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ABSTRACT 

Two Essays on How do Investors Perceive the Optimal Capital Structure and an essay on Mutual 

Fund Volatility Decomposition and Manager Skill 

 

 

Nima Vafai, Ph.D. 

The University of Texas at Arlington, 2021 

 

Supervising Professor: David Rakowski 

This dissertation explores the rational investment hypothesis proposed by classical theories 

at the stock and portfolio (mutual fund) level. My first two essays focus on the risk associated with 

the composition of debt and equity at the firm level. The third essay studies the total risk at the 

portfolio level in the mutual fund setting.  

In the first essay, we examine the association between deviations from the optimal capital 

structure and firm-level stock returns by comparing different proxies for optimal capital structure 

from the literature and constructing improved industry-specific optimal capital structure measures. 

After comparing the performance of each measure, we use a partial adjustment model to study 

how firms reduce their gap from optimal leverage. 

In the second essay, we model firms’ deviations from the optimal capital structure as a new 

risk factor in the cross-section of stock returns. Using Monte-Carlo simulations to conduct 

bootstrapped mean-variance spanning tests, we examine whether the existing Fama and French 
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factors can explain this potential new risk factor. We also use Text Network Industry Classification 

(TNIC) to show whether the new risk factor is robust to alternative industry classification. 

In the third essay, we use a volatility decomposition to identify the underlying sources of 

differences in the performance of low and high-volatility mutual funds. We then examine whether 

the difference in performance is fund-specific and due to the manager’s skill, or it is a broad 

characteristic of market volatility. Last, we show how the difference in the performance of low 

and high volatility mutual funds is related to the existence of a beta anomaly in the mutual fund 

industry. Furthermore, we examine the idiosyncratic volatility relation with beta and risk-adjusted 

return (alpha) at the fund level.
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CHAPTER 1 

How do investors perceive optimal capital structure?  

Evidence from industry-specific risk factors 

 

 

Abstract 

Here, in essay I, we examine the association between deviations from optimal capital structure and 

firm-level stock returns, as well as construct improved measures of industry-specific optimal 

capital structure. We compare the performance of multiple measures of optimal capital structure 

in revealing investors’ expectations and find that a positive (negative) deviation from the optimal 

capital structure is significantly and positively (negatively) associated with a stock’s excess return. 

Using the Fama and French (1993) three-factor model, we attribute this association between 

deviation from optimal capital structure and excess return to the risk loading on the stock. 

Moreover, using a partial adjustment model, we find that our improved measure of optimal capital 

structure performs better than alternative measures in capturing the movement of firms toward a 

target amount of leverage. 

 

 

Keywords: capital structure; stock returns; risk factors; factor models; leverage.  

JEL codes: G12, G14, G32.  
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I. Introduction 

When it comes to capital structure or leverage, the finance literature has a couple of well-

known competing theories about what is optimal for a firm. The trade-off theory (Modigliani and 

Miller, 1963; Kraus and Litzenberger, 1973; Myers, 1984) suggests that there is an optimal capital 

structure or leverage for each firm (optimal leverage is hereafter referred to as OL), which is the 

outcome of a trade-off between costs of debt and costs of equity. The pecking order theory (Myers, 

1984) suggests that corporations choose the source of financing for projects in the order of 

financial cost. In other words, any corporation at any level of leverage, first, chooses retained 

earnings as long as possible, second, goes to debt until debt becomes too expensive, and, third, 

issues new equity. In this process, a corporation goes from one resource to the other resource of 

financing when the prior resource is depleted, and the company still has access to desirable 

projects. 

Regardless of what theory best explains cross-sectional variation in leverage, in reality, 

firms attempt to maximize their overall value by choosing the best possible capital structure. 

However, firms might not accomplish this mission because of many external and internal reasons, 

including credit ratings, debt capacity, and poor negotiation skills of the managers. Hence, the 

cross-sectional variation in capital structure partly comes from natural differences in the OL that 

corporations aim for and partly comes from their inability (or intention) to deviate from the OL. 

A deviation from the OL might result in a higher or lower risk loading on the firm’s stock. 

If investors are risk averse, a higher (lower) level of risk should be compensated with a higher 

(lower) expected return. If this expected return represents compensation for a distinct source of 

risk that investors are averse to, then the excess return that investors demand from this perceived 
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risk should not be explained by other sources of risks that have been established in the literature 

[i.e., the Fama and French (1993) factors]. We, therefore, proxy for expected returns with the 

realized excess returns relative to factors that are known from the existing literature. 

We explore how a directional deviation from OL (either positive or negative) increases or 

decreases the risk of a firm and hence impacts the excess return on a firm’s stock. We have two 

challenges to overcome. First, there is no consensus in the literature on what theory is the best to 

estimate OL. Second, views differ on what the best proxy is for this optimal point. To overcome 

these challenges, we use existing proxies for OL in the literature and compare how well they 

explain security prices. Also, we contribute to the literature by introducing two other proxies for 

OL. 

If investors treat the directional deviations from OL as a priced risk factor, then deviations 

should be associated with positive or negative excess returns, after controlling for any additional 

risk factors. In other words, if the directional deviation from OL is perceived as a higher or lower 

risk, the investors should be compensated with a higher or lower excess return. For example, let 

us assume that we have two firms, firm A and firm B, that have identical fundamentals, and they 

both are in the same industry. The only difference between these two firms is their OL at time 𝑡𝑡. 

Firm A is at its assumed OL at time 𝑡𝑡, but firm B is significantly above its OL. If investors display 

lower demand for firm B, then its stock would sell at a price discount or, equivalently, a higher 

expected return relative to firm A. This difference in returns is the result of the compensation for 

the risk perceived by investors. Equation (1) is a simple valuation model, which is another way to 

show the current market price as a function of expected future cash flows (or dividends) and the 

market expected return (discount factor). Because a higher (lower) level of risk leads to a higher 
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(lower) expected return (𝑟𝑟), although the expected cash flow (or dividend) is the same for both 

firms, the higher (lower) risk leads to a lower (higher) current price for firm B. As Equation (1) 

shows, everything is fixed except the level of risk, and the lower expected rate of return (𝑟𝑟) implies 

a lower current price: 

𝑀𝑀𝑡𝑡 = ∑ 𝐸𝐸(𝑑𝑑𝑡𝑡+𝜏𝜏)
(1+𝑟𝑟)𝜏𝜏

= ∑ 𝐸𝐸(𝑦𝑦𝑡𝑡+𝜏𝜏−𝑑𝑑𝑑𝑑𝑡𝑡+𝜏𝜏)
(1+𝑟𝑟)𝜏𝜏

∞
𝜏𝜏=1

∞
𝜏𝜏=1 ,    (1) 

where 𝑀𝑀𝑡𝑡 is the market price at time 𝑡𝑡, 𝐸𝐸(𝑑𝑑𝑡𝑡+𝜏𝜏) is the expected dividend per share at the end of 

period 𝑡𝑡 + 𝜏𝜏, and 𝑟𝑟 is the expected rate of return or the internal rate of return on expected dividends. 

𝑦𝑦𝑡𝑡+𝜏𝜏, is total equity earnings for period 𝑡𝑡 + 𝜏𝜏, and 𝑑𝑑𝑑𝑑𝑡𝑡+𝜏𝜏 =  𝐵𝐵𝑡𝑡+𝜏𝜏 − 𝐵𝐵𝑡𝑡+𝜏𝜏−1 is the change in total 

book equity (Fama and French, 2015).  

Evaluating deviations from OL as a priced risk factor conveniently allows for an alternative 

perspective to be tested. Instead of representing a risk factor that decreases (increases) investors’ 

demand and increases (decreases) expected returns, deviations from the OL might represent a 

predictive measure of future firm-level operating performance that is negatively (positively) 

associated with expected excess returns. We evaluate which of these explanations the data better 

support. 

Prior studies commonly use a simple measure of debt-to-equity or debt-to-assets in the 

estimation of models to examine the impact of the cross-sectional variation of capital structure on 

a firm’s excess return or use a theoretically estimated variable to proxy for OL (i.e., Fama and 

French, 1992, 2002). However, there is no consensus on the results of these studies. There has 
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always existed a gap in the literature between the insignificance of the expected outcome of 

theories and empirical work’s actual outcome. With this study, we are trying to fill this gap. 

We introduce improved proxies, as well as use the existing proxies in the literature, to 

measure how much a specific firm departs from its OL compared with its benchmark, which we 

view as an industry-specific capital structure equilibrium. We construct ten portfolios of stocks 

each December based on those stocks’ directional deviations from their respective optimal 

leverage using multiple proxies for the OL. Among the proxies we use, the industry median 

leverage performed better in revealing both the investors’ expectations about the return and firms’ 

intention in lowering their distance from the optimal leverage. We find that portfolios of stocks 

with lower leverage than their industry median have a significantly lower excess return than the 

portfolios of stocks with higher leverage than their industry in the prior year. Because portfolios 

are made based only on the prior-year deviation from the OL, all the other firm characteristics are 

assumed to be randomly assigned. We investigate this further by controlling for risk and other 

factors.    

Motivated by prior studies (Bradley, Jarrell, and Kim, 1984; Titman and Wessels, 1988), 

we suggest that the capital structure of firms should be partially determined by industry. Some 

industries are highly capital intensive, and it might be acceptable in that industry to have high 

leverage. Moreover, Frank and Goyal (2009) show that the most reliable factor in explaining a 

firm’s leverage is the median industry leverage. For these reasons, we suggest our first proxy, the 

industry median, as a potential candidate for OL. Also, the Fama and French (2002) point estimate 
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of the target leverage is clustered by industry. Thus, to improve the reliability of the estimated OL, 

we suggest estimating the Fama and French (2002) equation in each industry separately. 

Existing studies use two main proxies to measure OL. The first is a cross-sectional 

comparison, which uses different firms’ characteristics to find the point estimate for OL (Fama 

and French, 2002). The second suggested proxy for the optimal leverage is the time series average 

of the firm’s leverage ratio. Kraus and Litzenberger (1973) use this average as a proxy for the 

optimal leverage that firms are seeking to reach. The idea behind this is that firms use the same 

combination of debt and equity to finance any new project, and each firm attempts to finance its 

projects with the most optimal debt-to-equity ratio. Hence, over time, the long-run average can 

proxy for the OL that a firm seeks.  

We use both of the aforementioned proxies in this study and compare them with our 

suggested measures. We calculate deviations of each firm from each proxy for OL to see if the 

portfolios formed based on these deviations have differences in excess return. Sorting portfolios 

based on the deviations from these two proxies displays no observable pattern in the returns of 

these portfolios. However, our results show that, when compared with an industry benchmark, a 

positive deviation from OL is associated with a positive excess return and a negative deviation 

from the OL is associated with a negative excess return.  

We attribute this difference in return to the difference in risk arising from the directional 

deviation from leverage. Firms with a positive deviation from OL hold a higher level of debt than 

their industry benchmark. Because debt increases the risk to shareholders, their excess return is 

compensation for the higher risk. If within-industry effects prevent this risk from being diversified 

away, or if investors otherwise treat this as a nondiversifiable risk, then the demand for high (low) 
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risk securities would be lower (higher), resulting in lower (higher) equilibrium prices and hence 

higher (lower) expected returns. Using the other proxies for OL does not result in the same 

conclusion about the investors’ expectations. 

We use the Fama and French three-factor model to test our conjecture that the difference 

in the excess return of portfolios formed based on deviations from OL using different proxies is 

attributable to risk loading. Using the Fama and MacBeth (1973) regression procedure, we 

calculate the risk-adjusted excess return in each decile-sorted portfolio. We find that the Fama-

French alpha is significantly higher (lower) for high (low) deviation portfolios using three out of 

four of our proxies for OL. This result is consistent with the explanation that excess return is the 

result of different risk loading in portfolios (Fama and French, 1993). We find no evidence that 

portfolios made by deviation from OL using the ten-year time series average as a proxy for OL 

captures the leverage risk loading, as reflected by the returns across portfolios. In contrast, we find 

the opposite result that a positive deviation from the OL leads to a negative expected return and 

vice versa. Nevertheless, the difference is not economically significant.    

To measure the movement of leverage toward a firm’s target, following Fama and French 

(2002), we use the partial adjustment model (PAM). We intend to test whether firms leverage 

returns to their target. In other words, we test managers’ perception of the OL to explore whether 

firms intend to lower their distance from the OL using the PAM. In the framework for this test, the 

change in book leverage partially absorbs the difference between target leverage and lagged 

leverage (Fama and French, 2002). We find that our proxies for OL perform better than other 

proxies used in the literature in terms of explaining the movement of leverage and the speed and 

significance of adjustment. The R2 of the PAM regression using the industry-clustered Fama and 
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French factors is 5% more than that of the comparable regression in Fama and French (2002). The 

R2 of the PAM regression using the industry median as a proxy for OL is 17% more than the R2 of 

the regression using the Fama and French industry-clustered factors as a proxy for OL. Also, the 

speed of the adjustment is higher and more significant when using our proxies for OL, implying 

that our proxies offer a better estimation of OL using empirical market data, compared with the 

measure used by Fama and French (2002) and Kraus and Litzenberger (1973). 

Our primary motivation for this study is the lack of comprehensive evidence on the relation 

between the capital structure of public firms and their stock return. We contribute to the literature, 

first, by introducing the industry median as a proxy for OL and  showing that this measure performs 

better in terms of economic and statistical significance compared with existing proxies and, 

second, by showing that a positive (negative) deviation from the OL is associated with higher 

(lower) risk loadings for the stock firm’s stock return. We show that the difference in the ex ante 

risk leads to differences in the ex post monthly stock returns. 

The rest of the paper is organized as follows. Section II is a brief literature review. Section 

III provides an explanation of the methodology, measurements, and econometrical tests employed 

to test our hypotheses. Section IV describes the primary sources of data and provides an overview 

of the sample’s construction. Section V presents our findings. Section VI reports the results of the 

robustness check. Section VII concludes the paper. 

II. Literature Review 

There are different strands of literature that study capital structure from different 

perspectives.  Two main factors in the studies are the tax shield benefit of debt and the agency 
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costs of equity and debt.  

Jensen and Meckling (1976) discuss that even before the existence of a tax shield advantage 

in the US, there was debt in the capital structure of firms. Hence, they introduce agency theory to 

explain the existence of OL. In their theory, equilibrium is reached by the interaction between the 

agency cost of equity and the agency cost of debt that minimizes the overall cost.  

The theory of OL based on the tax shield benefits of debt capital was first developed by 

Modigliani and Miller (1963). The theoretical framework they built is handy and has some 

implications about the OL. Their interpretation of ∆𝐵𝐵 ∆𝐼𝐼� , the change in debt over the change in 

the investment, is that if 𝐵𝐵
∗
𝐼𝐼∗�  denotes the firm’s long-run target debt ratio, then, for any particular 

investment, the assumption is that 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑� = 𝐵𝐵∗
𝑉𝑉∗� , where 𝑉𝑉∗ is the optimal firm’s size. This 

statement implies that there should be an OL for each firm and that firms move toward the optimal 

ratio in the long run. Modigliani and Miller examine if the OL is best proxied by the book value 

of leverage, the replacement value of leverage, or the reproduction value of leverage. Modigliani 

and Miller conclude that the best proxy for the target OL is the average, in the long run, of the 

debt-to-market-value ratio.  

The academic consensus by the mid-1970s was that the OL involves balancing the tax 

advantage of debt against the present value of bankruptcy costs. There have been several empirical 

works testing Modigliani and Miller’s theory of capital structure, such as DeAngelo and Masulis 

(1980), Kim (1982), and Modigliani (1982). Also, Fama and French (2002) use a unique regression 

estimation model to estimate the optimal spot target leverage. Despite these attempts to 
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theoretically and empirically identify the OL, a consensus is yet to exist on the most reliable way 

to measure the OL. 

Kraus and Litzenberger (1973) develop a capital structure model that introduces the tax 

advantage of debt and bankruptcy penalties into a state preference framework. The market value 

of a levered firm is shown to equal the unlevered market value, plus the corporate tax rate times 

the market value of the firm’s debt, less the complement of the corporate tax rate times the present 

value of bankruptcy costs. In contrast to prior studies of firms’ valuation (traditional net income 

approach to valuation), if the firm’s debt obligation exceeds its earnings, then the firm’s market 

value is not necessarily a concave function of its debt obligations.  

Kraus and Litzenberger (1973) introduced the trade-off theory, which was followed by 

Myers (1977) with in his research on the determinants of corporate finance. The trade-off theory 

is based on the idea that firms choose debt and equity (leverage ratio) by the trade-off between 

costs and benefits of debt and equity. The idea is based on the considered balance between the 

explicit and implicit costs of bankruptcy and agency cost on the one hand and the tax shield 

benefits of debt on the other hand. The most crucial aim of this theory is to explain the composition 

of companies’ capital structure. 

The market timing hypothesis is a nonexclusive alternative theory to Modigliani and 

Miller’s framework on capital structure. The theory is based on the idea that firms pay attention to 

market conditions in an attempt to time the market. Based on the market timing theory, firms tend 

to issue equity when their market values are high relative to past market values and market-to-

book value and to repurchase equity when the opposite is correct. Baker and Wurgler (2002), in 

their study of market timing and capital structure, find that the current capital structure is highly 
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correlated to historical market values. Their results confirm the theory that the capital structure is 

the cumulative outcome of past attempts to time the equity market. 

Myers (1984) mentions in his dynamic version of the pecking order theory that an increase 

in leverage lowers a firm’s safe debt capacity and may lead to future underinvestment and a 

decrease in stock returns. However, the pecking order theory suggests that the stock return 

decreases with either positive or negative deviations from the OL (Kraus and Litzenberger, 1973a).  

Bradley, Jarrell, and Kim (1984) use cross-sectional data to test for the optimal level of 

capital structure. They developed a theoretical model that captures the essence of the tax advantage 

and bankruptcy cost models of Kraus and Litzenberger (1973). Following the theory, they 

highlight three firm-specific factors that influence the firm’s OL: (1) the variability of firm value, 

(2) the level of non-debt tax shields, and (3) the magnitude of the costs of financial distress. 

Kraus and Litzenberger (1973) first reexamine the cross-sectional relation between 20-year 

average firm leverage ratios and industrial classification. Then, they regress the firm’s leverage 

ratios on empirical proxy variables for the variability of firm value, the level of non-debt tax 

shields, and the magnitude of the costs of financial distress to test the more direct implications of 

the OL theory. They find that optimal firm leverage (taken as the 20-year average) is inversely 

related to the costs of financial distress and the benefits of non-debt tax shields. 

De Jong, Verbeek, and Verwijmeren (2011b) study the static trade-off theory versus the 

pecking order theory. They find that, for their sample of US firms, the pecking order theory is a 

better descriptor of firms’ issue decisions than the static trade-off theory. However, when they 

focus on repurchase decisions, they find that the trade-off theory has a better explanation of firms’ 
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capital structure decisions. Cai and Zhang (2006), as part of their empirical work, study the trade-

off theory and its impact on the firm’s value. They find nothing significant, which is consistent 

with the trade-off theory, but they find some pieces of evidence that support the pecking order 

theory. 

In more recent work, DeAngelo and Roll (2015) study the stability of the capital structure, 

which is the result of the trade-off theory of capital structure. They find that capital structure 

stability is exceptional and not a rule for firms. They show that leverage stability happens mostly 

among low-leverage companies, and mostly it is temporal. They conclude that the target leverage 

models that place little or no weight on maintaining a particular leverage ratio are better in 

explaining the actual capital structures. Bhandari (1988) studies the debt (equity) ratio and finds 

no significant results. He shows no evidence to support the trade-off theory. 

Opler and Titman (1994) find that firms that produce durable goods will have a lower 

demand for their products if they increase their probability of bankruptcy. Opler and Titman find 

that highly leveraged firms lose substantial market share to their more conservatively financed 

competitors in industry downturns. For only this reason, we should compare firms with their proper 

benchmarks when it comes to studying the capital structure. 

Frank and Goyal (2009) examine the importance of different factors in explaining the 

capital structure decision of US public firms from 1950 to 2003. They find that industry median 

leverage, market-to-book ratio, tangibility, profits, size, and expected inflation are the most 

decisive factors in explaining the firms’ market leverage. They find evidence that is weakly 
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consistent with the trade-off theory. Our main takeaway from this paper is that, based on their 

findings, industry median leverage is the most reliable variable explaining firms’ capital structure. 

