that fall under a rigid body context

(i.e. asteroids, satellites, probes, rocket bodies) and celestial objects like stars and

extrasolar planets. The effect of varying sample size, the inadequacies in unevenly

sampled data processing, autonomy of the method and complexity of parameters have

been investigated. To account for heterogeneity in method parameters, each technique

is tested with a range of values to optimize the rotational period.

Investigation of artificial space objects such as rocket bodies and satellites require

a more complex polyhedron to estimate its shape. Various methods compute the

light curves of irregularly shaped bodies at arbitrary viewing angles and illumination

2



geometries by integrating brightness. The more conventional approach is to compute

surface integrals by polyhedral approximation with triangular facets (i.e. Delaunay

triangulation) of different sizes based on the mesh and summing it over the facet

areas. One of the more efficient methods, based on Lebedev quadrature, is function

integration employed in light curve simulation. It has shown faster computational

times than polyhedral sums and an increased accuracy regardless of noise in the

data. It requires no collocation of the surface into a polyhedral approximation. Using

synthetic light curves at varying angular rotational speeds and interpolated surface

reflectance properties across the facets, the feasibility of using function integration

with composite brightness functions is discovered.

Past techniques to classify RSOs have relied on estimation theory and include

the development of multiple model adaptive estimation (MMAE), nonlinear state

estimation, and full Bayesian inversion [8]. Although some of the above-mentioned

methods also apply to artificial RSOs, they tend to be computationally expensive.

State-of-the-art methods rely on well established physical models that are embedded in

an inversion scheme capable of processing the data and estimate the model parameters.

The inversion process requires the estimation of a large number of parameters. Methods

that can provide a higher degree of accuracy, computational efficiency and reliability

is where machine learning (data-driven classification) [14] comes into play. Deep

learning and neural networks are also popular for space object classification. Multiple

kernel learning (using Convolutional Neural Networks (CNN)) has been applied

to geosynchronous satellites [15], a variation of CNN with Model-based Transfer

learning [8] for space objects, as well as CNN-based classification using Hough space

of LiDAR point clouds [16] have all been applied as data-driven approaches. A

comparison of data-driven (Principal Component Analysis, CNN) with model-driven

approaches (MMAE) [17] has also been performed for space objects. Instead of using
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raw time series or texture features only, fused features of time series [18] has succeeded

in classification of space objects, although it is applied to asteroid light curves. The

literature review has shown methods for classifying RSOs, with some applying it to

natural objects while others include artificial objects. CNN seems to be the only

notable deep learning technique, however there are other types of networks such as

Recurrent neural networks which are advantageous to this application. The use of

Markov brains was proposed for on-board asteroid shape model determination [19].

The combination of RNN with the beneficial Hidden Markov model (HMM) is the

technique utilized here to classify these objects by state of motion (tumbling vs.

stabilized) and shape. A large bank of artificial space objects have been developed

and modeled to create a training set. This two-stage classification scheme improves

the accuracy by identifying and correcting misclassified samples.

The research objective is to classify an arbitrary object in LEO, given its

photometric light curve, using the rotational period and shape efficiently. Some

questions that have been addressed in the process are the following:

1. Is there an alternative to estimating the shape of an object using its light curve

without prior knowledge on its correlated parameters?

2. What technique most accurately computes the spin rate of an artificial object

that is in a tumbling state solely using its light curve?

3. Can we improve the computational efficiency of classifying RSOs using photo-

metric light curves?

With the above-mentioned responses, we can then robustly estimate the shape of the

object with supplemental information on its spin rate and categorize it appropriately.

Finally, the application of light curves to a planetary science problem that

hasn’t been explored much yet is the atmospheric modeling of Triton. The lack of

information since Voyager 2, has made this a necessary topic of investigation. A better
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understanding of Triton, Neptune’s largest moon, can uncover the secrets behind the

evolution of icy objects in the Solar system, including large moons, small Kuiper Belt

Objects (KBOs) and dwarf planets that might share a similar history. Since Voyager

2 in August 1989 showing data of a dynamic atmosphere, only ground telescopes

were able to capture data on Triton. Past literature has attempted to model the

atmospheric figure by probing Triton’s atmosphere with a stellar occultation from

a group of sites. To observe the changes in atmosphere with time, light curves can

be gathered within the central region to understand the structure. To quantify the

distortion required to reproduce the measured light curve, a global model of the

atmosphere of varying ellipticity can be constructed and fit using least-squares method.

Using an orbiter, releasing hundreds of small satellites into orbit around Triton in

delayed succession allows for an in-situ, simultaneous measurements, impossible to

achieve using one operating probe. The simulated data (with additional astrometric

data of Triton) can be 3D mapped to generate the atmospheric model and validate

predictions of Triton’s expanding atmosphere due to thermal properties of the surface

and increase in pressure.

The organization of this report is as follows. First, we determine the optimal

method for estimating the sidereal rotation period of artificial RSOs with an extension

to asteroids and stellar transit light curves. The most accurate method is utilized

to determine periodicity in the classification process. Next, we analyze computing

surface brightness for artificial objects using quadrature schemes as opposed to the

commonly used tessellation method for asteroids or pre-existing models. Following

this, we examine the classification process using neural networks and the Hidden

Markov model. Finally, the modeling of Triton’s atmosphere is an augmentation of

photometric light curve applications and concludes this report. Each chapter that
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contains results uses simulated (and some real) examples with discussions succeeding

them.
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Chapter 2

Estimating Sidereal rotation period of RSOs

2.1 Introduction

Orbital debris exists in large quantities, crowding desired orbit regions. Resident

Space Objects (RSOs), as defined by Segal et al. in [20], are constituted of natural

and artificial objects such as asteroids, active and defunct satellites, spent rocket

bodies and debris fragments of varying size. RSOs continue to increase in number

and pose potential dangers to other space vehicles from the likelihood of collision

(Kessler syndrome) [21, 22]. Space object characterization data, such as size and

rotational period, can be determined using the reflected sunlight emitted from the

artificial object (usually in the thermal wavelengths of the electromagnetic spectrum

as noted in [23]). Each object in orbit can produce its own light curve, which is a

plot of brightness measurements of the astronomical object seen by the observer as a

function of time. The intensity of each measurement in light curves is dependent on

the geometry relating Sun-spacecraft-observer, where the shaded yellow region is the

solar phase angle, as seen in Fig. 2.1.

The photometric light curves caused by rotation of a non-spherical RSO has

been shown to contain several important pieces of information: Wild, in ref [24],

asserts that one can estimate the sidereal rotation period, spin axis orientation in

space, and shape. Typically, a distinguishable feature in a light curve is selected, i.e.

maximum or minimum measured brightness or a saddle point, and the re-occurrence

of this feature in the light curve can give information on the object’s periodicity. The

angular speed of the RSO is approximated using the light curve period, as in the
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Figure 2.1: Simplified Sun-object-observer geometry involved in light curve acquisition.
(Modified image) [4]

case of finding rotational state of uncontrolled disposed upper stages [25]. The time

it takes for the RSO to rotate about its own spin axis relative to the fixed stars is

otherwise known as sidereal rotation period. For simplicity, this will be referred to as

rotation period henceforth in this paper similar to [26].

Evidenced by [27], uniformly spaced data obtained in intervals are typically

analyzed by standard Fourier methods (based on Fast Fourier Transform) as well

as the Method of Maximum Entropy. Most astronomical ground-based observations

are difficult to achieve uniform spacing due to delegated windows for data collection,

position of the object under observation and time-delay of information. Other reasons

such as weather and diurnal, lunar or seasonal cycles as effecting factors where sampling

is concerned is discussed in [28].

Irregularity in Astronomical time series data makes it difficult for application

of standard Fourier-based analysis techniques. Since 1975, when the discrete Fourier

transform was first introduced as a period finding algorithm [29], many others have

emerged until the more recent correntropy technique. Choosing ‘the optimum’ (if

any exists) technique is difficult due to influencing factors such as temporal coverage,
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number of data points, sampling rates and prior knowledge of the object. This problem

has been investigated in [30] by using numerical simulations to compare discrete Fourier

transforms, minimum string length and phase dispersion minimization, although none

was declared as more advantageous than others. In comparing model function and

phase binning methods using hypothesis-testing theory, Schwarzenberg-Czerny found

that methods such as Lomb-Scargle periodogram using smooth model functions are

more sensitive than those using phase binning [31]. Another observation was that

many phase binning methods produced the same result for identical number of bins.

Additionally, phase dispersion minimization is regarded as an approximation to Lomb-

Scargle with the latter as the best periodogram technique [32]. Distefano et al. found

Lomb-Scargle as the most efficient method with a maximum recovery rate of 60%

when comparing it with discrete Fourier transform and phase dispersion minimization

to compute rotation periods of solar-like stars from unevenly sampled synthetic data

of Gaia [33]. A single method can recover period values for up to 80% of the cases,

but the accuracy is unknown [34]. Combining methods can increase the percentage

although the identification of which method directs to fidelity is still unknown. A

thorough comparison of period finding algorithms was also performed by Graham et

al. in 2013 [35]. However, a commonality that all the previously mentioned literature

have, are their application to cases of variable stars (eclipsing, binary, pulsating and

stationary). In [35], they used large collections of time series data from searches for

microlensing (i.e. MACHO), exoplanets (e.g. Convection, Rotation and planetary

Transits (CoRoT)), and among others, synoptic sky surveys such as Catalina Real-time

Transient Survey (CRTS), and All Sky Automated Survey (ASAS). It was the first

survey using real data although it considers only a wide range of variable stellar

classes.
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Among related methods, a multi-band periodogram introduced in [36] signif-

icantly improves period finding for randomly sampled multi-band light curves (e.g.

Panoramic Survey Telescope and Rapid Response System (Pan-StaRRs)). The slotted

correntropy [37] and its counterpart, conditional entropy [38], have outperformed

slotted correlation, string length, Lomb-Scargle periodogram on the MACHO survey.

A nonparametric Bayesian model, based on Gaussian Processes (GP), was presented

in [39] showing better results especially when the light curve does not exhibit a

sinusoidal shape, once again using variable stars’ datasets.

These surveys of celestial and stellar bodies [11,12] are dissimilar to artificial

space objects. The material properties of man-made objects are not always uniform

throughout the surface. Additionally, the presence (or absence) of sharp glints in

the light curve can indicate whether the object has flat reflective surfaces, and can

constrain the rotation rate [13].

Light curves are affected by several noise sources such as light contamination

from other celestial sources near the line of sight, the atmosphere, and detection

sensitivity of the apparatus. Other sources such as equipment positioning, calibration,

and maintenance impact the quality of the light curve according to [23]. Hence,

multiple periods can co-exist in the time series for a day’s or year’s worth of data

collection. In order to distinguish false periods and understand which technique works

best, this paper will investigate the viability of three types of time-series analysis: 1)

least-squares methods, 2) Fourier methods, and 3) phase-folding methods. The use of

slotted correntropy to estimate periods of stellar light curves was introduced in 2011,

and the Correntropy Kernel Periodogram (CKP) in 2012 by P. Huijse et. al as a new

metric for finding periodicities. Both developments were based on the information

theoretic concept of correntropy while the latter combined it with a periodic kernel.

Centered autocorrentropy is explored as one of the signal processing techniques to

10



estimate periods of artificial tumbling space objects. In this thorough comparison,

we will examine several variables such as duration of data collection, size of data

set, uniformly and non-uniformly sampled data as well as user inputs (intermediate

parameters that may need to be specified for further processing).

The detection of periodicity for astronomical objects is not limited to asteroids,

satellites and rocket debris, but also include stellar objects and extrasolar planets.

These are of high importance in astronomy and in order to classify variable stars and

discovering extrasolar planets, the period is a pivotal characteristic. It can also aid in

estimating other parameters such as mass, and distance to Earth [23]. Thus, these

techniques will be employed to both kinds of light curve data; specifically, Asteroid 43

Ariadne, artificial low-earth orbit (LEO) objects employing geometric shapes (simple

and composite), and a cluster object HAT-138-0001727.

Our main contribution is the presentation of a comparative study of several

time-series analysis methods with applications to a wide range of time series data (real

and synthetic light curves) e.g. unevenly spaced data from an asteroid, 1U Cubesat,

NASA Regolith Advanced Surface Systems Operations Robot (RASSOR) Bucket

Drum, Pioneer 9 disks and probe, Pioneer 10 probe, box-wing satellite, a rocket nose

cone, and a stellar transit light curve. Through these applications, we seek to find

the one method among those studied, that performs most consistently for all of this

data. We feel that through the many kinds of light curves analyzed, we are able to

communicate to the wider community ”the method” to go for when they need to

obtain a reasonable estimate of the sidereal rotation period of a space object, with an

emphasis on artificial LEO object.

The following sections will provide a mathematical background for each of the

methods prior to applying them to actual observed data from ground as well as a

simulation generating synthetic uniformly-sampled light curves of which the process
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has also been outlined in detail. The simulation results help us conclude which methods

work best for estimating sidereal rotation periods of resident space objects, depending

on the quality of light curves and sampling frequency.

2.2 Time Series Analysis for Sidereal Rotation Period Estimation

Commonly utilized in time-series analysis is the least-squares method; it attempts

to fit a given set of points to a curve by minimizing the sum of the squares of the

offsets of the points from the curve. The sum of the squares of the offsets is used

instead of the offset absolute values because this allows the residuals to be treated as a

continuous differentiable quantity. However, outliers can have an irregular effect on the

fit, which may be detrimental to the objective. For nonlinear least squares fitting to a

number of unknown parameters, linear least squares fitting may be applied iteratively

to a linearized form of the function until convergence is achieved. Herein, we use the

formulations from [40]. Let the function to be approximated be h(x, y, z, · · · ) and

the approximating function be H(x, y, z, · · · ;α, β, γ, · · · ) where α, β, γ, · · · are the

unknown parameters. The residuals at the points (xi, yi, zi, · · · ) for i = 1, 2, · · · , n

are

fi(α, β, γ, · · · ) = H(xi, yi, zi, · · · ;α, β, γ, · · · )− h(xi, yi, zi, · · · ) (2.1)

and the least squares criterion requires the minimization of s(α, β, γ, · · · ) =
∑n

1 f
2
i .

The following is an example of the least-squares criteria. The Epoch method

designed for amateur astronomers in [24], uses multiple light curves and its respective

difference in period to compute the spin axis (pole) orientation and direction of

rotation. The magnitude of periodic difference is a function of the object’s spin axis

orientation with respect to the observer-object-Sun geometry and direction of rotation

as defined by [41] in their study. In the context of asteroids, not all rotate at the same
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rate. Therefore, some may require a single light curve spanning several hours to find

the period of rotation while others need multiple to observe all facets of the geometry.

The advantages of data collection over several months or years for characteristics

of shape and surface are brought to the reader’s attention in [24]. While there are

advantages to long-scale data collection (as shown in [24]), this is not always practical

(especially for amateur astronomers, or for objects very near Earth).

Composite light curves (obtained through differential charge-coupled device

(CCD) photometry) from three or more epochs are fit with a low order Fourier series

to determine the fundamental frequency and its corresponding period [42]. We will

examine the basis for Fourier and Phase-folding methods in the following sections.

2.2.1 Fourier Methods

A given signal travelling through a medium creates sources for scattering off

the components in the sample. This ripple effect leads to secondary waves that

interfere with one another. This phenomenon parallels the Fourier transform in wave-

interference. The patterns of constructive and destructive interference give rise to

dominant peaks in the frequency domain and low levels of noise for the latter.

While several of these methods are well known/studied and it would seem

redundant to include the definitions; for the sake of completeness and to allow the

reader to progress through the methods seamlessly and notice the subtleties, we choose

to retain these definitions and well known details.

2.2.1.1 Fast Fourier Transform

The Fast Fourier Transform (FFT) algorithm computes the Discrete Fourier

transform (DFT) of a sequence that samples a signal over a period of time and splits it

into signals with respective amplitude and phase components at individual frequencies.
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Consider a continuous function g(t) sampled at regular intervals, ∆t. The

Fourier transform is defined as a function of frequency, f as shown below.

ĝ(f) ≡
∫ ∞
−∞

g(t)e−2πiftdt (2.2)

An infinite time and continuous signal g(t) that is observed on a regular grid with

spacing ∆t has a Fourier transform that can be written as a Fourier sum rather than

its integral form as shown in equation (2.2). The Fourier Transform of the observed

signal is then,

ĝobs(f) =
N∑
n=0

gne
−2πifn∆t (2.3)

where gn, a uniformly-spaced function, is gn = g(n∆t) and n = 0, 1, 2, ..., N . Ac-

counting for Nyquist aliasing, the only relevant frequency range is 0 ≤ f ≤ 1/∆t as

observed in [28]. We can then define N evenly-spaced frequencies with ∆f = 1/(N∆t)

covering this range.

Denoting ĝs ≡ ĝobs(s∆f), we can re-write equation (2.3) as

ĝs =
N∑
n=0

gne
−2πisn/N (2.4)

which is the standard form of the Discrete Fourier transform (DFT).

The frequency spacing (∆f) of DFT is uniform and favorable in terms of both

the Nyquist sampling limit and the finite observing window [28]. It is also well known

that, FFT is widely prevalent in signal processing, specifically for estimating power

spectral density (PSD) from time-domain signals.

We denote the Fourier Transform operator as F{g} = ĝ(f) and to eliminate the

complex components and remove the phase, we square the amplitude of the resulting

transform which is commonly known as the power spectral density (PSD) or power
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spectrum, PSDg ≡ |F{g}|2. PSD is a positive real-valued function of the frequency f

that distinguishes each individual frequency that is present in the total signal.

Note, FFT is advantageous due its to high processing speeds and reduces the

complexity from O(n2) to O(n log n) where n is the data size. Linearity of the transform

is inferred in [28] to the Fourier transform directly measuring periodic content in a

continuous function since the signal is made up of a sinusoidal components. However,

it does require uniformly-spaced data which is not always the case with astronomical

data pertaining to Space objects. In [43], it is remarked that in order to get evenly

sampled data for FFT, interpolation and resampling created inaccuracies in PSD

estimation.

Many programming languages and signal processing blocksets have built-in

functions for the Fast Fourier Transform which are capable of handling large volumes

of data; however there are recursive and iterative algorithms available of which one is

shown below for implementation.

Algorithm 1 Fast Fourier Transform algorithm

1: procedure FFT(x)
2: N ← length(x)
3: n← 2log2(N)

4: z ← [0]1xn
5: sum← 0
6: for k ← 1, n do
7: for j ← 1, N do

8: sum← sum+ x(j) ∗ e
−2πj(j−1)(k−1)

n

9: end for
10: z(k)← sum
11: sum← 0
12: end for
13: return z
14: end procedure
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2.2.1.2 Fractional Fourier Transform

The fractional Fourier transform (FRFT) is a generalization of the Fourier

transform and it implements the order parameter, α, which acts on the Fourier

transform operator [44]. We obtain the Fourier transform when α = π/2, whereas

for α = 0, we obtain the signal itself. Any intermediate value of α, (0 < α < π/2)

produces a signal representation that can be considered as a rotated time-frequency

representation of the signal [44]. Applications of the discrete counterpart of the FRFT

as a signal processing tool include filtering, radar, pattern recognition, and wireless

communications.

