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Chapter 1

Designing Reimbursement Policy
for Multidimensional Auction with
Loss-Averse Workers in Online
Labor Markets

1.1 Introduction

Online labor markets, bridging service buyers with workers, have emerged as a vi-
able means for service procurement. Freelancer (https://www.freelancer.com/) ,
Upwork (https://www.upwork.com/), and 99 Designs (https://99designs.com/),
are examples of the freelancing platforms that mediate between buyers and workers
of remotely deliverable cognitive work (Horton and Chilton, 2010).

Reverse auction is the principle behind service procurement on a freelance plat-
form. A buyer will post a project on the platform, then relevant freelancers will bid
for the project, write a proposal to persuade the buyer into choosing him/her over
the others. Service procurement involving multidimensional bids are ubiquitous.
Typically, workers are required to bid on both quality and price, which jointly form
single-dimensional scores that are used by the client to determine the winner, whose
offer turns out to be the most economically advantageous. For instance, for most
projects that have a design component (i.e. app design, logo design, etc), besides
submitting the bid on price, the workers are also required to submit a proposal in-
cluding factors such as idea, design prototype, for the buyer to view. After receiving
the bids, the buyer selects the winner bidder, based on both the price and the quality
of the proposal. One interesting feature of this market is that it is one of the few real-
life examples of non-political all-pay auctions, because the worker must invest effort
up-front preparing a quality proposal, regardless of the outcome of the auction.

According to prospect theory, for example, workers are “loss averse” and so re-
act more strongly to losses than to gains of the same magnitude (Kahneman and
Tversky, 1979; Ho and Zhang, 2008). Therefore, in these online all-pay auctions, loss
aversion can be an important behavioral factor that impacts individuals bidding de-
cisions on both price and the quality of the proposal. The first goal of this research
is to examine and measure the impact of workers’ loss aversion in the context of
service procurement with up-front effort spending in online labor platforms.

On the other hand, in practice, there are reimbursement policies to compensate
upfront costs incurred before contract, such as prototyping competition and research
contests. Among these cases, there are two types of reimbursement policy used, per-
centage reimbursement policy-in which the buyer reimburses the bidders’ upfront

https://www.freelancer.com/
https://www.upwork.com/
https://99designs.com/
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cost with a percentage, and the flat reimbursement policy-in which the buyer re-
imburses the bidder a fixed amount. In addition, they consider about reimbursing
the bidder, contingent on their winning or losing scenarios. Therefore, the second
goal of this research is to examine what is the optimal (flat and percentage) reim-
bursement policy for the buyer and which reimbursement policy the buyer should
use.

1.2 Literature Review

Procurement auction has received considerable attention in operations management
(OM) research communities. Examples of analytical and laboratory OM studies on
procurement auctions include, Chen (2007), Chen, Seshadri, and Zemel (2008), Chu
(2009), Chaturvedi and Albéniz (2011), Davis, Katok, and Kwasnica (2014), Shachat
and Tan (2015), Chaturvedi, Katok, and Beil (2019), and Fan, Chen, and Tang (2020),
to name a few.

Che, 1993 is a pioneering paper studying the multidimensional reverse auction,
where bidders bids on the quality in addition to the price, and characterizes the
optimal scoring rules which can bring the second-best outcome for the buyer. Re-
searchers have since explored the multidimensional auction in different directions,
such as correlated private types (Branco, 1997), properties of the general scoring
auctions (Asker and Cantillon, 2008), comparison of a multidimensional auction
and a price-based auction under which the buyer selects the winner bidder based
on price bidding only (Bichler, 2000; Chen-Ritzo et al., 2005; Engelbrecht-Wiggans,
Haruvy, and Katok, 2007), the effect of information transparency (Haruvy and Ka-
tok, 2013), collusion and trust (Fugger, Katok, and Wambach, 2016; Fugger, Katok,
and Wambach, 2019).

However, this literature on the multidimensional auction only considers the winner-
pay costs of the bidders, i.e., the costs incurred by a bidder only if he wins the auc-
tion. What differentiates our paper from this literature is that we consider the all-pay
cost invested upfront in quality in addition to the winner-pay cost, and investigate
impact of loss aversion, which is closely related to the all-pay cost.

We are aware of only one study of multidimensional auction with all-pay quality
cost (Kovenock and Lu, 2020). Our paper is different from theirs in two main as-
pects. While their paper assume that bidders are rational expected profit maximizer,
we focus on investigating the impact of a relevant behavioral factors closely asso-
ciated with the all-pay costs, i.e., loss aversion. Moreover, we design and compare
reimbursement policies that can mitigate the negative impact of loss aversion.

Kahneman and Tversky (1979) is a seminal paper establishing prospect theory
(PT), in which a decision maker has a tendency of “loss aversion”, i.e., his/her pain
in losing a sum of money appears to be greater than the pleasure associated with
gaining the same amount. Kőszegi and Rabin (2006) and Kőszegi and Rabin (2007)
develop a generally more applicable theory, combining the “outcome-based" utility
from orthodox economics and the “gain–loss" utility from PT, and illustrate its ap-
plicability by establishing some implications of loss aversion for consumer behavior
and labor effort.

Based on these two theoretical frameworks incorporating loss aversion as a rele-
vant behavioral factor, other literature have applied their theories to study its impli-
cations in different directions and settings, such as endowment effect and reluctance
to trade (Thaler, 1980; Kahneman, Knetsch, and Thaler, 1990; Okada, 2001), contract
theory (Herweg, Müller, and Weinschenk, 2010; Koszegi, 2014), pricing problems
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in products and markets (Heidhues and Kőszegi, 2008; Nasiry and Popescu, 2011;
Courty and Nasiry, 2018; Hu and Nasiry, 2018; Chen and Nasiry, 2020), decision
making in newsvendor problems (Schweitzer and Cachon, 2000; Ho and Zhang,
2008; Wang and Webster, 2009; Herweg, 2013; Long and Nasiry, 2015; Baron et al.,
2015).

Our study is mostly related to the literature, investigating the implications of
the presence of loss averse bidders in auction settings. Some researchers (Eisen-
huth, 2010; Lange and Ratan, 2010; Banerji and Gupta, 2014) showed that the first
price auction brings less expected revenue for the auctioneer than the second price
auction, when bidders are loss averse. Rosato and Tymula (2019) suggested that
loss-averse bidders in the second price auction may behave differently in real-object
auctions from induced-value ones. Balzer and Rosato (2020) analyzed the bidding
behavior of loss-averse bidders in a common-value auction.

All these auction literature, however, investigated one-dimensional auctions with
loss-averse bidders’ winner-pay cost. Our paper complements these researches, by
studying the effect of loss aversion and the corresponding reimbursement mecha-
nisms to improve auctioneer’s expected utility, in a two-dimensional auction with
loss-averse bidders’ all-pay cost.

1.3 A Model of Multidimensional Auction with Loss Aver-
sion

1.3.1 Model Setup

We consider a single buyer (“she”) who is soliciting bids from N (N ≥ 2) labor
workers (“he”) to complete a project. Our model characterizes the following key
features of a service procurement auction in online labor markets.
First Score Sealed Bid Mechanism1 with Multi-dimensional Bids:

Each worker submits a sealed bid which consists of a quality and a price. The
buyer determines the winner based on the bids she receives. In practice, most
projects requires a proposal, in addition to price, such as a design component (i.e.
app design, logo design, etc), as part of the bid. The quality dimension of the bid
captures how much the buyer values this proposal component.

We use pi and qi to denote the bidding price and the quality of the proposal of
worker i ∈ {1, 2, ..., N}, respectively. Upon winning, a worker provides his service
according to the proposal at the offered price.

In online labor markets, the buyer usually does not have full scoring rule com-
mitment power, that is, she is not able to ex ante commit to a scoring rule, other
than her own utility function. Note that committing to a scoring rule other than
the buyer’s utility function is not sub-game perfect when, as part of the process, the
buyer chooses the winner after reviewing all the submitted bids. In the main model,
we only consider mechanisms that are sub-game perfect, and hence the buyer will
only select the bid the maximizes her utility. However, to be comprehensive, we in-
clude an analysis of the optimal scoring rule, under the assumption that the buyer
can commit to such a rule, in Appendix.

The buyer utility function, U(q, p), is assumed to be quasi-linear (Che, 1993):

U(q, p) = V(q)− p,

1In online labor markets, buyers usually have the choice of adopting either an open or a sealed
bid auction mechanism. In this paper, for the exposition purpose, we focus on the sealed bid auction
mechanism, and leave the case of open bid auction to future research.
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where q is the quality of a worker’s proposal, V(q) is the buyer’s quality value func-
tion and p is the price the worker bids. We assume the trade always takes place2. We
also make the following general assumptions on the quality value function V(q).

Assumption 1 V ′(q) > 0, V ′′(q) < 0, lim
q→0

V ′(q) = +∞, and lim
q→+∞

V ′(q) = 0.

V ′(q) > 0 and V ′′(q) < 0 imply the quality value function increases with quality at
a decreasing rate, that is, the quality value function has the property of diminishing
return. lim

q→0
V ′(q) = +∞ and lim

q→+∞
V ′(q) = 0 are Inada conditions, which ensure an

interior solution (Inada, 1963). This assumption is widely adopted for the quality
value function in the multi-dimensional auction literature (Che, 1993; Asker and
Cantillon, 2010).
All-Pay Quality Spending: A worker must spend resources up-front preparing a
quality proposal. Without loss of generality, we assume this non-recoverable up-
front cost in the bidding to be qi

3, i ∈ {1, 2, ..., N}, incurs to all bidders, regardless of
the outcome of the auction.
Winner-Pay Production Cost with Private Type: Worker i, upon winning, incurs a
production cost θiqi, in order to produce quality qi. In contrast to the quality invest-
ment cost which incurs to all bidders (i.e., all-pay), this production cost only incurs
to the winning worker (i.e., winner-pay). We consider workers who are heteroge-
neous in their expertise in production, which is reflected in this production cost. In
particular, θi is worker i’s private production cost parameter, also referred to as pri-
vate type. The distribution of θi is public knowledge for all parties in the auction,
but the cost parameter θi is the private information of worker i. The multiplicative
structure of the production cost that employed in our model (i.e., θiqi) is consistent
with prior research in the auction literature (Chen-Ritzo et al., 2005; Kostamis, Beil,
and Duenyas, 2009; Kovenock and Lu, 2020)4. We remark that a worker with a high
θ is less efficient, and a low θ indicates a more efficient worker.

We note that in reality the private type can be on the production cost and/or
the quality spending. We have no empirical evidence of which scenario to be more
prevalent in practice. Hence, we arbitrarily pick the heterogeneous production sce-
nario as the main case to streamline and focus the exposition. We find that our main
conclusions continue to hold if workers are heterogeneous in producing quality pro-
posal instead. Please refer to Section 1.5 for details.

Loss Aversion: As the worker must spend resources up-front preparing a quality
proposal regardless of the outcome of the auction, workers who lose in the auction
would experience a loss of qi. We assume all the workers are risk neural but averse
to profit losses (Kahneman and Tversky, 1979; Ho and Zhang, 2008). We use λ to
denote the degree of loss aversion of the worker, and assume it is exogenous, ho-
mogeneous among all workers, and common knowledge for all players (Eisenhuth,
2010; Rosato and Tymula, 2019; Balzer and Rosato, 2020).

Therefore, a worker i of private type θi, bidding price pi and quality spending qi,
earns the interim expected utility:

π(qi, pi) =
(

pi − θiqi − qi
)

P
(
win|qi, pi

)
− λqi

(
1− P

(
win|qi, pi

))
(1.1)

2This is equivalent to the buyer having a reserved utility of V(0).
3All of our results continue to hold qualitatively if this upfront quality spending is modelled as any

strictly increasing function of quality qi.
4All of our results continue to hold qualitatively if the production cost is modelled as C+ θiqi, where

C is an non-negative constant.
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where qi is the quality of the proposal, θiqi is the production cost incurred for
worker i who submits a quality bid qi and wins the auction, P

(
win|qi, pi

)
is the

probability of winning the auction when the worker bids price pi and quality qi,
and λ ≥ 1 denotes the degree of loss aversion. It is worth noting that the model
is reduced to a special case of no loss aversion when λ = 1, and it hypothetically
represents a special case of a two-dimensional winner-pay auction (Che, 1993) when
λ = 0.

We assume that the private type θi (i ∈ {1, 2, ..., N}) is independently and iden-
tically distributed over a bounded interval [θ, θ] (0 < θ < θ < +∞), according to
a distribution function F(·) for which there exists a positive, continuously differ-
entiable density f (·). This assumption is standard for independent private value
(IPV) auctions (see Kagel and Levin (2008), Klemperer (2014), and Kagel (2020) for
reviews).

Assumption 2 F(·)
f (·) is non-decreasing.

This assumption of regularity condition is widely adopted in the literature; see,
for example, Myerson, 1981 and Laffont and Tirole, 1987. Many commonly used
distributions, such as uniform and normal distribution truncated to a finite interval,
satisfy this assumption (Bagnoli and Bergstrom, 2005).

We use (q(·), p(·)) to denote the symmetric equilibrium of this auction. We re-
mark that, in the equilibrium, the worker of the lowest private type always wins the
auction. Therefore, the buyer’s expected utility can be written as:

EUb = E
{

V(q(θ1))− p(θ1)
}

(1.2)

where θ1 is the lowest order statistic, i.e., θ1 = min{θi}N
i=1.

1.3.2 Equilibrium

In this section, we derive the loss-averse workers’ equilibrium bidding behavior in
this service procurement auction. Using the characterized bidding behavior, we then
investigate the impact of loss aversion on the expected utility of the worker as well
as the buyer in equilibrium.

How loss aversion impacts workers’ equilibrium bidding behavior

The auction can be considered as a Bayesian game where each worker picks a quality-
price combination as a function of its private type. In particular, given other work-
ers’ bidding strategy, worker i (i ∈ {1, 2, ..., N}) with type θi chooses a quality-price
pair (qi, pi) to maximize his interim expected utility in (1.1). The resulting quality-
price pairs (qi(θi), pi(θi))(i ∈ {1, 2, ..., N}) form a Bayesian Nash Equilibrium. Due
to the complete symmetry of the workers, we only consider symmetric equilibrium
of the game and drop the subscript i in the rest of the paper, when discussing about
the equilibrium.

Definition 1 (Quality Elasticity of Marginal Value) M(q)−qV
′′
(q)

V′ (q)
= − dV′(q)

V′(q) / dq
q , where

q is a quality bid.

M(q) measures the percentage decrease (or increase) of the marginal value V ′(q)
when quality bid q increases (or decreases) by one percent5. One can infer that a

5This definition is similar in spirit to the definition of the coefficient of relative risk aversion(Simon
and Blume, 1995).
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low quality-elasticity of marginal value M(q) implies a low degree of diminishing
return of the value function (i.e., −V ′′(q)). From assumption 1, we have M(q) ≥ 0
throughout the paper.

Proposition 1 (1) In the procurement auction where workers are loss-averse, there exists
a unique symmetric equilibrium in which a loss-averse worker of private type θ makes the
following bids for quality and price:

q(θ) = V ′−1(λ1− (1− F(θ))N−1

(1− F(θ))N−1 + θ + 1
)
,

p(θ) = θq(θ) + q(θ) +

∫ θ
θ q(θ̃)(1− F(θ̃))N−1dθ̃

(1− F(θ))N−1 + λq(θ)
1− (1− F(θ))N−1

(1− F(θ))N−1 ,

where V ′−1(·) is the inverse of V ′(·).
(2) Worker’s quality bid in equilibrium decreases with the degree of loss aversion (i.e.,

∂q(θ)
∂λ = 1−(1−F(θ))N−1

(1−F(θ))N−1V′′(q(θ)) ≤ 0).

(3) If M(q) ≤ 1 for all q ∈ [0, V ′−1(θ + 1)], worker’s price bid in equilibrium decreases
with the degree of loss aversion.

Part (1) of Proposition 1 characterizes a unique symmetric equilibrium of this ser-
vice procurement auction. To provide some intuition of this result, we start with the
quality bid in equilibrium. On one hand, a worker of private type θ increasing one
unit of quality in his bid incurs θ units of production cost and one unit of quality cost
upon winning, and λ units of quality cost upon losing, so the expected marginal cost
is (θ + 1)(1− F(θ))N−1 + λ(1− (1− F(θ))N−1), where (1− F(θ))N−1 is the proba-
bility of winning the auction. On the other hand, increasing one unit of quality bid
can make the price bid go up by V ′(q) units while keeping the score and the proba-
bility of winning unchanged, and this leads to V ′(q) units of marginal benefit for the
winner, so the expected marginal benefit can be written as V ′(q)(1− F(θ))N−1. At
the equilibrium, the marginal cost of the quality bid equals to its marginal benefit.
Regarding the equilibrium price bid, it is worth noting that if λ = 0, our solution
has the same characterization of the equilibrium price bid in the winner-pay auction
as Che, 1993 with production cost (θ + 1)q. The last term λq(θ) 1−(1−F(θ))N−1

(1−F(θ))N−1 com-
pensates for the potential loss from all-pay quality spending for loss-averse workers
(λ ≥ 1).

Part (2) of Proposition 1 shows the impact of loss aversion on the quality bid in
equilibrium. As a higher degree of loss aversion increases the marginal cost of the
quality bid and it has no impact on the marginal benefit, it follows directly that the
equilibrium quality bid is lower if workers are more averse to loss. In addition, the
expression of ∂q(θ)

∂λ implies a bigger impact of loss aversion on the quality bid when
value function has a small diminishing return.

The impact of loss aversion on equilibrium price bid is two-fold. On one hand,
there is a direct effect - worker needs to bid a higher price to compensate for his poten-
tial loss if he is more loss averse; On the other hand, based on part (2) of Proposition
1, high loss aversion lowers quality bid, which in turn reduces the potential loss to
be compensated for, and we refer to it as an indirect effect. As characterized in part
(3) of Proposition 1, when the quality-elasticity of marginal value is low, which also
implies a low degree of diminishing return of the value function, the indirect effect is
large and outweighs the direct effect, and thus price bid is lower with a high degree
of loss aversion. The condition of low quality-elasticity of marginal value in part (3)
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of Proposition 1 can be satisfied by multiple classes of functions (which also satisfy
Assumption 1), and below we present a couple of examples.
Example 1 (Battermann, Broll, and Wahl, 1997): The quality value function V(q) =
b + a q1−γ

1−γ , where a > 0 and 0 < γ < 1.
Example 2 (Saha, 1993): The quality value function V(q) = b − e−βqα

, where 0 <
α < 1, β > 0, and 1− α + αβ

(
V ′−1(θ + 1)

)α ≤ 1.

How loss aversion impacts expected utility in equilibrium

So far, we have characterized loss-averse workers’ bidding behavior in equilibrium
in this service procurement auction. Using the characterized bidding behavior, the
following proposition characterizes the impact of loss aversion on the expected util-
ity of the worker and the buyer.

Proposition 2 In the equilibrium of the procurement auction where workers are loss-averse,
(1) worker’s expected utility decreases with the degree of loss aversion;
(2) if limq→0+ M(q) 6= 06, buyer’s expected utility decreases with loss aversion when

loss aversion is sufficiently high (i.e. λ > λ0, where λ0 ≡ sup λ≥1
θ∈[θ,θ]

( 1
M(q(θ))

F(θ)
f (θ)−θ−1)(1−F(θ))N−1

1−(1−F(θ))N−1

and q(θ) = V ′−1(λ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ + 1
)
).

As loss aversion incurs additional cost for the worker, in equilibrium, it is intu-
itive that worker’s expected utility is lower if he is more loss averse. Two forces,
however, determine the impact of loss aversion on buyer’s expected utility. On
one hand, loss aversion reduces the equilibrium quality bid as shown in part (2) of
Proposition 1, which subsequently lowers buyer’s quality value V(q) and therefore
decreases buyer’s expected utility. We refer to this effect as quality value effect. It is
important to point out that the quality value effect is always negative (i.e., it always
reduces buyer’s expected utility), and it becomes stronger as loss aversion increases
as a result of the diminishing return of the value function stated in Assumption 1.

On the other hand, loss aversion can impact the equilibrium price bid and sub-
sequently influence buyer’s expected utility, which we refer to as price effect. As we
show in part (3) of Proposition 1, the price effect can be positive (i.e., higher degree
of loss version decreases the equilibrium price and thus increases buyer’s expected
utility) under some conditions. However, when loss aversion is sufficiently high, the
price effect is either negative or dominated by the quality value effect, so the buyer’s
expected utility always decreases with loss aversion in this case.

6Multiple classes of quality value functions (which also satisfy Assumption 1), including Examples
1 and 2, can satisfy this condition.
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FIGURE 1.1: Impact of Loss Aversion on Buyer’s Expected
Utility

(A) Value Function with a Low Diminishing Return
V(q) = 100 + 600q0.9

(B) Value Function with a High Diminishing Return
V(q) = 100 + 600q0.4

As an illustration, Figure 1.1 plots how loss aversion impacts buyer’s expected
utility under two value functions, with low and high diminishing return, respec-
tively. We use N = 4 and θ ∼ U[1, 7] in both figures. We also use the expected
utility of the buyer when workers are not loss-averse (i.e. λ = 1) as the benchmark,
and plot the percentage impact of worker’s degree of loss aversion on buyer’s ex-
pected utility. Prior literature has shown that the reported loss aversion coefficient
typically ranges between 1 and 57, we therefore use it as the range for the loss aver-
sion coefficient of all plots throughout the paper. Interestingly, as shown in Figure
1.1(a), when the value function has a low diminishing return, buyer can benefit from
workers’ loss aversion behavior when their degree of loss aversion is low. This is
because when the value function has a low diminishing return, the strength of the
positive price effect is stronger than the strength of the negative quality value effect,
for low degree of loss aversion. As loss aversion increases, the quality value ef-
fect is strengthened and eventually outweighs the price effect, which makes buyer’s
expected utility decrease with loss aversion. When the value function has a high di-
minishing return as in Figure 1.1(b), the price effect is either negative or dominated
by the negative quality value effect, as a result, buyer’s expected utility always de-
creases with the degree of the loss aversion in this case.

1.4 Reimbursement Policy

Thus far, we have shown that the workers’ loss aversion behavior not only reduces
the expected utility of the worker, it can also decrease the expected utility of the
buyer, especially when loss aversion is high. To remedy the impact of loss aver-
sion, a buyer may (partially) reimburse the quality spending incurred by the worker
and therefore reduce the negative effect of loss aversion. In this section, we explore
several variants of reimbursement policies.

To the best of our knowledge, there is no prior literature to investigate and com-
pare reimbursement policies in multi-dimensional auction with all-pay spending.
However, reimbursement policies have been intensively studied in a mechanism
similar to our procurement auction, i.e., contest, where the participants determine
levels of effort, which is also modeled as an up-front costs and usually the prize they

7According to Brown et al., 2021, which examines 607 empirical estimates of loss aversion from
150 articles in economics, psychology, neuroscience, and several other disciplines, the reported loss
aversion coefficient typically ranges between 1 and 5, with a mean of 1.97.
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can win is exogenously given. Particularly, two types of reimbursement policies,
i.e., percentage reimbursement policy (Cohen and Sela, 2005; Matros and Armanios,
2009), and flat reimbursement policy (Fu, Lu, and Lu, 2012; Lichtenberg, 1988) are
popular in such studies and found to be relevant to contest designer’s revenue in
the contest literature.

Intuitively, reimbursing workers’ quality spending can be relevant to buyer’s
expected utility in our procurement auction, since the quality bidding incurs up-
front costs similar to how effort is modeled in contest settings. Therefore, we study
these two types of reimbursement policies in our procurement auction. In particular,
under the percentage reimbursement policy, the buyer can reimburse the worker a
certain percentage of his quality spending. Under the flat reimbursement policy, the
buyer can decide a reimbursement threshold and amount. If a worker’s quality bid-
ding is higher than this threshold, the buyer would reimburse the worker a capped
amount no more than this threshold.

Moreover, since the quality investment cost is deemed only as a loss only if the
worker loses the auction, the buyer need to consider reimbursement, contingent on
whether a worker wins or lose its bid. Not surprisingly, prior contest literature have
studied reimbursing upfront (all-pay) cost conditioned on winning and losing (Ma-
tros and Armanios, 2009; Minchuk, 2018; Liu and Liu, 2019; Kovenock and Lu, 2020).
Therefore, for both types of policies, we consider the buyer can choose different re-
imbursement percentage or amount for the worker’s quality spending, contingent
on whether he wins or loses the auction.

1.4.1 Percentage Reimbursement Policy

Under the percentage reimbursement policy, prior to the bidding, the buyer commits
to reimburse the worker ρl ∈ [0%, 100%] percent of his quality spending if he loses
the auction, and ρw ∈ [0%, 100%] percent if he wins. Note that our model includes
the case of ρl = 0 (ρw = 0) where the losing (winning) worker is not reimbursed.
Therefore, under a given percentage reimbursement policy (ρw, ρl), the interim re-
spected utility of a worker i of private type θi with price bid pi and quality spending
qi can be revised from (1.1):

πpr(qi, pi) =
(

pi − θiqi − (1− ρw)qi
)

P
(
win|qi, pi

)
− λ(1− ρl)qi

(
1− P

(
win|qi, pi

))
,

(1.3)
where we use superscript pr to refer to the scenario of the percentage reimburse-

ment policy. We denote the symmetric equilibrium of this auction as (q(·), p(·)).
Given the workers’ equilibrium strategy, the buyer decides on a reimbursement per-
centage (ρw, ρl), to maximize her interim expected utility:

EUpr
b (ρw, ρl) = E

{
V(q(θ1))− p(θ1)

}
− N

∫ θ

θ
ρlq(θ)(1− (1− F(θ))N−1)dF(θ)

− N
∫ θ

θ
ρwq(θ)(1− F(θ))N−1dF(θ),

(1.4)
where θ1 is the lowest order statistic, i.e., θ1 = min{θi}N

i=1. In (1.4), the first term cap-
tures the expected utility of the buyer excluding the cost for the reimbursement. The
second term reflects the buyer’s expected cost of reimbursing the losing worker(s),
and the last term denotes the expected reimbursement cost for the winning worker.
Proposition 3 shows the impact of the percentage reimbursement policy on workers’
equilibrium quality bid, price bids and expected utility.



10
Chapter 1. Designing Reimbursement Policy for Multidimensional Auction with

Loss-Averse Workers in Online Labor Markets

Proposition 3 Under a percentage reimbursement policy (ρw, ρl),
(1) a worker’s quality bid in equilibrium increases with the reimbursement percentage

ρw and ρl .
(2) if M(q) ≤ 1 for all q ∈ [0, V ′−1(θ)]8, a worker’s price bid in equilibrium increases

with the reimbursement percentage ρw and ρl .
(3) a worker’s expected utility in equilibrium increases with the reimbursement percent-

age ρw and ρl .

The results of Proposition 3 are in the same vein as parts (2) and (3) of Proposi-
tion 1. Reimbursing any worker by a certain percentage, regardless of him winning
or losing, always decreases his marginal cost of bidding one unit of quality9, and
thus subsequently increases his quality bid in equilibrium. The effect of the reim-
bursement percentage on the price bid, however, has the same conflicting direct and
indirect effect as described in Proposition 1.3. We can show that the indirect effect
always dominates the direct effect under the same condition as in Proposition 1.3,
and therefore worker’s price bid increases with the reimbursement percentage in
this situation. Finally, since raising the reimbursement percentage increases the re-
imbursement of the worker’s quality spending, it is not surprising that a worker’s
expected utility in equilibrium increases with reimbursement percentage.

The following proposition characterizes the optimal percentage reimbursement
policy for the buyer.

Proposition 4 (1) The buyer should never reimburse the winning worker, i.e., ρ∗w = 0.

(2) Let

B ≡ −1− ρl

λ

∫ θ

θ
q(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ < 0

where q(θ) = V ′−1(λ(1− ρl)
1−(1−F(θ)N−1

(1−F(θ)N−1 + θ + 1
)

and V ′−1(·) is the inverse of
V ′(·).

(2.1) If ∂EUpr
b (0,ρl)
∂λ > B for all ρl ∈ [0, 1], then the buyer should never reimburse the

losing worker, i.e., ρ∗l = 0.

(2.2) If ∂EUpr
b (0,ρl)
∂λ < B for all ρl ∈ [0, 1], then the buyer should fully reimburse the

losing worker, i.e., ρ∗l = 1.

(2.3) If ∂EUpr
b (0,ρl)
∂λ

∣∣∣
ρl=1

> B|ρl=1 = 0 and ∂EUpr
b (0,ρl)
∂λ

∣∣∣
ρl=0

< B|ρl=0, then the buyer

should reimburse the losing worker with the optimal reimbursement percentage

ρ∗l ∈ (0, 1), where ρ∗l satisfies ∂EUpr
b (0,ρl)
∂λ

∣∣∣
ρl=ρ∗l

= B|ρl=ρ∗l
.

A percentage reimbursement policy impacts the buyer’s expected utility from
two aspects. On one side, reimbursing a worker by a certain percentage always in-
creases workers’ quality bid in equilibrium, as shown in Proposition 3.1. A higher
quality bid subsequently increases the quality value of the buyer as well as her ex-
pected utility. We refer to this positive effect of the percentage reimbursement policy

8Under all possible percentage reimbursement policy (ρw ∈ [0, 1], ρl ∈ [0, 1]), the highest possible
equilibrium quality bidding is V′−1(θ).

9The expected marginal cost of bidding one unit of quality for a worker of type θ under the percent-
age reimbursement policy is (θ + 1− ρw)(1− F(θ))N−1 + λ(1− ρl)(1− (1− F(θ))N−1).
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as value effect. On the flip side, increasing the reimbursement percentage leads to a
higher reimbursement cost, in addition, it also induces a higher quality bid which in
turn raises the price bid in equilibrium under some condition as shown in part (2)
of Proposition 3, therefore both effects add more cost to the buyer and thus lowers
her expected utility. This negative effect of the percentage reimbursement policy is
referred to as payment effect.

For the case of reimbursing the winner worker, we show that the strength of the
payment effect always outweighs the strength of the value effect, for any positive
reimbursement percentage of the quality spending of the winning worker. There-
fore, as stated in part (1) of Proposition 4, the buyer should never reimburse the
winner. The analysis of reimbursing the losing worker is more complex as a result
of their loss aversion behavior. In particular, the comparison of the strength of the
value effect and that of the payment effect can change depending on the effect of

losing workers’ loss aversion on the buyer’s expected utility, i.e., ∂EUpr
b (0,ρl)
∂λ , where

EUpr
b (0, ρl) is the buyer’s expected utility reimbursing 0 to the winning workers and

ρl percentage to the losing worker(s), given the equilibrium biding strategy of the
workers in the auction. Part (2) of Proposition 4 discusses the optimal reimburse-
ment percentage for the losing worker in three scenarios where losing worker’s loss
aversion has a different effect on buyer’s expected utility under the percentage re-
imbursement policy.

It is worth nothing that the percentage reimbursement policy is only useful when
loss aversion is harmful for the buyer. When loss aversion is beneficial for the
buyer as illustrated for low λ values in Figure 1.1(a), the reimbursement percent-
ages should always be 0. In addition, it is important to see that, when the optimal
reimbursement percentage is positive, the percentage reimbursement policy creates
a win-win situation for both the buyer and the worker, that is, the expected utility of
both parties are improved by using the percentage reimbursement.

The following corollary characterizes a special case where the condition stated in
part (2.1) of Proposition 4 is implicitly satisfied.

If the degree of loss aversion is low enough, i.e., 1 ≤ λ ≤ λl , then the buyer
should never reimburse the losing worker, i.e., ρ∗l = 0, where

λl ≡ min
{

3, min
λ∈[1,3]
ρl∈[0,1]

∫ θ
θ

q(θ)NF(θ)(1−(1−F(θ))N−1)

M(q(θ))
(

1−(1−F(θ))N−1

(1−F(θ))N−1 +θ+1
)dθ∫ θ

θ q(θ)N f (θ)
(
1− (1− F(θ))N−1

)
dθ

+ 1
}
> 1,

q(θ) = V ′−1(λ(1− ρl)
1−(1−F(θ)N−1

(1−F(θ)N−1 + θ + 1
)

and V ′−1(·) is the inverse of V ′(·).
In addition, Corollary 1.4.1 presents a special case where the condition stated in

part (2.2) of Proposition 4 is implicitly satisfied.
If limq→0+ M(q) 6= 0, there exists λm ∈ (1,+∞), such that when λ ≥ λm, the

buyer should fully reimburse the losing worker, i.e., ρ∗l = 1.
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FIGURE 1.2: Optimal Reimbursement Percentage for the Los-
ing Workers

V(q) = 100 + 600q0.4

Figure 1.2 plots the optimal reimbursement percentage for the losing workers.
For ease of comparison, in this illustration we use the same parameters as in Figure
1.1, where N = 4 and θ ∼ U[1, 7]. One can make two observations. First, the buyer
should never reimburse the losing workers when the degree of loss aversion is low
enough, consistent with the results in Corollary 1.4.1. Second, as the degree of loss
aversion increases, the optimal reimbursement percentage to the losing workers is
higher. This is because a higher loss aversion does more harm to the buyer due to
the exacerbated quality value effect as discussed in Proposition 2, so there is more to
be compensated for.

1.4.2 Flat Reimbursement Policy

Under the flat reimbursement policy, prior to the bidding, the buyer commits to re-
imburse a fixed amount if the worker’s quality spending exceeds a pre-determined
threshold x (x ≥ 0). The buyer can potentially reimburse different amount depend-
ing on the winning/losing status of the worker. We use yw and yl to denote the reim-
bursement amount for the winning worker and losing worker, respectively. Specif-
ically, if a type θ worker with quality bidding q(θ) ≥ x loses the auction, the buyer
offers him a fixed amount of reimbursement yl (yl ≤ x). If a type θ worker with
quality bidding q(θ) ≥ x wins the auction, the buyer reimburses him yw (yw ≤ x).

Therefore, under a given flat reimbursement policy (x, yw, yl), the interim re-
spected utility of a worker i of private type θi with price bid pi and quality spending
qi can be revised from (1.1):

π f r(qi, pi) =
(

pi − θiqi − (qi − yw · 1qi≥x)
)

P
(
win|qi, pi

)
− λ(qi − yl · 1qi≥x)

(
1− P

(
win|qi, pi

))
,

(1.5)
where we use superscript f r to refer to the scenario of the flat reimbursement. pol-
icy. We denote the symmetric equilibrium of this auction as (q(θ), p(θ)). Given the
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workers’ best response, the buyer makes decisions for the parameters of a flat reim-
bursement policy (x, yw, yl), to maximize her interim expected utility:

EU f r
b (x, yw, yl) = E

{
V(q(θ1))− p(θ1)

}
− N

∫ θ

θ
1q(θ)≥x · yl(1− (1− F(θ))N−1)dF(θ)

− N
∫ θ

θ
1q(θ)≥x · yw(1− F(θ))N−1dF(θ),

(1.6)
where θ1 is the lowest order statistic, i.e., θ1 = min{θi}N

i=1. In (1.6), the first term
comes from (1.2) reflecting the net value the buyer obtains from the winning worker
in the auction without considering the cost of the reimbursement. The second term
captures the buyer’s expected reimbursement amount to the losing worker(s), and
the last term denotes her expected reimbursement amount to the winning worker.

We first show the impact of the flat reimbursement policy on worker’s equilib-
rium quality bid, price bid and expected utility in Proposition 5.

Proposition 5 Under a flat reimbursement policy (x, yw, yl),
(1) the worker’s quality bid in equilibrium stays the same with respect to any reimburse-

ment threshold x and any reimbursement amount yw and yl .
(2) the worker’s price bid in equilibrium decreases with reimbursement amount yw and

yl if his quality bid exceeds the reimbursement threshold x.
(3) the worker’s expected utility in equilibrium stays the same with respect to any reim-

bursement threshold x and any reimbursement amount yw and yl .

Unlike the percentage reimbursement policy which increases loss-averse worker’s
equilibrium quality bids, Proposition 5 shows that the worker’s equilibrium quality
bid stays the same under the flat reimbursement policy regardless of its parameters,
because the flat reimbursement policy does not change the worker’s marginal ben-
efit and marginal cost of bidding one unit of quality. On the other hand, when a
worker’s quality bid exceeds the reimbursement threshold, the more the reimburse-
ment amount (yl or yw) that he receives, the lower his price bid is in equilibrium
due to competition. Moreover, the worker’s expected utility in equilibrium does
not change with respect to the parameters of the flat reimbursement policy. This is
because the increase of the worker’s expected utility from the flat reimbursement
policy completely offsets with the decrease in his price bid.

Now, we characterize the optimal flat reimbursement policy for the buyer.

Proposition 6 (1) The buyer’s expected utility stays the same with respect to any reim-
bursement amount to the winning worker yw.

(2) The buyer should reimburse the maximum amount to the losing worker(s) (i.e., y∗l =
x∗).
The optimal threshold for quality spending reimbursement x∗ = argmaxx∈[0,q(θ)]

∫ θ
θ (λ−

1)1q(θ)≥x · xN f (θ)
(
1−

(
1− F(θ)

)N−1)dθ, where q(θ) = V ′−1(λ 1−(1−F(θ))N−1

(1−F(θ))N−1 +

θ + 1
)

is the equilibrium quality bidding function.

Under the flat reimbursement policy, any quality spending reimbursement thresh-
old and any reimbursement amount result in the same equilibrium quality bid, as
shown in Lemma 5. Therefore, from the buyer’s perspective, in order to maximize
her expected utility, it all depends on the price bids as well as the reimbursement
amount that she pays to the workers.
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Part (1) of Proposition 6 shows that the reimbursement amount to the winning
worker does not impact the buyer’s expected utility. This is because, comparing with
the basic scenario without any reimbursement policy, under the flat reimbursement
policy, all workers’ price bids in equilibrium will decrease by the same magnitude,
which is in fact identical to the reimbursement amount to the winning worker. In
other words, when the buyer commits to reimburse the winning worker based on
the flat reimbursement policy, the decrease in her price payment completely offsets
the increase in her reimbursement payment, and thus her expected utility stays the
same.

The effect of the reimbursement amount to the losing worker on the buyer’s ex-
pected utility, however, depends on the degree of the loss aversion, as shown in part
(2) of Proposition 6. For an losing worker, one unit of reimbursement can increase
his utility by λ units, which subsequently decreases his price bid in equilibrium by
λ units. If λ > 1 (i.e. workers are loss-averse), the resultant decrease in price bid
exceeds the reimbursement amount offered to the losing worker, and thus the buyer
is better off reimbursing the losing worker as much as possible by setting the reim-
bursement amount at the reimbursement threshold (i.e. y∗l = x∗). Below we remark
two results which can be derived from part (2) of Proposition 6.

Remark 1 If workers are not loss-averse (λ = 1), buyer’s expected utility stays the same
with respect to any flat reimbursement policy (x ∈ [0, V ′−1(θ + 1

)
], yw ≤ x, yl ≤ x)10.

Remark 2 If the workers are loss-averse (λ > 1), the optimal threshold for quality spending
reimbursement x∗ always lies between the highest and lowest equilibrium quality bid (i.e.,
q(θ) < x∗ < q(θ), where the equilibrium quality bid q(θ) = V ′−1(λ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ +

1
)
).

If workers are not loss-averse (i.e., λ = 1), the resultant decrease in price bid is
identical to the reimbursement amount offered to the losing worker, and therefore
the buyer’s expected utility always stays the same, regardless of the reimbursement
amount to the losing worker.

Regarding the reimbursement threshold in the case of λ > 1, we note that a very
high threshold decreases the chance of a losing worker receiving the reimbursement,
on the other hand, a very low threshold limits the highest possible reimbursement
amount. So the optimal reimbursement threshold x∗ lies in between of the highest
and lowest quality bids. At the optimal reimbursement threshold x∗, the quality
bids below x∗ are not reimbursed, whereas the quality bids exceeding x∗ are par-
tially reimbursed with a reimbursement amount of x∗. Recall that Proposition 6 says
y∗l = x∗. Together with Remark 2, one can imply that the optimal reimbursement
amount to the losing worker is always positive as long as λ > 1. Since the buyer’s
expected utility is higher at the optimal reimbursement amount than at any other
feasible reimbursement amount, including a zero reimbursement, we conclude that
the buyer is always better off by offering a flat reimbursement policy when λ > 1.

