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Abstract 

Composite materials have been a key breakthrough in developing aircraft structures. Their 

superior strength and stiffness-to-density ratio, which are unmatched by no other materials, allow 

engineers to create high strength and ultra-lightweight aircraft structures. Recently, non-Crimp 

Fabric (NCF) composites have emerged as attractive alternatives to traditional autoclave pre-

impregnated composites allowing for lower production costs, better handling and improved shelf 

life while maintaining excellent in-plane mechanical properties compared to other types of textile 

composites. NCF out-of-plane mechanical properties can also be enhanced by stitching a high 

tensile strength yarn throughout their entire laminate thickness, improving the resistance to 

delamination. However, stitch-reinforced NCF materials remain complex multiscale materials and 

the development of constitutive models able to accurately capture deformation and failure 

mechanisms in a virtual design platform is required before they can be utilized effectively in more 

aerospace applications. Accordingly, this thesis work is part of an on-going research effort at 

UTA’s Advanced Materials and Structures Laboratory (AMSL) focusing on the development of a 

methodology for characterization of stitched-reinforced NCFs. In particular, characterization of 

the constitutive shear properties of unstitched NCF using a Short-Beam Shear (SBS) data driven 

method developed at AMSL is considered. The approach implements a Finite Element Model 

Updating (FEMU) method that uses full-field strain data obtained from Digital Image Correlation 

(DIC) measurements to capture nonlinear shear properties. A commercial FEA software, Abaqus, 

is utilized to perform the finite element analysis and a Python code is implemented for data 

processing as well as for conducting optimization. Several factors that may affect the value of 

material inputs generated are also studied, including mesh density, accuracy of the Jacobian matrix 

and initial approximation of material properties. Finally, the practicality of a new feature available 

in the latest version of the DIC software used in this work that may streamline the FEMU process 

is investigated.
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Chapter 1 

Introduction 

This thesis work is part of an on-going research effort at UTA’s Advanced Materials and 

Structures Laboratory (AMSL) in characterizing nonlinear material properties of stitched-

reinforced non-crimp fabric (NCF) composites using a methodology that combine a Short-Beam 

Shear (SBS) test and a Finite element model updating (FEMU) method. The FEMU process will 

first be tested with the strain data generated from the virtual experiment. Later, the algorithm will 

be used to characterize nonlinear shear properties in 1-3 direction of five unstitched NCF 

composite specimens using full-field strain data from the Digital Image Correlation (DIC) system. 

The finite element analysis (FEA) will be conducted in a commercial software, Abaqus, and 

Python will be implemented for FEMU optimization process.   

One of the objectives in this work is to study factors that may affect the solution of FEMU 

which included but are not limited to mesh density, the accuracy of Jacobian matrix and the initial 

approximation of material parameters. The study will be done on both data from a virtual 

experiment and from the DIC system. Lastly, the VicPy Python module from VIC3D 9 software 

that could potentially speed up the entire FEMU process is investigated. 

In the following sections, finite element model updating, a short-beam shear experiment and 

non-crimp fabric composites will be reviewed in order to give readers a thorough background of 

this work. In addition, The FEMU algorithm will be discussed in detail later in chapter two.  
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1.1 Finite Element Model Updating 

Finite element model updating is a method implemented to calibrate the finite element (FE) 

model in order to match the experimental results through an iterative parameter optimization. Since 

1980s, FEMU has been widely used in the fields of aerospace, mechanical and civil engineering 

to precisely reflect physical behavior of structures and materials as a numerical model [1]. Some 

of the FEMU applications are predicting the dynamics of structures and characterizing material 

properties.  The technique can be executed by conducting an experiment on a specimen, creating 

an FE model with predictive material parameters, and correlating the experimental result with the 

FE simulation to find the difference in parameters. Later, FE models are regenerated repeatedly 

with updating parameters until the difference between the simulation and the experimental data is 

less than a user-defined threshold. This results in an accurate FE model representing the behavior 

of material. Although, FEMU is a convenient method, it only provides an approximation of the 

solution and requires computational power to obtain an accurate result. In this work, FEMU will 

be applied to characterize the constitutive nonlinear shear properties of an unstitched non-crimp 

fabric composite. The FEMU process will be utilized to iteratively minimize the strain error 

between the FEA and the DIC data using least square optimization. The material shear properties 

will be updated in each iteration until the change in parameters is less than 0.1%. 

1.2 Short-Beam Shear Experiment 

A short-beam shear is an experiment aimed to determined interlaminar shear strength of high-

modulus fiber-reinforced composites. The American Society for Testing and Materials (ASTM) 

describes a short-beam shear testing in ASTM D2344 as a three-point bending test on a specimen 

with uniform rectangular cross section. The recommended width and length of a specimen are 2 x 

thickness and 6 x thickness respectively [2]. However, this conventional standard fails to produce 
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a pure shear condition on a specimen which could possibly fail in other modes, such as bending, 

leading to an inaccurate measurement of shear properties.    

To eliminate this shortcoming, a new SBS test method was developed at the Advanced 

Materials and Structures Laboratory at the University of Texas at Arlington. By combining a 

modified version of ASTM D2344 SBS test and a full-field strain measurement from Digital Image 

Correlation (DIC) system, all three dimensions of material constitutive shear properties can be 

measured simultaneously with high precision [3]. Figure 1 shows the SBS experimental set up.  

 

 

 

 

 

 

 

 

Few adjustments have been made on the SBS test of ASTM D2344. The width of the specimen 

is reduced to 100% - 200% of its thickness for a better strain distribution. This square cross section 

is also simple to be machined in 1 (0°) and 2 (90°) direction from a single unidirectional panel. 

The geometries of a specimen used in this work are 0.30 in. in both width and thickness, and 1.5 

in. in length. Note that the specimen size is varied by using different materials. The loading nose 

diameter is increased to 2 – 4 in., as well as the support diameter, which is increased to 0.25 in. 

This reduces contact stress which could affect a pure shear condition on a specimen. The specimen 

is then loaded with a monotonic load of 0.005 in/min until failure occur. Figure 2 illustrates SBS 

test schematic. 

Figure 1. Short-beam shear experimental set up. Left: DIC system. 
Right: A specimen undergoes three-point bending test [4]. 



4 
 

 

 

 

 

 

 

 

 

 

 

 

  

A DIC system is utilized to measure a full-field surface strain on a specimen instead of 

implementing a strain gauge, because DIC provides more data point than a strain gauge. This 

results in more accurate strain measurement. A DIC system captures strain on all data points which 

created by spraying black speckles on the surface of a specimen.  For each load case, the DIC 

system captures about 10,000 data points. Besides, DIC can simultaneously measure multiple 

strain components. This way, several properties can be extracted from a single experiment. Also, 

a full-field strain measurement is preferable for FEMU because the solution might not be unique 

if only one strain data point is used for the optimization.  

While the SBS specimen is loaded, a sequence image is captured through a camera system at 

each load step. Figure 3 illustrates an example of a strain distribution from DIC system. 

 

0.3 in. 

0.3 in. 

1.2 in. 

1.5 in. 