Flannery and Rangan (2006) use the partial adjustment model to test the existence of the 

optimal leverage and the speed of adjustment toward that optimal. They discuss that, in a 

frictionless world, firms are always at their optimal leverage. However, in the real world, with 

frictions, the immediate adjustment is costly and almost impossible. Hence, firms partially adjust 

their leverage. Flannery and Rangan find that a typical firm partially corrects its actual leverage 

and closes one-third of its gap with the target once every year. 

In short, there are three main leading theories in the literature: trade-off, dynamic pecking 

order, and market timing theories. Although one of these theories might look theoretically superior 

to the other based on the reader’s taste, none of them is empirically proven by a study that has not 

been rejected in favor of another theory. Also, there exist two main proxies for OL in the literature. 

First is the point estimate regression, which uses different firms’ characteristics to find the point 

estimate for the optimal leverage (Fama and French, 2002). The second proxy for optimal leverage 

is the long-run average of the firm’s leverage ratio. Kraus and Litzenberger (1973) use this average 

as a proxy for the OL that firms are seeking to reach. Moreover, in the literature, the PAM is used 

to test the existence of OL and the speed of adjustment of leverage toward its target.  

 

III. Measurements, Models, Methods, and Hypotheses Development  

We use the industry median leverage as a benchmark for the OL. We suggest that the 

difference between firms’ leverage and that of the industry average (median) is sufficient to proxy 
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for the distance and direction that a firm is deviating from its OL.  Our ground for choosing the 

industry median as a proxy for the OL is that the industry median contains much of the information 

about the relevant characteristics of firms in that industry. Frank and Goyal (2009) already show 

that the industry median leverage is the most important factor in explaining firms’ market leverage.  

We use two other proxies from the literature for the OL, along with our industry median 

proxy, to compare their performances with each other in showing the differences in returns of 

portfolios sorted based on the deviation from OL.  Following Fama and French (2002), we define 

the book leverage as the book value of liabilities divided by the book value of total assets.  In terms 

of Compustat variables, we use AT-SEQ as the total book debt and AT as the total assets. Equation 

(2) shows the corresponding calculations for the leverage, LV: 

𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 = 𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡−𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑡𝑡
𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡

 .     (2) 

Following Fama and French (1993), we want to test whether the factor based on deviations 

from OL can explain variations in the cross section of excess returns over time (panel data). To do 

so, we take the following steps to measure the impact of deviation from optimal capital on the 

average excess return. We begin by calculating the deviation of firms’ leverage from the OL using 

the industry median as a proxy for OL each year. Then, we sort stocks based on their deviation 



 

15 
 

from OL in ten portfolios to test whether there is a significant difference or pattern in the portfolio 

of returns. The deviation from OL is calculated based on Equation (3): 

∆𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 = 𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 − 𝐿𝐿𝐿𝐿𝚤𝚤,𝑡𝑡� ,      (3) 

where ∆𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 proxies for the deviation from optimal capital leverage, 𝐿𝐿𝐿𝐿𝚤𝚤,𝑡𝑡�  is the assumed optimal 

book leverage of firm 𝑖𝑖 at time t, and 𝐿𝐿𝐿𝐿𝑡𝑡,𝑖𝑖 is the actual leverage of firm 𝑖𝑖 at time 𝑡𝑡 calculated from 

Equation (2). We use three proxies for OL: two are from the literature and one is our proxy, 

industry median. 

Portfolio Sorting 

We sort stocks into ten portfolios for each year in each industry based on their ranking of 

deviation from OL. Then, we calculate the value-weighted excess return in each portfolio and 

report the average of each portfolio over the years. We repeat this procedure for each of the proxies 

and compare their performance in showing differences or patterns in the portfolio returns.   

Model A (Characteristics) 

We use a characteristics model to test our hypothesis of whether the deviation from OL can 

explain any part of the variation in the cross-sectional excess return controlling for other well-

established factors in the literature. Equation (4) expresses returns as a function of firm 

characteristics, including the deviation from OL: 

𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑡𝑡 + 𝛽𝛽1∆𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡−1 + 𝛽𝛽2𝑗𝑗𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡−1 + 𝜀𝜀𝑖𝑖,𝑡𝑡,   (4) 

where 𝑟𝑟𝑖𝑖,𝑡𝑡 is the monthly excess return of firm 𝑖𝑖 at month 𝑡𝑡. ∆𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡−1 is the book leverage deviation 
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from the estimated optimal ratio at time 𝑡𝑡 − 1. 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡−1 represents a matrix of j control variables 

that has time and cross-sectional variation. This vector of controls contains size, book-to-market 

equity, and market excess return.  

We use the Fama and Macbeth (1973) method in estimating Equation (4). The Fama-

MacBeth method by construction controls for time fixed effects. Thus, we run the cross-sectional 

regression in Equation (4) every year and take the average over the sample period. Then, we use 

the time series standard error of average slopes to calculate t-statistics using the Newey and West 

(1987) adjustment for standard errors and draw inferences. The Newey-West method (HAC) 

corrects heteroskedasticity and autocorrelation in the error term. 

Model B (Risk Model ) 

After making the sorted portfolios based on the deviation from the OL, we run the Fama 

and French (1983) three-factor model on the value-weighted return of each portfolio. The alpha 

(intercept) in each portfolio is interpreted as the risk-adjusted excess return in that portfolio. 

However, the risk is adjusted only for the known factors, i.e., the Fama and French three factors 

in each portfolio. Thus, an undocumented risk factor might be the source of potential differences 

in alpha that has not been captured by other risk factors.  

If we find no noticeable difference in the alphas of sorted portfolios, but we find differences 

in the portfolios’ excess return. We thus can conclude that known risk factors explain the source 

of excess return. If the alphas follow the same pattern as the excess returns, then we can attribute 
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return differences to the factor that portfolios are sorted by, which in this case is the deviation from 

OL.  

Fama and French (2002) Target Leverage Estimation 

The third proxy that we use for the OL is that of Fama and French (2002). We need to 

estimate two equations simultaneously to find the target leverage, OL, at each time 𝑡𝑡. In the Fama 

and French (2002) view of the pecking order and trade-off model, two endogenous variables are 

target leverage and target dividend ratio. Thus, we split the sample data set into two subsamples: 

first is non-dividend-paying firms and the second is dividend-paying firms. Following Fama and 

French, the dividend-paying subsample requires the dividend-paying firm to pay a dividend at 

time 𝑡𝑡 − 1.     

For non-dividend-paying firms, target leverage is estimated by the regression model of 

Equation (5):  

𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡+1 = 𝑏𝑏0 + 𝑏𝑏1𝑉𝑉𝑖𝑖,𝑡𝑡 𝐴𝐴𝑖𝑖,𝑡𝑡⁄ + 𝑏𝑏2𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡 𝐴𝐴𝑖𝑖,𝑡𝑡⁄ + 𝑏𝑏3𝐷𝐷𝑃𝑃𝑖𝑖,𝑡𝑡 𝐴𝐴𝑖𝑖,𝑡𝑡⁄ + 𝑏𝑏4𝑅𝑅𝑅𝑅𝐷𝐷𝑖𝑖,𝑡𝑡 + 𝑏𝑏5𝑅𝑅𝐷𝐷𝑖𝑖,𝑡𝑡 𝐴𝐴𝑖𝑖,𝑡𝑡⁄ +

𝑏𝑏6 𝑙𝑙𝑙𝑙�𝐴𝐴𝑖𝑖,𝑡𝑡� + 𝑏𝑏7𝑇𝑇𝑇𝑇𝑖𝑖,𝑡𝑡+1 + 𝑒𝑒𝑖𝑖,𝑡𝑡+1,     (5) 

where 𝑉𝑉𝑖𝑖,𝑡𝑡 is the market value, 𝐴𝐴𝑖𝑖,𝑡𝑡 is the total assets, 𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡 is earnings before interest + tax expenses, 

𝐷𝐷𝑃𝑃𝑖𝑖,𝑡𝑡 is the depreciation, 𝑅𝑅𝐷𝐷𝑖𝑖,𝑡𝑡 is the research and development (R&D) expenses, 𝑅𝑅𝑅𝑅𝐷𝐷𝑖𝑖,𝑡𝑡 is a 

dummy that is one for firms with zero or no reported R&D, and  𝑇𝑇𝑇𝑇𝑖𝑖,𝑡𝑡+1, target leverage, is the 

fitted value from the first-stage reduced-form estimate of Equation (5) for dividend-paying firms 

for firm i at time t. Using the Fama and French (2002) setting, which is based on the trade-off and 

pecking order theories, exogenous driving variables for the target leverage are the profitability of 



 

18 
 

assets in place, investment opportunities, non-debt tax shields, and volatility. In Equation (5), the 

proxies for profitability are 𝐸𝐸𝐸𝐸𝑡𝑡 ∕ 𝐴𝐴𝑡𝑡 (𝐸𝐸𝐸𝐸𝑡𝑡 is earnings before interest and taxes) and 𝑉𝑉𝑡𝑡 ∕ 𝐴𝐴𝑡𝑡. 𝑉𝑉𝑡𝑡 ∕

𝐴𝐴𝑡𝑡 is a proxy for investment opportunities, along with 𝑅𝑅𝐷𝐷𝑡𝑡 ∕ 𝐴𝐴𝐴𝐴. 𝑅𝑅𝐷𝐷𝑡𝑡 ∕ 𝐴𝐴𝐴𝐴 is a proxy for non-debt 

tax shields, along with depreciation, 𝐷𝐷𝑃𝑃𝑡𝑡 ∕ 𝐴𝐴𝐴𝐴. Finally, the log of assets, 𝑙𝑙𝑙𝑙(𝐴𝐴𝑡𝑡), proxies for the 

volatility of earnings and net cash flows, as well as other factors related to the firm size. Also, 

because the firms in this group are not paying a dividend, we drop the dividend payout ratio 

variable, 𝑇𝑇𝑃𝑃𝑡𝑡+1, from Equation (5); that is, its value is zero. 

For dividend-paying firms in the Fama and French (2002) setting, target leverage is 

endogenous. Its value is determined by estimating Equations (5) and (6) jointly. For dividend-

paying firms, we use the fitted value for 𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡+1, target leverage, estimated from the reduced form 

estimate of Equation (5).  

𝐷𝐷𝑡𝑡+1 𝐴𝐴𝑡𝑡+1⁄ = 𝑎𝑎0 + (𝑎𝑎1 + 𝑎𝑎1𝑉𝑉𝑉𝑉𝑡𝑡 𝐴𝐴𝑡𝑡⁄ + 𝑎𝑎1𝐸𝐸𝐸𝐸𝑡𝑡 𝐴𝐴𝑡𝑡⁄ + 𝑎𝑎𝑙𝑙𝑙𝑙 𝑑𝑑𝐴𝐴𝑡𝑡 𝐴𝐴𝑡𝑡⁄ + 𝑎𝑎1𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 + 𝑎𝑎𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑡𝑡 𝐴𝐴𝑡𝑡⁄ +

𝑎𝑎1𝑆𝑆ln(𝐴𝐴𝑡𝑡) + 𝑎𝑎𝑙𝑙𝑙𝑙𝐿𝐿𝐿𝐿𝑡𝑡+1)𝑌𝑌𝑡𝑡+1 ∕ 𝐴𝐴𝑡𝑡+1 + 𝑒𝑒𝑡𝑡+1   (6)  

and 

𝐷𝐷𝑡𝑡+1 = 𝑇𝑇𝑇𝑇𝑡𝑡+1∗ 𝑌𝑌𝑡𝑡+1,     (7) 

where 𝐸𝐸𝑡𝑡 is the earnings before extraordinary items + interest, 𝑑𝑑𝐴𝐴𝑡𝑡 is 𝐴𝐴𝑡𝑡 − 𝐴𝐴𝑡𝑡−1, and 𝑌𝑌𝑡𝑡 is the 

common stock earning at time t. We simplify the notation in Equations (6) and (7) and omit the 

firm subscript that should appear with the variables and residuals and the year subscripts of the 

coefficients. The simultaneous Equations (5) and (6) are also estimated using the Fama and 

MacBeth (1973) method. We use the time series standard error of average slopes to calculate t-

statistics using the Newey and West (1987) adjustment for standard errors and draw inferences.  
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Fama and French (2002) Industry-Clustered Target Leverage Estimation 

Fama and French (2002) estimate Equation (5) for non-dividend-paying firms and 

Equations (5) and (6) simultaneously for dividend-paying firms to find the target (optimal) 

leverage. Thus, they use estimated coefficients from Equations (5) and (6) to calculate the fitted 

values for each firm’s OL. They use the market-wide data to estimate the cross-sectional 

coefficients and for the fitted values calculation.  

We cluster the Fama and French (2002) equations by industry. Thus, at each time 𝑡𝑡, we 

estimate Equations (5) and (6) in each industry. Hence, the fitted values are calculated using the 

industry-specific estimated coefficients of Equations (5) and (6). We call the fitted values from 

this estimation the FF-Ind target leverage (i.e., OL) and use is it as our improved proxy for the 

OL. 

Partial Adjustment Model  

Our study includes a partial adjustment model to capture the movement of leverage toward 

its optimal target (Fama and French, 2002). Based on Fama and French’s PAM, the change in the 

book leverage partially absorbs the difference between the target leverage (optimal), 𝑇𝑇𝐿𝐿𝑡𝑡+1, and 

the lagged leverage, 𝐿𝐿𝑡𝑡 ∕ 𝐴𝐴𝑡𝑡: 

𝐿𝐿𝑡𝑡+1 𝐴𝐴𝑡𝑡+1⁄ − 𝐿𝐿𝑡𝑡 𝐴𝐴𝑡𝑡⁄ = 𝑎𝑎0 + 𝑎𝑎1[𝑇𝑇𝐿𝐿𝑡𝑡+1 − 𝐿𝐿𝑡𝑡 𝐴𝐴𝑡𝑡⁄ ] + 𝑎𝑎2𝑍𝑍 + 𝑒𝑒𝑡𝑡+1,   (8) 

where Z represents a vector of current and past investment and earnings. Z variables are included 

in the model to test whether these variables produce any temporary movement in leverage away 

from its target (Fama and French, 2002). For simplicity in the notation, we drop the 𝑖𝑖 subscript for 
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all the variables. 

We use the PAM to compare and test the performance of the Fama and French (2002) point 

estimate of target (optimal) leverage, 20-year average of the Kraus and Litzenberger (1973) proxy, 

and our proxy of the industry average. 𝑎𝑎1 in Equation (8) is the speed of adjustment per year and, 

theoretically, is constrained to be between zero and one. The statistical significance of 𝑎𝑎1  indicates 

the significance of leverage adjustment toward its target (optimal), and its economic magnitude 

shows the speed of adjustment per year. 

IV. Data and Sample Construction 

We use the following sources of data to conduct the analysis. Our data include all 

nonfinancial and non-utility firms in NYSE, AMEX, and NASDAQ. The Center for Research in 

Security Prices (CRSP) provides monthly returns and market capitalizations. To calculate our 

measures of deviation from OL, we use the accounting data from Compustat.  

Due to the availability of industry classifications (SICH), the analysis is conducted using 

the data from 1982 to 2019. We include stocks with a share price of $5 or more. As part of the data 

cleaning process, we exclude observations if the excess return, date, gvkey, or our calculated 

variables of interest are missing. We also exclude utilities [Standard Industrial Classification (SIC) 

codes 4900–4949], financials (SIC codes 6000–6999), firms with zero or missing total debt, and 

firms with zero or missing total assets. The exclusion of financial firms is critical here because 
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these firms are known to be highly levered. Thus, the interpretation of the leverage ratio for a 

financial firm could be different from that of a nonfinancial firm. 

We retrieve the Fama and French historical factors, as well as their industrial 

classifications, from Kenneth French’s website1. We merge Compustat data for all fiscal year-ends 

in calendar year 𝑡𝑡 − 1 with CRSP data for January to December of year 𝑡𝑡. This conservative gap 

is to ensure the reflection of accounting variables information on the returns. In the final step, we 

merge the Fama and French data with the merged Compustat-CRSP data set. 

V. Results 

Table 1 shows the summary statistics of the measures, factors, and returns that we use for 

this study. Under the deviation category, we report the summary statistics of deviation from three 

OL measures that we use in this study. Because the calculation of industry median (Ind-Median) 

and the moving average (MA) measures rely only on leverage variables and, for most public firms, 

total assets and book equity variables are available on Compustat, the number of observations for 

Ind-Median and MA is significantly higher than other measures. The Fama and French (2002) 

target leverage estimation relies on other variables that are missing for some firms in Compustat. 

 
1 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Thus, we have a much smaller number of observations for Fama and French (FF) and Fama and 

French industry-clustered (FF-Ind) variables in Table 1. 

>>>Insert Table 1 near here<< 

The standard deviation for Ind-Median optimal leverage and deviation measures are also 

smaller compared with other measures. We attribute this to the smaller differences between the 

leverages intra-industry. Also, looking at their distributions, we see that other measures are clearly 

skewed to the right. However, our suggested measure shows an asymmetric distribution both for 

the OL and deviation from the OL. 

Table 2 presents the Pearson correlations between deviation measures, OL measures, and 

other factors used in this study. 𝑑𝑑𝐸𝐸𝑡𝑡+1 ∕ 𝐴𝐴𝑡𝑡+1, 𝑑𝑑𝐴𝐴𝑡𝑡+1 ∕ 𝐴𝐴𝑡𝑡+1, 𝑑𝑑𝐸𝐸𝑡𝑡 𝐴𝐴𝑡𝑡+1⁄ , and 𝑑𝑑𝐴𝐴 ∕ 𝐴𝐴𝑡𝑡+1 proxy for 

short-term variations in earnings and investment (Fama and French, 2002). The last row of Table 

2 shows the correlation of the deviation of leverage from our suggested OL with those variables 

as well as other explanatory variables. Most important, we can see, compared with other measures 

of deviation, that our suggested proxy for deviation from OL has the highest significant statistical 

and economic correlation with short-term changes in the earnings and investment compared with 

other proxies.   

>>>Insert Table 2 near here<<< 

Table 3 presents the result of the portfolio sorting. At the end of each year 𝑡𝑡 − 1, stocks 

are sorted into ten portfolios based on their deviation from the OL using MA, FF, Ind-FF, and Ind-

Median as proxies for OL. The first portfolio contains stocks with the most negative deviation 

from OL, and the tenth portfolio has stocks with the most positive deviation from OL. Columns 1 
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and 2 use 20-year moving averages and Fama and French (2002) as the OL, respectively. Columns 

3 and 4 use Fama and French industry-clustered and industry median as the OL, respectively. The 

reported numbers in the table are the average monthly excess return in year 𝑡𝑡. The winner in 

capturing a pattern in the difference in the excess returns in the following year is column 4, which 

uses our suggested proxy for OL.  

>>>Insert Table 3 near here<<< 

As the last column of Table 3 presents, the first portfolio has the lowest and the tenth 

portfolio has the highest excess return in the current year. The pattern almost holds for the rest of 

the portfolios. A possible explanation for the departure from the pattern is the effect of other factors 

on the excess return in the middle portfolios (i.e., the stocks are not randomly assigned to each 

portfolio based on their other characteristics). Finally, the last row of Table 3 shows the excess 

return on going long in the tenth portfolio and short in the first portfolio. Again, the last column 

has the highest economic and statistically significant excess return.  

Table 4 presents the results of estimating Equation (4), which tests the impact of deviation 

from OL in the context of the characteristics model. Controlling for market excess return, BE/ME 

(book equity over market equity), and size [ln(market value)], we examine the impact of 

deviation from OL using different proxies for OL. As column (4) of Table 4 shows, the coefficient 

of ∆𝐿𝐿𝐿𝐿 is economically and statistically more significant compared with that of other models. This 

implies that deviation from OL using our suggested proxy has higher explanatory power compared 

with its alternatives. The signs of estimated coefficients for size, BE/ME, and market excess return 
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are essentially unchanged across different specification, and this result indicates that our 

alternative measures of OL are not simply changing the loading on existing factors. 