Finally, as pointed out in Proposition 5.3 and Remark 2, we can see that in the
presence of worker’s loss aversion behavior, the flat reimbursement policy offers a
win-even solution for the buyer and the worker. Specifically, by using the flat reim-
bursement, the buyer’s expected utility is increased, whereas the worker’s expected
utility is unchanged.

10V′−1(θ + 1
)

is the highest equilibrium quality bidding, i.e., V′−1(θ + 1
)
= q(θ), where q(θ) =

V′−1(λ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ + 1
)

is the equilibrium quality bidding under the flat reimbursement policy.
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1.4.3 Comparison

We have shown that the percentage reimbursement policy in Section 1.4.1 and flat
reimbursement policy in Section 1.4.2 can both increase the buyer’s expected utility
in the interaction with loss-averse workers. More importantly, the buyer and the
workers are win-win with the percentage reimbursement, and win-even with the
flat reimbursement. In other others, under both types of reimbursement, the buyer
is better off without the expense of the worker. In this section, we compare the two
reimbursement policies from the buyer’s perspective. In the presence of workers’
loss aversion behavior, we aim to answer the question of which reimbursement pol-
icy would yield the highest benefit for the buyer.

Compared with the percentage reimbursement, the impact of the flat reimburse-
ment has two major differences. First, the worker’s quality bid in equilibrium is
increased under the percentage reimbursement, whereas it stays unchanged under
the flat reimbursement. Second, the percentage reimbursement is only useful when
the worker’s loss aversion behavior has a negative impact on the buyer (otherwise
the percentages should be set as 0). However, as long as the workers are loss averse
(i.e. λ > 1), the flat reimbursement policy always increases buyer’s utility, regard-
less of the negative or positive impact of worker’s loss aversion on her (see the case
of low λ values in Figure 1.1(a)), in view of Remark 2. The following proposition
formally compares the two reimbursement policies for the buyer.

Proposition 7 (1) If 1 < λ ≤ λl
11, then the buyer should use the flat reimbursement

policy.

(2) If limq→0+ M(q) 6= 0 and limq→0+ M(q) < 112, then there exists a λs ∈ (1,+∞),
such that when λ ≥ λs, the buyer should use the percentage reimbursement policy.

If the worker’s degree of loss aversion is low enough (i.e., 1 < λ < λl), according
to Corollary 1.4.1, the buyer should offer zero under the percentage reimbursement
policy. Under the flat reimbursement policy, however, Proposition 6 states the buyer
should set a positive reimbursement amount to the losing worker to maximize her
expected utility, the resultant buyer’s expected utility is higher than not offering any
reimbursement. So in this scenario the buyer’s expected utility is always higher
under the flat reimbursement policy, compared with the percentage reimbursement
policy.

Under the percentage reimbursement policy, Corollary 1.4.1 implies that when
loss aversion is strong enough, the buyer should fully reimburse the quality spend-
ing of all types of workers. In that situation, the negative effect of loss aversion on
buyer’s expected utility can be fully eliminated. Under the flat reimbursement pol-
icy, however, Remark 2 states that the buyer sets an optimal reimbursement thresh-
old that lies in between of the highest and lowest quality bids, for which low-bids
losing workers do not receive any reimbursement and high-bid losing workers only
receive partial reimbursement, as a result, the negative effect of loss aversion on
buyer’s expected utility can only be partially mitigated. Therefore, when loss aver-
sion is strong enough, the percentage reimbursement policy provides more advan-
tages to the buyer.

Figure 1.3(a) depicts the optimal choice between the percentage and the flat re-
imbursement for the buyer, and the impact of such an optimal choice on buyer’s

11λl is defined in Corollary 1.4.1.
12This condition can be satisfied by multiple classes of functions (which also satisfy Assumption 1),

including Example 1 and Example 2.
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expected utility (in terms of the percentage increase in buyer’s expected utility com-
pared with the situation where neither reimbursement is used) is illustrated in Fig-
ure 1.3(b). We use this class of value function V(q) = 100 + 600qr, where a high r
implies a low diminishing return. We aim to examine the impact of the diminish-
ing return of the value function, as well as the strength of the loss aversion, on the
buyer’s choice between the two types of reimbursement. We plot the curve where
the two reimbursement policies are indifferent for N = 4 and θ ∼ U[1, 7].

The indifference curve in Figure 1.3(a) divides the plot into two regions. The
buyer should adopt the flat reimbursement if and only if the parameter value of r
in the value function and the degree of loss aversion lie in the left region. One can
observe that, consistent with Proposition 7, the buyer is better off with the flat re-
imbursement when worker’s loss aversion is low enough, otherwise the percentage
reimbursement offers more benefit to the buyer. It is also worth pointing out that as
r increases, the region of the percentage reimbursement is smaller. This is because
a high r implies a low diminishing return of the value function, in which case the
negative effect of loss aversion to the buyer is smaller. Since the percentage reim-
bursement increases the equilibrium quality bid (whereas the flat reimbursement
does not) and it is more effective in mitigating the negative effect of loss aversion
when loss aversion is strong, the lessened need of reducing the negative effect un-
der a high r makes the percentage reimbursement less attractive.

Figure 1.3(b) reveals a significant increase (up to 18.5%) in buyer’s expected util-
ity when the buyer adopts the optimal reimbursement form between the flat and
the percentage reimbursement. The improvement seems stronger when workers are
more loss averse or when r is higher. It is also worth mentioning that the improve-
ment for buyer from using reimbursement is not at the expense of the worker.

FIGURE 1.3

(A) Percentage Reimbursement or Flat Reimbursement?

(B) Impact of Reimbursement on Buyer’s Expected Utility
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1.5 Extension: procurement auction when private type is on
quality spending

Our results so far are obtained in the main case where workers have homogeneous
expertise in producing quality proposal but heterogeneous one in the production
process. In this subsection, we compare the results in the main case with those in
another case where the quality producing expertise is heterogeneous (i.e, the private
type is on quality spending), keeping all other assumptions in the main case.

In procurement auction when private type is on quality spending, a worker i of
private type θi bidding price pi and quality spending qi earns the interim expected
utility13:

π(qi, pi) =
(

pi − θiqi
)

P
(
win|qi, pi

)
− λθiqi

(
1− P

(
win|qi, pi

))
(1.7)

where θiqi is the quality spending of the proposal, θi is the private type, denoting
workers’ heterogeneous expertise in preparing the proposal. P

(
win|qi, pi

)
is the

probability of winning the auction when the worker bids price pi and quality qi,
and λ ≥ 1 denotes the degree of loss aversion.

Proposition 8 (1) In the service procurement auction, there exists a unique symmetric equi-
librium in which a loss-averse worker of private type θ makes the following bids for quality
and price:

q(θ) = V ′−1(λθ
1− (1− F(θ))N−1

(1− F(θ))N−1 + θ
)

p(θ) = −(λ− 1)θq(θ)− (λ− 1)

∫ θ
θ (1− F(θ̃))(N−1)q(θ̃)dθ̃

(1− F(θ))(N−1)
+ λ

θq(θ) +
∫ θ

θ q(θ̃)dθ̃

(1− F(θ))(N−1)
,

where V ′−1(·) is the inverse of V ′(·).
(2) Worker’s quality bid in equilibrium always decreases with the degree of loss aversion

(i.e., ∂q(θ)
∂λ = θ 1−(1−F(θ))N−1

(1−F(θ))N−1V′′(q(θ)) ≤ 0).

(3) If M(q) ≤ 1 for all q ∈ [0, V ′−1(θ)], worker’s price bid in equilibrium decreases with
the degree of loss aversion.

Proposition 9 In the equilibrium of the service procurement auction under which the buyer
has no scoring rule commitment power,

(1) worker’s expected utility decreases with the degree of loss aversion;
(2) if M(q) > m0 for all q ∈ [0, V ′−1(θ)], buyer’s expected utility decreases with loss

aversion, where

m0 ≡ sup
λ≥1

∫ θ
θ q(θ)NF(θ)

(
1−

(
1− F(θ)

)N−1)dθ∫ θ
θ q(θ)NF(θ)

(
1−

(
1− F(θ)

)N−1)dθ +
∫ θ

θ q(θ)Nθ f (θ)
(
1−

(
1− F(θ)

)N−1)dθ
∈ (0, 1),

and q(θ) = V ′−1(λθ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ
)

is the equilibrium quality bidding.

Proposition 10 Under a percentage reimbursement policy (ρw, ρl),

13We assume the production cost is zero here. However, in general we can consider a constant
production cost c ≥ 0 for this case and all our results would keep unchanged except the equilibrium
price bidding increases by c.
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(1) a worker’s quality bid in equilibrium increases with the reimbursement percentage
ρw and ρl .

(2) if M(q) ≤ 1 for all q ≥ 014, a worker’s price bid in equilibrium increases with the
reimbursement percentage ρw and ρl .

(3) if M(q) ≤ 1 for all q ≥ 0, a worker’s expected utility in equilibrium increases with
the reimbursement percentage ρw and ρl .

Proposition 11 If M(q) ≤ 1 for all q ≥ 0,

(1) the buyer should never reimburse the quality spending of the winning worker, i.e.,
ρ∗w = 0.

(2) Let

B ≡ −1− ρl

λ

∫ θ

θ
θq(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

where q(θ) = V ′−1(λ(1− ρl)θ
1−(1−F(θ)N−1

(1−F(θ)N−1 + θ
)

and V ′−1(·) is the inverse of V ′(·).

(2.1) If ∂EUpr
b (0,ρl)
∂λ > B for all ρl ∈ [0, 1], then the buyer should never reimburse losing

worker(s), i.e., ρ∗l = 0.

(2.2) If ∂EUpr
b (0,ρl)
∂λ < B for all ρl ∈ [0, 1], then the buyer should fully reimburse the

losing worker(s), i.e., ρ∗l = 1.

(2.3) If ∂EUpr
b (0,ρl)
∂λ

∣∣∣
ρl=1

> B|ρl=1 = 0 and ∂EUpr
b (0,ρl)
∂λ

∣∣∣
ρl=0

< B|ρl=0, then the buyer

should use the optimal reimbursement percentage ρ∗l ∈ (0, 1), where ρ∗l satisfies
∂EUpr

b (0,ρl)
∂λ

∣∣∣
ρl=ρ∗l

= B|ρl=ρ∗l
.

Proposition 12 If M(q) ≤ 1 for all q ∈ [0, V ′−1(θ)], under a flat reimbursement policy
(x, yw, yl),

(1) a worker’s quality bid in equilibrium stays the same with respect to any reimburse-
ment threshold x and any reimbursement amount yw and yl .

(2) a worker’s price bid in equilibrium decreases with reimbursement amount yw and yl
if his quality bid exceeds the reimbursement threshold x.

(3) a worker’s expected utility in equilibrium stays the same with respect to any reim-
bursement threshold x and any reimbursement amount yw and yl .

Proposition 13 If M(q) ≤ 1 for all q ∈ [0, V ′−1(θ)],

(1) the buyer’s expected utility stays the same with respect to any reimbursement amount
to the winning worker yw (x ∈ [0, V ′−1(θ)], yw ≤ xq−1(x), yl ≤ xq−1(x))15, where

q(θ) = V ′−1(λθ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ
)

is the equilibrium quality bid and q−1(·) is the
inverse of q(·).

14In the extreme case where the buyer chooses to fully reimburse the quality spending whenever a
worker wins or loses the auction, a buyer should bid an infinite large quality.

15V′−1(θ) is the highest equilibrium quality bidding, i.e., V′−1(θ) = q(θ), where q(θ) =

V′−1(λθ
1−(1−F(θ))N−1

(1−F(θ))N−1 + θ
)

is the equilibrium quality bidding under the flat reimbursement policy.
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(2) the buyer should reimburse the maximum amount to the losing worker(s) (i.e., y∗l =
x∗q−1(x∗)). The optimal threshold for quality spending reimbursement:

x∗ = argmaxx∈[0,q(θ)]

∫ θ
θ (λ − 1)1q(θ)≥x · xq−1(x)N f (θ)

(
1 −

(
1 − F(θ)

)N−1)dθ,

where q(θ) = V ′−1(λθ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ
)

is the equilibrium quality bid and q−1(·)
is the inverse of q(·).

Proposition 14 If M(q) ≤ 1 for all q ≥ 0, when 1 < λ ≤ λl , the buyer should use the flat
reimbursement policy, where

λl ≡ min
{

3, min
λ∈[1,3]
ρl∈[0,1]

∫ θ
θ (

1
M(q(θ)) − 1) F(θ)

f (θ) q(θ)N f (θ)
(
1− (1− F(θ))N−1)dθ∫ θ

θ θq(θ)N f (θ)
(
1− (1− F(θ))N−1

)
dθ

+ 1
}
> 1,

q(θ) = V ′−1(λ(1− ρl)
1−(1−F(θ)N−1

(1−F(θ)N−1 + θ
)

and V ′−1(·) is the inverse of V ′(·).

TABLE 1.1: Results Summary

Research questions
Main Case:

Private type on
production cost

Extension Case:
Private type on

quality spending
Difference Summary

How loss aversion affects
workers’ equilibrium bidding? Proposition 1 Proposition 8

Part (3):
the range of q where

condition “M(q) ≤ 1" satisfied

How loss aversion affects players’
expected utility in equilibrium? Proposition 2 Proposition 9

Part (2):
the condition under which

loss aversion is harmful

How percentage reimbursement policy
impacts workers’ equilibrium? Proposition 3 Proposition 10 Part (2) and (3):

the conditions about “M(q) ≤ 1"

What is the optimal
reimbursement percentage policy

for the buyer?
Proposition 4 Proposition 11 All parts:

the condition about “M(q) ≤ 1"

How flat reimbursement policy
impacts workers’ equilibrium? Proposition 5 Proposition 12 All parts:

the condition about “M(q) ≤ 1"

What is the optimal
flat percentage policy

for the buyer?
Proposition 6 Proposition 13 All parts:

the condition about “M(q) ≤ 1"

Which reimbursement policy
should the buyer use? Proposition 7 Proposition 14 In extension case:

no part (2) of the main case

1.6 Managerial Insights and Concluding Remarks

This paper models the service procurement in online labor markets as a multidimen-
sional auction combining the winner-pay part for the price bidding and all-pay part
for the upfront quality spending which is associated with the loss aversion behavior
of workers. Our analysis shows that while loss aversion always decreases workers’
equilibrium expected utility, it can increase or decrease the buyer’s equilibrium ex-
pected utility, depending on the degree of loss aversion and the diminishing return
of the quality value function, as it can decrease the equilibrium quality and price
bidding.
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We further study two common reimbursement policies, i.e, the percentage reim-
bursement policy and flat reimbursement policy, for the service procurement auction
with the loss aversion behavior. We find that in both policies, the buyer should only
reimburse the losing worker(s) without any reimbursement to the winning worker.
In addition, both policies can improve the buyer’s expected utility without harm-
ing the workers’. Nevertheless, the two policies work differently. The percentage
reimbursement policy can improve the buyer’s expected utility only if the effect of
loss aversion is harmful, as it counters this harmful effect by increasing her equilib-
rium quality value. The flat reimbursement policy, on the other hand, is useful for
the buyer as long as workers are loss averse, because it can make use of loss aver-
sion’s multiplier effect (i.e., one unit of reimbursement amount can decrease λ > 1
units workers’ price bidding) to reduce her equilibrium price payment. Therefore,
when the effect of loss aversion is harmful enough (the degree of loss aversion and
diminishing return of quality value function is high), it is always more profitable for
the buyer to choose the percentage reimbursement policy, otherwise the the buyer
should use the flat reimbursement policy.

The managerial implications are straightforward from our research. First, con-
sidering workers’ loss aversion behavior, the online labor platforms should always
encourage the use of reimbursement policies since they can always increase the total
social welfare without harming any side. Second, it is crucial for the buyer to choose
between the percentage reimbursement policy and the flat reimbursement policy,
depending on the degree of loss aversion and the diminishing return of her quality
value function.

Several directions of future research are possible. In addition to the first score
sealed bid auction we considered in this paper, contest mechanism in which work-
ers bid only the quality for a fixed price payment is also used in online labor markets.
It will be interesting to investigate the contest mechanism and compare it with the
multidimensional auction mechanism we studied. From a behavioral perspective, it
will be interesting to empirically test the reimbursement policies for the procurement
auction using human experiments, and design reimbursement policies based on the
calibration of loss aversion behavior. Moreover, we have only introduced loss aver-
sion into the model. A large body of literature show that a multitude of behavioral
factors, such as risk aversion, utility of winning and regret, can be important in an
auction context, and thus there is ample room to incorporate additional behavioral
thinking into this line of research.

1.7 Proofs and Extension Cases

1.7.1 Proof of Proposition 1

Proof of Proposition 1 part (1)

We prove the unique symmetric equilibrium in part (1) of Proposition 1 by the fol-
lowing three steps. First, we identify the possible symmetric equilibrium from the
first order conditions. Second, we prove the bidding strategy identified in the first
step is an equilibrium (proof of sufficiency). Last, we prove the uniqueness of the
symmetric equilibrium.

Step 1: possible symmetric equilibrium from first order conditions. We assume
the symmetric bidding strategy in equilibrium is (q(·), p(·)) and a corresponding
strictly decreasing scoring bidding function S(·) = s(q(·))− p(·) (Note that in this
case, s(q(·)) = V(q(·)), when buyer has no scoring rule commitment power). Given
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other workers’ bidding strategy (q(·), p(·)), if a worker i of type θi bids quality qi
and price pi (the corresponding scoring bid Si = V(qi)− pi), based on (1.1), he can
earn interim expected utility π(qi, pi):

π(qi, pi) =
(

pi − θiqi − qi
)
∏
j 6=i

prob
(
Si > S(θj)

)
− λqi

(
1−∏

j 6=i
prob

(
Si > S(θj)

))
=
(

pi − θiqi − qi
)[

1− F(S−1(Si))
]N−1 − λqi

(
1−

[
1− F(S−1(Si))

]N−1)
Given θi and other workers’ bidding strategy, the worker i maximizes the ex-

pected utility πi(qi, pi) by choosing pi and qi. We calculate the derivative of πi(qi, pi)
with respect to pi and qi:

∂π(qi, pi)

∂pi
=
(

pi − θiqi − qi
)
(N − 1)

[
1− F(S−1(Si))

]N−2 f (S−1(Si))
1

S′(S−1(Si))
+
[
1− F(S−1(Si))

]N−1

+ λqi(N − 1)
[
1− F(S−1(Si))

]N−2 f (S−1(Si))
1

S′(S−1(Si))

∂π(qi, pi)

∂qi
=
(

pi − θiqi − qi
)
(N − 1)

[
1− F(S−1(Si))

]N−2
(−1) f (S−1(Si))

1
S′(S−1(Si))

V ′(qi)

− (θi + 1)
[
1− F(S−1(Si))

]N−1

− λ
(
1−

[
1− F(S−1(Si))

]N−1)
+ λqi(N − 1)

[
1− F(S−1(Si))

]N−2
(−1) f (S−1(Si))

1
S′(S−1(Si))

V ′(qi)

From the first order conditions ∂π(qi ,pi)
∂pi

= 0 and ∂π(qi ,pi)
∂qi

= 0, we have:

[
1− F(S−1(Si))

]N−1V ′(qi)− (θi + 1)
[
1− F(S−1(Si))

]N−1 − λ
(
1−

[
1− F(S−1(Si))

]N−1)
= 0

Because of the symmetry of the equilibrium, we have S−1(Si) = S−1(S(θi)) = θi and[
1− F(θi)

]N−1V ′(qi)− (θi + 1)
[
1− F(θi)

]N−1 − λ
(
1−

[
1− F(θi)

]N−1)
= 0

Let G(qi) ≡
[
1− F(θi)

]N−1V ′(qi)− (θi + 1)
[
1− F(θi)

]N−1−λ
(
1−

[
1− F(θi)

]N−1).
Since V ′′(qi) < 0, we can get: ∂G(qi)

∂qi
= V ′′(qi)

[
1− F(θi)

]N−1
< 0. In addition, since

lim
q→0

V ′(q) = +∞ and lim
q→+∞

V ′(q) = 0 from Assumption 1. We have lim
qi→+∞

G(qi) < 0,

and lim
qi→0

G(qi) > 0. According to the intermediate value theorem, there is a unique

q∗i ∈ (0,+∞), such that G(q∗i ) = 0. Specifically, we can denote worker i’s price
bidding function as

q(θi) = q∗i = V ′−1(λ1− (1− F(θi))
N−1

(1− F(θi))N−1 + θi + 1
)

where V ′−1(·) is the inverse of V ′(·). Note we can easily check that q(θ) = V ′−1(+∞) =
0 and q′(θi) < 0 from assumption 1 in our paper.
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Moreover, from ∂π(qi ,pi)
∂pi

= 0, we can get the following differential equation:

(
pi − θiq(θi)− q(θi) + λq(θi)

)
(N − 1) f (S−1(Si))

1
S′(S−1(Si))

+
[
1− F(S−1(Si))

]
= 0

Because of the symmetry of the equilibrium, we have S−1(Si) = S−1(S(θi)) = θi and

(
pi − θiq(θi)− q(θi) + λq(θi)

)
(N − 1) f (θi)

1
S′(θi)

+
(
1− F(θi)

)
= 0

In addition, because S′(θi) = V ′(q(θi))q′(θi)− p′(θi), we have:

(
pi − θiq(θi)− q(θi) + λq(θi)

)
(N − 1) f (θi)

1
V ′(q(θi))q′(θi)− p′(θi)

+
(
1− F(θi)

)
= 0

With the boundary condition we solve the above differential equation:

p(θi) = θiq(θi) + q(θi) +

∫ θ
θi

q(θ̃)(1− F(θ̃))(N−1)dθ̃

(1− F(θi))(N−1)
+ λq(θi)

1− (1− F(θi))
(N−1)

(1− F(θi))(N−1)

We can confirm that S(θi) = V(q(θi))− p(θi) is strictly decreasing with the pri-
vate type θi, because

dS(θi)

dθi
= −(N − 1)(1− F(θi))

−N f (θi)

( ∫ θ

θi

(1− F(θ̃))(N−1)q(θ̃)dθ̃ + λq(θi)

)
< 0

Step 2: (q(·), p(·)) is a symmetric equilibrium.
Following the approach in Hanazono, Nakabayashi, and Tsuruoka, 2013, we can

check the sufficiency based on two sub-steps. In the first sub-step, given the score
S(θi) = V(q(θi))− p(θi) we identified in the first step, we need to check:

(q(θi), p(θi)) = arg maxqi ,pi
π(qi, pi) =

(
pi − θiqi − qi

)(
1− F(θi)

)N−1 − λqi
(
1−

(
1− F(θi)

)N−1)
s.t. V(qi)− pi = S(θi)

Based on the definition of S(θi), the above maximization problem can be trans-
formed into the following equivalent maximization problem:

q(θi) = arg maxqi

(
V(qi)− S(θi)− θiqi − qi

)(
1− F(θi)

)N−1 − λqi
(
1−

(
1− F(θi)

)N−1)
Let π(qi, V(qi) − S(θi)) ≡

(
V(qi) − S(θi) − θiqi − qi

)(
1 − F(θi)

)N−1 − λqi
(
1 −(

1− F(θi)
)N−1).

The first order condition:

∂π(qi, V(qi)− S(θi))

∂qi
=
(
1− F(θi)

)N−1(V ′(qi)− 1− θi
)
− λ

(
1−

(
1− F(θi)

)N−1)
= 0,

and second order condition:

∂2π(qi, V(qi)− S(θi))

∂q2
i

=
(
1− F(θi)

)N−1V ′′(qi) < 0.

Therefore, we have q(θi) = V ′−1(λ 1−(1−F(θi))
N−1

(1−F(θi))N−1 + θi + 1
)
= arg maxqi

π(qi, V(qi)−
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S(θi), θi). In the first sub-step, we optimized a worker’s quality and price bidding
give a score S(θi). The resultant q(θi) and price bidding p(θi) can be both written
as an implicit function of S(θi) and θi. Therefore, the original problem with multi-
dimensional bids can be transformed into one-dimensional problem with a score bid
(Hanazono, Nakabayashi, and Tsuruoka, 2013; Kovenock and Lu, 2020).

In the second sub-step, with the fact that S(θi) is strictly decreasing from step
1, we need to check that worker i will report the truthful information in a direct
mechanism (Myerson, 1981) under which the worker i can make announcement θ̃i
to maximize his expected utility when the other workers are truthful:

θi ∈ arg maxθ̃i
π(θi, θ̃i) =

(
p(θ̃i)− θiq(θ̃i)− q(θ̃i)

)[
1− F(θ̃i)

]N−1 − λq(θ̃i)
(
1−

[
1− F(θ̃i)

]N−1)
Let π(θi, θ̃i) ≡

(
p(θ̃i)− θiq(θ̃i)− q(θ̃i)

)[
1− F(θ̃i)

]N−1−λq(θ̃i)
(
1−

[
1− F(θ̃i)

]N−1).
Using the form of (q(·), p(·)) we derived in Step 1, we have:

π(θi, θ̃i) =
(
θ̃iq(θ̃i)− θiq(θ̃i)

)[
1− F(θ̃i)

]N−1
+
∫ θ

θ̃i

q(θ̃)(1− F(θ̃))(N−1)dθ̃

We can take derivative with respect to θ̃i for the two sides of the above equality
and get:

∂π(θi, θ̃i)

∂θ̃i
=
(
θ̃i − θi

)
(1− F(θ̃))N−2

(
q′(θ̃i)(1− F(θ̃i))− (N − 1)q(θ̃i) f (θ̃i)

)
Because q′(θ̃i) < 0, we have when θ̃i < θi,

π(θi ,θ̃i)

∂θ̃i
> 0; when θ̃i > θi,

π(θi ,θ̃i)

∂θ̃i
< 0.

Therefore, θi = arg maxθ̃i
π(θi, θ̃i).

Step 3: uniqueness of the symmetric equilibrium (q(·), p(·)).
First, we can prove that a type θi worker i’s quality bid in a symmetric equilib-

rium can only be q(θi) (Note that
[
1− F(θi)

]N−1V ′(q(θi)) = (θi + 1)
[
1− F(θi)

]N−1
+

λ
(
1−

[
1− F(θi)

]N−1)). We can prove this claim by contradiction. Suppose in a sym-

metric equilibrium, the type θi worker i’s bidding is (qi, pi), and
[
1− F(θi)

]N−1V ′(qi) 6=
(θi + 1)

[
1− F(θi)

]N−1
+ λ

(
1−

[
1− F(θi)

]N−1)
Case 1: If

[
1− F(θi)

]N−1V ′(qi)− (θi + 1)
[
1− F(θi)

]N−1−λ
(
1−

[
1− F(θi)

]N−1)
>

0, then the worker i can increase a small amount of quality investment by ∆qi → 0+

and a small amount of price by V ′(qi)∆qi, keeping the score unchanged. Specifically,
we denote q′i = qi + ∆qi, and p′i = pi + V ′(qi)∆qi. We have S(q′i, p′i) = V(q′i)− p′i =
V(qi + ∆qi)− (pi + V ′(qi)∆qi) = (V(qi) + V ′(qi)∆qi)− (pi + V ′(qi)∆qi) = V(qi)−
pi = S(qi, pi). Now,

π(q′i, p′i|θi) =
(

p′i − θiq′i − q′i
)

Prob{win|S(q′i, p′i)} − λq′i
(
1− Prob{win|S(q′i, p′i)}

)
=
(

pi + V ′(qi)∆qi − θi(qi + ∆qi)− (qi + ∆qi)
)

Prob{win|S(qi, pi)}
− λ(qi + ∆qi)

(
1− Prob{win|S(qi, pi)}

)
=
(

pi − θiqi − qi
)

Prob{win|S(qi, pi)} − λqi
(
1− Prob{win|S(qi, pi)}

)
+

([
1− F(θi)

]N−1V ′(qi)− (θi + 1)
[
1− F(θi)

]N−1 − λ
(
1−

[
1− F(θi)

]N−1))∆qi

> π(qi, pi|θi),
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where π(q′i, p′i|θi) is the type θi worker i’s expected utility when bidding (q′i, p′i),
π(qi, pi|θi) is the type θi worker i’s expected utility when bidding (qi, pi), the third
equality uses the fact that in a symmetric equilibrium in which the type θi worker
i’s bidding is (qi, pi) and therefore Prob{win|S(qi, pi)} =

[
1− F(θi)

]N−1. The last

inequality uses the fact that
[
1− F(θi)

]N−1V ′(qi)− (θi + 1)
[
1− F(θi)

]N−1 − λ
(
1−[

1− F(θi)
]N−1)

> 0 and ∆qi → 0+.

Case 2: If
[
1− F(θi)

]N−1V ′(qi)− (θi + 1)
[
1− F(θi)

]N−1−λ
(
1−

[
1− F(θi)

]N−1)
<

0, then the worker i can decrease a small amount of quality investment by ∆qi → 0−

and a small amount of price by V ′(qi)∆qi, keeping the score unchanged. Specifically,
we denote q′i = qi + ∆qi, and p′i = pi + V ′(qi)∆qi. We have S(q′i, p′i) = V(q′i)− p′i =
V(qi + ∆qi)− (pi + V ′(qi)∆qi) = (V(qi) + V ′(qi)∆qi)− (pi + V ′(qi)∆qi) = V(qi)−
pi = S(qi, pi). Now,

π(q′i, p′i|θi) =
(

p′i − θiq′i − q′i
)

Prob{win|S(q′i, p′i)} − λq′i
(
1− Prob{win|S(q′i, p′i)}

)
=
(

pi + V ′(qi)∆qi − θi(qi + ∆qi)− (qi + ∆qi)
)

Prob{win|S(qi, pi)}
− λ(qi + ∆qi)

(
1− Prob{win|S(qi, pi)}

)
=
(

pi − θiqi − qi
)

Prob{win|S(qi, pi)} − λqi
(
1− Prob{win|S(qi, pi)}

)
+

([
1− F(θi)

]N−1V ′(qi)− (θi + 1)
[
1− F(θi)

]N−1 − λ
(
1−

[
1− F(θi)

]N−1))∆qi

> π(qi, pi|θi),

where π(q′i, p′i|θi) is the type θi worker i’s expected utility when bidding (q′i, p′i),
π(qi, pi|θi) is the type θi worker i’s expected utility when bidding (qi, pi), the third
equality uses the fact that in a symmetric equilibrium in which the type θi worker
i’s bidding is (qi, pi) and therefore Prob{win|S(qi, pi)} =

[
1− F(θi)

]N−1. The last

inequality uses the fact that
[
1− F(θi)

]N−1V ′(qi)− (θi + 1)
[
1− F(θi)

]N−1 − λ
(
1−[

1− F(θi)
]N−1)

< 0 and ∆qi → 0−.
Therefore, the bid (qi, pi) is strictly dominated by an alternative bid (q′i, p′i) in

both cases. Thus, the type θi worker i’s bidding (qi, pi) where
[
1− F(θi)

]N−1V ′(qi) 6=
(θi + 1)

[
1 − F(θi)

]N−1
+ λ

(
1 −

[
1 − F(θi)

]N−1) cannot be in a symmetric equilib-
rium.

Therefore, q(·) we derived from Step 1 is the only possible symmetric pure equi-
librium quality bidding. Moreover, given q(·) is used as the unique quality bidding
strategy for all the workers in equilibrium, the uniqueness of the symmetric equi-
librium price bidding p(·) follows from the usual equilibrium result in first-price
sealed bid auctions.

Proof of Proposition 1 part (2)

Since the equilibrium quality bidding
q(θ) = V ′−1(λ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ + 1
)
. It should satisfy the equation:

[
1− F(θ)

]N−1V ′(q(θ)) = (θ + 1)
[
1− F(θ)

]N−1
+ λ

(
1−

[
1− F(θ)

]N−1).
We can take derivative with respect to λ for the two sides of the above equality and
get: ∂q(θ)

∂λ = 1−(1−F(θ))N−1

(1−F(θ))N−1V′′(q(θ)) ≤ 0 (Note V ′′(·) < 0 from Assumption 1), the equality

holds if and only if θ = θ or θ = θ.
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Proof of Proposition 1 part (3)

Since the equilibrium price bidding

p(θ) = θq(θ) + q(θ) +

∫ θ
θ q(θ̃)(1− F(θ̃))(N−1)dθ̃

(1− F(θ))(N−1)
+ λq(θ)

1− (1− F(θ))(N−1)

(1− F(θ))(N−1)
.

We can take derivative with respect to λ for the two sides of the above equality and
get:

∂p(θ)
∂λ

=
(
θ − (λ− 1) +

λ

(1− F(θ))(N−1)

) (
1−

[
1− F(θ)

]N−1)[
1− F(θ)

]N−1V ′′(q(θ))

+

(
1−

[
1− F(θ)

]N−1)[
1− F(θ)

]N−1 q(θ) +

∫ θ
θ

1−(1−F(θ̃))(N−1)

V′′(q(θ̃)) dθ̃

(1− F(θ))(N−1)

= V ′(q(θ))

(
1−

[
1− F(θ)

]N−1)[
1− F(θ)

]N−1V ′′(q(θ))
+

(
1−

[
1− F(θ)

]N−1)[
1− F(θ)

]N−1 q(θ) +

∫ θ
θ

1−(1−F(θ̃))(N−1)

V′′(q(θ̃)) dθ̃

(1− F(θ))(N−1)

=

(
1−

[
1− F(θ)

]N−1)[
1− F(θ)

]N−1 q(θ)
(
1 +

V ′(q(θ))
q(θ)V ′′(q(θ))

)
+

∫ θ
θ

1−(1−F(θ̃))(N−1)

V′′(q(θ̃)) dθ̃

(1− F(θ))(N−1)

=

(
1−

[
1− F(θ)

]N−1)[
1− F(θ)

]N−1 q(θ)
(
1− 1

M(q(θ))
)
+

∫ θ
θ

1−(1−F(θ̃))(N−1)

V′′(q(θ̃)) dθ̃

(1− F(θ))(N−1)
,

where the first equality uses the fact that ∂q(θ)
∂λ = 1−(1−F(θ))N−1

(1−F(θ))N−1V′′(q(θ)) , the second equal-

ity uses the fact that V ′(q(θ)) = θ + 1 + λ 1−(1−F(θ))N−1

(1−F(θ))N−1 , the last equality uses the

definition that M(q(θ)) = −q(θ)V
′′
(q(θ))

V′ (q(θ))
.

Note that
∫ θ

θi
1−(1−F(θ̃))(N−1)

V′′(q(θ̃)) dθ̃

(1−F(θ))(N−1) ≤ 0 because V ′′(·) < 0. Moreover, it is easy to check

that the equilibrium quality bidding function q(θ) ∈ [0, V ′−1(θ + 1)], for all θ ∈ [θ, θ].
Therefore, if M(q) ≤ 1 for all q ∈ [0, V ′−1(θ + 1)], we can know that ∂p(θ)

∂λ ≤ 0, the
equality holds if and only if θ = θ.

1.7.2 Proof of Proposition 2

Proof of Proposition 2 part (1)

From the equilibrium quality and price bidding function q(θi) and p(θi) we de-
rived in 1.7.1, we can get worker i’s expected utility in equilibrium π(q(θi), p(θi)) =∫ θ

θi
q(θ̃)(1− F(θ̃))(N−1)dθ̃. Therefore, we have:

dπ(q(θi), p(θi))

dλ
=
∫ θ

θi

(
1−

(
1− F(θ̃)

)N−1)
V ′′(q(θ̃))

dθ̃ ≤ 0,

where the equality holds if and only if θi = θ, the equality uses the fact that ∂q(θi)
∂λ =

1−(1−F(θi))
N−1

(1−F(θi))N−1V′′(q(θi))
and the inequality follows from the fact that V ′′(·) < 0. Therefore,

a worker’s expected utility decreases with the degree of loss aversion.
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Proof of Proposition 2 part (2)

Based on the price and quality bidding in part (1) of Proposition 1, the buyer’s ex-
pected utility in equilibrium EUb should be:

EUb = E
{

V(q(θ1))− p(θ1)
}

=
∫ θ

θ

{
V(q(θ))− θq(θ) + (λ− 1)q(θ)

−
∫ θ

θ (1− F(θ̃))(N−1)q(θ̃)dθ̃

(1− F(θ))(N−1)
− λq(θ)

(1− F(θ))(N−1)

}
N f (θ)

(
1− F(θ)

)N−1dθ

=
∫ θ

θ

{
V(q(θ))− θq(θ) + (λ− 1)q(θ)− F(θ)

f (θ)
q(θ)− λq(θ)

(1− F(θ))(N−1)

}
N f (θ)

(
1− F(θ)

)N−1dθ,

where θ1 is the lowest order statistic, i.e., θ1 = min{θi}N
i=1 and the last equality

follows from integration by parts with the fact that q(θ) = 0. Therefore, we have:

∂EUb

∂λ
=
∫ θ

θ

{(
V ′(q(θ))− θ + (λ− 1)− λ(

1− F(θ)
)N−1 −

F(θ)
f (θ)

)
dq(θ)

dλ

−
(
1−

[
1− F(θ)

]N−1)[
1− F(θ)

]N−1 q(θ)
}

N f (θ)
(
1− F(θ)

)N−1dθ

=
∫ θ

θ

{
− F(θ)

f (θ)
dq(θ)

dλ
−
(
1−

[
1− F(θ)

]N−1)[
1− F(θ)

]N−1 q(θ)
}

N f (θ)
(
1− F(θ)

)N−1dθ

=
∫ θ

θ

{
− F(θ)

f (θ)

(
1−

[
1− F(θ)

]N−1)[
1− F(θ)

]N−1V ′′(q(θ))
−
(
1−

[
1− F(θ)

]N−1)[
1− F(θ)

]N−1 q(θ)
}

N f (θ)
(
1− F(θ)

)N−1dθ

=
∫ θ

θ

{
− F(θ)

f (θ)
1

V ′′(q(θ))q(θ)
− 1
}

q(θ)N f (θ)
(
1−

(
1− F(θ)

)N−1)dθ

=
∫ θ

θ

{
F(θ)
f (θ)

1
M(q(θ))

−
(
λ

1− (1− F(θ))N−1

(1− F(θ))N−1 + θ + 1
)} q(θ)

V ′(q(θ))
N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ,

where the second equality uses the fact that V ′(q(θ)) = θ + 1 + λ 1−(1−F(θ))N−1

(1−F(θ))N−1 , the

third equality uses the fact that ∂q(θ)
∂λ = 1−(1−F(θ))N−1

(1−F(θ))N−1V′′(q(θ)) , the last equality uses the

facts that M(q(θ)) = −q(θ)V
′′
(q(θ))

V′ (q(θ))
and V ′(q(θ)) = λ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ + 1.

First note if limq→0+ M(q) 6= 0, then we have limq→0+ M(q) = lim
λ→+∞

M(q(θ))(∀θ ∈

(θ, θ)) = lim
θ→θ

M(q(θ)) > 0 (Note we have M(q) ≥ 0 throughout the paper from As-

sumption 1).

Therefore, for any θ ∈ [θ, θ] and any λ ≥ 1, we have:

(
1

M(q(θ))
F(θ)
f (θ)−θ−1

)(
1−F(θ)

)N−1

1−
(

1−F(θ)
)N−1 <

+∞ and thus sup λ≥1
θ∈[θ,θ]

( 1
M(q(θ))

F(θ)
f (θ)−θ−1)(1−F(θ))N−1

1−(1−F(θ))N−1 exists.
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Moreover, when λ > sup λ≥1
θ∈[θ,θ]

( 1
M(q(θ))

F(θ)
f (θ)−θ−1)(1−F(θ))N−1

1−(1−F(θ))N−1 , we have:

∂EUb

∂λ
=
∫ θ

θ

{
F(θ)
f (θ)

1
M(q(θ))

− θ − 1− 1− (1− F(θ))N−1

(1− F(θ))N−1 λ

}
q(θ)

V ′(q(θ))
N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

=
∫ θ

θ

{ ( 1
M(q(θ))

F(θ)
f (θ) − θ − 1)(1− F(θ))N−1

1− (1− F(θ))N−1 − λ

}
q(θ)

V ′(q(θ))
N f (θ)

(
1− (1− F(θ))N−1)2

(1− F(θ))N−1 dθ

< 0,

where the inequality comes from the facts λ > sup λ≥1
θ∈[θ,θ]

( 1
M(q(θ))

F(θ)
f (θ)−θ−1)(1−F(θ))N−1

1−(1−F(θ))N−1 ,

q(θ) > 0 and V ′(q(θ)) > 0.