Since the FRFT is characterized by quadratic complex exponential kernels, it is

often not possible to evaluate these by direct numerical integration because the fast

oscillations of the phase of the complex exponential would imply excessively large

sampling rates [45]. We can decompose these integral transformations into a succession

of simpler operations, such as chirp multiplication, chirp convolution, scaling, and

Fourier transformation. However, these methods might also require sampling rates

that are significantly higher than the Nyquist rate, depending on α and particular

decomposition employed [45]. This, in turn, results in greater time of computation,

larger numerical inaccuracy, and the need for more memory. As such, this method

does not seem to be a viable option for period estimation of artificial RSOs and we

will not include this in the roster of signal processing techniques that will be tested

further.
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2.2.1.3 Classical Periodogram

Applying the definition of the Power spectrum to the Discrete Fourier Transform

defined by [28] previously, and multiplying it by a factor of 1/N results in the classical

periodogram.

PC(f) =
1

N

∣∣∣∣∣
N∑
n=1

gne
−2πiftn

∣∣∣∣∣
2

(2.5)

Primarily, the classical periodogram is optimal for the uniform sampling case as

it is able to capture all the frequency components. While the periodogram follows

the definition of the power spectrum, conceptually; the former is an estimator of the

latter. These terms are used interchangeably in the astronomy community. Extensions

of the classical periodogram (such as the Lomb-Scargle periodogram which will be

discussed later) have intrinsic variances in cases even where there are infinite number

of observation points [28].

Equation (2.5) can be expanded and re-writen using Euler’s theorem to eliminate

the complex variables.

PC(f) =
1

N

∣∣∣∣∣
N∑
n=1

gn[cos(−2πftn) + i sin(−2πftn)]

∣∣∣∣∣
2

=
1

N

∣∣∣∣∣
N∑
n=1

gn[cos(2πftn)− i sin(2πftn)]

∣∣∣∣∣
2

=
1

N

( N∑
n=1

gn cos(2πftn)

)2

+

(
N∑
n=1

gn sin(2πftn)

)2
 (2.6)

In agreement with [28], the classical periodogram is useful for identifying periodic

signals from non-periodic data. However, for a case of non-uniform sampling, the

periodogram is harder to distribute using a Chi-squared term. As discussed in [46],

two prevalent problems with the classical periodogram include statistical difficulties
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Algorithm 2 Classical Periodogram algorithm

procedure CP(t, x, fs)
2: t is the time vector

x is the magnitude vector
4: fs is the frequency search range (low, high) with interval df

N ← length(t)
6: d← x−mean(x)

findex ← fslow
8: n← (fshigh − fslow)/df

frequency ← [0]nx1

10: power ← [0]nx1

k ← 1
12: while findex < fshigh do

frequency(k)← findex

14: power(k)← |sum(d∗e(−2πifindextk)|2
N

findex ← findex + df
16: k ← k + 1

end while
18: return power, frequency

end procedure

and spectral leakage. A more generalized form took its place and is known as the

Lomb-Scargle periodogram to ensure that it holds this property.

Algorithm 2 can be appended to include normalization of the periodogram by

associating noise with the variance of the signal x and dividing the power by the

variance. Sorting the power spectrum in increasing order of frequency makes it facile

for visual display.

2.2.1.4 Lomb-Scargle Periodogram

The Lomb-Scargle Periodogram, combined several properties such that it was

able to simplify to the Classical form for equally-spaced data, and is not influenced

by global time-shifts in the observations. The difference according to [28] lies in the
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proportionality multiplied by each term, no longer 1/N which is expected for complete

phase sampling at each frequency. The Periodogram function is expressed below:

PLS(f) =
1

2

{
(
∑

n gn cos(2πf [tn − τ ]))2∑
n cos2(2πf [tn − τ ])

+
(
∑

n gn sin(2πf [tn − τ ]))2∑
n sin2(2πf [tn − τ ])

}
(2.7)

where τ is defined for each frequency f so that time-shift invariance is non-existent:

τ =
1

4πf
arctan

(∑
n sin(4πftn)∑
n cos(4πftn)

)
(2.8)

The Lomb-Scargle Periodogram ensures accuracy for non-uniform sampling provided

that the data has uncorrelated white noise [28].

Spectral leakage remains a challenge because frequencies not integral multiples of

the DFT bin, spread over other bins as well. This creates false alarms when searching

for the dominant frequencies. The periodogram power is normalized by the inverse of

the variance of the original signal data values. This scaled power has an exponential

distribution as shown in [47] for Gaussian noise data values and a large number of

observations.

Numerical programming languages like MATLAB have built-in functions for

the Lomb-Scargle Periodogram (i.e. plomb) where frequency search ranges do not

need to be specified. The algorithm in itself is quite similar to Algorithm 2 (Classical

Periodogram) with a modification in line 14. The power computed is defined using

equation 2.7 instead.

2.2.2 Phase-Folding Methods

These methods depend on folding observations as a function of phase, computing

a cost function across the phased data (often within bins constructed across the phase
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space) and optimizing this cost function across candidate frequencies. In epoch folding

as noted by [23], a trial period Pt is used to obtain a phase diagram of the light curve

by applying the modulus transformation of the time axis:

φi(Pt) =
timodPt

Pt
(2.9)

where ti are the time instants of the light curve. The trial period Pt is found

by a brute-force search across the range of possible values. Conforming to [23], if the

true period is used to fold the light curve (ie. overlapping segments), the periodic

shape will be clearly seen in the phase diagram. If an incorrect period is used, the

phase diagram will look like noise. An additional step is to separate the segmented

light curve into bins and the ratio of the intra-bin variance to inter-bin variance is

also computed.

2.2.2.1 Minimum String Length

The light curve is folded using a trial period as mentioned earlier and the sum

of distances between consecutive points in the folded curve is computed [23]. The

true period is estimated by minimizing the string length on a range of trial periods.

The true period is expected to result in the most controlled folded curve, essentially

providing the ‘minimum total distance’ between points.

[48] used a method which is a true ’string-length’ technique. In this method,

the quantity to be minimized is simply the sum of the lengths of line segments joining

successive points (mi, φi) in a phase diagram. The period chosen is that for which the

quantity
∑n−1

i=1 [(mi −mi−1)2 + (φi − φi−1)2]1/2 + [(m1 −mn)2 + (φ1 − φn + 1)2]1/2 is a
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Algorithm 3 Minimum String Length algorithm

procedure MSL(t, x, fs)
t is the time vector

3: x is the magnitude vector
fs is the frequency search range (low, high) with interval df
j ← 1

6: for all k ∈ fs do
f ← folding(x, 1/k) This folds x into a period 1/k
frequency(j)← k

9: stringlength(j)← SLEN(f)
k ← k + df
j ← j + 1

12: end for
index← min(stringlength)
MinFrequency ← frequency(index)

15: return frequency, stringlength,MinFrequency
end procedure

procedure slen(c)
18: dx← diff(c(:, 1))

dy ← diff(c(:, 2))
c←

√
(dx2 + dy2)

21: length← sum(c)
return length
end procedure

minimum, with n the number of observations. The algorithm to find the true period

is shown in Algorithm 3.

2.2.2.2 Phase Dispersion Minimization

Period determination using Phase dispersion minimization distinguishes between

trial periods, in which the period producing the least observational scatter (dispersion

indicator) about the mean light curve is chosen in line with [49]. It is beneficial for

non-sinusoidal light curves where there are scarce observations over a range-bound

duration. An optimum light-curve shape is found, which is subtracted from measured
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data for other periods to be searched. Data are folded modulo many periods, grouped

into phase bins and intra-bin variance is compared to inter-bin variance using χ2.

Stellingwerf’s method [49] takes observational errors into account and gives

useful results as the database increases in size; [50] adds it is particularly helpful when

searching for secondary frequencies of low amplitude in variable stars. The following

was proposed in [49].

Given a discrete set of observations {(x1, t1), (x2, t2), . . . , (xN , tN)} representing

the magnitudes and observation times respectively and N is the total number of points.

The variance of ~x is simply given by σ2 = 1
N−1

∑
(xi − x̄)2 where x̄ = 1

N

∑
xi is the

mean. For any subset of xi we define the sample variance s2 exactly as σ2. Choosing

M distinct samples having variances s2
j respectively for j = 1, · · · ,M and containing

nj data points, the overall variance for all the samples is then given by

s2 =

∑
[(nj − 1)s2

j ]∑
(nj)−M

(2.10)

The goal is to minimize the variance of the data with respect to the mean light curve.

Let Pt be the trial period and the phase vector subsequently would be ~φ. For each

observation,

φi =
ti
Pt
− int

(
ti
Pt

)
(2.11)

where int(·) represents the integer part of the value. Equivalently, ~φ = ~t mod(Pt).

Choosing M samples from ~x such that all members of sample j have identical φi,

these samples are then split into a number of bins, where some may overlap or not be

chosen at all. The variance of these samples gives a measure of the scatter around
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the mean light curve defined by the means of the xi in each sample, considered as a

function of φ. The phase dispersion indicator is then given by

θ =
s2

σ2
(2.12)

If the trial period Pt is not the true period, then θ ≈ 1 since s2 ≈ σ2. However, if it

is correct, then θ will reach a local minimum as near to zero as possible. We seek

periods at which the amplitude of the mean curve is a maximum, which in most cases

will correspond to minimum phase dispersion. The bin structure is up to the user to

define as suggested in [49], but following a standard structure, we can split the unit

interval into Nb bins, each with length 1/Nb. This resembles the least-squares method

mathematically, but it fits relative to the mean curve as defined by the averages of

each bin instead of a Fourier series. Obtaining the best fit curve and period occur

simultaneously, so it is computationally efficient. Phase dispersion minimization

minimizes the dispersion of data at constant phase and is a Fourier method of infinite

order since all harmonics are included in the fitted function [49]. This technique to

find the phase dispersion indicator θ has been adapted in Algorithm 4.

2.2.2.3 Autocorrelation Function

The autocorrelation function (ACF) is a measure of how identical a measured

quantity at a given time is related to itself at another time. The ACF can also be

viewed as a measure of the predictability of a process or signal, based on past data [51].

Prediction of a process at a future time ‘t + ∆t’ is valid such that the correlation

function value at lag ‘∆t’ is large. As soon as the correlation function diminishes,
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Algorithm 4 Phase Dispersion Minimization algorithm

procedure PDM(t, x, fs,Nbin)
t is the time vector
x is the magnitude vector

4: fs is the frequency search range (low, high) with interval df
Nbin is the number of bins in the folded period
I ← 0
for all k ∈ fs do

8: I ← I + 1
f ← [t ∗ k − floor(t ∗ k), x]
Data← Binning folded data, f with bin size, 1/Nbin
N ← length(Data)

12: S2← sum((N − 1) ∗ V ariance(Data))/(sum(N)−Nbin)
θ(I)← S2/V ariance(x)
frequency(I)← k

end for
16: return frequency, θ

end procedure

the similarity of the signal to its prior knowledge disappears, and the signal becomes

unpredictable.

For observations (x1, · · · , xn) of a time series, the sample autocorrelation function

is ρ̂(h) = γ̂(h)
γ̂(0)

where, γ̂(h) the sample autocovariance function is

γ̂(h) =
1

n

n−|h|∑
t=1

(xt+|h| − x̄)(xt − x̄) (2.13)

for −n < h < n and the sample mean is defined as x̄ = 1
n

∑n
t=1 xt

The autocovariance of a zero-mean random process x is defined by [51] as the

expectation of the product of the values of x observed at times separated by the

lag. The ACF is equivalent to the autocovariance normalized to 1 at t = 0. The

Autocorrelation theorem equates the power spectrum of a stationary random process

to the Fourier transform of its autocorrelation function [51]. Therefore, the ACF
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can be estimated by computing the inverse Fourier transform of the square of the

complex absolute value of the Fourier transform, since the latter is an estimate of the

power spectrum. The autocorrelation sequence of a periodic signal has characteristics

resembling the original signal. Thus, autocorrelation can validate repeated sequences

and determine their durations. It is advantageous for large durations and can amplify

the peaks. However, to determine the dominant period, significance threshold needs

to be specified. Multiples of the same period are also peaks, thus requiring post-

processing. Algorithm 5 describes the methodology to find the sample autocorrelation

function and this can be repeated for multiple lags.

Algorithm 5 Autocorrelation Function algorithm

procedure ACF(x, p)
p is the lag
x is the magnitude vector
N ← length(x)

5: xbar ← mean(x)
num← [0](N−p)x1

for i← (p+ 1), N do
num(i)← (x(i)− xbar) ∗ (x(i− p)− xbar)

end for
10: den← (x− xbar)T ∗ (x− xbar)

result← sum(num)/den return result
end procedure

2.2.2.4 Centered Correntropy

Correntropy measures similarities between two observed sets distinguished by a

finite time delay in the input domain. The similarities are measured in terms of inner

products in a high-dimensional kernel space. A kernel can be viewed as a similarity

measure for the data. Kernels are viewed by [52] as covariance functions for correlated
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observations at different points of the input domain. The Gaussian kernel which is

translation-invariant, is defined by [23] as follows:

Gσ(x− z) =
1√
2πσ

exp(−||x− z||
2

2σ2
) (2.14)

where σ is the kernel size or bandwidth. The kernel size can be construed as the

resolution for the similarity search to be performed in the high-dimensional kernel

feature space. The kernel size gives the user the ability to control the emphasis given

to the higher-order moments with respect to second-order moments, a finding of [23].

For large values of the kernel size, the second-order moments have more relevance and

the correntropy function approximates the conventional correlation. If the kernel size

is too small, the correntropy function will not be able to differentiate between signal

and noise and instead approximates the Dirac delta function.

Through the formulation from [23], for a discrete strictly stationary random

process Xn, the univariate centered correntropy function or centered autocorrentropy

is

Ûσ[m] =
1

N −m+ 1

N∑
n=m

Gσ(xn − xn−m)− 1

N2

N∑
n=1

N∑
m=1

Gσ(xn − xm) (2.15)

where N is the number of samples, σ is the kernel size used in the Gaussian kernel

and m ∈ [1, N ] is the discrete time lag. It is ideal to choose a lag large enough so

there are enough samples to estimate correntropy.

The Fourier transform of the centered autocorrentropy function is called corren-

tropy spectral density (CSD) and can be written as

Pσ[f ] =
∞∑

m=−∞

Ûσ[m]exp(−2πif
m

Fs
) (2.16)
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where f is the variable frequency, Fs is the sampling frequency and i is the imaginary

unit number. The CSD can be considered as a generalized power spectral density

(PSD) function although it does not measure power, rather an estimator based on

kernel size [23]. For a large kernel size, CSD approximates PSD. Ref. [53] alluded to

correntropy being used as a discriminatory metric for the detection of nonlinearities

in time series. An ever-present challenge is choosing a precise maximum frequency

to be searched for every set of data as well as the number of lags. This involves a

trial-and-error process to ensure accuracy.

Algorithm 6 Centered Autocorrentropy algorithm

procedure Correntropy(x)
x is the magnitude vector
σ is the gaussian kernel size
L← round(0.5 ∗ length(x)) number of lags to consider

5: V is the centered temporal correntropy of x using L and σ
E ← eigenvectors of V
fmax is the maximum frequency to be searched
i← linearly-space vector from 0 to fmax with interval L/2
Eend is the last eigenvector

10: f ← FFT(Eend)
Plot|f(1 : L/2)|vs.i for the periodogram
frequency ← maximum peak in periodogram

return frequency
end procedure

2.3 Application to Case Studies

Computing the sidereal rotation period for a well defined uniformly spaced

time series is trivial once the analysis is completed. From the periodogram, the

frequency at which the highest peak occurs is defined as f0 and subsequently, the

rotational period about its own spin axis is T =
1

f0

. For other methods that do not
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use power spectral density, the frequency that satisfies its (the method’s) respective

condition is considered as f0. In what follows test cases of RSOs of both uniformly

and non-uniformly sampled light curves have been taken and their results (plotted in

MATLAB) are shown below.

2.3.1 Unevenly sampled Sinusoidal Data

Let us assume the light curve for some RSO is obtained as a time-series with

an underlying sinusoidal trend, yk = sin k∆t+ 5 sin 3k∆t+ νk, where νk is Gaussian

white noise and k = 0 . . . 100 and ∆t = 0.1s. The data points were unevenly sampled

as shown in Figure 2.2. The different methods described in the previous section have

been applied to determine the fundamental frequency producing the following results.

Figure 2.2: Light curve of non-uniformly sampled data
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Table 2.1: Computed Rotational Period of non-uniformly sampled sinusoidal data and
errors associated with different methods

Method Computed Rotational Period (s) Error (%)

Fast Fourier Transform 1.1636 44.3
Classical Periodogram 2.0833 0.3

Lomb-Scargle Periodogram 2.0921 0.1
Minimum Curve Length 2.0987 0.4

Phase Dispersion Minimization 2.0921 0.1
Autocorrelation Function 2.1750 4.1

Centered Correntropy 2.0870 0.1

From Table 2.1, it is observed that FFT has a computed rotational period of

1.1636 s (as expected) while the rest are relatively close to each other. This can be

attributed to the lack of processing capability of Fast Fourier Transform with unevenly

sampled data, as it requires a uniform sampling frequency for accurate results. The

expected value for the rotational period is 2.0898 s and the errors in the experimental

values are noted above in percentages.

Of all the methods, the Lomb-Scargle periodogram, Phase dispersion minimiza-

tion and centered correntropy displayed the least error from the expected values at

0.1% each. This difference is small enough and almost negligible to consider these

methods an accurate approximation for rotational period estimation.

Two of the methods (Autocorrelation function and Phase Dispersion Minimiza-

tion) require user-defined parameters such as lags and number of bins respectively.

Although it is difficult to choose a value large enough to estimate the correct period, it

is commonly misconstrued that there exists a linear relationship between the parameter

and the estimated period. The following tabulated data can shed some light that this

is in fact not the case. The accuracy of the period is not dependent on the proximity

to the optimal number of lags or bins.
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Table 2.2: Table of rotational periods of non-uniformly sampled sinusoidal data using
Autocorrelation function and varying lags (Top to Bottom: 10, 50, 75, 90, 100)

Number of Lags Computed Rotational Period (s)
10 ERR
50 2.1000
75 1.8500
90 2.4000
100 2.1750

Table 2.3: Table of rotational periods of non-uniformly sampled sinusoidal data using
phase dispersion minimization and varying number of bins (Top to Bottom: 10, 50,
75, 90, 100)

Number of Lags Computed Rotational Period (s)
10 2.0921
50 2.0921
75 2.0921
90 2.0921
100 0.9452

The ‘ERR’ indicated in Table 2.2 for 10 lags is due to the distance between

peaks on the autocorrelation exceeding the threshold, making it difficult to compute

the period. The ACF plots differ only in the addition of data making it more detailed

and filling in the gaps from the underlying trend as the number of lags increase.