>>>Insert Table 4 near here<<< 

After sorting portfolios based on their deviation from OL, we find that sorted portfolios 

at 𝑡𝑡 − 1 show significant differences in excess return at the current year, 𝑡𝑡. We attribute this to the 

different risk loading on stocks based on their deviation from OL. To examine our conjecture, we 

use the risk model (Model B) and regress the portfolio returns summarized in Table 3 on the Fama-

French risk factors. Table 5 presents the intercepts (i.e., alphas) of these regressions for each 

portfolio.  

>>>Insert Table 5 near here<<< 

As the last column of Table 5 shows, the risk-adjusted excess return of sorted portfolios, 

alpha, follows almost the same pattern as the excess returns have in the last column of Table 3. 

This means that common risk factors do not explain the excess return in portfolios, and the source 

of risk-adjusted excess return can be attributed to an otherwise undocumented risk factor, which 

in this model is the deviation from OL. Fama-French and Fama-French industry-clustered proxies 

capture the excess return in the tail portfolios (first and tenth). Moreover, the last row of Table 5 

(long-short) presents the risk-adjusted excess return from going long on the tenth portfolio and 

short on the first portfolio. The FF, FF-Ind, and Ind-Median measures consistently show a positive 

and significant risk-adjusted excess return in the long-short portfolio.  

In our final test, we examine whether firms lessen their gap with OL consistent with the 

trade-off theory and with what speed they lessen their gap with OL every year. We use the PAM 
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that Fama and French (2002) develop for the adjustment of leverage to test our improved proxy 

for OL. Table 6 presents the results of the estimation of Equation (8). In this table, 𝑇𝑇𝐿𝐿𝑡𝑡+1 is the 

variable of interest. Theoretically, the estimated coefficient of  𝑇𝑇𝐿𝐿𝑡𝑡+1 implies the speed of 

adjustment and must be between zero and one. The sign of the estimated coefficient also must be 

positive to be consistent with the direction of the adjustment. Estimated coefficients for 𝑇𝑇𝐿𝐿𝑡𝑡+1 

using the moving average, Fama and French, Fama and French industry-clustered, and industry 

median as proxies of OL are 0.92, 0.06, 0.37, and 0.35, respectively. The MA method yields the 

largest coefficient estimate, but it is statistically insignificant, and the MA model returns the lowest 

R2 of any measure. The FF-Ind measure gives the highest coefficient estimate of 0.37. However, 

the Ind-Median measure appears superior by several criteria. First, the Ind-Median is the only 

measure that makes the model intercept insignificant. Second, the Ind-Median gives a substantially 

improved R2  measure relative to the other three measures. Last, the Ind-Median coefficient 

estimate is close to that of the FF-Ind measure and suggests that every year firms close 35% of 

their gap with their target leverage (OL). 

>>>Insert Table 6 near here<<< 

Consistent with the pecking order theory, we find that, all else equal, an increase in earnings 

decreases debt and hence the leverage. 𝑑𝑑𝐸𝐸𝑡𝑡+1 ∕ 𝐴𝐴𝑡𝑡+1 in Table 6 proxies for the change in the 

current year’s earnings. The estimated coefficient for this variable is consistently negative and 

significant over all models, which implies an increase in earnings decreases debt. Hence, 
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regardless of the lower cost of debt, firms use excess earnings to lower their debt level and finance 

their investments. 

VI. Conclusion 

This research is at the intersection of capital structure and asset pricing. We contribute to 

the literature in three preliminary manners. First, motivated by prior studies, we introduce two 

improved measures for optimal leverage: clustered Fama and French (2002) estimation model by 

industries and the industry median.  Second, we show that deviations from OL change the risk 

loading on returns in a directional manner. Third, we show that using our improved measures as 

proxies for the OL, firms tend to reduce their gap with their target leverage (optimal capital 

structure) with higher speed and more significance compared with that studied in prior research. 

We argue that because the leverage is related to investment opportunity (Fama and French, 

2002), the business environment (Frank and Goyal, 2009), and probably other unknown factors, it 

should be studied in the industry context. We suggest using the industry median as a proxy for the 

OL for several reasons. First, the average (median) itself as a statistical measure has much 

information about the population of firms. Second, extreme forces from each end cancel out each 

other in the average (median) point. Third, in terms of riskiness, firms around the average should 

have just the average risk loading. Last, Frank and Goyal (2009) find that the industry median is a 

reliable factor in explaining the leverage.  

We study the relationship between the current deviation from the OL and future excess 

return. We sort stocks in year 𝑡𝑡 − 1 based on their difference with OL in decile portfolios. Then, 

we calculate the average value-weighted excess return in each portfolio in year 𝑡𝑡. We find that 
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portfolios sorted based on their deviation of underlying firms from OL at year 𝑡𝑡 − 1 have 

significant differences in their realized excess return in year 𝑡𝑡. In particular, the portfolio of stocks 

in the extreme end of negative deviation from OL (first portfolio) has the lowest excess return and 

the portfolio on the extreme opposite side (tenth portfolio) has the highest excess return.  

We conjecture that the differences between the excess return in sorted portfolios can be 

attributed to the differences between the risk loading on the stocks in each portfolio. In other words, 

forming portfolios based on the deviation from OL sorts stocks based on their risk loading as well. 

We estimate the Fama-French risk factor model and document the risk-adjusted excess return, 

alpha, in each portfolio. We find the same pattern in the portfolio’s alphas as we find in the excess 

return. Hence, we conclude that the differences in portfolio returns are attributed to another source 

of risk, which we identify as the deviation from the OL. 

Finally, we use the general partial adjustment model to test the two theories. First, 

consistent with the trade-off theory, we examine whether firms seek a target leverage ratio and 

each year lessen their gap with that target. Second, consistent with the pecking order theory, we 

test if changes in earnings affect the debt holdings of firms. We find that, consistent with the trade-

off theory, firms lessen 35% of their leverage gap with the OL every year using the industry median 

as a proxy for the optimal leverage. We estimate  Fama and French (2002) model for OL clustered 

by industry and use it as an improved measure that proxies for OL and find that firms lessen 37% 

of their gap with OL every year. Also, we find that the current year’s increase in earnings 

significantly decreases firms’ debt holding.  
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Table 1: Data Description for Publicly Traded, Nonfinancial US Companies, 1982-2019 

This table shows the summary statistics for the sample used in this study. Deviation variables are calculated 
using ∆𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 = 𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 − 𝐿𝐿𝐿𝐿𝚤𝚤,𝑡𝑡� , and different proxies for 𝐿𝐿𝐿𝐿𝚤𝚤,𝑡𝑡�: moving average (MA), Fama and French (FF) point 
estimate, Fama-French clustered on industry (FF-Ind), and the industry median (Ind-Median). Factors are the 𝑍𝑍 
vector of Equation (8), risk factors are the Fama and French three-factor model components, and 𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅 is the 
monthly return in excess of the risk-free rate. 

Variable N Mean SD Distribution 

        10th 50th 90th 
Deviation        

MA 111,188 -0.026 0.602 -0.160 -0.010 0.136 
FF 68,183 -0.005 2.445 -0.391 -0.017 0.434 

FF-Ind 67,982 0.037 3.333 -2.175 -0.108 1.620 
Ind-Median 112,544 0.001 0.196 -0.244 0.000 0.256 

Proxies       
MA 74,873 0.504 0.627 0.207 0.457 0.785 
FF 74,869 0.848 7.857 -0.406 0.538 2.395 

FF-Ind 111,188 0.237 0.608 0.023 0.189 0.461 
Ind-Median 115,104 0.523 0.175 0.298 0.515 0.758 

Factors        
BEME 116,904 0.661 5.934 0.148 0.525 1.241 

Size 116,904 5.999 1.969 3.529 5.891 8.606 
𝑑𝑑𝐸𝐸𝑡𝑡+1 ∕ 𝐴𝐴𝑡𝑡+1 82,659 0.005 0.276 -0.109 0.009 0.101 
𝑑𝑑𝐴𝐴𝑡𝑡+1 ∕ 𝐴𝐴𝑡𝑡+1 82,707 0.053 0.973 -0.137 0.067 0.343 
𝑑𝑑𝐸𝐸𝑡𝑡 ∕ 𝐴𝐴𝑡𝑡+1 73,513 0.001 0.336 -0.096 0.009 0.085 
𝑑𝑑𝐴𝐴 ∕ 𝐴𝐴𝑡𝑡+1 73,561 0.054 0.604 -0.121 0.061 0.281 

Risk Factors        
RF 508 0.003 0.002 0.000 0.003 0.006 

MKTRF 508 0.007 0.043 -0.047 0.012 0.060 
SMB 508 0.000 0.031 -0.034 0.000 0.034 
HML 508 0.003 0.029 -0.029 0.000 0.038 

Monthly excess 
Return 

      

XRET 1,200,898 0.017 0.156 -0.127 0.007 0.162 
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Table 2: Pearson Correlation Coefficients Matrix 

This table shows the significance and magnitude of the correlation between deviation from optimal capital structure using moving average (MA), Fama and French (FF) 
point estimate, Fama-French clustered on industry (FF-Ind), and the industry median (Ind-Median). The numbers in the table are the Pearson correlation coefficients, 
and the asterisks show the significance of the correlation.  

  BEME Size 𝑑𝑑𝐸𝐸𝑡𝑡+1 ∕ 𝐴𝐴𝑡𝑡+1 𝑑𝑑𝐴𝐴𝑡𝑡+1 ∕ 𝐴𝐴𝑡𝑡+1 𝑑𝑑𝐸𝐸𝑡𝑡 ∕ 𝐴𝐴𝑡𝑡+1 𝑑𝑑𝐴𝐴 ∕ 𝐴𝐴𝑡𝑡+1 FF FF-Ind MA Ind-Median 

∆𝐿𝐿𝐿𝐿 (MA) -0.004*** 0.011*** 0.022*** 0.031*** -0.009** -0.075*** 0.020*** 0.002*** 0.017*** 0.014*** 

∆𝐿𝐿𝐿𝐿 (FF) 0.000 0.009** 0.003 0.002 0.001 0.002 0.004 0.018*** 0.000 0.012*** 

∆𝐿𝐿𝐿𝐿 (FF-Ind) 0.002 0.036*** 0.034*** 0.005 0.010*** -0.006* 0.024*** -0.005 -0.936*** 0.045*** 

∆𝐿𝐿𝐿𝐿 (Ind-Median) 0.008*** 0.128*** 0.055*** -0.017*** 0.000 -0.023*** 0.083*** 0.011*** 0.103*** -0.125*** 

* significance level of 10% 
** significance level of 10% 
*** significance level of 1% 

 

 



 

32 
 

 

Table 3: Sorted portfolios of mean return on ∆𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡  

This table shows the value-weighted average excess monthly return in the portfolios sorted ascending on the 
deviation from optimal leverage (∆𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 = 𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 − 𝐿𝐿𝐿𝐿𝚤𝚤,𝑡𝑡�). Optimal leverage is measured by: moving average 
(MA), Fama and French (FF) point estimate, Fama-French clustered on industry (FF-Ind), and the industry 
median (Ind-Median). The numbers between parentheses are the t-statistics of the hypothesis that its above 
number is equal to zero. 

Ranking on ∆𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 MA FF FF-Ind Ind-Median 
1 0.0209 0.0165 0.0183 0.0156 

 (35.73) (27.97) (29.62) (31.87) 
2 0.0181 0.0150 0.0153 0.0168 

 (35.09) (27.00) (26.71) (34.25) 
3 0.0175 0.0153 0.0148 0.0173 

 (34.80) (26.74) (27.4) (35.22) 
4 0.0175 0.0155 0.0162 0.0186 

 (34.34) (28.8) (29.59) (34.1) 
5 0.0180 0.0174 0.0170 0.0203 

 (34.90) (31.30) (30.61) (35.58) 
6 0.0190 0.0185 0.0189 0.0167 

 (34.35) (34.24) (34.07) (34.37) 
7 0.0173 0.0170 0.0173 0.0168 

 (33.97) (31.85) (32.82) (34.54) 
8 0.0166 0.0174 0.0163 0.0162 

 (35.39) (34.98) (33.28) (34.29) 
9 0.0170 0.0173 0.0167 0.0194 

 (33.09) (34.9) (33.47) (36.1) 
10 0.0186 0.0212 0.0202 0.0225 

 (34.42) (36.48) (36.73) (39.95) 
High-Low -0.0022* 0.0047** 0.0019*** 0.0069*** 

 (-1.74) (2.18) (3.05) (3.40) 
*significance level of 10% 
** significance level of 10% 
*** significance level of 1% 
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Table 4: Characteristics models  

This table presents estimated results of the characteristics model (Model A) of Equation (4), where 
monthly excess returns are the dependent variable. ∆𝐿𝐿𝐿𝐿 variables are the deviation from optimal 
capital structure using moving average (MA), Fama and French (FF) point estimate, Fama-French 
clustered on industry (FF-Ind), and the industry median (Ind-Median) as proxies for the optimal 
capital structure, 𝐿𝐿𝐿𝐿𝚤𝚤,𝑡𝑡�. Numbers in the table are reported as basis points and numbers between 
parentheses are t-statistics.  
Variables 1 2 3 4 
Intercept 0.035*** 0.035*** 0.035*** 0.037***  

(51.800) (52.250) (52.190) (54.510) 
MKTRF 1.122*** 1.122*** 1.122*** 1.122***  

(282.930) (282.930) (282.930) (282.920) 
BEME 0.005*** 0.005*** 0.005*** 0.004***  

(13.200) (13.080) (13.130) (12.750) 
SIZE -0.005*** -0.005*** -0.005*** -0.005***  

(-50.520) (-50.820) (-50.780) (-53.340) 
∆𝐿𝐿𝐿𝐿 (MA) -0.001**  

 
 

 (-1.940)    
∆𝐿𝐿𝐿𝐿 (FF)  0.0002***   
  (2.920)   
∆𝐿𝐿𝐿𝐿 (FF-Ind)   0.000  
   (0.100)  
∆𝐿𝐿𝐿𝐿 (Ind-Median)    0.017*** 

    (19.450) 
Observations 725,099 725,099 725,099 725,099 
Adj R2 0.104 0.104 0.104 0.104 

* significance level of 10% 
** significance level of 10% 
*** significance level of 1% 
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Table 5: Sorted portfolios of risk-adjusted excess return on ∆𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡  

This table shows the alpha of Fama and French three-factor model in each portfolio. Portfolios are sorted 
ascending on deviation from optimal leverage based on (∆𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 = 𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 − 𝐿𝐿𝐿𝐿𝚤𝚤,𝑡𝑡�). variables are the deviation 
from optimal capital structure using moving average (MA), Fama and French (FF) point estimate, Fama-French 
clustered on industry (FF-Ind), and the industry median (Ind-Median) as proxies for the optimal capital 
structure. Numbers in the table are reported as annualized percentage and numbers between parentheses are t-
statistics.   

Ranking on ∆𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 MA FF FF-Ind Ind-Median 
1.000 0.025 -0.245 -0.203 -0.713 

 (30.5) (-8.5) (-3.3) (-16.4) 
2.000 -0.015 -0.198 -0.147 -0.591 

 (-20.8) (-18.8) (-16.0) (-14.2) 
3.000 0.028 0.242 -0.004 -0.687 

 (40.4) (25.0) (-20.4) (-16.3) 
4.000 -0.031 -0.213 -0.297 -0.764 

 (-36.4) (-19.5) (-31.6) (-14.0) 
5.000 0.038 -0.082 0.184 0.792 

 (33.8) (-29.1) (25.7) (13.4) 
6.000 0.033 0.287 0.186 -0.087 

 (27.0) (33.7) (22.5) (-3.3) 
7.000 -0.024 0.251 -0.158 0.689 

 (-25.2) (31.6) (-24.9) (18.5) 
8.000 0.009 0.210 0.177 0.790 

 (10.2) (26.8) (24.8) (20.2) 
9.000 -0.017 0.145 0.169 0.825 

 (-25.4) (20.0) (27.6) (21.3) 
10.000 0.023 0.452 0.254 0.932 

 (23.6) (57.3) (33.0) (17.8) 
Long-short -0.002*** 0.697*** 0.457*** 1.645*** 

 (-3.2) (5.2) (4.1) (4.6) 
* significance level of 10% 
** significance level of 10% 
*** significance level of 1% 
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Table 6: Partial Adjustment Model 

This table shows the results of Partial Adjustment Model by estimating Equation (8), 
 𝐿𝐿𝑡𝑡+1 𝐴𝐴𝑡𝑡+1⁄ − 𝐿𝐿𝑡𝑡 𝐴𝐴𝑡𝑡⁄ = 𝑎𝑎0 + 𝑎𝑎1[𝑇𝑇𝐿𝐿𝑡𝑡+1 − 𝐿𝐿𝑡𝑡 𝐴𝐴𝑡𝑡⁄ ] + 𝑎𝑎2𝑍𝑍 + 𝑒𝑒𝑡𝑡+1.  
First column use 20-years moving average (MA), second column use Fama and French (2002) point estimate 
(FF), third column use Fama and French (2002) point estimate clustered on industry and forth column use the 
improved measure (industry median) as a proxy for optimal leverage,  𝐿𝐿𝐿𝐿𝚤𝚤,𝑡𝑡�. 
Numbers between parentheses are the t-statistics.  

 MA FF FF-Ind Ind-Median 
Intercept 0.86*** 0.23*** 0.76*** 0.09 

 (3.28) (15.84) (3.38) (0.21) 
𝑇𝑇𝐿𝐿𝑡𝑡+1 0.92 0.06** 0.37*** 0.35*** 

 (1.38) (3.94) (13.32) (17.42) 
𝐿𝐿𝑡𝑡 -1.00*** -0.45*** -1.00*** -0.47*** 

 (-18.81) (-10.37) (-9.10) (-17.98) 
𝑑𝑑𝐸𝐸𝑡𝑡+1 ∕ 𝐴𝐴𝑡𝑡+1 -2.61*** -0.11*** -2.77*** -0.14*** 

 (-3.06) (-3.05) (-3.09) (-4.85) 
𝑑𝑑𝐴𝐴𝑡𝑡+1 ∕ 𝐴𝐴𝑡𝑡+1 0.23 -0.26*** 0.25 -0.26*** 

 (1.02) (-3.89) (1.08) (-3.58) 
𝑑𝑑𝐸𝐸𝑡𝑡 ∕ 𝐴𝐴𝑡𝑡+1 -0.99 -1.43 -0.96 0.02 

 (-1.45) (0.15) (-1.37) (1.47) 
𝑑𝑑𝐴𝐴 ∕ 𝐴𝐴𝑡𝑡+1 -0.13 -0.42 -0.12 0.03 

 (-0.33) (0.67) (-0.28) (1.30) 
Observations 73240 68188 68115 71746 
Adj-R2 0.21 0.52 0.55 0.72 

* significance level of 10% 
** significance level of 10% 
*** significance level of 1% 
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CHAPTER 2  

An Optimal Capital Structure Risk Factor 

Evidence from industry-specific benchmarks 

 

Abstract 

This essay investigates the impact of deviation from the optimal capital structure on ex post excess 

stock returns. Using the Fama and French (1993–2015) methodology of mimicking portfolios, we 

model deviations from optimal capital structure as a new risk factor. We find that this factor is 

significantly associated with the cross section of stock returns and that a risk-mimicking portfolio 

can explain the risk loading on the cross-sectional excess return that is not explained by Fama and 

French risk factors. Using Monte Carlo simulations with bootstrapped mean variance–spanning 

tests, we show that existing Fama and French factors do not explain (i.e., span) the risk factor we 

introduce. Moreover, we use the Text-based Network Industry Classifications (TNIC) developed 

by Hoberg and Phillips (2010, 2016) that classifies firms into different industries based on the text 

analysis of firms’ 10-K report to show that our results are robust to the method used for industry 

classification. 

 

Keywords: capital structure; stock returns; risk factors; factor models; leverage. 