Therefore, if limq→0+ M(q) 6= 0, then when λ > sup λ≥1
θ∈[θ,θ]

( 1
M(q(θ))

F(θ)
f (θ)−θ−1)(1−F(θ))N−1

1−(1−F(θ))N−1 ,

we always have dEUb
dλ < 0 , i.e., buyer’s expected utility decreases with loss aversion

when loss aversion is sufficiently high.

1.7.3 Proof of Proposition 3

Consider the buyer can reimburse the losing workers with ρl ∈ [0%, 100%] percent
of their quality spending, and the winning workers with ρw ∈ [0%, 100%] percent
of their quality spending. We will prove this part by two steps. Given any reim-
bursement percentage ρw and ρl , we solve the workers’ quality and price bidding in
equilibrium (Here we identify the symmetric equilibrium from the first order condi-
tions. Its sufficiency and uniqueness can be checked by the same methods in 1.7.1).

We assume the symmetric bidding strategy in equilibrium is (q(·), p(·)) and a
corresponding strictly decreasing scoring bidding function S(·) = s(q(·)) − p(·)
(Note that in this case, s(q(·)) = V(q(·))).Given other workers’ bidding strategy
(q(·), p(·)), if a worker i of type θi bids quality qi and price pi (the corresponding
scoring bid Si = s(qi)− pi), under the percentage reimbursement policy (ρw, ρl) he
can earn interim expected utility πpr(qi, pi):

πpr(qi, pi) =
(

pi − θiqi − (1− ρw)qi
)
∏
j 6=i

prob
(
Si > S(θj)

)
− λ(1− ρl)qi

(
1−∏

j 6=i
prob

(
Si > S(θj)

))
=
(

pi − θiqi − (1− ρw)qi
)[

1− F(S−1(Si))
]N−1 − λ(1− ρl)qi

(
1−

[
1− F(S−1(Si))

]N−1)
Given θi and other workers’ bidding strategy, the worker i maximizes his expected
profit by choosing pi and qi. We calculate the derivative of πi(qi, pi) with respect to
pi and qi:

∂πpr(qi, pi)

∂pi
=
(

pi − θiqi − (1− ρw)qi
)
(N − 1)

[
1− F(S−1(Si))

]N−2 f (S−1(Si))
1

S′(S−1(Si))

+
[
1− F(S−1(Si))

]N−1
+ λ(1− ρl)qi(N − 1)

[
1− F(S−1(Si))

]N−2 f (S−1(Si))
1

S′(S−1(Si))
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∂πpr(qi, pi)

∂qi
=
(

pi − θiqi − (1− ρw)qi
)
(N − 1)

[
1− F(S−1(Si))

]N−2
(−1) f (S−1(Si))

1
S′(S−1(Si))

V ′(qi)

− (θi + (1− ρw))
[
1− F(S−1(Si))

]N−1

− λ(1− ρl)
(
1−

[
1− F(S−1(Si))

]N−1)
+ λ(1− ρl)qi(N − 1)

[
1− F(S−1(Si))

]N−2
(−1) f (S−1(Si))

1
S′(S−1(Si))

V ′(qi)

From the first order condition ∂πpr(qi ,pi)
∂pi

= 0 and ∂πpr(qi ,pi)
∂qi

= 0, we have

[
1− F(S−1(Si))

]N−1V ′(qi)−(θi + (1− ρw))
[
1− F(S−1(Si))

]N−1

− λ(1− ρl)
(
1−

[
1− F(S−1(Si))

]N−1)
= 0.

Because of the symmetry of the equilibrium, we have S−1(Si) = S−1(S(θi)) = θi.
Therefore:[
1− F(θi)

]N−1V ′(qi)− (θi + (1− ρw))
[
1− F(θi)

]N−1 − λ(1− ρl)
(
1−

[
1− F(θi)

]N−1)
= 0

Let G(qi) ≡
[
1− F(θi)

]N−1V ′(qi) − (θi + (1− ρw))
[
1− F(θi)

]N−1 − λ(1− ρl)
(
1−[

1− F(θi)
]N−1). Since V ′′(·) < 0, we can get: dG(qi)

dqi
= V ′′(qi)

[
1− F(θi)

]N−1
< 0.

In addition, since lim
q→0

V ′(q) = +∞ and lim
q→+∞

V ′(q) = 0. We have lim
qi→+∞

G(qi) <

0, and lim
qi→0

G(qi) > 0. According to the intermediate value theorem, there is an

unique q∗i , such that G(q∗i ) = 0. Specifically, we can denote the equilibrium price
bidding :

q(θi) = q∗i = V ′−1(λ(1− ρl)
1− (1− F(θi))

N−1

(1− F(θi))N−1 + θi + (1− ρw)
)
,

where V ′−1(·) is the inverse of V ′(·). Taking derivative with respect to ρw and ρl for
the equilibrium price bidding function q(θi), we have:

dq(θi)

dρw
=

−1
V ′′(q(θi))

> 0,

dq(θi)

dρl
=
−λ
(
1−

[
1− F(θi)

]N−1)(
1− F(θi)

)N−1V ′′(q(θi))
≥ 0,

where the equality (of the last inequality) holds if and only if θi = θ or θi = θ,
both inequality follows from the fact that V ′′(·) < 0. Therefore, a worker’s quality
bidding in equilibrium increases with reimbursement percentage ρw and ρl .

In addition, from ∂πpr(qi ,pi)
∂pi

= 0, we can get the derivative equation

(
pi − θiq(θi)− (1− ρw)q(θi) + λ(1− ρl)q(θi)

)
(N − 1) f (S−1(Si))

1
S′(S−1(Si))

+
[
1− F(S−1(Si))

]
= 0
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Because of the symmetry of the equilibrium, we have S−1(Si) = S−1(S(θi)) = θi.
Therefore,(

pi − θiq(θi)− (1− ρw)q(θi) + λ(1− ρl)q(θi)
)
(N − 1) f (θi)

1
S′(θi)

+
[
1− F(θi)

]
= 0

Moreover, because S′(θi) = V ′(q(θi))q′(θi)− p′(θi). We have:

(
pi − θiq(θi)− (1− ρw)q(θi) + λ(1− ρl)q(θi)

)
(N − 1) f (θi)

1
V ′(q(θi))q′(θi)− p′(θi)

+
(
1− F(θi)

)
= 0

With the boundary condition we can solve this differential equation and get:

p(θi) = θiq(θi) + (1− ρw)q(θi)− λ(1− ρl)q(θi) +

∫ θ
θi

q(θ̃)(1− F(θ̃))(N−1)dθ̃

(1− F(θi))(N−1)
+

λ(1− ρl)q(θi)

(1− F(θi))(N−1)

We can confirm S(θi) = V(q(θi))− p(θi) strictly decreases with private type θi,
because

dS(θi)

dθi
= −(N − 1)(1− F(θi))

−N f (θi)

( ∫ θ

θi

(1− F(θ̃))(N−1)q(θ̃)dθ̃ + λ(1− ρl)q(θi)

)
< 0

Taking derivative with respect to ρw and ρl for the equilibrium price bidding
function p(θi), we have:

∂p(θi)

∂ρw
=
(
θi − λ(1− ρl) + (1− ρw) +

λ(1− ρl)

(1− F(θi))(N−1)

) −1
V ′′(q(θi))

− q(θi) +

∫ θ
θi

−(1−F(θ̃))(N−1)

V′′(q(θ̃)) dθ̃

(1− F(θi))(N−1)

= V ′(q(θi))
−1

V ′′(q(θi))
− q(θi) +

∫ θ
θi

(1−F(θ̃))(N−1)

−V′′(q(θ̃)) dθ̃

(1− F(θi))(N−1)

= q(θi)
( −V ′(q(θi))

q(θi)V ′′(q(θi))
− 1
)
+

∫ θ
θi

(1−F(θ̃))(N−1)

−V′′(q(θ̃)) dθ̃

(1− F(θi))(N−1)

= q(θi)
( 1

M(q(θi))
− 1
)
+

∫ θ
θi

(1−F(θ̃))(N−1)

−V′′(q(θ̃)) dθ̃

(1− F(θi))(N−1)
,

where the first equality uses the fact that dq(θi)
dρw

= −1
V′′(q(θi))

, the second equality uses

the fact V ′(q(θi)) = λ(1 − ρl)
1−(1−F(θi))

N−1

(1−F(θi))N−1 + θi + (1 − ρw), the last equality uses

the definition that M(q(θi)) = −q(θi)V
′′
(q(θi))

V′ (q(θi))
. Note that

∫ θ
θi

(1−F(θ̃))(N−1)

−V′′(q(θ̃)) dθ̃

(1−F(θi))(N−1) > 0 because

V ′′(·) < 0. Moreover, it is easy to check that the equilibrium quality bidding function
q(θi) ∈ [0, V ′−1(θ)], ∀θi ∈ [θ, θ], ∀ρw ∈ [0, 1], ∀ρl ∈ [0, 1]. Therefore, if M(q) ≤ 1 for
all q ∈ [0, V ′−1(θ)], we can know that ∂p(θi)

∂ρw
≥ 0. Therefore, if M(q) ≤ 1 for all

q ∈ [0, V ′−1(θ)], a worker’s price bid in equilibrium increases with reimbursement
percentage ρw.
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∂p(θi)

∂ρl
=
(
θi − λ(1− ρl) + (1− ρw) +

λ(1− ρl)

(1− F(θi))(N−1)

)−λ(1− (1− F(θi))
N−1)

(1− F(θi))N−1V ′′(q(θi))

+
−λ(1− (1− F(θi))

N−1)

(1− F(θi))N−1 q(θi) +

∫ θ
θi
−λ 1−(1−F(θ̃))(N−1)

V′′(q(θ̃)) dθ̃

(1− F(θi))(N−1)

=
λ(1− (1− F(θi))

N−1)

(1− F(θi))N−1

(
V ′(q(θi))

−1
V ′′(q(θi))

− q(θi)
)
+

∫ θ
θi
−λ 1−(1−F(θ̃))(N−1)

V′′(q(θ̃)) dθ̃

(1− F(θi))(N−1)

=
λ(1− (1− F(θi))

N−1)

(1− F(θi))N−1 q(θi)
( −V ′(q(θi))

q(θi)V ′′(q(θi))
− 1
)
+

∫ θ
θi
−λ 1−(1−F(θ̃))(N−1)

V′′(q(θ̃)) dθ̃

(1− F(θi))(N−1)

=
λ(1− (1− F(θi))

N−1)

(1− F(θi))N−1 q(θi)
( 1

M(q(θi))
− 1
)
+

∫ θ
θi
−λ 1−(1−F(θ̃))(N−1)

V′′(q(θ̃)) dθ̃

(1− F(θi))(N−1)
,

where the first equality uses the fact that dq(θi)
dρl

= −λ(1−(1−F(θi))
N−1)

(1−F(θi))N−1V′′(q(θi))
, the second

equality uses the fact V ′(q(θi)) = λ(1 − ρl)
1−(1−F(θi))

N−1

(1−F(θi))N−1 + θi + (1 − ρw), the last

equality uses the definition that M(q(θi)) =
−q(θi)V

′′
(q(θi))

V′ (q(θi))
. Note that

∫ θ
θi
−λ

1−(1−F(θ̃))(N−1)

V′′(q(θ̃)) dθ̃

(1−F(θi))(N−1) >

0 because V ′′(·) < 0. Moreover, it is easy to check that the equilibrium quality bid-
ding function q(θi) ∈ [0, V ′−1(θ)], ∀θi ∈ [θ, θ], ∀ρw ∈ [0, 1], ∀ρl ∈ [0, 1]. Therefore,
if M(q) ≤ 1 for all q ∈ [0, V ′−1(θ)], we can know that ∂p(θi)

∂ρl
≥ 0. Therefore, if

M(q) ≤ 1 for all q ∈ [0, V ′−1(θ)], a worker’s price bidding in equilibrium increases
with reimbursement percentage ρl .

Moreover, from the equilibrium quality and price bidding function q(θi) and
p(θi) we derived, we can get worker i’s expected utility in equilibrium πpr(q(θi), p(θi)) =∫ θ

θi
q(θ̃)(1− F(θ̃))(N−1)dθ̃. Therefore, we have:

dπpr(q(θi), p(θi))

dρw
=
∫ θ

θi

−1
V ′′(q(θ̃))

(1− F(θ̃))(N−1)dθ̃ ≥ 0,

dπpr(q(θi), p(θi))

dρl
=
∫ θ

θi

−λ
(
1−

[
1− F(θ̃)

]N−1)
V ′′(q(θ̃))

dθ̃ ≥ 0,

where the equality holds if and only if θi = θ, both inequality follows from the fact
that V ′′(·) < 0. Therefore, a worker’s expected utility in equilibrium increases with
reimbursement percentage ρw and ρl .

1.7.4 Proof of Proposition 4

Proof of Proposition 4 part (1)

Given workers’ best response (equilibrium price and quality bidding we character-
ized in 1.7.3), the buyer’s expected utility when she reimburses the winning worker
for ρw percentage of quality cost and the losing workers for ρl percentage of quality
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cost:

EUpr
b (ρw, ρl) = E

{
V(q(θ1))− p(θ1)

}
− N

∫ θ

θ
ρlq(θ)(1− (1− F(θ))N−1)dF(θ)

− N
∫ θ

θ
ρwq(θ)(1− F(θ))N−1dF(θ)

=
∫ θ

θ

{
V(q(θ))− θq(θ)− (1− ρw)q(θ) + λ(1− ρl)q(θ)

−
∫ θ

θ (1− F(θ̃))(N−1)q(θ̃)dθ̃

(1− F(θ))(N−1)

− λ(1− ρl)q(θ)
(1− F(θ))(N−1)

− ρwq(θ)− 1− (1− F(θ))N−1

(1− F(θ))N−1 ρlq(θ)
}

N f (θ)
(
1− F(θ)

)N−1dθ

=
∫ θ

θ

{
V(q(θ))− θq(θ)− q(θ) + λ(1− ρl)q(θ)

− F(θ)
f (θ)

q(θ)− λ(1− ρl)q(θ)
(1− F(θ))(N−1)

− 1− (1− F(θ))N−1

(1− F(θ))N−1 ρlq(θ)
}

N f (θ)
(
1− F(θ)

)N−1dθ

where θ1 is the lowest order statistic, i.e., θ1 = min{θi}N
i=1 and the last equality

follows from integration by parts.
Taking derivative with respect to ρw for the buyer’s expected utility EUpr

b (ρw, ρl),
we have:

∂EUpr
b (ρw, ρl)

∂ρw
=
∫ θ

θ

{(
V ′(q(θ))− θ + λ(1− ρl)− (1− ρl)

− F(θ)
f (θ)

− λ(1− ρl)(
1− F(θ)

)N−1 −
ρl

(1− F(θ))N−1

)
dq(θ)
dρw

}
N f (θ)

(
1− F(θ)

)N−1dθ

=
∫ θ

θ

{(
− ρw −

F(θ)
f (θ)

− ρl
1− (1− F(θ))N−1

(1− F(θ))N−1

)
dq(θ)
dρw

}
N f (θ)

(
1− F(θ)

)N−1dθ

=
∫ θ

θ

{(
ρw +

F(θ)
f (θ)

+ ρl
1− (1− F(θ))N−1

(1− F(θ))N−1

)
1

V ′′(q(θ))

}
N f (θ)

(
1− F(θ)

)N−1dθ < 0

where the second equality uses the fact that V ′(q(θ)) = λ(1− ρl)
1−(1−F(θ))N−1

(1−F(θ))N−1 + θ +

(1 − ρw), the third equality uses the fact that ∂q(θ)
∂ρw

= −1
V′′(q(θ)) . The last inequality

follows from V ′′(·) < 0.

Since ∂EUpr
b (ρw,ρl)
∂ρw

< 0, the optimal reimbursement percentage of reimbursing the
winner worker for the buyer should be ρ∗w = 0.

Proof of Proposition 4 part (2)

Based on 1.7.4, when the buyer can choose to reimburse the losing workers with
ρl ∈ [0%, 100%] percent of their quality cost, and the winning worker with ρw ∈
[0%, 100%] percent of their quality cost, then the optimal reimbursement percentage
for the winning worker should be ρ∗w = 0.

Therefore, the buyer should only reimburse the losing workers. In this subsec-
tion we consider the optimal reimbursement percentage to the losing workers under
the condition that the optimal reimbursement percentage to the winning worker is
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ρ∗w = 0. Based on the results in 1.7.4, the buyer’s expected utility when he com-
mits to reimburses only the losing workers’ quality spending with ρl ∈ [0, 1] percent
should be:

EUpr
b (0, ρl) =

∫ θ

θ

{
V(q(θ))− q(θ)− θq(θ)− F(θ)

f (θ)
q(θ)

− λ(1− ρl)
1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1 q(θ)− ρl
1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1 q(θ)
}

N f (θ)
(
1− F(θ)

)N−1dθ

Taking derivative with respect to λ for the buyer’s expected utility EUpr
b (0, ρl),

we have:

∂EUpr
b (0, ρl)

∂λ
=
∫ θ

θ

{(
V ′(q(θ))− 1− θ − F(θ)

f (θ)
− (λ(1− ρl) + ρl)

1−
(
1− F(θ)

)N−1(
1− F(θ)

)N−1

)
dq(θ)

dλ

− (1− ρl)
1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1 q(θ)
}

N f (θ)
(
1− F(θ)

)N−1dθ

=
∫ θ

θ

{(
− ρl

1−
(
1− F(θ)

)N−1(
1− F(θ)

)N−1 − F(θ)
f (θ)

)dq(θ)
dλ

− (1− ρl)
1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1 q(θ)
}

N f (θ)
(
1− F(θ)

)N−1dθ

=
∫ θ

θ

{(
− ρl

1−
(
1− F(θ)

)N−1(
1− F(θ)

)N−1 − F(θ)
f (θ)

) (1− ρl)
(
1−

(
1− F(θ)

)N−1)(
1− F(θ)

)N−1V ′′(q(θ))

− (1− ρl)
1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1 q(θ)
}

N f (θ)
(
1− F(θ)

)N−1dθ

where the second equality uses the fact that V ′(q(θ)) = λ(1− ρl)
1−(1−F(θ))N−1

(1−F(θ))N−1 + θ +

1, the last equality uses the fact that dq(θ)
dλ = (1−ρl)(1−(1−F(θ))N−1)

(1−F(θ))N−1V′′(q(θ)) .
Moreover, taking derivative with respect to ρl for the buyer’s expected utility

EUpr
b (0, ρl), we have:
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∂EUpr
b (0, ρl)

∂ρl
=
∫ θ

θ

{(
V ′(q(θ))− 1− θ − F(θ)

f (θ)
− (λ(1− ρl) + ρl)

1−
(
1− F(θ)

)N−1(
1− F(θ)

)N−1

)
dq(θ)

dρl

+ (λ− 1)
1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1 q(θ)
}

N f (θ)
(
1− F(θ)

)N−1dθ

=
∫ θ

θ

{(
− ρl

1−
(
1− F(θ)

)N−1(
1− F(θ)

)N−1 − F(θ)
f (θ)

)dq(θ)
dρl

+ (λ− 1)
1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1 q(θ)
}

N f (θ)
(
1− F(θ)

)N−1dθ

=
∫ θ

θ

{(
− ρl

1−
(
1− F(θ)

)N−1(
1− F(θ)

)N−1 − F(θ)
f (θ)

)−λ
(
1−

(
1− F(θ)

)N−1)(
1− F(θ)

)N−1V ′′(q(θ))

+ (λ− 1)
1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1 q(θ)
}

N f (θ)
(
1− F(θ)

)N−1dθ

=
∂EUpr

b (0, ρl)

∂λ

−λ

1− ρl

+
∫ θ

θ

{
− λ

1−
(
1− F(θ)

)N−1(
1− F(θ)

)N−1 q(θ) + (λ− 1)
1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1 q(θ)
}

N f (θ)
(
1− F(θ)

)N−1dθ

=
−λ

1− ρl

(
∂EUpr

b (0, ρl)

∂λ
+

1− ρl

λ

∫ θ

θ
q(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

)
where the second equality uses the fact that V ′(q(θ)) = λ(1− ρl)

1−(1−F(θ))N−1

(1−F(θ))N−1 + θ +

1, the third equality uses the fact that dq(θ)
dρl

= −λ(1−(1−F(θ))N−1)
(1−F(θ))N−1V′′(q(θ)) , the fourth equality

uses the dEUpr
b (0,ρl)
dλ result we derived above. Therefore, we have:

When dEUpr
b (0,ρl)
dλ > − 1−ρl

λ

∫ θ
θ q(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ ≡ B for all ρl ∈

[0, 1], we have dEUpr
b (0,ρl)
dρl

< 0 for all ρl ∈ [0, 1]. Therefore, the optimal reimbursement
percentage ρ∗l = 0.

When ∂EUpr
b (0,ρl)
∂λ < − 1−ρl

λ

∫ θ
θ q(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ ≡ B, for all ρl ∈

[0, 1], we have dEUpr
b (0,ρl)
dρl

> 0 for all ρl ∈ [0, 1]. Therefore, the optimal reimbursement
percentage ρ∗l = 1.

When ∂EUpr
b (0,ρl)
∂λ

∣∣∣
ρl=1

> B|ρl=1, we have ∂EUpr
b (0,ρl)
∂ρl

∣∣∣
ρl=1

< 0, the buyer should

decrease the reimbursement percentage from 100%, which can increase his expected

utility. When ∂EUpr
b (0,ρl)
∂λ

∣∣∣
ρl=0

< B|ρl=0, we have ∂EUpr
b (0,ρl)
∂ρl

∣∣∣
ρl=0

< 0, the buyer should

increase the reimbursement percentage from zero percent, which can increase his
expected utility. Therefore, the buyer should choose the optimal reimbursement

percentage ρ∗l ∈ (0, 1), where ρ∗l should satisfy ∂EUpr
b (0,ρl)
∂ρl

∣∣∣
ρl=ρ∗l

= 0, or equivalently

∂EUpr
b (0,ρl)
∂λ

∣∣∣
ρl=ρ∗l

= B|ρl=ρ∗l
.
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1.7.5 Proof of Corollary 1.4.1

From 1.7.4, we have:

∂EUpr
b (0, ρl)

∂ρl

=
∫ θ

θ

{(
− ρl

1−
(
1− F(θ)

)N−1(
1− F(θ)

)N−1 − F(θ)
f (θ)

)
−λ

V ′′(q(θ))
+ (λ− 1)q(θ)

}
N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

=
∫ θ

θ

{ −λ

(
− ρl

1−
(

1−F(θ)
)N−1(

1−F(θ)
)N−1 − F(θ)

f (θ)

)
V ′(q(θ))

q(θ)V ′′(q(θ))
(
λ(1− ρl)

1−(1−F(θ))N−1

(1−F(θ))N−1 + θ + 1
) + (λ− 1)

}
q(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

=
∫ θ

θ

{ −
(

ρl
1−
(

1−F(θ)
)N−1(

1−F(θ)
)N−1 + F(θ)

f (θ)

)
M(q(θ))

(
(1− ρl)

1−(1−F(θ))N−1

(1−F(θ))N−1 + θ+1
λ

) + (λ− 1)
}

q(θ)N f (θ)
(
1−

(
1− F(θ)

)N−1)dθ,

where the second equality uses the fact that V ′(q(θ)) = λ(1− ρl)
1−(1−F(θ))N−1

(1−F(θ))N−1 + θ +

1, the last equality uses the definition that M(q(θ)) = −q(θ)V
′′
(q(θ))

V′ (q(θ))
.

Let’s define:

cl ≡ min
λ∈[1,3]
ρl∈[0,1]

∫ θ
θ

q(θ)NF(θ)(1−(1−F(θ))N−1)

M(q(θ))
(

1−(1−F(θ))N−1

(1−F(θ))N−1 +θ+1
)dθ∫ θ

θ q(θ)N f (θ)
(
1− (1− F(θ))N−1

)
dθ

> 0,

From the Weierstrass extreme value theorem, cl exists. Moreover, we can define:

λl ≡ min{3, cl + 1}

Obviously, we have 1 < λl ≤ 3. Therefore, when 1 ≤ λ ≤ λl , we have:

∂EUpr
b (0, ρl)

∂ρl
=
∫ θ

θ

{ −
(

ρl
1−
(

1−F(θ)
)N−1(

1−F(θ)
)N−1 + F(θ)

f (θ)

)
M(q(θ))

(
(1− ρl)

1−(1−F(θ))N−1

(1−F(θ))N−1 + θ+1
λ

) + (λ− 1)
}

q(θ)N f (θ)
(
1−

(
1− F(θ)

)N−1)dθ

=
∫ θ

θ
q(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

{
λ− 1−

∫ θ
θ

(
ρl

1−
(

1−F(θ)
)N−1(

1−F(θ)
)N−1 + F(θ)

f (θ)

)
q(θ)N f (θ)

(
1−
(

1−F(θ)
)N−1)

M(q(θ))
(
(1−ρl)

1−(1−F(θ))N−1

(1−F(θ))N−1 + θ+1
λ

) dθ∫ θ
θ q(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

}

≤
∫ θ

θ
q(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

{
λ− 1−

∫ θ
θ

q(θ)NF(θ)
(

1−(1−F(θ))N−1
)

M(q(θ))
(

1−(1−F(θ))N−1

(1−F(θ))N−1 +θ+1
)dθ∫ θ

θ q(θ)N f (θ)
(
1−

(
1− F(θ)

)N−1)dθ

}

≤
(
λ− 1− cl

) ∫ θ

θ
q(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

≤ 0,
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where the first inequality uses the conditions 1 ≤ λ ≤ λl ≤ 3 and 0 ≤ ρl ≤ 1, the
second inequality uses the definition of cl and the last inequality uses the condition
that λ ≤ λl ≤ (cl + 1).

Therefore, when 1 ≤ λ < λl , we have ∂EUpr
b (0,ρl)
∂ρl

< 0 for any ρl ∈ [0, 1], and the
optimal reimbursement percentage for the loser worker ρ∗l = 0.

1.7.6 Proof of Corollary 1.4.1

From 1.7.4, we have:

∂EUpr
b (0, ρl)

∂ρl

=
∫ θ

θ

{(
− ρl

1−
(
1− F(θ)

)N−1(
1− F(θ)

)N−1 − F(θ)
f (θ)

)
−λ

V ′′(q(θ))
+ (λ− 1)q(θ)

}
N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

=
∫ θ

θ

{ −λ

(
− ρl

1−
(

1−F(θ)
)N−1(

1−F(θ)
)N−1 − F(θ)

f (θ)

)
V ′(q(θ))

q(θ)V ′′(q(θ))
(
λ(1− ρl)

1−(1−F(θ))N−1

(1−F(θ))N−1 + θ + 1
) + (λ− 1)

}
q(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

=
∫ θ

θ

{
−

ρl
1−
(

1−F(θ)
)N−1(

1−F(θ)
)N−1 + F(θ)

f (θ)

M(q(θ))
(
(1− ρl)

1−(1−F(θ))N−1

(1−F(θ))N−1 + θ+1
λ

) + (λ− 1)
}

q(θ)N f (θ)
(
1−

(
1− F(θ)

)N−1)dθ.

First note if limq→0+ M(q) 6= 0, then for any ρl < 1, we have limq→0+ M(q) =

lim
λ→+∞

M(q(θ))(∀θ ∈ (θ, θ)) = lim
θ→θ

M(q(θ)) > 0 (we have M(q) ≥ 0 throughout

the paper from Assumption 1).

Therefore, we have
ρl

1−(1−F(θ))N−1

(1−F(θ))N−1 + F(θ)
f (θ)

M(q(θ))
(
(1−ρl)

1−(1−F(θ))N−1

(1−F(θ))N−1 + θ+1
λ

) < +∞, for any θ ∈ [θ, θ], any

λ ≥ 1 and any ρl < 1.

Therefore, there exists a λm ∈ (1,+∞), such that when λ ≥ λm, we have ∂EUpr
b (0,ρl)
∂ρl

>

0, which implies the buyer should fully reimburse the loser worker (i.e., ρ∗l = 1).

1.7.7 Proof of Proposition 5

Under the flat reimbursement policy, the buyer will reimburse a fixed amount yw ≤
x to the winner worker with type θ if his quality bidding q(θ) ≥ x, and a fixed
amount yl ≤ x to the loser worker with type θ if his quality bidding q(θ) ≥ x. Here,
given a certain flat reimbursement policy, we characterize the workers’ quality and
price bidding in equilibrium (Again we identify the symmetric equilibrium from the
first order conditions. Its sufficiency and uniqueness can be checked by the same
methods in 1.7.1).

We assume the symmetric bidding strategy in equilibrium is (q(·), p(·)) and a
corresponding strictly decreasing scoring bidding function S(·) = s(q(·)) − p(·)
(Note that in this case, s(q(·)) = V(q(·)), when buyer has no scoring rule com-
mitment power).

Therefore, under a given flat reimbursement policy (x, yw, yl), given other work-
ers’ bidding strategy (q(·), p(·)), if a worker i of type θi bids quality qi and price pi



36
Chapter 1. Designing Reimbursement Policy for Multidimensional Auction with

Loss-Averse Workers in Online Labor Markets

(the corresponding scoring bid Si = s(qi)− pi), he can earn interim expected utility:

π f r(qi, pi) =
(

pi − θiqi − (qi − yw · 1qi≥x)
)

P
(
win|qi, pi

)
− λ(qi − yl · 1qi≥x)

(
1− P

(
win|qi, pi

))
=
(

pi − θiqi − (qi − yw · 1qi≥x)
)
∏
j 6=i

prob
(
Si > S(θj)

)
− λ(qi − yl · 1qi≥x)

(
1−∏

j 6=i
prob

(
Si > S(θj)

))
=
(

pi − θiqi − (qi − yw · 1qi≥x)
)[

1− F(S−1(Si))
]N−1 − λ(qi − yl · 1qi≥x)

(
1−

[
1− F(S−1(Si))

]N−1)
Therefore,

∂π f r(qi, pi)

∂pi
=
(

pi − θiqi − (qi − yw · 1qi≥x)
)
(N − 1)

[
1− F(S−1(Si))

]N−2 f (S−1(Si))
1

S′(S−1(Si))

+
[
1− F(S−1(Si))

]N−1

+ λ(qi − yl · 1qi≥x)(N − 1)
[
1− F(S−1(Si))

]N−2 f (S−1(Si))
1

S′(S−1(Si))

∂π f r(qi, pi)

∂qi
=
(

pi − θiqi − (qi − yw · 1qi≥x)
)
(N − 1)

[
1− F(S−1(Si))

]N−2
(−1) f (S−1(Si))

1
S′(S−1(Si))

V ′(qi)

− (θi + 1)
[
1− F(S−1(Si))

]N−1 − λ
(
1−

[
1− F(S−1(Si))

]N−1)
+ λ(qi − yl · 1qi≥x)(N − 1)

[
1− F(S−1(Si))

]N−2
(−1) f (S−1(Si))

1
S′(S−1(Si))

V ′(qi)

From the first order conditions ∂π f r(qi ,pi)
∂pi

= 0 and ∂π f r(qi ,pi)
∂qi

= 0, we have:

[
1− F(S−1(Si))

]N−1V ′(qi)− (θi + 1)
[
1− F(S−1(Si))

]N−1 − λ
(
1−

[
1− F(S−1(Si))

]N−1)
= 0

Because of the symmetry of the equilibrium, S−1((Si)) = S−1(S(θi)) = θi. There-
fore,[
1− F(θi)

]N−1V ′(qi)− θi
[
1− F(θi)

]N−1 −
[
1− F(θi)

]N−1 − λ
(
1−

[
1− F(θi)

]N−1)
= 0

Therefore,

q(θi) = V ′−1(λ1− (1− F(θi))
N−1

(1− F(θi))N−1 + θi + 1
)

Therefore, a worker’s quality bid in equilibrium stays the same with respect to
any reimbursement threshold x and any reimbursement amount yw and yl .

Moreover, from ∂π f r(qi ,pi)
∂pi

= 0, we can get the differential equation:

(
pi − θiq(θi)− (q(θi)− yw · 1q(θi)≥x) + λ(q(θi)− yl · 1q(θi)≥x)

)
(N − 1) f (S−1(Si))

1
S′(S−1(Si))

+
[
1− F(S−1(Si))

]
= 0

Because S−1(Si) = S−1(S(θi)) = θi due to symmetry and S′(θi) = V ′(q(θi))q′(θi)−
p′(θi), we have:

(
pi − θiq(θi)− (q(θi)− yw · 1q(θi)≥x) + λ(q(θi)− yl · 1q(θi)≥x)

)
(N − 1) f (θi)

1
V ′(q(θi))q′(θi)− p′(θi)

+
[
1− F(θi)

]
= 0



1.7. Proofs and Extension Cases 37

Solving the above differential equation with the boundary condition, we have:

p(θi) = θiq(θi) + (q(θi)− yw · 1q(θi)≥x) +

∫ θ
θi

q(θ̃)(1− F(θ̃))(N−1)dθ̃

(1− F(θi))(N−1)

+ λ(q(θi)− yl · 1q(θi)≥x)
1− (1− F(θi))

(N−1)

(1− F(θi))(N−1)

= θiq(θi)− (λ− 1)q(θi)− yw · 1q(θi)≥x + λyl · 1q(θi)≥x

+

∫ θ
θi

q(θ̃)(1− F(θ̃))(N−1)dθ̃

(1− F(θi))(N−1)
+

λ(q(θi)− yl · 1q(θi)≥x)

(1− F(θi))(N−1)

We can confirm that S(θi) = V(q(θi))− p(θi) is strictly decreasing with the pri-
vate type θi, because

dS(θi)

dθi
= −(N − 1)(1− F(θi))

−N f (θi)

( ∫ θ

θi

(1− F(θ̃))(N−1)q(θ̃)dθ̃ + λ(q(θi)− yl · 1q(θi)≥x)

)
< 0

where the inequality uses the assumption that yl ≤ x and thus (q(θi)− yl · 1q(θi)≥x) ≥
0.

Since the equilibrium quality bidding q(θi) = V ′−1(λ 1−(1−F(θi))
N−1

(1−F(θi))N−1 + θi + 1
)

un-
der the flat reimbursement policy, it is easy to know that a worker’s quality bid in
equilibrium stays the same with respect to any reimbursement threshold x and any
reimbursement amount yl and yw. When a worker of type θi bids quality higher than
the reimbursement threshold, i.e., q(θi) ≥ x, his equilibrium price bidding:

p(θi) = θiq(θi)− (λ− 1)q(θi)− yw + λyl +

∫ θ
θi

q(θ̃)(1− F(θ̃))(N−1)dθ̃

(1− F(θi))(N−1)
+

λ(q(θi)− yl)

(1− F(θi))(N−1)

Therefore, when q(θi) ≥ x, we have ∂p(θi)
∂yw

= −1 < 0 and ∂p(θi)
∂yl

= −λ 1−(1−F(θi))
(N−1)

(1−F(θi))(N−1) ≤
0 (the equality holds if and only if θi = θ or θi = θ). Therefore, a worker’s price bid in
equilibrium decreases with reimbursement amount yl and yw if his quality bidding
exceeds the reimbursement threshold x.

Moreover, from the equilibrium quality and price bidding function we derived,

we can get worker i’s expected utility in equilibrium π f r(q(θi), p(θi)) =
∫ θ

θi
q(θ̃)(1−

F(θ̃))(N−1)dθ̃. Obviously, π f r(q(θi), p(θi)) stays the same with respect to any reim-
bursement threshold x and any reimbursement amount yw and yl , because q(θ̃) stays
the same with respect to any reimbursement threshold x and any reimbursement
amount yw and yl .

1.7.8 Proof of Proposition 6

In 1.7.7, we have characterized workers’ equilibrium price and quality bidding,
given a flat reimbursement policy. In this subsection, we aim to solve the optimal flat
reimbursement policy for the buyer, given workers’ best response we characterized
in 1.7.7.

Since the equilibrium quality bidding under the flat reimbursement policy q(θ) =
V ′−1(λ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ + 1
)

is strictly decreasing with θ, the buyer should not choose
the reimbursement threshold x > q(θ), otherwise no workers will get the reimburse-
ment and there will be no benefit for the buyer to use the reimbursement policy.
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Therefore, the buyer should choose x ∈ [q(θ), q(θ)], in order to maximize her ex-
pected utility.

Because the equilibrium quality bidding q(θ) = V ′−1(λ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ + 1
)

is

strictly decreasing with θ, we can find an unique θ0 ∈ [θ, θ] such that x = V ′−1(λ 1−(1−F(θ))N−1

(1−F(θ0))N−1 +

θ0 + 1
)
, ∀x ∈ [q(θ), q(θ)].

Using a flat reimbursement policy (x ∈ [q(θ), q(θ)], yw, yl), given workers’ best
response, the buyer’s expected utility should be:

EU f r
b (x, yw, yl)

=E
{

V(q(θ1))− p(θ1)
}
− N

∫ θ

θ
1q(θ)≥x · yl(1− (1− F(θ))N−1)dF(θ)− N

∫ θ

θ
1q(θ)≥x · yw(1− F(θ))N−1dF(θ)

=E
{

V(q(θ1))− p(θ1)
}
− N

∫ θ0

θ
yw(1− F(θ))N−1dF(θ)− N

∫ θ0

θ
yl(1− (1− F(θ))N−1)dF(θ)

=
∫ θ

θ0

{
V(q(θ))− θq(θ) + (λ− 1)q(θ)−

∫ θ
θ (1− F(θ̃))(N−1)q(θ̃)dθ̃

(1− F(θ))(N−1)
− λq(θ)

(1− F(θ))(N−1)

}
N f (θ)

(
1− F(θ)

)N−1dθ

+
∫ θ0

θ

{
V(q(θ))− θq(θ) + (λ− 1)q(θ) + yw − λyl −

∫ θ
θ q(θ̃)(1− F(θ̃))(N−1)dθ̃

(1− F(θ))(N−1)

− λ(q(θ)− yl)

(1− F(θ))(N−1)

}
N f (θ)

(
1− F(θ)

)N−1dθ

−
∫ θ0

θ

{
yl
(1− (1− F(θ))N−1)

(1− F(θ))N−1

}
N f (θ)

(
1− F(θ)

)N−1dθ −
∫ θ0

θ
ywN f (θ)(1− F(θ))N−1dθ

=
∫ θ

θ

{
V(q(θ))− θq(θ) + (λ− 1)q(θ)−

∫ θ
θ q(θ̃)(1− F(θ̃))(N−1)dθ̃

(1− F(θ))(N−1)
− λq(θ)

(1− F(θ))(N−1)

}
N f (θ)

(
1− F(θ)

)N−1dθ

+
∫ θ0

θ
(λ− 1)yl N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

where θ1 is the lowest order statistic, i.e., θ1 = min{θi}N
i=1.