It is important to note that for the results in Table 2.3, the frequency search

range remained constant at [0, 2] Hz with an interval of 0.002 Hz. It can be noted that

in Table 2.3, the rotational period remains consistent for number of bins from 10 to

90, however drops drastically when the number of bins exceeds a limit at 100. More

specifically, the frequency at which minimum dispersion occurs stays constant as the

number of bins increase from 10 to 90, however the dispersion indicator magnitude

varies. The dispersion in phase is existent at multiple frequencies when the number of

30



bins increase as illustrated in Table 2.3. The maximum lags must be large enough,

however not so large that it permutes unnecessarily.

2.3.2 Light curve of Asteroid 43 Ariadne

43 Ariadne is a sizeable main-belt asteroid. The relative light curve points

were obtained from the test file in Database of Asteroid Models from Inversion

Techniques (DAMIT) Lightcurve Inversion software1 and the best solution generated

through a convex optimization is T = 5.761985 hrs and a spin pole orientation of

λ = −15◦, β = 253◦.

The appropriate light curve (Fig. 2.3) and the plots corresponding to each

analysis method (Figs. 2.4 and 2.5) is depicted below.

Figure 2.3: Light curve of Asteroid 43 Ariadne

1https://astro.troja.mff.cuni.cz/projects/asteroids3D/web.php?page=download_

software
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Figure 2.4: Fourier-based methods on asteroid 43 Ariadne’s light curve (Top to
bottom): fast fourier transform, classical periodogram and zoomed-in view centered
at peak frequency, Lomb-Scargle periodogram and zoomed-in view centered at peak
frequency
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Figure 2.5: Phase-folding methods on asteroid 43 Ariadne’s light curve (Top to
bottom): minimum string length, phase dispersion minimization, autocorrelation
function, centered correntropy

Table 2.4: Rotational Periods of Asteroid 43 Ariadne using light curve

Method Computed Rotational Period (hrs)

Fast Fourier Transform —
Classical Periodogram 2.7778

Lomb-Scargle Periodogram 2.8877
Minimum Curve Length ∞

Phase Dispersion Minimization 5.5556
Autocorrelation Function —

Centered Correntropy 2.8704
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Unsurprisingly, the FFT (Fig. 2.4 (top)) has the peak frequency annotated at

0 Hz which is expected for non-uniformly sampled data. This will result in a divide

by zero scenario when computing the rotational period. The periodogram analysis

performed significantly better with a non-zero peak frequency. The rotation period

is calculated to be 2.8877 hrs via Lomb-Scargle periodogram (Table 2.4). This is

approximately half of the expected value and is a phenomenon sometimes visible

with elongated asteroids. Most asteroids are irregularly shaped so that the projected

area of the surface facing the Sun varies as the asteroid rotates [42]. The light curve

(almost symmetric) will generally have two minima and two maxima per period.

An oblong object rotating about a spin axis (tilted to non-zero angles with respect

to both its major and minor body axes) shows an increasing projected area to the

observer until it reaches a maximum. Then the projected area decreases to a minimum,

followed by another maximum as the object completes a full turn. The time between

adjacent maxima is therefore half the rotational period [42]. The half-period is the

most promiment period in the data when using any period analysis technique, hence

the actual period of rotation is 2T . Since the asteroid is a resolved space object,

we have some a priori information on its shape, hence this characteristic is eligible

for application. Recomputing the actual rotation periods (with the exception of

Phase dispersion minimization) is tabulated in Table 2.5 along with the errors in the

computed period values.

Of all the methods, the Lomb-Scargle periodogram presented the smallest per-

centage error followed by centered correntropy from the expected values at < 1% each.

This difference is small enough and almost negligible to consider these methods an

accurate approximation for rotational period estimation. The classical periodogram

and phase dispersion minimization also had considerably small errors to be accepted

as a reasonable estimator.
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2.3.3 Procedure to generate synthetic light curves

A generic procedure to generate synthetic light curves of a RSO is depicted in

the algorithm below.

Algorithm 7 Synthesize light curve from model of object

procedure LC
Read STL file of object and extract faces, vertices, and normals
Perform Delaunay Triangulation
Set surface properties: color, transparency, and reflectance
Create light as a point source

6: Set observer’s location coordinates, ~O
Initialize pole spin axis, ~p
Set background = black
n← desired number of revolutions
for i← 1, n do

Capture object from observer’s view and convert frame to indexed image
data

12: Calculate relative luminance array using RGB for each pixel
Compute average brightness intensity of all pixels
Rotate object by an angle increment

end for
end procedure

2.3.4 Simulation of Asteroid 43 Ariadne

Using the 3D vertex coordinates of 43 Ariadne generated from the Database

of Asteroid Models from Inversion Techniques (DAMIT) software suite written by

Joseph Dǔrech, and applying Delaunay triangulation gives us the facets on the shape

model (Fig. 2.6).
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(a) Vertices Point cloud

(b) Surface Triangulation

Figure 2.6: Asteroid 43 Ariadne as seen by the observer at 0◦

The method, initially developed by the author in [26], is used to generate the

synthetic uniformly-sampled light curves and the parameter details are rationalized

succeeding this. The surface reflectance properties were set to include ambient, diffuse

and specular reflection (ka = 0.5, kd = 1, ks = 0.3 respectively).1 The motion

of the sun with respect to the asteroid is negligible. The lighting conditions are

ideal to produce uniform white light at a point source that radiates in all direc-

1http://paulbourke.net/miscellaneous/asteroid/
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tions. The astrocentric coordinates of the Sun at the first observed Julian date are

(1.467574, 1.309298, 0.08242228) AU. The light is interpolated linearly across each

triangular facet using the vertex normals. Similarly, the observer’s location on earth

has the astrocentric coordinates of (0.7140329, 0.6399864, 0.0723648) AU and is facing

the target. Since this RSO is resolved, we are aware of its ecliptic pole coordinates

as λ = −15◦, β = 253◦. Permuting one full rotation of 360◦ about this spin axis

orientation such that the angular speed is defined by the user has the results in Table

2.6. Since Lomb-Scargle periodogram has consistently proven the most accurate of all

the methods, it is reliable to test this simulation at different angular speeds of rotation.

It can be inferred from Table 2.6 that the percentage errors are all less than 5%,

with two outliers at angular speeds of 19 and 20◦/s. This is a fairly reasonable accuracy

for the simulation. Notably, most computed half-period values differ from the expected

by 0.5 seconds and this is reflected in the error. Although, the relative error begins to

increase from angular speed of 1 to 6◦/s, the pattern wobbles consequently. There is

no direct correlation between the error and the angular speed of rotation. This may be

a ramification of the function’s search conditionality. One peculiar phenomenon was

observed related to the the initial capture of the object. At time 0, one would expect

a brightness intensity close to darkness prior to the shutter collecting images. This

does not occur in all instances of running the simulation and could be the result of the

timing of how the frames are captured in MATLAB. Using the synthetic light curve

created from one full rotation of 360 degrees at a speed of 1◦/s, the various methods

are employed to estimate the rotational period. The appropriate light curve (Fig. 2.7)

and the plots corresponding to each analysis method (Figs. 2.8 and 2.9) appear below.

It should be noted that the light curve (Fig. 2.7) has its initial brightness value of

255 units which equates to a black screen. This is a feature of the simulation that

captures a black frame prior to the the 3D model appearing.
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Figure 2.7: Synthetic light curve of Asteroid 43 Ariadne generated using simulation

The expected rotational period is 360 s and Table 2.7 shows the determined

values for the various methods and the percentage errors corresponding to each

technique. Some of the Fourier methods require the rotational periods to be found by

doubling the half-rotational period as seen in the previous case study.
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Figure 2.8: Period-finding methods on asteroid 43 Ariadne’s synthetic light curve (Top
to bottom): fast fourier transform, classical periodogram, Lomb-Scargle periodogram,
minimum string length

Compared to the results obtained with the actual light curve in the previous

section, some of the methods have shown strange behavior. The minimum string length

period managed to calculate the expected period with no error. The Lomb-Scargle,

classical periodograms, centered correntropy and phase dispersion minimization ac-

crued numerical values with percentage errors less than 10% with the first being the

most accurate. That said, the choice of σ, the kernel size plays an important role in

the centered correntropy method and an appropriate kernel size cannot be ascertained

if the data shows such large outliers and/or without sufficient a priori knowledge. The
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maximum frequency search value must be chosen optimally and to ensure minimum

error, the period value of Lomb-Scargle periodogram is a good benchmark for accuracy.

Figure 2.9: Period-finding methods on asteroid 43 Ariadne’s synthetic light curve
(Top to bottom): phase dispersion minimization, autocorrelation function, centered
correntropy

2.3.5 Simulation of LEO artificial objects

Most rockets and payloads give off specular flashes. Their metallic surfaces act

as a mirror for the sunlight. The observer can see this reflected sunlight only if the

reflecting surface is perpendicular to the bisectrix of the solar phase angle. A portfolio

of objects consisting of simple geometric shapes and complex composite objects have

been presented in this section. Testing light curves from a wide range of objects
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(simulated with the procedure illustrated in an earlier section) will allow us to gauge

the performance of period-finding algorithms for artificial debris. The objects (in

order) are 1U cubesat, NASA Regolith Advanced Surface Systems Operations Robot

(RASSOR) Bucket Drum, Pioneer 9 disks and probe, Pioneer 10 probe, box-wing

satellite and a rocket nose cone. The STL files for these objects were gathered from

GrabCad1. For all tumbling objects, the observer has captured 1 frame per second for

2 full revolutions about its own spin axis, with frame axes limits enforced manually.

2.3.5.1 Cubesat (1U)

CubeSats, in their smallest form, measure about four inches on each side, weigh

less than three pounds, and have an approximate volume of one quart. CubeSats

are built using these standard dimensions or Units (U) and are typically classified

as 1U, 2U, 3U, 6U, or 12U in total size. The total number of cubesats present in

space have exponentially increased in the last two decades. Majority of launches were

performed by academia, involving experiments for Earth observation and amateur

radio. Currently, they fly as auxiliary payloads aboard rockets. For this case study, a

1U cubesat (Fig. 2.10(a)) has been simulated in LEO using model spectral reflectance

measurements of CanX-1 (a Canadian CubeSat Nanosatellite program) [54]. In the

light curve (Fig. 2.10(b)), we can see repetitive behavior with identical intensities,

verifying the simulation process. If the reflecting surfaces are flat (e.g. box shaped

satellites), there is no guarantee that the reflection is observed during one full-body

rotation.

1https://grabcad.com/
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Figure 2.10: Cubesat (1U) (left) and its synthetic light curve (right)

Table 2.8: Rotational Periods of Cubesat using simulated light curve and their errors
Method Period (sec) % Error
Fast Fourier Transform — —
Lomb-scargle periodogram 359.5* 0.14
Autocorrelation function — —
Minimum string length 359.5 0.14
Classical periodogram 370.4 2.88
Phase Dispersion Minimization 357.1 0.79
Centered Correntropy 358 0.56
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From Table 2.8, we see at first glance that Lomb-scargle periodogram and

minimum string length have the least error 1. As expected, the FFT and autocorrelation

function were not able to execute the algorithm for this light curve.

2.3.5.2 NASA Regolith Advanced Surface Systems Operations Robot (RASSOR)

Bucket Drum

Figure 2.11: NASA RASSOR bucket drum (left) and its synthetic light curve (right)

NASA RASSOR Bucket Drum (Fig. 2.11(a)) is the portion of the robot that

captures the regolith and keeps it from falling out. The regolith can then be transported

1Period computations with an asterisk (∗) originally resulted a period harmonic
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to a designated location where reverse rotation of the drum allows it to fall back out.

It is a cylindrical shape with closed top, bottom and sides. The ends of the cylinder

are assumed to be reflective. Cylindrical objects have reflecting surfaces in many

more directions at any time than objects with flat sides. The light curve of rotating

cylindrical objects will give off between zero and two flashes per period, as seen in

Fig. 2.11(b).

Table 2.9: Rotational Periods of RASSOR Bucket Drum using simulated light curve
and their errors

Method Period (s) Error (%)
FFT — —
Lomb-scargle periodogram 359.5 0.14
Autocorrelation function — —
Minimum string length 359.5 0.14
Classical periodogram 357.1 0.79
Phase Dispersion Minimization 357.1 0.79
Centered Correntropy 358 0.56

From Table 2.9, all methods except FFT and ACF have performed well to within

1% error. Again, the Lomb-scargle periodogram and minimum string length have the

highest accuracy.

2.3.5.3 Pioneer 9 Disks

Pioneer 9, launched in 1968, was the fourth in a series of five NASA probes

designed to collect data on electromagnetic and plasma properties of interplanetary

space from widely separated points in heliocentric orbit over at least six passages of

solar activity centers.
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Figure 2.12: Pioneer 9 Disks (left) and its synthetic light curve (right)

Table 2.10: Rotational Periods of Pioneer 9 Disks using simulated light curve and
their errors

Method Period (s) Error (%)
FFT — —
Lomb-scargle periodogram 359.5* 0.14
Autocorrelation function — —
Minimum curve length 359.5 0.14
Classical periodogram 363.6* 1.01
Phase Dispersion Minimization 357.1 0.79
Centered Correntropy 358 0.56
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The curved disk (Fig. 2.12(a)) has produced a regular, symmetric sinusoidal

shape (Fig. 2.12(b)). The computed periods for the periodograms are the half-periods

from the initial iteration. After closer observation and knowing the shape of the

disk, doubling the values has mirrored the performance of the bucket drum in errors

(Table 2.10) with the exception of classical periodogram. The error has increased

by a minuscule amount to 1.01%, but all techniques are within acceptable range.

Lomb-Scargle and minimum string length resulted in the least error to expected

period.
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2.3.5.4 Pioneer 9 Probe

Figure 2.13: Pioneer 9 probe (left) and its synthetic light curve (right)
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Table 2.11: Rotational Periods of Pioneer 9 Probe using simulated light curve and
their errors

Method Period (s) Error (%)
FFT — —
Lomb-scargle periodogram 359.5* 0.14
Autocorrelation function — —
Minimum string length 359.5 0.14
Classical periodogram 377.4* 4.82
Phase Dispersion Minimization 357.1 0.79
Centered Correntropy 358 0.56

The raw results tabulated in Table 2.11 show evidence of identifying harmonics of

a period for Lomb-Scargle periodogram and classical periodogram. In the former case,

multiplying the value by 4 results in a period of 359.5 seconds, equating to a 0.14%

error. On the other hand, classical periodogram employs the half-period characteristic

producing a less than 5% error after doubling the period. With some post-processing,

Lomb-scargle and minimum string length have shown highest accuracy in this test

case as well.
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2.3.5.5 Pioneer 10 Probe

Figure 2.14: Pioneer 10 probe (left) and its synthetic light curve (right)

52



Table 2.12: Rotational Periods of Pioneer 10 Probe using simulated light curve and
their errors

Method Period (s) Error (%)
FFT — —
Lomb-scargle periodogram 359.5* 0.14
Autocorrelation function — —
Minimum string length 359.5 0.14
Classical periodogram 363.6* 1.01
Phase Dispersion Minimization 357.1 0.79
Centered Correntropy 358 0.56

It is interesting to note that the computed period from Table 2.12 almost reflects

identically to that of Pioneer 9 probe with the exception of the classical periodogram.

This is considering the fact that the objects differ in shape with the central body of a

dish antenna for Pioneer 10 probe instead of a cylinder. This is reflected in the number

of peaks in the light curve (Fig. 2.14(b)) correspoding to features of the object.

2.3.5.6 Box-wing interplanetary satellite

Spinning satellites usually have booms, solar panels or other structures that

cause asymmetries in the cylindrical body and hence regular flashes can occur, as seen

in Fig. 2.15(b). After studying four inactive box-wing geosynchronous satellites’ light

curves, it was observed that their brightness varies in a periodic fashion [55]. This

stemmed from the reasoning that reflected sunlight was modulated due to satellite

spin. The spin period variation was negligible in hourly timescale, but significant

and possible cyclically over monthly and yearly timescales, as expected. An external

disturbance torque (solar radiation pressure) acting on the large-area solar panels

produced sufficient angular accelerations [55]. In fact, solar radiation torques have

a long-term effect on the evolution of spin of any spacecraft (i.e. Earth orbiting
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spacecraft, deep space probes, solar sails) [56]. Our case study is over a shorter

timescale, hence these variations are not observed, although with real data it is highly

probable.

Figure 2.15: Box-wing satellite (left) and its synthetic light curve (right)
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Table 2.13: Rotational Periods of Box-wing interplanetary satellite using simulated
light curve and their errors

Method Period (s) Error (%)
FFT — —
Lomb-scargle periodogram 359.5* 0.14
Autocorrelation function — —
Minimum string length 359.5 0.14
Classical periodogram 333.33 7.41
Phase Dispersion Minimization 357.1 0.79
Centered Correntropy 358 0.56

Due to temporal aliasing, the Lomb-Sargle periodogram exhibits a period har-

monic in Table 2.13.

2.3.5.7 Rocket Nose Cone

Figure 2.16: Different geometries of Rocket nose cone at specified angles of rotation
as seen by the observer.
1st Row: (Left to Right) 60◦, 120◦, 180◦, 2nd Row: (Left to Right) 240◦, 300◦, 360◦
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Figure 2.17: Synthetic light curve of Rocket nose cone generated using simulation

Using the CAD model of a rocket nose cone (Fig. 2.16)1, the material surface

properties were set to include ambient, diffuse and specular reflection (ka = 0.8, kd =

0.1, ks = 1 respectively). Rocket nose cones are primarily made of plastic, fiberglass

and hard wood 2, hence the choices of reflective properties. The lighting conditions

are ideal to produce uniform white light at a point source that radiates as a headlight.

The position of the object with respect to the observer’s location on earth has the

coordinates of (7.140329, 6.399864, 1.33692) × 10−5 AU, which is approximately

2000 km altitude. The spin axis orientation is user-defined as λ = −20◦, β = 90◦.

Tumbling effects are ignored in this scenario. Performing a 360◦ rotation about its

own spin axis has produced the light curve (Fig. 2.17).