2 in. diameter 

2x 0.125 in. diameter 

Analytical Rigid Surface 

3 

1 
2 

Figure 2. SBS experimental schematic. 
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Figure 3. DIC full-field strain measurement. 

Figure 4. SBS specimen fail in tension. 

 

 

 

 

 

 

 

Although SBS test provides ability to simultaneously capture several shear properties in 

one experiment, it cannot be used to evaluate shear properties in a 2-3 plane. SBS specimens made 

from polymer-matrix composites often fail before stress in a 2-3 plane reaches nonlinearity 

because fiber oriented in direction 1 has a low tensile strength in 2-3 direction. Figure 4 shows a 

SBS specimen machined in 90 direction breaks in a 2-3 plane. However, other test methods 

developed at the AMSL such as, Small Plate Twist can be implemented to measure material 

nonlinear shear properties in a 2-3 plane [4]. 
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1.3 Non-Crimp Fabric Composites 

A composite material is a combination of two or more materials on a macroscopic scale to form 

a useful third material [5]. A well-engineered composite material can exhibit the best properties of 

several combined materials which neither of their individual components possesses. These 

properties include high strength, high stiffness, ultra-light weight, wear resistance, etc. Four 

commonly accepted classifications of composite materials are Fibrous composites, Laminated 

composites, Particulate composites and a Combination of some or all types. 

Non-Crimp Fabric (NCF) Composites are part of fibrous composites which consist of long 

fibers embedded in a matrix. The word crimp refers to the difference between the actual length of 

fiber bundle and the length of fiber when it is inside the matrix [6]. The fibers in NCF composites 

are stacked in layers and stitched in position together by a non-structural thin yarn, resulting in 

minimal crimp and a high in-plane strength [7]. NCF composites emerged as an alternative to 

traditional autoclave pre-impregnated composites allowing for lower production costs, better 

handling and improved shelf life while maintaining excellent in-plane mechanical properties 

compared to other types of textile composites.  Their out-of-plane properties can be enhanced 

further by stitching a high strength yarn through the thickness of the laminate. With a low 

production cost, NCF composites have a potential to become a valuable material in aerospace 

industry. Figure 5 shows the cross sectional cut of a stitched structure of an NCF composite from 

the work of Guillaume Seon on An Integrated Approach for Characterizing Non-Crimp Fabric 

Composites with Interlaminar Stitching Reinforcement and figure 6 shows unstitched NCF test 

specimens. 
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Figure 6. SBS specimens of an unstitched NCF composite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although, NCF composites offer great performance, the complexity in their macro structure 

makes it difficult to precisely access their constitutive parameters for a virtual design platform. 

Since several parameters such as, stitching pattern, yarn size and fiber orientation can affect their 

properties, deformation and failure analysis are a challenging task to perform on NCF composites. 

These impede the implementation of such material in aerospace industry and in many other 

applications. Therefore, more study regarding the properties of NCF composites is needed before 

they can be utilized effectively. 

Figure 5. Stitching structure of an NCF composite from cross-sectional X-ray 
CT image [7, p. 3]. 
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Chapter 2 

Finite Element Model Updating Algorithm 

2.1 The Inverse Problem 

The inverse problem is described as a method used to identify material constitutive parameters. 

There are several techniques used to solve the inverse problem, for example, Finite Element Model 

Updating (FEMU), Constitutive Equation Gap Method (CEGM) and Virtual Fields Method (VFM) 

[3, p. 51]. In this chapter, we will focus simply on the principal of the inverse problem and the FEMU 

method. 

Let us consider a standard finite element equation,  

 [𝐾(𝜃)]{𝑢} = 	 {𝑅} (1) 

where stiffness matrix K is a function of constitutive parameters θ, u is a nodal vector and R is a 

force vector. Since u and R can be measured as strains and applied forces, K can be solved by 

inverting u, which gives, 

 [𝐾(𝜃)] = 	 {𝑢}01{𝑅} (2) 

Thus, the material parameters θ, can be determined from the relationship in equation (2). This 

method of solving an inverse refers to as a closed-form solution. However, this approach is 

applicable only when there is a clear established relation between measured quantities and the 

constitutive parameters, such as an explicit formular. For example, when strain distribution is 

constant, the elastic equilibrium equation can be used to link the constitutive parameters to the 

measured strain and force. Often time, such test condition is not feasible. Therefore, a closed-form 

solution is not available, and other solving methods must be implemented. 
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 Finite element model updating method, on the other hand, utilizes a nonlinear least square 

optimization procedure which minimize the objective function of the form, 

 𝑐3(𝜃) = 	 (𝑢4 − 𝑢(𝜃))6 ∙ 𝑊3 ∙ (𝑢4 − 𝑢(𝜃)) (3) 

Where u(θ) is a computed strain solution of u, 𝑢4  is a measured strain, and Wu is a weight matrix. 

The material parameters θ are then solved by an iterative numerical procedure. For this work, u 

represents a strain measured from a full-field DIC system and u(θ) is a computed strain obtained 

from an FE analysis. Equation (3) is then rewritten as,  

 𝑐(𝑝) = 	 (𝜀;<= − 𝜀>?@)6 ∙ 𝑊 ∙ (𝜀;<= − 𝜀>?@) (4) 

Since only material nonlinear shear properties will be considered, p used in equation 4 is referred 

to as a set of unknown material constitutive shear parameters. W is a positive-definite diagonal 

weight matrix of the form, 

 𝑊 = [𝑊AB]@C				𝑤ℎ𝑒𝑟𝑒		𝑊AB = 	 H
𝑤AA
0 		

AJ	AKB
AJ	A	LB	  (5) 

Note that M is the number of grid points projected on the SBS specimen and N is the number of 

steps in which the DIC image is captured. For this work, the value of 𝑤AA is equal to 

 𝑤AA =
MNO,Q

MNO,RST
 (6) 

Where 𝜀1U,VWX is the maximum 1-3 strain in each load step.  

The advantage of FEMU is that such method relies only on the test data and does not require 

any prior knowledge of material parameters. Besides, the optimization procedure is usually 

executed using Gauss-Newton or Levenberg-Marquardt method which is a very time-efficient 

method. However, the solution from the FEMU is in the form of approximation. Therefore, to 

obtain accurate material parameters, care has to be taken during the experimental testing and FE 

modeling procedure. 
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2.2 The Optimization Algorithm  

The material constitutive shear parameters are optimized iteratively through equation (4) where 

its value at iteration k is expressed as, 

  𝑝Y = 𝑝Y01 + ∆𝑝Y (7) 

and,   

 ∆𝑝Y = 	 [𝐽6𝑊𝐽 +	𝜆Y𝑑𝑖𝑎𝑔(𝐽6𝑊𝐽)]01 ∙ 𝐽6𝑊(𝜀;<= − 𝜀>?@(𝑝Y)) (8) 

𝐽 is the Jacobian matrix, often called as a sensitivity matrix. 𝜆 is a Levenberg-Marquardt 

damping parameter with more detail provided in the next topic. The whole process of the 

calculation can be summarized in one diagram as illustrated in figure 7.     