We have ∂EU f r
b (x,yw,yl)

∂yw
= 0, ∂EU f r

b (x,yw,yl)
∂yl

=
∫ θ0

θ (λ− 1)N f (θ)
(
1−

(
1− F(θ)

)N−1)dθ ≥
0. Therefore, The buyer’s expected utility stays the same with respect to any reim-
bursement amount to the winning worker yw. Moreover, the buyer should always
choose the highest possible yl , i.e., yl = x = V ′−1(λ 1−(1−F(θ0))

N−1

(1−F(θ0))N−1 + θ0 + 1
)

to max-
imize his expected utility. Considering this, the buyer can choose θ0 to maximizes
her expected utility, based on the following maximization problem:

maxθ0∈[θ,θ]

∫ θ0

θ
(λ− 1)V ′−1(λ1− (1− F(θ0))N−1

(1− F(θ0))N−1 + θ0 + 1
)

N f (θ)
(
1−

(
1− F(θ)

)N−1)dθ

Since x = V ′−1(λ 1−(1−F(θ0))
N−1

(1−F(θ0))N−1 + θ0 + 1
)

is a strictly decreasing function of θ0,
the above maximization problem is equivalent to:

maxx∈[0,q(θ)]

∫ θ

θ
(λ− 1)1q(θ)≥x · xN f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

where q(θ) = V ′−1(λ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ + 1
)
.
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Therefore, the buyer should choose the optimal reimbursement amount to the
loser workers y∗l = x∗, and the optimal quality reimbursement threshold x∗ =

argmaxx∈[0,q(θ)]

∫ θ
θ (λ− 1)1q(θ)≥x · xN f (θ)

(
1−

(
1− F(θ)

)N−1)dθ, where q(θ) = V ′−1(λ 1−(1−F(θ))N−1

(1−F(θ))N−1 +

θ + 1
)

is the equilibrium quality bidding.

1.7.9 Proof of Proposition 7

Proof of Proposition 7 part (1)

According to Corollary 1.4.1, if the degree of loss aversion is low enough, i.e., 1 ≤
λ < λl , then the buyer should never reimburse loser worker, i.e., ρ∗l = 0, when
using the percentage reimbursement policy. On the other hand, from 1.7.8 , when
λ > 1, the buyer should always choose a positive reimbursement amount under the
optimized threshold, and thus get the expected utility higher than that when there
is zero reimbursement amount.

Therefore, when 1 < λ < λl , the flat reimbursement policy can always bring
higher expected utility to the buyer, since buyer’s expected utility are the same
when reimbursing zero percentage under the percentage reimbursement policy or
reimbursing zero amount under the flat reimbursement policy.

Proof of Proposition 7 part (2)

According to Corollary 1.4.1, if limq→0+ M(q) 6= 0, there exists a λm ∈ (1,+∞), such
that when λ ≥ λm, the buyer should fully reimburse the loser worker (i.e., ρ∗l =
100%), using the percentage reimbursement policy. From 1.7.4, we can know when
λ ≥ λm, we have EUpr

b (ρw = 0, ρl = 1) > EUpr
b (ρw = 0, ρl = 0), since ρ∗l = 100%

and it is strictly better for the buyer to increase the reimbursement percentage to the
losing workers when λ ≥ λm. In addition, from 1.7.4, we have:

EUpr
b (ρw = 0, ρl = 1) =

∫ θ

θ

{
V(q(θ))− q(θ)− θq(θ)− F(θ)

f (θ)
q(θ)

−
1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1 q(θ)
}

N f (θ)
(
1− F(θ)

)N−1dθ

where the equilibrium quality bidding when ρ∗l = 100% is q(θ) = V ′−1(θ + 1
)
,

which is independent of loss aversion.
Moreover, according to Proposition 6, if the buyer uses the optimal flat reim-

bursement policy, her expected utility:

EU f r
b (x = x∗, yw = 0, yl = x∗) =

∫ θ

θ

{
V(q(θ))− θq(θ)− q(θ)− F(θ)

f (θ)
q(θ)

− λq(θ)
1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1

}
N f (θ)

(
1− F(θ)

)N−1dθ +
∫ θ∗0

θ
(λ− 1)q(θ∗0 )N f (θ)

(
1− (1− F(θ))N−1)dθ

where q(θ) = V ′−1(λ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ + 1
)
, x∗ = q(θ∗0 ) and θ∗0 = argmaxθ0∈[θ,θ]

∫ θ0
θ (λ−

1)V ′−1(λ 1−(1−F(θ0))
N−1

(1−F(θ0))N−1 + θ0 + 1
)

N f (θ)
(
1−

(
1− F(θ)

)N−1)dθ.
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First note if limq→0+ M(q) 6= 0 and limq→0+ M(q) < 1, we have 0 < limq→0+ M(q) =
lim

λ→+∞
M(q(θ))(∀θ ∈ (θ, θ)) = lim

θ→θ
M(q(θ)) < 1 (we have M(q) ≥ 0 throughout the

paper from Assumption 1).
Therefore, if limq→0+ M(q) 6= 0 and limq→0+ M(q) < 1, for equilibrium quality

bidding q(θ) (∀θ ∈ (θ, θ)) under the flat reimbursement policy, we have:

lim
λ→+∞

λq(θ) = lim
λ→+∞

λ
1

q(θ)

= lim
λ→+∞

q(θ)2V
′′
(q(θ))

−
(

1−(1−F(θ))N−1
)

(1−F(θ))N−1

= lim
λ→+∞

λq(θ)(−1)V
′′
(q(θ))q(θ)

λ 1−(1−F(θ))N−1

(1−F(θ))N−1

= lim
λ→+∞

λq(θ)(−1)V
′′
(q(θ))q(θ)

λ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ + 1
= lim

λ→+∞

λq(θ)(−1)V
′′
(q(θ))q(θ)

V ′(q(θ))

= lim
λ→+∞

λq(θ) lim
λ→+∞

M(q(θ)) = lim
q→0+

M(q) lim
λ→+∞

λq(θ)

= ( lim
q→0+

M(q))2 lim
λ→+∞

λq(θ) = ( lim
q→0+

M(q))3 lim
λ→+∞

λq(θ)

= ... = ( lim
q→0+

M(q))Nλ lim
λ→+∞

λq(θ) = lim
λ→+∞

( lim
q→0+

M(q))Nλ λq(θ) = 0,

where the second equality follows from the L’Hospital’s rule and the fact that dq(θ)
dλ =

1−(1−F(θ))N−1

(1−F(θ))N−1V′′ (q(θ))
, the fifth equality follows from the fact that V ′(q(θ)) = λ 1−(1−F(θ))N−1

(1−F(θ))N−1 +

θ + 1, the sixth equality uses the definition that M(q(θ)) = −q(θ)V
′′
(q(θ))

V′ (q(θ))
, the seventh

uses the fact that lim
λ→+∞

M(q(θ)) = limq→0+ M(q). For the eighth to the last equal-

ity, we iteratively use lim
λ→+∞

λq(θ) = limq→0+ M(q) · lim
λ→+∞

λq(θ) for Nλ large num-

ber of times (e.g., Nλ = [λ] + 1, ∀λ > 1), the last equality uses the condition that
0 < limq→0+ M(q) < 1.

Therefore, if limq→0+ M(q) 6= 0 and limq→0+ M(q) < 1, we have lim
λ→+∞

q(θ) = 0

and lim
λ→+∞

λq(θ) = 0, ∀θ ∈ (θ, θ), and thus lim
λ→+∞

EU f r
b (x = x∗, yw = 0, yl = x∗) =

V(0).
On the one hand, if limq→0+ M(q) 6= 0, there exists a λm ∈ (1,+∞), such that

when λ ≥ λm, the buyer’s expected utility under the optimal percentage reimburse-
ment policy is EUpr

b (ρw = 0, ρl = 1). On the other hand, if limq→0+ M(q) 6= 0 and
limq→0+ M(q) < 1, we have lim

λ→+∞
EU f r

b (x = x∗, yw = 0, yl = x∗) = V(0).

Therefore, if limq→0+ M(q) 6= 0 and limq→0+ M(q) < 1, we have lim
λ→+∞

(
EUpr

b (ρw =

ρ∗w, ρl = ρ∗l )− EU f r
b (x = x∗, yw = y∗w, yl = x∗)

)
= EUpr

b (ρw = 0, ρl = 1)− V(0) >

EUpr
b (ρw = 0, ρl = 0)− V(0) > 0 (the last inequality follows from the fact that the

workers’ equilibrium score bidding function S(θ) = U(q(θ), p(θ)) strictly decreases
with type θ, with the lowest score S(θ) = V(0)). In other words, if limq→0+ M(q) 6= 0
and limq→0+ M(q) < 1, there exists a λs ∈ (1,+∞), such that when λ ≥ λs, the per-
centage reimbursement policy brings higher expected utility to the buyer than the
flat reimbursement policy does.
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1.7.10 Procurement auction when buyer has scoring rule commitment power

In this section, we consider the service procurement auction when the buyer has
the scoring rule commitment power. In particular, prior to all workers submit their
bidding, the buyer can announce and commit to a scoring rule that is different from
her own utility function. After all workers completed their bidding, the buyer selects
the winning worker whose offer (q, p) achieves the highest score. Each worker, upon
winning, provides the service according to the proposal and receives the offered
price.

In general, we assume the scoring rule is S(q, p) under which the procurement
auction has an unique symmetric equilibrium. Many scoring rules can satisfy this
assumption, including the naive scoring rule U(q, p) and the optimal scoring rule
we designed.

In the following section, we first discuss the design of the optimal scoring which
can bring the highest expected utility for the buyer, among all possible scoring rule
S(q, p), then for the auction in which the buyer commits to the optimal scoring rule
(we refer to this auction as OSR auction), we study the effect of loss aversion behav-
ior on all parties’ expected utility.

Optimal scoring rule (OSR)

The following proposition characterizes the optimal scoring rule (OSR). Among all
possible scoring rules belonging to the category of S(q, p), the buyer can obtaining
the highest expected utility under the designed optimal scoring rule (OSR).

Proposition 15 (1) We can design the optimal scoring rule as buyer’s utility function with
an adjustment. In particular, S∗(q, p) = U(q, p)− ∆(q) is the optimal scoring rule which
can bring the highest expected utility for the buyer among all possible scoring rules. The
adjustment

∆(q) =


∫ q

0
F(q∗−1(s))
f (q∗−1(s))

ds q ∈ [q∗(θ), q∗(θ)]

+∞ q /∈ [q∗(θ), q∗(θ)]

where q∗−1(·) is the inverse of q∗(·) and the equilibrium quality bidding q∗(θ) = V ′−1(λ 1−(1−F(θ)N−1

(1−F(θ)N−1 +

θ + 1 + F(θ)
f (θ)

)
.

(2) The adjustment ∆(q) decreases with loss aversion.

See Proof of Proposition 15 in 1.7.11.
From part (1) of Proposition 15, in the OSR auction the buyer should announce

and commit to a scoring rule that understates the value of quality, so as to limit the
informational rents collected by the low-cost workers. This intuition is consistent
with the prior winner-pay multi-dimensional auction design research (Che, 1993;
Asker and Cantillon, 2010).

From part (2) of Proposition 15, as the quality bids decrease with loss aversion
in both the OSR auction and the auction without buyer’s scoring rule commitment
power. Therefore, the adjustment ∆(q) inducing the quality bid difference in these
two auctions decreases, as the degree of loss aversion increases.
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How loss aversion impacts buyer’s expected utility in the OSR auction?

Proposition 16 In equilibrium of the OSR auction, the expected utility of both the buyer
and workers decrease with loss aversion.

See proof of Proposition 16 in 1.7.12

Similar to (1) in proposition 2, worker expected utility decreases with loss aversion
in the OSR auction as loss aversion incurs additional cost for the worker. Moreover,
compared with the auction without buyer’s scoring rule commitment power, the
OSR auction has a lower quality bidding in equilibrium, as the buyer in the OSR
auction understate the quality value in the scoring rule16. When quality bidding
is lower, the “quality value" effect of loss aversion on the buyer expected utility is
higher, which means the effect of loss aversion on buyer’s expected utility is more
harmful. Therefore, loss aversion always decreases with buyer expected utility in
the OSR auction.

1.7.11 Proof of Proposition 1.7.10

Proof of Proposition 15 part (1)

We identify the optimal scoring rule based on two steps. In the first step, under any
possible scoring rule under which there exists a unique symmetric equilibrium for
the procurement auction, we can always pin down the equilibrium price bidding
p(·) as a function of the equilibrium quality bidding q(·), using the Envelope theo-
rem. Then we can find the optimal quality bidding function, maximizing the buyer’s
expected utility which only depends on the quality bidding function. In the second
step, we can design the optimal scoring rule under which the equilibrium quality
bidding is the optimal quality bidding function we identified in the first step.

Step 1: Identify the optimal quality bidding function
Let (q(·), p(·)) be a symmetric equilibrium under a scoring rule which can lead to

a unique symmetric equilibrium for the procurement auction, and the correspond-
ing scoring function be S(·). Given other workers’ bidding strategy ((q(·), p(·))), a
type θi worker i maximizes his expected profit by choosing qi and pi (we denote the
corresponding score he get is Si under the scoring rule):

π(θi) = max
qi ,pi

(
pi − θiqi − qi

)
∏
j 6=i

prob
(
Si > S(θj)

)
− λqi

(
1−∏

j 6=i
prob

(
Si > S(θj)

))
= max

qi ,pi

(
pi − θiqi − qi

)[
1− F(S−1(Si))

]N−1 − λqi
(
1−

[
1− F(S−1(Si))

]N−1)
According to the Envelope theorem and the symmetry of the equilibrium:

dπ(θi)

dθi
= −q(θi)

(
1− F(θi)

)N−1

With the boundary condition π(θ) = 0,

π(θi) =
∫ θ

θi

q(θ̃)(1− F(θ̃))(N−1)dθ̃

16Note q∗(θ) = V′−1(λ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ + 1 + F(θ)
f (θ)

)
< q(θ) = V′−1(λ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ + 1
)
, ∀θ ∈

(θ, θ).
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On the other hand,

π(θi) =
(

p(θi)− θiq(θi)− q(θi)
)[

1− F(θi)
]N−1 − λq(θi)

(
1−

[
1− F(θi)

]N−1)
Therefore,

p(θi) = θiq(θi)− (λ− 1)q(θi) +

∫ θ
θi

q(θ̃)(1− F(θ̃))(N−1)dθ̃

(1− F(θi))(N−1)
+

λq(θi)

(1− F(θi))(N−1)

Note that we have pinned down the equilibrium price bidding p(·) as a function of
the equilibrium quality bidding q(·), Therefore, the buyer’s expected utility under
the scoring rule:

EUb = E
{

V(q(θ1))− p(θ1)
}

=
∫ θ

θ

{
V(q(θ))− θq(θ) + (λ− 1)q(θ)

−
∫ θ

θ (1− F(θ̃))(N−1)q(θ̃)dθ̃

(1− F(θ))(N−1)
− λq(θ)

(1− F(θ))(N−1)

}
N f (θ)

(
1− F(θ)

)N−1dθ

=
∫ θ

θ

{
V(q(θ))− θq(θ) + (λ− 1)q(θ)− F(θ)

f (θ)
q(θ)− λq(θ)

(1− F(θ))(N−1)

}
N f (θ)

(
1− F(θ)

)N−1dθ

where θ1 is the lowest order statistic, i.e., θ1 = min{θi}N
i=1 and the last equality

follows from integration by parts, with the fact that q(θ) = 017.

Maximizing
{

V(q(θ)) − θq(θ) + (λ − 1)q(θ) − F(θ)
f (θ) q(θ) − λq(θ)

(1−F(θ))(N−1)

}
point-

wise, we can get that the optimal quality bidding function which can maximize the
buyer’s expected utility EUb is q∗(θ) = V ′−1(λ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ + 1 + F(θ)
f (θ)

)
. Note

that we have q∗(θ) = 0 and q∗′(θ) < 0 from Assumption 1 and Assumption 2 in the
paper.

Step 2: Design the optimal scoring rule to induce the optimal quality bidding.
We can design the optimal scoring rule as: S∗(q, p) = V(q)− ∆q− p = s∗(q)− p (let
s∗(q) ≡ V(q)− ∆q), where

∆q =


∫ q

k
F(q∗−1(s))
f (q∗−1(s))

ds q ∈ [q∗(θ), q∗(θ)]

+∞ q /∈ [q∗(θ), q∗(θ)]

k can be any real number (without loss of generality, we set k = 0 here), and q∗−1(·)
is the inverse of q∗(·).

In order to prove that S∗(q, p) is the optimal scoring rule, we only need to prove
that the equilibrium quality bidding under the designed scoring rule S∗(q, p) is
q∗(·). Below we solve the equilibrium quality bidding under the optimal scoring
rule S∗(q, p) from the first order conditions. Its sufficiency and uniqueness can be
checked by the same methods in 1.7.1.

Let’s assume the symmetric equilibrium bidding strategy under the optimal scor-
ing rule S∗(q, p) is (q(·), p(·)) and a corresponding strictly decreasing scoring bid-
ding function S∗(·) = s∗(q(·))− p(·). Given other workers’ bidding strategy (q(·), p(·)),

17Note a type θ worker always loses the auction in a symmetric equilibrium, he must bid q(θ) = 0
to avoid any losses.
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if a worker i of type θi bids quality qi and price pi (the corresponding scoring bid
Si = s∗(qi)− pi), based on (1.1), he can earn interim expected utility πi(qi, pi):

πi(qi, pi) =
(

pi − θiqi − qi
)
∏
j 6=i

prob
(
Si > S∗(θj)

)
− λqi

(
1−∏

j 6=i
prob

(
Si > S∗(θj)

))
=
(

pi − θiqi − qi
)[

1− F(S∗−1(Si))
]N−1 − λqi

(
1−

[
1− F(S∗−1(Si))

]N−1
)

Given θi and other workers’ bidding strategy, the worker i maximizes the ex-
pected utility πi(qi, pi) by choosing pi and qi. We calculate the derivative of πi(qi, pi)
with respect to pi and qi:

∂πi(qi, pi)

∂pi
=
(

pi − θiqi − qi
)
(N − 1)

[
1− F(S∗−1(Si))

]N−2 f (S∗−1(Si))
1

S∗′(S∗−1(Si))
+
[
1− F(S∗−1(Si))

]N−1

+ λqi(N − 1)
[
1− F(S∗−1(Si))

]N−2 f (S∗−1(Si))
1

S∗′(S∗−1(Si))

∂πi(qi, pi)

∂qi
=
(

pi − θiqi − qi
)
(N − 1)

[
1− F(S∗−1(Si))

]N−2
(−1) f (S∗−1(Si))

1
S∗′(S∗−1(Si))

s∗′(qi)

− (θi + 1)
[
1− F(S∗−1(Si))

]N−1

− λ
(
1−

[
1− F(S∗−1(Si))

]N−1)
+ λqi(N − 1)

[
1− F(S∗−1(Si))

]N−2
(−1) f (S∗−1(Si))

1
S∗′(S∗−1(Si))

s∗′(qi)

From the first order conditions ∂πi(qi ,pi)
∂pi

= 0 and ∂πi(qi ,pi)
∂qi

= 0, we have:

[
1− F(S∗−1(Si))

]N−1s∗′(qi)− (θi + 1)
[
1− F(S∗−1(Si))

]N−1 − λ
(
1−

[
1− F(S∗−1(Si))

]N−1)
= 0

Therefore, in order to prove the equilibrium quality bidding under the optimal
scoring rule S∗(q, p) is q∗(·), we only need to prove the following equation has the
unique root q = q∗(θ), for any θ ∈ [θ, θ]:

(1− F(θ))N−1s∗′(q)− (θ + 1)
[
1− F(θ)

]N−1 − λ
(
1−

[
1− F(θ)

]N−1)
= 0

First, we can check that q = q∗(θ) is the root of the quation by the definition of
s∗(q) and q∗(θ).

Second, we can check the function s∗′(q) is strictly decreasing with q for q ∈
[q∗(θ), q∗(θ)], then the root q = q∗(θ) must be unique, for any θ ∈ [θ, θ]. In fact, we
have:

s∗′′(q) =
d2(V(q)− ∆q)

dq2 = V ′′(q)−
d F

f

dθ

dθ

dq

= V ′′(q)−
d F

f

dθ

V ′′(q)
d( F

f +λ
1−(1−F)N−1

(1−F)N−1 +θ+1)

dθ

= V ′′(q)
(
1−

d F
f

dθ

d F
f

dθ +
d(λ 1−(1−F)N−1

(1−F)N−1 +θ+1)

dθ

) < 0
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where θ ≡ q∗−1(q) for any q ∈ [q∗(θ), q∗(θ)], the third equality follows from
the definition of q∗(·) and the last inequality follows from the facts that V ′′(·) < 0,
d(λ 1−(1−F(θ))N−1

(1−F(θ))N−1 +θ+1)

dθ > 0 and
d F(θ)

f (θ)
dθ ≥ 0 (Assumption 2 in the paper).

Proof of Proposition 15 part (2)

From 1.7.11, we know that the optimal scoring rule S∗(q, p) = V(q) − ∆q − p =
s∗(q)− p (s∗(q) ≡ V(q)− ∆q), where

∆q =


∫ q

0
F(q∗−1(s))
f (q∗−1(s))

ds q ∈ [q∗(θ), q∗(θ)]

+∞ q /∈ [q∗(θ), q∗(θ)]

and q∗−1(·) is the inverse of q∗(·).
Because

∂
F(q∗−1(s))
f (q∗−1(s))

∂λ
=

∂ F
f

∂θ

∂θ

∂λ

=
∂ F

f

∂θ

(−1) 1−(1−F(θ)N−1

(1−F(θ)N−1

λ
d 1−(1−F(θ)N−1

(1−F(θ)N−1

dθ +
d(θ+1+ F(θ)

f (θ) )

dθ

< 0

where θ ≡ q∗−1(s) for any s ∈ [q∗(θ), q∗(θ)], the second equality follows from

the definition of q∗(·), the inequality follows from the facts that
d 1−(1−F(θ))N−1

(1−F(θ))N−1

dθ > 0 and
d F(θ)

f (θ)
dθ ≥ 0 (Assumption 2 in the paper).

Therefore, when q ∈ [q∗(θ), q∗(θ)], ∂∆(q)
∂λ =

∫ q
0

∂
F(q∗−1(s))
f (q∗−1(s))

∂λ ds ≤ 0 the equality holds
if and only if q = 0.

1.7.12 Proof of Proposition 16

From the optimal quality bidding function q∗(θi) and the price bidding function we
derived in 1.7.11, we can get worker i’s expected utility in equilibrium π(q∗(θi), p(θi)) =∫ θ

θi
q∗(θ̃)(1− F(θ̃))(N−1)dθ̃. Therefore, we have:

dπ(q∗(θi), p(θi))

dλ
=
∫ θ

θi

(
1−

(
1− F(θ̃)

)N−1)
V ′′(q∗(θ̃))

dθ̃ ≤ 0,

where the equality holds if and only if θi = θ, the equality uses the fact that ∂q∗(θi)
∂λ =

1−(1−F(θi))
N−1

(1−F(θi))N−1V′′(q∗(θi))
and the inequality follows from the fact that V ′′(·) < 0. There-

fore, a worker’s expected utility decreases with the degree of loss aversion.
From 1.7.11, the buyer’s expected utility under the optimal scoring rule:

EUb =
∫ θ

θ

{
V(q∗(θ))− θq∗(θ) + (λ− 1)q∗(θ)− F(θ)

f (θ)
q∗(θ)− λq∗(θ)

(1− F(θ))(N−1)

}
N f (θ)

(
1− F(θ)

)N−1dθ,

where q∗(θ) = V ′−1(λ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ + 1 + F(θ)
f (θ)

)
.
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Using the fact that V ′(q∗(θ)) = λ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ + 1 + F(θ)
f (θ) , we have:

dEUb

dλ

∣∣∣∣
q(θ)=q∗(θ)

=
∫ θ

θ

{
q∗(θ)− q∗(θ)(

1− F(θ)
)N−1

}
N f (θ)

(
1− F(θ)

)N−1dθ < 0.

Therefore, in equilibrium of the OSR auction, the expected utility of both the buyer
and workers decrease with loss aversion.

1.7.13 Procurement auction when private type is on quality spending

Proof of Proposition 8

In the procurement auction when private type is on quality spending, below we
solve the workers’ quality and price bidding in equilibrium (Here we identify the
symmetric equilibrium from the first order conditions. Its sufficiency and unique-
ness can be checked by the same methods in 1.7.1).

Given other workers’ bidding strategy, if the worker with quality producing ef-
ficiency type θi bid (pi, qi), his interim expected profit is:

π(qi, pi) =
(

pi − θiqi
)
∏
j 6=i

prob
(
Si > S(θj)

)
− λθiqi

(
1−∏

j 6=i
prob

(
Si > S(θj)

))
=
(

pi − θiqi
)[

1− F(S−1(Si))
]N−1 − λθiqi

(
1−

[
1− F(S−1(Si))

]N−1)
Given θi and other worker’s bidding strategy, the worker i maximizes the ex-

pected profit by choosing pi and qi. We calculate the derivative of π(qi, pi) with
respect to pi and qi:

∂π(qi, pi)

∂pi
=
(

pi − θiqi
)
(N − 1)

[
1− F(S−1(Si))

]N−2 f (S−1(Si))
1

S′(S−1(Si))
+
[
1− F(S−1(Si))

]N−1

+ λθiqi(N − 1)
[
1− F(S−1(Si))

]N−2 f (S−1(Si))
1

S′(S−1(Si))
,

∂π(qi, pi)

∂qi
=
(

pi − θiqi
)
(N − 1)

[
1− F(S−1(Si))

]N−2
(−1) f (S−1(Si))

1
S′(S−1(Si))

V ′(qi)

− θi
[
1− F(S−1(Si))

]N−1

− λθi
(
1−

[
1− F(S−1(Si))

]N−1)
+ λθiqi(N − 1)

[
1− F(S−1(Si))

]N−2
(−1) f (S−1(Si))

1
S′(S−1(Si))

V ′(qi).

From the first order condition ∂π(qi ,pi)
∂pi

= 0 and ∂π(qi ,pi)
∂qi

= 0, we have:

(
1− F(S−1(Si))

)N−1V ′(qi)− θi
[
1− F(S−1(Si))

]N−1 − λθi
(
1−

[
1− F(S−1(Si))

]N−1)
= 0.

Because of the symmetry of the equilibrium, S−1(Si)) = S−1(S(θi)) = θi. There-
fore: (

1− F(θi)
)N−1V ′(qi)− θi

(
1− F(θi)

)N−1 − λθi
(
1−

[
1− F(θi)

]N−1)
= 0.
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Let G(qi) ≡
[
1− F(θi)

]N−1V ′(qi)− θi
[
1− F(θi)

]N−1 − λθi
(
1−

[
1− F(θi)

]N−1).
Since V ′′(qi) < 0, we can get: dG(qi)

dqi
= V ′′(qi)

[
1− F(θi)

]N−1
< 0.

In addition, since lim
q→0

V ′(q) = +∞ and lim
q→+∞

V ′(q) = 0, we have lim
qi→+∞

G(qi) <

0, and lim
qi→0

G(qi) > 0. According to the intermediate value theorem, there is a unique

q∗i , such that G(q∗i ) = 0. Specifically, we can denote:

q(θi) = q∗i =V ′−1(λθi
1− (1− F(θi))

N−1

(1− F(θi))N−1 + θi
)

where V ′−1(·) is the inverse of V ′(·). Note we can easily check that q(θ) =
V ′−1(+∞) = 0 and q′(θi) < 0 from assumption 1 in our paper. Taking derivatives
for q(θi) with respect to λ , we have:

dq(θi)

dλ
=

θi
(
1−

(
1− F(θi)

)N−1)(
1− F(θi)

)N−1V ′′(q(θi))
≤ 0

where the equality holds if and only if θi = θ or θi = θ. Therefore, a worker’s quality
bid in equilibrium always decreases with the degree of loss aversion.

Moreover, from ∂π(qi ,pi)
∂pi

= 0, we can get the derivative equation:

(
pi − θiqi + λθiqi

)
(N − 1) f (S−1(Si))

1
S′(S−1(Si))

+
[
1− F(S−1(Si))

]
= 0

Because of the symmetry of the equilibrium, S−1(Si) = S−1(S(θi)) = θi. There-
fore, (

pi − θiq(θi) + λθiq(θi)
)
(N − 1) f (θi)

1
S′(θi)

+
[
1− F(θi)

]
= 0

Because S′(θi) = V ′(q(θi))q′(θi)− p′(θi). Therefore,

(
pi − θiq(θi) + λθiq(θi)

)
(N − 1) f (θi)

1
V ′(q(θi))q′(θi)− p′(θi)

+
[
1− F(θi)

]
= 0

We can solve the above differential equation with boundary condition and get:

p(θi) = −(λ− 1)θiq(θi)− (λ− 1)

∫ θ
θi
(1− F(θ̃))(N−1)q(θ̃)dθ̃

(1− F(θi))(N−1)
+ λ

θiq(θi) +
∫ θ

θi
q(θ̃)dθ̃

(1− F(θi))(N−1)

We have:

dS(θi)

dθi
= −(N − 1)(1− F(θi))

−N f (θi)

(
− (λ− 1)

∫ θ

θi

(1− F(θ̃))(N−1)q(θ̃)dθ̃ + λ
(
θiq(θi) +

∫ θ

θi

q(θ̃)dθ̃
))

= −(N − 1)(1− F(θi))
−N f (θi)

( ∫ θ

θi

(1− F(θ̃))(N−1)q(θ̃)dθ̃ + λθiq(θi)

+ λ
( ∫ θ

θi

q(θ̃)dθ̃ −
∫ θ

θi

(1− F(θ̃))(N−1)q(θ̃)dθ̃
))

< 0

We can confirm that S(θ) is strictly decreasing with the private type θ.
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From the equilibrium price bidding function p(θi), we have:

dp(θi)

dλ
=
(
− (λ− 1)θi + λ

θi

(1− F(θi))(N−1)

) θi
(
1−

[
1− F(θi)

]N−1)[
1− F(θi)

]N−1V ′′(q(θi))

+
θi
(
1−

[
1− F(θi)

]N−1)
(1− F(θi))(N−1)

q(θi) +

∫ θ
θi

θ̃ 1−(1−F(θ̃))(N−1)

V′′(q∗(θ̃)) dθ̃

(1− F(θi))(N−1)

+

∫ θ
θi

(
1− (1− F(θ̃))(N−1))q(θ̃)dθ̃

(1− F(θi))(N−1)
+

∫ θ
θi

(
1− (1− F(θ̃))(N−1))λ θ̃

(
1−
[

1−F(θ̃)
]N−1)[

1−F(θ̃)
]N−1

V′′(q(θ̃))
dθ̃

(1− F(θi))(N−1)

=V ′(q(θi))
θi
(
1−

(
1− F(θi)

)N−1)(
1− F(θi)

)N−1V ′′(q(θi))
+

θi
(
1−

[
1− F(θi)

]N−1)
(1− F(θi))(N−1)

q(θi)

+

∫ θ
θi

(
θ̃ + λ

θ̃
(

1−
[

1−F(θ̃)
]N−1)[

1−F(θ̃)
]N−1

) 1−(1−F(θ̃))(N−1)

V′′(q(θ̃)) dθ̃

(1− F(θi))(N−1)
+

∫ θ
θi

(
1− (1− F(θ̃))(N−1))q(θ̃)dθ̃

(1− F(θi))(N−1)

=
θi
(
1−

[
1− F(θi)

]N−1)
(1− F(θi))(N−1)

q(θi)
(
1 +

V ′(q(θi))

q(θi)V ′′(q(θi))

)
+

∫ θ
θi

V ′(q(θ̃)) 1−(1−F(θ̃))(N−1)

V′′(q(θ̃)) dθ̃

(1− F(θi))(N−1)
+

∫ θ
θi

(
1− (1− F(θ̃))(N−1))q(θ̃)dθ̃

(1− F(θi))(N−1)

=
θi
(
1−

[
1− F(θi)

]N−1)
(1− F(θi))(N−1)

q(θi)
(
1− 1

M(q(θi))

)
+

∫ θ
θi

(
1− (1− F(θ̃))(N−1))q(θ̃)(1− 1

M(q(θ̃))

)
dθ̃

(1− F(θi))(N−1)

where the second the third equality uses the fact that
(
1 − F(θi)

)N−1V ′(q(θi)) −
θ
(
1− F(θi)

)N−1 − λθi
(
1−

(
1− F(θi)

)N−1)
= 0, and the last equality follows from

the definition that M(q(θi)) = −q(θi)V
′′
(q(θi))

V′ (q(θi))
. Moreover, it is easy to check that the

equilibrium quality bidding function q(θi) ∈ [0, V ′−1(θ)], ∀θi ∈ [θ, θ]. Therefore, if
M(q) ≤ 1 for all q ∈ [0, V ′−1(θ)], we can know that ∂p(θi)

∂λ ≤ 0, the equality holds
if and only if θi = θ or M(q) = 1 for all q ∈ [0, V ′−1(θ)]. Therefore, if M(q) ≤ 1
for all q ∈ [0, V ′−1(θ)], a worker’s price bidding in equilibrium decreases with loss
aversion.

Proof of Proposition 9

From the equilibrium quality and price bidding function q(θi) and p(θi) we derived
in 1.7.13, we can get worker i’s expected utility in equilibrium π(q(θi), p(θi)) =∫ θ

θi
q(θ̃)(1− F(θ̃))(N−1)dθ̃. Therefore, we have:

dπ(q(θi), p(θi))

dλ
=
∫ θ

θi

θ̃
(
1−

(
1− F(θ̃)

)N−1)
V ′′(q(θ̃))

dθ̃ ≤ 0,

where the equality holds if and only if θi = θ, the equality uses the fact that ∂q(θi)
∂λ =

θi

(
1−(1−F(θi))

N−1
)

(1−F(θi))N−1V′′(q(θi))
and the inequality follows from the fact that V ′′(·) < 0. Therefore,

a worker’s expected utility decreases with the degree of loss aversion.
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On the other hand, from the equilibrium quality and price bidding function q(·)
and p(·) we derived in 1.7.13, we have the buyer’s expected utility in equilibrium:

EUb = E
{

V(q(θ1))− p(θ1)
}

=
∫ θ

θ

{
V(q(θ)) + (λ− 1)θq(θ)

+ (λ− 1)

∫ θ
θ (1− F(θ̃))(N−1)q(θ̃)dθ̃

(1− F(θ))(N−1)
− λ

θq(θ) +
∫ θ

θ q(θ̃)dθ̃

(1− F(θ))(N−1)

}
N f (θ)

(
1− F(θ)

)N−1dθ

=
∫ θ

θ

{
V(q(θ)) + (λ− 1)θq(θ) + (λ− 1)

F(θ)
f (θ)

q(θ)− λ

F(θ)
f (θ) + θ(

1− F(θ)
)N−1 q(θ)

}
N f (θ)

(
1− F(θ)

)N−1dθ

where θ1 is the lowest order statistic, i.e., θ1 = min{θi}N
i=1 and the last equality

follows from integration by parts.
Therefore, we have:

dEUb

dλ
=
∫ θ

θ

{(
V ′(q(θ)) + (λ− 1)θ + (λ− 1)

F(θ)
f (θ)

− λ

F(θ)
f (θ) + θ(

1− F(θ)
)N−1

)dq(θ)
dλ

+ θq(θ) +
F(θ)
f (θ)

q(θ)−
F(θ)
f (θ) + θ(

1− F(θ)
)N−1 q(θ)

}
N f (θ)

(
1− F(θ)

)N−1dθ

=
∫ θ

θ

{
−
(
1 + λ

(
1−

(
1− F(θ)

)N−1)(
1− F(θ)

)N−1

)F(θ)
f (θ)

dq(θ)
dλ

− (θ +
F(θ)
f (θ)

)
1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1 q(θ)
}

N f (θ)
(
1− F(θ)

)N−1dθ

=
∫ θ

θ

{
−
(
1 + λ

(
1−

(
1− F(θ)

)N−1)(
1− F(θ)

)N−1

)F(θ)
f (θ)

θ
(
1−

[
1− F(θ)

]N−1)[
1− F(θ)

]N−1V ′′(q(θ))

− (θ +
F(θ)
f (θ)

)
1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1 q(θ)
}

N f (θ)
(
1− F(θ)

)N−1dθ

=
∫ θ

θ

{
−
(
1 + λ

(
1−

(
1− F(θ)

)N−1)(
1− F(θ)

)N−1

)F(θ)
f (θ)

θ

V ′′(q(θ))

− (θ +
F(θ)
f (θ)

)q(θ)
}

N f (θ)
(
1−

(
1− F(θ)

)N−1)dθ

=
∫ θ

θ

{
− F(θ)

f (θ)
V ′(q(θ))

q(θ)V ′′(q(θ))
− (θ +

F(θ)
f (θ)

)

}
q(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

=
∫ θ

θ

{
F(θ)
f (θ)

1
M(q(θ))

− (θ +
F(θ)
f (θ)

)

}
q(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

=
∫ θ

θ

{
1

M(q(θ))
− θ f (θ) + F(θ)

F(θ)

}
q(θ)NF(θ)

(
1−

(
1− F(θ)

)N−1)dθ

where the second equality uses the fact that V ′(q(θ)) = λθ 1−(1−F(θ)N−1

(1−F(θ)N−1 + θ, the third
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equality uses the fact that dq(θ)
dλ = θ(1−(1−F(θ))N−1)

(1−F(θ))N−1V′′(q(θ)) , the fifth equality uses the fact

that V ′(q(θ)) = λθ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ, the sixth equality follows from the fact that

M(q(θ)) = −q(θ)V
′′
(q(θ))

V′ (q(θ))
.

Let’s define:

m0 ≡ sup
λ≥1

∫ θ
θ q(θ)NF(θ)

(
1−

(
1− F(θ)

)N−1)dθ∫ θ
θ q(θ)NF(θ)

(
1−

(
1− F(θ)

)N−1)dθ +
∫ θ

θ q(θ)Nθ f (θ)
(
1−

(
1− F(θ)

)N−1)dθ
∈ (0, 1),

where q(θ) = V ′−1(λθ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ
)

is the equilibrium quality bidding. It is also

easy to check that the equilibrium quality bidding function q(θi) ∈ [0, V ′−1(θ)], ∀θi ∈
[θ, θ].

If M(q) > m0 for all q ∈ [0, V ′−1(θ)], then:

dEUb

dλ
=
∫ θ

θ

{
1

M(q(θ))
− θ f (θ) + F(θ)

F(θ)

}
q(θ)NF(θ)

(
1−

(
1− F(θ)

)N−1)dθ

<
∫ θ

θ

{
1

m0
− θ f (θ) + F(θ)

F(θ)

}
q(θ)NF(θ)

(
1−

(
1− F(θ)

)N−1)dθ

=
1

m0

∫ θ

θ
q(θ)NF(θ)

(
1−

(
1− F(θ)

)N−1)dθ

−
( ∫ θ

θ
q(θ)NF(θ)

(
1−

(
1− F(θ)

)N−1)dθ +
∫ θ

θ
q(θ)Nθ f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

)
=

( ∫ θ

θ
q(θ)NF(θ)

(
1−

(
1− F(θ)

)N−1)dθ +
∫ θ

θ
q(θ)Nθ f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

)

×
(

1
m0

∫ θ
θ q(θ)NF(θ)

(
1−

(
1− F(θ)

)N−1)dθ∫ θ
θ q(θ)NF(θ)

(
1−

(
1− F(θ)

)N−1)dθ +
∫ θ

θ q(θ)Nθ f (θ)
(
1−

(
1− F(θ)

)N−1)dθ
− 1
)

≤0

where the first inequality uses the fact that M(q) > m0 for all q ∈ [0, V ′−1(θ)], the
last inequality follows from the definition of m0. Therefore, if M(q) > m0 for all
q ∈ [0, V ′−1(θ)], we have dEUb

dλ < 0, i.e., buyer’s expected utility decreases with loss
aversion.

Proof of Proposition 10

Given any reimbursement percentage ρw and ρl , we solve the workers’ quality and
price bidding in equilibrium (Here we identify the symmetric equilibrium from the
first order conditions. Its sufficiency and uniqueness can be checked by the same
methods in 1.7.1).