1C. Kaufman, https://grabcad.com/caleb.kaufman-3
2T. Beach, http://www.unm.edu/~tbeach/IT145/week05/parts.html
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Figure 2.18: Synthetic light curve of Rocket nose cone generated using simulation
with axes limits enforced manually

It is observed that the first generated light curve (Fig. 2.17) is not symmetric

or periodic, unlike the asteroid. Another characteristic of the software that affects the

brightness magnitude is the image’s window framing as the object is rotating. This

causes the light curve to vary, but can be kept consistent by manually verifying axes

limits (Fig. 2.18). Applying the period estimation methods to this light curve results

in the computed values (Table 2.14).

Table 2.14: Rotational Periods of Rocket nose cone using simulated light curve and
their errors

Method Rotational period (s) Error (%)

Fast Fourier Transform — —
Classical Periodogram 370.4* 2.88

Lomb-Scargle Periodogram 358* 0.56
Minimum String Length — —

Phase Dispersion Minimization 363.6* 1.01
Autocorrelation Function — —

Centered Correntropy 356 1.11
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In this test case, we can observe that the only reasonable estimates resulted from

classical periodogram, Lomb-Scargle periodogram, phase dispersion minimization,

and centered correntropy. The technique resulting in the least error is Lomb-Scargle

periodogram.

Of all the simulation test cases discussed so far in the paper and henceforth, some

techniques require user influence to perfect the algorithm as mentioned previously. They

include minimum string length, classical periodogram, autocorrelation function, phase

dispersion minimization and centered correntropy. The parameters to optimize are

frequency search range, frequency search interval, number of lags, number of bins and

maximum frequency respectively. Some methods’ complexity increases as they employ

multiple parameters. In order to ensure the best values, the Lomb-Scargle periodogram

is a reasonable reference to center about, for the frequency search range. Using this as

an initial guess and correcting it through iterations will reach the closest value possible

to the expected period. One of the more peculiar variables is the maximum frequency

(fmax) for the centered correntropy. In a way, it has an inverse proportionality to the

dominant frequency (i.e. doubling fmax will halve the rotational frequency). Therefore,

these methods used in conjunction with the Lomb-Scargle ameliorates the precision.

2.3.6 Varying the sampling frequency

Using the Box-Wing satellite for a 720-degree rotation where the object is

tumbling at 1◦/sec, varying the observer’s sampling frequency in frames per second

(fps) is tabulated (Table 2.15) illustrating the rotation periods (in seconds). For

an expected period of 360 seconds, we see that FFT cannot handle the sampling.

Lomb-Scargle periodogram determines a period harmonic as the dominant frequency.

Classical periodogram and phase dispersion minimization are not affected by varying

sampling frequency. We do see that minimum string length and centered correntropy
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are dependent on the quality of the light curve and show a decline in accuracy with

lower quality light curves as a consequence of fewer observations.

Table 2.15: Effect of varying the sampling frequency (1, 0.5, 0.33, 0.2 and 0.1
frames/second) on rotational period (seconds)

Method 1 fps 0.5 fps 0.33 fps 0.2 fps 0.1 fps
Fast Fourier Transform — — — — —
Classical Periodogram 333.3 333.3 333.3 333.3 333.3
Lomb-Scargle Periodogram 89.88 92.64 92.52 92.26 91.61
Minimum String Length 359.5 359 358.5 357.5 355
Phase Dispersion Minimization 357.14 357.14 357.14 357.14 357.14
Centered Correntropy 358 356 354 350 340

2.3.7 Varying the time-series duration

Using the box-wing satellite where the object is tumbling at 1◦/sec and sampling

frequency is 1 fps, the length of time-series duration is varied by using fractions of a

full-body rotation. The periods derived from this is tabulated (Table 2.16) in seconds.

Unlike the previous experiment, the length of the time-series for data collection has

no direct correlation to the effectiveness of the period-finding algorithm. However,

periodograms and correntropy are able to generate an acceptable period regardless of

the duration of the light curve, at the bare minimum.

2.3.8 Stellar Transit Light curve

The Kilodegree Extremely Little Telescope (KELT) project is a survey for

planetary transits of bright stars. It consists of a small-aperture, wide-field automated

telescope located at Winer Observatory near Sonoita, Arizona as indicated by [57].

Authors in [58] agree that the Beehive Cluster or Praesepe is an open star cluster
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in the constellation Cancer. Praesepe is a bright, large cluster with an apparent

magnitude of 3.7. It lies at a distance of 577 light years from Earth 1.

From the NASA Exoplanet Archive, the transit survey of object HAT-138-

0001727 collected from KELT Praesepe over a duration of 100 heliocentric Julian

days (HJD) was utilized to perform period estimation using some of the methods that

proved favorable with Asteroid 43 Ariadne.

Figure 2.19: Transit Survey of HAT-138-0001727 from NASA Exoplanet Archive

This transit light curve (Fig. 2.19) has a really long duration compared to the

earlier test cases and the number of observation points has multiplied manifold. The

following results can give some explanation in terms of capabilities to handle large

datasets.

1https://www.messier-objects.com/messier-44-beehive-cluster/
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Table 2.17: Rotational Periods of stellar object HAT-138-0001727 using transit survey

Method Computed Rotational Period (days)

Lomb-Scargle Periodogram 4.4232
Minimum Curve Length ∞

Phase Dispersion Minimization 4.0188
Centered Correntropy 1378.6

Comparing values from Table 2.17 to the referenced value of 4.41341887 days

from the NASA Exoplanet archive, we can conclude that the Lomb-Scargle periodogram

is the most reliable when estimating rotational periods of varying dataset sizes, as well

as in both uniformly and non-unifomly sampled scenarios. It is rigorous in exhausting

all possible frequencies in the range search without requiring any user input, which is

the deficiency of the phase dispersion minimization method. This method can handle

large gaps in the time series too.

2.4 Conclusion and Future Work

Of all the time series analysis methods, the periodogram methods and Phase

Dispersion Minimization worked correctly for all test cases and the former resulting in

the least percentage error when comparing with the expected values, except for the

simulated rocket nose cone. The Lomb-Scargle periodogram is versatile in estimating

period of objects that are sampled both uniformly and non-uniformly (which is more

realistic when looking at ground-based observations of space objects). Certain methods

like the FFT only handle evenly sampled data since it requires a sampling frequency.

The phase-folding methods have a slight disadvantage in that there are additional

parameters such as lags and number of bins that can vary the final output greatly.

Performing the operation also requires the user to know before-hand, a viable search
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range of frequencies as well as an interval with which to search with. These two values

must be accurate for the method to work at all. The Lomb-scargle periodogram has a

robustness to it to process large sets of observational data with less interference from

the user. This was proven with the transit survey of the object HAT-138-0001727.

It showed an accuracy of 0.23% error for Asteroid 43 Ariadne which is a very good

estimator of period. The only downside was with the simulation and synthetic light

curves at angular speeds of 19 and 20 degrees per second as it generated errors greater

than 5% but was still quite reasonable (based on results from published literature that

deemed this criterion acceptable). This was mimicked in the rocket nose cone rotating

at an angular speed of 1 deg/sec. Although methods like minimum string length and

centered correntropy performed well for simulation of LEO objects, they have both hits

and misses with other RSOs and its inconsistency leads to little reliability. The phase

dispersion minimization algorithm is consistent with any number of bins less than

100 and the number of lags are irrelevant of the autocorrelation function’s predicted

period as long as it doesn’t exceed a threshold. Varying angular speeds of rotation

or the number of 360-degree rotations does not alter the location of peaks in the

periodograms significantly and this validates the consistency of results and re-assures

that the window of data collection is irrelevant to determine the period of rotation.

These values are dependent on the previously stated test case parameters and may

differ for other spin axis orientations. Since there is little to no access to available

”truth” values with which to compare these results, the paper invites observations

and analyses from other researchers to validate this technique and verify the sidereal

rotation periods determined through simulation means. We can conclude that the

Lomb-Scargle periodogram is the most reliable for test cases at varying distances from

the observer on Earth including LEO (cubesat, RASSOR bucket drum, disks, Pioneer

probes, box-wing satellite and rocket nose cone), deep space (asteroid Ariadne) and
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exo-Solar objects (Stellar transit survey). Ensemble methods (using Lomb-scargle to

predict search parameters) show improvement over single algorithms, however it does

not exceed the consistent performance of the Lomb-scargle periodogram on its own.

Optimizing the periodogram to identify period harmonics would enhance this process.

Spent rocket bodies and defunct satellites are major sources of orbital debris

in low-Earth orbits that pose higher threats directly to humans through collisions

with Earth or each other causing major communication failure. Future work includes

testing with real data of operational and inactive satellites. A generic method may be

developed for unknown targets that exhibit periodic changes in brightness and give

forth to estimating its shape and motion solely based on photometric observations

and astrometric data using ground-based data collection methods.

It is also seen that for the cases when the methods yielded agreeable results,

the errors are bounded to 10% which is a reasonable estimator for period and the

proximity to expected value increases for methods where the observed data is solely

sufficient to estimate the period.
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Chapter 3

Computing surface brightness integrals of RSOs

3.1 Introduction

The number of RSOs includes both artificial and natural bodies such as satellites,

rocket bodies, and asteroids. Defunct satellites are major causes of concern due to

potential collisions [59]. Breakups of Earth-orbiting bodies result in an uncatalogued

population thereby creating uncertainties in the resulting environment for spacecraft

[60]. An accurate understanding of existing objects’ orbit and propagation can help in

planning collision avoidance maneuvers. Since the shape, and inertia of the object

influences the orbit, especially in LEO, methods to calculate these from observed data

(Light curve) are important. The shape is emphasized as it allows for the inference

of size, mass and possibly operational status [61]. Using photometric light curves for

shape estimation is well-known for asteroids [9, 10, 62]. An axisymmetric cellinoid

model was developed as an extension of the ellipsoid shape which consists of eight

octants from eight ellipsoids such that adjacent octants share semi-axes [3]. Studies

that use LCI for satellites on the other hand have required a priori information such

as known attitude states and used cube-shaped objects [61]. Investigation of artificial

space objects such as rocket bodies and satellites, both active and defunct, in general

require a more complex polyhedron to model and thus estimate its shape.

Various methods compute the light curves of irregularly shaped bodies at

arbitrary viewing angles and illumination geometries by integrating brightness over the

surface. A common method employed is to tessellate the surface, i.e., to represent it as

a polyhedral approximation, usually with triangular facets of similar size (triangulation)
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[63]. Ref. [64] applies this to estimate the brightness variation of COMS-1 satellite,

using a rendering method of summing the total brightness at each simulated position.

The brightness is calculated using Hedjuk’s equations induced from Pogson’s equation

[65,66]. Specifically, the phase function equation for calculating the brightness was

developed for fragmentation debris [67], which is defined in terms of the solar phase

angle. Algorithms have been proposed to incorporate radial basis functions (RBF)

over spherical surfaces using arbitrarily scattered nodes and Gaussian basis functions

to reduce the order of operations [68,69].

Another approach to compute the brightness integrals is to use quadrature

schemes such as Gauss, Chebyshev or Lebedev to improve computation [63], instead of

triangulation. Quadratures have their merits of being stable, accurate, and minimally

computationally expensive in the field of physical optics where the surface integrals

are multi-dimensional and highly oscillatory [70]. The choice and distribution of nodes,

uniformity of corresponding weights and the computational complexity is what sets each

quadrature scheme apart from the other. Increased performance, in terms of accuracy

and operation time, for computing surface brightness integrals of axisymmetric bodies

is witnessed in the usage of Lebedev quadrature. Specifically, Lebedev quadrature

computes the surface integral over a unit sphere making it a worthwhile extension to

model naturally spherical/ellipsoidal objects (i.e. asteroids [63]).

Our main contribution includes utilizing Lebedev quadrature scheme for artificial

axisymmetric space objects such as cone, cylinder, upper-stage rocket bodies, torus

and a unique peanut-shaped asteroid. Typically, man-made objects are not simple to

model for computing the brightness surface integrals, due to the presence of sharp

edges, and flat reflective surfaces. In this paper, we have shown the use of this

quadrature scheme and results are presented for the above-mentioned surfaces as well

as composite bodies utilizing a superposition of geometric shapes. Further, the total
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brightness integral of a space object is simplified such that the curvature function is

reduced from a double to a single integral and the derivation is included later in the

paper.

The following sections will provide a theoretical background to surface integrals

and quadrature schemes. Application of the formulated surface approximation to

axisymmetric test cases is shown in the results through means of simulation. Finally,

a comparison of the techniques i.e. tessellation, and quadrature is provided.

3.2 Surface Brightness Integrals

Computing the total brightness of a convex surface as detailed in [63] adapted

for irregularly shaped bodies, such as asteroids, is outlined briefly below. An object

illuminated by a source (Sun) and the observer viewing on Earth is in a body-fixed

coordinate system to the object. The direction unit vectors to the source and observer

from the object are ω and ω0 respectively. All angles are elements in the unit sphere,

S2. The unit normal vector of a facet, as depicted in Figure 3.1 (Modified image

from [4]), is defined as η (specifically η(θ, ψ) where θ is measured from the pole - see

Figure 3.1b).

η1 = sin θ cosψ (3.1)

η2 = sin θ sinψ (3.2)

η3 = cos θ (3.3)

The visible, illuminated section of the surface is given by A. The integrated

total brightness of the target object (made up of a finite number of facets) as seen by

the observer at a given time is
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(a) Sun-Object-Observer geometry

(b) Object’s normal direction vector and astrometric
angles

Figure 3.1: Simplified geometry involved in light curve acquisition

L(ω0,ω) =

∫
A

S(µ, µ0, α)G(θ, ψ) sin θdθdψ (3.4)
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and the scattering function S(µ, µ0, α) is dependent on the viewing geometry

where

µ = ω · η

µ0 = ω0 · η

cosα = ω0 · ω

The scattering function or bidirectional reflectance distribution function (BRDF)

uses the area of the facet and α is the solar phase angle [61]. The BRDF model

describes light reflection off a surface which comprises the shape’s reflectance properties.

There are different models to describe the scattering function (i.e. Hapke model) and

a simplified model [71] is depicted as

S(µ, µ0, α) = f(α)

(
µµ0

µ+ µ0

+ Cµµ0

)

where f(α) is the phase function and C is a relative weighting factor. The illuminated

surface, A, encompasses points on the surface where µ, µ0 ≥ 0. The surface curvature

function G(θ, ψ) ≥ 0 is denoted by G(θ, ψ) =
J(θ, ψ)

sin θ
where J = |J| is the norm of

the Jacobian vector J(θ, ψ) =
∂x

∂θ
× ∂x

∂ψ
and x(θ, ψ) gives the surface as a function of

the surface normal direction.

To numerically compute the integrated total brightness (equation 3.4), generally,

there is a tessellation of S2 into N almost equal-sized facets approximating the surface

as a polyhedron [63]. The area of each facet on the surface is solved for in the inverse

problem, which in the LCI procedure [72] leads to shape reconstruction using the

Minkowski procedure.
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A more analytical approach is to use quadratures instead of geometric tessellation.

The objective of quadrature methods is to effectively choose the evaluation points

of the integrand function and their corresponding weights [63]. This is usually done

on a basis where the form of the function is assumed. There are multiple types of

quadrature schemes on a sphere among whom, the Gauss, Chebyshev, and Lebedev

schemes will be discussed further.

3.3 Quadrature Schemes

In various applications, the need arises for the calculation of integrals over

spherical surfaces in R3. An integral over the unit sphere S2 is

I[f ] =

∫
S2

f(x)dΩ =

∫ 2π

0

∫ π

0

f(φ, θ) sinφdφdθ (3.5)

where f : S2 → R. Many times, the actual form of f is complex or unknown,

so it is essential to determine an approximation to the integral. A commonly used

technique to arrive at such approximations is by use of a quadrature Q, where the

integral is approximated by a weighted sum over a finite collection of points. A wide

variety of quadratures can be derived under the assumption of fixed weights, such

as Chebyshev quadratures. On the other hand Gauss quadratures requires one to

determine both weights and nodes [73].

3.3.1 Gauss quadrature

The formulation of (3.5) is an integral over the unit sphere as a product of two

one-dimensional integrals over θ and φ. As a result, we can use quadrature rules for

one-dimensional integrals repeatedly to arrive at
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Q[f ] =
N−1∑
i=0

M−1∑
j=0

wijf(θi, φj) (3.6)

The weights wij are still to be determined by the choice of two one-dimensional

quadrature rules. The generation of the nodes and weights, up to very high order, can

be done quickly. The distribution of the nodes in the Gaussian product is clustered

around the poles [73]. This, in turn, causes the grid distance between points close

to the poles to shrink significantly. Another aspect is the computational time and

complications in inverse problems [63]. There is a potential reduction in the number

of points, as compared to tessellation, and it’s not enough for the computation.

3.3.2 Chebyshev quadrature

Another approach to deriving quadratures on the sphere starts from the assump-

tion that the weights of all the N integration nodes are equal. Quadratures of this

type will minimise a probability error if the function values are subject to normally

distributed errors, which could be the case if the integrand can only be empirically

sampled [74]. As one wants to correctly integrate the constant function f ≈ 1, this

implies that the weights must satisfy

wi =
4π

N
, i = 0, . . . , N − 1 (3.7)

The remaining question now is how the nodes should be scattered along the

sphere for an optimal quadrature schemes. As the weights are equal for all nodes (as

seen in Fig. 3.2), this suggests the seemingly trivial answer that the nodes should be

uniformly spread out over the sphere. The location of the zeros are approximately the

same for both Gauss and Chebyshev in Fig. 3.2, although subsequently the 5th order

polynomials have differing peaks and troughs due to their weights. A crucial caveat
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soon emerges, to determine the context of uniform distribution and the method of

calculating these points.

(a) Weights vs. zeros for 5th order polynomial (b) Polynomial P(x) using zeros for orders 1
to 5

(c) Weights vs. zeros for 5th order polynomial (d) Polynomial P(x) using zeros for orders 1
to 5

Figure 3.2: Roots of a 5th order polynomial using Gauss (Top) and Chebyshev
(Bottom) Quadrature

3.3.2.1 Uniform distribution of points on a sphere

If we impose the standard requirement that a quadrature is exact for all spherical

harmonics up until order p in the case of equal weights we arrive at the spherical

designs. A set of N points xi is called a spherical t-design if
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∫
S2

f(x)dΩ =
4π

N

N−1∑
i=0

f (xi) , ∀f ∈ Πt (3.8)

One normally desires to find spherical designs with a minimal amount of nodes.

The efficiency of the spherical designs puts these quadratures on par with the Gaussian

quadrature.

3.3.2.2 Random distribution of points on a sphere

Another approach to Chebyshev quadratures is to use a Monte Carlo scheme

where instead of a regular grid we use a randomly generated grid yielding a non-

deterministic quadrature scheme. This quadrature can be applied to a more general

class of integrals over a multidimensional volume V i.e. J [f ] =
∫
V
f(x)dΩ

It is argued that Monte Carlo integration becomes increasingly competitive for

higher-dimensional integrals as it does not suffer from the curse of dimensionality [75].