JEL codes: G12, G14, G32.  
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I. Introduction 

In essay I, we showed that industry median leverage provides a good estimate of a firm’s 

optimal leverage (OL). Here, in essay II, we focus on the arbitrage portfolio created by the 

deviation from the OL. Following the methodology used by Fama and French (1993–2015) to 

mimic the size and book equity over market equity (BE/ME) risk premiums [i.e., SMB (small 

minus big), HML (high minus low)], we create an arbitrage portfolio where the short leg is the low 

debt-to-equity ratio and the long leg is the high debt-to-equity ratio. We call this new risk-

mimicking portfolio HDL (high debt minus low debt). Because the industry classification 

determines the composition of firms’ capital structure (Bradley et al., 1984; Titman and Wessels, 

1988), for each firm, we need to build the mimicking portfolio based on its corresponding industry. 

Consistent with our findings in essay I, we expect to find a positive loading of the leverage risk 

factor on the return in this factor model setting.  

The proxy we use for the OL is the industry median because, in essay I, we find that it 

performs well on several metrics compared with alternative measures of OL. To ensure robust 

industry classifications, we use both the Fama and French 48 (FF48) industry classification and 

the novel Text-based Network Industry Classifications (TNIC) method.  TNICs are estimated 

using firm pairwise similarity scores from text analysis of firms’ Form 10-K product descriptions. 

The TNIC is the product of Hoberg and Phillip (2010, 2016), and the TNIC data are retrieved from 

their website.2  

 
2 https://hobergphillips.tuck.dartmouth.edu/ 

https://hobergphillips.tuck.dartmouth.edu/
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The TNIC methodology is like Facebook network friends. Here, competitors of a particular 

firm are defined in a way that each firm has its own distinct set of competitors. TNICs are updated 

annually based on the 10-K report and are more informative than other conventional classifications 

such as Standard Industrial Classification (SIC), North American Industry Classification System 

(NAICS), and FF48. Hoberg and Phillips (2010, 2016) show that TNIC sharply improves upon 

SIC and NAICS codes in explaining many different firm-specific decisions, including firm 

profitability, Tobin’s Q, and dividends. Hence, we favor TNIC over other classifications, use it as 

the primary source of industry classification, and use the Fama-French 48 industry classification 

for the robustness check. 

The main concern in our study of risk loading is the possibility that the mimicking 

(arbitrage) portfolio that we introduce is explained (spanned) by the combination of other Fama 

and French risk portfolios. To test this, we use the Huberman and Kandel (1987) mean variance–

spanning test. Huberman and Kandel (1987) test whether the frontier of portfolios made by 

particular sorts spanned another portfolio; that is, if the frontier made by the new factor that we 

produced is spanned by the other risk factors in the literature (i.e., the Fama-French factors) and 

the risk factor we introduce is nothing distinct but a combination of other risk factors from prior 

researches. The mean variance–spanning test is a stricter method of testing whether the known risk 

factors explain the new factor. 

Because the distribution of the arbitrage return made by the new factor (or in general any 

other arbitrage portfolios) does not necessarily follow a χ2 distribution, we use the Monte Carlo 

procedure to find bootstrapped critical values for testing the null hypothesis. The null hypothesis 

here is that other the HDL factor is spanned by existing Fama-French factors. Using conventional 
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critical values can be misleading and are biased toward rejecting the null hypothesis. Using the 

Monte Carlo procedure, we generate bootstrapped critical values that make the rejection of the null 

hypothesis more difficult and decrease the probability of a type I error. 

Following the Fama and French (1993–2015) methodology, we expect to see the sign of 

loading on the risk factors consistent with the direction of their loading. For example, we expect 

to see a positive estimated coefficient for SMB when we use market-wide data. Similarly, we 

expect to observe a positive coefficient estimate on the HDL risk factor. We find that, consistent 

with our initial expectations on the direction of risk loading, there is a positive loading on the HDL 

factor. For robustness, we split our sample data into two time periods: before the 2008 recession 

and after the 2008 recession. The positive loading that we estimate is statistically and economically 

significant loading over both periods. 

II. Literature Review  

The capital asset pricing model (CAPM) of Sharpe (1964), Mossin (1966), Black (1972), 

and Lintner (1975) identifies the market return or excess return as the first “factor” that is 

potentially important in explaining variation in the cross section of stock returns. Early tests of the 

single-factor model were inconclusive (Roll, 1969; Jacob, 1971; Fama and MacBeth, 1973; Lee 

and Jen, 1978). Researchers then began to expand the CAPM, motivated by Ross’s arbitrage 

pricing theory (Ross, 1973, 1976) and the existence of anomalies in the cross section of stock 

returns (Basu, 1977, 1983; Banz, 1981; Keim, 1983; Schwert, 1983; Reinganum, 1981, 1983). The 

Fama and French (1993) three-factor model was introduced to incorporate the relationships 

between the stock excess returns and the strongest factor candidates at the time: market returns, 

firm size, and the value factor.  
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Following the Fama and French (1992, 1993) models, there was an explosion of factors 

that add marginal power to explain the cross section of stock returns. Major examples include 

momentum (Jegadeesh and Titman, 1993; Carhart, 1997), profitability (Fama and French, 2006), 

investment (Titman, Wei, and Xie, 2004), and dividends (Black and Scholes, 1974; Campbell and 

Shiller, 1988). Motivated by the later evidence of Novy-Marx (2013), Titman et al. (2004), and 

others about the explanatory power of profitability and investment in explaining the cross-sectional 

variations in return, Fama and French (2015) introduce their five-factor model. Fama and French 

(2015) adds profitability (RMW, robust minus weak) and investment (CMA, conservative minus 

aggressive) factors to their three-factor model.  

In addition to the RMW and CMA factors, Fama and French (2015) introduce useful 

methods for evaluating the importance of new factors. In their models, RMW is the difference 

between the returns on diversified portfolios of stocks with robust and weak profitability (Fama 

and French, 2015). CMA is the difference between the returns on diversified portfolios of the 

stocks of low and high investment firms that they call conservative and aggressive, respectively. 

Fama and French suggest that if new factors, such as RMW and CMA, have explanatory power 

for variation in the cross section of returns, then the model intercept (alpha) should become smaller 

and less significant. They further suggest that, in the best scenario, if the estimated intercept is not 

significantly different from zero, then the mean variance–efficient tangency portfolio, which prices 

all assets, combines the risk-free asset, the market portfolio, SMB, HML, RMW, and CMA. We 

adopt this approach and evaluate the impact of an OL factor on our models’ intercepts. 

Along with Fama and French (2015), numerous additional papers provide alternative 

methods to evaluate potential new factors in the cross section of stock returns. Prominent examples 
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include Ferson and Harvey (1999), Harvey, Liu, and Zhu (2016), Yan and Zheng (2017), 

Stambaugh and Yuan (2017), Barillas and Shanken (2018), Fama and French (2018), Feng, Giglio, 

and Xie (2020), Kozak, Nagel, and Santosh (2020), and Hou, Xue, and Zhang (2015, 2020).  

Among the wide variety of potential tests for new factor models, our approach combines a 

focus on the magnitude of the model intercept and the extent to which a new factor is spanned by 

existing factors. The focus on alpha follows most closely from studies by Fama and French (2015, 

2018), Barillas and Shanken (2017), and Barillas, Kan, Robotti, and Shanken (2020). Our 

incorporation of a mean variance–spanning approach derives from the work of Huberman and 

Kandel (1987), as modified by Jobson and Korkie (1989), Kandel and Stambaugh (1989), Lettau 

and Pelger (2020a, 2020b), Kozak, Nagel, and Santosh (2020), Kim, Korajczyk, and Neuhierl 

(2021), and Giglio and Xiu (2021). The mean variance–spanning approach is also used outside the 

context of factor pricing models to evaluate market integration (Bekaert and Urias, 1996; Chiang, 

Wisen, and Zhou, 2007), security design (Rakowski and Shirley, 2020), and fund management (Li 

and Qui, 2014). DeRoon and Nijman (2001) provide a useful comparison of the applications of 

mean variance–spanning tests. 

III. Data and Sample 

We use the following sources of data to conduct the analysis. Our data include all 

nonfinancial and non-utility firms in NYSE, AMEX, and NASDAQ. As in essay I, the Center for 

Research in Security Prices (CRSP) provides monthly returns and market capitalizations. To 

calculate our measures of deviation from OL, we use the accounting data from Compustat.  
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We include stocks with a share price of $5 or more. As part of the data cleaning process, 

we exclude observations if the excess return, date, gvkey, or our calculated variables of interest 

are missing. We also exclude utilities (SIC codes 4900–4949), financials (SIC codes 6000–6999), 

firms with zero or missing total debt, and firms with zero or missing total assets. The exclusion of 

financial firms is important because these firms are known to be highly levered. Thus, the 

interpretation of the leverage ratio for a financial firm could be different from that of a nonfinancial 

firm. 

Due to the availability of industry classifications (SICH), the analysis is conducted using 

the data of from 1982 to 2019. We supplement SICH codes with TNIC data from Hoberg and 

Phillips (2010, 2016). TNIC data are retrieved from Hoberg and Phillips’s website. Hoberg and 

Phillips’s data are based on web crawling and text parsing algorithms that process the text in the 

business descriptions of 10-K annual filings on the Securities and Exchange Commission (SEC) 

Electronic Data Gathering, Analysis, and Retrieval (EDGAR) website from 1996 to the present. 

The TNIC classification is based on a clustering algorithm that groups firms together to maximize 

within-industry similarity while achieving a goal of N industries.  

We retrieve the Fama and French historical factors, as well as their industrial 

classifications, from Kenneth French’s website3. We merge Compustat data for all fiscal year-ends 

in calendar year 𝑡𝑡 − 1 with CRSP data for January to December of year 𝑡𝑡. This conservative gap 

 
3 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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is to ensure the reflection of accounting variables information on the returns. In the final step, we 

merge the Fama and French data with the merged Compustat-CRSP data set. 

We construct the new risk factor, HDL, following Fama and French (1993). The mimicking 

portfolio is made by subtracting the average return of the portfolio of the highest 30% leverage 

from the lowest 30% leverage in the associated industry. The industries are defined based on the 

Text-based Network Industry Classifications of Hoberg and Phillips (2010, 2016). According to 

this classification, a firm classification might change from year to year due to the fact that results 

of text analysis generate a different industry classification for a particular firm. 

IV. Measurements, Models, Methods, and Hypotheses Development  

Following Fama and French (1993), we test if the variation in the cross section of the 

average return over time (panel data) is explained by introducing our new factor. To do so, we 

calculate the arbitrage-mimicking portfolio using the deviation from OL. The deviation from the 

OL is calculated based on Equation (1): 

∆𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 = 𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 − 𝐿𝐿𝐿𝐿𝚤𝚤,𝑡𝑡� ,      (1) 

where ∆𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 proxies for the deviation from optimal capital leverage and 𝐿𝐿𝐿𝐿𝚤𝚤,𝑡𝑡�  is the OL of firm 𝑖𝑖 

at time 𝑡𝑡. We use the industry leverage median as a proxy for 𝐿𝐿𝐿𝐿𝚤𝚤,𝑡𝑡� . 𝐿𝐿𝐿𝐿𝑡𝑡,𝑖𝑖 is the actual leverage of 

firm 𝑖𝑖 at time 𝑡𝑡. 

Our factor model is expressed as 

𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑡𝑡 + 𝛽𝛽1𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡 + 𝛽𝛽2(𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑟𝑟𝑟𝑟)𝑡𝑡 + 𝛽𝛽3(𝑠𝑠𝑠𝑠𝑠𝑠)𝑡𝑡 + 𝛽𝛽4(ℎ𝑚𝑚𝑚𝑚)𝑡𝑡 + A + 𝜀𝜀𝑖𝑖,𝑡𝑡, (2)  
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where 𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡 represents the high minus low debt at time 𝑡𝑡 for industry 𝑖𝑖𝑖𝑖𝑖𝑖, (𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑟𝑟𝑟𝑟)𝑡𝑡 is the 

market excess return, (𝑠𝑠𝑠𝑠𝑠𝑠)𝑡𝑡 is the size factor, (ℎ𝑚𝑚𝑚𝑚)𝑡𝑡 is the value factor, and A is a vector of firm 

and time fixed effects. The risk model is similar to the three-factor model of Fama and French 

(2015), except we add a new risk factor, 𝐻𝐻𝐻𝐻𝐻𝐻. This factor is short on the first three decile 

portfolios, which have the lowest (negative) deviation from OL, and long on the last three decile 

portfolios, which have the highest (positive) deviation from OL. However, instead of taking the 

high (low) ∆𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡  of the whole market for each long-short portfolio, we take that high (low) ratio 

from firm 𝑖𝑖’s industry class.  

Text-based Network Industry Classifications (TNIC)  

Hoberg and Phillips (2010, 2016) show that TNIC sharply improves upon SIC and NAICS 

codes in explaining many firm-specific decisions, including firm profitability, Tobin’s Q, and 

dividends. According to their explanation of the process, the TNIC is the product of web crawling 

and text parsing algorithms. Algorithms process the text in the business descriptions section of 10-

K annual filings on the SEC EDGAR website from 1996 to the present. According to Item 101 of 

Regulation S-K, firms are legally required to describe the products they offer to the market and 

update the description based on the corresponding fiscal year. We retrieve the TNIC data from the 

Hoberg and Phillips website and merge the data with the Compustat and CRSP database4. We do 

not observe major differences in our results when using TNIC, SIC, or the Fama-French 48 

industry classification. The significance and signs of estimated coefficients are similar, and the 

estimated parameters are not economically different using each classification. 

 
4 https://hobergphillips.tuck.dartmouth.edu/ 

https://hobergphillips.tuck.dartmouth.edu/
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Mean Variance–Spanning Tests, Monte Carlo Procedure, and Factors Correlation 

We examine whether the HDL factor that we created is absorbing the loadings of other risk 

factors or is a distinct source of risk. To test this, we use two main methods. First, we check whether 

the HDL is a linear combination of Fama and French (FF) risk factors by regressing HDL on the 

FF factors. Second, we use the mean variance–spanning test of Huberman and Kandel (1987) to 

see whether the frontier of the mimicking portfolio of the HDL factor is spanned by the frontier of 

the traditional FF factors. 

We regress HDL on the FF factors with the following model: 

𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽1Mktrf𝑡𝑡 + 𝛽𝛽2𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 + 𝛽𝛽3𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 + 𝛽𝛽4UMD𝑡𝑡 + 𝜀𝜀𝑡𝑡.  (3) 

Next, following Huberman and Kandel (1987), we test the joint hypotheses that 𝛼𝛼 = 0 and 

𝛽𝛽2 + 𝛽𝛽3 + 𝛽𝛽4 = 1 in Equation (3). Because the distribution of HDL is not necessarily 𝜒𝜒2, and 

using conventional critical values might be misleading, we use the Monte Carlo procedure to 

generate bootstrapped critical values. We estimate critical values by generating random 

coefficients in each Monte Carlo loop and calculate the randomly generated dependent variable of 

Equation (3). Then, after regressing randomly generated dependent variables on the factors, we 

store the 𝜒𝜒2 statistic. After doing this procedure for 1,000 rounds, we determine the 90th and 99th 

percentile ranking of the test statistics for to use them as critical values for testing the joint null 

hypotheses that 𝛼𝛼 = 0  and 𝛽𝛽2 + 𝛽𝛽3 + 𝛽𝛽4 = 1 in Equation (3). The Monte Carlo bootstrapped 

critical values make the rejection of the joint null hypotheses of the mean variance–spanning test 

more difficult.  
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V. Results 

As shown in Table 1, the correlation between the newly introduced risk factor using 

monthly return data, HDL, and the Fama and French monthly factors is statistically significant, 

but not economically meaningful. The highest correlation is with MKTRF, but the level is only 

0.03778. The remaining correlations are all close to zero.  

>>>Insert Table 1 near here<<< 

To test if HDL is a combination of other factors, we test Equation (3) in two different 

manners. First, we regress Equation (3) to see the magnitude of R2 as well as the economic and 

statistical significance of coefficients. All the observations we use in Equation (3) are built monthly 

using monthly return data. Table 2 shows the results of regressing HDL factors on other factors. 

To calculate the t-statistics reported in parentheses, we use the HCC option in the SAS procedure 

and estimate the heteroskedasticity-consistent standard errors. As we can see, other factors cannot 

explain the variation in the HDL risk factor, as the adjusted R2 is close to zero.  

>>>Insert Table 2 near here<<< 

If the other risk factors, SMB, HML, and UMD, could explain the HDL factor, it means 

that HDL does not bring anything new to the table and, if included in the model, would absorb 

some of the effects of other risk factor variables. However, the estimation result reported in Table 

2 confirms that the new factor that we introduce in this study is independent enough from FF 

factors to be included in an asset pricing model. The justification for this claim is that the adjusted 

R2 is economically insignificant (0.3%) in Table 2. 
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Next, we test the joint hypotheses of 𝛼𝛼 = 0 and 𝛽𝛽2 + 𝛽𝛽3 + 𝛽𝛽4 = 1 with estimated 

coefficients of Equation (3). In the first step, we estimate the critical values of the statistical test 

using the Monte Carlo bootstrapping procedure. The estimated critical values of 𝜒𝜒2 are reported 

in Panel A of Table 3, running the Monte Carlo procedure 1,000 times. The results of testing these 

joint hypotheses using the bootstrapped critical values are reported in Panel B of Table 3. From 

Panel B of Table 3, we reject the joint null hypotheses 𝛼𝛼 = 0 and 𝛽𝛽2 + 𝛽𝛽3 + 𝛽𝛽4 = 1 jointly for 41 

out of 46 industries with a 90% confidence level and 37 out of 46 industries with a 99% confidence 

level. The result of the mean variance–spanning test shows that the frontier made by the Fama-

French factors does not span the HDL factor. Hence, HDL is not a combination of other factors, 

and it is introducing a distinct measure to the literature. All the risk factors used for the Monte 

Carlo procedure are monthly and are build using monthly returns.  

>>>Insert Table 3 near here<<< 

Table 4 shows the estimated results of adding the monthly HDL factor to Fama-French risk 

factor models by estimating Equation (2) monthly. To calculate the t-statistics reported in 

parentheses, we use the HCC option in the SAS procedure and estimate the heteroskedasticity-

consistent standard errors. The first two columns of Table 4 show the results of using MRKT, 

SMB, and HML along with HDL factors in two different time periods (before and after the 2008 

recession). Columns 3 and 4 show the same results by adding the UMD factor of the Carhart (1997) 

model to see whether the results are robust. We find that the HDL remains positively and 

significantly associated with stock returns in both periods. The estimated coefficients are not only 

consistently statistically significant, but also their economic magnitude is significant over different 

periods. 
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>>>Insert Table 4 near here<<< 

In Table 5, we replicate Table 4 but change the industry classification from TNIC to Fama-

French 48. Table 5 shows the estimation of Equation (2) using the Fama-French 48 industry 

classification to calculate the HDL factor. To calculate the t-statistics reported in parentheses, we 

use the HCC option in the SAS procedure and estimate the heteroskedasticity-consistent standard 

errors. As the HDL row of this table shows, there is a positive loading on HDL that is consistent 

over different time periods and the addition of UMD as a new factor using monthly return for 

building risk factors and as a dependent variable on the right-hand side of Equation (2). Thus, 

consistent with our expectations, HDL is not sensitive to the industry classification, and both 

classifications generate the same results. 

>>>Insert Table 5 near here<<< 

VI. Conclusion 

In essay I, we study how investors perceive optimal capital structure and how they react to 

it. We argue that because OL is related to investment opportunity (Fama and French, 2002), the 

business environment (Frank and Goyal, 2009), and probably other unknown factors, it should be 

studied in the industry context. We find that among several proxies for OL, including our two 

proposed measures, the industry median has the best performance in explaining investors’ and 

managers’ reactions to the deviation from the OL, as realized by stock returns.  

Building on our findings in essay I, we use the Fama and French (1993–2015) methods to 

build a factor that mimics the risk loaded due to the deviation of firms from their optimal capital 

leverage. We build HDL by shorting the first three decile portfolios, which have the lowest 



 

49 
 

(negative) deviation from optimal capital structure, and going long on the last three decile 

portfolios, which have the highest (positive) deviation from OL. Unlike Fama and French, we 

construct these portfolios at the industry level. We use both the Fama-French 48 industry 

classification and the Text-based Network Industry Classifications and find that our results are 

robust regardless of the industry classification we use to build our HDL factor.  