We assume the symmetric bidding strategy in equilibrium is (q(·), p(·)) and a
corresponding strictly decreasing scoring bidding function S(·) = s(q(·)) − p(·)
(Note that in this case, s(q(·)) = V(q(·))).Given other workers’ bidding strategy
(q(·), p(·)), if a worker i of type θi bids quality qi and price pi (the corresponding
scoring bid Si = s(qi)− pi), under the percentage reimbursement policy (ρw, ρl) he
can earn interim expected utility πpr(qi, pi):
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πpr(qi, pi) =
(

pi − θi(1− ρw)qi
)
∏
j 6=i

prob
(
Si > S(θj)

)
− λθi(1− ρl)qi

(
1−∏

j 6=i
prob

(
Si > S(θj)

))
=
(

pi − θi(1− ρw)qi
)[

1− F(S−1(Si))
]N−1 − λθi(1− ρl)qi

(
1−

[
1− F(S−1(Si))

]N−1
)

Given θi and other worker’s bidding strategy, the worker i maximizes the expected
profit by choosing pi and qi. We calculate the derivative of πpr(qi, pi) with respect to
pi and qi:

∂πpr(qi, pi)

∂pi
=
(

pi − θi(1− ρw)qi
)
(N − 1)

[
1− F(S−1(Si))

]N−2 f (S−1(Si))
1

S′(S−1(Si))

+
[
1− F(S−1(Si))

]N−1
+ λθi(1− ρl)qi(N − 1)

[
1− F(S−1(Si))

]N−2 f (S−1(Si))
1

S′(S−1(Si))

∂πpr(qi, pi)

∂qi
=
(

pi − θi(1− ρw)qi
)
(N − 1)

[
1− F(S−1(Si))

]N−2
(−1) f (S−1(Si))

1
S′(S−1(Si))

V ′(qi)

− θi(1− ρw)
[
1− F(S−1(Si))

]N−1

− λθi(1− ρl)

(
1−

[
1− F(S−1(Si))

]N−1
)

+ λθi(1− ρl)qi(N − 1)
[
1− F(S−1(Si))

]N−2
(−1) f (S−1(Si))

1
S′(S−1(Si))

V ′(qi)

From the first order condition ∂πpr(qi ,pi)
∂pi

= 0 and ∂πpr(qi ,pi)
∂qi

= 0, we have

[
1− F(S−1(Si))

]N−1V ′(qi)−θi(1− ρw)
[
1− F(S−1(Si))

]N−1

− λθi(1− ρl)
(
1−

[
1− F(S−1(Si))

]N−1)
= 0

Because of the symmetry of the equilibrium, S−1(Si) = S−1(S(θi)) = θi. There-
fore:

From the first order condition ∂πpr(qi ,pi)
∂pi

= 0 and ∂πpr(qi ,pi)
∂qi

= 0, we have:

[
1− F(θi)

]N−1V ′(qi)− θi(1− ρw)
[
1− F(θi)

]N−1 − λθi(1− ρl)
(
1−

[
1− F(θi)

]N−1)
= 0

Let G(qi) ≡
[
1− F(θi)

]N−1V ′(qi) − θi(1− ρw)
[
1− F(θi)

]N−1 − λθi(1− ρl)
(
1−[

1− F(θi)
]N−1). Since V ′′(qi) < 0, we can get: dG(qi)

dqi
= V ′′(qi)

[
1− F(θi)

]N−1
< 0. In

addition, since lim
q→0

V ′(q) = +∞ and lim
q→+∞

V ′(q) = 0, we have lim
q→+∞

G(qi) < 0, and

lim
q→0

G(qi) > 0. According to the intermediate value theorem, there is an unique q∗i ,

such that G(qi) = 0. Specifically, we can denote

q∗i = q(θi) = V ′−1(λθi(1− ρl)
1− (1− F(θi))

N−1

(1− F(θi))N−1 + θi(1− ρw)
)

where V ′−1(·) is the inverse of V ′(·). Taking derivative with respect to ρw and ρl for
the equilibrium price bidding function q(θi), we have:
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dq(θi)

dρw
=

−θi

V ′′(q(θi))
> 0,

dq(θi)

dρl
=
−λθi

(
1−

[
1− F(θi)

]N−1)(
1− F(θi)

)N−1V ′′(q(θi))
≥ 0,

where the equality (of the last inequality) holds if and only if θi = θ or θi = θ,
both inequality follows from the fact that V ′′(·) < 0. Therefore, a worker’s quality
bidding in equilibrium increases with reimbursement percentage ρw and ρl .

Moreover, from ∂πpr(qi ,pi)
∂pi

= 0, we can get the derivative equation:

(
pi − θi(1− ρw)q(θi) + λθi(1− ρl)q(θi)

)
(N − 1) f (S−1(Si))

1
S′(S−1(Si))

+
[
1− F(S−1(Si))

]
= 0

Because of the symmetry of the equilibrium, S−1(Si) = S−1(S(θi)) = θi. There-
fore,(

pi − θi(1− ρw)q(θi) + λθi(1− ρl)q(θi)
)
(N − 1) f (θi)

1
S′(θi)

+
[
1− F(θi)

]
= 0

Because S′(θi) = V ′(q(θi))q′(θi)− p′(θi). Therefore,

(
pi − θi(1− ρw)q(θi) + λθi(1− ρl)q(θi)

)
(N − 1) f (θi)

1
V ′(q(θi))q

′(θi)− p′(θi)
+
[
1− F(θi)

]
= 0

Solve this differential equation with the boundary condition, we can get:

p(θi) = −
(
(1− ρl)λ− (1− ρw)

)
θiq(θi)−

(
(1− ρl)λ− (1− ρw)

)∫ θ
θi
(1− F(θ̃))(N−1)q(θ̃)dθ̃

(1− F(θi))(N−1)

+ λ(1− ρl)
θiq(θi) +

∫ θ
θi

q(θ̃)dθ̃

(1− F(θi))(N−1)

We have:

dS(θi)

dθi
=− (N − 1)(1− F(θi))

−N f (θi)

(
(1− ρw)

∫ θ

θi

(1− F(θ̃))(N−1)q(θ̃)dθ̃

+ λ(1− ρl)
(
θiq(θi) +

∫ θ

θi

(
1− (1− F(θ̃))(N−1))q(θ̃)dθ̃

))
<0

We can confirm that S(θi) strictly decreases with the private type θi.
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Taking derivative with respect to ρw for the equilibrium price bidding function
p(θi), we have:

∂p(θi)

∂ρw
=
(
− λ(1− ρl)θi + (1− ρw)θi +

λ(1− ρl)θi

(1− F(θi))(N−1)

)dq(θi)

dρw

−
(
(1− ρl)λ− (1− ρw)

)∫ θ
θi
(1− F(θ̃))(N−1) dq(θ̃)

dρw
dθ̃

(1− F(θi))(N−1)
−
∫ θ

θi
(1− F(θ̃))(N−1)q(θ̃)dθ̃

(1− F(θi))(N−1)
− θiq(θi)

+ λ(1− ρl)

∫ θ
θi

dq(θ̃)
dρw

dθ̃

(1− F(θi))(N−1)

=
−θiV ′(q(θi))

V ′′(q(θi))
− θiq(θi) + (1− ρw)

∫ θ
θi
(1− F(θ̃))(N−1) −θ̃

V′′(q(θ̃))dθ̃

(1− F(θi))(N−1)

+ λ(1− ρl)

∫ θ
θi

−θ̃
(

1−(1−F(θ̃))(N−1)
)

V′′(q(θ̃)) dθ̃

(1− F(θi))(N−1)
−
∫ θ

θi
(1− F(θ̃))(N−1)q(θ̃)dθ̃

(1− F(θi))(N−1)

=
−θiV ′(q(θi))

V ′′(q(θi))
− θiq(θi)

+

∫ θ
θi
(1− F(θ̃))(N−1)q(θ̃)

( −1
V′′(q(θ̃))q(θ̃) (λ(1− ρl)θ̃

1−(1−F(θ̃))N−1

(1−F(θ̃))N−1 + θ̃(1− ρw))− 1
)
dθ̃

(1− F(θi))(N−1)

=
−θiV ′(q(θi))

V ′′(q(θi))
− θiq(θi) +

∫ θ
θi
(1− F(θ̃))(N−1)q(θ̃)

( −V′(q(θ̃))
V′′(q(θ̃))q(θ̃) − 1

)
dθ̃

(1− F(θi))(N−1)

=θiq(θi)
( 1

M(q(θi))
− 1
)
+

∫ θ
θi
(1− F(θ̃))(N−1)q(θ̃)

( 1
M(q(θ̃)) − 1

)
dθ̃

(1− F(θi))(N−1)

where the second equality uses the facts that dq(θi)
dρw

= −θi
V′′(q(θi))

and V ′(q(θi)) =

λ(1− ρl)θi
1−(1−F(θi))

N−1

(1−F(θi))N−1 + θi(1− ρw), the fourth equality follows from the fact that

V ′(q(θi)) = λ(1− ρl)θi
1−(1−F(θi))

N−1

(1−F(θi))N−1 + θi(1− ρw), the last equality uses the definition

that M(q(θi)) =
−q(θi)V

′′
(q(θi))

V′ (q(θi))
.

Therefore, if M(q) ≤ 1 for all q ≥ 0, we can know that ∂p(θi)
∂ρw

≥ 0, and thus a
worker’s price bid in equilibrium increases with reimbursement percentage ρw.
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Taking derivative with respect to ρl for the equilibrium price bidding function
p(θi), we have:

∂p(θi)

∂ρl
=
(
− λ(1− ρl)θi + (1− ρw)θi +

λ(1− ρl)θi

(1− F(θi))(N−1)

)dq(θi)

dρl
+ λρlθiq(θi)

−
(
(1− ρl)λ− (1− ρw)

)∫ θ
θi
(1− F(θ̃))(N−1) dq(θ̃)

dρl
dθ̃

(1− F(θi))(N−1)

+ λρl

∫ θ
θi
(1− F(θ̃))(N−1)q(θ̃)dθ̃ − θiq(θi)−

∫ θ
θi

q(θ̃)dθ̃

(1− F(θi))(N−1)
+ λ(1− ρl)

∫ θ
θi

dq(θ̃)
dρl

dθ̃

(1− F(θi))(N−1)

=
λθiq(θi)

(
1− (1− F(θi))

N−1)(
1− F(θi)

)N−1

( −V ′(q(θi))

q(θi)V ′′(q(θi))
− ρl

)

−
(
(1− ρl)λ− (1− ρw)

)∫ θ
θi

λθ̃
(
1− (1− F(θ̃))(N−1)) −1

V′′(q(θ̃))dθ̃

(1− F(θi))(N−1)

+ λρl

∫ θ
θi
(1− F(θ̃))(N−1)q(θ̃)dθ̃ −

∫ θ
θi

q(θ̃)dθ̃

(1− F(θi))(N−1)
+ λ(1− ρl)

∫ θ
θi

−λθ̃(1−(1−F(θ̃))N−1)

(1−F(θ̃))N−1V′′(q(θ̃)) dθ̃

(1− F(θi))(N−1)

=
λθiq(θi)

(
1− (1− F(θi))

N−1)(
1− F(θi)

)N−1

( −V ′(q(θi))

q(θi)V ′′(q(θi))
− ρl

)

+

∫ θ
θi

λ
(
1− (1− F(θ̃))(N−1))( −1

V′′(q(θ̃))

(
λ(1− ρl)θ̃

1−(1−F(θ̃))N−1

(1−F(θ̃))N−1 + θ̃(1− ρw)
)
− ρlq(θ̃)

)
dθ̃

(1− F(θi))(N−1)

=
λθiq(θi)

(
1− (1− F(θi))

N−1)(
1− F(θi)

)N−1

( −V ′(q(θi))

q(θi)V ′′(q(θi))
− ρl

)

+

∫ θ
θi

λ
(
1− (1− F(θ̃))(N−1))(−V′(q(θ̃))

V′′(q(θ̃)) − ρlq(θ̃)
)
dθ̃

(1− F(θi))(N−1)

=
λθiq(θi)

(
1− (1− F(θi))

N−1)(
1− F(θi)

)N−1

( −V ′(q(θi))

q(θi)V ′′(q(θi))
− ρl

)

+

∫ θ
θi

λq(θ̃)
(
1− (1− F(θ̃))(N−1))( −V′(q(θ̃))

q(θ̃)V′′(q(θ̃)) − ρl
)
dθ̃

(1− F(θi))(N−1)

=
λθiq(θi)

(
1− (1− F(θi))

N−1)(
1− F(θi)

)N−1

( 1
M(q(θi))

− ρl
)
+

∫ θ
θi

λq(θ̃)
(
1− (1− F(θ̃))(N−1))( 1

M(q(θ̃)) − ρl
)
dθ̃

(1− F(θi))(N−1)
,

where the second equality uses the facts that dq(θi)
dρl

= −λθi(1−(1−F(θi))
N−1)

(1−F(θi))N−1V′′(q(θi))
and V ′(q(θi)) =

λ(1− ρl)θi
1−(1−F(θi))

N−1

(1−F(θi))N−1 + θi(1− ρw), the fourth equality follows from the fact that

V ′(q(θi)) = λ(1− ρl)θi
1−(1−F(θi))

N−1

(1−F(θi))N−1 + θi(1− ρw), the last equality uses the definition

that M(q(θi)) =
−q(θi)V

′′
(q(θi))

V′ (q(θi))
.

Therefore, if M(q) ≤ 1 for all q ≥ 0, we can know that ∂p(θi)
∂ρl
≥ 0, and thus a

worker’s price bid in equilibrium increases with reimbursement percentage ρl .
Moreover, from the equilibrium quality and price bidding function q(θi) and

p(θi) we derived, we can get worker i’s expected utility in equilibrium:
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πpr(q(θi), p(θi)) = (1− ρw)
∫ θ

θi

q(θ̃)(1− F(θ̃))(N−1)dθ̃ + λ(1− ρl)
∫ θ

θi

q(θ̃)(1− (1− F(θ̃))(N−1))dθ̃

Taking derivative with respect to ρw for πpr(q(θi), p(θi)), we have:

dπpr(q(θi), p(θi))

dρw

=−
∫ θ

θi

q(θ̃)(1− F(θ̃))(N−1)dθ̃ + (1− ρw)
∫ θ

θi

−θ̃

V ′′(q(θ̃))
(1− F(θ̃))(N−1)dθ̃

+ λ(1− ρl)
∫ θ

θi

−θ̃

V ′′(q(θ̃))
(1− F(θ̃))(N−1)dθ̃

=
∫ θ

θi

−θ̃

V ′′(q(θ̃))
(1− F(θ̃))(N−1)(λ(1− ρl)θ̃

1− (1− F(θ̃))N−1

(1− F(θ̃))N−1
+ θ̃(1− ρw)

)
dθ̃ −

∫ θ

θi

q(θ̃)(1− F(θ̃))(N−1)dθ̃

=
∫ θ

θi

−θ̃V ′(q(θ̃))
V ′′(q(θ̃))

(1− F(θ̃))(N−1)dθ̃ −
∫ θ

θi

q(θ̃)(1− F(θ̃))(N−1)dθ̃

=
∫ θ

θi

(1− F(θ̃))(N−1)q(θ̃)
( 1

M(q(θ̃))
− 1
)
dθ̃ ≥ 0

where the first equality uses the fact that dq(θi)
dρw

= −θi
V′′(q(θi))

, the third equality uses the

fact that V ′(q(θi)) = λ(1− ρl)θi
1−(1−F(θi))

N−1

(1−F(θi))N−1 + θi(1− ρw), the last equality follows

from the definition M(q(θi)) = −q(θi)V
′′
(q(θi))

V′ (q(θi))
, the last inequality follows from the

assumption that M(q) ≤ 1 for all q ≥ 0.
Taking derivative with respect to ρl for πpr(q(θi), p(θi)), we have:

dπpr(q(θi), p(θi))

dρl

=(1− ρw)
∫ θ

θi

−λθ̃
(
1− (1− F(θ̃))(N−1))

(1− F(θ̃))(N−1)V ′′(q(θ̃))
(1− F(θ̃))(N−1)dθ̃ − λ

∫ θ

θi

q(θ̃)
(
1− (1− F(θ̃))(N−1))dθ̃

+ λ(1− ρl)
∫ θ

θi

−λθ̃
(
1− (1− F(θ̃))(N−1))

(1− F(θ̃))(N−1)V ′′(q(θ̃))

(
1− (1− F(θ̃))(N−1))dθ̃

=
∫ θ

θi

λ
(
1− (1− F(θ̃))(N−1))( −1

V ′′(q(θ̃))

(
λ(1− ρl)θ̃

1− (1− F(θ̃))N−1

(1− F(θ̃))N−1
+ θ̃(1− ρw)

)
− q(θ̃)

)
dθ̃

=
∫ θ

θi

λq(θ̃)
(
1− (1− F(θ̃))(N−1))( −V ′(q(θ̃))

q(θ̃)V ′′(q(θ̃))
− 1
)
dθ̃

=
∫ θ

θi

λq(θ̃)
(
1− (1− F(θ̃))(N−1))( 1

M(q(θ̃))
− 1
)
dθ̃ ≥ 0

where the first equality uses the fact that dq(θi)
dρl

= −λθi(1−(1−F(θi))
N−1)

(1−F(θi))N−1V′′(q(θi))
, the third equal-

ity uses the fact that V ′(q(θi)) = λ(1− ρl)θi
1−(1−F(θi))

N−1

(1−F(θi))N−1 + θi(1− ρw), the last equal-

ity follows from the definition M(q(θi)) = −q(θi)V
′′
(q(θi))

V′ (q(θi))
,the last inequality follows

from the assumption that M(q) ≤ 1 for all q ≥ 0.
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Therefore, if M(q) ≤ 1 for all q ≥ 0, a worker’s expected utility in equilibrium
increases with the reimbursement percentage ρw and ρl .

Proof of Proposition 11 part (1)

Given workers’ best response (equilibrium price and quality bidding we character-
ized in 1.7.13), the buyer’s expected utility when she reimburses the winning worker
for ρw percentage of quality cost and the losing workers for ρl percentage of quality
cost:

EUpr
b (ρw, ρl) = E

{
V(q(θ1))− p(θ1)

}
− N

∫ θ

θ
ρwθq(θ)

(
1− F(θ)

)N−1dF(θ)− N
∫ θ

θ
ρlθq(θ)

(
1−

(
1− F(θ)

)N−1)dF(θ)

=
∫ θ

θ

{
V(q(θ)) +

(
(1− ρl)λ− (1− ρw)

)
θq(θ)

+
(
(1− ρl)λ− (1− ρw)

)∫ θ
θ (1− F(θ̃))(N−1)q(θ̃)dθ̃

(1− F(θ))(N−1)
− λ(1− ρl)

θq(θ) +
∫ θ

θ q(θ̃)dθ̃

(1− F(θ))(N−1)

− ρlθq(θ)
1− (1− F(θ))(N−1)

(1− F(θ))(N−1)
− ρwθq(θ)

}
N f (θ)

(
1− F(θ)

)N−1dθ

=
∫ θ

θ

{
V(q(θ)) +

(
(1− ρl)λ− (1− ρw)

)
θq(θ) +

(
(1− ρl)λ− (1− ρw)

)F(θ)
f (θ)

q(θ)

− λ(1− ρl)

F(θ)
f (θ) + θ(

1− F(θ)
)N−1 q(θ)− ρlθq(θ)

1− (1− F(θ))(N−1)

(1− F(θ))(N−1)
− ρwθq(θ)

}
N f (θ)

(
1− F(θ)

)N−1dθ

where θ1 is the lowest order statistic, i.e., θ1 = min{θi}N
i=1 and the last equality

follows from integration by parts.
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Taking derivative with respect to ρw for the buyer’s expected utility EUpr
b (ρw, ρl),

we have:

dEUpr
b (ρw, ρl)

dρw

=
∫ θ

θ

{(
V ′(q(θ)) +

(
(1− ρl)λ− (1− ρw)

)
(θ +

F(θ)
f (θ)

)− λ

F(θ)
f (θ) + θ(

1− F(θ)
)N−1

− ρwθ − ρlθ
1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1

)
dq(θ)
dρw

+
F(θ)
f (θ)

q(θ)
}

N f (θ)
(
1− F(θ)

)N−1dθ

=
∫ θ

θ

{(
− ρwθ2 − 1− (1− F(θ)N−1

(1− F(θ)N−1 ρlθ
2 − λθ2ρl

(1− F(θ)N−1 −
F(θ)
f (θ)

λρlθ(
1− F(θ)

)N−1

− F(θ)
f (θ)

( λ(1− ρl)θ(
1−

(
1− F(θ)

)N−1 + (1− ρw)θ − (1− ρl)λθ
)) −1

V ′′(q(θ))q(θ)

+
F(θ)
f (θ)

}
q(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

=
∫ θ

θ

{((
− ρwθ2 − 1− (1− F(θ)N−1

(1− F(θ)N−1 ρlθ
2 − λθ2ρl

(1− F(θ)N−1 −
F(θ)
f (θ)

λρlθ(
1− F(θ)

)N−1

) 1
V ′(q(θ))

− F(θ)
f (θ)

)
−V ′(q(θ))

V ′′(q(θ))q(θ)
+

F(θ)
f (θ)

}
q(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

=
∫ θ

θ

{((
− ρwθ2 − 1− (1− F(θ)N−1

(1− F(θ)N−1 ρlθ
2 − λθ2ρl

(1− F(θ)N−1 −
F(θ)
f (θ)

λρlθ(
1− F(θ)

)N−1

) 1
V ′(q(θ))

− F(θ)
f (θ)

)
1

M(q(θ))
+

F(θ)
f (θ)

}
q(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

where the second and third equality use the facts that dq(θ)
dρw

= −θ
V′′(q(θ)) and V ′(q(θ)) =

λθ(1− ρl)
1−(1−F(θ))N−1

(1−F(θ))N−1 + θ(1− ρw), the last equality follows from the definition M(q(θ)) =
−q(θ)V

′′
(q(θ))

V′ (q(θ))
.

Obviously, if M(q) ≤ 1 for all q ≥ 0, then dEUpr
b (ρw,ρl)
dρw

< 0. the buyer should never
reimburse the quality spending of the winning worker, i.e., ρ∗w = 0.

Proof of Proposition 11 part (2)

Based on 1.7.13, when the buyer can choose to reimburse the losing workers with
ρl ∈ [0%, 100%] percent of their quality cost, and the winning worker with ρw ∈
[0%, 100%] percent of their quality cost, then the optimal reimbursement percentage
for the winning worker should be ρ∗w = 0 if M(q) ≤ 1 for all q ≥ 0.

Therefore, under the condition “M(q) ≤ 1 for all q ≥ 0", the buyer should only
reimburse the losing workers. In this subsection we consider the optimal reimburse-
ment percentage to the losing workers under the condition that the optimal reim-
bursement percentage to the winning worker is ρ∗w = 0. Based on the results in
1.7.13, the buyer’s expected utility when he commits to reimburses only the losing
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workers’ quality spending with ρl ∈ [0, 1] percent should be:

EUpr
b (0, ρl) =

∫ θ

θ

{
V(q(θ)) +

(
(1− ρl)λ− 1

)
θq(θ) +

(
(1− ρl)λ− 1

)F(θ)
f (θ)

q(θ)

− λ(1− ρl)

F(θ)
f (θ) + θ(

1− F(θ)
)N−1 q(θ)− ρlθq(θ)

1− (1− F(θ))(N−1)

(1− F(θ))(N−1)

}
N f (θ)

(
1− F(θ)

)N−1dθ

Taking derivative with respect to λ for the buyer’s expected utility EUpr
b (0, ρl),

we have:

∂EUpr
b (0, ρl)

∂λ

=
∫ θ

θ

{(
V ′(q(θ))− (θ +

F(θ)
f (θ)

)− (λ(1− ρl)(θ +
F(θ)
f (θ)

) + ρlθ)
1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1

)
dq(θ)

dλ

− (1− ρl)(θ +
F(θ)
f (θ)

)
1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1 q(θ)
}

N f (θ)
(
1− F(θ)

)N−1dθ

=
∫ θ

θ

{(
− F(θ)

f (θ)
− (λ(1− ρl)

F(θ)
f (θ)

+ ρlθ)
1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1

)
(1− ρl)θ

V ′′(q(θ))

− (1− ρl)(θ +
F(θ)
f (θ)

)q(θ)
}

N f (θ)
(
1−

(
1− F(θ)

)N−1)dθ

where the second equality uses the facts that ∂q(θ)
∂λ = (1−ρl)θ(1−(1−F(θ))N−1)

(1−F(θ))N−1V′′(q(θ)) and V ′(q(θ)) =

λθ(1− ρl)
1−(1−F(θ))N−1

(1−F(θ))N−1 + θ.
Moreover, Taking derivative with respect to ρl for the buyer’s expected utility

EUpr
b (0, ρl), we have:

∂EUpr
b (0, ρl)

∂ρl
=
∫ θ

θ

{(
V ′(q(θ))− (θ +

F(θ)
f (θ)

)− (λ(1− ρl)(θ +
F(θ)
f (θ)

) + ρlθ)
1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1

)
dq(θ)

dρl

+
(
λ(θ +

F(θ)
f (θ)

)− θ
)1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1 q(θ)
}

N f (θ)
(
1− F(θ)

)N−1dθ

=
∫ θ

θ

{(
− F(θ)

f (θ)
− (λ(1− ρl)

F(θ)
f (θ)

+ ρlθ)
1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1

)
−λθ

V ′′(q(θ))

+
(
λ(θ +

F(θ)
f (θ)

)− θ
)
q(θ)

}
N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

=
∂EU f s

∂λ

−λ

1− ρl
−
∫ θ

θ
θq(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

=
−λ

1− ρl

(
∂EU f s

∂λ
+

1− ρl

λ

∫ θ

θ
θq(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

)
where the second equality follows from the facts that dq(θi)

dρl
= −λθi(1−(1−F(θi))

N−1)
(1−F(θi))N−1V′′(q(θi))

and

V ′(q(θ)) = λθ(1 − ρl)
1−(1−F(θ))N−1

(1−F(θ))N−1 + θ, the third equality uses the formula about
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∂EUpr
b (0,ρl)
∂λ we derived above.

When dEUpr
b (0,ρl)
dλ > − 1−ρl

λ

∫ θ
θ θq(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ ≡ B for all ρl ∈

[0, 1], we have dEUpr
b (0,ρl)
dρl

< 0 for all ρl ∈ [0, 1]. Therefore, the optimal reimbursement
percentage ρ∗l = 0.

When ∂EUpr
b (0,ρl)
∂λ < − 1−ρl

λ

∫ θ
θ θq(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ ≡ B, for all ρl ∈

[0, 1], we have dEUpr
b (0,ρl)
dρl

> 0 for all ρl ∈ [0, 1]. Therefore, the optimal reimbursement
percentage ρ∗l = 1.

When ∂EUpr
b (0,ρl)
∂λ

∣∣∣
ρl=1

> B|ρl=1, we have ∂EUpr
b (0,ρl)
∂ρl

∣∣∣
ρl=1

< 0, the buyer should

decrease the reimbursement percentage from 100%, which can increase his expected

utility. When ∂EUpr
b (0,ρl)
∂λ

∣∣∣
ρl=0

< B|ρl=0, we have ∂EUpr
b (0,ρl)
∂ρl

∣∣∣
ρl=0

< 0, the buyer should

increase the reimbursement percentage from zero percent, which can increase his
expected utility. Therefore, the buyer should choose the optimal reimbursement

percentage ρ∗l ∈ (0, 1), where ρ∗l should satisfy ∂EUpr
b (0,ρl)
∂ρl

∣∣∣
ρl=ρ∗l

= 0, or equivalently

∂EUpr
b (0,ρl)
∂λ

∣∣∣
ρl=ρ∗l

= B|ρl=ρ∗l
.

Proof of Proposition 12

.

Let q−1(·) is the inverse of function q(θ) = V ′−1(λθ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ
)
. Under

the following flat reimbursement policy, we would prove the equilibrium quality
bidding of a worker with type θ is q(θ)18.

Under the flat reimbursement policy, the buyer can reimburse a fixed amount
yw ≤ q−1(x)x19 to the winning worker with type θ if his quality bidding is bigger
than or equal to x, and a fixed amount yl ≤ q−1(x)x to the losing worker with type
θ if his quality bidding is bigger than or equal to x.

Here, given a certain flat reimbursement policy, we characterize the workers’
quality and price bidding in equilibrium (Again we identify the symmetric equilib-
rium from the first order conditions. Its sufficiency and uniqueness can be checked
by the same methods in 1.7.1).

We assume the symmetric bidding strategy in equilibrium is (q(·), p(·)) and a
corresponding strictly decreasing scoring bidding function S(·) = s(q(·)) − p(·)
(Note that in this case, s(q(·)) = V(q(·)), when buyer has no scoring rule com-
mitment power).

Therefore, under a given flat reimbursement policy (x, yw, yl), given other work-
ers’ bidding strategy (q(·), p(·)), if a worker i of type θi bids quality qi and price pi
(the corresponding scoring bid Si = s(qi)− pi), he can earn interim expected utility:

π f r(qi, pi) =
(

pi − (θiqi − yw · 1qi≥x)
)

P
(
win|qi, pi

)
− λ(θiqi − yl · 1qi≥x)

(
1− P

(
win|qi, pi

))
=
(

pi − (θiqi − yw · 1qi≥x)
)
∏
j 6=i

prob
(
Si > S(θj)

)
− λ(θiqi − yl · 1qi≥x)

(
1−∏

j 6=i
prob

(
Si > S(θj)

))
=
(

pi − (θiqi − yw · 1qi≥x)
)[

1− F(S−1(Si))
]N−1 − λ(θiqi − yl · 1qi≥x)

(
1−

[
1− F(S−1(Si))

]N−1)
18We can prove later that the equilibrium quality spending θq(θ) strictly decreases with type θ with

the assumption M(q) ≤ 1 for all q ∈ [0, V′−1(θ)].
19As we can prove later in this subsection, we have q−1(x)x strictly increases with x with the as-

sumption that M(q) ≤ 1 for all q ∈ [0, V′−1(θ)].
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Therefore,

∂π f r(qi, pi)

∂pi
=
(

pi − (θiqi − yw · 1qi≥x)
)
(N − 1)

[
1− F(S−1(Si))

]N−2 f (S−1(Si))
1

S′(S−1(Si))

+
[
1− F(S−1(Si))

]N−1

+ λ(θiqi − yl · 1qi≥x)(N − 1)
[
1− F(S−1(Si))

]N−2 f (S−1(Si))
1

S′(S−1(Si))

∂π f r(qi, pi)

∂qi
=
(

pi − (θiqi − yw · 1qi≥x)
)
(N − 1)

[
1− F(S−1(Si))

]N−2
(−1) f (S−1(Si))

1
S′(S−1(Si))

V ′(qi)

− θi
[
1− F(S−1(Si))

]N−1 − λθi
(
1−

[
1− F(S−1(Si))

]N−1)
+ λ(θiqi − yl · 1qi≥x)(N − 1)

[
1− F(S−1(Si))

]N−2
(−1) f (S−1(Si))

1
S′(S−1(Si))

V ′(qi)

From the first order conditions ∂π f r(qi ,pi)
∂pi

= 0 and ∂π f r(qi ,pi)
∂qi

= 0, we have:

[
1− F(S−1(Si))

]N−1V ′(qi)− θi
[
1− F(S−1(Si))

]N−1 − λθi
(
1−

[
1− F(S−1(Si))

]N−1)
= 0

Because of the symmetry of the equilibrium, S−1((Si)) = S−1(S(θi)) = θi. There-
fore, [

1− F(θi)
]N−1V ′(qi)− θi

[
1− F(θi)

]N−1 − λθi
(
1−

[
1− F(θi)

]N−1)
= 0

Therefore,

q(θi) = V ′−1(λθi
1− (1− F(θi))

N−1

(1− F(θi))N−1 + θi
)

Moreover, from ∂π f r(qi ,pi)
∂pi

= 0, we can get the differential equation:

(
pi − (θiq(θi)− yw · 1q(θi)≥x) + λ(θiq(θi)− yl · 1q(θi)≥x)

)
(N − 1) f (S−1(Si))

1
S′(S−1(Si))

+
[
1− F(S−1(Si))

]
= 0

Because S−1(Si) = S−1(S(θi)) = θi due to symmetry and S′(θi) = V ′(q(θi))q′(θi)−
p′(θi), we have:

(
pi − θi(q(θi)− yw · 1q(θi)≥x) + λθi(q(θi)− yl · 1q(θi)≥x)

)
(N − 1) f (θi)

1
V ′(q(θi))q′(θi)− p′(θi)

+
[
1− F(θi)

]
= 0

Solving the above differential equation with the boundary condition, we have:

p(θi) = (θiq(θi)− yw · 1q(θi)≥x)− λ(θiq(θi)− yl · 1q(θi)≥x)

− (λ− 1)

∫ θ
θi
(1− F(θ̃))(N−1)q(θ̃)dθ̃

(1− F(θi))(N−1)
+ λ

(θiq(θi)− yl · 1q(θi)≥x) +
∫ θ

θi
q(θ̃)dθ̃

(1− F(θi))(N−1)

Therefore, when q(θi) ≥ x, we have ∂p(θi)
∂yw

= −1 < 0 and ∂p(θi)
∂yl

= −λ 1−(1−F(θi))
(N−1)

(1−F(θi))(N−1) ≤
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0 (the equality holds if and only if θi = θ or θi = θ). Therefore, a worker’s price bid in
equilibrium decreases with reimbursement amount yl and yw if his quality bidding
exceeds the reimbursement threshold x.

First, with the assumption M(q(θi)) ≤ 1 for all θi ∈ [θ, θ] we can check θiq(θi)
strictly decreases with θi (or equivalently q−1(x)x strictly increases with x since
q(θi) = V ′−1(λθi

1−(1−F(θi))
N−1

(1−F(θi))N−1 + θi
)

is a strictly decreasing function of θi). In fact,

if M(q) ≤ 1 for all q ∈ [0, V ′−1(θ)], we have:

∂θiq(θi)

∂θi
= q(θi) + θi

∂q(θi)

∂θi

= q(θi) + θi

λ 1−(1−F(θi))
N−1

(1−F(θi))N−1 + 1 + λθi(N−1) f (θi)
(1−F(θi))N

V ′′(q(θi))

= q(θi) +
V ′(q(θ))
V ′′(q(θi))

+

λθ2
i (N−1) f (θi)

(1−F(θi))N

V ′′(q(θi))

= q(θi)
(
1− 1

M(q(θi))

)
+

λθ2
i (N−1) f (θi)

(1−F(θi))N

V ′′(q(θi))
< 0,

where the third equality uses the fact that V ′(q(θi)) = λθi
1−(1−F(θi))

N−1

(1−F(θi))N−1 + θi, the

fourth equality uses the definition M(q(θi)) =
−q(θi)V

′′
(q(θi))

V′ (q(θi))
, the inequality uses the

assumption that “M(q) ≤ 1 for all q ∈ [0, V ′−1(θ)]" and V ′′(·) < 0.
Moreover, we can confirm that S(θi) = V(q(θi)) − p(θi) is strictly decreasing

with the private type θi, because

dS(θi)

dθi
= −(N − 1)(1− F(θi))

−N f (θi)

(
λ
( ∫ θ

θi

q(θ̃)dθ̃ −
∫ θ

θi

(1− F(θ̃))(N−1)q(θ̃)dθ̃
)
+

∫ θ

θi

(1− F(θ̃))(N−1)q(θ̃)dθ̃ + λ(θiq(θi)− yl · 1q(θi)≥x)

)
< 0,

where the inequality uses the condition that yw ≤ q−1(x)x and yl ≤ q−1(x)x, the fact
that θiq(θi) strictly decreases with θi (or equivalently q−1(x)x strictly increases with
x), and thus (θiq(θi)− yl · 1q(θi)≥x) ≥ 0, (θiq(θi)− yw · 1q(θi)≥x) ≥ 0, ∀θi ∈ [θ, θ].

Since the equilibrium quality bidding q(θi) = V ′−1(λθi
1−(1−F(θi))

N−1

(1−F(θi))N−1 + θi
)

un-
der the flat reimbursement policy, it is easy to know that a worker’s quality bid in
equilibrium stays the same with respect to any reimbursement threshold x and any
reimbursement amount yl and yw.

Moreover, from the equilibrium quality and price bidding function we derived,

we can get worker i’s expected utility in equilibrium π f r(q(θi), p(θi)) = λ
∫ θ

θi
q(θ̃)

(
1−

(1 − F(θ̃))(N−1))dθ̃ +
∫ θ

θi
q(θ̃)(1 − F(θ̃))(N−1)dθ̃. Obviously, π f r(q(θi), p(θi)) stays

the same with respect to any reimbursement threshold x and any reimbursement
amount yw and yl , because q(θ̃) stays the same with respect to any reimbursement
threshold x and any reimbursement amount yw and yl .
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Proof of Proposition 13

We have characterized workers’ equilibrium price and quality bidding, given a flat
reimbursement policy. In this following, we aim to solve the optimal flat reimburse-
ment policy for the buyer, given workers’ best response we have characterized in
1.7.13.

Since the equilibrium quality bidding under the flat reimbursement policy q(θ) =
V ′−1(λθ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ
)

is strictly decreasing with θ, the buyer should not choose
the reimbursement threshold x > q(θ), otherwise no workers will get the reimburse-
ment and there will be no benefit for the buyer to use the reimbursement policy.
Therefore, the buyer should choose x ∈ [q(θ), q(θ)], in order to maximize her ex-
pected utility.

Because the equilibrium quality bidding q(θ) = V ′−1(λθ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ
)

is

strictly decreasing with θ, we can find an unique θ0 ∈ [θ, θ] such that x = V ′−1(λ 1−(1−F(θ))N−1

(1−F(θ0))N−1 +

θ0
)
, ∀x ∈ [q(θ), q(θ)].
Using a flat reimbursement policy (x ∈ [q(θ), q(θ)], yw, yl), given workers’ best

response, the buyer’s expected utility should be:

EU f r
b (x, yw, yl)

=E
{

V(q(θ1))− p(θ1)
}
− N

∫ θ

θ
1q(θ)≥x · yl(1− (1− F(θ))N−1)dF(θ)− N

∫ θ

θ
1q(θ)≥x · yw(1− F(θ))N−1dF(θ)

=E
{

V(q(θ1))− p(θ1)
}
− N

∫ θ0

θ
yw(1− F(θ))N−1dF(θ)− N

∫ θ0

θ
yl(1− (1− F(θ))N−1)dF(θ)

=
∫ θ

θ0

{
V(q(θ))− θq(θ) + λθq(θ)

+ (λ− 1)

∫ θ
θ (1− F(θ̃))(N−1)q(θ̃)dθ̃

(1− F(θ))(N−1)
− λ

θq(θ) +
∫ θ

θ q(θ̃)dθ̃

(1− F(θ))(N−1)

}
N f (θ)

(
1− F(θ)

)N−1dθ

+
∫ θ0

θ

{
V(q(θ))− (θq(θ)− yw) + λ(θq(θ)− yl)

+ (λ− 1)

∫ θ
θ (1− F(θ̃))(N−1)q(θ̃)dθ̃

(1− F(θ))(N−1)
− λ

(θq(θ)− yl) +
∫ θ

θ q(θ̃)dθ̃

(1− F(θ))(N−1)

}
N f (θ)

(
1− F(θ)

)N−1dθ

−
∫ θ0

θ

{
yl
(1− (1− F(θ))N−1)

(1− F(θ))N−1

}
N f (θ)

(
1− F(θ)

)N−1dθ −
∫ θ0

θ
ywN f (θ)(1− F(θ))N−1dθ

=
∫ θ

θ

{
V(q(θ)) + (λ− 1)θq(θ)+

(λ− 1)

∫ θ
θ (1− F(θ̃))(N−1)q(θ̃)dθ̃

(1− F(θ))(N−1)
− λ

θq(θ) +
∫ θ

θ q(θ̃)dθ̃

(1− F(θ))(N−1)

}
N f (θ)

(
1− F(θ)

)N−1dθ

+
∫ θ0

θ

{
(λ− 1)yl

(1− (1− F(θ))N−1)

(1− F(θ))N−1

}
N f (θ)

(
1− F(θ)

)N−1dθ

where θ1 is the lowest order statistic, i.e., θ1 = min{θi}N
i=1.