Under the assumption of a roughly constant sample variance we see that a Monte

Carlo quadrature has exactly the same form as spherical designs if the integration is

taken over S2 [73].

3.3.3 Lebedev quadrature

Lebedev quadrature approximates the surface integral over a unit sphere. The

mesh grid has octahedral rotation and inversion symmetry. The number and position

of the grid points along with corresponding integration weights are computed by

evaluating the exact integration of function (or spherical harmonics) up to a reasonable

order. The surface integral is approximated as

Q[f ] = 4π
N−1∑
i=0

wif(θi, φi) (3.9)
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where the grid points and weights are to be determined. The use of a single sum,

rather than two one dimensional schemes in Gauss product from discretizing the θ and

φ integrals individually, leads to fewer total grid points for a similar accuracy. Similar

to Gauss quadrature, the computation speed is resultant of using two one-dimension

integrals. However, Lebedev quadrature simplifies the use of any symmetry of the

integrand to remove unnecessary points. Lebedev quadrature can achieve the same

kind of accuracy as the Gaussian product scheme using less quadrature points (order

of roughly 2
3
) [73]. As a result, the Lebedev quadratures need less function evaluations

and will result in a faster integration scheme if the nodes and weights are precomputed.

As depicted in Table 3.1, Lebedev quadrature determines the root and corresponding

weights with the fastest computational time.

Table 3.1: Computational time to compute roots and weights of a 5th order polynomial
using various quadrature schemes

Quadrature Scheme Computational Time (sec)

Gauss 0.789227
Chebyshev 2.429716
Lebedev 0.317689

Lebedev quadrature is essentially an advanced method for arranging evaluation

points such that their distribution is approximately even, and consequently their

weights are not uniform [63].
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3.4 Surface function approximation for axisymmetric bodies

As formulated in [76], if a surface is given by

x(r, φ) = r cosφx̂+ r sinφŷ + F (r)ẑ (3.10)

And z = F (r) is a continuous, smooth function where 0 ≤ r ≤ R in (r, z). Each point

(r, φ) has tangents:

Tr =
∂

∂r
x(r, φ) = cosφx̂+ sinφŷ + F ′(r)ẑ

Tφ =
∂

∂φ
x(r, φ) = −r sinφx̂+ r cosφŷ

(3.11)

The surface integral is

∫
S

g(x)dS =

∫∫
S

g(r) |Tr × Tφ| drdφ (3.12)

where

Tr × Tφ = −rF ′(r) cosφx̂− rF ′(r) sinφŷ + rẑ and |Tr × Tφ| = r
√

(F ′(r)2 + 1)

So, the double integral in equation 3.12 becomes

∫∫
S

g(r) |Tr × Tφ| drdφ =

∫ 2π

0

dφ

∫ R

0

g(r)r
√

(F ′(r)2 + 1)dr∫∫
S

g(r) |Tr × Tφ| drdφ = 2π

∫ R

0

g(r)r
√

(F ′(r)2 + 1)dr

(3.13)

The single integral (equation 3.13) can be evaluated as an approximation once

the nodes and their corresponding weights are computed. The number of nodes

(vertices) chosen is important. Varying the number of vertices, N , influences the
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number of facets and in turn the volume. The results tabulated in Table 3.2 show

that a larger number of vertices chosen for Lebedev quadrature, a smaller error there

is to the unit sphere volume.

The Lebedev points for N = 2354 are seen in Fig. 3.3 and show a distribution

with a volume derived by Lebedev closest to the sphere volume. For the following

Lebedev quadrature tests, N = 2500 will be chosen to maximize the distribution of

points. The next section presents a list of test cases including quadric level surfaces.

Figure 3.3: Lebedev points and Convex hull distribution for N=2354
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3.5 Results and Discussion

Test cases from axisymmetric bodies were used to study the efficacy of this

approach over tessellation in simulation.

3.5.1 Non-symmetric asteroid

43 Ariadne is a sizeable main-belt asteroid. Using the 3D vertex coordinates of

43 Ariadne generated from the Database of Asteroid Models from Inversion Techniques

(DAMIT) software suite written by Joseph Durech and applying Delaunay triangulation

(a form of tessellation) gives us the facets on the shape model (See Fig. 3.4).

Figure 3.4: Asteroid 43 Ariadne as seen by the observer at 0◦

The method used to generate the synthetic light curve from [26] is rationalized

succeeding this. The surface reflectance properties were set to include ambient, diffuse

and specular reflection (ka = 0.5, km = 1, ks = 0.3 respectively). The motion of the

sun with respect to the asteroid is negligible and assumed constant. The lighting

conditions are ideal to produce uniform white light at a point source that radiates

in all directions. The astrocentric coordinates of the Sun at the first observed Julian

date and the observer’s location are both facing the target. The light is interpolated
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linearly across each triangular facet using the vertex normals. Since this RSO is

resolved, we are aware of its ecliptic pole coordinates as λ = −15◦ and β = 253◦. We

can then permute 1 full rotation of 360◦ about this spin axis orientation, resulting in

a light curve (See Fig. 3.6).

It is difficult to explicitly define the shape as the form of the function is too

complex. However, we can approximate it at best using a stellated octahedron with

the following equation

f(x, y, z) = a
(
x2y2 + y2z2 + x2z2

)
+ b
(
x2 + y2 + z2

)2
+ c
(
x2 + y2 + z2

)
+ d = 0

(3.14)

where a = 1, b = 0, c = −1, d < 0 for it to be a real quartic surface [77]. The

reconstructed shape using the above-mentioned surface approximation function is

depicted in Figure 3.5.

Figure 3.5: Ariadne 43 shape reconstruction using an octahedron

The synthetic light curve generated using the octahedron is viewed in Fig. 3.6.

The shape of the light curves permuted from both methods (after normalization of
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Figure 3.6: Simulated light curve of Ariadne using a tessellated surface and Lebedev
quadrature (octahedron)

magnitude and bias removal) are quite similar with the exception of slight horizontal

displacement in the location of the first trough. They can overlap with relative

accuracy with some discrepancies found in the middle of the curve. This can be

attributed to the uneven shape of Ariadne and its sparse, flat facets as opposed to

smooth, round edges.

3.5.2 Axisymmetric bodies

3.5.2.1 Cylinder

The general equation of a cylinder with an ellipse cross-section centered about

the z-axis is given by x2

a2
+ y2

b2
= 1

If a = b, then the cylinder will have a circular base, which simplifies the equation.

The light curve generated using Lebedev quadrature is shown in Fig. 3.7. Comparing

the errors in area generated by tessellation and Lebedev quadrature (See Fig. 3.8),
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the error due to Lebedev is a lot smaller by several orders. The number of triangular

facets needed is also significantly lower for Lebedev quadrature. Lebedev quadrature

is able to provide full coverage of the object with much lower number of facets, in

turn decreasing the number of iterations required to compute the surface integral.

Figure 3.7: Synthetic light curve generated by Lebedev quadrature for Cylinder

3.5.2.2 Cone

The general equation of an upside-down right circular cone (base facing the

positive z-axis) is x2

a2
+ y2

b2
= z2

c2
where z can be rearranged to a positive and negative

root (i.e. the orientation of the cone is upright or upside down). For this case, we will

only assume one root i.e z =
√

c2

a2
x2 + c2

b2
y2.

The light curve generated through Lebedev quadrature where a = 10, b = 8 and

c = 6 is shown below in Fig. 3.9.
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Figure 3.8: Error in surface area through tessellation and Lebedev quadrature as a
function of triangular facets

Figure 3.9: Synthetic light curve generated by Lebedev quadrature for Cone

3.5.2.3 Rocket body with nose cone

This is a combined geometry of the cylinder and cone, also known as cylindro-

conical shape. Since a cone is an apex of the cylinder, we can also think of this as
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two cylinders with 2
3

of the volume extruded from one of the cylinders. This is of

particular interest in the scientific community to determine the attitude motion of

disposed upper-stages. However, the optical observations are made with a simplifying

assumption of cylindrical diffusely reflecting cylinders [78].

Figure 3.10: Different geometries of Rocket nose cone at specified angles of rotation
as seen by the observer. 1st Row: (Left to Right) 60◦, 120◦, 180◦, 2nd Row: (Left to
Right) 240◦, 300◦, 360◦

On the contrary, the material surface properties were set to include ambient,

diffuse and specular reflection (ka = 0.8, kd = 0.1, ks = 1 respectively). Rocket nose

cones are primarily made of plastic, fiberglass and hardwood, hence the choices of

reflective properties. The spin axis orientation is user-defined as λ = −20◦ and β = 90◦.

Tumbling effects are ignored in this scenario. Performing a 360◦ rotation about its

own spin axis has produced the light curve generated by tessellation (See Fig. 3.11).

Comparing this to the light curve generated by Lebedev quadrature in Fig. 3.11, we

observe that the trend and underlying behavior of the light curves are quite similar.

There are a few outliers in the former light curve, which could be a result of the

simulation’s lighting conditions. However, most notable is that after normalization

and removal of bias, the inverted peaks are aligned quite well.
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Figure 3.11: Simulated light curve of Rocket nose cone using a tessellated surface and
Lebedev quadrature

3.5.2.4 Torus

The torus is the surface generated by the revolution of a circle around a line of its

plane; it is therefore a tube with constant diameter and circular bore. It can be useful

to estimate rings and disks found in satellites and antennas. As a rational quartic

surface, the cartesian equation is (x2 + y2 + z2 + a2 − b2)
2

= 4a2 (x2 + y2) where a

and b are the major and minor radius, respectively. The shape model is seen in Fig.

3.12 and its corresponding light curve is shown in Fig. 3.13. The light curve has

peculiar characteristics of resembling a sinusoid with truncated troughs.

3.5.2.5 Peanut-shaped asteroid

This is based on a Cassini oval (2D plane curve) where the product of distances

to two fixed points P1 and P2 is constant (i.e. |PP1|, |PP2|). If the foci are located at
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Figure 3.12: Torus model with b = 1.1a and reflectance properties of artificial object

Figure 3.13: Synthetic light curve of Torus using Lebedev quadrature

(a, 0) and (−a, 0), the equation of the 2D curve is (x2 + y2)
2 − 2a2 (x2 − y2) + a4 = b4

where a = 1 and b = 1.1a. The level surface in 3D (Fig. 3.14) then becomes

f(x, y, z) =
(
x2 + y2 + z2

)2 − 2a2
(
x2 − y2 − z2

)
+ a4 − b4 = 0

The light curve generated through Lebedev is shown in Fig. 3.15.
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Figure 3.14: Peanut-shaped asteroid generated through tessellation with applied
material surface properties

Figure 3.15: Synthetic light curve generated by Lebedev quadrature for peanut-shaped
asteroid

The asteroid, Ariadne, is resolved and we have real light-curve data [72] to

validate our method. However, for the remaining artificial bodies, reference values are

computed using the simulated object’s light curve, where a frame is captured each

second by the camera and its mean intensity is calculated. The rocket nose cone can

be assimilated to an upper-stage body. The error is determined by calculating the
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difference between the “truth” value and the quadrature result, and is tabulated below

in Table 3.3. As expected, the objects relying heavily on superposition of multiple

geometric models (i.e. rocket nose cone) has a larger relative error in contrast with

simpler shapes such as the cylinder. The octahedron also produces an increased error

since it’s a symmetric approximation and the asteroid is an uneven surface.

Surface function Error (Magnitude order)

Octahedron 100

Cylinder 10−3

Cone 10−2

Rocket-body 100

Torus 10−2

Peanut-Shaped 10−1

Table 3.3: Relative error in the approximation of the surface integral

Some light curves generated through tessellation and Lebedev may overlap one

another with some difference in the magnitude (at peaks and troughs), but it is not

possible to declare one more accurate in this situation since it’s derived through a

simulation. With no reference to compare it to, a better means would be to compute

the rotational period of the target objects about its spin axis and correlate the error

in the period to an scaled error for light curve generation. Furthermore, there are

advantages of the Lebedev quadrature over tessellation that are detailed below.

Remark: The choice of Lebedev quadrature to compute the brightness integral of a

space object (especially in artificial bodies) is recommended as opposed to tessellation,

especially if the object has not been resolved. Representing the surface by a set of

triangular facets for tessellation has been previously tested on natural, convex bodies

which have already been resolved. On the other hand, Lebedev quadrature eliminates the

dependence on a priori knowledge of the object’s faces and vertices to form triangular
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facets. As opposed to other quadrature schemes, Lebedev approximates the integral

with a non-uniform weight distribution and providing an additional computational

advantage.

3.6 Conclusion and Future Work

Compared to tessellation, Lebedev quadrature has a better scheme for computing

surface brightness integrals for axisymmetric bodies, and provides a lower relative

error approximation. The computational times are also significantly faster than using

Delaunay Triangulation. Unlike common geometric shapes, for composite bodies such

as the rocket nose cone, the complexity is significantly higher, so error persists, and

synthetic light curves do not resemble one another obtained through both means.

Future work entails varying the reflectance properties of the rocket body such

that the cone is entirely dull (non-reflective) and a validation can be performed to see

its equivalence to the cylinder test case. Similarly, changing certain portions of an

object to have differing reflectance properties and evaluating its effect in comparison

with the body in its entirety would be of interest (similar to the mixed-brightness

integral in [79]). Quasi-uniform distributions of relatively low numbers of nodes [68]

can be applied to simpler artificial objects to verify variability of quality [80].
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Chapter 4

RSO light curve classification using neural networks

4.1 Introduction

As the number of artificial space objects increase, the availability of astrometric

and photometric data obtained commercially along with high cadence of observations

makes it difficult to sustain continuous and real time analysis [81]. The state of a

satellite cannot be assumed constant and therefore requires machine classification if

near real time assessment of a larger number of objects is desired. Machine learning

techniques have been used to analyze variable stars [82], however there isn’t a big

data problem with artificial space objects unlike astronomical/stellar objects. As

deep space becomes increasingly congested and anomalous events are common, it is

essential to the space situational awareness (SSA) community to have the tools to close

awareness gaps and reduce information latency [81]. The requirement of timeliness

and the consideration of a non-stationary state are unique to man-made objects. As

such, we are considering both active, stabilized objects as well as inactive, tumbling

objects.

The light curve observations are readily available to exploit for classification

purposes. Currently, time series data are seen in a varied range of applications and

numerous clustering and classification methods were developed [83]. Time series

classification is a supervised machine learning problem aimed for labeling multivariate

series of variable length [84]. Time series data often have a very high dimensionality and

thus, a broad number of features can be extracted making classification arduous [85,86].

Instead of applying classification methods on raw time series data, as it’s not very
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practical, we can employ a higher-level representation [83]. One such type of higher-

level representation is window-based representation. Some examples include Piecewise

Aggregate Approximation [87], Trend-based and Value-based Approximation [86], and

Symbolic Aggregate Approximation [85]. In window-based representation, the whole

time series is divided into a sequence of equal sized windows (segments). One or

more features are extracted from each frame, and a vector of these features becomes

the data-reduced representation. Subsequently, the created vectors are used to train

a classifier. A few commonly used classifiers are listed as follows: Rule Induction,

Support Vector Machine (SVM), Neural Network (NN). When using any of the above-

mentioned classifiers, the temporal relations present in time series data are ignored,

leading to inaccurate results. To solve this issue, multiple classifiers can be utilized

to improve the accuracy of time series classifiers. The viability of using multiple

classifiers are evidenced in [88, 89] and have been found better performing than those

of single classifier systems. Adding a Hidden Markov Model (HMM) to a Recurrent

neural network (RNN) is proposed for this study. This modification will incorporate

temporality of the data, and execute a second stage classification to remove any

redundancy and check for misclassification from the first level of screening.

Representation learning allows the model to extract important features to

characterize objects according to physical property one by one [90]. Initially, this may

limit model interpretability however, it provides an opportunity for hidden features

of the light curve to surface and help in classifying an object. Feature engineering is

the process of determining, calculating, and extracting features from raw data. These

features are typically properties of the raw data that can be understood by humans

and believed to provide insight on the prediction task. Feature analysis of time series

(FATS) [91] has been able to extract features from stellar light curves and proven

successful for regression. While feature engineering can be computationally extensive,
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representation learning has the opportunity to remove human-based preconceived

notions about factors affecting classification [90]. The Long-Short Term Memory

(LSTM) RNN is chosen so that the model can learn both relations between flux values

in a sequence and general patterns of all objects, allowing accurate predictions.

This chapter outlines the various types of neural networks and mathematical

background for the Hidden Markov Model. Details of the classification model are

included with the aggregation of Long-Short Term Memory (LSTM) RNN to the

HMM. Identifiers (labels) by which classification of light curves are performed as well

as the tests to ensure accuracy are then explained. Results from training a set of

simulated objects will conclude this section.

4.2 Neural Networks

There are three important types of neural networks that form the basis for

most prior-trained models in machine learning: Artificial Neural Networks (ANN),

Convolution Neural Networks (CNN), and Recurrent Neural Networks (RNN). The

three types of neural networks have been examined and evaluated for its feasibility for

this application below.

4.2.1 Artificial Neural Network (ANN)

The fundamental element of an Artificial Neural Network is a single perceptron

(or neuron). ANN is a group of multiple perceptrons at each layer, in which the

outputs of one layer are provided as the inputs to the neurons of the subsequent layer

(See Fig. 4.1) (from [92]). ANN is also known as a Feed-Forward neural network

because inputs are processed only in the forward direction. ANN can be used to solve

problems related to: tabular data, image data, and text data.
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Figure 4.1: Architecture of an ANN

Artificial Neural Network is capable of learning any nonlinear function. Hence,

these networks are popularly known as Universal Function Approximators. ANNs

have the capacity to learn weights that map any input to the output. The inputs

to a neuron are each individually multiplied by weights and the results summed [6].

This value is given as input to a non-linear activation function that produces the

neuron’s output activation. One of the main reasons behind universal approximation

is the activation function. Activation functions introduce nonlinear properties to the

network. This helps the network learn any complex relationship between input and

output. Theoretically, ANNs that use non-linear activation functions could replicate

the mapping of any training set, given that the network contained a sufficient number

of neurons [93].

There are various ANN optimizers, such as Stochastic Gradient Descent (SGD),

RMSProp, and Adam [94], to name a few, that are used in the training process.

The typical approach to design an ANN is to limit the width of each hidden layer,

but include many layers (making it deep) [93]. This leads to overfitting, since these

92



networks have a larger capacity than required [6]. To overcome this problem, several

regularization techniques (i.e. batch normalization) exist to counteract the impact of

updating layers sequentially. Another option would be to utilize a dropout layer, where

it randomly removes a percentage of neurons (by setting those neurons’ activations

to 0) during each training batch. Although this may mitigate overfitting, a negative

consequence is a slower training rate.