We test whether the HDL factor can be explained by other known risk factors. In particular, 

we test whether the HDL factor that we create is spanned by other traditional risk factors. We show 

that HDL has a low correlation with traditional factors. We show that HDL is not well explained 

by traditional factors based in a regression setting. We reject the null hypothesis that HDL is 

spanned by existing factors in the context of a mean variance–spanning test with both standard and 

bootstrapped critical values.  

Overall, we find that HDL explains a distinct incremental portion of the cross-sectional 

variation in the stock returns that is not explained by the other risk factors. The loading on HDL is 

consistently positive over different time periods. Overall, the results here, of essay II, reinforce the 

findings from essay I that deviation from industry median leverage is a potentially distinct and 

useful (in explaining the cross section of stock returns) new measure of optimal leverage.  
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Table 1: Correlation Metrix 
This table presents the Pearson correlations coefficient of risk factor portfolios using 
TNIC data. Three factors of Fama and French (1993), UMD of Carhart (1997), and 
HDL.  

  HDL MKTRF SMB HML UMD 
HDL 1         

    
MKTRF 0.03778 1 

   
<.0001    

SMB 0.00077 0.2308 1 
  

0.9328 <.0001 
  

HML 0.0242 -0.13883 -0.26201 
1  

 

0.0083 <.0001 <.0001  
UMD -0.02121 -0.28929 0.08783 -0.20899 1 

0.0206 <.0001 <.0001 <.0001 
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Table 2: Explanatory power of Fama-French factors in explaining the HDL factors 

This table shows the estimated coefficients of Fama-French factors on HDL using 
Equation (3) controlling for time fixed effect. Here the dependent variable is HDL. 
HDL is made using TNIC and monthly returns. All other factors are formed based 
on monthly return data. The numbers inside parentheses are the t-statistics. t-
statistics are calculated using heteroskedasticity-consistent standard errors. 

𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽1Mktrf𝑡𝑡 + 𝛽𝛽2𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 + 𝛽𝛽3𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 + 𝛽𝛽4UMD𝑡𝑡 + 𝜀𝜀𝑡𝑡  (3) 
  

 (HDL)  

Intercept 0.00193  
 (1.2)  

MKTRF 0.18411***  
 (3.97)  

SMB -0.01532  
 (0.22)  

HML 0.02003  
 (0.28)  

UMD 0.03856  
 (0.73)  

Observations 11660  
Adj-R2 0.30%  

* Significance level of 10% 
** significance level of 10% 
*** significance level of 1% 
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Table 3: Mean-Variance-Spanning test; 1000 Monte-Carlo procedure and final test results 

The critical values for 90% and 99% confidence level are reported in Panel A. Critical values are 
the results of 1000 Monte-Carlo procedure. Panel B shows the number of significant industry 
and their average test stat.   
Panel A: 1000 Monte-Carlo Critical value results 
𝜒𝜒2 critical 
value Mean   
90% 4.65 

  

99% 9.25 
  

   
  

Panel B: Test statistics results   

Test results 
Number of significant 
Industries 

Average of 𝜒𝜒2 statistics for 
significant industries 

90% 41 51.29 
99% 37 56.07 
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Table  4: Risk model estimation results: TNIC industry classifications.  

This table shows the results of estimating Equation (2) using monthly return: 

𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑡𝑡 + 𝛽𝛽1𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡 + 𝛽𝛽2(𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑟𝑟𝑟𝑟)𝑡𝑡 + 𝛽𝛽3(𝑠𝑠𝑠𝑠𝑠𝑠)𝑡𝑡 + 𝛽𝛽4(ℎ𝑚𝑚𝑚𝑚)𝑡𝑡 + A + 𝜀𝜀𝑖𝑖,𝑡𝑡   (2) 

The dependent variable here is the value-weighted stock return. The variable of interest is HDL. The numbers inside parentheses are the 

t-statistics, which are calculated using heteroskedasticity-consistent standard errors. 

 
(1) 

Before the Recession 
(t < December 2007) 

(2) 
After the 
Recession  

(t > June 2009) 

(3) 
Before the Recession 
(t < December 2007) 

(4) 
After the 
Recession  

(t > June 2009) 

(5) 
 

Full Sample 

Alpha 0.00286*** 0.00133** 0.00367*** 0.00339*** 0.00248*** 
 (5.57) (2.29) (7.12) (4.27) (3.27) 

MKTRF 1.00429*** 1.03469*** 0.95615*** 0.98334*** 1.00376*** 
 (85.64) (61.67) (76.96) (48.8) (73.25) 

SMB 0.15587*** 0.20476*** 0.17577*** 0.21219*** 0.20719*** 
 (9.99) (8.05) (11.23) (10.24) (9.53) 

HML 0.28652*** -0.00208** 0.24148*** 0.39387*** 0.24015*** 
 (17.42) (-2.39) (14.33) (14.38) (13.97) 

UMD   -0.11918*** -0.12809*** -0.124526*** 
   (-11.57) (-8.81) (-9.57) 

HDL 0.15655*** 0.14084*** 0.14569*** 0.13308*** 0.14065 
 (11.36) (17.67) (19.39) (14.52) (16.93) 

Observations 11913 5714 11913 5714 17,627 
Adj-R2 41.13% 52.42% 41.58% 37.43% 39.92% 

* significance level of 10% 
** significance level of 10% 
*** significance level of 1% 
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Table 5: Risk model estimation results: Fama and French 48-industry classifications. 

This table shows the results of estimating Equation (2), introducing the HDL factor. The dependent variable here is the value-weighted 

return. HDL factor is calculated based on Fama and French 48 industry classification using monthly return data. The numbers inside 

parentheses are the t-statistics, which are calculated using heteroskedasticity-consistent standard errors.  

𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑡𝑡 + 𝛽𝛽1𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡 + 𝛽𝛽2(𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑟𝑟𝑟𝑟)𝑡𝑡 + 𝛽𝛽3(𝑠𝑠𝑠𝑠𝑠𝑠)𝑡𝑡 + 𝛽𝛽4(ℎ𝑚𝑚𝑚𝑚)𝑡𝑡 + A + 𝜀𝜀𝑖𝑖,𝑡𝑡   (2) 

 
(1) 

Before the Recession 
(t < December 2007) 

(2) 
After the 
Recession  

(t > June 2009) 

(3) 
Before the Recession 
(t < December 2007) 

(4) 
After the 
Recession  

(t > June 2009) 

(5) 
 

Full Sample 

Alpha 0.06589*** 0.00018 0.02367*** 0.00339*** 0.0023283*** 
 (3.19) (1.19) (7.84) (3.59) (3.96) 

MKTRF 1.09233*** 1.01897*** 0.83214*** 0.67201*** 0.903863*** 
 (63.64) (59.67) (43.19) (50.29) (54.20) 

SMB 0.14863*** 0.19028*** 0.17577*** 0.28204*** 0.19918*** 
 (7.15) (9.13) (11.23) (10.39) (9.47) 

HML 0.37884*** -0.00392 0.24148*** 0.40108*** 0.25437*** 
 (14.40) (-0.16) (14.33) (15.20) (14.64) 

UMD   -0.09927*** -0.13460*** -0.116935*** 
   (-4.76) (-7.09) (-5.93) 

HDL 0.15324*** 0.12965*** 0.10237*** 0.18102*** 0.14157 
 (9.19) (18.27) (18.30) (15.20) (15.24) 

Observations 11913 5714 11913 5714 17,627 
Adj-R2 38.19% 53.22% 35.19% 39.14% 41.43% 

*significance level of 10% 
** significance level of 10% 
*** significance level of 1% 
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CHAPTER 3  

Mutual Fund Volatility Decomposition and Manager Skill 

 

Abstract 

We construct a volatility decomposition to identify the source of difference in the performance of 

low and high volatility mutual funds. We find that the source of this difference in performance is 

associated with the degree to which the returns of the various pairs of constituent stocks covary 

with one another and that this difference is not explained by stock-level volatility or the vol 

anomaly. Moreover, we find that this phenomenon is fund-specific and is related to, but not 

explained by, the beta anomaly.  

 

Keywords: mutual funds; volatility; manager skill; anomaly; market efficiency.  

JEL codes: G11, G12, G14, G20. 
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I. Introduction 

Jordan and Riley (2015, hereafter JR; p. 289) find that “mutual fund return volatility is a 

reliable, persistent, and powerful predictor of future abnormal returns.” JR connect their results on 

portfolio-level return volatility to underlying stock volatility by showing that “abnormal returns 

are eliminated by the addition of a ‘vol’ anomaly factor contrasting returns on portfolios of low 

and high volatility stocks.” JR also state that “failure to account for the vol anomaly, either directly 

or indirectly, can lead to substantial mismeasurement of fund manager skill.”  

While JR examine how a portfolio’s volatility is associated with the portfolio’s 

performance, they do not explore the underlying sources of portfolio return volatility. We 

incorporate the fact that mutual funds’ return volatility can be decomposed into terms arising from 

the constituent securities’ volatilities and the covariances between the returns of the constituents 

(Copeland et al., 2005; Marshal, 2015). The first component, which we designate as 𝜈𝜈, represents 

the volatility of a security in a portfolio. This component is commonly expressed as the diagonal 

terms in a variance-covariance matrix (Copeland, Weston, and Shastri, 1983; Campbell, Lo, and 

MacKinlay, 2012). The second component, which we designate as 𝜓𝜓, stems from the constituent 

holdings’ covariances with each other. These are the off-diagonal elements of the variance-

covariance matrix. Our goal is to better understand JR’s portfolio-level return volatility effect by 

identifying the underlying variance and covariance components of security-level returns that drive 

the portfolio effect. 

Classical theories, starting with Markowitz (1952, 1959), recognize that total risk, 

measured by the variance of portfolio returns, can be decomposed into 𝜈𝜈 (i.e., security-level 

variance) and 𝜓𝜓 (i.e., security-level covariances). Studies following Markowitz acknowledge that 
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the 𝜈𝜈 component of portfolio returns converges to zero as the degree of diversification increases. 

For this reason, in the literature, this component of a portfolio’s risk is referred to as diversifiable 

risk or unsystematic risk. The 𝜓𝜓 component is not eliminated through diversification and is referred 

to as nondiversifiable risk or systematic risk. Following the development of the capital asset 

pricing model (CAPM), a security’s systematic risk is commonly measured by the time series 

regression coefficient estimate of a security’s returns on a measure of market returns (Sharpe, 

1964; Lintner, 1965). This coefficient estimate is referred to as beta (β).  

Although β and ψ both are measures of systematic risk in the literature [β in the CAPM and 

ψ in the original Markowitz (1952) setting], they differ in construction and, especially, in how they 

account for a security’s variance. β is defined as the covariance of individual security with the 

market return, scaled by the market variance (Copeland, Weston, and Shastri, 1983). ψ is the 

weighted average of covariances of portfolio constituent securities’ returns with other constituent 

securities and not with the market return (Marshal, 2015). Marshal (2015) finds that beta, while 

highly correlated with the ψ measure of systematic risk, is not perfectly correlated and, in general, 

tends to overestimate risk. Moreover, Jones (2001) uses digital signal processing to demonstrate 

that portfolio risk can be decomposed into other non-beta systematic and unsystematic 

components. Jones expresses the systematic part as the cosine component of the random phase of 

returns and the unsystematic part as the sine. 

 To illustrate the distinction between β and ψ, assume two extreme cases: a portfolio with 

one stock and the market portfolio. The portfolio with one stock has a ψ component of variance 

equal to one, and its β depends on the market return. The market portfolio has a β of one, and its 

ψ component is not trivial to be calculated and is equal to the total market variance less the value-
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weighted average of the market constituents’ stocks variances. Marshal (2015) explains this 

distinction further by showing that a stock’s beta is not a measure of the stock’s systematic risk in 

any sense but, instead, is a measure of the stock’s systematic risk relative to the systematic risk of 

the market. In our analyses, we confirm the empirical distinction between ψ and β by double-

sorting on ψ and β. Intuitively, β is constructed relative to the market with implications for security-

level asset pricing, and ψ is constructed relative only to other stocks in a portfolio and chiefly with 

implications for portfolio management and performance. 

JR make a convincing case that their portfolio volatility effect is driven by systematic risk. 

JR demonstrate that idiosyncratic volatility, as derived from a multi-factor model (Fama and 

French, 1993), is not causing the inverse association between portfolio past return volatility and 

future portfolio returns. This suggests that an examination of security-level return volatility 

generation is essential to understanding portfolio performance, as well as measures of portfolio 

manager skill. This paper decomposes portfolio risk, proxied by portfolio return variance, into two 

underlying security-level components and tests how each component is associated with portfolio 

performance to explain JR’s findings.  

Liu et al. (2018) study the idiosyncratic volatility (IVOL)–return relationship in the context 

of the beta anomaly. They conclude that the beta anomaly, negative (positive) alphas on stocks 

with a high (low) beta, arises from beta’s positive correlation with IVOL. To test whether the JR 

results are the product of the beta anomaly, we check the beta and beta anomaly for high (low) 

total and idiosyncratic volatility using the volatility decomposition.  

We conclude that JR’s finding that “mutual fund return volatility is a reliable, persistent, 

and powerful predictor of future abnormal returns” (p. 289) is not due to constituent underlying 
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stocks variances (component 𝜈𝜈). Instead, portfolio returns are negatively associated with portfolio 

volatility that is due to the covariances between constituents’ stocks in the portfolio (component 

𝜓𝜓).   

 The Fama and French (1993) factor models do not explain this difference in the portfolio 

return, and the performance of high volatility portfolios (in particular, high ψ portfolios) is 

significantly lower than low volatility portfolios (in particular, low ψ portfolios).  We find that the 

ψ volatility component is associated with the fund’s idiosyncratic volatility and risk-loading 

factors, and the estimated coefficient is significant regardless of the risk factor model used to 

estimate the idiosyncratic volatility.  

Moreover, the beta anomaly cannot explain the performance difference between the high 

and low ψ volatility components. We show that the correlation between beta (β) and idiosyncratic 

volatility (IVOL) that Liu et al. (2018) documented at the stock level is not noticeable in mutual 

funds at the portfolio level. Finally, we show that our results are robust by using the Fama and 

French five-factor model instead of the three-factor model. 

II. Literature Review 

This study relies on two strands of literature. The first strand uses the total portfolio 

volatility and its association with market volatility to study systematic and unsystematic risk 

(Markowitz 1952, 1959). The second strand focuses on the portfolio return–related components 

such as alpha, beta, and IVOL and their association with each other (Fama and MacBeth, 1973). 

The first set of studies starts with Markowitz (1952, 1959), who shows that the total risk, 

as measured by the variance of return, can be decomposed into two components. Tobin (1958) 
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extends Markowitz’s work and shows that including the risk-free asset results in the linearization 

of the efficient frontier. More recently, Marshal (2015) decomposes the total volatility, measured 

by the standard deviation, into two new measures of systematic and unsystematic volatility.  

In the context of portfolio volatility and mutual funds’ volatility, JR study the relation 

between volatility and portfolio return performance in the US mutual fund industry. They 

introduce the vol anomaly and show that this anomaly can explain part of the volatility-return 

relationship at the portfolio level. Earlier studies by Novy-Marx (2014) and Fama and French 

(2014) argue that small, low profitability growth stocks cause the vol anomaly. Amihud (2002) 

and Ang et al. (2006, 2009) show that past volatility is a strong predictor of future cross-sectional 

stock returns. Baker et al. (2011) show a $58.98 difference between the value of a dollar invested 

in a portfolio of low volatility stocks and high volatility stocks from 1968 to 2008.  

Frazzini and Pedersen (2013) find a vol anomaly in stocks, bonds, and other asset classes 

using many different countries’ data. Han and Lesmond (2011) claim that the vol anomaly 

disappears after adjusting for microstructure effects, such as bid-ask bounce. Baker et al.  (2011) 

argue that institutional investors, such as mutual funds, avoid taking advantage of the vol anomaly 

because investments in high alpha, low beta stocks are discouraged by their investment mandates. 

However, Chen et al. (2012) claim that the vol anomaly is robust to many of these investment 

barriers. Also, Fu (2009) finds the vol anomaly is strong only among very small stocks. Garcia-

Feijoo, Li, and Sullivan (2012) show that trading on the vol anomaly requires frequent rebalancing 

among stocks with low liquidity. 

Marshal (2015) revisits the roots of total volatility in the context of modern portfolio 

theory. He decomposes the standard deviation of portfolio returns into systematic and unsystematic 
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components, but not the common beta and idiosyncratic risk measures (Goyal and Santa-Clara, 

2003). Marshal empirically evaluates the effectiveness of these alternative measures of systematic 

and unsystematic risk and finds that beta often overestimates a portfolio’s risk. Copeland et al. 

(2005) determine the mathematical derivation of the portfolio volatility decomposition and show 

how the unsystematic component of the volatility gets smaller as the level of diversification 

increases, but the covariance component is not affected by the degree of diversification.  

Jones (2001) introduces digital portfolio theory by extending modern portfolio theory of 

Markowitz (1952) and decomposes portfolio variance into two independent components by using 

the signal processing. He calls the cosine part of the total variance phase the “systematic risk” and 

the sine part of the phase the “unsystematic risk.” Moreover, Campbell et al. (2001) decompose 

the return at the stock level into three components: the market-wide return, the industry-specific 

residual, and the firm-specific residual. They report that, over the period of 1962 to 1997, firm-

level volatility has significantly increased relative to market volatility. They also find that the 

market volatility tends to lead the other volatility components. 

The second strand of literature considers the impact of idiosyncratic volatility (IVOL) on 

the expected return. This relationship has been studied empirically since almost the inception of 

classical asset pricing theory. Earlier studies, such as Fama and MacBeth (1973), find inconclusive 

evidence about the associations between the expected return and stock variance or idiosyncratic 

volatility. More recent empirical investigations on this topic document an idiosyncratic volatility 

puzzle, with a consistent and negative relation between idiosyncratic volatility and expected return 

(Goyal and Santa-Clara, 2003; Bali, Cakici, Yan, and Zhang, 2005; Fu, 2009; Ang, Hodrick, Xing, 
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and Zhang, 2006, 2009). The negative association appears to be more robust to different 

specification concerns raised by more recent studies (Bali and Cakici, 2008; Chen et al., 2012).  

Stambaugh et al. (2015), starting with the principle that idiosyncratic volatility represents 

a risk that deters arbitrage, find that the IVOL-return relation is negative among overpriced stocks 

and positive among underpriced stocks. They use mispricing as determined by combining 11 return 

anomalies documented by Stambaugh et al. (2012), constituting a comprehensive list of those that 

survived adjustment for the Fama and French (1993) three-factor model. Liu et al. (2018) study 

the IVOL in the context of the beta anomaly. They find that the beta anomaly (i.e., a negative alpha 

on high beta stocks and a positive alpha on low beta stocks) is due to the positive correlation 

between IVOL and beta. Also, according to Stambaugh et al. (2015), IVOL and alpha have a 

positive relationship among underpriced stocks but a negative relationship among overpriced 

stocks. In other words, they explain the beta anomaly by tying the IVOL puzzle to variation in beta 

and alpha.  

III. Empirical Measures: Volatility Decomposition, IVOL, and Beta 

To understand the source of JR’s findings, we use Markowitz’s volatility decomposition. 

Portfolio return volatility can be calculated based on the constituent holding return volatility, i.e., 

the variance of stocks’ return (𝜎𝜎𝑖𝑖2) and the covariance between the return of constituent stocks (𝜎𝜎𝑖𝑖𝑖𝑖)   

(Copeland et al., 2005; Marshal, 2015; Campbell, Lo, and MacKinlay, 2012). Equation (1) shows 

how the portfolio volatility is connected to the holdings’ volatility: 

𝜎𝜎𝑝𝑝2 =  ∑ ∑ 𝜔𝜔𝑖𝑖𝜔𝜔𝑗𝑗𝜎𝜎𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1 ,      (1) 
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where 𝜎𝜎𝑝𝑝2 represents the volatility of portfolio returns, 𝜎𝜎𝑖𝑖,𝑗𝑗 represents the covariance between 

returns of assets 𝑖𝑖 and 𝑗𝑗, and 𝜔𝜔𝑖𝑖 is the weight of asset 𝑖𝑖 in the portfolio.  