We have ∂EU f r
b (x,yw,yl)

∂yw
= 0, ∂EU f r

b (x,yw,yl)
∂yl

=
∫ θ0

θ (λ− 1)N f (θ)
(
1−

(
1− F(θ)

)N−1)dθ ≥
0. Therefore, The buyer’s expected utility stays the same with respect to any reim-
bursement amount to the winning worker yw. Moreover, the buyer should always
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choose the highest possible yl , i.e., yl = θ0V ′−1(λθ0
1−(1−F(θ0))

N−1

(1−F(θ0))N−1 + θ0
)
= q−1(x)x

to maximize his expected utility. Considering this, the buyer can choose θ0 to maxi-
mizes her expected utility, based on the following maximization problem:

maxθ0∈[θ,θ]

∫ θ0

θ
(λ− 1)θ0V ′−1(λθ0

1− (1− F(θ0))N−1

(1− F(θ0))N−1 + θ0
)

N f (θ)
(
1−

(
1− F(θ)

)N−1)dθ

Since x = V ′−1(λ 1−(1−F(θ0))
N−1

(1−F(θ0))N−1 + θ0 + 1
)

is a strictly decreasing function of θ0,
the above maximization problem is equivalent to:

maxx∈[0,q(θ)]

∫ θ

θ
(λ− 1)1q(θ)≥x · xq−1(x)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

where q(θ) = V ′−1(λθ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ
)
.

Therefore, the buyer should choose the optimal reimbursement amount to the
loser workers y∗l = x∗q−1(x∗), and the optimal quality reimbursement threshold

x∗ = argmaxx∈[0,q(θ)]

∫ θ
θ (λ− 1)1q(θ)≥x · xq−1(x)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ, where

q(θ) = V ′−1(λθ 1−(1−F(θ))N−1

(1−F(θ))N−1 + θ
)

is the equilibrium quality bidding.
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Proof of proposition 14

Let’s define λl ≡ min
{

3, minλ∈[1,3]ρl∈[0,1]

∫ θ
θ (

1
M(q(θ))−1) F(θ)

f (θ) q(θ)N f (θ)
(

1−(1−F(θ))N−1
)

dθ∫ θ
θ θq(θ)N f (θ)

(
1−(1−F(θ))N−1

)
dθ

+ 1
}

.

We can easily know that 1 < λl ≤ 3. From 1.7.13, under the condition “M(q) ≤ 1
for all q ≥ 0", the buyer should only reimburse the losing workers in the percentage
reimbursement policy. The buyer’s expected utility when he only reimburses the
losing worker(s) is EUpr

b (0, ρl). When 1 ≤ λ ≤ λl , we have:

∂EUpr
b (0, ρl)

∂ρl

=
∫ θ

θ

{(
− F(θ)

f (θ)
− (λ(1− ρl)

F(θ)
f (θ)

+ ρlθ)
1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1

)
−λθ

V ′′(q(θ))q(θ)

+
(
λ(θ +

F(θ)
f (θ)

)− θ
)}

q(θ)N f (θ)
(
1−

(
1− F(θ)

)N−1)dθ

=
∫ θ

θ

{(
F(θ)
f (θ)

(
λ(1− ρl)θ

1−
(
1− F(θ)

)N−1(
1− F(θ)

)N−1 + θ
)
+ ρlθ

2 1−
(
1− F(θ)

)N−1(
1− F(θ)

)N−1

)
λ

V ′′(q(θ))q(θ)

+
(
λ(θ +

F(θ)
f (θ)

)− θ
)}

q(θ)N f (θ)
(
1−

(
1− F(θ)

)N−1)dθ

=
∫ θ

θ

{(
F(θ)
f (θ)

+ ρlθ
2 1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1V ′(q(θ))

)
λV ′(q(θ))

V ′′(q(θ))q(θ)

+
(
λ(θ +

F(θ)
f (θ)

)− θ
)}

q(θ)N f (θ)
(
1−

(
1− F(θ)

)N−1)dθ

=
∫ θ

θ

{(
F(θ)
f (θ)

+ ρlθ
2 1−

(
1− F(θ)

)N−1(
1− F(θ)

)N−1V ′(q(θ))

)
−λ

M(q(θ))
+
(
λ(θ +

F(θ)
f (θ)

)− θ
)}

q(θ)N f (θ)
(
1−

(
1− F(θ)

)N−1)dθ

≤λ
∫ θ

θ

{
F(θ)
f (θ)

−1
M(q(θ))

+
(
θ +

F(θ)
f (θ)

)}
q(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

−
∫ θ

θ
θq(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

=− λ
∫ θ

θ

( 1
M(q(θ))

− 1
)
q(θ)NF(θ)

(
1−

(
1− F(θ)

)N−1)dθ + (λ− 1)
∫ θ

θ
θq(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

=λ
∫ θ

θ
θq(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

(
λ− 1

λ
−

∫ θ
θ (

1
M(q(θ)) − 1) F(θ)

f (θ) q(θ)N f (θ)
(
1− (1− F(θ))N−1)dθ∫ θ

θ θq(θ)N f (θ)
(
1− (1− F(θ))N−1

)
dθ

)

≤λ
∫ θ

θ
θq(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ

(
λ− 1−

∫ θ
θ (

1
M(q(θ)) − 1) F(θ)

f (θ) q(θ)N f (θ)
(
1− (1− F(θ))N−1)dθ∫ θ

θ θq(θ)N f (θ)
(
1− (1− F(θ))N−1

)
dθ

)

≤
(
λ− λl

)
λ
∫ θ

θ
θq(θ)N f (θ)

(
1−

(
1− F(θ)

)N−1)dθ ≤ 0

where q(θ) = V ′−1(λθ(1− ρl)
1−(1−F(θ))N−1

(1−F(θ))N−1 + θ
)
, the first equality is from 1.7.13, the

third equality follows from the fact that V ′(q(θ)) = λθ(1− ρl)
1−(1−F(θ))N−1

(1−F(θ))N−1 + θ, the

fourth equality uses the definition that M(q(θ)) = −q(θ)V
′′
(q(θ))

V′ (q(θ))
, the first inequality
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follows from ρlθ
2 1−(1−F(θ))N−1

(1−F(θ))N−1V′(q(θ)) ≥ 0 for all θ ∈ [θ, θ] and ρl ∈ [0, 1], the second
equality follows from the condition that 1 ≤ λ, the third equality uses the definition
of λl and the last equality follows from the condition that λ ≤ λl .

Therefore, if the degree of loss aversion is low enough, i.e., 1 ≤ λ < λl , then the
buyer should never reimburse loser worker, i.e., ρ∗l = 0, when using the percent-
age reimbursement policy. On the other hand, from Proposition 1.7.13, when λ > 1,
under the flat reimbursement policy the buyer should always choose a positive reim-
bursement amount under the optimized threshold, and thus get the expected utility
higher than that when there is zero reimbursement amount.

Therefore, when 1 < λ < λl , the flat reimbursement policy can always bring
higher expected utility to the buyer, since buyer’s expected utility are the same
when reimbursing zero percentage under the percentage reimbursement policy or
reimbursing zero amount under the flat reimbursement policy.
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Chapter 2

Trust and Trustworthiness:
Experiments withArtificial
Intelligence (AI) Agents

2.1 Introduction

There has been rapid development of artificial intelligence (AI) research and applica-
tions. Some focus on constructing “superhuman” AIs that are capable to defeat hu-
man professionals in increasingly complex games such as chess (Campbell, Hoane
Jr, and Hsu, 2002), poker (Bowling et al., 2015) and Go (Silver et al., 2016; Silver et
al., 2017). Different forms of self-play, where an artificial agent trains against copies
and variations of itself, have been applied to efficiently approximate game theoretic
solutions in these games. Others incorporate AIs into decision support system (DSS)
to facilitate human decision makers in fields of healthcare, transportation, cyberse-
curity, and different business domains such as finance, marketing and supply chain
operations (Gupta et al., 2021). According to a recent survey, more than 20% of
businesses are planing or implementing AIs in their DSSs to help simulate human
intelligence, optimize and automate decision-making activities (Lynkova, 2021).

We report a series of experiments with artificial agents playing the “trust game"
(also known as the investment game) introduced in Berg, Dickhaut, and McCabe,
1995. We are interested in exploring conditions for AIs to mimic social interactions
of humans, and more specifically, for them to behave as if they would trust and be
trustworthy in the game. Trust and trustworthiness are economic primitives that
influence human behaviors (Berg, Dickhaut, and McCabe, 1995), organizational per-
formance (Jeffries and Reed, 2000; Dirks and Ferrin, 2001), social and business re-
lationships (Rempel, Holmes, and Zanna, 1985; Ring and Ven, 1994), and efficiency
of markets and channels (Bolton, Katok, and Ockenfels, 2004; Bolton, Greiner, and
Ockenfels, 2013; Beer, Ahn, and Leider, 2018). Their characteristics, expressions,
and implications have been studied in many disciplines including biology, psychol-
ogy, sociology, economics and management. Empirical evidence from laboratory
experiments, surveys and interviews suggests that determinants for trust can be bi-
ological (for example, hormones or genes (Kosfeld et al., 2005; Fehr, Fischbacher,
and Kosfeld, 2005; Riedl and Javor, 2012)) and environmental (such as cultures and
institutions (Croson and Buchan, 1999; Gächter, Herrmann, and Thöni, 2004; Engle-
Warnick and Slonim, 2004)).

We build deep neural network-based artificial agents and have them trained by
playing with one another in the trust game without any prior knowledge or as-
sumption regarding trust or trustworthiness. The use of AIs as experimental sub-
jects completely removes any influence from biological and demographic differences
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(eg., gender or race) inherent in humans. We identify conditions under which artifi-
cial agents can discover trust/trustworthiness through interactive learning and pro-
duce outcomes better than economic behaviors based on self-interests in the game.
Results from this research can help deepen our understanding of trust, and offer
insights on how AIs can be built to overcome incentive barriers that hinder long-
term cooperation. Hence, this study constitutes an important step for developing
AI-integrated decision support systems capable of going beyond self-interested op-
timization and making use of social behaviors to achieve better outcomes.

2.2 Trust Game

To establish a clear and simple measure of trust and trustworthiness, we follow the
standard behavioral economics approach to conduct experiments using the trust
game, a sequential-move non-zero-sum game in which two players send money
back and forth (Berg, Dickhaut, and McCabe, 1995). Player 1 (i.e., the trustor) is
given a sum of money (an endowment) and decides how much to send to the other
player, knowing that the amount sent will be tripled. Player 2 (i.e., the trustee) then
decides how much to send back, which the trustor has no control of. Trust is mea-
sured by the amount sent and trustworthiness is measured by the amount returned.

From a rational choice perspective that assumes self-interest, the trustee should
not return any money. Anticipating that, the trustor should therefore never send any
money. In the controlled lab experiments of Berg, Dickhaut, and McCabe, 1995 and
numerous follow-up studies (Johnson and Mislin, 2011), however, human subjects
are found to send and return significantly positive amounts albeit variations across
individuals. These results help demonstrate that trust and trustworthiness can allow
for mutual gains to be realized without enforcement in human society (Alós-Ferrer
and Farolfi, 2019).

It should be noted that, while trust may involve a “psychological state compris-
ing of the intention to accept vulnerability" (Rousseau et al., 1998), such intentions
or perceptions of individuals cannot be observed or measured directly. Past research
has attempted to correlate surveyed attitudes toward trust (Glaeser et al., 2000) or
brain signals (King-Casas et al., 2005; Riedl et al., 2014) with results from the trust
game. In this study, we evaluate actions of AIs exclusively by outcomes from the
trust game, i.e., the amount sent and amount returned by artificial agents in the ex-
periments.

2.3 Deep Q-network (DQN) Artificial Agents

Reinforcement learning (RL), one of the basic machine learning paradigms, provides
a framework of how an intelligent agent learns to optimize actions through interac-
tions with the environment in order to maximize the expected cumulative reward
(Sutton, Barto, et al., 1998). Deep reinforcement learning (DRL, see reviews (Shrestha
and Mahmood, 2019; Wang et al., 2020)), combining the power of deep neural net-
works and the RL paradigm, has obtained striking success in challenges such as
AlphaGo (Silver et al., 2016).

We use the Deep-Q-network (DQN) method, an epoch-making value based DRL
algorithm (Mnih et al., 2015), to develop the artificial agents. In particular, two types
of agents, the trustor AI and the trustee AI, are created and interact in an environ-
ment identical to the trust game introduced by Berg, Dickhaut, and McCabe, 1995
. Fig.2.1a illustrates the timeline for their learning process. Fig.2.1b and Fig.2.1c
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present schematic of how the neural networks are structured for the trustor and the
trustee AIs accordingly (a full description of the DQN algorithm is provided in sup-
plementary materials).

In a time period t, the trustor AI receives $10 of endowment, observes the amount
sent and the amount returned in the previous period (xt−1, yt−1), and then decides
the amount to send to the trustee AI in the current period (xt). The trustee AI ob-
serves such an amount being tripled, and then decides the amount to return to the
trustor AI (yt). Reward to the artificial agent in the period t (rewardt) is characterized
as: 10− xt + yt for the trustor AI and 3× xt − yt for the trustee AI, respectively.

To capture the potential impact of future reward on AI’s actions, we use the re-
cursive formulation of the Bellman Equation to define the objective (action-value)
functions of the trustor and the trustee AIs. This formulation is theoretically iden-
tical to the sum of an infinite stream of discounted per-period rewards (Bertsekas
et al., 1995). The discount factor (γ) ranges between 0 and 1, with 0 implying that
an agent completely ignores the future and only learn about actions that produce an
immediate reward. There have been research attempts to elicit discount rates from
people under different settings, which turn out to vary substantially with respect to
demographic factors (Coller and Williams, 1999; Harrison, Lau, and Williams, 2002;
Warner and Pleeter, 2001). As a baseline, we train the artificial agents with a dis-
count rate similar to the average level estimated for human subjects (γ = 0.75). This
variable is further manipulated in subsequent experiments to examine its impact on
AI’s actions.
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FIGURE 2.1: Reinforcement Learning Process and Neural
Network Structure

(A) Reinforcement Learning Process of the Trust Game

(B) Schematic of
Trustor AI agent’s Neural Network

(C) Schematic of
Trustee AI agent’s Neural Network

(a)Timeline for how artificial agents interact under the trust game through a sequence of observations, actions

and rewards. (b) and (c) Neural network architectures for the trustor and trustee AI, respectively. It has been

shown that credit assignment path (CAP) of depth two can be an universal approximator to emulate any function

(Sugiyama, 2019). Given that the environment examined is relatively simple, we choose a deep neural network

with depth three, and use only dense layers to approximate the action-value functions. Input to the neural network

is observations of the respective type of AIs. The input layer is followed by two fully connected density layers

with ReLU activation function (i.e.,max(0, x)). The action taken by the AI agent corresponds to the position of the

output unit which has the highest output value (i.e., the estimated action value). Thus, the number of neurons in

the output layer equals to the number of actions the AI agent can take. More architectural details can be found in

supplementary materials.

2.4 Training of Artificial Agents and Experimental Design

We build multiple artificial agents independently, 20 as the trustor and 20 as the
trustee, to play the game. A series of experiments is conducted using these agents
with two research objectives: 1) to determine whether or not human-like behaviors
of trust and trustworthiness can emerge from artificial agents, and 2) to explore con-
ditions under which levels of trust and trustworthiness by AIs can be increased or
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decreased. Each experiment consists of a training stage that lasts for 1,000,000 peri-
ods and a playing stage that lasts for 10,000 periods. Similar to human subject ex-
periments, choices of artificial agents are restricted to be integers in all experiments.

In each period of the training stage, one trustor AI interacts with one trustee
AI according to the process illustrated by Fig.2.1a. We initialize the training stage
with 200 periods where both the trustor and the trustee AIs choose random actions.
Thereafter, training of the neural networks starts. Using a back-propagation algo-
rithm, artificial agents adjust parameters of the neural networks to reduce mean-
squared errors in the Bellman equation every two time periods (more details of the
training process can be found in supplementary materials). We configure the match-
ing between two types of AIs during training in two ways. Under “fixed training",
random pairing between the trustor and trustee AIs occur only in the first period,
and artificial agents play and train with fixed partners for one million periods. In
contrast, under “random training", the 20 trustor and 20 trustee AIs are randomly re-
matched in every time period. Recall that the trustor AIs always observe (xt−1, yt−1)
as training inputs. This implies that under random training, the amount returned
in the previous period observed by the trustor AI may not belong to the trustee AI
it currently plays with. The above design is consistent with the partner/stranger
matching protocols commonly used in human subject experiments to approximate
repeated/one-shot interactions (Bohnet and Huck, 2004).

After one million periods, training of the artificial agents’ neural networks stops,
and the playing stage starts. Similarly, we vary the partner configuration to create
the “fixed playing" versus “random playing" treatments. Under the fixed playing,
artificial agents who have trained together in the training stage continue to play the
game, with the same partners, for another ten thousands periods; whereas under
the random playing, the 20 trustor and 20 trustee agents are randomly re-matched
for every playing period. Similar to Berg, Dickhaut, and McCabe, 1995, we are inter-
ested in how history affects trust and trustworthiness. In the treatment called “no-
history", we make information on the past actions unavailable to the trustor AI in
the playing stage by setting xt−1 and yt−1 to be zeros. Lastly, we also investigate
the impact of future rewards on the emergence of trust and trustworthy behaviors
by varying the discount factor (γ). In particular, γ is set to be 0.75 at first, which is
close to the average discount rate observed in humans (Harrison, Lau, and Williams,
2002), and then is varied between 0 and 1 systematically to test for its influence in
follow-up experiments.

We refer to the experiment, in which same pairs of artificial agents are trained
together with γ = 0.75 and played with past actions available to trustor AIs, as the
Baseline. We believe this treatment offers the most promising condition for trust
and trustworthiness to be discovered by AIs as it mimics conditions where humans
exhibit trust and trustworthiness. In the rest of experiments, we change one of the
treatment variables (i.e., training partners, playing partners, discount factor, and
history) at a time in comparison with the Baseline. Table 2.1 provides a summary of
the experimental treatments. All artificial agents are reset before participating in a
different experiment. The AIs are not aware of how many periods that the training
or the playing stage lasts, nor are they provided with information to identify one
another.
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TABLE 2.1: Summary of experimental treatments

Baseline
Fixed training

Random playing
Random training

Fixed playing
Random training
Random playing

No-history Discount rate

Training Stage

Discount rate
γ

γ = 0.75 γ = 0.75 γ = 0.75 γ = 0.75 γ = 0.75 γ ∈ (0, 1)

Training partner
configuration

Fixed Fixed Random Random Fixed Fixed

Playing Stage

Playing partner
configuration

Fixed Random Fixed Random Fixed Fixed

Past action
information available

Yes Yes Yes Yes No Yes

γ = 0.75 for all experiments except for the “Discount rate” treatment where we explicitly manipulate the discount factor. This default

value is consistent with the average of individual estimates reported in humans (Harrison, Lau, and Williams, 2002).

2.5 Results

We focus on observations on artificial agents in the playing stage after training of the
neural networks stops. Student’s t-test and Wilcoxon test are used for comparisons
of means and medians, respectively.
Result 1: Artificial agents discover trust and trustworthiness through interactions
with each other; and the resulting levels of trust and trustworthiness are similar
to what have been observed in human subject experiments.

Table 2.2 reports summary statistics of the Baseline. In the first period of the
playing stage, the amount sent and the amount returned by artificial agents are both
significantly positive (n= 20 pairs, p-values< 0.01 by two-sided t-test and Wilcoxon
signed-rank test). Decisions of the trustor AI are statistically different from random
draws of a uniform distribution over possible amounts {0, 1, 2,..., 10} (p-values < 0.01
by randomization tests, see details of this test in supplementary materials). Amounts
returned by the trustee AI are higher than amounts sent by the trustor AI (p-values
< 0.01 by t-test and Wilcoxon test for matched pairs), and they are positively corre-
lated (Spearman’s rank correlation coefficient rs = 0.98 with p-value< 0.01). We also
evaluate decisions by artificial agents averaged over 10,000 periods in the playing
stage and find them to be insignificant from observations in the first playing period.
.

Next, we compare results from our AI experiments with those from human sub-
ject experiments. We plot data from Berg, Dickhaut, and McCabe, 1995 at the ag-
gregate and individual levels in Fig.2.2a and Fig.2.2b, correspondingly. We find that
decisions of both the trustor AI and the trustee AI are not statistically different from
their respective human counterparts (by either independent t-test or Wilcoxon rank-
sum test). It is also important to point out that, with demographic differences being
removed completely from artificial agents, their behaviors still exhibit heterogeneity
yet with smaller variability than human subjects. A research (Johnson and Mislin,
2011) surveyed 162 replications of the trust game involving more than 23,000 partici-
pants. It measures trust by the amount sent divided by endowment and trustworthi-
ness by the amount returned as a proportion of the amount available to return. An
average of 50% of trust and 37% of trustworthiness result from this meta-analysis.
By the same measures, close levels of 53% of trust and 39% of trustworthiness are
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found in our AI experiments (although formal statistical tests cannot be performed
due to lack of data access).

TABLE 2.2: Trust/Trustworthiness Comparison Between Human and AI

Human Experiment
Berg et al. (1995)

Baseline Treatment
the first period of playing

Baseline Treatment
average for the 10000 playing periods

Amount Sent Amount Returned Amount Sent Amount Returned Amount Sent Amount Returned

5.36
(3.53)

6.46
(6.19)

5.25
(2.79)

6.10
(3.16)

5.45
(2.54)

6.20
(2.98)

Human experiment: results from the “social history treatment" in Berg, Dickhaut, and McCabe, 1995, where each subject was given a

report summarizing decisions of a previous treatment without history information before playing a one-shot trust game (n=28 pairs,

standard deviation in parentheses).
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FIGURE 2.2: Trust/Trustworthiness comparisons: Human ver-
sus AI agents

(A) (B)

(a) Comparisons between experiments of Berg, Dickhaut, and McCabe, 1995 with human subjects and the first

playing period of our Baseline with AI agents show insignificant differences. (b) The scatter plot is weighted by

the number of observations to account for duplicates. The solid line represents when the amount of sent equals to

the amount returned. Linear trend lines are added to show the estimated relationship between “Amount Sent" and

“Amount Returned" by human subjects in Berg, Dickhaut, and McCabe, 1995 versus AI agents in our Baseline.

Result 2: Training with fixed partners is a necessary condition for artificial agents
to trust and to be trustworthy.

Table 2.3 summarizes results from our manipulations of the partner configura-
tion (fixed vs. random) in the experiments (training stage vs. playing stage). First,
we observe that no trust or trustworthiness is developed when a trustor AI interacts
with a random trustee AI in each training period. This result is independent of the
partner configuration used in the playing stage. In other words, if an artificial agent
has been trained with random strangers, no trust or trustworthiness would arise
later even if the AI plays with a fixed partner repeatedly for 10,000 periods. On the
other hand, if artificial agents are trained as fixed pairs, independent of the partner
configuration in the playing stage, they send and return amounts that are signifi-
cantly positive (p-values< 0.01 by t-test or Wilcoxon rank-sum test). When playing
with random strangers, however, artificial agents exhibit lower levels of trust and
trustworthiness than those in the Baseline given fixed pairs (p-values < 0.01 by t-
test or Wilcoxon signed-rank test); and the amount returned appears to be lower
than the amount sent but not statistically so. Again, we do not find any significant
time trend over the 10,000 playing periods.
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TABLE 2.3: Effect of matching configurations

Training with fixed partners Training with random strangers
Amount Sent Amount Returned Amount Sent Amount Returned

Playing with fixed partners
5.45

(2.54)
6.20

(2.98)
0.00

(0.00)
0.00

(0.00)

Playing with random strangers
3.79

(2.09)
3.25

(0.62)
0.00

(0.00)
0.00

(0.00)

Amounts sent and returned are averaged over the 10,000 playing periods with standard deviation in the parentheses to account for

the matching difference across treatments. All numbers are rounded to the second decimal place. In the two “training with random

strangers” treatments, numbers are rounding zeroes, while the original observations include very few periods of positive amounts.

Result 3: Information regarding past actions and incentives for future rewards
both affect levels of trust and trustworthiness at present.

Artificial agents in experiments reported in Fig.2.2 and Table 2.3. are trained with
a discount rate of 0.75 and the amount sent and returned in the previous period
observable to the trustor AI. We run additional experiments to explore impact of
deviations from these two default settings while keeping the same pairs of artificial
agents trained and played together. Fig.2.3a displays results from the treatment of
“no history". In this experiment, the trustor AI trains the the neural network with
observations on the amount sent and returned in the previous period, yet plays with
these past actions replaced by zeroes. We find that both trust and trustworthiness
tend to decrease without such information in the playing stage (for amount sent, p-
value = 0.093 by t-test, and p-value=0.154 by Wilcoxon signed-rank test; for amount
returned, p-value=0.009 by t-test, and p-value=0.031 by Wilcoxon signed-rank test).
Fig.2.3b presents results from a series of experiments in which we systematically
vary the discount rate between 0 and 1. It is not surprising to see that both trust and
trustworthiness increase with more weights on the future rewards. Interestingly,
once the discount rate is below 0.5, i.e., when future reward is weighted less than
half of the immediate reward, both trust and trustworthiness drop to almost zeros.
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FIGURE 2.3: Impact of the Past and the Future

(A) Past Affects Trust/Trustworthiness (B) Future Affects Trust/Trustworthiness

(a) The “no-history" treatment differs from the Baseline only in that the trustor AI always observes no amount is

sent or returned in the previous period in the Playing stage. The amount sent and the amount returned plotted are

averages across fixed pairs of artificial agents (n = 20) over the 10,000 playing periods. We include error bars for the

standard deviations. (b) The lowest discount rate used in the experiments is γ = 0.02, and the highest is γ = 0.98.

2.6 Conclusion and Discussion

This study establishes that deep neural network-based artificial agents can discover
trust and trustworthiness through an interactive trial-and-error learning process with-
out any prior knowledge or assumption regarding the social interactions. We iden-
tify two necessary conditions for trust and trustworthiness to arise in the AI exper-
iments. First, artificial agents have to train the neural networks as fixed partners
together. Second, they have to “care" about future rewards to at least some degree
instead of being entirely myopic. Moreover, levels of trust and trustworthiness can
be influenced by the ability of observing past actions.

These findings are eerily similar to our understanding of trust and trustworthi-
ness from existing literatures. Studies in behavioral economics, psychology, sociol-
ogy have shown that a stable family environment is conducive to develop trusting
relationships (Bernath and Feshbach, 1995; Bowlby, 1969; Erikson, 1993); and consid-
erations for the future is a key driver of trust and trustworthiness to foster long-term
cooperation (Engle-Warnick and Slonim, 2006; Engle-Warnick and Slonim, 2004; Ma-
hajna et al., 2008). At the same time, reputation, a reflection of someone’s past ac-
tions, has been known as an important ingredient to build trust (Bohnet and Croson,
2004; Bolton, Katok, and Ockenfels, 2004; Charness, Du, and Yang, 2011; King-Casas
et al., 2005).

Our results indicate that artificial agents are capable of arriving at decisions sim-
ilar to those of human subjects under the influence of social interactions. From a
managerial perspective, this suggests that AI incorporated DSSs can be applied to
business scenarios where social considerations such as trust and trustworthiness are
important to decision making. Examples may include new product or technology
development, collaborative forecasting, humanitarian operations and supply chain
relationship management. This study is a first step to explore the possibility to inte-
grate different AI systems that can go beyond self-interested optimization and make
use of social behaviors to achieve better outcomes collectively.
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While artificial agents are different from humans in many substantial aspects,
findings of the study may also help shed light on how social behaviors take place.
The AI experiments completely removes biological or demographic differences that
have been known to account for trust/trustworthiness observed in individuals. Ar-
tificial agents are found to produce actions close to human subjects at the aggregate
level in the trust game, and with a certain degree of heterogeneity as well. These
results seem to suggest a more algorithmic origins of trust. Ultimately, both artifi-
cial intelligence and human brains are built upon nonlinear and densely connected
networks with learning capabilities. This study is merely scratching the surface of
this direction of research on how artificial intelligence and behavioral economics
may interact to influence business decision making activities (Camerer, 2018). The
natural next step is to investigate whether or not other types of human behaviors
such as fairness, reciprocity or different risk preferences may emerge from similarly
constructed AI experiments.

APaper

2.7 Supplementary Materials

Objective Function Formulation: Bellman Equation

We created two types of artificial agents, referred to as the trustor AI and trustee
AI, to play the respective roles in the trust game. In this section, we describe the
corresponding objective functions that each type of AI is trained to optimize, and
the associated temporal structures.

Let xt be the amount sent and yt be the amount returned in period t. The reward
in period t for the trustor AI is R− xt + yt, where R is the initial endowment of the
trustor. The reward in period t for the trustee AI is αxt− yt, where α is the multiplier
for the amount sent. In all experiments of this study, we have R = 10 and α = 3,
which are the same as Berg, Dickhaut, and McCabe, 1995.

To capture the potential impact of future rewards, we use the recursive formu-
lation of the Bellman Equation (Bertsekas et al., 1995) to define the objectives of the
artificial agents. This formulation is theoretically identical to the sum of an infinite
stream of discounted per-period rewards. Let the objective functions, also known as
the action-value functions, of the trustor AI and the trustee AI be Q∗trustor and Q∗trustee
respectively. In each period, a pair of artificial agents interact through observing in-
formation, taking actions and receiving rewards. The following table summarizes
these components.

TABLE S1: Observation, Action and Reward for Artificial Agents

Trustor AI Trustee AI

Observations
(in period t)

(xt−1, yt−1)
xt−1: Amount sent by the trustor

AI itself in period t− 1
yt−1: Amount returned by the trustee

AI matched in period t− 1

xt
xt: Amount sent by the trustor

AI matched in period t

Action
(in period t) xt yt

Reward
(in period t) R− xt + yt α× xt − yt
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Hence, the respecitve action-value functions for the trustor AI and the trustee AI
agents are defined as:

Q∗trustor((xt−1, yt−1), xt) = E
{

R− xt + yt + γ ·maxxt+1 Q∗trustor((xt, yt), xt+1)|(xt−1, yt−1), xt
}

,

and
Q∗trustee(xt, yt) = E

{
αxt − yt + γ ·maxyt+1 Q∗trustee(xt+1, yt+1)|xt, yt

}
,

where γ is the discount rate.

Deep Q-network (DQN)

We apply deep-Q network method (Mnih et al., 2015) to build the artificial agents.
Specifically, the trustor AI uses a deep neural network Qtrustor((xt−1, yt−1), xt, θtrustor)
to approximate the optimal action-value function, i.e., Qtrustor((xt−1, yt−1), xt, θtrustor) ≈
Q∗trustor((xt−1, yt−1), xt), where θtrustor is the weights of the trustor AI’s neural net-
work.The optimal target value R − xt + yt + γ ·maxxt+1 Q∗trustor((xt, yt), xt+1) is ap-
proximated by target values Ttrustor = R− xt + yt +γ ·maxxt+1 Qtrustor((xt, yt), xt+1, θ−1

trustor),
where the deep neural network Qtrustor((xt, yt), xt+1, θ−1

trustor) has exactly the same
neural network structure as
Qtrustor((xt−1, yt−1), xt, θtrustor) and its parameters θ−1

trustor are copied from θtrustor ev-
ery C training iterations (see the hyper-parameter values we used in Table S3). At
training iteration k, the parameter θtrustor of the neural network
Qtrustor((xt−1, yt−1), xt, θtrustor) is adjusted to minimize the mean-squared error in the
Bellman equation. Following the method (Mnih et al., 2015), we define the loss func-
tion based on a mean-squared error:

L(θtrustor) =Ext−1,yt−1,xt,yt

(
R− xt + yt + γ ·maxxt+1 Qtrustor((xt, yt), xt+1, θ−1

trustor)−

Qtrustor((xt−1, yt−1), xt, θtrustor)
)2,

where parameters set θ−1
trustor is updated to equal to θtrustor only every C training it-

erations and thus fixed when we calculate the loss L(θtrustor) in training iteration k.
Once we have this well-defined loss function, we can use gradient descent method
to train the neural network, i.e., to update θtrustor.

Similarly, for the trustee AI agents, we use a deep neural network Qtrustee(xt, yt, θtrustee)
to approximate the objective function, i.e., Qtrustee(xt, yt, θtrustee) ≈ Q∗trustee(xt, yt),
where θtrustee is the weights for the trustee neural network. On the other hand, the
optimal target value αxt − yt + γ ·maxyt+1 Q∗trustee(xt+1, yt+1) is approximated by tar-
get values Ttrustee = αxt − yt + γ ·maxyt+1 Qtrustee(xt+1, yt+1, θ−1

trustee), where the deep
neural network Qtrustee(xt+1, yt+1, θ−1

trustee) has exactly the same neural network struc-
ture as Qtrustee(xt, yt, θtrustee) and its parameters θ−1

trustee are copied from θtrustee every
C training iterations. At training iteration k, we aim to adjust the parameter θtrustee
in neural network Qtrustee(xt, yt, θtrustee) to minimize the mean-squared error in the
Bellman equation. Following the method in (Mnih et al., 2015), we define the loss
function based on a mean-squared error:

L(θtrustee) =Ext,yt,xt+1

(
αxt − yt + γ ·maxyt+1 Qtrustee(xt+1, yt+1, θ−1

trustee)−Qtrustee(xt, yt, θtrustee)
)2,

where parameters set θ−1
trustee is updated to equal to θtrustee only every C training it-

erations and thus fixed when we calculate the loss L(θtrustee) at training iteration k.
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Once we have this well-defined loss function, we can use gradient descent method
to train this deep neural network, i.e., to update θtrustee.

The architecture of the trustor AI and trustee AI neural network, illustrated
schematically in Fig. 1.(B), is detailed in Table S2.

TABLE S2: Structural Details of the Neural Network

Layer Activation Function
Number of Nodes in the Neural Network

Trustor AI Trustee AI

Input layer NA 2 1

Hidden layer 1
ReLU

max(0, x) 800 800

Hidden layer 2
ReLU

max(0, x) 1000 1000

Output layer NA 11 31

1 Structures of the neural networks of the trustor and the trustee AIs are exactly the same except the number of

neural nodes in the input layer and output layer. The trustor AI observe actions of both players in the previous

period, and therefore its neural network input layer has two nodes. The trustee AI always observes the amount

sent by the trustor AI in the current period, and thus its neural network input layer has only one node.
2 Their input layers are followed by two fully-connected layers with the “ReLU” activation function (the number

of neuron nodes are 800 and 1000 respectively). The output layer is a fully-connected linear layer with no activa-

tion function and the position of each single output unit corresponds to a valid action. Since the trustor AI agent

can take any integer decision from {0, 1, 2, ..., 10}, its neuron network has 11 output layer nodes. Since the trustee

AI agent may take any integer decision from {0, 1, 2, ..., 29, 30}, its neuron network has 31 output layer nodes.

Training details

We created twenty trustor and twenty trustee AIs, each with a unique and indepen-
dent neural network. Pairs of artificial agents are configured to be either “ fixed” or
“random” according to the experimental treatment. There is an initialization phase of
200 periods in the training stage. In the first period of the initialization phase, both
types of artificial agents take random actions. From the second time period and on-
ward, the trustor AI can observe actions of its own and the matched trustee AI from
the previous period. The trustor AI takes an action based on an ε-greedy policy:
with a probability of 1− ε, the trustor AI selects the action which corresponds to the
position of the neural node with the highest output of its updated neural network
(i.e., the estimated action value); and with a probability of ε, the trustor AI selects a
random action from a discrete uniform distribution over {0, 1, 2, ..., 10}. ε decreases
with training iterations at a diminishing rate, i.e., εt = e−φ∆t, where εt is probability
at which the AI agent chooses random action in period t, φ is the decayed rate and
∆t is the number of training iterations accumulated up to period t. In addition, we
use a small probability as the lower bound of ε (see all hyper-parameter values in
Table S3).

After the trustor AI takes an action in time period t, the trustee AI can observe
this action, and then take an action based on the ε-greedy policy as the trustor AI
does. Rewards to the artificial agents in period t follow the standard trust game
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(Berg, Dickhaut, and McCabe, 1995). For the trustor AI’s reward in period t, rewardt =
R− xt + yt. For the trustee AI’s reward in period t, rewardt = α× xt− yt, where xt is
amount sent by the trustor AI in period t and yt is amount returned by the trustee AI
in period t. Training of the artificial agents starts after the initialization phase. The
neural networks are updated every two periods with the deep-Q learning algorithm
(Mnih et al., 2015) (its full structure is shown in Algorithm 1 below). Specifically, we
use two key techniques in this algorithm:
1) Experience replay

For each time period t ≥ 1 we can store trustor AI agents’ action experience tuple
et

trustor =
(
(xt−1, yt−1), xt, R− xt + yt, (xt, yt)

)
in a data set Dt

trustor = {e1
trustor, e2

trustor, ..., et
trustor},

where xt−1 is the amount sent by trustor AI agent itself in the previous time pe-
riod t− 1, yt−1 is the amount returned by trustee AI agent with who the trustor AI
agent matched in the previous time period t− 1, (xt−1, yt−1) is the trustor AI agent’s
observation in time period t, xt is trustor AI agent’s action taken in time period t,
R− xt + yt is the trustor AI agent’s reward in time period t, (xt, yt) is the trustor AI
agent’s observation in the next time period t + 1.

Similarly, for the trustee AI agents, we store their action experience tuple et
trustee =(

xt, yt, αxt− yt, xt+1
)

in a data set Dt
trustee = {e1

trustee, e2
trustee, ..., et

trustee}, where xt is the
amount sent by trustor AI agent with who the trustee AI agent matched in the cur-
rent time period t (xt is also the trustee AI agent’s observation in the current time
period t ), yt is the amount returned by trustee AI agent itself in the current time pe-
riod t (yt is also the action taken by the trustee AI agent in the current time period t),
xt+1 is the amount sent by trustor AI agent with who the trustee AI agent matched
in the next time period t + 1 (xt+1 is also the trustee AI agent’s observation in the
next time period t + 1).

The data set Dt
trustor and Dt

trustee are pooled into a replay memory Dtrustor and
Dtrustee with capacity K (new data samples will gradually replace old samples into
the replay memory when its capacity is full). At each training iteration, we randomly
draw a mini batch of samples stored in the replay memory. Note that all experiences
are uniformly distributed in the data set, i.e., etrustor ∼ U(Dtrustor) and etrustee ∼
U(Dtrustee). This technique can increase data efficiency, reduce updating variance
and smooth out the learning process (Mnih et al., 2015).
2) Fixed Q-targets network

We denote the neural network Qtrustor((xt−1, yt−1), xt, θtrustor) and Qtrustee(xt, yt, θtrustee)
in the loss functions as Qtrustor and Qtrustee, which is updated by performing gradient
descent in each training iteration. For the target neural network Qtrustor((xt, yt), xt+1, θ−1

trustor)
and Qtrustee(xt+1, yt+1, θ−1

trustee) in the loss functions, we denote them by Q̂trustor and
Q̂trustee respectively. They have exactly the same neural network structure as Qtrustor
and Qtrustee. We copy all the weight of Qtrustor and Qtrustee to Q̂trustor and Q̂trustee every
C training iterations, and then use Q̂trustor and Q̂trustee to generate the Q-learning tar-
gets Ttrustor and Ttrustee for the next C training iterations. This technique can further
improve the training stability of the agents’ neural networks (Mnih et al., 2015).

Algorithm 1
For t = 1,T Do
{
For each pair of the trustor and trustee AI agents (20 pairs in total) Do
{
Initialize neural networks Qtrustor, Q̂trustor,Qtrustee, Q̂trustee;
Initialize replay memory Dtrustor and Dtrustee to capacity K;
If time period t equals to one
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{ Assign xt and yt as random actions; }
Else {
Trustor AI agent i selects a random action xt with probability εt ;
otherwise choose action xt = argmaxxQtrustori((xt−1, yt−1), x, θtrustor);

Trustee AI agent j selects a random action yt with probability εt ;
otherwise choose action yt = argmaxyQtrusteej(xt, y, θtrustee);

If time period t > 200 and t is even
{ Sample mini-batch of transitions ek

trustor =
(
(xk−1, yk−1), xk, R − xk + yk, (xk, yk)

)
from Dtrustor;
Calculate target value Tk

trustor = R− xk + yk + γ ·maxx Q̂trustor((xk, yk), x, θ−1
trustor);

Perform a gradient descent on loss
(
Tk

trustor − Qtrustor((xk−1, yk−1), xk, θtrustor)
)2 with

respect to weight θtrustor;
Every C training iterations reset Q̂trustor = Qtrustor;
Sample mini-batch of transitions ek

trustee =
(
xk, yk, αxk − yk, xk+1) from Dtrustee;

Calculate target value Tk
trusteej

= αxk − yk + γ ·maxy Q̂trustee(xk+1, y, θ−1
trustee);

Perform a gradient descent on loss
(
Tk

trustee −Qtrustee(xk, yk, θtrustee)
)2 with respect to

weight θtrustee;
Every C training iterations reset Q̂trustee = Qtrustee;
}
Store transition et

trustor in Dtrustor (Store transition et−1
trustor in Dtrustor in “random train-

ing” treatments);
Store transition et

trustee in Dtrustee (Store transition et−1
trustee in Dtrustee in “random train-

ing” treatments);
}
}
End For
}
End For
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Values of some parameters, known as hyperparameters, are tuned to control the
neural network training process. The descriptions of these hyperparameters and
their values used in the study are listed in Table S3 below.