One common problem in all these neural networks is the Vanishing and Exploding

Gradient. This problem is associated with the back-propagation algorithm. The

weights of a neural network are updated through this back-propagation algorithm

by finding the gradients. So, in the case of a very deep neural network, the gradient

vanishes or explodes as it propagates backward which leads to vanishing and exploding

gradient. ANN cannot capture sequential information in the input data which is

required for dealing with sequence data.

4.2.2 Convolutional Neural Network (CNN)

Convolutional neural networks are especially prevalent in image and video

classification. With the enormous number of pixels in an image, processing each pixel

as an individual feature is unreasonable. CNNs are able to provide some degree of

weight sharing through two unique layers: convolutional layers and pooling layers [6].

Convolution is a signal processing technique wherein a small kernel is applied to

a source signal [93]. Since images don’t have a time component, the kernel is instead

moved spatially and the output is effectively a new image. Convolution layers apply a

collection of kernels to the input, where a single kernel is applied across different parts

of an input to produce a feature map. Each kernel can contain multiple trainable

weights, hence weight sharing. The building blocks of CNNs are kernels (sometimes

called filters), which are used to extract the relevant spatial features from the input,
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such as arrangement of pixels and the relationship between them in an image. They

help us in identifying the object accurately, the location of an object, as well as its

relation with other objects in an image.

Pooling is a regularization technique to combat overfitting [93]. Pooling is

typically accomplished via the maximum, minimum, or average function. A pooling

layer will have some sample rate, and will combine pixels of its inputs using the

aforementioned function at whatever rate is desired [6]. Pooling layers are usually

intertwined throughout a CNN to act as a funnel, in order to ensure the image is

sufficiently small (flattened) as it passes through to the fully-connected layer. Pooling

layers group local features from spatially adjacent pixels to improve robustness [8].

The Convolutional layer is the most demanding layer in terms of computations

from summing the products across all regions. Mathematically, the convolutional layer

as described in [8] is as follows:

(X ∗ Y )(i, j) =
N∑
n=0

M∑
m=0

Xm,n ∗Wi−m,j−n (4.1)

where, W is the convolution kernel corresponding to the randomly initialized

weights, and X is the image with indices (m,n). CNN uses the ReLU function (i.e.,

Rectified Linear Unit) defined as f(x) = max(0, x) as its nonlinear activation function.

Though convolutional neural networks were introduced to solve problems related

to image data, they perform impressively on sequential inputs as well. CNNs are easier

to train due to parameter (weight) sharing and are trained in batches via SGD. Similar

to the ANN, the dropout technique improves generalization and avoids overfitting [8].
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4.2.3 Recurrent Neural Network (RNN)

RNN has a recurrent connection on the hidden state, which allows for feedback

(a major difference from ANN). The outputs of previous time steps will be considered

as inputs in the current time step, and the results of the current time step will impact

the calculation of the next time step. This looping constraint ensures that sequential

information is captured in the input data. We can use recurrent neural networks to

solve the problems related to: time series data, text data, and audio data.

Given x1,x2, . . . ,xn are the input vectors, h1,h2, . . . ,hn are the hidden cell

vectors and y1,y2, . . . ,yn are the output vectors, where n represents the total steps,

the equations computing result vectors [95] are defined below:

ht = θφ(ht−1) + θxxt

yt = θyφ(ht)

(4.2)

where θ, θx, θy are weights, φ is the activation function (tanh in most RNNs). The

self-connection weight θ is simply initialized as 1. The subsequent back-propagation

will adjust all the weights in every iteration.

RNNs share the parameters across different time steps. This results in fewer

parameters to train and decreases the computational cost. Deep RNNs also suffer

from the vanishing and exploding gradient problem.

The various characteristics of all the above-mentioned neural networks are

summarized in Table 4.1. Although all three have a common disadvantage of vanishing

and exploding gradient, RNN is the optimal choice for time-series data with the

recurrent connections and less computational burden from parameter sharing.

Of the numerous types of RNNs, Long Short-term Memory (LSTM) has been

chosen for this application and the logistics and equations are detailed in the following

section.
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Table 4.1: Attributes of ANN vs. CNN vs. RNN

Attribute ANN RNN CNN
Data compatibility Tabular Sequence Image

Recurrent connections - Yes -
Parameter sharing - Yes Yes
Spatial relationship - - Yes

Vanishing and Exploding gradient Yes Yes Yes

4.2.3.1 Long Short-term Memory (LSTM)

Long Short-term Memory RNN is specifically designed to avoid the long-term

dependency problem [96] and there are many slight variations [97]. We will use the

definition from [98] in this context. As seen in Fig. 4.2 (from [95]), a cell of LSTM

RNN has three gates, which control the involvement of the past context information:

input gate, output gate, and forget gate. The latter is used to scale the influence of

the previous cell on the current cell state [95].

Figure 4.2: LSTM cell structure

The equations for computing the gate outputs are defined below [95]:
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it = σ (θxixt + θhiht−1 + bi)

ft = σ (θxfxt + θhfht−1 + bf)

ot = σ (θxoxt + θhoht−1 + b0)

gt = tanh (θxgxt + θhght−1 + bg)

ct = ft · ct−1 + it · gt

ht = ot · tanh (ct)

(4.3)

where ht−1 is the output of the last time step, xt is the cell input at the current

step, and ht is the cell output. The t in the subscripts represents the current step

number. The i,f ,o, and g respectively denote the output vectors of input gate, the

forget gate, output gate and the cell itself. θ are the weights, for example, θxi is the

weight between the input vector xt and the input gate vector it, θhi is the weight

between the output vector ht−1 and the gate vector it. b represents biases, ct and

ct−1 are the cell outputs in the current step and the previous step, respectively, and

σ represents a sigmoid function (output 0 to 1). LSTM usually limits the activation

function to tanh (output -1 to 1) for gt and ht, and sigmoid for it, ft, and ot. Other

activation functions, like rectified linear unit (ReLU), make LSTM diverge [99], hence,

the sigmoid and tanh are suitable choices.

Generally, the RNN cannot retrieve data deep into its memory and LSTM RNN

brought forth a solution [100]. LSTM RNN has become a popular choice for modeling

inherently dynamic processes [95] and is expected to result in a high accuracy.

4.3 Hidden Markov Model (HMM)

A Markov chain satisfies the Markov property (Eq. 4.4) where the next state

depends only on the current state and not on the sequence of states that preceded

it [101]. The model consists of a finite number of states {s1, s2, . . . , sn} and some
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known probabilities P = {pij} where pij is the probability of moving from state si to

the state sj [83].

P (st+1 | s0, s1, . . . , st) = P (st+1 | st) (4.4)

Hidden Markov model (HMM) is a Markov chain in which the observations,

dependent on the state, are visible instead of states. Each state has a probability

distribution over the possible output observations. The sequence of observations is

linked to its corresponding sequence of states. In a HMM, the observer does not know

which state the system is in, but only a probabilistic insight on where it should be. It

is defined by equation 4.5 as formulated in [83].

µ = (S,O,A,B,π) (4.5)

where S = {s1, s2, . . . , sn} is the set of hidden states, O = {o1, o2, . . . , om} is

the set of observations, A is the transition matrix, B is the emission matrix, and π is

the initial state matrix, where πi is the probability that state si is a start state. The

matrices have been defined in the following equations.

A = {aij} , aij = P (sj | si) for i, j = 1, 2, . . . , n (4.6)

B = {bij} , bij = P (oj | si) for i = 1, 2, . . . , n, j = 1, 2, . . . ,m (4.7)

πi =
1∑
Si

i = 1, 2, . . . , n (4.8)
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All states have equal probabilities to be the initial state as depicted in the

equation for πi. The HMM structure is illustrated in Figure 4.3 (from [83]).

Figure 4.3: Hidden Markov Model

Hidden Markov Models are used to model temporal and sequence data. They are

commonly used in temporal pattern recognition such as time series classification [102]

and speech recognition [101].

In order to improve the accuracy of the time series classifier, the HMM is trained

to evaluate, confirm and correct the classification results performed by the LSTM

(initial classifier). The general framework of the approach is sketched in Fig. 4.4

(from [83]) which shows the two phases of this approach. During training phase, the

confusion matrix and the classified data outputted by the first classifier will be used.

In the classification phase, the trained HMM will be used to reclassify the sequence of

classified samples. The correct samples will be confirmed and the misclassified samples

will be corrected. Classifying any time series data will require two stages.
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Figure 4.4: General Framework with two phases: Training and Classification

A confusion matrix C = cij for i, j = 1, 2, . . . , n is denoted such that cij repre-

sents the number of samples that belong to state si but they have been misclassified

as sj. Confusion matrix is also used in computing the emission matrix, B.

Unlike traditional classifiers (i.e. SVM, NN), HMM classifies the data on the

basis of their temporal relations [83]. To classify a given sequence of observations, we

need to find the most likely sequence of states (path) that produces these observations.

Viterbi algorithm [103] can be used to find the most likely path as elaborated below.
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Algorithm 8 Viterbi algorithm

1: procedure Classification(µ,O)
2: Input: The trained HMM µ = (A,B,π), and a sequence of observations
O =

{
o1, . . . , oT

}
3: Create a path probability matrix V
4: for t← 0, T do
5: for s← 0, N do
6: for each transition i→ s
7: score = v[s, t]× a[s, i]× b (i, ot)
8: if score > v[s, t] then
9: v[i, t+ 1] = score
10: backpointer[i, t+ 1] = s
11: end if
12: end for
13: end for
14: Choose the highest probability state in final column of V and backtrack to

find S
15: return S, a best path of states
16: end procedure

4.4 Classification approach

There are different traits by which classification can be performed [7]. Using the

taxonomy and classification scheme for artificial space objects [104] as a reference, we

have selected attitude and shape as classifiers. We will primarily use light curves of

artificial space objects in LEO as the training and testing sets. The first classification

determination is made from the control states. For each model in the bank, additional

models are created that are copies of that shape model but have different control profiles.

The control profiles include (three-axis) spin stabilized, and tumbling/irregular. The

control states are not limited to ones used in this work and other states are possible

(i.e. regularly spinning/rotating), but for this study, these are sufficient. The next

classification is determined using the shape model, either separating it as regular or

irregular. Under regular, for example we have objects in the bank such as ellipsoid,
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cylinder, cone, cubesat, torus, probe, box-wing satellite, probe, disk and rocket body.

Examples of these models have been included in the previous two chapters. If the

object cannot be identified as one from the aforementioned list, it will be categorized

as an irregular object, which includes fragments.

4.4.1 Sub-classification of Tumbling objects

Light curves of tumbling objects have a wide variety of features than stable

objects. Stable satellites tend to have a single main peak around low solar phase

angles caused by a solar panel glint [81]. Additionally, observed brightness values

tend to have relatively low variance about their trend. On the other hand, tumbling

object light curves tend to take one of three forms: sinusoidal, aliased, or multiple.

A sinusoidal signature will have several peaks and troughs. An aliased light curve is

caused by the sensor sampling at a slow rate (below the Nyquist frequency) to properly

capture the periodic behavior. These light curves do not have a distinguishable trend

and look like scattered data points. A type of aliasing where it appears as though two

distinct trends have been plotted on top of one another is known as multiple form.

Residuals about the mean trend have a bi-modal distribution. The sampling rate

is too slow, once again, to capture the sinusoidal nature. Additionally, it has been

suggested that fine-scale specular glints are causing the bi-modal behavior [81]. Tests

to identify these forms respectively are periodicity test, and aliasing test. These have

been discussed in further detail below.

4.4.1.1 Periodicity Test

Assuming the data is not aliased, we can test for periodicity to detect the

presence of sinusoidal periodic waveforms, which differentiates tumbling from stable

objects. One test that can be used to confirm the significance of a signal’s periodic
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component is Fisher’s Exact Test for Periodicity [105]. The test statistic is found

by extracting the most significant frequencies. As we noted from the analysis in the

chapter for estimation of period, the Lomb-Scargle periodogram will be utilized to

find dominant frequencies as it does not require observations to be uniformly spaced,

which is rare in real photometric data. If the light curve has a significant periodic

component, we will assume that it came from a tumbling object. Since stable objects

can have a single peak in its periodogram, a threshold must be set on the period

length that would be tested such that the test does not indicate that stable objects

are periodic (with a long period). This eliminates false positives.

Outliers are inevitable in photometry and should be removed because they can

distract from periodic components that are truly present in a light curve. They also

cause some undesired results in the periodogram and in turn, the test for periodicity

itself. There are 3 different types of outlier detection methods [106]. Type 1 is applied

when there is no prior information for the data (labels). They assume that ”normal”

points lie in the same region of feature space and that outliers are far from this area.

Type 2 is applied when labels for normal and abnormal data are available. They are

usually classifiers which are trained with these data and can consequently flag the

outliers that belong to the already known outlier classes. Type 3 is applied when only

labels for normal data are available. They aim to define the normality boundaries,

and anything that does not lie within the normal boundary is flagged as an outlier.

Additionally, there are some frequencies that we do not expect in the light curve

from a tumbling object. For instance, if the fundamental frequency of a light curve is

too low, that frequency may correspond to one or fewer periods occurring within the

observation window. Then this frequency is likely not representative of the tumble

rate. Generally, there is a clear peak close to zero for the unstable object’s period

while the stable objects’ periods tend to be much longer [81].
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4.4.1.2 Test for aliasing

Since aliasing causes particularly noisy light curves, as a way to identify aliased,

tumbling objects from stable objects, we can use a test. An assumption of stationarity

is sufficient to give us the ability to detect aliasing in a temporally sampled signal

process [107]. We can ensure stationarity using the Augmented Dicky Fuller (ADF)

test.

The Augmented Dickey-Fuller test is a unit root test, a type of statistical test.

A unit root test determines how strongly a time series is defined by a trend. ADF

test is utilized as a measure of confidence to which a null hypothesis can be rejected

or fail to be rejected. It uses an autoregressive model and optimizes an information

criterion across multiple different lag values. The model is defined as

∆yt = α + βt+ γyt−1 + δ1∆yt−1 + · · ·+ δp−1∆yt−v+1 + εt (4.9)

where α is a constant, β the coefficient on a time trend and p the lag order of

the autoregressive process. By including lags of the order p the ADF formulation

allows for higher-order autoregressive processes. The unit root test is then carried out

under the null hypothesis γ = 0 against the alternative hypothesis of γ < 0.

• Null Hypothesis: If failed to be rejected, it suggests the time series has a unit

root, meaning it is non-stationary. It has some time dependent structure.

• Alternate Hypothesis: The null hypothesis is rejected; it suggests the time

series does not have a unit root, meaning it is stationary. It does not have

time-dependent structure.

We interpret this result using the p-value from the test.
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Non-stationary time series, if p− value > 0.05

Stationary time series, otherwise

The test outputs a statistic value and if it leans more negative, there is a higher

probability to reject the null hypothesis. Comparing it to the lookup critical values

(1%, 5%, 10%) determines significance of accuracy and can eliminate the possibility of

statistical flukes. An example of the Augmented Dicky-Fuller test results are portrayed

in Fig. 4.5 where the p-value satisfies the alternate hypothesis. The ADF-statistic’s

absolute value is greater than the critical value at 1% implying a higher confidence

level in the data being stationary.

Figure 4.5: Results of the ADF test on a stationary time-series

Once this is confirmed, we can use bispectral analysis to identify aliased signals.

The domain of the bispectrum of a discrete-time signal is a periodic function in

two dimensional frequency plane {ω1, ω2}. The bispectrum, defined to be the triple

Fourier transform of the third-order autocorrelation, reduces to a function of two

frequencies since stationarity confines the spectrum to the plane through the origin of

the frequency domain perpendicular to the vector (1, 1, 1) [108].

Assuming a real-valued discrete time series, all non-redundant information is

confined to the square 0 ≤ ω1, ω2 ≤ π. Due to symmetries, the non-redundant

information in the bispectrum is confined to a particular triangle inside this square.
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The triangle consists of two pieces (isosceles and irregular). The region inside the

triangle could include frequencies higher than the Nyquist frequency and can lend

itself to possible aliasing. If the sampling rate is sufficiently rapid to avoid aliasing,

then the discrete bispectrum is non-zero only in the isosceles triangular subset of the

fundamental domain and therefore no aliasing is present [108]. On the contrary, if the

bispectrum is non-zero in the outer triangle, then the sampling rate was too slow to

avoid aliasing. The bispectrum of a sampled signal is visible in Fig. 4.6, where we see

that it is non-zero within the isosceles triangle only. Upon closer inspection, we notice

specks of a different color indicating magnitudes larger than the vicinity in the z-axis.

We can assert that the outer-triangle does not show a non-zero bispectrum, hence the

underlying signal must not have been aliased.
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Figure 4.6: Bispectrum of a nonaliased signal (Top) and zoomed-in results (Bottom)

4.4.2 Feature extraction

Certain features in a light curve can be correlated to physical structures on

objects. The primary light curve features are narrow and broad brightness peaks
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correlating to structures such as the main payload enclosure, solar panels, and commu-

nications antennas. Large antennas are often located on the eastern and/or western

sides of the nadir-facing main body as seen in a box-wing satellite. This asymmetry is

observed in the reflected light of the photometric curves. Narrow features are narrow

peaks whereas broad features include either a broad peak or a shoulder [81]. Feature

extraction prior to classification is essential as it can remove irrelevant and redundant

features to improve classification accuracy [109]. Many transformation methods reduce

the dimension of the data. There is a need for non-model-based methods [5]. Tradi-

tional frequency-domain methods (i.e. FFT) do not capture time-varying behavior

while wavelet decomposition is well-suited for real-time applications. We can extract

the feature information via wavelet decomposition, which is elaborated in the next

section.

4.4.2.1 Wavelet Analysis

Fourier Transform produces a frequency spectrum of the signal, while losing

time resolution since we are unaware of when that frequency occurs. To obtain both

frequency and time resolution, we can split the original signal into several parts and

apply a Fourier Transform to each one. This approach of obtaining the frequency

content of a signal locally in time was a windowing technique applied to the signal,

called the Short Time Fourier Transform (STFT) that maps a signal into a two-

dimensional function of time and frequency [110]. STFT raises new concerns when

applying it to the partial signal, since the frequency range that it can detect is n/2,

where n is the length of the partial signal. The time/frequency window of the STFT is

fixed and hence unsuitable for detecting signals with both high and/or low frequencies.

Wavelet analysis is an extension of the STFT in such a way that the window is no

longer fixed, but can be varied. The Wavelet Transform approach automatically
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adjusts the window width to give good time resolution and poor frequency resolution

at high frequencies, and good frequency resolution and poor time resolution at low

frequencies [111].