Because the standard deviation of a portfolio of stocks has two distinct components, we 

can decompose the right-hand side of Equation (1) into two volatility components: 

∑ ∑ 𝜔𝜔𝑖𝑖𝜔𝜔𝑗𝑗𝜎𝜎𝑖𝑖,𝑗𝑗𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1 =  ∑ 𝜔𝜔𝑖𝑖

2𝑁𝑁
𝑖𝑖=1 𝜎𝜎𝑖𝑖2 +  ∑ ∑ 𝜔𝜔𝑖𝑖𝜔𝜔𝑗𝑗𝜎𝜎𝑖𝑖,𝑗𝑗𝑁𝑁

𝑗𝑗=1
𝑖𝑖≠𝑗𝑗

𝑁𝑁
𝑖𝑖=1 .    (2) 

The first component of Equation (2) is the weighted average of the constituent holdings’ 

volatilities. We designate the first term of Equation (2) as 𝜈𝜈 and the second term as 𝜓𝜓. Component 

𝜈𝜈 represents the diversifiable portion of the portfolio’s variance and can be decreased by increasing 

the number of holdings (Markowitz, 1952 and 1959). The second component, 𝜓𝜓, is the weighted 

average of constituent holdings’ covariances and represents the nondiversifiable component of a 

portfolio’s variance (Copeland et al., 2005; Marshal, 2015). Increasing the number of holdings 

does not directly affect this component. However, a fund manager can manage both components 

by choosing constituent holdings and weights (Copeland et al., 2005).   

By mapping each mutual fund to its constituent holdings, we empirically calculate the two 

components of Equation (2) from the Center for Research in Security Prices (CRSP) mutual fund 

daily database. The first component of Equation (2) is computed as the monthly weighted 

constituent holding variance using the daily holding return:  

ν𝑘𝑘,𝑡𝑡 = ∑ 𝜔𝜔𝑖𝑖,𝑡𝑡
2𝑁𝑁

𝑖𝑖=1 𝜎𝜎𝑖𝑖,𝑡𝑡2 ,       (3a) 
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where ν𝑘𝑘,𝑡𝑡 is the first volatility component of fund 𝑘𝑘 for month 𝑡𝑡 and 𝜎𝜎𝑖𝑖,𝑡𝑡2  is the variance of fund 

𝑘𝑘’s constituent security 𝑖𝑖 during month 𝑡𝑡. We use daily returns to compute monthly variances and 

covariances. We drop the k and t subscripts when they are unnecessary. 

The second component of Equation (2) for fund 𝑘𝑘 at month 𝑡𝑡, 𝜓𝜓𝑘𝑘,𝑡𝑡, is computed by 

subtracting the first volatility component from the total portfolio volatility, 𝜎𝜎𝑝𝑝2:  

∑ ∑ 𝜔𝜔𝑖𝑖𝜔𝜔𝑗𝑗𝜎𝜎𝑖𝑖,𝑗𝑗𝑁𝑁
𝑗𝑗=1
𝑖𝑖≠𝑗𝑗

𝑁𝑁
𝑖𝑖=1 = ∑ ∑ 𝜔𝜔𝑖𝑖𝜔𝜔𝑗𝑗𝜎𝜎𝑖𝑖,𝑗𝑗𝑁𝑁

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1 − ∑ 𝜔𝜔𝑖𝑖

2𝑁𝑁
𝑖𝑖=1 𝜎𝜎𝑖𝑖2,    (3b) 

so 

𝜓𝜓𝑘𝑘,𝑡𝑡 = ∑ ∑ 𝜔𝜔𝑖𝑖,𝑡𝑡𝜔𝜔𝑗𝑗,𝑡𝑡𝜎𝜎𝑖𝑖,𝑗𝑗,𝑡𝑡
𝑁𝑁
𝑗𝑗=1
𝑖𝑖≠𝑗𝑗

𝑁𝑁
𝑖𝑖=1 = 𝜎𝜎𝑘𝑘,𝑡𝑡

2 − ν𝑘𝑘,𝑡𝑡,     (3c) 

where 𝜎𝜎𝑘𝑘,𝑡𝑡
2  is the total volatility, ν𝑘𝑘,𝑡𝑡 is the diversifiable component, and 𝜓𝜓𝑘𝑘,𝑡𝑡 is the nondiversifiable 

component of the total volatility.  

Which component better explains the relation between portfolio volatility and portfolio 

return? To answer this question, we replicate JR’s study using the above decomposition. The role 

of the vol anomaly in JR can be revisited in light of this decomposition. JR’s justification for using 

a portfolio of high-low volatility stocks to calculate the vol anomaly is that an association seems 

to exist between total volatility and return. However, we find that this difference between the 

performance of low and high volatility portfolios is not due to the stock-level volatility, 𝜈𝜈, but to 

the pairwise covariances between the constituent holdings, 𝜓𝜓. For this reason, the vol anomaly is 

likely to be insufficient to explain fund managers’ skill, 𝛼𝛼. Furthermore, a fund’s covariance 

component, 𝜓𝜓, likely includes information about the fund manager’s skill.  
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To test this, we estimate idiosyncratic volatility using multi-factor models. We then regress the 

volatility components, 𝜓𝜓  and 𝜈𝜈, on idiosyncratic volatility using Equations (4a) and (4b) to test 

whether idiosyncratic volatility can explain the volatility components: 

𝜓𝜓𝑘𝑘,𝑡𝑡 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘,𝑡𝑡 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘,𝑡𝑡 + 𝜀𝜀𝑘𝑘,𝑡𝑡           

 (4a) 

and 

𝜈𝜈𝑘𝑘,𝑡𝑡 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘,𝑡𝑡 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘,𝑡𝑡 + 𝜀𝜀𝑘𝑘,𝑡𝑡,        

 (4b) 

where 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘,𝑡𝑡 is the idiosyncratic standard deviation of daily returns of fund k during month t 

using Fama and French’s three-, four-, and five-factor models and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 includes fund k’s 

fixed effects, the Fama-French four-factor [Mkt (market), SMB (size, small minus big), HML 

(value, high minus low), and UMD (momentum, up minus down)] exposures estimated from daily 

returns during month t. 

We also use double-sorting on ψ and beta to evaluation a connection to the beta anomaly 

and on idiosyncratic volatility and beta to test for the existence of a more direct association between 

beta and idiosyncratic volatility. To test whether the stock-level volatility explains the difference 

in the performance of portfolios formed on volatility components, we reproduce the daily LVH 

(low volatility versus high volatility) factor of JR and include it alongside the other risk factors. 

Finally, we add profitability (RMW, robust minus weak) and investment (CMA, conservative 

minus aggressive) factors to our analysis to test whether they explain the difference between 

portfolio performances. Our four primary research questions are: 
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RQ1. Which volatility component (ν or ψ) is causing JR’s findings?  

RQ2. How are ν and ψ associated with traditional measures of idiosyncratic risk? 

RQ3. How are ν and ψ associated with measures (i.e., alphas) of fund manager skill? 

RQ4. How are ν and ψ associated with beta and the beta anomaly? 

IV. Data and Methods 

We use the CRSP mutual fund database from 2006 to 2019 to obtain daily portfolio returns, 

mutual fund holdings, and other fund characteristics. CRSP began providing reliable mutual funds 

holdings data in 2006. We use the CRSP stock price database to retrieve the daily return of 

constituent stock holdings from which we calculate the monthly volatilities of daily returns. We 

drop funds that CRSP identifies as index funds, exchange-traded funds, or variable annuities and 

that have a fixed income Lipper asset code. We require that a fund have at least 80% of its assets 

invested in equity during the current and previous year. We also combine share classes of a single 

fund using the CRSP portfolio identifier (crsp_portno). The assets of the combined fund are the 

sum of the assets held across all share classes, and we weigh all other fund attributes (including 

return) by the lagged assets held in each class.  

To investigate RQ1, following JR, we sort mutual funds every month based on total 

volatility (𝜎𝜎𝑝𝑝2), unsystematic volatility (𝜈𝜈𝑘𝑘), and systematic covariance volatility (𝜓𝜓𝑘𝑘) in decile 

portfolios from January 2006 to December 2019. The volatility and its components are computed 

monthly using daily returns. We then take the average return of each portfolio to compare the 

portfolio’s return. 
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To answer RQ2, we compute the traditional measure of idiosyncratic variance using the 

three-, four-, and five-factor models. We then associate 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 with our measures of portfolio risk 

components,  𝜓𝜓 and 𝜈𝜈, through portfolio sorts and the estimation of Equations (4a) and (4b). We 

expect that ψ is positively but imperfectly associated with 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼.  

To explore RQ4, following JR, Berk and Binsbergen (2015), Fama and French (2015), 

Stambaugh et al. (2015), Liu et al. (2018), and other similar studies, we use the portfolio-sorting 

method and estimate the alpha of the risk factor model in the portfolios sorted by covariance risk 

(𝜓𝜓). Suppose that the performance of the low and high covariance volatility portfolios could be 

captured by the risk factors and that it is not idiosyncratic to the fund, i.e., the manager skill. In 

that case, no significant difference should exist between portfolios in the extreme ends (low 

covariance volatility versus high covariance volatility). JR find that the vol anomaly could 

eliminate part of the unexplained difference between alphas of decile portfolios. JR make the vol 

anomaly similar to factors that account for the size (SMB), value (HML), and momentum (UMD) 

effects but slightly different. The vol factor is equal to the return on the decile portfolio of low 

volatility stocks minus the return on the decile portfolio of high volatility stocks. They find that 

controlling for vol makes the difference between alphas of portfolios of low and high volatility 

funds statistically and economically indistinguishable from zero. 

Our results show that, unlike JR’s conjecture, the source of differences in the mutual fund’s 

return sorted based on the total volatility is not the stock-level volatility but the covariance 

volatility (systematic) component. Hence, the vol factor (anomaly) has no theoretical foundation 

to make the difference between alphas of low and high volatility funds insignificant. To test this 

empirically, we build the vol factor using JR’s method. If the vol anomaly could explain the 
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difference between alphas of low and high covariance volatility funds, this difference could not be 

attributed to the fund manager’s skill. Otherwise, this difference in the performance of low and 

high volatility portfolios of funds is fund-specific and could be due to the manager’s skill in 

choosing the right combination of stocks that places their portfolios in the low decile covariance 

volatility. 

Regarding idiosyncratic volatility and alpha, another factor comes into the picture: the beta 

anomaly. Empirical studies show a negative association between beta and alpha. Recent studies, 

including Asness et al. (2020), Liu et al. (2018), Baker et al. (2018), and Frazzini (2014), 

investigate the relation between beta, alpha, and IVOL. All these studies use stock-level data.  

According to one of the CAPM propositions, the beta of a portfolio of stocks is the weighted 

average of the portfolio constituent securities (Copeland et al., 2005). Therefore, beta anomaly 

findings at the stock level should be applicable to the portfolio level. For this reason, we study the 

beta characteristics of the decile portfolios in each sorting. Accepting Liu et al. (2018) findings, 

we expect that high IVOL portfolios have high betas and low alphas on average. 

V. Results 

 We primarily examine differences in alphas from the Fama and French four-factor model 

on portfolios formed by sorting on one of the portfolio volatility measures. Because our portfolio 

risk measures are derived from models with differing assumptions, we adopt the sorting method 

widely used in the literature to avoid specifying restrictive parametric relations. The logic of 

portfolio sorting is similar to that of the random forest technique, a nonparametric analysis, which 

has been shown to generate robust results (Gu, Kelley, and Xiu, 2021; Bryzgalova et al., 2020; 

Moritz and Timmerman, 2016).  
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Table 1 reports the summary statistics of decile portfolios. It shows the average return, as 

well as other performance measures for decile portfolios sorted based on 𝜎𝜎2,  𝜓𝜓, and 𝜈𝜈. We do not 

report t-statistics for the differences because each is highly statistically significant. Arithmetic 

average return, geometric average return, and variances are reported as annualized measures, 

computed from monthly returns. Because a mutual fund cannot be sold short, an investor could 

not have directly captured the difference in the performance, similar to the analysis of JR. Hence, 

the difference between the statistics of low and high volatility portfolios represents the opportunity 

cost of investing in high volatility funds instead of low volatility funds (JR). 

>>>Insert Table 1 near here<<< 

Consistent with JR’s findings, Table 1 shows that the low volatility portfolio has better 

performance than the high volatility portfolio regardless of the evaluation method. Decomposition 

of the total risk (volatility) into two components and forming portfolios based on those components 

shows that the covariance risk component, 𝜓𝜓, is associated with differences in the performance of 

sorted portfolios. Portfolios formed on the variance of constituent holdings (stock-level variance 

component), 𝜈𝜈, do not follow the same pattern as the portfolios formed on the total volatility or ψ, 

so we can conclude that 𝜈𝜈 does not explain the differences between the performance of portfolios 

of the low and high volatility of return. 

Table 2 shows the Pearson correlations of the monthly returns across the portfolios. For 

the component 𝜈𝜈, the correlation between the sorted portfolios does not change going from low to 

high portfolios. Consistent with JR’s findings, the correlation between portfolio returns decreases 

as the total volatility changes between the portfolios. We find that the covariance component, 𝜓𝜓 , 

does a better job in explaining this pattern once the portfolios are formed based on this component. 
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We have not reported the significance of the correlation coefficients in this table because all the 

stated coefficients are highly significant. 

>>>Insert Table 2 near here<<< 

We form portfolios based on their monthly volatility using daily return observations. In 

Table 3, we extend the decile sorting by basing it on the volatility components, 𝜓𝜓 and 𝜈𝜈. The last 

row of the table shows the difference between low and high volatility components portfolios. 

>>>Insert Table 3 near here<<< 

The first column of Table 3 confirms the JR findings that an inverse association exists 

between fund volatility and return. In this column, the mutual funds are sorted based on their total 

volatility. The pattern in the average return is clear: As the volatility goes up, the average return 

goes down. The decomposition of variance in columns 2 and 3 helps to find the source of this 

pattern in the returns that JR documented. As column 2 shows, the portfolio returns consistently 

increase as the total volatility decreases. This pattern in the portfolio deciles sorted based on the 𝜓𝜓 

component is consistent with the return pattern in the decile portfolio sorted based on the total 

volatility that is documented by JR. 

Column 3 of Table 3 shows that sorting based on the 𝜈𝜈 component of volatility does not 

follow the same pattern in the average return resulting from the total volatility sorting. In other 

words, we can conclude that JR’s finding that the total volatility has predictive power in mutual 

funds returns is driven by the covariance component of volatility, 𝜓𝜓, and not by the stock-level 

average volatility component, 𝜈𝜈. For this reason, following JR and making the vol (LVH) anomaly 

using the stock-level information to control for the volatility anomaly can be misleading because 
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the cause of predictive power of return volatility is not the volatility of constituent holdings but 

covariance volatility, 𝜓𝜓.   

Moreover, to find the source of the differences in the average return of the portfolios, we 

estimate the Fama and French three-factor model plus momentum factor in each sorted portfolio 

of Table 3, Panel A. We use the Fama and MacBeth (1973) procedure each month to estimate the 

alpha in each sorted portfolio decile using daily mutual fund returns to compute volatilities. We 

then use the time series standard error of average slopes to calculate t-statistics using the Newey 

and West (1987) adjustment for standard errors. The Newey-West method makes the estimation 

robust by correcting for heteroskedasticity and autocorrelation. 

 Panel B of Table 3 reports the annualized alpha from the Fama and French four-factor 

model. As column 2 of this panel shows, as the covariance volatility, Ψ, increases, the alpha 

decreases. This finding confirms that the commonly known risk factors cannot explain the 

differences in decile portfolios formed on covariance volatility. Also, as column 3 of Panel B 

shows,  no clear pattern emerges in the alpha of portfolios formed based on the 𝜈𝜈 component. For 

this reason, we can conclude that the difference in the return and alpha of decile portfolios formed 

by total volatility (𝜎𝜎2) is due to the covariance risk (Ψ) and not  the constituent stock volatility 

component (𝜈𝜈). We also find that the common risk factors cannot explain the differences in the 

portfolio returns. 

Fig. 1 depicts the annualized average risk-adjusted excess return using the Fama and 

French four-factor model on portfolios formed on total variance in each year in our sample. For 

clarity, we present only the first (low volatility), fifth, and tenth (high volatility) deciles. Fig. 1 

shows the alphas reported in three portfolios of Panel B of Table 3 in different years. The difference 
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between the performance of low and high volatility portfolios is not consistent over time. In 2006, 

2008, 2011, 2012, and 2013, performance of the high volatility portfolio is higher than the low 

volatility portfolio. 

>>>Insert Fig. 1 near here<<< 

Fig. 2 presents the annualized average risk-adjusted excess return from the Fama and 

French four-factor model on portfolios formed on the 𝜓𝜓 component of total volatility in each year 

of the sample. The performance of portfolios formed on 𝜓𝜓 is consistent over time. Only in 2008 

and 2009 does the performance of low 𝜓𝜓 portfolios not exceed the performance of low 𝜓𝜓 

portfolios, as the pattern in the performance of portfolios does not follow the pattern in Panel B of 

Table 3. Similar figures for the raw returns of the US and selected other countries are displayed in 

Appendix 2. 

>>>Insert Fig. 2 near here<<< 

Fig. 3 presents the annualized average risk-adjusted excess return using the Fama and 

French four-factor model on portfolios formed on the stock-level volatility component of the total 

volatility (𝜈𝜈). This figure confirms our findings in Panel B of Table 3. That is, no pattern in the 

performance of portfolios is formed on 𝜈𝜈 over time. Altogether, with the decomposition of 

volatility, we can conclude that portfolios formed on 𝜓𝜓 and not the 𝜈𝜈 component of volatility can 

reveal the performance differences between the high and low volatility portfolios that JR 

document. 
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>>>Insert Fig. 3 near here<<< 

To investigate the Table 3 results further and control for the market risk factors, following 

JR, we test whether the alphas of portfolios are following the same pattern as the raw returns. 

However, we apply the same variance decomposition as Table 3. We use the Fama and French 

four-factor model using mutual fund daily return to estimate the monthly alphas. We use the Fama 

and MacBeth (1973) procedure each month to estimate the risk model using daily mutual fund 

return. We then use the time series standard error of average slopes to calculate t-statistics with 

the Newey and West (1987) standard errors. Suppose the other risk factors cause the difference 

between the performance of low-high volatility portfolios and not the covariance component. In 

that case, no significant difference should arise between the alphas of low-high volatility 

portfolios.  

Table 4 shows the Fama-French four-factor alpha and factor exposures for the low and 

high volatility and Ψ components of volatility portfolios. The difference in alpha between the 

portfolios sorted based on total volatility and covariance components amounts to about 5% per 

year. Funds with low volatility and low covariances likely hold larger, low beta, value stocks. 

Funds with high volatility and high covariances tend to hold smaller, high beta, growth stocks. 

These exposures do not explain the performance of the funds. As the last three columns of Table 

4 show, sorting based on 𝜈𝜈 does not explain the difference between the performance of low and 

high volatility portfolios. This confirms that the stock-level return volatility is not the cause of the 

difference between low and high volatility portfolios. 
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>>>Insert Table 4 near here<<< 

We use JR’s estimation equation to test whether past volatility can predict future 

performance and, in particular, which component of the volatility indicates the performance: 

𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑘𝑘,𝑡𝑡+1 = 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑘𝑘,𝑡𝑡 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘,𝑡𝑡 + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘,𝑡𝑡 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘,𝑡𝑡 + 𝜀𝜀𝑘𝑘,𝑡𝑡, (5) 

where 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑘𝑘,𝑡𝑡 is the intercept (alpha) of fund k at month t estimated from the Fama and French 

three- and four-factor models, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘,𝑡𝑡is the volatility components ψ and 𝜈𝜈 of 

fund k at time t, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘,𝑡𝑡is idiosyncratic volatility of fund k at month t calculated as the standard 

deviation of the error term from the Fama and French four-factor model estimation, and 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘,𝑡𝑡 includes funds’ fixed effect, the Fama-French four factors estimated from daily 

returns of fund k during month t.   