    

 

 

 

 

 

 

 

 

 

 

  
Figure 7. Finite Element Model Updating Schematic. 
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 The initial material parameters or “approximated parameters”, 𝑝h, are used as input for 

compiling the first nonlinear FEM analysis. The FEM strain is then compared with the strain data 

measured from a DIC system to calculate the strain error. In order to calculate the Jacobian matrix, 

the FEM stress is implemented. Lastly, the change in material parameter, ∆𝑝, is calculated by using 

equation (8). With that, the new material parameters are updated through equation (7) and the 

whole process continue until the change in the input parameters is less than 0.1%. The Root Mean 

Square (RMS) error between DIC and FEM strain is then calculated in each iteration to determine 

how close the strain is to the actual strain. Figure 8 shows an example of the material parameters 

as the number of iteration increase. The solution converges in only two iterations. The FEMU 

optimization is done with Python due to its simplicity in data analysis. The fact that Abaqus 

supports Python scripting also makes it a very convenient choice for this work.  
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2.3 The Jacobian Matrix 

In general, the Jacobian matrix is used to transform a vector-value function from one coordinate 

system to another coordinate system, for example, from a cartesian coordinate to a polar 

coordinate. At a point where a function is differentiable, the Jacobian matrix describes how the 

function is transforming locally near that point. In other word, the Jacobian matrix is the best linear 

approximation for transformation of the function near that point [8]. In this work, the Jacobian 

matrix is implemented to describe how the change in FEM strain compare to the change in material 

parameters, and is expressed as,  

 𝐽 = [iM
jkl

im
]@∙C×o (9) 

The size of the Jacobian matrix is defined by the number of grid points M, the number of load 

steps N and the number of material parameters P. For example, for 10 grid points, 10 load steps 

and 3 material parameters, the Jacobian matrix will have its size of 100x3. As illustrated in figure 

7, the Jacobian matrix is updated in every iteration. For this thesis, two types of the Jacobian matrix 

are considered, the analytical Jacobian and the numerical Jacobian. 

2.3.1 The Analytical Jacobian  

The material constitutive model implemented in this work is a combination of an elastic stress-

strain orthotropic material model and nonlinear stress-strain Ramberg-Osgood equations to 

represent the shear response in the three principal material planes. The following set of equations 

represent the stress-strain relation of the material model. 

 p
𝜀11
𝜀qq
𝜀UU
r =

⎣
⎢
⎢
⎢
⎡

1
?NN

0vNw
?NN

0vNO
?NN

0vNw
?NN

1
?ww

0vwO
?ww

0vNO
?NN

0vwO
?ww

1
?OO ⎦

⎥
⎥
⎥
⎤

p
𝜎11
𝜎qq
𝜎UU

r (10) 
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𝛾1q =
𝜏1q
𝐺1q

+ 𝜏1q(
𝜏1q
𝐾1q

)
1
�Nw 

𝛾1U =
𝜏1U
𝐺1U

+ 𝜏1U(
𝜏1U
𝐾1U

)
1
�NO 

𝛾qU =
𝜏qU
𝐺qU

+ 𝜏qU(
𝜏qU
𝐾qU

)
1
�wO 

Where 𝑣 is passion ratio, E is elastic modulus, 𝐺 is linear shear modulus and K, n are the secant-

intercept modulus.  

The analytical Jacobian matrix is based on the assumption that the stress variation is small in 

the evaluating area compared to the change in material parameter. Therefore, it can take advantage 

of a closed-form stress derivative from equation (10). For instance, for three variable material 

parameters in a 1-3 plane, the analytical Jacobian can be written as, 

 

 𝐽 = �iMNOi�NO

i�NO
i�NO

iMNO
i�NO

�
@∙C×U

 

 𝐽 = p
0�NO
�NOw

	,			 0�NO
N
�NO

�NO∙�NO

N
�NO

�N
	,			 01

�NOw
∙ (�NO
�NO
)

N
�NO ∙ ln(�NO

�NO
)r
@∙C×U

 (11) 

   

The analytical Jacobian provides convenience in calculation since there is no additional FE 

analysis required. However, the rate of convergence will depend on how stress is varied, and which 

material constitutive model is chosen. 
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 2.3.2 The Numerical Jacobian 

In case there is no explicit relationship between stress and strain as in equation (10), Finite 

Difference Method (FDM) will be implemented to calculate the Jacobian matrix. A forward 

difference is used in this work to approximate the derivative of strains with respect to the material 

parameters as shown in equation (11). 

  𝐽 = �iMNOi�NO

i�NO
i�NO

iMNO
i�NO

�
@∙C×U

 

 𝐽 = �
MNO,jklw0MNO,jklN

∆�NO
	,			 MNO,jklw0MNO,jklN

∆�NO
	,			 MNO,jklw0MNO,jklN

∆�NO
�
@∙C×U

 (12) 

FEM1 and FEM2 refer to the number of simulation (job) run in Abaqus software. FEM1 uses 

the material parameter at iteration k to run the simulation while FEM2 uses material at the same 

iteration but with the change in its value by 1%. For example, if G13 = 737,000 psi is used as a 

material parameter to run FEM1, G13 = 744,370 will be used to run FEM2. The disadvantage of 

using numerical Jacobian is that several jobs must be compiled in each iteration which is 

computationally expensive. The rate of the solution convergence from using the analytical and 

numerical Jacobian will be thoroughly examined later in chapter 4. 

2.4 The Levenberg-Marquardt Damping Parameter 

In this work, a least square optimization problem is solved iteratively with Levenberg-

Marquardt method. The method combines Gauss-Newton method and the gradient descent method 

together. In Gauss-Newton method, the algorithm minimizes the sum of the squared errors through 

an assumption that the least square function is locally quadratic in the parameters [9]. This method 

requires no calculation of a second derivatives, unlike regular Newton method, and converges 

faster than a gradient descent method in a moderate size problem. On the other hand, the gradient 
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descent method converges much faster in a small size problem since it minimizes the objective 

function in the steepest-descent direction.  

Levenberg-Marquardt method takes advantage of both Gauss-Newton and gradient descent 

method by introducing a damping parameter 𝜆, which will vary the parameter update between 

Gauss-Newton and gradient descent method. The method acts like a Gauss-Newton when the 

parameters are close to the solution and acts like a gradient descent method when the parameters 

are far away from the solution. With small damping value results in Gauss-Newton update and 

large damping value result in gradient descent update, the Levenberg-Marquardt proves to be a 

computational effective method.  

The damping parameter will get updated in each iteration to maximize the convergence rate by 

comparing the objective function of the current iteration to the previous one. The gain factor, Q, 

is used as a mean to compare the objective function. Where Q at each iteration is expressed as, 

 𝑄Y =	 =��N0=�

q�m��(���m��	���(M���0Mjkl(m�)))
 (13) 

The initial value of Levenberg-Marquardt damping parameter, 𝜆, is approximated by, 

 𝜆 = 	𝜏 × max	(𝑑𝑖𝑎𝑔(𝐽6𝑊𝐽))  (14) 

Where 𝜏 is equal to 0.001 [10]. The damping parameter is updated in the following conditions. 

1. 𝜆 = 	𝜆/3.0 if Q in that iteration is greater than 0.75. 

2. 𝜆 = 	𝜆 × 2.0 if Q in that iteration is less than 0.25. 