TABLE S3: Hyperparameters

Hyperparameter Value used Description

Time periods in initialization phase 200
In the first 200 periods of the training stage,

the neural networks are not trained.

Time periods in the training stage 1000000
Total number of periods

in the training stage

Time periods in the playing stage 10000
Total number of periods

in the playing stage

Training frequency 2
The neural networks are updated every two periods

after the initialization phase in the training stage.

Learning rate 0.0016 The learning rate used by the RMSprop optimizer

Initial exploration 1 Initial value of ε in ε-greedy policy.

Final exploration 0.00001 Final value of ε in ε-greedy policy.

Decayed rate 0.0001
ε in ε-greedy policy

is exponentially decayed by this rate
with training iterations.

Target network updating frequency (C) 3000
The target network weights are updated

every 3000 training iterations.

Replay memory size 300000
Stochastic gradient descent (SGD) samples update

from this number of most recent combinations
of game information.

Mini-batch size 200
The number of training cases over which

the SGD update is computed.

Randomization Test

Similar to Berg, Dickhaut, and McCabe, 1995, we performed a randomization test
for the null hypothesis that actions of the artificial agent are randomly drawn from
some uniform distribution. For a trustor AI agent i (i = 1, 2, 3, ..., 20), we randomly
draw a sample with 10,000 observations (which equal to the number of playing pe-
riods) from the discrete uniform distribution over the amounts {0, 1, 2, ..., 10}. We
denote the sample as si and the frequency of each amount m ∈ {0, 1, 2, ..., 10} in this
sample as f i

m. We measure the variance of the sample si as: v(si) = ∑11
m=1( f i

m − N
11 )

2,
where N = 10, 000. Given a trustor AI agent’s actual decisions in the playing stage
denoted di (which also include 10,000 observations), we have v(di). We then can
calculate the probability of v(si) ≥ v(di), which is the p-value of the randomiza-
tion test, based upon 100,000 times of the random sampling. For each trustee AI,
the same test procedure is repeated with a discrete uniform distribution over the
amounts {0, 1, 2, ..., 30}. All p-values from the above randomization tests are smaller
than 0.01. We thus reject the null hypothesis that the artificial agent takes random
actions.
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Chapter 3

Trust in Supply Chain with Double
Marginalization

3.1 Introduction

Demand information sharing is one of the most active and important areas of re-
search because it has profound effects on the performances of supply chains. In the
capacity management related research, information sharing is always assumed to be
desirable and the issue is to find ways to overcome the associating incentive prob-
lems. In practice, this view may not be always true. One such example is the Ven-
dor Managed Inventory (VMI) system, popularized by Walmart, where the retailer
provides dynamical inventory and demand (often in forms of sales) information of
products to supplier who takes full responsibility for maintaining inventory. Mur-
ray (2018 (accessed December 5, 2018)) suggests that such a system may result in a
scenario where "a supply chain manager becomes too reliant on a supplier to man-
age its inventory, the supply chain manager may live with higher prices, reduced
quality or other supplier-related issues". Clearly, a dominating retailer like Walmart
will not "live with higher prices", but what about smaller retailers? Indeed, in the
information sharing literature, there are papers pointing out the downside. That is,
information sharing can exacerbate double marginalization. Shang, Ha, and Tong
(2015) shows that demand information helps the supplier to pin down the retailer’s
willingness to pay. The higher the potential demand, the more willing is the retailer
to stock up. As a result, the supplier can squeeze the retailer, with the use of the
wholesale price, more effectively. The first goal of this paper is to analyze the trade-
offs between these two views: information sharing helps the capacity misalignment
(CM) problem but exacerbates the double marginalization (DM) problem.

The classical incentive issue of demand information sharing can be summarized
in a deceptively simple two-tier supply chain setting where a supplier is deciding
the amount of capacity prior to a binding order from a retailer who has private de-
mand information. In this setting, forecast communications that are costless, non-
binding and non-verifiable, referred to as “cheap talk”, while popular in practice,
should result in no information sharing because of incentive misalignment (Craw-
ford and Sobel, 1982). The retailer prefers the supplier to build more capacity to
ensure enough supply, and hence always has the incentive to inflate its forecasts.
Anticipating this, the supplier takes the retailer’s report as incredible and decides
the capacity according to the prior belief, which can lead to too much or too little
capacity and harm the supply chain efficiency. We call this incentive problem as
the “capacity misalignment”. This forecast information sharing problem not only
has been reported in industries (The Economist, 2012), but has also spawned a large
body of research. Some, by the use of game theoretic analysis, aim to find mecha-
nisms, such as contracts, that can enable credible information sharing (Cachon and
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Lariviere, 2001; Özer and Wei, 2006; Oh and Özer, 2013). Others, notably Özer,
Zheng, and Chen (2011), reconciles the puzzling popularity of “cheap talk" forecast
communications with the seemingly insurmountable incentive conflict, and show
that “cheap talk” with a simple wholesale price contract can result in effective infor-
mation sharing because individuals are not only driven by pecuniary motivations.
In particular, Özer, Zheng, and Chen (2011) demonstrated with behavioral experi-
ments that innate human qualities, trust (the ability to “believe” cheap talk forecasts
in this context) and trustworthiness (the restraint from lying), play important roles
to negate the misalignment of pecuniary incentives. Their results show that trust
and trustworthiness exist in shades of grey, rather than all-or-nothing binary states
(i.e. a person can either be trusted 100% or not at all). They developed a behavioral
model, referred to as the trust-embedded model, to capture and measure trust and
trustworthiness.

The second goal of this paper is to investigate how trust and trustworthiness
impacts the upside and the downside of information sharing. We operationalize a
setting common to the CM and the DM problems by two additions to the aforemen-
tioned capacity game setting used in Özer, Zheng, and Chen (2011). First, the order
of the retailer is placed before demand realization. Hence, the retailer also acts as a
newsvendor, similar to the supplier, but with better demand information. Secondly,
the wholesale price is not exogenous and, instead, is set by the supplier. Note that
these additional assumptions also make the scenario more aligned with practice. Af-
ter all, it is not common that wholesale prices are completely exogenous and retailers
only order after the customer shows up.

We confirm that information sharing can exacerbate DM problem and can be
harmful to a supply chain. We develop a measure, called the double marginalization
index (DMI) to decide how information sharing change the severity of the problem,
and provide associating conditions of when the exacerbation of double marginaliza-
tion overwhelms the benefit to aligning capacity.

Trust and trustworthiness introduces additional considerations. We endogenize
information sharing by applying the trust-embedded model (Özer, Zheng, and Chen
2011) in a “cheap talk” environment, to determine trust’s role. We are able to show
that even when the retailer is highly trustworthy, trust, on the part of the supplier,
does not always benefit the supply chain. This mirrors the result that information
sharing is not always helpful. More interestingly, we find that too little or too much
trust can reduce supply chain efficiency, and we are able to characterize the con-
ditions of balancing the two, and find the optimal trust level for the supply chain
1. The most counter-intuitive result is that, under some conditions, an untrustwor-
thy retailer, coupled with a trusting supplier, can be beneficial to the supply chain
because the retailer has the opportunity to manipulate the double marginalization
problem away!

The rest of this paper is organized as follows. In §2, related literature is reviewed.
In §3, we describe the game setting. In §4, we investigate the role of information
sharing in supply chain efficiency. The trust-embedded models in §5 are demon-
strated to study the role of trust in supply chain efficiency. We conclude the paper in
§6.

1It is an open issue, beyond the scope of this paper, of whether trust is a decision variable that
the supplier can control or if it is a behavioral response driven by social factors. In the following
discussion of this paper, an optimal trust level maximizing the total supply chain efficiency highlights
trust’s balancing in the two incentive problems and the fact that a higher level of trust is not necessarily
beneficial, counter to the traditional wisdom that trust is always beneficial.
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3.2 Literature Review

In this part, we first review the literature about demand information sharing and the
capacity misalignment problem. Then we point out the literature regarding the dou-
ble marginalization problem under the prevalent wholesale price contract. Lastly,
we review the literature about trust.

Since capacity decision is made in anticipation of the end customer demand, it
critically depends on accurate demand forecasts (see Van Mieghem 2003 for a re-
view). Although more accurate demand forecast leads to better capacity decision,
forecast information sharing is challenging in a decentralized supply chain with in-
complete demand information. This is because the downstream player has incentive
to offer a rosy demand forecast in order to ensure enough capacity from the supplier.
Anticipating this, the supplier considers retailer’s demand forecast as incredible and
sets the capacity according to his prior belief. Therefore, the supplier can set too
much or too little capacity without accurate forecast information, which harms the
supply chain efficiency. We refer to this as “capacity misalignment problem”. To
address this problem, two seminal research paper focused on designing theoretical
contracts in a signaling or screening game that can help elicit credible information
sharing and remedy the aforementioned incentive problem (Cachon and Lariviere
2001, Özer and Wei 2006). Literature has since extended the research about strategic
issues in information sharing towards different theoretical directions, such as supply
chain competition (Ha and Tong 2008), information confidentiality (Li and Zhang
2008), forecasting investment (Shin and Tunca 2010), forecasting accuracy (Taylor
and Xiao 2010), and dynamic environment (Oh and Özer 2013).

Wholesale price contract has been widely used in industry due to its simplicity.
However, it causes a double marginalization problem. Spengler (1950) is a well-
know illustration of the double marginalization problem. To maximize the profit,
the upstream firm charges a higher price than its marginal cost. The downstream
firm thus faces a higher cost than the vertical structure’s cost. Then the downstream
firm as a monopolist charges a price above its cost. These two successive markups
have named the “double marginalization” problem. Taking no consideration of the
upstream firm’s profit, the downstream firm charges a higher price and lower or-
der quantity than the channel optimal one. This vertical externality implies all firms
forgo potential profits, incurring inefficiency for the supply chain. Various contrac-
tual arrangements have been investigated to fix the double marginalization problem
and to coordinate the supply chain (see Cachon 2003 for a review).

Research papers (Cachon and Lariviere 2001, Özer and Wei 2006, Oh and Özer
2013) focused on designing contracts to remedy the information coordination prob-
lem regarding capacity decision under the wholesale price contract. However, they
did not consider the aforementioned double marginalization problem under the
wholesale price contract. In particular, they assume that the downstream firm’s or-
der quantity always equals to the minimum of the capacity and realized demand,
since it is submitted after the realization of the end market demand. Therefore, the
order quantity will always be optimal both for the downstream firm and the total
supply chain.

In additional to the capacity misalignment problem they considered, our paper
studied the double marginalization problem. It assumes that the wholesale price is
endogenously set by the supplier, and that retailer’s order is submitted before the re-
alization of the end market demand. We found that information sharing can benefit
the capacity misalignment problem, consistent with the previous literature, but can
harm the double marginalization problem. Shang, Ha, and Tong (2015) refers this
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harmful effect of information sharing as “the double marginalization effect of infor-
mation sharing”. When a upstream player (i.e., the manufacturer in their case) gets
access to the demand information from the retailer, the player can extract more profit
from the retailer by adjusting the wholesale price corresponding to the demand in-
formation (Li and Zhang 2008, Li 2002). This can worsen the double marginalization
and harm the supply chain efficiency. Our paper complements this insight from
their papers by confirming information can be harmful to double marginalization
problem and investigating the specific condition of when and how information can
be harmful to the supply chain efficiency in our setting coupled with the capacity
misalignment problem.

Moreover, our paper investigates the role of trust and trustworthiness in the ca-
pacity misalignment and double marginalization problem. The closest paper to ours
regarding trust and trustworthiness is Özer, Zheng, and Chen (2011). Particularly, in
their paper, the downstream firm reports the forecast by costless, non-binding, and
non-verifiable communications (also known as “cheap talk” Crawford and Sobel
(1982)), then the upstream supplier makes the capacity decision. Although the cheap
talk is uninformative theoretically, experimental results show that the upstream sup-
plier has a willingness to rely on the downstream firm’s cheap talk to determine
capacity. In other words, the upstream firm will trust the cheap-talk communica-
tion to some extent and update his belief of the private demand forecast information
according to it. If the downstream firm is trustworthy (has high dis-utility of de-
ception) true private forecast information will be transmitted by a trusting supplier.
This trust-induced information sharing can share true information and thus enhance
the supply chain efficiency. We employed the trust-embedded model in this paper to
capture the effect of trust and trustworthiness on supply chain efficiency. However,
our paper complements their research by studying their effects both on the capacity
misalignment problem and the double marginalization problem.

Trust has been widely studied across disciplines. A definition commonly agreed
upon different disciplines is “trust is a psychological state comprising the intention
to accept vulnerability based upon positive expectations of the intentions or behav-
ior of another”(Rousseau et al. 1998). One group of studies investigates the trust
regarding property rights, i.e., the trustor voluntarily transfers the property rights
to the trustee in hope of reciprocal returns from the trustee. This group of research
is mainly based on the trust game (Kreps 1996) or the investment game (Berg, Dick-
haut, and McCabe 1995), and uses experiments to investigate the determinants of
trust, such as willingness to take risk (Ben-Ner and Putterman 2001), expectation of
return (Ashraf, Bohnet, and Piankov 2006; Eckel and Wilson 2004), betrayal aversion
(Bohnet and Croson 2004), gender (Ben-Ner and Halldorsson 2010), social status
(Hong and Bohnet 2007), and culture (Croson and Buchan 1999).

A more recent group of studies define trust as the trustor’s willingness to rely
on the trustee’s information claims in strategic information sharing. Özer, Zheng,
and Chen (2011) is a seminal paper that investigates the role of this kind of trust
in information sharing. Based on this paper’s theoretical framework, Özer, Zheng,
and Ren (2014) use a real-time, cross-country interactive experiment to investigate
how culture affects trust with respect to strategic information sharing. Our paper
contributes to this group of research, by analytically and numerically examining the
role of trust and trustworthiness in the double marginalization problem, in addition
to the well-studied capacity misalignment problem.
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FIGURE S1: Model setting

3.3 Model Setting

We use a formulation similar to other papers, such as Özer and Wei (2006) and Özer,
Zheng, and Chen (2011), in this literature. Consider a dyad supply chain with a
supplier (he) and a retailer (she). Because of the proximity to the end market, the re-
tailer has a private forecast information ξ, which is decided by nature and privately
known to her at the beginning of the game. We assume ξ is a zero mean random
variable with cumulative distribution function F(·), and probability density func-
tion f (·) supported on [ξ, ξ], which is supplier’s prior belief about ξ. End customer
demand D = µ + ξ + ε, where µ is a constant denoting the average demand, ε is
a zero mean random variable denoting market uncertainty with cumulative distri-
bution function G(·), and probability density function g(·) supported on [ε, ε]. We
assume ε follows an uniform distribution 2. The supplier’s production cost per unit
is denoted as c ≥ 0, one unit of capacity costs the supplier ck ≥ 0. The retailer can
sell the product at a fixed price p. In addition, we assume the lowest possible de-
mand Dmin = µ + ξ + ε ≥ 0, i.e., the demand is always non-negative, and the profit
margin for the supply chain is positive, i.e., p > c + ck. Moreover, the supplier and
retailer interact under a wholesale price contract, which is widely used in industry
due to its simplicity. All these mentioned information is common knowledge to the
players.

In section 3.4, we aim to investigate the first research question-“Is information
beneficial to the supply chain?” The analysis strategy is to first determine if exoge-
nous coerced information sharing (i.e. the supplier learns the demand signal in some
credible exogenous process) improve or decrease supply chain efficiency. Note that,
in this scenario, cheap talk is no longer relevant and is not in the setting. The game
sequence for this part is as following: (1) Nature decides the private forecast infor-
mation ξ, privately known to the retailer. (2) The supplier decides the wholesale
price w and capacity K. (3) The retailer decides her order quantity q with the con-
straint q ≤ K. Then the end market demand D = µ + ξ + ε realizes, and the retailer
sells min(D, q) to the customers.

2In some of the analysis cases, we also need to assume ξ follows an uniform distribution to make
the model tractable. If we need this assumption, we will clarify it in the specific analysis.
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In section 3.5, we endogenize information sharing by adding the “cheap talk”
stage, where the retailer report the forecast information before the supplier deciding
the wholesale price and capacity, by the form of “cheap-talk” (cost-less, non-binding,
and non-verifiable communication) which is common in industry (Aviv 2003; Holm-
ström et al. 2002). We apply the trust-embedded model, as a more behaviorally re-
alistic model formulated in Özer, Zheng, and Chen (2011), to investigate the second
research question “Is trust beneficial to the supply chain?” The game sequence and
assumptions of the trust-embedded model are presented in subsection 3.5.1.

3.4 Is Information Beneficial To The Supply Chain?

In this section, we investigate the role of information sharing in the supply chain, to
answer the first research question, “’Is information beneficial to the supply chain?”.
Information can help the supplier to set a “right” capacity decision and remedy the
capacity misalignment problem (CM problem), well-studied in the literature. The
new insight, a focus of the analysis in this section, is that information can potentially
exacerbate the double marginalization problem (DM problem). In particular, we
first analyze a DM-only scenario, where only the DM problem exists in the supply
chain, by setting the capacity cost to zero. This eliminates the CM problem, since
the supplier can always provide enough capacity without any capacity cost and the
retailer has no incentive to exaggerate her report any more.

Then we analyze the CM-only scenario, where only the CM problem exists in the
supply chain, by setting an exogenous wholesale price. In this case, we expect the
wholesale price and thus the DM problem no longer interacts with the information,
because the wholesale price is exogenously fixed. Since the CM-only problem is
already well studied in the literature and our conclusion is consistent with the past
literature (i.e., information is always beneficial to the CM problem), we are omitting
a full analysis in this section and provide that in the Appendix 3.7.5 for reference.

The most important part of this section is an analysis of information’s trade-off
between the DM and the CM problem, when both are in play. The model, given
the complexity of the interactions of the two problems, is not fully tractable 3. We
are able to provide closed-form solutions for a special case of when the "amount" of
private information is "small". We augment this analytical analysis with numerical
studies and show the robustness of the conclusion. Please see subsection 3.4.5, for a
summary of all the analysis cases in this section.

3.4.1 Complete vs. Incomplete Information

We aim to study the role of information sharing in the double marginalization and
capacity misalignment problem, by artificially comparing the theoretical expected
supply chain profits under the condition where the supplier has the access to the pri-
vate forecast information ξ (complete information condition) and the supply chain
efficiency under the condition where the supplier does not have the access to the
private forecast information ξ (incomplete information condition). We define in-
formation as “beneficial" if the complete information condition results in a higher
supply chain expected profit.

In the last stage of the game, given the wholesale price w and capacity K the
supplier decides, the retailer chooses an optimal order quantity q to maximize his

3please see Appendix 3.7.4 for the reason why the model is not fully tractable.
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expected profit under the capacity constraint. The retailer faces the following maxi-
mization problem.

max
q

Πr(q, ξ) = pEε min(µ + ξ + ε, q)− wq

s.t. q ≤ K
(3.1)

where Πr(q, ξ) is retailer’s expected profit. Given w and K, retailer’s best re-
sponse is:

q∗(w, K, ξ) =


ξ + µ + G−1( p−w

p

)
w ≤ p, K > ξ + µ + G−1( p−w

p

)
K w ≤ p, K ≤ ξ + µ + G−1( p−w

p

)
0 w > p

(3.2)

1. Complete Information Condition
If the supplier has access to the retailer’s private forecast information ξ, i.e., when

information is complete, the supplier chooses the wholesale price w and capacity K
to maximize his profit. By backward induction, the maximization problem for the
supplier is:

max
w,K

Πs
ci(w, K, ξ) =

(
w− c

)
q∗(w, K, ξ)− ckK (3.3)

where Πs
ci(w, K, ξ) is supplier’s profit under complete information condition. Note

that we index the complete information scenario by “ci”.
The equilibrium under this complete information condition is summarized in

lemma 3.4.1 (see proof in Appendix 3.7.2 ).
In equilibrium of a decentralized supply chain with complete information:

(1) the supplier chooses the wholesale price and capacity decision as:
w∗ci = min

( (µ+ξ+ε)p+(ε−ε)(c+ck)
2(ε−ε)

, p
)
> c + ck, K∗ci = ξ + µ + G−1( p−w∗ci

p

)
(2) the retailer chooses the order quantity: q∗ci = ξ + µ + G−1( p−w∗ci

p

)
.

where w∗ci, K∗ci, q∗ci are the wholesale price, capacity decision, and the order quantity
in equilibrium when information is complete.

2. Incomplete Information Condition
If the supplier cannot get access to the private forecast information ξ, i.e., when

information is incomplete, the supplier chooses the wholesale price w and capacity
decision K to maximize his expected profit:

max
w,K

Πs
ii(w, K) =

(
w− c

)
Eξq∗(w, K, ξ)− ckK (3.4)

where Πs
ii(w, K, ξ) is supplier’s expected profit (with respect to ξ) under incomplete

information condition. The equilibrium under this incomplete information is sum-
marized in Proposition 17 (see proof in Appendix 3.7.3).

Proposition 17 If ξ follows a uniform distribution, i.e., ξ ∼ U[ξ, ξ], in equilibrium of a
decentralized supply chain with incomplete information:

(1) the supplier chooses the wholesale price and capacity: w∗ii = min
(
w∗r , p

)
> c +

ck , K∗ii = ξ ′∗ + µ + G−1( p−w∗ii
p

)
, where ξ ′∗ = F−1(w∗ii−c−ck

w∗ii−c

)
∈ [ξ, ξ], and w∗r

is the unique real root, satisfying c + ck < w∗r < p(µ+ε)+(ε−ε)(c+ck)
2(ε−ε)

, of equation

−2 ε−ε
p (w∗r − c)3 + p(µ+ε)−(ε−ε)(c−ck)

p (w∗r − c)2 + c2
kξ = 0.
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(2) the retailer with type ξ chooses order quantity q∗ii = ξ + µ + G−1( p−w∗ii
p

)
, if ξ < ξ ′∗;

q∗ii = K∗ii, if ξ ≥ ξ ′∗.

(3) when−µ +
( p−c−ck

p + 0.5
)(

ε− ε
)
− ξ ≥ 0, the wholesale price under incomplete in-

formation condition is lower than the expected value (with respect to ξ) of the wholesale
price under complete information,i.e., w∗ii < Eξ(w∗ci).

where w∗ii, K∗ii, q∗ii are the wholesale price, capacity decision, and the order quantity in equi-
librium when information is incomplete.

3.4.2 The Capacity Misalignment and Double Marginalization Problem

Lemma 3.4.1 and Proposition 17 point to two resources of inefficiency in a decentral-
ized supply chain. The first type of inefficiency comes from the “wrong” decision
of capacity. Information can remedy this capacity misalignment problem (CM
Problem). When the supplier knows the private forecast information ξ, he can de-
cide the capacity exactly according to ξ, since K∗ci is a function of ξ and always equal
to the order quantity. When information is incomplete, however, capacity decision
K∗ii is independent of the true private information type ξ. Without private informa-
tion, the supplier can build too much or too less capacity, and harm the supply chain
efficiency. Specifically, when ξ ′∗ > ξ, the supplier build too much capacity (the
capacity is more than what the retailer with type ξ needs), which harms the sup-
ply chain efficiency since some capacity are “wasted”. When ξ ′∗ < ξ, the supplier
build too little capacity (the capacity is less than what the retailer with type ξ needs),
resulting in forgone order quantity from the retailer, which also harms the supply
chain efficiency. Therefore, information can always help to eliminate the capacity
misalignment problem.

The second type of inefficiency comes from the double marginalization prob-
lem (DM Problem). Information can potentially exacerbate this problem. Note
that the wholesale price under complete and incomplete condition (w∗ii and w∗ci)
are both larger than c + ck, thus the DM Problem exists in a decentralized supply
chain under both conditions.4 However, from Proposition 17, when the condition
“−µ +

( p−c−ck
p + 0.5

)(
ε− ε

)
− ξ ≥ 0” is satisfied, the expected wholesale price un-

der incomplete information condition is lower than that under complete information
condition, which implies information can increase the wholesale price “averagely”
and thus potentially worsen the double marginalization problem. Since this condi-
tion is crucial for the role of information in DM problem, it motivates us to define
and interpret it in subsection 3.4.3.

3.4.3 The role of information in the DM problem: Double Marginaliza-
tion Index (DMI)

In order to characterize the condition of when and how information is harmful or
beneficial to the supply chain regarding the DM problem, we define the Double
Marginalization Index (DMI):

DMI ≡ −µ +
( p− c− ck

p
+ 0.5

)(
ε− ε

)
− ξ

4We analyze a centralized supply chain where the DM problem doesn’t exist, and compare this
“first best” order quantity with that in a decentralized supply, to further illustrate the existence of the
DM problem in a decentralized supply chain. But we put all these analysis in Appendix 3.7.1, since
the emphasis of this section is the role of information in the DM problem instead of the DM problem
itself.
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where µ is a constant denoting the mean demand, p−c−ck
p is the profit margin,

(
ε− ε

)
is the market uncertainty, and ξ is the upper bound of the private information. The
DMI is directly motivated by proposition 17 part (3) which implies information can
potentially exacerbate the DM problem under the condition−µ+

( p−c−ck
p + 0.5

)(
ε−

ε
)
− ξ ≥ 0.
In order to formally capture when and how DMI can affect the role of information

in the DM problem, we consider a special case where the capacity cost is zero. When
capacity cost is zero, there is no CM problem in supply chain because the supplier
can simply set capacity to maximum demand without any capacity costs. We are
able to show when and how information can worsen the DM problem in Proposition
18 (See proof in Appendix 3.7.6).

Proposition 18 In equilibrium of a decentralized supply chain with no capacity costs:

(1) If DMI ≥ 0, information is harmful to the total supply chain efficiency (expected
profit with respect to ξ), i.e., Eξπsc

ci (ξ) < Eξπsc
ii (ξ).

(2) If 2ξ < DMI ≤ ξ, information is beneficial to the total supply chain efficiency,
i.e.,Eξπsc

ci (ξ) > Eξπsc
ii (ξ);

(3) If DMI ≤ 2ξ, information cannot affect the supply chain efficiency, i.e., Eξπsc
ci (ξ) =

Eξπsc
ii (ξ);

where Eξπsc
ci (ξ), Eξπsc

ii (ξ) is the expected profit (with respect to ξ) of the total supply chain
under compete and incomplete information condition respectively. 5

The results of Proposition 18 are illustrated in Figure S2, where DMI can decide
whether information is beneficial or harmful to the DM problem. First, if DMI is
high (i.e., DMI ≥ 0), information is harmful to DM problem. Since DMI is in-
creasing with market uncertainty (ε− ε

)
and profit margin p−c−ck

p , DMI ≥ 0 implies
both market uncertainty and profit margin are high compared with the private fore-
cast information ξ. The high profit margin allows enough room, for the supplier, to
adjust wholesale price. The high market uncertainty allows enough room for the re-
tailer to react to the wholesale price. Thus, when DMI ≥ 0, the supplier has enough
"room" to take advantage of the forecast information, if shared, to double marginal-
ize more. Therefore, information can worsen the DM problem and harm the supply
chain efficiency.

Second, if DMI is low (i.e., DMI ≤ −2ξ), making the private forecast infor-
mation available to the supplier cannot affect the DM problem (i.e., information
has no effect on the DM problem). DMI ≤ 2ξ implies that market uncertainty or
profit margin is low, compared with private information. In this case, the supplier
will always set the wholesale price to the fixed market price p, no matter if he can
get access to the private forecast information or not (under complete information
condition or incomplete information condition), because either the supplier doesn’t
have enough “room” to adjust wholesale price due to low profit margin, or the re-
tailer doesn’t react to wholesale price due to low market uncertainty. Therefore, the
double marginalization problem will keep constant no matter whether information
is shared or not, since the wholesale price is always the fixed market price p. In
other words, information has no effect on supply chain efficiency regarding the DM
problem.

5We also investigated the role of information in supplier and retailer’s expected profit (with respect
to ξ) in equilibrium, and put the results in Appendix 3.7.6.
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Third, if DMI is middle (i.e., −2ξ < DMI ≤ −ξ), information is benefi-
cial to the DM problem. According to the definition of DMI, we have µ + ξ <( p−c−ck

p + 0.5
)(

ε− ε
)
≤ µ +

ξ+ξ

2 , where ξ + ξ = 0 (ξ is a zero-mean random vari-

able). On the one hand,
( p−c−ck

p + 0.5
)(

ε− ε
)
≤ µ +

ξ+ξ

2 means that the market un-
certainty and profit margin are “averagely” low (the average of the private informa-
tion). Then when the supplier does not have access to the forecast information (i.e.,
when information is incomplete), he “averagely” sets the wholesale price w∗ii = p
for all types of retailer. On the other hand, µ + ξ <

( p−c−ck
p + 0.5

)(
ε − ε

)
means

that with private information supplier has enough “room” to set different whole-
sale price for the retailer with low types of ξ. Therefore, the retailer with low type
of private forecast information gets a lower wholesale price under complete infor-
mation condition than that under incomplete information condition (note w∗ii = p).
Therefore, information can reduce the wholesale price and benefit the DM problem.

FIGURE S2: The role of information in the DM problem

3.4.4 Information’s trade-off in the DM and CM problem

In this subsection, we investigate information’s role in the supply chain integrating
the DM and CM problem, to address the first research question, “Is information
beneficial to the supply chain ?” The main conclusion of this part is summarized as
following.

Main Finding: When DMI is high and capacity cost ck is small 6, information
is harmful to the total supply chain efficiency, trading off its harmful effect on the
DM problem and its small beneficial effect on the CM problem. In all other cases,
information is beneficial, consistent with the traditional wisdom.

6According to the definition of DMI, high DMI implies low capacity cost. However, in order to
illustrate information’s role in the two problem respectively, we write the condition that “DMI is high”
as “DMI is high and capacity cost ck is small”
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On the one hand, based on Proposition 18, when DMI is high, information can
be harmful to the DM problem. On the other hand, information is always bene-
ficial to the CM problem, but its beneficial effect is small when capacity cost ck is
small (Please refer to Appendix 3.7.5 for the analysis and proof.). For instance, when
capacity cost is zero, there is no CM problem and thus information’s role in this
problem is also zero. Therefore, when DMI is high and capacity cost ck is small,
information needs to balance between its harmful effect on the DM problem and
its small beneficial effect on the CM problem. Thus the total effect of information,
trading off these two problems, is harmful.

In all other cases, either information has no effect or benefits the DM problem
(when DMI is not high), or the beneficial effect of information on the CM problem
out-weights its effect on the DM problem (when capacity cost is high). Therefore,
information is beneficial to the supply chain efficiency.

(1) Analytical support
Ideally, we want to capture the effect of information on supply chain efficiency

in terms of the CM problem and DM problem simultaneously. Since the general
formulation, as far as we know, is not fully analytically tractable, studying a case
with the "amount of" private information approaching zero allows us to linearize
part of the formulation (specifically the wholesale price) and arrives at an analytic
solution.7. Proposition 19 formally summarizes the role of information in supply
chain efficiency in this setting (See proof in Appendix 3.7.7).

Proposition 19 When the supply chain has “a small amount of” private information, i.e.,
ξ → 0+, in equilibrium of a decentralized supply chain: if DMI ≥ 0, and ck = o(ξ

N
) is

the N-order infinitesimal of ξ (where N is a positive integer and N ≥ 3), then information
is harmful to the supply chain efficiency; ie., when ξ → 0+, Eξπsc

ci (ξ) < Eξπsc
ii (ξ)

8;
Eξπsc

ci (ξ) and Eξπsc
ii (ξ) are the total supply chain’s expected profit (with respect to ξ) under

complete information condition and incomplete information condition respectively.

On the one hand, when DMI ≥ 0, information is harmful to the DM problem,
based on proposition 18. On the other hand, since capacity cost is a high order
infinitesimal of private information (i.e., ck = o(ξ

N
) and N ≥ 3), capacity cost’s

speed of approaching to zero is much faster than that of private information. This
implies that capacity cost and the role of information in the CM problem is much
“smaller” 9. Therefore, information is harmful to the total supply chain efficiency,
trading off these two effects.

(2) Numerical support 1
Numerical results in table S1 further support the main finding (See specific

graphs in Appendix 3.8). From subsection 3.4.3, information’s role in the DM prob-
lem is decided by DMI, which is further decided by the comparison of the market
uncertainty (ε− ε), profit margin ( p−c−ck

p ), and incomplete information range (ξ− ξ).
On the other hand, from Appendix 3.7.5, information’s role in the DM problem is

7In this setting, we can use the Taylor formula to get the analytical solution, by linearizing the
wholesale price and omitting the higher order infinitesimal.

8Formally, ∃ σ > 0, s.t. ∀ξ ∈ (0, σ), we have Eξ πsc
ci (ξ) < Eξ πsc

ii (ξ). We also investigated the role
of information in supplier and retailer’s efficiency when the amount of information is “small” and put
the results in Appendix 3.7.7.

9In this case, when the “amount” of private information is approaching zero (i.e., ξ → 0), the
role of information in both the DM and CM problem are approaching to zero (note that when ξ = 0,
incomplete information condition is exactly the same as the complete information). Since the capacity
cost is very small (its speed of approaching zero is much faster than private information), information’s
role in the the CM problem is “smaller” than that in the DM problem.
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mainly decided by ck. Therefore, we can manipulate these measures to investigate
how they affect information’s trade-off between these two problems. Since we fix
the market price p and production cost c to make their difference (p − c) high, we
can manipulate the profit margin ( p−c−ck

p ) by changing capacity cost ck. Therefore, in
Table S1 we set the magnitude of market uncertainty (ε− ε), incomplete information
(ξ − ξ) to be high and low (eight different cases in total), in order to investigate how
they affect information’s trade-off in these two problems.

When capacity cost ck is low (profit margin is high) and market uncertainty is
high, DMI is high, and thus information can worsen the DM problem, based on
Proposition 18. On the other hand, information can always help the CM problem,
but its beneficial effect is small when capacity cost is low, based on Appendix 3.7.5.
Trading off these two effects, information is harmful to total supply chain efficiency
when capacity cost is low and market uncertainty is high, as we can see in Figure
S910 and Figure S12.

In all other cases, because either profit margin is low (capacity cost is high) or
market uncertainty is low, the supplier has no “room” to double marginalize and
always set the wholesale price w to the market price p under both incomplete infor-
mation and complete information condition 11. Therefore, information has no effect
in the DM problem. Moreover, information is always beneficial to the CM prob-
lem. Therefore, information is beneficial to the supply chain integrating these two
problems, as we can see in Figures S6, S7, S8, S10, S11, and S13.

10In Figure S9, because information is always beneficial to the CM problem, and its total effect on
supply chain integrating the CM and DM problem is harmful, based on the numerical analysis, infor-
mation’s effect on the DM problem has to be harmful,otherwise the total effect cannot be harmful (this
is also the reason why information is harmful to the DM problem in Figure S12). Note that DMI ≥ 0
is a sufficient condition for information being harmful to the DM problem. The DMI in Figure S9 is
−21.4 < 0, but the role of information in the DM problem is still harmful . This is because profit margin
and market uncertainty are high enough so that the supplier has “room” to double marginalize more
under complete information condition.

11In the numerical analysis, the wholesale prices in equilibrium under the two conditions are always
market price p, independent of private information ξ.
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TABLE S1: Information’s trade-off in the two problems

Market Uncertainty:
(ε− ε) High High Low High Low Low High Low

Private Information:
(ξ − ξ) High Low High High Low High Low Low

Capacity Cost:
ck

High High High Low High Low Low Low

DMI = -380 -220 -556 -21.4 -396 -484.28 138.6 -324.28

The role of
information in
DM problem

No effect No effect No effect Harmful No effect No effect Harmful No effect

The role of
information in
CM problem

Beneficial Beneficial Beneficial Beneficial Beneficial Beneficial Beneficial Beneficial

The role of
information in

supply chain efficiency

Beneficial
Figure

S6

Beneficial
Figure

S7

Beneficial
Figure

S8

Harmful
Figure

S9

Beneficial
Figure

S10

Beneficial
Figure

S11

Harmful
Figure

S12

Beneficial
Figure

S13

1 By setting the range of market uncertainty (ε − ε), incomplete information (ξ − ξ), and capacity cost
ck to be high or low, we studied eight different cases. In all the cases, we fix market price p = 200,
production cost c = 10, and mean demand µ = 400. For the “Low” capacity cost, ck = 0.7. For the
“High” capacity cost, ck = 180. For the “High” market uncertainty, (ε − ε) = 400. For the “Low”
market uncertainty, (ε− ε) = 80. For the “High” incomplete information, (ξ − ξ) = 400. For the “Low”
incomplete information, (ξ − ξ) = 80. We can choose the market price p to be an another number (for
instance p = 2000), but it doesn’t affect the results if we scale the production cost c and capacity cost
ck accordingly. Based on the market price p, we choose the production cost c to keep p − c high, and
capacity cost ck to be high or low. Moreover, we choose the mean demand µ = 400. Then based on this,
we choose the market uncertainty (ε− ε) and private information (ξ − ξ) to be high or low.

Numerical support 2
In Table S1, we discretely change the variables that can affect information’s role in

the CM and DM problem. In Figure S3, however, we continuously change these vari-
ables to characterize the condition when information, trade-offing these two prob-
lems, is harmful to the total supply chain efficiency. Specifically, we fix the private
information range (ξ − ξ) , mean demand µ. Moreover, we fix the market price p
and production cost c to keep their difference (p − c) high. Therefore, we can ma-
nipulate the capacity cost ck in the y-axis to change the profit margin p−c−ck

p . On the
other hand, market uncertainty (ε− ε) is manipulated in the x-axis.

When market uncertainty is high and capacity cost is low (this implies DMI is
high 12), information is harmful to the total supply chain efficiency. When market
uncertainty is high and capacity cost is low, the supplier has more "room" to take
advantage of the forecast information, if shared, to double marginalize more. There-
fore, information is harmful to the DM problem. On the other hand, information
is beneficial to the CM problem, but its effect is inconsequential since the capacity
cost ck is low. Therefore, information is harmful to the total supply chain, trading off
these two effects.

12“capacity cost is low” implies that profit margin is high, since we fix (p− c) to be high. Because
private information range is fixed and both profit margin and market uncertainty are high, DMI is high
according to its definition.
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FIGURE S3: Information’s role in supply chain trading off the
CM and DM problem.

The red (green) part of the heat-map suggests information is harmful (beneficial) to the supply chain.
We fix p = 200, c = 10, µ = 800, ξ = −100, ξ = 100 , and assume ξ and ε follow uniform distribution

with zero mean. In the horizontal axis, we change the market uncertainty (ε− ε) ∈ [0, 1400]. The
vertical axis is the capacity cost ck. We can choose the market price p to be an another number (for

instance p = 2000), but it doesn’t affect the results if we scale the production cost c and capacity cost
ck accordingly. Based on the market price p, we choose the production cost c to keep p− c high.
Moreover, we choose the mean demand µ = 800 to make sure Dmin = µ + ξ + ε ≥ 0 for all the

manipulated market uncertainty.