We estimate Equation (5) by using the Fama and Macbeth (1973) regression procedure and 

the Newey and West (1987) method to correct for heteroskedasticity and autocorrelation of the 

error terms. Estimation results are presented in Table 5. All variables are standardized (demeaned 

and divided by their standard deviation), which controls for the distribution differences across 

time. The standardization process allows us to compare estimated coefficients with each other and 

interpret them as the change in the next month’s alpha from a one standard deviation change in the 

variable in the current month. Similar results for unstandardized models are presented in Appendix 

Table A1. 
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>>>Insert Table 5 near here<<< 

As column 4 of Table 5 shows, a one standard deviation increase in past month return 

volatility increases the current month fund performance by 25 standardized basis points, 

controlling for other factors. Our findings are consistent with that of JR. However, here we identify 

the source of this predictability. Total volatility is composed of ψ and 𝜈𝜈. For the estimation results 

of model (1) and model (2), the ψ component is driving the results. As column 1 shows, a one 

standard deviation change in the current month’s covariance volatility component (ψ) increases 

the next month’s fund performance by 24 basis points per standard deviation.  In other words, 

consistent with JR, we find that past volatility of fund return has an impact on the future fund 

performance, but only the ψ component of volatility is causing this impact.   

In Table 5, column 1 estimates show that this model has the highest explanatory power. Its 

R2 is 32.48%, and the estimated coefficient for 𝜈𝜈 is not significantly different from zero. The 𝜈𝜈 

component of total volatility does not have a predictive power of the fund’s future performance. 

The signs of estimated coefficients of Fama and French risk factors are consistent across the 

models.  Due to the high correlation between 𝜎𝜎2 and its components Ψ and 𝜈𝜈, and the high 

correlation between 𝜎𝜎2 and IVOL, we include only one of these variables in the model at a time.    

Table 6 shows how the components of volatility, ψ and 𝜈𝜈, are related to classical measures 

of idiosyncratic volatility. In models (1) to (5), we estimate Equation (4a), and the dependent 

variable is the ψ component or the covariance risk. In models (6) and (7), we estimate Equation 

(4b), and the dependent variable is the 𝜈𝜈 component of volatility. We use the Fama and MacBeth 

(1973) procedure to estimate Equations (4a) and (4b) and the Newey and West (1987) adjustment 

for standard errors. We use Fama and French three-, four-, and five-factor models to estimate the 
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idiosyncratic volatility, which is the standard deviation of residuals from these  models. As Table 

6 shows, idiosyncratic volatility is highly correlated with the ψ component but not with the 𝜈𝜈 

component of the total volatility. Also, for the R2, idiosyncratic volatility has high explanatory 

power for variation in the ψ component but not the 𝜈𝜈 component. Similar results for unstandardized 

models are presented in Appendix Table A2. 

>>>Insert Table 6 near here<<< 

JR report a significant difference between betas of low and high variance portfolios. As 

they mentioned in the body of their research, this difference in the betas could not eliminate the 

differences in the alphas. They did not examine a phenomenon widely used in the literature called 

the beta anomaly. A negative correlation between beta and alpha has been documented starting as 

early as Fama and MacBeth (1973). Recent studies, including Stambaugh et al. (2015) and Liu et 

al. (2018), shed more light on this phenomenon. They involve mispricing as a factor that moderates 

this relationship and reverses it at some level of mispricing. Because the beta (as well as the alpha) 

for a portfolio of stocks is a linear combination of constituent stocks’ betas, this relationship 

between beta and alpha can be extended to a portfolio of stocks. For this reason, we examine 

whether the beta anomaly drives our findings by forming portfolios formed based on beta and ψ. 

Table 7 shows the annualized monthly return of portfolios formed based on beta and ψ. As 

in the third column of Table 3, Table 7 presents the return of portfolios formed on ψ. However, in 

Table 7, we control for the beta in each column by using the double-sorting technique. The last 

column of this table shows the difference between low and high portfolios formed on ψ. None of 

the low-high return portfolios generates a negative return. Because this table repeats Table 3 results 
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by controlling for beta, we can confirm that the beta anomaly is not driving the results that we find 

about the difference between the performance of portfolios formed on ψ. 

>>>Insert Table 7 near here<<< 

To further investigate the source of the difference between the performance of low and 

high Ψ portfolios while controlling for the beta that we document in Table 7, we estimate the alpha 

from Fama and French four-factor model in each portfolio formed in the table. We use the Fama 

and MacBeth (1973) regression procedure to estimate alphas and the Newey and West (1987) 

adjustment. The results of regressions are reported in Table 8. If the beta anomaly is driving our 

findings, controlling for beta in portfolios formed on Ψ should eliminate the difference between 

portfolio performance of low and high Ψ volatility. 

>>>Insert Table 8 near here<<< 

The last column of Table 8 shows the difference between the low and high ψ volatility 

component controlling for portfolio beta. All the numbers in this column are positive, and most of 

them are statistically significant. For this reason, we can conclude that the differences in the betas 

of portfolios formed on the ψ volatility component documented in column 6 of Table 4 cannot 

explain the difference between the performance of low and high Ψ volatility portfolios.Liu et al. 

(2018) find that, at the stock level, the beta anomaly is affected by IVOL. For this reason, we 

double-sort funds on IVOL and beta each month to reveal the association of IVOL with the beta 

anomaly. For each month, we independently assign stocks to beta deciles and IVOL deciles and 

construct equally weighted portfolios in each intersection. Table 9 reports the alphas on each 

portfolio and the high-low alpha difference for a given variable within each level of the other 
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variable. As the alphas reported in the last column of this table (lowest-highest) show, controlling 

for IVOL results in only the first IVOL decile portfolio having negative alpha on the low-high beta 

portfolio. However, even this negative alpha is insignificant for this portfolio. For the rest of the 

portfolios in the last column of Table 9, the beta anomaly is consistently persistent as illustrated 

by statistically significant positive differences between the alpha of low and high beta portfolios. 

>>>Insert Table 9 near here<<< 

To explore whether the vol anomaly can explain (or at least reduce) the difference between 

the performance of decile portfolios sorted on the volatility of return, JR constructed the vol 

anomaly based on the difference between the volatility of stocks traded in the US markets. 

Following JR, we construct the LVH factor as equal to the return on a value-weighted portfolio of 

the stocks in the lowest decile of the standard deviation of daily returns during the previous 

calendar month less the return on a value-weighted portfolio of stocks in the highest decile. We 

use only the US equities commonly held by mutual funds that trade on the NYSE, Nasdaq, or 

Amex (CRSP share codes 10 and 11 and CRSP exchange codes 1, 2, and 3). We also drop penny 

stocks, with prices below $5 at the end of the previous month, from the sample.  

JR find that LVH explains the difference between the performance of low and high 

volatility portfolios. We form decile portfolios on covariance volatility, Ψ, and add LVH to the 

four-factor model. Table 10 reports the results of this estimation. As columns 5 and 6 show,  LVH 

not only does not explain the difference in the performance of portfolios but also inflates the 

difference between average alphas of high and low covariance volatility portfolios. Unlike JR, we 
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find that LVH cannot explain the difference between performances once the portfolios are formed 

based on the covariance volatility, Ψ. 

>>>Insert Table 10 near here<<< 

While LVH could not explain fund performance, the profitability (RMW) and investment 

(CMA) factors could provide an explanation for the results. In Table 11, we use the Fama-French 

five-factor model by including RMW and CMA in addition to the market, size, and value factors. 

As the last two right columns of Table 11 present, there is a positive loading on RMW and CMA 

for the low and high, indicating that the low volatility funds hold stocks in companies that are more 

profitable and invest more conservatively than companies whose stock is held by high volatility 

funds. The difference in loading on beta, SMB, and HML  all decrease once we add the new factors. 

>>>Insert Table 11 near here<<< 

VI. Conclusion 

Mutual funds with high (low) volatility have lower (higher) performance compared with 

low (high) volatility mutual funds. In the context of the Fama-French four-factor model, a portfolio 

of low volatility funds has an alpha of about 0.4% per year more than a portfolio of high volatility 

funds. Furthermore, after controlling for the fund’s fixed effects and fund’s risk loadings, we show 

that a 1% increase in fund volatility in a month decreases the fund’s alpha in the same month by 

about 0.03%. We decompose the volatility into two components, the covariance volatility (ψ) and 

the constituent’s stocks volatility (ν), to find which component is causing the difference in the 

portfolio’s return. Unlike JR, we find that the source of performance differences is not the volatility 

of the constituent stocks and that the vol anomaly cannot explain this difference once the mutual 
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funds’ portfolios are formed on the covariance volatility.  After controlling for fund fixed effects 

and fund’s risk loadings, we show that a 1% increase in the fund covariance volatility in a month 

decreases the fund’s alpha in the same month by about 0.15%. The ν component cannot explain 

the variation in the funds’ return. 

We explore the reason for this relation between fund covariance volatility and performance 

by controlling for the stock market volatility constructed as an anomaly (LVH) based on using 

JR’s method. We also add the profitability (RMW) and investment (CMA) factors to the Fama and 

French three-factor model and find that the difference in portfolio performance persists.   

We test whether the beta anomaly drives the difference between the performance of low 

and high volatility portfolios. We find that controlling for portfolio beta reduces the effect of 

volatility on performance, but the difference between the alpha of portfolios of low and high 

volatility remains significant. To address the inverse relation between alpha and beta at the stock 

level (Stambaugh et al., 2015; Liu et al., 2018), we also test for this relation at the fund level and 

do not find significant evidence of this phenomenon.  

Overall, our results have three essential takeaways. First, JR’s finding of the inverse 

relationship between fund’s volatility and performance is due to the covariance component (ψ) of 

portfolio volatility. Second, the covariance component (ψ) has a significant relationship with 

idiosyncratic volatility. Third, although the factor loadings and, in particular, the beta of low and 

high volatility portfolios are significantly different from each other, the beta anomaly is not driving 

our results. We could not find any significant evidence of inverse relation between beta and 

idiosyncratic volatility at the fund level. 
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Table 1: The returns on portfolios of mutual funds are sorted on return volatility components 

The table shows the returns on five equally weighted portfolios of US equity mutual funds. The low volatility 
portfolio has the 10% of mutual funds in the sample with the lowest monthly standard deviation of daily 
returns. In contrast, the high volatility portfolio has the 10% of mutual funds in the sample with the highest 
monthly standard deviation of daily returns. We present only the first (low volatility), third, fifth, seventh, and 
tenth (high volatility) deciles to save space. Average and geometric returns are the annualized average of 
monthly simple and geometric returns for the portfolio. Sharpe ratio is the annualized average of the monthly 
returns less the risk-free rate divided by the annualized portfolio standard deviation. Treynor ratio is the 
annualized average of the monthly returns less the risk-free rate divided by the portfolio’s beta. 

Portfolio Returns 
Variance Component             
  Performance measure Low 3 5 7 High Low-High 

𝜎𝜎2 

Average return 14.34% 14.00% 13.30% 12.80% 9.05% 5.29% 
Geometric return 14.43% 13.10% 12.30% 11.70% 6.73% 7.70% 
Variance 10.40% 13.90% 15.20% 16.80% 25.90% -15.50% 
Sharpe ratio 0.48 0.36 0.25 0.18 0.09 0.39 
Treynor ratio 0.07 0.06 0.04 0.03 0.02 0.05 

𝜓𝜓  

Average return 14.47% 14.10% 13.50% 12.90% 8.87% 5.60% 
Geometric return 14.60% 13.20% 12.50% 11.70% 6.60% 8.00% 
Variance 10.50% 14.00% 15.20% 16.80% 25.80% -15.30% 
Sharpe ratio 0.49 0.36 0.24 0.19 0.08 0.41 
Treynor ratio 0.07 0.06 0.04 0.03 0.02 0.05 

𝜈𝜈 

Average return 12.40% 13.80% 13.40% 12.60% 11.10% 1.30% 
Geometric return 11.20% 12.40% 12.20% 11.60% 9.50% 1.70% 
Variance 15.70% 16.60% 16.40% 16.50% 20.10% -4.40% 
Sharpe ratio 0.3 0.28 0.28 0.26 0.15 0.15 
Treynor ratio 0.04 0.04 0.04 0.04 0.03 0.01 
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Table 2: Portfolio return correlations 

This table shows the Pearson correlation of the monthly returns across the 
portfolios. The low volatility portfolio has the 10% of mutual funds in the sample 
with the lowest monthly standard deviation of daily returns. Conversely, the high 
volatility portfolio has the 10% of mutual funds in the sample with the highest 
monthly standard deviation of daily returns. We present only the first (low 
volatility), third, fifth, seventh, and tenth (high volatility) deciles to save space. 
All the correlation coefficients reported are highly significant. 

Component Portfolio Low 3 5 7 High 

𝜎𝜎2  

Low 1         
3 0.951 1 

   

5 0.943 0.986 1 
  

7 0.925 0.97 0.986 1 
 

High 0.814 0.87 0.879 0.902 1 

𝜓𝜓  

Low 1         
3 0.952 1 

   

5 0.937 0.988 1 
  

7 0.919 0.97 0.986 1 
 

High 0.799 0.866 0.87 0.894 1 

  
𝜈𝜈 

Low 1         
3 0.988 1 

   

5 0.989 0.989 1 
  

7 0.971 0.973 0.979 1 
 

High 0.947 0.941 0.946 0.966 1 
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Table 3: Average annualized portfolios’ returns and alphas  

Average annualized portfolios’ returns, and annualized alphas sorted by the variance component in decile 
portfolios. Numbers in the table are reported as percentages, and numbers between parentheses are t-
statistics. All the alphas and returns reported for each portfolio are significantly different from zero. 
Panel A: Average portfolio return 
Portfolio    
Low 14.34 14.47 12.34 
2 13.88 14.11 13.10 
3 13.30 13.85 13.73 
4 13.88 13.44 13.25 
5 13.21 13.10 13.34 
6 12.80 12.92 12.70 
7 12.60 12.34 12.64 
8 12.18 12.01 12.59 
9 11.63 11.74 12.24 
High 9.05 8.87 11.01 
Low-High 5.29*** 5.60*** 1.33*** 

 (3.63) (3.66) (2.19) 
    

Panel B: Average portfolio alpha  
 

Portfolio       
Low 0.13 0.13 -0.17 
2 0.05 0.06 -0.12 
3 0.00 0.00 0.01 
4 -0.03 -0.03 -0.09 
5 -0.05 -0.05 -0.07 
6 -0.05 -0.06 -0.05 
7 -0.07 -0.07 0.00 
8 -0.07 -0.08 -0.01 
9 -0.12 -0.11 -0.01 
High -0.26 -0.27 0.03 
Low-High 0.39*** 0.40*** -0.20*** 
  (5.46) (5.53) (-2.38) 

* Significance level of 10% 
** Significance level of 10% 
*** Significance level of 1% 
  

𝜎𝜎2 

𝜎𝜎2 

𝜓𝜓 

𝜓𝜓 

𝜈𝜈 

𝜈𝜈 
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Table 4:Can the Fama-French four-factor model explain the performance sorted portfolios? 

This table shows the Fama-French four-factor regression results for daily returns on portfolios of low and high volatility components of mutual funds from January 2006 
through December 2019. Volatility portfolios are all monthly equally weighted portfolios of US mutual funds.  
Numbers between parentheses are t-statistics. 

           

 Low    High   Low - High  Low    High   Low - High  Low   High  Low - High  

Factor (1)   (2)   (3)  (4)   (5)   (6)  (7)   (8)   (9)   
Beta 0.635 *** 1.139 *** -0.504 *** 0.632 *** 1.137 *** -0.505 *** 0.898 *** 1.035 *** -0.137 *** 
 (28.81)  (23.05)  (-6.90)  (21.62)  (22.33)  (-7.43)  (17.85)  (18.46)  (-2.75)  

SMB -0.033 *** 0.561 *** -0.594 *** -0.023 * 0.578 *** -0.601 *** 0.224 *** 0.358 *** -0.134  
 (-3.94)  (7.28)  (-5.87)  (1.88)  (5.39)  (-5.05)  (2.62)  (5.73)  (-1.44)  

HML 0.004 *** -0.050 *** 0.054 *** -0.003 *** -0.037 *** 0.034 *** 0.105 *** -0.039 *** 0.144 *** 
 (5.51)  (-4.43)  (2.90)  (-3.76)  (-2.93)  (4.45)  (3.60)  (-2.69)  (3.01)  

UMD -0.012  0.029  -0.040  -0.012  0.034  -0.045  0.007  -0.026  0.033  
 (0.87)  (0.55)  (-0.24)  (0.21)  (0.16)  (-0.15)  (1.31)  (1.55)  (0.36)  

Alpha 0.129% ** -0.265% ** 0.393% *** 0.126% ** -0.266% *** 0.392% *** 0.013%  -0.173% ** 0.186%  
 (2.24)  (-2.26)  (2.73)  (2.47)  (-3.37)  (3.51)  (1.52)  (2.08)  (1.61)  

Observations          28,803             28,803              28,803             28,803              28,803             28,803     

Average R2 84%   85%       83%   86%       94%   83%       
* Significance level of 10% 
** Significance level of 10% 
*** Significance level of 1% 

 

𝜎𝜎2 𝜓𝜓 𝜈𝜈 
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Table 5:Can fund volatility predict future performance? 

𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑖𝑖,𝑡𝑡+1 = 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑖𝑖,𝑡𝑡 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡 
Here we use the Fama-Macbeth regression procedure to estimate the above equation. The dependent 
variable is the alpha for fund i in month t estimated using the Fama-French four-factor model using daily 
returns. For the 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 variable, we use 𝜎𝜎2, 𝜓𝜓, and 𝜈𝜈 in different estimation equations.  
𝜎𝜎2 is the variance of returns during month t using daily observations. Psi is the covariance component (𝜓𝜓), 
and Nu is the variance component (𝜈𝜈) of the 𝜎𝜎2. IVOL is the idiosyncratic standard deviation of daily 
returns during month t. Fund controls include funds’ fixed effect, the Fama-French four-factor Mkt 
(market), SMB (size), HML (value), and UMD (momentum) exposures estimated from daily returns during 
month t. All variables are standardized (demeaned and divided by their standard deviations). 

Numbers between parentheses are t-statistics. 
 

Characteristic (1)   (2)   (3)   (4)   (5)   (6)   
Alpha 0.026 ***  

 
 

 
0.026 *** 0.007 *** 0.027 *** 

 (8.91)      (9.10)  (3.09)  (9.16)  
𝜎𝜎2   -0.049 ***   -0.0247 ***  

 
 

 

   (-2.61)    (-8.59)      
𝜓𝜓 -0.0241 ***  

 
 

 
 

 
 

 
-0.0222 *** 

 (-8.35)          (-7.63)  
𝜈𝜈 -0.002 

 
 

 
 

 
 

 
-0.004 

 
-0.002 

 

 (-1.15)        (-1.23)  (-1.28)  
IVOL    

 
-0.004 ***  

 
 

 
 

 

     (-2.08)        
Mkt 0.032 *** 0.030 *** 0.031 *** 0.031 *** 0.031 ***  

 

 (3.78)  (3.65)  (3.70)  (3.75)  (3.56)    
SMB 0.091 *** 0.092 *** 0.092 *** 0.091 *** 0.090 ***  

 

 (12.41)  (12.67)  (22.64)  (22.45)  (22.43)    
HML 0.065 *** 0.071 *** 0.070 *** 0.066 *** 0.066 ***  

 

 (4.14)  (4.47)  (4.43)  (4.19)  (7.15)    
UMD 0.028 *** 0.031 *** 0.031 *** 0.028 ** 0.028 **  

 

 (2.44)  (2.77)  (2.75)  (2.48)  (2.50)    

Observations 
      

281,782  

 
    

281,782  

 
    

281,782  

 
    

281,782  

 
    

281,782  

 
    

281,782  

 

Average R2 32.48%   28.70%   28.45%   31.65%   24.14%   17.44%   
* Significance level of 10% 
** Significance level of 10% 
*** Significance level of 1% 
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 Table 6:  How are portfolio unsystematic and covariance risks associated with traditional measures of idiosyncratic risk? 