3. 𝜆 = 10.0 if 𝜆 is greater than 10.0. 

Another advantage of implementing the damping parameter in the least square optimization 

algorithm is that it reduces the effect of noise from the experimental data, which improves the 

accuracy of the resulting parameters. 
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Figure 9. SBS finite element model in Abaqus. 

Chapter 3 

The Finite Element Model 

3.1 Short Beam Shear Finite Element Model 

In order to obtain computational stress and strain values, finite element simulation is conducted 

in the commercial software Abaqus 2020. Surface stress and strain captured on the model will be 

utilized to calculate a Jacobian matrix and optimize the constitutive shear 1-3 properties. Figure 9 

illustrates a SBS finite element model. The model consisted of 15,480 elements with more element 

in contact areas for more accurate solutions. 

 

 

 

 

 

 

 

 

 

C3D8I, 3D incompatible brick element, is used in the SBS model since it gives best result in 

rectangular shape and removes shear locking in bending applications. Although C3D8R, 3D 

reduce integration brick element, can be used interchangeably, it provides less accurate results due 

to its limited integration point. Analytical rigid surfaces are used to create loading nose and two 
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Figure 11. Boundary conditions of the beam. 

supports with frictionless contact at contact points. The FEM analysis considers both the effect of 

material and geometrical nonlinearities using the option nlgeom=yes in the definition of the 

Abaqus Implicit Static Analysis step.  

 For boundary conditions, reference points of both supports are encastre (u1 = u2 = u3 = ur1 

= ur2 = ur3 = 0) as shown in figure 10. The reason that the whole contact area between the beam 

and supports is not fixed is that the beam is allowed to slide in both 1 and 2 directions. 

 

 

 

 

 

 

 

 

The mid plane of the beam is fixed with u1 = 0 and u2 = 0 at the square and rectangular cross 

section respectively to retain rigid body motion as shown in figure 11. 

 

 

 

 

 

 

Figure 10. Boundary condition at supports. 
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A concentrate load is assigned at the loading nose and the magnitude of the load comes from the 

DIC test data. 

A user subroutine, UMAT, for shear nonlinear material developed by the ASML is 

implemented for describing material behavior of the beam in which the initial material parameters 

are		 

𝐸11 = 7.56 × 10 , 		𝐸qq = 7.06 × 10 , 𝐸UU = 1.26 × 10 	𝑝𝑠𝑖 

	𝛾1q = 𝛾1U = 	 𝛾qU = 0.40	𝑝𝑠𝑖 

𝐺1q = 2.77 × 10 , 𝐺1U = 3.7 × 10U, 𝐺qU = 4.4 × 10£	𝑝𝑠𝑖 

𝐾1q = 4.17 × 10£, 𝐾1U = 1.8 × 10¥𝐾qU = 36,100	𝑝𝑠𝑖 

𝑛1q = 0.273,𝑛1U = 0.15, 𝑛qU = 0.201	𝑝𝑠𝑖 

The fiber direction is 1, the in-ply traverse direction is 2 and laminate thickness direction is 3. 

 

3.2 Transferring DIC data onto FE models. 

The VIC3D 7 software is utilized to calculate a strain distribution from a DIC system. In order 

to correlate the test data with FEA result, the origin of the DIC and FEM coordinate has to be at 

the same location. Therefore, all DIC test data must be shifted in both X and Y direction until it 

coincides with the FEM grid. In this work, rotation of the DIC data to align with the FEM reference 

coordinate system was not needed. The left support and the mid-point on the beam are used as a 

reference for shifting coordinate in x and y direction, respectively. For example, if the left support 

has the FEM coordinate of x = -0.6, but on DIC coordinate x = 0.5, then all the data points in DIC 

have to be subtracted by 1.1. The same goes with the y coordinate.  
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Figure 12. Top: DIC data. Bottom: DIC interpolated data on FEM grids. 

The function griddata from Python’s SciPy library is used to interpolate the DIC data onto each 

node of the FEM mesh. Figure 12 compares the DIC raw data with the DIC interpolated data on 

FEM grids. 

 

 

 

 

 

 

 

To verify the accuracy of the interpolated data, nonlinear stress-strain curves of both data are 

plot together as illustrated in figure 13. A good interpolation will result in an identical stress-strain 

curve of both graphs. The mesh density as well as the shift in data coordinate will affect the 

interpolated result. Therefore, care has to be taken during the coordinate adjustment.  
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Figure 13. An approximated nonlinear stress-strain curves of a DIC raw data and a DIC 
interpolated data. 
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Chapter 4 

 Results and Verification  

4.1 The Virtual Experiment 

To verify the FEMU least square optimization algorithm, two FE SBS models are created. One 

model was created to replicate the physical experiment using material properties in 1-3 direction 

that were 40% higher than the other one. The second model was used to conduct FEMU and would 

be calibrated so that it matched with the material properties of the first model which were, 𝐺1U =

374,000	, 𝐾1U = 15,400 and 𝑛1U = 0.132. Figure 14 and table 1 illustrate the convergence of the 

material shear parameter as the number of iterations increases. 

 

 

 

 

 

  

  

 

  

0

2000

4000

6000

8000

10000

0 0.02 0.04

St
re

ss
13

(Ib
 / 

in
2 )

Strain13

Initial
Target
Current

0

2000

4000

6000

8000

10000

0 0.02 0.04

St
re

ss
13

(Ib
 / 

in
2 )

Strain13

Initial
Target
Current

0

2000

4000

6000

8000

10000

0 0.02 0.04

St
re

ss
13

(Ib
 / 

in
2 )

Strain13

Initial
Target
Converged

Iteration 1 Iteration 2 Iteration 3 

Figure 14. Convergence of the solution at each iteration. 
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Table 1. Converge of the material shear parameters. 

 

The process took about 10 minutes using 8 CPUs for 3 iterations. The root mean square (RMS) 

strain error is also calculated in each iteration to measure how close the strain is to the actual strain 

value. 

It is important that the generated DIC data and the FEA result are evaluated at the same node 

points. As well as the order of the node in the weight and Jacobian matrices must be in the same 

order. Otherwise, the optimization will be invalid. Also, only the positive shear strain is used to 

calculate the weight matrix and Jacobian matrix. The strain data of each node that lie within the 

black window as shown in figure 15 are used for the FEMU process.  

 

 

 

 

 

Iteration / Parameters 
𝐺1U 

(psi) 

𝐾1U 

(psi) 

𝑛1U 

(psi) 

RMS strain 

error (%) 

Initial 238,000 9,800 0.084 17.66% 

1 349,146 15,355 0.141 3.13% 

2 373,216 15,457 0.132 0.07% 

3 374,003 15,402 0.132 0.001% 

Real parameter 374,000 15,400 0.132  

Figure 15. Area where strain data are used for interpolation. 
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The sensitivity of the model including mesh density, Jacobian matrix of transformation and the 

initial approximation of material properties are examined in the following section. 