A wavelet is a sum of elementary functions with two requirements that it

should integrate to zero, waving above and below the x-axis, and that the function

has to be well-localized. They have limited duration and tend to be irregular and

asymmetric [110]. The use of long time intervals for precise low frequency information,

and shorter intervals for high frequency information is accomplished through the use of

a location parameter and a scale parameter, whereas the Fourier method only has the

latter. One of the two parameters is the translation or location parameter. The other

parameter is a dilation or scale parameter, the latter corresponding to the frequency

in the Fourier case.

The basic formula of wavelets is

Xa,b =

∫ ∞
−∞

x(t)ψa,b(t)dt (4.10)

where x is the real signal, ψ is an arbitrary mother wavelet, a is the scale and b

is the translation.

There are many types of mother wavelets and the objective is to seek for the

non-zero magnitudes of the mother wavelet. The scale is inversely proportional to

the frequency of the mother wavelet and the same as the size of the window. The

translation parameter is analogous to how far we ”slide” the window from the starting

point.

Wavelet Transform is divided into two classes: Continuous Wavelet Transform

(CWT) and Discrete Wavelet Transform (DWT). CWT allows us to set the scale

and translation to an arbitrary value. Some commonly used mother wavelets that
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belong to CWT are Morlet, Meyer, Mexican Hat. DWT restricts the value of the

scale and translation. Mother wavelets commonly used in DWT are Haar, Daubechies.

Daubechies wavelet has a unique scaling restriction; it has a scaling function called

a Father Wavelet to determine the right scale. An example of mother wavelets for

CWT and DWT are represented visually in Figure 4.7.

By applying the Discrete Wavelet Transform (DWT) on a signal, we can decon-

struct its frequency sub-bands, also known as wavelet decomposition. Out of each

sub-band we can generate features which can be used as inputs for a classifier [112].

DWT is utilized to extract the wavelet coefficients: approximation and detail. The

approximation coefficients represent the output of the low pass filter (averaging fil-

ter) of the DWT. The detail coefficients represent the output of the high pass filter

(difference filter) of the DWT. By applying the DWT again on the approximation

coefficients of the previous DWT, we get the wavelet transform of the next level. At

each next level, the original signal is also sampled down by a factor of 2 (de-noising).

These respective properties are depicted in Fig. 4.8.

The Wavelet Transform automatically adjusts the window width to give good

time resolution and poor frequency resolution at high frequencies, and good frequency

resolution and poor time resolution at low frequencies [111]. The limit of the time and

frequency resolutions is given by ∆t∆f ≥ 1
4π

. If a coefficient scores a high statistic

value, data (in terms of this coefficient) can be easily separated by the classifier.

To preface the results in Fig. 4.9, the rocket nose cone’s light curve has

produced a spectrogram with pixels representing frequency-time coordinates, after

the DWT. Dominant modes are referred to by the legend and correlate to the change

in magnitude of the signal (i.e. peaks, saddle points). The signal when decomposed

using a combination of low-pass and high-pass filters results in the approximation

and detail (horizontal, vertical, and diagonal) coefficients is seen in Fig. 4.10. One
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Figure 4.7: Types of Mother wavelets: Morlet (Top) and Daubechies with 4 vanishing
moments (Bottom)
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Figure 4.8: Discrete Wavelet Transform of a signal [5]

can observe that this particular signal stores all of its pertinent information using the

detail coefficients.

In literature, it has been stated that a major advantage of analyzing a signal

with wavelets is that it allows for the study of signal features locally with a detail

matched to their scale. This property is especially useful for signals that are non-

stationary, have short-lived transient components, have features at different scales or

have singularities, discontinuities in higher derivatives and self-similarity [113].

In fact, DWT is used in extracting the characteristic absorption signatures

of materials from terahertz reflection spectra [114]. Different mother wavelets were

compared based on their phase and gain functions. Phase functions of the wavelet and

scaling filters result in spectral shifts to the absorption lines in the wavelet domain.

As a result, DWT analysis with accompanying phase corrections can be utilized

as a robust technique for material identification in nondestructive evaluation using

terahertz spectroscopy [115]. Another application of wavelets is in the implementation
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Figure 4.9: Light curve of Rocket nose cone (Top) and its spectrogram (Bottom)

of P300 Speller. P300 Speller is a P300-based Brain-Computer Interface (BCI), which

helps users write the desired characters to the computer screen by detecting the P300

event-related potentials in users’ electroencephalographic (EEG) [116]. It combines

the use of DWT with the Fisher criterion, which is analogous to the F-statistic and is

discussed below.

The F-statistic is employed in order to select between the spectral coefficients

from the DWT.

F =
variance of the group means

mean of the variances within group
(4.11)
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Figure 4.10: Approximation and Detail coefficients of Rocket nose cone signal

ANOVA (ANalysis Of VAriance) is a statistical technique for comparing means

of multiple groups under the null hypothesis that all means are equal. If a coefficient

scores a high F value, data from the different time-series classes in terms of this

coefficient can be easily separated by the classifier. All spectral coefficients are ranked

according to their F values and a small set of them are selected to be the classification

features.

4.5 Light curve simulation environment

There are several variables that can affect the motion of an object tumbling

in space and subsequently alters the amount of brightness detected by the observer.

They have been discussed in detail below with considerations for inclusion in the

simulation environment based on their significance.
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4.5.1 Atmospheric Scintillation

Another variable to consider is the exposure times between frame captures for

objects that are farther away and tumbling at a slower rate. Exposure leads to a good

signal-to-noise ratio. Atmospheric scintillation is caused by optical turbulence in the

Earth’s atmosphere [117]. Scintillation provides a limit to the noise performance which

can be reached in ground-based photometry. Conventional results for the scintillation

level have typically assumed that one object is observed at a time, and we might

expect that some of the scintillation would be cancelled out in CCD photometry due to

the availability of simultaneous observations of comparison objects [118]. The typical

expression used for approximation from [119] is

σscint

F
≈ 0.09

X3/2

D2/3
√

2T
exp

(
− h

h0

)
(4.12)

where σscint is the rms scintillation (in flux units), F is the object flux, X is

the airmass, D is the telescope aperture in cm, T is the exposure time in sec, h is the

telescope altitude, and h0 is a turbulence weighted atmospheric altitude (h0 = 8 km).

Scintillation is negligible compared to the dominant noise sources in the data and

the processing of images commences after all images are captured (with corresponding

time stamps) and stored.

4.5.2 Orbital evolution

For a spherical body with uniform reflection properties, its attitude motion does

not have any effect on the orbital evolution [120]. In contrast, a non-spherical body

consisting of flat surfaces does have an effect. Direct solar radiation pressure is by

far the largest perturbation and it depends on the current area and its orientation

exposed to the radiation source [121]. The observer’s capture times for these artificial
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objects are generally short bursts in the simulation so any orbital evolution will be

minimally visible.

4.5.3 Atmospheric drag

Atmospheric drag is strongly reduced at higher altitudes [122] however, LEO is

within the range that experiences the perturbation. Atmospheric drag in LEO is not

sufficient to prevent a runaway growth of debris objects [4]. To simulate the influence

of atmospheric drag, the aerodynamic force and torque coefficients are calculated for

the stream facing side of the spacecraft using the spacecraft surface geometry model

and including shadowing effects resulting from the objects actual attitude [123]. This

might need prior information on the shape of the object as we use the projected area,

therefore taking the dot product of every facet’s normal vector and velocity vector.

An alternative is to consider the bounds of projected area to compute drag for the

unresolved object.

4.5.4 Motion blur

In order to imitate real light curves, the object must continue to rotate during

the exposure as it does in the real world. However, for objects that are rapidly

rotating or for simulations involving long exposures, the change in orientation of the

normal vectors during exposure affects the intensity of the light reflected towards the

observer [14]. The apparent streaks, if any, are usually visible on images captured of

the object and can cause differences in the peak magnitudes. Since we are dealing

with the post-processed brightness intensity values, this is not applicable.
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4.5.5 Earth eclipse shadowing

There are instances when the Earth creates a shadow, assuming a perfectly

cylindrical shadow cone. It is assumed that Earth shadow is entered, if the angle β

between the geocentric unit vector to the sun and the orbital plane of the eclipse is

smaller than

β < arcsin

(
a⊕
a

)
(4.13)

where a⊕ is the mean Earth radius (6378 km) and a the semi-major axis

of a circular satellite orbit [120]. This shadow cylinder is derived under multiple

assumptions: 1. a spherical Earth, 2. Earth’s atmosphere is neglected. This simple

model has been proven useful in many applications with low area-to-mass ratio

objects [120].

4.5.6 Self-shadowing and Self-obscuration

Self-shadowing will allow for the simulation of more realistic light curves for

convex objects and objects with large extrusions (i.e. solar panels) [14]. Significant

portions of the satellite may be shadowed by the solar panel or the body of the

satellite may prevent reflections from the solar panel from reaching the observer.

This can be emulated using a simple ray-tracing algorithm to determine shadows,

where the forward and backward paths of the photons are traced when rendering

the image of an object. It’s important to note that this does not include secondary

reflections. Self-obscuration occurs when other surfaces of the same object cause

obscuring. Knowledge of the surface models is the most valuable information needed

to solve obscuration problems [124], which is not always the case for unresolved objects.
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Otherwise, existence of other objects in near proximity must be evident which is also

difficult.

4.6 Model and Results

The overall decision-making flow chart is shown in Figure 4.11 encompassing all

the tests, given an object’s light curve as the input.

Figure 4.11: Classification flow-diagram

One additional measure to simplify the classification process is the use of a

pre-selection tool. For this study, light curve pre-selection tool (lcps) like [125] is

chosen. Its main purpose is to restrict large sets of light curves to a number of files that

show interesting behavior, such as drops in flux. It uses a sliding window technique to

compare a section of flux time series with its surroundings. A dip is detected if the

flux within the window is lower than a threshold fraction of the surrounding fluxes.
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The training dataset consists of light curve vectors as inputs and class vectors as

outputs. The model is trained to assign each measurement vector to a class using a set

of training examples. The classification approach is tested using simulated data as well.

Synthesizing light curves for each of the models in the bank using Lebedev quadrature

at differing angular rotation speeds (from ω = 1 to ω = 20 deg /s) for revolutions

about its own spin axis makes up a portion of the volume of the training dataset.

Variations in viewing geometries, altering size dimensions and interpolated surface

reflectance properties across the facets also populate the training dataset. Python and

Matlab are used to create the simulation for classification and pre-classification testing

(aliasing, periodicity) respectively. In conjunction with the software tools, we used

Keras, a deep learning API written in Python, as a library for building the neural

network. Python modules for machine learning were utilized to implement the HMM.

Populating the datasets was achieved through Matlab as well.

The simulation parameters used to generate the light curve measurements have

been detailed in the previous chapters. The position of the object with respect to the

observer’s location on earth has coordinates to approximate an altitude of 1000 km.

The spin-axis orientation is user-defined. A few examples of the simulated light curves

are included in Fig. 4.12.

The various layers in the first classification stage using LSTM RNN is visualized

in Figure 4.13. The LSTM hidden layers uses a softmax activation function and

the dense layer was given a rectified linear activation function. When compiling the

network, a categorical cross-entropy loss was used for classification.
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Figure 4.12: Synthetic light curves of Disk, RASSOR drum and Pioneer probe for
training data set (Top to Bottom)

Figure 4.13: LSTM layers
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Subsequently, the confusion matrix resulting from this is seen in Fig. 4.14. The

matrix is usually split into four quadrants where the top-left indicates true positives

(TP), the top-right is false positives (FP), bottom-left is false negatives (FN), and the

bottom-right is true negatives (TN). One can observe that the range of normalized

values is below 18%.

Figure 4.14: Confusion matrix

The state space for the Markov chain is S = {S, T} where S represents stable

and T represents tumbling RSOs. For the HMM, we assumed the initial probabilities

are equal for both states giving P (X1 = S) = P (X1 = T ) = 0.5, which forms our

initial state matrix, π. This means it is equally likely that the first time series came

from a stable or a tumbling object. The transition matrix contains the probabilities
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that the underlying Markov sequence transitions from one state to another. We will

assume the object is likely to stay in its stable state, unless it begins tumbling, in

which case, it will very likely stay tumbling. This gives us the transition matrix, A:

P =

 P (S | S) P (T | S)

P (S | T ) P (T | T )

 =

 0.9 0.1

0.01 0.99

 (4.14)

where the notation P (S | T ) means the probability that the current state is

S, given that the previous state was T . Finally, the emission matrix contains the

probabilities of each possible observable, for each state. The results from testing the

integrated classification model are shown below.

After running 100 epochs, the resulting accuracy is 94%, which is an acceptable

value as it is within a 10% error. The higher the number of epochs, the accuracy

in turn increases. A comprehensive visual depicting the accuracy in training and

validation is observed in Fig. 4.15.

Figure 4.15: Training and Validation accuracy plots
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Using a selective, smaller set of synthesized light curves of the artificial objects

from the bank of models for the testing dataset, we can observe the results of the

predictions using six classifiers of the tumbling state in Fig. 4.16. The blue line

indicates the true labels while the red line refers to the predicted labels.

Figure 4.16: Prediction results using test data

It is reassuring to note that the true and predicted values overlap for most of the

test data with some inaccuracy between the Pioneer 9 disk and the box wing satellite.

There are some instances where the model was able to identify the two, however the

error can be a result of the similarities in the light curves of the two objects. The

model can also distinguish the cubesat from the rocket nose cone as the complexity of

the latter is greater. These results are from an ideal model and to ensure that it is

robust and can operate at any threshold, we performed some uncertainty analysis.

4.6.1 Uncertainty in the model

Modeling uncertainty in a neural network utilize various methods such as Monte

Carlo simulation [126], Bayesian neural network [127], dropouts between layers [128].
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Table 4.2: Accuracy of the model from varying levels of dropout

Dropout Level (%) Accuracy (%)
0 92.16
25 93.32
50 91.28

Since dropout layers are included in the LSTM RNN, it has been chosen for this

purpose. Dropout is a technique used to avoid overfitting and the % rate of dropout

is used to remove hidden neurons in the layers. We can also add stochastic noise on

model weights of the neurons. This is performed using Gaussian noise with a mean

value and fixed standard deviation/percentage on weights. The results from finding

the optimal tuning parameters for this hybrid model with input noise is tabulated

below in Table 4.2.

It is inadequate to dropout more than 50% as it may become a scenario of

underfitting. Therefore, the testing was bounded to that value. The optimal dropout

level is at 25% resulting in the highest accuracy of predictions, although by a minimal

amount. Another aspect that was considered is noise regularization and this was done

by injecting Gaussian noise (µ = 0, σ = 0.1) between hidden layers, specifically before

the ReLU activation function. This resulted in an accuracy of 92.4% conjoining it with

the optimal dropout level. It was evident that adding noise after the activation function

creates a noisy activation function. However, the disadvantage to it is that results

may be out of range from what the activation function may normally provide [129].

Now that the model had noise, we also introduced noise in the test data to

investigate the behavior of the model in handling increased uncertainty. Adding a

percentage of peak-to-peak amplitude to the signal as noise will alter the input test

data. The results from combinations of model and test data uncertainty are tabulated
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in Table 4.6.1, where revised model indicates optimal tuning for dropout layer and

noise regularization. The three scenarios that were executed are listed below:

1. Revised model and test data without noise

2. Original model and test data with noise

3. Revised model and test data with noise

Table 4.3: Table of predictions and accuracy of model based on varying conditions of
uncertainty in the model and test data

Scenario Accuracy (%) Plot of predictions

1 90.74

2 91.31
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3 91.82

As mentioned earlier, the plots show the predictions for the classifiers in the test

data. Surprisingly, scenario 3 (revised model and test data with noise) resulted in the

highest accuracy and the least variation between expected and predicted classification.

However, the other two test conditions don’t fall behind and still lie in the 10% error

bound. As expected, after introducing uncertainty in the model and injecting noise to

the input test data, the accuracy has decreased from the original model by about 3%.

However the small drop verifies and validates the robustness of this model in handling

uncertainty.

4.7 Future work

Incorporating real light curves in our test dataset observed from Mini-MegaTORTORA

(MMT-9) multi-channel high temporal resolution telescope was not feasible. Real

light curves are typically short bursts of duration and do not match the length of

simulated data. Within a single object’s light curves, there are large variations in

the trends and the periodicity. This is because several users from different locations

are collecting data and there is a bit of discrepancy in the archive as some deem
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an object periodic, while others aperiodic. Another thing to note with real data is

that photometric observations with a gap in collection time can possess changes like

slowing of tumbling rate. Here, it is important to use key identifiers in the light curve

to match for resemblance. However, if the period is similar, we can correlate them

to be the same object regardless of the gap in collection. If a component breaks off,

resulting in lost mass, we can classify this as a new object. The predicted classes will

provide us with confidence levels of multiple models and this is a way to approach

this problem.

Sample selection bias is also a parameter to remember. It can cause catastrophic

errors in predictions on the testing data because standard assumptions for machine-

learned model selection procedures break down, and dense regions of testing space

might be completely devoid of training data [130]. Some remedies include importance

weighting, co-training, and active learning (AL). AL is where the data, whose inclusion

in the training set would most improve predictions on the testing set, are queried for

manual follow-up [130]. This is an effective approach and is appropriate for many

astronomical applications (i.e. stars), although quite tedious and requires additional

user interference. This technique needs to be verified for artificial RSOs, else another

process to rectify sample selection bias is required.
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Chapter 5

Modeling Triton’s atmosphere

Triton, Neptune’s largest moon and the only moon in the Solar System to be

retrograde (orbit in an opposite direction to its planet), is thought to originally be a

Kuiper Belt Object (KBO) [131]. The Kuiper belt extends outward from the orbit

of Neptune, and is several manifolds wider and massive than the asteroid belt. Due

to the nature of Triton’s retrograde orbit, it is possible that Triton was a separate

body originating from outside of our Solar System that was captured by Neptune’s

sphere of influence. Triton’s surface and atmosphere still remain an enigma due to its

history of hydrocarbons and tidal dissipation [131]. The possibility of a subsurface

ocean indicates dynamic geologic activity and a better understanding of Triton can

uncover the secrets behind the evolution of icy objects in the Solar System, including

large moons, small KBOs and dwarf planets such as Pluto that might share a similar

history.

Triton’s surface is a mixture of smooth plains adjacent to craters that may have

been caused by collisions with inner satellites post-capture by Neptune. Since Voyager

2 in August 1989 showing data of a dynamic atmosphere, only ground telescopes were

able to capture data on Triton. Voyager observations of dust streaks imply the presence

of strong surface winds in Triton’s lower atmosphere [132]. However, cloud motions at

different altitudes show velocities in different directions. The driving-energy behind the

winds stems from maintaining vapour-pressure equilibrium of nitrogen (predominant

constituent) with surface frosts and varied solar heating of the surface [132].
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In addition to Voyager 2, the more recent New Horizons spacecraft (whose goal

was to explore Pluto and other Kuiper Belt objects) performed a distant flyby of

Neptune in 2014. During this flyby, New Horizons took a few snapshots of Neptune

and Triton. Following analysis led to scientists suggesting that Triton could share

similarities to Pluto: an icy surface, bright poles, nitrogen atmosphere, and the

presence of ‘ice volcanoes’. Another recognizable feature is Triton’s size (only slightly

larger than Pluto in terms of diameter).