𝜓𝜓𝑖𝑖,𝑡𝑡 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡  
𝜐𝜐𝑖𝑖,𝑡𝑡 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡  
Here we use the Fama-Macbeth regression procedure to estimate the above equations.  The dependent variable in models (1) to (5) is the 
covariance component (𝜓𝜓), and in models (6) and (7) is the stock level average volatility component (𝜈𝜈) of total return volatility for fund i in 
month t.  IVOLs are the idiosyncratic standard deviation of daily returns during month t using Fama and French’s three, four, and five-factor 
models. Fund controls include funds’ fixed effect, the Fama-French four-factor Mkt (market), SMB (size), HML (value), and UMD (momentum) 
exposures estimated from daily returns during month t. All variables are standardized (demeaned and divided by their standard deviations). 

Numbers between parentheses are t-statistics.  

 Dependent Variable 
 𝜓𝜓   𝜈𝜈 

 
Characteristic (1)   (2)   (3)   (4)   (5)     (6)   (7)   
IVOL (3) 0.938 *** 0.891 *** 

    
0.931 *** 

 
0.114 

 
0.012 

 

 (23.02) 
 

(18.25) 
     

(21.19) 
  

(1.24) 
 

(0.73) 
 

IVOL (4) 
    

0.947 *** 
         

 
    

(19.29) 
          

IVOL (5) 
      

0.926 *** 
       

 
      

(21.23) 
        

𝜈𝜈 
        

-0.035 
      

 
        

(-1.46) 
      

Risk Loading Controls No  Yes  Yes  Yes  Yes   No  Yes 
 

Observations     287,021       287,021       287,021       287,021       287,021          287,021         287,021  
 

Average R2 88%   89%   93%   94%   94%     1%   2%   
* Significance level of 10% 
** Significance level of 10% 
*** Significance level of 1% 
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 Table 7:The annualized return of decile portfolios formed by sorting on Beta and Ψ 

The table reports the average annualized return for portfolios formed by sorting independently on monthly Betas and Ψ using daily 
observation of US mutual funds.  
Numbers in the table are reported as percentages, and numbers between parentheses are t-statistics. 

Beta decile 
Ψ decile Lowest-

Highest Lowest 2 3 4 5 6 7 8 9 Highest 

Lowest 0.11 0.19 0.18 0.13 0.12 0.12 0.19 0.16 0.16 0.09 0.015 
(1.40) 

2 0.14 0.10 0.13 0.12 0.17 0.16 0.14 0.22 0.22 0.13 0.008 
(0.54) 

3 0.16 0.14 0.11 0.10 0.10 0.13 0.16 0.18 0.21 0.13 0.035** 
(2.01) 

4 0.20 0.17 0.11 0.13 0.12 0.10 0.13 0.17 0.18 0.13 0.065*** 
(2.99) 

5 0.20 0.18 0.15 0.14 0.11 0.11 0.10 0.15 0.18 0.14 0.068** 
(2.31) 

6 0.23 0.20 0.19 0.13 0.13 0.12 0.10 0.10 0.14 0.16 0.065** 
(2.41) 

7 0.20 0.23 0.19 0.17 0.15 0.13 0.11 0.09 0.13 0.12 0.072** 
(2.19) 

8 0.14 0.24 0.20 0.19 0.16 0.16 0.11 0.10 0.10 0.12 0.020 
(0.54) 

9 0.15 0.24 0.25 0.22 0.19 0.17 0.17 0.10 0.07 0.07 0.081* 
(1.90) 

Highest 0.14 0.12 0.23 0.27 0.24 0.19 0.20 0.16 0.10 0.06 0.081* 
(1.90) 

* Significance level of 10% 
** Significance level of 10% 
*** Significance level of 1% 
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 Table 8:Annualized Alpha of decile portfolios formed by sorting on Beta and Ψ 

The table reports the average annualized alpha from the Fama and French four-factor model (mkt, smb, hml, and umd) for portfolios 
formed by sorting independently on monthly Betas and Ψ using daily observation of US mutual funds. Numbers in the table are reported 
as percentages, and numbers between parentheses are t-statistics. 

  

Beta 
decile 

Ψ decile Lowest-
Highest 

 

Lowest 2 3 4 5 6 7 8 9 Highest   
Lowest 0.20% 0.45% 0.27% 0.14% 0.23% 0.32% 0.34% 0.26% 0.23% -0.03% 0.23% *** 

           (3.45)  
2 0.07% 0.10% 0.14% 0.07% 0.13% 0.14% 0.09% 0.13% 0.09% -0.16% 0.23% *** 
           (5.10)  

3 0.00% 0.04% 0.05% 0.05% 0.02% 0.04% 0.04% 0.06% 0.04% -0.22% 0.22% *** 
           (6.65)  

4 -0.03% 0.00% -0.02% 0.01% 0.01% 0.01% 0.02% 0.00% 0.01% -0.16% 0.13% *** 
           (3.12)  

5 -0.04% -0.02% -0.03% -0.01% -0.03% -0.03% 0.00% -0.02% -0.04% -0.05% 0.01%  
           (0.10)  

6 -0.02% -0.04% -0.05% -0.09% -0.06% -0.05% -0.03% -0.04% -0.06% -0.12% 0.10% ** 
           (2.21)  

7 -0.10% -0.04% -0.06% -0.09% -0.09% -0.10% -0.06% -0.07% -0.07% -0.22% 0.12% ** 
           (2.35)  

8 -0.03% -0.05% -0.08% -0.11% -0.13% -0.14% -0.14% -0.12% -0.09% -0.20% 0.17% ** 
           (2.39)  

9 -0.09% -0.07% -0.07% -0.12% -0.16% -0.17% -0.19% -0.19% -0.17% -0.27% 0.18% * 
           (1.75)  

Highest 0.04% -0.05% -0.11% -0.19% -0.16% -0.27% -0.29% -0.27% -0.33% -0.41% 0.45% *** 
                      (2.65)   
* Significance level of 10% 
** Significance level of 10% 
*** Significance level of 1% 
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 Table 9: Annualized Alpha of decile portfolios formed by sorting on IVOL and Beta 

The table reports the average annualized alpha from the Fama and French four-factor model (mkt, smb, hml, and umd) for portfolios formed by sorting 
independently on monthly IVOL and Beta using daily observation of US mutual funds.  
Numbers in the table are reported as percentages, and numbers between parentheses are t-statistics. 

IVOL 
decile 

Beta decile   Lowest-
Highest Lowest   2 3 4   5 6 7   8   9   Highest   

Lowest 0.047%   0.061% 0.012% -0.001%   -0.025% -0.053% -0.073%   -0.092%   -0.120%   0.083%   -0.04%  
 

                (-0.72)  
2 0.033%  0.068% 0.027% -0.002%  -0.027% -0.064% -0.086%  -0.088%  -0.147%  -0.096%  0.13% *** 
 

                (3.11)  

3 0.065%  0.086% 0.025% 0.002%  -0.011% -0.068% -0.081%  -0.112%  -0.148%  -0.214%  0.28% *** 
 

                (11.89)  

4 0.074%  0.065% 0.032% 0.005%  -0.033% -0.067% -0.078%  -0.137%  -0.168%  -0.238%  0.31% *** 
 

                (4.09)  

5 0.145%  0.090% 0.045% -0.015%  -0.031% -0.059% -0.093%  -0.142%  -0.170%  -0.240%  0.39% *** 
 

                (4.73)  

6 0.149%  0.123% 0.038% -0.002%  -0.026% -0.045% -0.099%  -0.142%  -0.170%  -0.227%  0.38% *** 
 

                (5.94)  

7 0.192%  0.120% 0.060% -0.019%  -0.034% -0.040% -0.084%  -0.137%  -0.191%  -0.224%  0.42% *** 
 

                (6.93)  
8 0.190%  0.130% 0.066% -0.002%  0.001% -0.059% -0.073%  -0.114%  -0.200%  -0.305%  0.50% *** 
 

                (8.83)  
9 0.302%  0.123% 0.053% 0.050%  0.011% -0.036% -0.100%  -0.099%  -0.162%  -0.335%  0.64% *** 
 

                (14.44)  
Highest 0.421%  0.074% -0.018% -0.067%  0.008% -0.019% -0.135%  -0.228%  -0.398%  -0.471%  0.89% *** 

 
                (6.33)  

Lowest-
Highest 

-0.374% *** -0.013% 0.030% 0.066% ** -0.033% -0.034% 0.062% ** 0.136% *** 0.278% *** 0.554% *** -0.928% *** 
(-5.60)   (-0.29) (0.82) (2.11)   (-1.19) (-1.19) (2.05)   (2.65)   (5.48)   (2.98)   (4.77)   

* Significance level of 10% 
** Significance level of 10% 
*** Significance level of 1%
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 Table 10: Can the vol anomaly explain the performance of the mutual funds? 

This table repeats the estimation results of Table 4 by adds a new factor to the Fama-French four-factor 
model specification. Following Jordan and Riley (2015), the LVH factor is equal to the monthly return 
on a value-weighted portfolio of all stocks in the lowest decile of the standard deviation of daily returns 
during the less the return on a value weighted portfolio of all stocks the highest decile.  
Numbers between parentheses are t-statistics.  

 Low  
 

 High  Low - High 
  

Factor (1)   (2)   (3)   (4)   (5)   (6)   

Beta 0.6320 *** 0.6599 *** 1.1371 *** 1.1723 *** -0.5051 *** -0.5124 *** 

 (21.62)  (24.28)  (22.33)  (23.92)  (-7.43)  (-7.71)  

SMB -0.0227 * 0.0024 *** 0.5783 *** 0.3597 *** -0.6010 *** -0.3572 *** 

 (1.88)  (2.62)  (5.39)  (3.20)  (-5.05)  (-5.15)  

HML -0.0030 *** -0.0003 *** -0.0373 *** -0.4465 *** 0.0343 *** 0.4461 *** 

 (-3.76)  (-2.72)  (-2.93)  (-3.36)  (4.45)  (3.69)  

UMD -0.0115  -0.0037  0.0337  0.7568  -0.0452  -0.7604 *** 

 (0.21)  (0.52)  (0.16)  (0.20)  (-0.15)  (-2.14)  

LVH   0.0181    0.0045    0.0136  

   (1.13)    (0.21)    (1.00)  

Alpha 0.126% ** 0.16% *** -0.266% *** -0.97% *** 0.392% *** 1.128% *** 

 (2.47)  (3.72)  (-3.37)  (-4.26)  (3.51)  (4.35)  

Observations       28,803         28,803         28,803         28,803         28,803         28,803   

Average R2 83%   85%   86%   88%           

 * Significance level of 10% 
** Significance level of 10% 
*** Significance level of 1%

𝜓𝜓 𝜓𝜓 𝜓𝜓 
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 Table 11: Can profitability and investment factors, RMW and CMA, explain the performance of the 
mutual funds? 

This table shows the Fama-French five-factor regression results for daily returns on portfolios of low and 
high volatility components of mutual funds from January 2006 through December 2019.  The new factors 
added to the specification are the profitability (RMW) and investment (CMA) factors of Fama and French 
(2015). 
Numbers between parentheses are t-statistics. 
    

 
 Low   High  Low - High  
Factor                         

Beta 0.66 *** 0.65 *** 1.08 *** 1.08 *** -0.42 *** -0.42 *** 
 (20.60)  (22.61)  (19.78)  (21.77)  (-5.99)  (-6.17)  

SMB -0.02 *** -0.01 ** 0.52 *** 0.54 *** -0.54 *** -0.55 *** 
 (3.17)  (2.32)  (2.64)  (2.90)  (-4.37) *** (-4.57)  

HML -0.02 ** -0.03 * -0.13 *** -0.12 * 0.11 *** 0.09 *** 
 (2.57)  (1.87)  (3.18)  (1.76)  (3.46)  (3.18)  

RMW 0.07 *** 0.07 *** -0.26 *** -0.24 *** 0.34 ** 0.31 ** 
 (3.43)  (3.39)  (4.29)  3.91  (2.30)  (2.11)  

CMA 0.12 *** 0.11 *** -0.05 ** -0.04 *** 0.17 *** 0.15 *** 
 (4.11)  (4.15)  (2.23)  (3.11)  (6.13)  (5.46)  

Alpha 0.09% *** 0.10% *** -0.17% *** -0.18% *** 0.26% *** 0.27% *** 
 (3.18)  (3.64)  (-4.57)  (4.67)  (3.86)  (3.89)  
Observations       28,803         28,803         28,803         28,803         28,803         28,803   
Average R2 83%   85%   86%   88%           
* Significance level of 10% 
** Significance level of 10% 
*** Significance level of 1% 

𝜎𝜎2 𝜎𝜎2 𝜎𝜎2 𝜓𝜓 𝜓𝜓 𝜓𝜓 
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Fig. 1. The annualized average risk-adjusted excess return (alpha) on portfolios formed on variance (𝜎𝜎2) 

This figure shows the average alpha from Fama and French four-factor model from January 2006 through 
December 2019 in three equal weighted portfolios of active US equity mutual funds. The low volatility 
portfolio buys the 10% of mutual funds in the sample with the lowest monthly variance of daily returns. 
The high volatility portfolio buys the 10% of mutual funds in the sample with the highest monthly 
variance of daily returns. 
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Fig. 2 The annualized average risk-adjusted excess return (alpha) on portfolios formed on the 𝜓𝜓 component 

This figure shows the average alpha from Fama and French four-factor model from January 2006 through 
December 2019 in three equal weighted portfolios of active US equity mutual funds. The low 𝜓𝜓 portfolio 
buys the 10% of mutual funds in the sample with the lowest monthly covariance component of the total 
variance of daily returns. The high 𝜓𝜓 portfolio buys the 10% of mutual funds in the sample with the 
highest monthly covariance component of the total variance daily returns. 
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Fig. 3 The annualized average risk-adjusted excess return (alpha) on portfolios formed on the 𝜈𝜈 component 

This figure shows the average alpha from Fama and French four-factor model from January 2006 through 
December 2019 in three equal weighted portfolios of active US equity mutual funds. The low 𝜈𝜈 portfolio 
buys the 10% of mutual funds in the sample with the lowest monthly stock-level variance component of 
the total variance of daily returns. The high 𝜈𝜈 portfolio buys the 10% of mutual funds in the sample with 
the highest monthly stock-level variance component of the total variance daily returns. 
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Appendix 1 

Table A- 1: Can fund volatility predict future performance? 

𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑖𝑖,𝑡𝑡+1 = 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑖𝑖,𝑡𝑡 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡 
Here we use the Fama-Macbeth regression procedure to estimate the above Equation. The dependent 
variable is the alpha for fund i in month t estimated using the Fama-French four-factor model using daily 
returns. For the 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 variable, we use 𝜎𝜎2, 𝜓𝜓, and 𝜈𝜈 in different estimation equations.  
𝜎𝜎2 is the variance of returns during month t using daily observations. Psi is the covariance component (𝜓𝜓) 
and Nu is the variance component (𝜈𝜈) of the 𝜎𝜎2. IVOL is the idiosyncratic standard deviation of daily 
returns during month t. Fund controls include funds’ fixed effect, the Fama-French four-factor Mkt 
(market), SMB (size), HML (value), and UMD (momentum) exposures estimated from daily returns during 
month t.  
Numbers between parentheses are t-statistics. 
 

Characteristic (1)   (2)   (3)   (4)   (5)   (6)   
Alpha 0.076 ***  

 
 

 
0.077 *** 0.022 *** 0.078 *** 

 (8.91)      (9.10)  (3.09)  (9.16)  
𝜎𝜎2   -0.031 ***   -0.154 ***  

 
 

 

   (-2.61)    (-8.59)      
𝜓𝜓 -0.151 ***  

 
 

 
 

 
 

*** -0.138 *** 
 (-8.35)          (-7.63)  
𝜈𝜈 -1.440 

 
 

 
 

 
 

 
-2.636 

 
-1.611 

 

 (-1.15)        (-1.23)  (-1.28)  
IVOL    

 
-0.033 ***  

 
 

 
 

 

     (-2.08)        
Mkt 0.060 *** 0.058 *** 0.059 *** 0.059 *** 0.057 ***  

 

 (3.78)  (3.65)  (3.70)  (3.75)  (3.56)    
SMB 0.150 *** 0.152 *** 0.151 *** 0.150 *** 0.150 ***  

 

 (12.41)  (12.67)  (22.64)  (22.45)  (22.43)    
HML 0.064 *** 0.070 *** 0.069 *** 0.065 *** 0.095 ***  

 

 (4.14)  (4.47)  (4.43)  (4.19)  (7.15)    
UMD 0.009 *** 0.010 *** 0.010 *** 0.009 ** 0.009 **  

 

 (2.44)  (2.77)  (2.75)  (2.48)  (2.47)    
Observations       281,782  

 
    281,782  

 
    281,782  

 
    281,782  

 
    281,782  

 
    281,782  

 

Average R2 32.48%   28.70%   28.45%   31.65%   24.14%   17.44%   
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Table A- 2: How are portfolio unsystematic and covariance risks associated with traditional measures of idiosyncratic risk? 

𝜓𝜓𝑖𝑖,𝑡𝑡 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡  
𝜈𝜈𝑖𝑖,𝑡𝑡 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡  
Here we use the Fama-Macbeth regression procedure to estimate the above equations.  The dependent variable in models (1) to (5) is the 
covariance component (𝜓𝜓), and in models (6) and (7) is the stock level average volatility component (Nu) of total return volatility for fund 
i in month t.  𝜎𝜎2 is the variance of returns during month t using daily observations. IVOLs are the idiosyncratic standard deviation of daily 
returns during month t using Fama and French’s three, four, and five-factor models. Fund controls include funds’ fixed effect, the Fama-
French four-factor Mkt (market), SMB (size), HML (value), and UMD (momentum) exposures estimated from daily returns during month 
t.  
Numbers between parentheses are t-statistics.   

 Dependent Variable 
 𝜓𝜓   𝜈𝜈  

Characteristic (1)   (2)   (3)   (4)   (5)     (6)   (7)   
Intercept -0.002 *** -0.004 *** -0.002 *** -0.003 *** -0.003 ***  0.001 *** 0.000 *** 
 (-32.97)  (-13.63)  (-14.03)  (19.79)  (13.89)   (21.74)  (20.02)  
IVOL (3) 0.128 *** 0.122 ***        0.000  0.000 

 

 (23.02)  (18.25)         (1.24)  (0.73)  
IVOL (4)     0.129 ***         

 

     (19.29)          
 

IVOL (5)       0.122 *** 0.127 ***     
 

       (21.23)  (21.19)      
 

𝜈𝜈         -0.035      
 

         (-1.46)      
 

Risk Loading Controls No  Yes  Yes  Yes  Yes   No  Yes 
 

Observations     287,021       287,021       287,021       287,021       287,021          287,021         287,021  
 

Average R2 88%   89%   93%   94%   94%     1%   2%   
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Appendix 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A- 1: The annualized raw return of Canada on portfolios formed on annual variance (𝜎𝜎2) using monthly return 

This figure shows the annualized average return of from January 2000 through December 2019 in three equal weighted portfolios of mutual funds 
in Canada. The low volatility portfolio buys the 10% of mutual funds in the sample with the lowest annual variance of monthly returns. The high 
volatility portfolio buys the 10% of mutual funds in the sample with the highest annual variance of monthly returns. 
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Fig. A- 2: The annualized raw return of France mutual funds on portfolios formed on annual variance (𝜎𝜎2) using monthly return 

This figure shows the annualized average return of from January 1998 through December 2019 in three equal weighted portfolios of mutual funds 
in France. The low volatility portfolio buys the 10% of mutual funds in the sample with the lowest annual variance of monthly returns. The high 
volatility portfolio buys the 10% of mutual funds in the sample with the highest annual variance of monthly returns. 
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Fig. A- 3: The annualized raw return of Germany’s mutual funds on portfolios formed on annual variance (𝜎𝜎2) using monthly return 

This figure shows the annualized average return of from January 2004 through December 2019 in three equal weighted portfolios of mutual funds 
in Germany. The low volatility portfolio buys the 10% of mutual funds in the sample with the lowest annual variance of monthly returns. The high 
volatility portfolio buys the 10% of mutual funds in the sample with the highest annual variance of monthly returns. 
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