4.1.1 Mesh Density 

Four SBS models meshed with the same element, C3D8I, but different mesh density were used 

to run the FEMU procedure. The coarse mesh model has 624 elements, the medium mesh model 

has 1,520 elements, the fine mesh model has 2,016 elements, and extra-fine mesh model has 4,704 

elements. All four models used both analytical Jacobian with the initial approximation of  𝐺1U =

340,000	, 𝐾1U = 14,000 and 𝑛1U = 0.12. Figure 16 shows all four FE models. 

 

 

 

 

 

 

 

 

 

 

After getting the material parameters from the optimization procedure, the nonlinear stress 

strain curves are plotted using Ramberg-Osgood formular to compare the solution convergence 

from different mesh. Figure 17 shows that the solution from all mesh density converge to the real 

value. 

Figure 16. Four SBS FE models. Top left: coarse mesh, Top right: medium mesh, Bottom left: 
fine mesh, Bottom right: extra-fine mesh. 
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Notice that even a 624-element-model converged to the real solution. Besides, the mesh density 

seems to have very little effect on the convergence of the FEMU solution. This means that the 

FEMU algorithm is very robust and using few elements will reduce the FEMU calculation time. 

The 4704-element-model took 10 minutes to complete the optimization while the 624-element-

model only required 3 minutes. 
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Figure 17. Convergence of the solution from analytical Jacobian. 



24 
 

4.1.2 Jacobian Matrix 

All four SBS FE models were also tested with the numerical Jacobian for the optimization. The 

analytical Jacobian is calculated using the stress approximation while the numerical Jacobian uses 

the FDM with forward operator for the calculation. The solution converged using numerical 

Jacobian as shown in figure 18, top. However, the solution from numerical Jacobian converged 

faster than the analytical Jacobian and more accurate solution can be obtained from using a 

numerical Jacobian. Table 2 and 3 compare the solution from using both analytical and numerical 

Jacobian.   
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Figure 18. Convergence of the solution from both Jacobians. Top: Numerical 
Jacobian. Bottom: Analytical Jacobian 
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Table 3. Convergence of shear parameters from the numerical Jacobian. 

 

 

Table 2. Convergence of shear parameters from the analytical Jacobian. 

Iteration / Parameters 
𝐺1U	

(psi) 

𝐾1U 

(psi) 

𝑛1U 

(psi) 

RMS strain 

error (%) 

Initial 238,000 9,800 0.084 17.66% 

5 355,558 12,007 0.112 3.72% 

10 371,387 13,219 0.114 1.12% 

15 373,309 14,447 0.124 0.34% 

Real value 374,000 15,400 0.132  

Iteration / Parameters 
𝐺1U 

(psi) 

𝐾1U 

(psi) 

𝑛1U 

(psi) 

RMS strain 

error (%) 

Initial 238,000 9,800 0.084 17.66% 

1 349,146 15,355 0.141 3.13% 

2 373,216 15,457 0.132 0.07% 

3 374,003 15,402 0.132 0.001% 

Real value 374,000 15,400 0.132  
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According to tables 2 and 3, numerical Jacobian only required 3 iterations for the solution to 

converge. In fact, the material property obtained is almost identical to the real material value. The 

analytical Jacobian gave a good result as well with 0.34% RMS strain error. However, it took 15 

iterations to get to the solution and will need more to obtain the exact value. Figure 19 shows a 

root-mean-square (RMS) error as the number of iteration increase. 

 

 

 

 

 

 

 

 

A related point to consider is that the number of Abaqus jobs that need to be compiled using 

numerical Jacobian were 12 jobs and not 3. Since it took 3 extra jobs to calculate the numerical 

Jacobian in each iteration, the additional 9 jobs were added. Because the analytical Jacobian 

required no extra jobs to run, the number of jobs are equal to the number of iterations which is 15. 

In conclusion, in this case, the numerical Jacobian used less job while giving a better result. This 

is because the analytical Jacobian relies on a closed-form stress approximation. If the stress is not 

constant, more iterations are needed for the optimization. On the other hand, numerical Jacobian 

is calculated directly based on the difference between the finite strain of the two model which 

resulted in a better accuracy. 
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Figure 19. RMS strain error of analytical and numerical Jacobian. 
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4.1.3 Robustness of the Solution 

Since the solution is more accurate and converges faster using a numerical Jacobian, four 

different sets of initial material parameters were tested with the numerical Jacobian and the 

convergence of the solution was examined. The four sets of initial material parameters were, 

1. 𝐺1U = 238,000	, 𝐾1U = 9,800, 𝑛1U = 0.08. 

2. 𝐺1U = 340,000	, 𝐾1U = 14,000, 𝑛1U = 0.12 

3. 𝐺1U = 408,000	, 𝐾1U = 16,800, 𝑛1U = 0.14. 

4. 𝐺1U = 510,000	, 𝐾1U = 21,000, 𝑛1U = 0.18. 

The real value of the material parameter was  𝐺1U = 370,000	, 𝐾1U = 15,400 and 𝑛1U = 0.132. 

All four models took 4 iterations for the solution to converge, and results are shown in figure 20 

below. 
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Figure 20. Convergence of the solution from four different initial approximations. 



28 
 

The initial approximations of material parameters that range from 40% lower to 40% higher 

than the actual parameter converged to the real solution with less than 0.1% RMS error using 

numerical Jacobian and a 2016-element-model. The solution still converged even when the initial 

set of material parameter was 80% higher than the actual parameters, but it would take more 

calculation time. Table 4 shows the convergence of the solution of the initial set of parameters that 

are 80% higher than the actual parameter. The process took 6 iterations. However, if the initial set 

of input parameters are too extreme, Abaqus will not be able to compile the job and the FEMU is 

not achievable. This means that, with the FE generated data, the solution will always converge 

using numerical Jacobian as long as the job is executable from the initial set of parameters. Also, 

the optimum value of initial parameters should be in the range of 40% lower to 40% higher than 

the actual parameter. 

 

Table 4. Convergence of shear parameters from 80% higher initial approximation. 

Iteration / Parameters 
𝐺1U 

(psi) 

𝐾1U 

(psi) 

𝑛1U 

(psi) 

RMS strain 

error (%) 

Initial 646,000 26,600 0.228 18.78% 

1 262,923 19,506 0.184 13.94% 

2 359,610 10,055 0.106 7.33% 

3 379,101 15,350 0.164 3.41% 

4 372,673 17,597 0.161 0.74% 

5 373,190 15,360 0.132 0.17% 

6 373,999 15,404 0.132 0.006% 

Real value 374,000 15,400 0.132  
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4.1.4 The Damping Parameter and Tau 

As discussed in chapter 2, the initial value of Levenberg-Marquardt damping parameter, 𝜆, 

is approximated by, 

 𝜆 = 	𝜏 × max	(𝑑𝑖𝑎𝑔(𝐽6𝑊𝐽))  (13) 

Where 𝜏 is a small such as 0.001. In some cases, if the mesh density is not high enough the value 

of tau, 𝜏, has to be even lower than 0.001 for the solution to converge to the correct value. Table 

5 shows the convergence of the solution using different value of tau. The model used 1,520 

elements and was tested with both numerical and analytical Jacobian with the initial value of 𝐺1U 

equal to 737,000. 