Given the current state of knowledge of Triton’s atmosphere, we need to probe

Triton’s atmosphere in the microbar region where previous observations do not exist

and compare with model predictions. The seasonal change also needs to be investigated,

which was predicted [133] based on vapor-pressure equilibrium of Triton’s atmosphere

with surface ices. High-resolution information about the atmospheric structure is

required and this is acquired currently using ground-based observations of a series of

stellar occulations (occurs when light from a star is blocked by another body from

reaching the observer). An example of such was performed in 1993 at the Kuiper

Airborne Observatory of the star Tr60 [133] by Triton.

Ground-based observations are confirmed since the rotation period and pole

that it rotates about are known for Triton. Past literature has attempted to model

the atmospheric figure by probing Triton’s atmosphere with a stellar occultation. The

observations of the occultation has occurred from a group of sites that span the full

atmosphere (at 100 km altitude) or from one or more sites (at 20 km altitude) that

passes near the center of Triton’s shadow and model the structure of the ‘central flash’,

similar to the approach for Titan [132]. To observe the changes in atmosphere with

time, light curves can be gathered within the central region in order to understand

the structure.
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To quantify the distortion required to reproduce the measured light curve, an

elliptical model of the atmosphere of varying ellipticity (circular, prolate and oblate)

can be constructed and fit using the least-squares method. The orientation of the

ellipse is variable. Instead of using a single probe approach as in the past, we can

use the operations concept of a space probe releasing hundreds of small satellites

into orbit [134] around Triton in succession (with a time delay) to improve data

collection capability and provide redundancy due to power constraints. This allows

for an in-situ, simultaneous measurements in the light curves, impossible to achieve

using one operating probe. The data collected through a simulation (with additional

astrometric data of Triton) can be 3D mapped to generate the atmospheric model and

validate predictions of expansions of Triton’s atmosphere due to thermal properties of

the surface and increase in pressure [132].

This chapter will include a background on Triton, stellar occultation process,

mission planning to arrive at Triton, and use of a constellation of satellites.

5.1 Triton

Triton has an unusual, circular, and close to Neptune orbit, but highly inclined

to the planet’s equator (by 157◦) [135]. It has a sparse nitrogen-rich atmosphere

with trace amounts of carbon monoxide and small amounts of methane near the

surface [136]. Triton has a thin atmosphere and the absence of oceans. However, Earth

and Triton share some contributing factors to global warming, such as the amount of

methane and carbon monoxide in the atmosphere. Triton is a unique example of a

vapor pressure atmosphere; this leads to a uniform global surface temperature and

uniform near surface atmospheric pressure [136].

Triton is a relatively large moon (1352 km in radius) and it’s distance from the

Sun (30 AU), makes it’s surface a very cold place (38 K). Yet, despite these frigid
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surface conditions, Voyager 2 discovered it has a thin atmospheric surface pressure

(14 µbar), where 1 bar is the approximate surface pressure of Earth’s atmosphere [135].

Earth and Triton are similar in their atmospheric composition, with a majority of

Nitrogen gas. The troposphere has shown winds as high as 8 km. [136] We know

that the acceleration due to gravity on Triton’s surface is 0.779 m/s2 so using the

same gravity model as before, we can compute the gravitational constant to be

µ0 = 1426.89 km3/s2. Since we know the surface temperature and atmospheric

pressure on Triton, we can use the ideal gas law (as an approximation) ρ = P
RgT

where Rg is the gas constant equal to 287.05 J/(kg K) to calculate the surface air

density (ρ0 = 1.2784×10−4 kg/m3). The density model is not an exponential function

like Earth. Instead, we use the electron density concentrations of the atmospheric

composition from Voyager measurements [137] to produce a lookup table of densities

for varying altitudes. In order to develop the atmospheric density model, it is crucial

to comprehend the composition, structural layers and geologic features of Triton.

Nitrogen is the main gas in Triton’s atmosphere [138]. The two other known com-

ponents are methane and carbon monoxide, whose abundances are a few hundredths

of a percent of that of the nitrogen. Carbon monoxide, which was discovered only

in 2010 by the ground-based observations, is slightly more abundant than methane.

Since 1986, the abundance of methane relative to nitrogen increased by four to five

times due to the seasonal warming [139].

There is a possible existence of argon and neon lower than a few percent, although

they were not detected in the ultraviolet part of the spectrum of Triton obtained

by Voyager 2 in 1989 [137]. In addition to the gases mentioned above, the upper

atmosphere contains significant amounts of both molecular and atomic hydrogen,

which is produced by the photolysis of methane. This hydrogen quickly escapes into

space serving as a source of plasma in the magnetosphere of Neptune [137].
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Convection near Triton’s surface heated by the Sun creates a troposphere rising

to an altitude of about 8 km. Temperature decreases with height reaching a minimum

of about 36 K at the tropopause [140]. There is no stratosphere, unlike Earth [135].

Higher altitudes include the thermosphere (8 to 850 km) and exosphere (above

850 km) [141]. In the thermosphere, the temperature rises to a constant 95 K upwards

of 300 km [137]. The upper atmosphere continuously leaks nitrogen into outer space

due to the weak gravity of Triton at a loss rate of about 0.3 kg/s. However, evidence

shows that it is being replenished due to several geyser-like volcanic vents that were

apparently spewing nitrogen gas laced with extremely fine, dark particles that settle

onto the surface.

Taking into consideration the various factors that comprise Triton’s atmosphere,

a comprehensive density model has been developed (Figure 5.1) using data obtained

from Voyager [137] as well as conversion factors from molecular to mass weights. A

portion of the atmospheric measurements (altitude ≥ 400 km) indicated isothermal

activity and the exponential relationship in adherence to it was utilized for the density

model.
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Figure 5.1: Atmospheric density profile for Triton as a function of altitude, Left: Mass
density, Right: Electron number density

5.2 Stellar occultation process

There are two optical ways to study the atmosphere of a planet without landing

and taking measurements. The first method is to look directly and the planetary disk

and observe reflected sunlight. The alternative is to observe light from a distant star

or the Sun which has passed at grazing incidence through the atmosphere. The latter

process is known as the stellar occultation process. This method is valuable in giving

information directly about the vertical structure of the atmosphere, its pressure, its

temperature and perhaps its cloud or dust content.

The process as formulated by [142,143] is as follows. Given the configuration

of source (star), planetary body (Triton), and observer (on Earth), and an assumed

set of parameters for the structure of the planetary atmosphere, the light curve can
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be computed as follows. First, considering that the atmosphere acts only through

its refractivity, we need to find the path through the atmosphere of the ray from

source to observer and compute the extinction due to differential refraction. Next,

we compute the reduced path length and multiply it by the sum of coefficients of

absorption due to Rayleigh scattering, molecular absorption and absorption by clouds,

dust and haze to get the optical thickness, τ . Multiplying the intensity reduction due

to differential refraction by the factor of (e−τ ) can result in overall extinction. A visual

representation of the star path (Fig. 5.2 from [144]) and stellar occultation process by

a planetary atmosphere (Fig. 5.3 from [144]) is included for reader’s convenience.

Figure 5.2: Star path at time intervals as it is occulted by Triton. The unit scale is at
24 milliarcsec.

A few approximations are made when computing light curves: geometric, atmo-

spheric, and about the process.

1. The Sun is sufficiently distant that its light may be considered a plane wave.

2. Triton is a sphere of radius r.
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Figure 5.3: Stellar occultation by a planetary atmosphere: Light from a star is
refracted by a planetary atmosphere and is dispersed. The dimmed magnitude is
observed in the shadow plane. The sum of all flux at the observer’s location is mapped
as the occultation light curve seen on the right.

3. The radius of Triton is much greater than any characteristic height in the

atmosphere.

4. Triton’s atmosphere might not be spherically symmetric, and all quantities

depend only on the radius, r.

5. The atmosphere is transparent (no haze present).

6. It is not purely molecular nitrogen N2 atmosphere; includes other minor species

like methane.

7. T (r), temperature, is time-independent.

8. The refractivity of the atmosphere at any point is small.

9. The change in temperature is small over an altitude difference of one scale height.
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10. Multiple scattering is negligible

Effects of refraction [142,145] such as variation of refractivity with height, path

of the ray, differential refraction, and the effects of absorption and scattering [142]

such as reduced path length, Rayleigh scattering, molecular absorption and absorption

by haze, clouds and dust can significantly influence the data collection and analysis.

Thin atmospheres act as poor lenses and the Fresnel and Fraunhofer regimes need to

be taken into consideration in the stellar occultation process [146]. Assuming that the

Sun is finite, limb darkening [142] is significant during eclipses and must be accounted

for.

Results from the 1993, and 1995 occultations have given us astrometric solutions

and one such measured light curve is visible in Fig. 5.4 (from [144]).

Figure 5.4: Stellar occultation light curve showing brightness measurements as a
function of time. The peak of the central flash is seen slight to the right of midtime
line.

5.3 Atmospheric information from occultation data

To understand the atmosphere from stellar occultation light curves requires

a geometric reconstruction of the path of the observer through the shadow plane.

For this, we will model an elliptical planetary figure from several chords of known

relative positions [147], but this task can also be carried out from accurate astrometric
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measurements of the star and Triton [148]. Once the shadow-plane path has been

established, the first information that we can extract is the scale height, regardless of

knowledge of Triton’s atmospheric composition. In this case, since the composition is

known, the temperature, pressure, and number-density profiles can be derived. Local

variations in number density due to atmospheric waves and/or turbulence, which

cause spikes in the occultation light curves, can also be characterized [143]. From

stellar-occultation probes at multiple latitudes, the ellipticity of an atmosphere can be

determined. For certain cases, information about the composition of an atmosphere can

also be revealed through the time delay of spikes in dual-wavelength observations [143].

Our aim is to determine a unique global model (with atmospheric profiles for

scale height, density, temperature and pressure) that satisfactorily explains all the

observations, and to accomplish this, we can use chi-squared per degree of freedom

term [149] to check for quality. The light curves from a best-fitting atmospheric model

must resemble Fig. 5.4. The iterative procedure, combining both direct ray-tracing

and inversion approaches [150] to find the model is to:

1. Invert best signal-to-noise ratio (S/N) light curve to retrieve atmospheric density,

pressure, and temperature profiles.

2. Through direct ray-tracing, synthetic occultation light curves that are simulta-

neously fitted to all of the observed light curves obtained at a given date.

3. Find location of Triton’s shadow center relative to the occultation chords.

4. Inversion of the best light curve is performed again and the procedure is resumed.

5.4 Mission concept of Operations

The spacecraft is propelled into a trajectory towards Saturn, and ultimately,

to Triton. The orbiter will carry the small satellites, which will then be deployed in

succession to map and study Triton’s atmosphere. This will be accomplished using the

137



various instruments onboard. The orbiter will continuously transmit back to the Deep

Space Network on Earth until its end of life. The orbiter will then dispose of itself

into a graveyard orbit around Triton and fully abide by the established Planetary

Protection Protocol [151].

Launching from Earth (Cape Canaveral, Florida) and getting a boost from

the upper stage engine will propel the spacecraft in the direction towards Saturn.

Approximately 3 years later, the orbiter will conduct a flyby of Saturn, with a small

∆V burn for course correction towards Neptune. It takes another 10 years to arrive at

Neptune and performing a retrograde ∆V burn will place itself in an elliptical orbit

around Neptune. When Triton and Neptune align properly, it will perform a Hohmann

transfer, to enter a polar parking, circular, polar orbit. Figure 5.5 (from [152]) shows

the Neptune capture and Triton transfer orbits in sequential order.

Figure 5.5: Orbits showing Neptune capture and transfer to Triton
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The payload instruments include visible (VIS) and ultraviolet (UVS) mapping

spectrometers (for the atmosphere and geysers), particle and dust analyzers (trace of

the atmosphere), and optionally radio science and magnetometer, and gyroscope. The

orbiter has a mass of approximately 25 kg with peak power of 38.5 W [152], whereas

the probes should weight less than 1 kg and significantly lower peak power than the

orbiter. VIS and UVS operate together in order to analyze the composition, density,

and pressure of the atmosphere, and also study the geyser plume material.

The probes can continuously take and transmit all necessary data back to the

orbiter when in view for about 1.5 hours per orbit, or until battery power ceases.

Another fact to remember is that Triton will be in eclipse for 1 hour, so it will be vital

to time the transmission and collection to maximize power.

5.5 Constellation of satellites

The role of the small satellites is to use them as probes. Ideally, we can measure

speed and position of a probe in the axis of its descent as it falls through Triton’s

atmosphere. Apart from gravity, atmospheric drag is an external force acting on the

probe and we can compute the acceleration due to drag using equation 5.1

aD = −1

2

(
CD

Av(t)

ms

)
ρv2

rev (5.1)

where CD is a drag coefficient, Av(t) is the cross-sectional area of the satellite

in direction of travel, ms is the total spacecraft mass, ρ is atmospheric density, vr is

the velocity magnitude relative to the ambient atmosphere, and ev is a unit vector in

the relative velocity direction.

The inverse ballistic coefficient is the term within parentheses in the equation. We

can determine the ballistic coefficient that results in the closest estimation of position
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Table 5.1: Diode accuracy at varying levels of temperature

Temperature (K) Accuracy (mK)
1.4 ±12
10 ±12
77 ±22
300 ±32
500 ±50

and velocity to the truth values. Atmospheric density can then be inferred from this.

One such approach for atmospheric density estimation using a satellite constellation

[153] is a new spline-based atmospheric density parameterization. Parameterization

fits into estimation and does not reduce the resolution of the density approximation.

However, it was found that some a priori knowledge about density is necessary to

reduce uncertainty in estimates. The knowledge about the satellite’s inverse ballistic

coefficients is of limited use, because the difference in time constants tends to decouple

the inverse ballistic coefficients and the density parameters [153]. To solve this problem,

a suggested solution is including gyroscopes on the probes, but further analysis and

testing is required to verify if this is viable. Since Triton’s maximum gravitational

acceleration is approximately 0.08 g0, where g0 is the gravitational constant on Earth,

the sensor’s peak acceleration value will be well within the limit.

In order to measure temperature, we can utilize a sensor, Omega CY670 cryogenic

temperature diode, as it is accurate within temperature ranges of 1.4 K to 500 K [152].

Triton’s ambient temperature is said to be 38 K. The diode’s accuracy is listed for

the range of operating temperatures in Table 5.1.

Additionally, a pressure transducer can determine the pressure gradient of

Triton’s atmosphere. As the atmospheric pressure is quite low (14 µbar), the sensor

must be capable of reading small measurements. The LP1400 has a range of 10.3

to 68.9 µbar [152]. The structure of the probes must be forward heavy in order to
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have projectile motion during descent. Reduced mass materials like Titanium are

suitable for this purpose. Since Triton has a surface pressure of 1.4 Pa, multi-layer

insulation (MLI) doesn’t serve the purpose at P > 1.33 Pa. Instead, aerogel for foam

insulation works well with the added benefit of lower density. Choices for the various

components of the satellites can optimize the overall performance.

The life cycle for the data collection is limited, hence a constellation of small

satellites was chosen to serve this purpose. Releasing multiple probes ensures re-

dundancy and accounts for good measurements if any are lost to malfunction or

transmission errors. This technique allows us to deploy several satellites within the

same constellation during a single launch, making it cost-effective [154]. It’s essential

to have correct positioning of the satellites within the constellation.

The results of the atmospheric model after simulating the constellation of satel-

lites is an extensive application that can be explored for future work and improvements.
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Chapter 6

Summary and Closing Remarks

Additional artificial space objects orbiting Earth is becoming an issue for space

situational awareness (SSA). A piece of space debris too small to be tracked can

damage other large structures such as the International Space Station, which is

a main hub for operations in space and on Earth. It reminds us that the low-

Earth orbit’s space junk problem is a time-sensitive issue. Accurate tracking and

identification of RSOs through ground-based photometric light curve measurements

can aid in characterizing collision-prone objects to our orbital assets, planning for

commercial use of space, and possibly understand the intent of foreign objects. Optical

measurements for space object tracking are sensitive to shape, attitude, angular velocity,

and surface parameters. Current state-of-the-art in RSO characterization relies heavily

on nonlinear state estimation theory, multiple models, and full light curve inversion

which is computationally expensive. A data-driven approach improves accuracy for a

large volume of objects using deep neural networks. Given an unresolved object’s light

curve, in low earth orbit (LEO), we can now characterize it by shape and spin rate

using Recurrent neural networks and a hidden Markov model. This hybrid approach

improves the accuracy of time series classification by executing a secondary screening

accounting for the temporal relations in the data. Redundancy in the classifiers from

multiple layers of training and prediction are eliminated. This integrated model has

been developed to identify tumbling and stabilized objects by testing for aliasing,

periodicity, and feature extraction. The performance of this approach for RSO

classification is demonstrated via simulations. The model is designed to train and
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validate using synthetic light curve measurements of objects spanning ellipsoid, rocket

upper-stage, CubeSat, disk, probe, and box-wing satellite, among others. Variations

from different viewing geometries, altering shape/size dimensions and surface properties

have populated the dataset. The simulated measurements are evaluated using Lebedev

quadrature at varying angular rotational speeds and interpolated surface reflectance

properties across the facets. The fidelity of these simulations ensures it is both realistic

and accurate to within 10% error and robust to handle uncertainty. The computational

efficiency is increased as function integration has shown better performance compared

to tessellation for artificial RSOs. After investigating a wide range of signal processing

techniques, the Lomb-Scargle periodogram most accurately estimates the Sidereal

rotation period of the object with the least user interface. The dependency on a priori

knowledge of the object is reduced as we no longer need to follow the established Light

curve inversion procedure. There is flexibility to deal with a larger amount of data

and populate more datasets for improved artificial RSO classification.

Extensive understanding of photometric light curves reveals the effects of the

atmosphere as it can reduce the quality of data collection. This lends to availing

ourselves to atmospheric models for future missions that may choose to use light

curves. The lack of information about Triton in recent years makes it a plausible site

for exploration. This can be fixed using ground-based photometry and some in-situ

measurements. A better understanding can open the doors to further exploration of icy

objects in the Solar system, including large moons, small Kuiper Belt Objects (KBOs)

and dwarf planets that might share a similar history. Continuing this investigation

of Triton’s atmosphere using stellar occultation will result in a global model. The

generated atmospheric model can validate predictions of Triton’s expanding atmosphere

due to thermal properties of the surface and increase in pressure.
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