 

 

For analytical Jacobian, the value of tau should be less than 1 × 100  for the most accurate 

result, if the lower density mesh will be used. However, tau cannot be equal to 0. Otherwise, mu,  

𝜆, will be 0 and will not get updated. On the other hand, the value of tau has no effect on the 

numerical Jacobian. The solution will always converge no matter how large the value is. 

𝜏 / Parameter 𝐺1U Analytical (psi) 𝐺1U Numerical (psi) 

0.1 773,493 810,700 

1 × 100U 801,083 810,700 

1	 × 100  807,719 810,700 

1 × 1001h 807,723 810,700 

Real Value 810,700 810,700 

Table 5. Convergence of 𝐺1U from different tau value. 
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 4.1.5 Conclusion of FEMU Algorithm from the Virtual Experiment 

The FEMU is done by conducting a virtual experiment using two FE models. One represented 

a virtual SBS test, and the other was used for an optimization. The FEMU algorithm worked out 

well as expected and several factors that affect the optimization were examined. Several 

conclusions based on the study which are, 

1. With the FE generated data, the mesh density has little effect on the convergence of the 

FEMU solution. The solution from the 624-element-model took about the same 

iteration as the 4,704-element-model to converge. The resulting material parameters 

were also identical from both models. However, the SBS model must contains enough 

element to complete the Abaqus job. 

2. The numerical Jacobian is more robust than the analytical Jacobian. The numerical 

Jacobian provides more accurate and faster convergence of the solution with the 

resulting material parameter identical to the actual value. However, analytical Jacobian 

can be good at approximating the material parameter since it only takes few Abaqus 

jobs to get a good approximation of a solution. Therefore, in cases the actual material 

parameter is unknown, a good approach is to use the analytical Jacobian to run the 

FEMU for few iterations and get the approximate material parameter and use the 

numerical Jacobian later to get a more accurate solution. 

3. A good approximation of initial parameters should lie between 40% lower to 40% 

higher than the actual material parameters. Although, the solution still converges at 

80% higher than the actual parameter, it takes more calculation time. 

4. The value of tau, 𝜏, should be below 1 × 100  but not 0, when using analytical 

Jacobian. For numerical Jacobian, tau has little effect to the convergence of the solution. 
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4.2 Working with DIC data 

To characterize nonlinear shear properties from NCF composite specimens, the FE generated 

strain data was substituted by a DIC full-field strain measurement data measured from the DIC 

system. The DIC data was interpolated on the nodes of FE grid as discussed in chapter 3. The 

initial approximation of material parameters were, 𝐺1U = 370,000	, 𝐾1U = 18,000 and 𝑛1U = 0.15 

and the FEMU was done on 5 different specimens. As mentioned in section 3.2, the SBS FE model 

must contain enough node points for a good DIC data interpolation. Therefore, the SBS FE model 

of 15,840 elements was used as shown in figure 21.  

 

 

 

 

 

 

 

 

 Figure 22 shows an approximated stress-strain curve from two different FE models based 

on the maximum interpolated shear strain and a closed-form solution (0.75 * P/A) for calculation 

of the maximum stress. The FE model with 15,840 elements contains more nodes which resulted 

in a more accurate data interpolation than the FE model with 4,704 elements. The approximated 

stress-strain curve of a 15,840-element model is identical to the approximated stress-strain curve 

from a raw DIC data. 

 

Figure 21. Short-beam shear finite element model with 15,840 elements 
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Another point to consider is the area of interpolation. The DIC system cannot capture the strain 

on the entire face of the beam as illustrated in figure 3. There is still a strain field on the edge of 

the specimen that is not measured by the DIC system. Therefore, the missing data points must be 

taken into account when interpolating a DIC data on the FEM grid as shown in figure 23.  
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Figure 22. Approximated nonlinear stress-strain curves from two data interpolations. 

Figure 23. Top: DIC interpolated strain data on FEM grids. Bottom: DIC strain measurement on a 
specimen. 



33 
 

4.2.1 The Weight Matrix 

According to equation (6) the value of each member in the weight matrix should be equal to 

¨©ªWA�,A
VWXAV3V	¨©ªWA�

. However, this expression provides an accurate result only when the data is smooth 

such as FE generated data. If the data contain lots of noise for low strain values, the weight matrix 

may be scaled up to compensate the noise as shown in equation (15). 

  𝑤AA = 100 × ( MNO,Q
MNO,RST

)q (15) 

Figure 24 shows the difference between the data with less noise and data with lots of noise which 

occurred during the experimental testing. 

 

 

 

 

 

Table 6 shows the result from one of the specimens with the optimization using the weight 

matrix from equation (6) and the weight matrix from equation (15). Note that using the scaled 

weight matrix resulted in less RMS strain error which means more accurate result. Therefore, the 

expression of the weight matrix in equation (15) was used for the optimization. 

  

Figure 24. Left: DIC data from specimen 5 contains less noise. Right: DIC data from specimen 3 
contains lots of noise. 
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4.2.2 Convergence of the Solution 

As the number of iteration increase, the shear parameters will start to converge to the real value. 

The Levenberg-Marquardt optimization stops when the relative change in parameter is less 0.1%. 

Table 7 and 8 show the convergence of the solution from the specimen 5 using two different 

Jacobian, analytical and numerical. 

Iteration / Parameters 
𝐺1U 

(psi) 

𝐾1U 

(psi) 

𝑛1U 

(psi) 

RMS strain 

error (%) 

Initial Parameters 370,000 18,000 0.15 9.96% 

Converged 

Eq. 6 W matrix 
433,521 19,524 0.1570 5.75% 

Converged 

Eq.15 W matrix 
431,567 18,878 0.1506 5.50% 

Table 6. A converged solution from different weight matrix. 

Iteration / Parameters 
𝐺1U 

(psi) 

𝐾1U 

(psi) 

𝑛1U 

(psi) 

RMS strain 

error (%) 

0 370,000 18,000 0.15 10.52% 

1 411,652 18,363 0.153 2.58% 

2 421,418 18,484 0.154 2.49% 

3 422,600 18,527 0.155 2.45% 

4 422,723 18,545 0.155 2.39% 
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Using numerical Jacobian resulted in less RMS strain error as expected. However, the 

analytical Jacobian also provided a good result in 5 iterations. Note that, the numerical Jacobian 

took a total of 16 jobs for the solution to converge, while the analytical Jacobian only took 5 jobs. 

Therefore, with the real data, analytical Jacobian tend to be a better choice since it used less jobs 

for the solution to converge with acceptable amount of RMS strain error. If time is not the factor, 

numerical Jacobian will still provide a slightly more accurate solution. Figure 25 shows stress-

strain curves of specimen 5 using different Jacobian for the FEMU. The result is almost identical. 

  

5 422,740 18,553 0.155 2.39% 

Table 7. Convergence of shear parameters using DIC data and the analytical Jacobian. 

Iteration / Parameters 
𝐺1U 

(psi) 

𝐾1U 

(psi) 

𝑛1U 

(psi) 

RMS strain 

error (%) 

0 370,000 18,000 0.15 10.52% 

1 416,916 18,557 0.155 2.61% 

2 423,040 18,617 0.155 2.25% 

3 423,110 18,629 0.156 2.24% 

4 423,106 18,628 0.156 2.23% 

Table 8. Convergence of shear parameters using DIC data and the numerical Jacobian. 
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Three SBS FE models with three different mesh were tested with the DIC data to verify the 

convergence of the solution. The three model were 15,840-element-model, 22,800-element-model, 

and the 26,600-element-model. Figure 26 shows the convergence of the solution from three 

different model. As expected, the mesh density has little effect on the convergence of the solution. 

All three models provided identical stress-strain curve. However, it is worth noting that the mesh 

density might have some effect with the solution if less element were used, but that will result in 

an inaccurate DIC data interpolation. 

 

 

 

 

 

 

 

Figure 25. Nonlinear stress-strain curves of the solution from analytical and 
numerical Jacobian. 
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Figure 26. Convergence of the solution from three different models. 
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Figure 27. Convergence of the solution from two different initial 
approximations. 

Several initial approximations of material parameter were used to verify the convergence of 

the solution as well. Figure 27 shows the convergence of the solution from two different initial 

approximations. The first approximation was 𝐺1U = 370,000	, 𝐾1U = 18,000 and 𝑛1U = 0.15, and 

the second approximation was 𝐺1U = 450,000	,𝐾1U = 25,000 and 𝑛1U = 0.20. The solution from 

both approximations took 4 iterations to converge with the RMS strain error less than 5% from 

both approximations. 

 

 

 

 

 

 

 

 

Approximation / 

Parameters 

𝐺1U 

(psi) 

𝐾1U 

(psi) 

𝑛1U 

(psi) 

RMS strain error 

(%) 

Approximation 1 370,000 18,000 0.15 10.52% 

Converged 1 423,106 18,628 0.156 2.23% 

Approximation 2 450,000 25,000 0.20 7.66% 

Converged 2 423,117 18,631 0.158 2.6% 

 

Table 9. Convergence of shear parameters from two different initial approximations. 
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4.2.3 Result from five Specimens 

For the most accurate result, the numerical Jacobian, and the FE model with 15,840 elements 

were used to conduct FEMU and characterize material shear properties of five unstitched NCF 

composite specimens. The FEMU process took about 40 minutes for one specimen. After obtaining 

the material shear parameters from the optimization procedure, a Ramberg-Osgood stress-strain 

curves from all 5 specimens are plotted in figure 28 and the results are shown in table 10. 
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Figure 28. Nonlinear stress-strain curves from all five specimens. 
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Specimen/ 

Parameter 

𝐺1U 

(psi) 

𝐾1U 

(psi) 

𝑛1U 

(psi) 

RMS strain 

error (%) 

1 394,806 18,897 0.161 4.91% 

2 422,014 21,734 0.184 4.48% 

3 400,238 27,959 0.239 8.56% 

4 424,172 19,065 0.154 5.58% 

5 423,106 18,628 0.156 2.23% 

Mean* 416,024 19,581 0.1609  

Standard Deviation* 14,172.88 1,446.37 0.0138 

Coefficient of Variation* 3.40% 7.38% 8.44% 

*The value does not include specimen 3 due to its high RMS error. 

Table 10. Convergence of shear parameters from all five specimens with the average value and 
coefficient of variation of shear parameters. 

 

Note that the RMS strain error does not go to 0 even if the solution is already converged, unlike 

FE generated data where RMS will always approach 0. There are several factors that prevent RMS 

strain error to become 0. First, the experimental testing was not done in the ideal condition where 

the SBS specimen slides on the frictionless contacts. There were some frictions between contacts 

and the specimens which could contributed to the noise in data. Second, the magnitude of the 

negative and positive shear strain on the SBS surface were asymmetric. Figure 29 shows the plot 

of a magnitude of maximum negative and positive strains. The maximum positive strain is a little 

higher than the maximum negative strain. Lastly, the specimen cross sectional area might not be a 

perfect square due to the manufacturing process. 
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According to the table, specimen 3 has a high RMS strain error. This is because the DIC data 

contains lots of noise from experimental testing as illustrated in figure 30. The positive strain 

region mid-way between the loading nose and the support on specimen has an uneven strain 

distribution which caused an unusual high RMS strain error. On the other hand, specimen 5 has 

more even strain distribution, resulting in less RMS error. Therefore, the result from specimen 3 

was not used in averaging the material shear parameters.  
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Figure 29. Magnitude of maximum positive and negative strain vs step. 

Figure 30. Top: Uneven strain distribution on specimen 3. Bottom: Even strain distribution on 
specimen 5. 
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The FEMU tend to provide an accurate result on a large value parameter. For example, the average 

value of 𝐺1U is 416,024 has the coefficient of variation of 3.4%, while the value of 𝑛1U which is 

0.163 has the coefficient of variation of 8.44%. Therefore, the FEMU will be more accurate when 

optimizing large value of parameter.  

 

4.2.4 Conclusion on FEMU with DIC Data 

Five unstitched NCF composite specimens were used in this work for the characterization of 

the material shear properties. All five specimens used SBS experiment for a DIC strain 

measurement and the FEMU process to characterize shear properties. The average shear 

parameters from the 5 specimens are 𝐺1U = 416,024	, 𝐾1U = 19,581 and 𝑛1U = 0.1609 psi. 

Several points can be concluded from the study, which are, 

1. Getting a good DIC data interpolation on the FE grid is very important. The FE grid 

must contain enough node points for an accurate data interpolation that really represents 

the DIC test data.  

2. The strain measurement from the DIC system may contain some noise which occurred 

during experimental testing. Therefore, the weight matrix of equation (15) should be 

implemented instead of equation (6). The optimization using the weight matrix from 

equation (15) gives a slightly better result in terms of RMS strain error. 

3. The SBS FE model used for the FEMU with DIC data contains 15,840 elements. If 

more material parameters were to be optimized, the numerical Jacobian may not be the 

best option. For example, if all 3 direction of shear properties need to be determined, 9 

constitutive shear properties will need to be optimized. Which means that 10 Abaqus 

jobs are needed to be compiled in order to update the material parameters for 1 iteration 

using numerical Jacobian. On the other hand, the analytical Jacobian can update all 9 

parameters in 1 iteration using only 1 Abaqus job with slightly less accuracy. However, 
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a few more iterations of the optimization will make up for the accuracy. Therefore, 

when working with real data, analytical Jacobian may be the best option if the model 

contains a lot of elements, and more parameters were to be optimized.  

4. The RMS error from all specimens did not go to 0 even the solution is already 

converged. Unlike, FE generated data where the RMS error will always go to 0. Figure 

31 compares the RMS strain error from the FE generated data and the DIC data. This 

is because the data from the experimental testing contain some noises as well as other 

factors such as, imperfect specimen and asymmetric negative and positive shear strain 

in the specimen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. Top: RMS strain error of five specimens. Bottom: RMS strain 
error from virtual testing. 
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5. The FEMU provides more accurate result when optimizing large value of material 

parameter such as shear modulus and young modulus. As shown in table 10, the value 

of 𝐺1U has less coefficient of variation than 𝑛1U which has a very small value. However, 

normalizing the value of material parameter in FEMU process can help reducing the 

coefficient of variation and provides more accuracy in small value parameters. 
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Chapter 5 

Streamline the Process 

After the SBS experimental testing, a series of output files have to be processed in a VIC3D 7 

software. These processes include setting DIC coordinate system, calculating strain and exporting 

the output into CSV files for further data analysis in Python. Figure 32 shows the VIC3D 9 

software interface. 

  

 

 

 

 

 

 

 

 

 

These processes consume a considerable amount of time when working with several test 

specimens. However, with the introduction of VicPy Python module that comes with the latest 

VIC3D 9 software, all processes mentioned above can be done using Python which will save up a 

great deal of time. The VicPy Python module allowed loading, manipulating, and saving the 

VIC3D output file in Python, resulting in faster and more efficient data processing. 

 

Figure 32. VIC3D 9 Interface. 
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The module can access DIC .out file which contains several parameters including DIC 

coordinates and strains. This means that the process of exporting DIC data into CSV files can be 

eliminated and the whole DIC data processing can be automate using Python scripts. Figure33 

shows the process of exporting .CSV file in VIC3D 9 and reading the value from .CSV file which 

consumes a lot of time. The old process can be replaced by a few lines of code as illustrated in 

figure 34. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 33. Old Process: Exporting CSV file, reading CSV file and aligning coordinate 

system. 
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The VicPy module also allows the coordinate adjustment of DIC data directly from .out file 

using RigidTransformation class. The rotation of DIC data can also be done using setRotation and 

setAngles function. These allow user to easily align the DIC coordinate with the FE coordinate 

system. Figure 35 shows the result from translating the DIC x-coordinate in the left contact area 

which is -0.56653 to match with FE x-coordinate which is -0.6. 

 

 

 

 

 

 

 

 

 

Figure 34. New process: Reading output file and aligning coordinate system using 
Python. 
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The VicPy module is built for both Python 2 and 3. But in order to integrate the module with 

Abaqus, the built for Python 2.7 must be implemented. Some of the Python scripts shown below 

are reading DIC coordinate, shifting coordinate, and calculating strains. 

1. Reading the DIC .out File 

The script reads DIC X-Y coordinate and strain 1-3 directly from DIC .out file.  

from VicPy import* 

import numpy as np 
 

data = VicDataSet() 
data.load(“file_name.out”) 

v = data.asArray([‘X’, ‘Y’, ‘exy’]) 
coordinate = np.column_stack(v[‘X’], v[‘Y’]) 

strain = v[‘exy’] 
 

Figure 35. Top: DIC x-coordinate before the adjustment. Bottom: DIC x-
coordinate after the adjustment.  
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2. Aligning Coordinate System  

The script can be implemented to the current workflow for aligning DIC coordinate system to 

FE coordinate system. For the translation in X, Y and Z, the input is in inch. For the rotation, the 

input is a half angle in degree. 

 

from VicPy import* 

import numpy as np 
 

data = VicDataSet() 
data.load(“file_name.out”) 

 
#   Translation 

#                X          Y – in inch 
Shift = [-1.23 * 25.4, 0.1526 * 25.4]   

# Align DIC coordinate system with FE coordinate system 
t = RigidTransformation() 

t.setTranslation( Shift[0] ,Shift[1], 0.0) 
data.transform(t) 

 
# Re calculate Strain 

data.computeStrain(tensorType="engineering", computePrincipalStrain=False) 
data.save(“file_name.out”) 
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# Rotation 
#       alpha(x), beta(y), gamma(z)  - double angle in degree 

Angle = [0.0, 15.0, 0.0] 
t = RigidTransformation() 

r = Rotation() 
r.setAngles(Angles[0], Angles[1], Angles[2], radians=False) 

t.setRotation(r) 
data.transform(t) 

 
# Re calculate Strain 

data.computeStrain(tensorType="engineering", computePrincipalStrain=False) 
data.save(“file_name.out”) 

 
For DIC data rotation, it is important to re calculate the shear strain in every transformation. 

 
From here, the DIC output strain data is ready to be interpolated and transferred onto FE grids 

in Abaqus without exporting several CSV files. The script will speed up the process when working 

with several test specimens. More information regarding class definition of VicPy module can be 

found at http://www.correlatedsolutions.com/supportcontent/VicPy/. [11] 
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Chapter 6 

Conclusion 

 

The Short-Beam Shear experiment developed at the AMSL provided an accurate measurement 

of a shear strain in the 1-3 direction. The method takes advantage of a full-field non-contact strain 

measurement to capture shear strain that can be transferred into the FE model for an FEMU 

process. Several factors that affect the accuracy of material inputs generated were studied in this 

work which included mesh density, accuracy of Jacobian matrix, initial approximation of material 

parameters, tau value and the weight matrix. The FEMU process was tested with a virtual 

experiment to verify the accuracy of the algorithm. After that, the FEMU was used with DIC data 

from a SBS experiment to characterize material shear properties. 

A virtual experiment was conducted to simulate the SBS experimental testing and FE generated 

data were used for the FEMU process. The study from a virtual experiment found that, mesh 

density has little effect on the convergence of the solution since a very coarse mesh model provided 

the same result as a very fine mesh model. This proves that the FEMU algorithm is very robust 

and accurate. The study also found that the numerical Jacobian matrix provides more accurate 

result than the analytical Jacobian. With FE generated data, the Numerical Jacobian always used 

less iteration and therefore less time for the solution to converge. Lastly, the best initial 

approximation of material parameters should lie between 40% lower to 40% higher than the actual 

material parameters for an optimal convergence. 

The FEMU algorithm is then used with a full-field strain measurement data from a DIC system 

to characterize nonlinear shear parameters of five unstitched NCF composite specimens. The 

captured shear parameters were 𝐺1U = 416,024	,𝐾1U = 19,581 and 𝑛1U = 0.1609 psi with the 

coefficient of variation of 3.40%, 7.38% and 8.44% respectively. Contrary to the FE generated 
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data, the RMS strain error from FEMU of DIC data never reached 0. This is because there are 

several factors that affect the convergence of the solution including, noise during experimental 

testing and imperfect specimens.    

With the DIC data, the study found that even though numerical Jacobian provided more 

accurate result, it is too time consuming and computational expensive. The result from analytical 

Jacobian was a bit less accurate according to the RMS strain error. However, it only required one 

third of a time the numerical Jacobian used. With more material parameters to optimize, analytical 

Jacobian seems to be the best option for FEMU. Also, the amount of node points on the FE grids 

has to be high enough to get a good DIC data interpolation. With low mesh density on the SBS, 

the amount of node will not be enough for an accurate data interpolation which will result in an 

accuracy of the resulting parameters. 

Lastly, with the new version of VIC3D DIC software which support the VicPy python module, 

the entire working process can be streamlined using Python. The process of exporting the CSV file 

can be totally eliminated and the process of aligning the DIC coordinate with FE coordinate can 

be automated using Python, which save a great deal of time.   

In conclusion, the SBS experiment and the FEMU process developed at the AMSL provide 

convenience and accuracy in characterizing nonlinear material properties of composite materials 

which are vital in a virtual design platform for predicting failure and deformation. The method 

could potentially become a standard testing method in measuring nonlinear shear properties of 

fiber-reinforced composite materials. 
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