In all other cases, either market uncertainty is low or capacity cost is high. On
the one hand, due to the low market uncertainty or low profit margin (high capacity
cost), supplier with the shared information doesn’t has enough “room” to double
marginalize more. Therefore, information cannot harm the DM problem. On the
other hand, information can always help the CM problem. Therefore, information is
beneficial to the supply chain, integrating these two problems.

3.4.5 Analysis Cases

In this subsection, we summarize in Table S2 all the analysis cases regarding the role
of information in the supply chain efficiency (the first research question).

TABLE S2: The role of information sharing –analysis cases

Model Environment Incentive Problem(s) studied Method The role of information Sharing

Decentralized supply chain CM problem and
DM problem

Analytical
Partially solved

Beneficial/harmful
See Proposition 17

Decentralized supply chain:
Wholesale price is exogenous CM problem only Analytical

Fully solved
Always beneficial

See Appendix 3.7.5

Decentralized supply chain:
Capacity cost is zero DM problem only Analytical

Fully solved
Beneficial/harmful
See Proposition 18

Decentralized supply chain:
“A small amount of”
private information

CM problem and
DM problem

Analytical
Fully solved

Can be harmful
See Proposition 19

Decentralized supply chain CM problem and
DM problem Numerical Beneficial/harmful

See Table S1 and Figure S3
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3.5 Is Trust Beneficial To the Supply Chain?

In this section, we try to answer the second research question "Is trust beneficial
to the supply chain?" by applying the trust-embedded model (Özer, Zheng, and
Chen 2011). Firstly, we specify the assumption and setting of the trust-embedded
model. Similar to section 3.4, we analyze trust’s role in the DM and CM problem
respectively, by providing an analytical solution for these two problems in isola-
tion. Again, we analyze the DM-only scenario by setting the capacity cost to zero,
and the CM-only scenario by using an exogenous wholesale price. Since the general
trust-embedded model incorporating the DM and CM problem is not tractable 13,
we provide a special case where the capacity cost is “small” augmented with nu-
merical analysis, to address trust’s trade-off between these two problems. Please see
subsection 3.5.5 for a summary of all cases of analysis.

3.5.1 Trust-embedded Model Setting

In this section, we expand the analysis to investigate the role of trust in the sup-
ply chain efficiency, applying the trust-embedded model (Özer, Zheng, and Chen
(2011)). Specifically, we make the following assumptions for the trust-embedded
model: (1) The private demand forecast information ξ is uniformly distributed on
[ξ, ξ], which is supplier’s prior belief about ξ. (2) After receiving retailer’s report ξ̂
in the first stage of the game, the supplier trusts the report to some extent. Specifi-
cally, supplier’s posterior belief of ξ has the same distribution as αs ξ̂ + (1− αs)ξ 14,
where 0 ≤ αs ≤ 1 denotes the supplier’s degree of trust. We denote the distribution
function of this posterior belief as Ft, the corresponding density function as ft. (3)
When the retailer with private type ξ reports ξ̂, she gets some dis-utility −β|ξ̂ − ξ|,
where β ≥ 0 denotes the degree of trustworthiness of the retailer. The higher β is,
the more trustworthy the retailer is.

In the trust model, the sequence of events is as follow: (1) Nature decides the pri-
vate forecast information ξ, privately known to the retailer. (2) The retailer observes
her private forecast information ξ, and reports it as ξ̂. (3) The supplier updates his
belief of ξ based on the above mentioned assumptions, and then decides the whole-
sale price w and the capacity K. (4) The retailer with private information ξ decides
the order quantity q with the constraint q ≤ K, then market demand D = µ + ξ + ε
is realized, and sales of min(D, q) are sold to the end customers at fixed market price
p.

In the last stage of the game, given the wholesale price w and capacity K the
supplier decides, the retailer chooses an optimal q to maximize his expected profit
under the capacity constraint. The retailer faces the same maximization problem as
(3.1) and the retailer’s best response will be the same as (3.2). Similar to the incom-
plete information scenario in the general model in section 3.4, the supplier chooses

13Please see Appendix 3.7.4 for details about the reason why the model is not tractable.
14In our setting, because the retailer has the incentive to under-report to lower the wholesale price,

the supplier can no longer eliminate all the possibilities that retailer’s true state is higher than the
reporting (i.e., under-reporting). Therefore, we assume the supplier’s posterior belief of ξ is a combi-
nation of the reporting (the supplier trusts retailer’s reporting to some extent) and the prior belief of
the type (the true type can be higher or lower than the reporting, since the retailer has incentive of both
under-reporting and over-reporting). However, from the trust-embedded model in Özer, Zheng, and
Chen (2011), the supplier’s posterior belief of ξ has the same distribution as αs ξ̂ + (1− αs)ξT , where ξT

has the distribution of ξ truncated on [ξ, ξ̂]. In other words, they assume that the supplier’s posterior
belief of the type of retailer is a combination of the reporting (the supplier trusts the reporting to some
extent) and ξT (the supplier believes that the true type of retailer can only be lower than the reporting,
since the retailer only has incentive of over-reporting to ensure more capacity).
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the wholesale price w and capacity K to maximize his expected profit according to
the maximization problem (3.4) with the posterior belief of ξ after receiving retailer’s
report ξ̂.

The retailer chooses her reporting strategy to maximize her expected profit, by
backward induction.

max
ξ̂

Πr
t
(
ξ̂
)
= pEε min(µ + ξ + ε, q∗(w(ξ̂), K(ξ̂), ξ))− w(ξ̂)q∗(w(ξ̂), K(ξ̂), ξ)− β|ξ̂ − ξ|

s.t. ξ̂ ∈ [ξ, ξ]
(3.5)

where Πr
t
(
ξ̂
)

is retailer’s expected profit if she reports ξ̂; w(ξ̂) and K(ξ̂) are sup-
plier’s wholesale price and capacity response respectively, given retailer’s report ξ̂;
q∗(w(ξ̂), K(ξ̂), ξ)) is retailer’s best response in the last stage of the game, given her
private type is ξ;−β|ξ̂− ξ| is the dis-utility the retailer with type ξ gets if she reports
ξ̂. Since retailer’s optimal decision of reporting depends on her private type ξ, we
denote the solution of this optimization problem as ξ̂∗(ξ).

3.5.2 The role of trust in the DM problem

In this case, we set capacity cost ck = 0. The CM problem doesn’t exist, because
the supplier can always set infinite capacity without any costs. Therefore, we can
investigate the effect of trust on the DM problem in this setting, without considering
the CM problem. The results for the role of trust in the DM problem is summarized
in Proposition 20 (See proof in Appendix 3.7.9).

Proposition 20 In equilibrium of the trust-embedded model with no capacity cost:

(a) When DMI ≥ 0, the effect of trust and trustworthiness is summarized in the following
table:

TABLE S3: The effect of trust and trustworthiness on the DM problem: DMI ≥ 0

0 < αs < 1 αs = 0 αs = 1

When β ≥ (µ+ε+2ξ)p−(ε−ε)c
4(ε−ε)

∂Eξ πsc
t (ξ)

∂αs = −2pαs

8(ε−ε)
var(ξ) < 0 Eξ πsc

t (ξ) = Eξπsc
ii (ξ) Eξπsc

t (ξ) = Eξπsc
ci (ξ)

When β = 0 ∂Eξ πsc
t (ξ)

∂αs = −ξ · (µ+ε+αsξ)p−(ε−ε)c
4(ε−ε)

> 0 Eξ πsc
t (ξ) = Eξπsc

ii (ξ) Eξπsc
t (ξ) > Eξπsc

ci (ξ)

Eξπsc
t (ξ) is the total supply chain’s expected profit with respect to ξ in equilibrium of the trust-embedded model.

Eξ πsc
ci (ξ) is the expected profit with respect to ξ when information is complete. Eξ πsc

ii (ξ) is the expected profit with
respect to ξ when information is incomplete.

(b) When 2ξ < DMI ≤ ξ, the effect of trust and trustworthiness is summarized in the follow-
ing table:
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TABLE S4: The effect of trust and trustworthiness on the DM problem: 2ξ < DMI ≤ ξ

ξt
ξ < αs < 1 0 ≤ αs ≤ ξt

ξ αs = 1

When β ≥ (µ+ε+3ξ)p−(ε−ε)c
4(ε−ε)

∂Eξ πsc
t (ξ)

∂αs =
∫ ξt

αs
ξ − ξ

2 ·
(µ+ε+αsξ)p−(ε−ε)c

2(ε−ε)
dF(ξ) > 0 Eξ πsc

t (ξ) = Eξ πsc
ii (ξ) Eξπsc

t (ξ) = Eξ πsc
ci (ξ)

When β = 0 ∂Eξ πsc
t (ξ)

∂αs = −ξ · (µ+ε+αsξ)p−(ε−ε)c
4(ε−ε)

> 0 Eξ πsc
t (ξ) = Eξ πsc

ii (ξ) Eξπsc
t (ξ) > Eξ πsc

ci (ξ)

We define ξt ≡ DMI + ξ ∈ (ξ, 0]; Eξ πsc
t (ξ), is the total supply chain’s expected profit with respect to ξ in

equilibrium of the trust-embedded model. Eξ πsc
ci (ξ) is the expected profit with respect to ξ when information

is complete. Eξπsc
ii (ξ) is the expected profit with respect to ξ when information is incomplete.

(c) When DMI ≤ 2ξ, trust has no effect on the supply chain efficiency, i.e., ∂Eξ πsc
t (ξ)

∂αs = 0,
where Eξπsc

t (ξ), is the total supply chain’s expected profit with respect to ξ in equilibrium
of the trust-embedded model. 15

When information is harmful to the DM problem, trusting a trustworthy re-
tailer can worsen the DM problem, and decrease the supply chain efficiency. As
we can see from Proposition 20 part (a), when β is high (i.e., β ≥ (µ+ε+2ξ)p−(ε−ε)c

4(ε−ε)
),

the trustworthy retailer always reports the true private information, i.e., ξ̂∗(ξ) = ξ.
On the other hand, when DMI ≥ 0, based on Proposition 18, information is harmful
to DM problem. Hence, higher trust level can bring more harmful information, and
thus harm the DM problem and the supply chain efficiency.

When information is beneficial to the DM problem, trusting a trustworthy re-
tailer can reduce the DM problem, and increase the supply chain efficiency. As we
can see from Proposition 20 part (b), when β is high (i.e., β ≥ (µ+ε+3ξ)p−(ε−ε)c

4(ε−ε)
), the

trustworthy retailer always reports the true private information, i.e., ξ̂∗(ξ) = ξ. On
the other hand, when 2ξ < DMI ≤ ξ, based on Proposition 18, information is bene-
ficial to DM problem. Hence, the higher trust level can make the supplier trust this
beneficial information more, leading to more beneficial information shared. This can
benefit the DM problem and the supply chain efficiency.

Trusting an untrustworthy retailer reduces the DM problem, and increases the
supply chain efficiency. As we can see from Proposition 20 part (a) and (b), when
β = 0, the untrustworthy retailer can manipulate the wholesale price down without
any moral costs, therefore, the retailer will always report the lowest type to reduce
the wholesale price, i.e., ξ̂∗ = ξ. When DMI is not too small (i.e, DMI > −2ξ), there
is always some room (profit margin and market uncertainty room) for the retailer
to manipulate the wholesale price down. This manipulated information can reduce
the wholesale price and the DM problem, which is beneficial to the supply chain
efficiency. With higher trust level, more beneficial information (although it is ma-
nipulated information) will be shared, which leads to higher supply chain efficiency.

When information has no effect on the DM problem, trust has no effect on the
DM problem. As we can see from Proposition 20 part (c), when DMI ≤ −2ξ, the re-
tailer cannot manipulate the wholesale price down, because the supplier always sets
the wholesale price to fixed market price p, no matter the trust level αs is. Therefore,
trust cannot affect the DM problem in this case.

15For trust and trustworthiness’s effect on supplier and retailer’s expected profit (with respect to ξ),
we put it in Appendix 3.7.9.
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3.5.3 The role of trust in the CM problem

Similar to section 3.7.5, we consider the trust-embedded model with exogenous
wholesale price, to investigate the role of trust in the CM problem. Solving the equi-
librium of the game, we can get the following proposition 21, summarizing the role
of trust in the CM problem (see proof in Appendix 3.7.8):

Proposition 21 If the wholesale price w ∈ [c + ck, p] is exogenous and β > 0, in the
equilibrium of the trust-embedded model:

(1) For every realization of the private information ξ satisfying ξ ≤ ξ + w−c−ck
w−c

(
ξ − ξ

)
, the

supply chain’s expected profit (with respect to ε) is independent of αs.

(2) For every realization of the private information ξ satisfying ξ > ξ + w−c−ck
w−c

(
ξ − ξ

)
, the

supply chain’s expected profit (with respect to ε) strictly increases with trust level αs i.e., for
any αs

1, αs
2 satisfying 0 ≤ αs

1 < αs
2 ≤ 1, we have πsc

t (α
s
1) < πsc

t (α
s
2).

where πsc
t (α

s) is the expected supply chain profit for a certain realization of ξ when the trust
level is αs under the trust embedded model 16.

Higher trust level makes the retailer with high type of private forecast infor-
mation easier (take less moral costs) to get enough capacity, and thus increases
the supply chain efficiency. 17 When the supplier trusts 100% of retailer’s report,
the retailer can simply tell the truth and supplier will set the right capacity. In this
case, the CM problem is totally reduced, since capacity is sufficient for all types of
retailers and not wasted. However, the less the supplier trusts, the retailer with high
type private forecast information needs to manipulate the supplier more to achieve
enough capacity. Since over-reporting brings moral costs, it will be harder for the
retailer to achieve enough capacity. Therefore, higher trust level can reduce the CM
problem and increase the supply chain efficiency.

3.5.4 Trust’s trade-off in the DM and CM problem

The second research question of this paper is “Is trust beneficial to the supply chain
?”. Again, this question crucially depends on trust’s balancing in the CM and DM
problem. We provide both analytical and numerical results to illustrate this trade-
off. As we can see from Figure S4, we have two scenarios 18 in which trust level needs
to trade-off between the CM and DM problem, and thus there exists an optimal trust
level αs∗ ∈ (0, 1), which can maximize the total supply chain efficiency. We analyze
these two scenarios in subsection 3.5.4 and subsection 3.5.4 respectively.

16For trust’s effect on supplier and retailer’s expected profit, we put it in Appendix 3.7.8.
17This result is different from the trust-embedded model results in Özer, Zheng, and Chen 2011.

In their setting, because of the incentive to over-report, an untrustworthy retailer can over-report a
very large forecast information. If the supplier highly trusts retailer’s report (e.g. 100% trust level),
the capacity can be too much for supplier, and thus be harmful to the supply chain efficiency. In our
setting, however, the retailer doesn’t have the incentive to manipulate the capacity more than what she
needs. This can prevent the retailer from reporting too much, and thus avoid the case where trust can
be harmful to the supply chain efficiency regarding the CM problem.

18In the scenario where the retailer is trustworthy, we set the β to be high enough so that all types
of retailer report the true type of information. In the scenario where the retailer is untrustworthy, we
set the β to be low so that all types of retailer can report the lowest type under the right condition. In
other words, we use extreme cases to illustrate trust’s trade-off between the two problems.
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FIGURE S4: Trust’s trade-off in the CM and DM problem

TABLE S5: Trust’s trade-off in the CM and DM problem

Market Uncertainty:
(ε− ε) High High Low High Low Low High Low

Incomplete Information:
(ξ − ξ) High Low High High Low High Low Low

Capacity Cost:
ck

High High High Low High Low Low Low

DMI = -380 -220 -556 -21.4 -396 -484.28 138.6 -324.28
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By setting the range of market uncertainty (ε− ε), incomplete information (ξ − ξ), and capacity cost ck to be
high or low, we studied eight different cases. In high β case, β = 200. In the low β case, β = 0.2 (we use
these extreme cases to illustrate trust’s trade-off in the CM and DM problem). All other parameters and the
reason why we set them are the same with those in Table S1.

When the retailer is highly trustworthy and DMI is high, there exists an opti-
mal trust level αs∗ ∈ (0, 1) for the supply chain: Too much trust can harm the DM
problem, too little trust can harm the CM problem.

Numerical support
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From the numerical analysis in Figure S9 and S12 from Table S5, when DMI
is high and the retailer is highly trustworthy (i.e., β is high), there exists an certain
optimal trust level αs∗ ∈ (0, 1), which can maximize the total supply chain efficiency:
Too much trust can harm the DM problem, too little trust can harm the CM problem.

When the retailer is highly trustworthy (i.e., β is high), she should always report
the true information to avoid high moral costs from lying. Therefore, true informa-
tion (the true type of the retailer’s private information) will be shared. On the one
hand, when DMI is high, the true information is harmful to DM problem, based on
Proposition 18. Therefore, more trust can bring more true but harmful information,
and thus harm the supply chain efficiency. On the other hand, the lack of infor-
mation can lead to too much or too little capacity, and thus harm the CM problem.
Therefore, too little trust brings too little information, and harms the CM problem.

When the retailer is highly untrustworthy and DMI is high, there exists an op-
timal trust level αs∗ ∈ (0, 1) for the supply chain: Too much trust can harm the CM
problem, too little trust can harm the DM problem.

Numerical support
In the numerical analysis in Figure S28 and S25 from Table S5, when DMI is high

and retailer is highly untrustworthy (i.e., β is low), there exists an certain optimal
trust level αs∗ ∈ (0, 1), which can maximize the total supply chain efficiency: Too
much trust can harm the CM problem, too little trust can harm the DM problem.

The retailer can report a low type in order to manipulate the wholesale price
down and get more profit, since DMI ≥ 0 and thus there is enough room (market
uncertainty and profit margin room) for the retailer to manipulate supplier’s whole-
sale price down. In addition, the retailer has an incentive to over-report the forecast
information in order to get enough capacity. Because in the cases of Figure S28 and
S25, the incentive to under-report is stronger than the incentive to over-report, since
the capacity cost is low (the incentive to manipulate enough capacity is weak, be-
cause the supplier should build more capacity with lower capacity cost), and profit
margin is high (it will be more profitable to manipulate the profit down). There-
fore, the retailer report the lowest type (i.e., ξ̂∗(ξ) = ξ) because of the incentive to
under-report.

For the DM problem, the manipulated information is beneficial, since it reduces
the wholesale price. For the CM problem, the manipulated information is harmful,
since it renders a wrong capacity decision. Therefore, too much trust can bring more
“wrong” information and harm the CM problem, too little trust can forgo a low
wholesale price and harm the DM problem. Trading off these two effects, there exists
an optimal trust level αs∗ ∈ (0, 1) which maximizes the total supply chain efficiency.

Analytical Support
Because the general trust-embedded model incorporating the DM and CM prob-

lem is not tractable, we give a special case where capacity cost is small (i.e., ck → 0)
19, to analytically capture the role of trust in the two problem simultaneously 20.

19“Capacity cost is zero” is also included as a continuous case. When capacity cost is zero, the trust-
embedded model can have multiple equilibriums, since the supplier can set any capacity level which
he believes enough for the retailer (for example, infinite many capacity or just what the retailer with
a upper bound of private information needs). However, when capacity cost is zero, we assume the
supplier set the capacity according to the upper bound of private forecast information to make the two
cases (“capacity cost is small” and “capacity cost is zero”) continuous.

20When ck → 0, the decisions in equilibrium are approaching results. To keep the notation simple,
we omit the approaching, and use equality instead. When ck = 0, all the approaching results become
exact value.
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Even the capacity cost is small, the supplier doesn’t want to waste any extra capac-
ity, and sets the capacity which he believes is just enough for the retailer and ac-
cording to the upper bound of the belief of private information ξ . In this case, even
the capacity cost is zero, the CM problem can exist, since the belief of the private
information can be manipulated.

Specifically, when capacity cost is zero, the supplier sets the capacity according
to retailer’s report and the highest type of private information and believes that this
capacity is enough for all types of retailer21. However this capacity may not be
enough for the retailer, since the belief of the private forecast information can be
manipulated by the retailer. We summarize the analytical results for this case in
Proposition 22 (See the details of this analysis case in Appendix 3.7.10 and proof of
Proposition 22 in Appendix 3.7.12).

Proposition 22 If ck → 0, DMI ≥ 0, β = 0,and p−2c
p

(ε−ε)
2 + µ > 5ξ, in equilibrium of

the trust model, the following properties regarding the expected profit (with respect to ξ) of
the total supply chain, i.e., Eξπsc

t (α
s), is satisfied:

(1) The report strategy of any type of retailer is ξ̂∗(ξ) = ξ.

(2)
∂Eξπsc

t (α
s)

∂αs =
∫ ξ ′∗

ξ

ξ

2
p

ε− ε

( (u + ξ + ε)p− (ε− ε)c
p

− q∗1t
)

︸ ︷︷ ︸
>0,trust increases efficiency by lowering wholesale price

dF(ξ)

+
∫ ξ

ξ ′∗

−3ξ

2
p

ε− ε

( (u + ξ + ε)p− (ε− ε)c
p

− q∗2t
)

︸ ︷︷ ︸
<0,trust reduces efficiency by lowering capacity

dF(ξ)

(3) when αs → 0, ∂Eξ πsc
t (αs)

∂αs > 0; when αs → 1, ∂Eξ πsc
t (αs)

∂αs < 0;

(4) ∂2Eξ πsc
t (αs)

∂αs2 < 0, Eξπsc
t (α

s) is concave in αs.

(5) There exists an unique trust level αs∗ ∈ (0, 1) s.t. ∂Eξ πsc
t (αs)

∂αs |αs=αs∗ = 0 and maximizes
Eξπsc

t (α
s).

On the one hand, the condition of both DMI ≥ 0 and p−2c
p

(ε−ε)
2 + µ > 5ξ imply

that profit margin and market uncertainty are high. Manipulating the whole-sale
price down is profitable for the retailer (e.g.,if the profit margin is low, it is not prof-
itable for the retailer to report the lowest type). On the other hand, when the retailer
is untrustworthy (i.e., β = 0), manipulation brings no moral cost. Therefore, the
retailer reports the lowest type to lower the wholesale price.

For the DM problem, trust can benefit it: higher trust level can lead to more
manipulated information shared, which can lower the wholesale price and in-
crease the supply chain efficiency. For the CM problem, trust can harm it: higher
trust level can lead to more manipulated information shared, which can lead to a
worse capacity decision and decrease the supply chain efficiency. Trading off the-
ses two effects, there exists an optimal trust level maximizing the total supply chain
efficiency.

21After receiving retailer’s report, the supplier believes that retailer’s highest possible type is αs ξ̂ +
(1− αs)ξ.
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3.5.5 Analysis road map

In this subsection, we presented in Table S6 all the analysis cases regarding the role
of trust in the supply chain efficiency (the second research question).

TABLE S6: The role of trust in supply chain–analysis cases

Model Environment Incentive Problem(s) Method The role of trust

Trust-embedded model:
Wholesale price is exogenous CM problem only Analytical Always beneficial;

See Proposition 21

Trust-embedded model:
Capacity cost is zero DM problem only Analytical Beneficial/harmful;

See Proposition 20

Trust-embedded model:
Capacity cost is small CM and DM problem Analytical

An optimal
trust level αs∗ ∈ (0, 1)

See Proposition 22

Trust-embedded model CM and DM problem Numerical
An optimal

trust level αs∗ ∈ (0, 1)
See Table S5

3.6 Conclusion

We investigate the role of information, trust and trustworthiness, in a two-tier sup-
ply chain with a supplier and a retailer. The supplier sets the capacity and the lin-
ear wholesale price. The retailer faces demand uncertainty before ordering and it
has better demand information than the supplier. These elements capture the ca-
pacity misalignment problem (supplier building capacity with less demand infor-
mation than the retailer), and the double marginalization problem (supplier setting
wholesale price and "squeeze" the retailer). We find that information is not always
beneficial to the supply chain because it can exacerbate the double marginalization
problem, even when there is no incentive problem preventing sharing. Intuitively,
when the market uncertainty and profit margin is high, the supplier with complete
demand information has enough room to set different wholesale price for different
types of retailers. Therefore, the supplier will take advantage of this information to
squeeze more profits from the retailer, which worsens the double marginalization
problem from the perspective of the supply chain.

As in previous literature, information sharing is not automatic, because of in-
centive barriers. We incorporate the notions of trust and trustworthiness, adapting
from the trust-embedded model (Özer, Zheng, and Chen, 2011), into our setting
to study how cheap talk forecast communication affect the aforementioned capac-
ity misalignment and double marginalization problems. We find that trust is not
always beneficial for the supply chain. When the retailer is trustworthy, the sup-
plier uses the reported information to squeeze the retailer. This worsens the double
marginalization problem. At the same time, trust does mitigate the capacity mis-
alignment problem. Because of this trade-off, there is an "optimal" level of trust.
Too much trust leads to too much double marginalization. Too little trust leads to
too much capacity misalignment. The most striking and counter-intuitive result is
that a totally untrustworthy retailer can be "good" from the supply chain efficiency
perspective. Under the right conditions, an untrustworthy retailer can manipulate
a trusting supplier to set a lower wholesale price, and reduces the double marginal-
ization problem.
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This study provides three insights from a practice perspective. First, information
sharing is not always beneficial to the supply chain, or to the retailer. This is particu-
lar true when the supplier has the market power to "squeeze" the retailers with that
information, and when the gain of setting the right capacity is low (e.g. capacity cost
is low). Secondly, trust and trustworthiness no longer provide monotonic improve-
ments to the supply chain. Retailers need to pay attention to the business conditions,
and sometimes a little manipulation is better for the supply chain and increase the
total pie. Finally, the supplier is always the beneficiary of information sharing, and
from its point of view, it should always try to exploit a trustworthy retailer.

There are many natural directions for future research. From an engineering point
of view, there is a need to develop incentive mechanisms (i.e., contracts) to solve
this dual, capacity misalignment and double marginalization problem. There are a
large body of literature of using contracts to solve either problem, and it would be
interesting to see if both problems, in the same supply chain, can be addressed at
the same time. From a behavioral perspective, we have only introduced trust and
trustworthiness into the model. A large body of literature show that a multitude of
behavioral factors such as bounded rationality, fairness and learning can be impor-
tant in a supply chain contracting context, and there is ample room to incorporate
additional behavioral thinking into this line of research.

3.7 Proofs and Omitted Analysis Cases

3.7.1 Centralized supply chain

We analyze the centralized supply chain as a benchmark in which we assume that
the supplier “own” the whole supply chain, and he faces the following maximization
problem.

max
q,K

Πcs(K, q, ξ) = pEε min(µ + ξ + ε, q)− cq− ckK

s.t. q ≤ K

where Πcs(K, q, ξ) is the expected profit of the centralized supply chain.
The “First Best” solution, where we let the supplier artificially know the private

forecast information ξ, is given:

q∗cs
ci = ξ + µ + G−1

(
p− (c + ck)

p

)

K∗cs
ci = ξ + µ + G−1

(
p− (c + ck)

p

)
Where q∗cs

ci and K∗cs
ci denote the optimal order quantity and capacity for the central-

ized supply chain when information is complete, ie., supplier knows the private
forecast information ξ. Note that we index the complete information scenario by
“ci”.
The Capacity Misalignment Problem

When supplier cannot get access to the private information ξ, ie., information is
incomplete, the optimal order quantity and capacity for the centralized supply chain
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are:

q∗cs
ii = µ + (F ◦ G)−1

(
p− (c + ck)

p

)
(3.6)

K∗cs
ii = µ + (F ◦ G)−1

(
p− (c + ck)

p

)
(3.7)

where F ◦ G is the distribution function of ε + ξ. q∗cs
ii and K∗cs

ii denote the optimal
order quantity and capacity for the centralized supply chain when information is
incomplete. Similarly, we index the incomplete information scenario with“ii”.

In this case, the supplier does not use all the information in the system to make
the capacity decision, and results in a worse decision, compared to the first best
solution. This is consistent with the results in past literature (Özer, Zheng, and Chen
(2011)). This result is formally captured in the following proposition.

Proposition 23 Information is always beneficial to the centralized supply chain efficiency,
ie., πcs

ci ≥ πcs
ii , the equality holds if and only if q∗cs

ii = q∗cs
ci , where πcs

ci = Πcs(K∗cs
ci , q∗cs

ci , ξ)
and πcs

ii = Πcs(K∗cs
ii , q∗cs

ii , ξ).

The proof of this Proposition is as following. According to the definition of q∗cs
ci ,

we can know: q∗cs
ci ∈ arg max

q
Πcs(K = q, q = q, ξ) = pEε min(µ + ξ + ε, q) −

cq − ckq. Therefore, we can know, πcs
ci = Πcs(K∗cs

ci , q∗cs
ci , ξ) = Πcs(q∗cs

ci , q∗cs
ci , ξ) ≥

Πcs(q∗cs
ii , q∗cs

ii , ξ) = Πcs(K∗cs
ii , q∗cs

ii , ξ) = πcs
ii . If q∗cs

ii = q∗cs
ci , we can easily know πcs

ci =
πcs

ii . In addition, because Πcs(K, q, ξ) is concave in q, and q∗cs
ci is the unique point

maximizing Πcs(K = q, q = q, ξ), if πcs
ci = πcs

ii , we can get q∗cs
ii = q∗cs

ci .

3.7.2 Proof of Lemma 3.4.1

Given retailer’s best response, the supplier will choose an optimal w and K to maxi-
mize his expected profit:

Πs(w, K) =
(
w− c

)
q∗(K, w)− ckK

First, any w < c + ck will be dominated by w = c + ck, since any w < c + ck will
lead to negative profit for the supplier. Further, any w > p is weakly dominated
by w = p, since any w > p will bring zero profit to the supplier. Second, any
K > ξ + µ + G−1( p−w

p

)
will be dominated by K = ξ + µ + G−1( p−w

p

)
, because the

possible maximum quantity order of the retailer is ξ + µ + G−1( p−w
p

)
. Third, any

K < ξ + µ + G−1( p−w
p

)
will be dominated by K = ξ + µ + G−1( p−w

p

)
, because the

supplier can always increase his profit by increasing his capacity to K = ξ + µ +
G−1( p−w

p

)
, when K < ξ + µ + G−1( p−w

p

)
and w ∈ [c + ck, p]. Therefore, after the

deletion of weakly dominated strategies, the supplier will choose w ∈ [c+ ck, p], and
K = ξ + µ + G−1( p−w

p

)
We can change the maximization problem of the supplier as

following:

Maximize
w

Πs(w) = (w− c− ck)

(
ξ + µ + G−1( p− w

p
))

s.t. w ∈ [c + ck, p]
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With the assumption that ε follows an uniform distribution, we can get: ∂Πs(w)
∂w =

µ + ξ + ε − 2 ε−ε
p w + ε−ε

p (c + ck),and ∂2Πs(w)
∂w2 = −2 ε−ε

p < 0.Therefore, Πs(w) is

concave in w. Let ∂Πs(w)
∂w = 0, we can get w = (µ+ξ+ε)p+(ε−ε)(c+ck)

2(ε−ε)
. Consider-

ing the constraints, we can get the optimal wholesale price and capacity as,w∗ci =

min
( (µ+ξ+ε)p+(ε−ε)(c+ck)

2(ε−ε)
, p
)
, and K∗ci = ξ + µ + G−1( p−w∗

p

)
.

3.7.3 Proof of Proposition 17

In this case, we need a new assumption that ξ follows an uniform distribution on
[ξ, ξ]. Note that any w < c+ ck will be dominated by w = c+ ck, since any w < c+ ck
will lead to negative profit for the supplier. Further, any w > p is weakly dominated
by w = p, since any w > p will always bring zero profit to the supplier. Next we will
consider about the choice of K. First, any K > ξ + µ + G−1( p−w

p

)
will be dominated

by K = ξ + µ + G−1( p−w
p

)
, because the possible maximum quantity order of the

retailer is ξ + µ + G−1( p−w
p

)
. For any K > ξ + µ + G−1( p−w

p

)
, supplier can always

save costs by reducing the capacity to ξ + µ+ G−1( p−w
p

)
, without affecting the profit

from selling the product to the retailer. Second, any K < ξ + µ + G−1( p−w
p

)
will

be weakly dominated by K = ξ + µ + G−1( p−w
p

)
, because the supplier can always

increase his profit by increasing his capacity to K = ξ + µ + G−1( p−w
p

)
,when K <

ξ + µ + G−1( p−w
p

)
and w ∈ [c + ck, p]. Therefore, supplier will choose a K ∈ [ξ +

µ + G−1( p−w
p

)
, ξ + µ + G−1( p−w

p

)
] to maximize his profit.

Let K ≡ ξ ′+ µ+G−1( p−w
p

)
, where ξ ′ ∈ [ξ, ξ]. Thus, Eξq∗(ξ ′, w, ξ) =

∫ ξ ′

ξ

[
ξ + µ+

G−1( p−w
p

)]
dF(ξ) +

∫ ξ
ξ ′

[
ξ ′+ µ + G−1( p−w

p

)]
dF(ξ). We can change the maximization

problem of the supplier into the following maximization problem:

Maximize
w,ξ ′

Πs(ξ ′, w) =

{(
w− c

){ ∫ ξ ′

ξ

[
ξ + µ + G−1( p− w

p
)]

dF(ξ) +
∫ ξ

ξ ′

[
ξ ′ + µ + G−1( p− w

p
)]

dF(ξ)
}

− ck
[
ξ ′ + µ + G−1( p− w

p
)]}

s.t. ξ ′ ∈ [ξ, ξ], w ∈ [c + ck, p]

Taking no consideration about the constraint first, we can get: ∂Πs(ξ ′,w)
∂ξ ′ = (w− c)[1−

F(ξ ′)]− ck and ∂2Πs(ξ ′,w)
∂ξ ′2

= −(w− c) f (ξ ′) < 0. Therefore, given a w, Πs(ξ ′, w) is con-

cave in ξ ′. Therefore, given the optimal wholesale price is w∗ii, ξ ′∗ = F−1(w∗ii−c−ck
w∗ii−c

)
∈

[ξ, ξ], the optimal capacity will be K∗ = F−1(w∗ii−c−ck
w∗ii−c

)
+ µ + G−1( p−w∗ii

p

)
. With the

assumption that ξ follows an uniform distribution, we can get the first order condi-
tion of w. Without considering the constraints: ∂Πs(ξ ′,w)

∂w = −(2w− c− ck)
ε−ε

p + µ +

ε +
ξ ′2−ξ2

2(ξ−ξ)
+ ξ ′ ξ−ξ ′

ξ−ξ
. ∂2Πs(ξ ′,w)

∂w2 − 2 ε−ε
p < 0. Combine ∂Πs(ξ ′,w)

∂w = 0, and ∂Πs(ξ ′,w)
∂ξ ′ = 0,

with the assumption that ξ + ξ = 0, we can get a cubic equation about w:

−2
ε− ε

p
(w− c)3 +

p(µ + ε)− (ε− ε)(c− ck)

p
(w− c)2 + c2

kξ = 0
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Denote the real root of the above equation is w∗r . We can get: w∗r = p(µ+ε)+(ε−ε)(c+ck)
2(ε−ε)

+

pξc2
k

2(ε−ε)(w∗r−c)2 < p(µ+ε)+(ε−ε)(c+ck)
2(ε−ε)

. Then, we will prove there exists an unique w∗r ∈
(c + ck,+∞).

We define f (w) = 2 ε−ε
p (w− c)2

(
w− p(µ+ε)+(ε−ε)(c+ck)

2(ε−ε)

)
− c2

kξ. Therefore,

f (c + ck) =2
ε− ε

p
c2

k

(
c + ck −

p(µ + ε) + (ε− ε)(c + ck)

2(ε− ε)

)
− c2

kξ

=− 2
ε− ε

p
c2

k

( p(µ + ε + ξ)− (ε− ε)(c + ck)

2(ε− ε)

)
− c2

kξ

=− c2
k

p(µ + ε + ξ)− (ε− ε)(c + ck)

p
< −c2

k
(ε− ε)(p− c− ck)

p
< 0

Also, we can easily know that f (+∞) > 0, We can get: f ′(w) = 6 ε−ε
p (w− c)

(
w−

p(µ+ε)+(ε−ε)(2c+ck)
3(ε−ε)

)
. Note that p(µ+ε)+(ε−ε)(2c+ck)

3(ε−ε)
> c(ε−ε)+(ε−ε)2c

3(ε−ε)
= c. We denote

p(µ+ε)+(ε−ε)(2c+ck)
3(ε−ε)

≡ wφ. Then f (w) is increasing on [wφ,+∞), and decreasing on
[c, wφ]

If wφ > c + ck, then according to the intermediate value theorem and the mono-
tonicity of f (w), we can know there exists an unique w∗r ∈ (wφ,+∞), s.t. f (w∗r ) = 0

If wφ < c + ck, then according to the intermediate value theorem and the mono-
tonicity of f (w), we can know there exists an unique w∗r ∈ (c + ck,+∞), s.t. f (w∗r ) =
0

If wφ = c + ck, then according to the intermediate value theorem and the mono-
tonicity of f (w), we can know there exists an unique w∗r ∈ (c + ck,+∞), s.t. f (w∗r ) =
0

Therefore, there exists an unique w∗r ∈ (c + ck,+∞), s.t. f (w∗r ) = 0. Now, we
consider the constraint of w ∈ [c + ck, p], and the fact that Πs(ξ ′, w) is concave in
w, we can get the optimal wholesale price w∗ii = min

(
w∗r , p

)
. Given the optimal

wholesale price w∗ii, the supplier will set the optimal ξ ′ to be ξ ′∗ = F−1(w∗ii−c−ck
w∗ii−c

)
∈

[ξ, ξ], and the optimal capacity to be K∗ii = ξ ′∗ + µ + G−1( p−w∗ii
p

)
.

Given the optimal wholesale price and the capacity, we can easily get the second
part of the proposition 17, according to retailer’s best response. Now we prove the

third part of Lemma 17. Because p(µ+ξ+ε)+(ε−ε)(c+ck)
2(ε−ε)

≤ p (i.e., DMI ≥ 0), then w∗r <

p(µ+ε)+(ε−ε)(c+ck)
2(ε−ε)

< p(µ+ξ+ε)+(ε−ε)(c+ck)
2(ε−ε)

≤ p, then w∗ii = min
(
w∗r , p

)
= w∗r . Also be-

cause p(µ+ξ+ε)+(ε−ε)(c+ck)
2(ε−ε)

< p, we can get (µ+ξ+ε)p+(ε−ε)(c+ck)
2(ε−ε)

≤ p(µ+ξ+ε)+(ε−ε)(c+ck)
2(ε−ε)

≤
p, then w∗ci = min

( (µ+ξ+ε)p+(ε−ε)(c+ck)
2(ε−ε)

, p
)
= (µ+ξ+ε)p+(ε−ε)(c+ck)

2(ε−ε)
Therefore, we can

get w∗ii = w∗r < p(µ+ε)+(ε−ε)(c+ck)
2(ε−ε)

= Eξ(w∗ci).

3.7.4 Intractability of the Model

Based on Proposition 17, in equilibrium of a decentralized supply under the incom-
plete information case, the supplier chooses the wholesale price w∗ii = min

(
w∗r , p

)
>

c + ck where w∗r is the unique real root, satisfying c + ck < w∗r < p(µ+ε)+(ε−ε)(c+ck)
2(ε−ε)

, of
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equation:

−2
ε− ε

p
(w∗r − c)3 +

p(µ + ε)− (ε− ε)(c− ck)

p
(w∗r − c)2 + c2

kξ = 0 (3.8)

We solve this cubic equation, using Mathematica (We keep the only real root and
omit the two root with imaginary). The only real root of this equation is presented
in Figure S5. We can see that w∗r is pretty long and hard to tackle. What’s more,
we need to use the wholesale price w∗ii = min

(
w∗r , p

)
, to further calculate the order

quantity and compare the expected profit of the supply chain with respect to ξ with
that under complete information condition. To the best of our knowledge, we cannot
analytically calculate the total supply chain efficiency with w∗r .

For the general trust-embedded model, we also need to calculate a similar equa-
tion about the wholesale price when supplier has the posterior belief of ξ and needs
to decide the wholesale price and capacity. For instance, when the trust level is
zero, the trust-embedded model will be the same with the incomplete information
model. Since the incomplete information model is not fully tractable because the
above mentioned reason, the trust embedded model is not tractable.

FIGURE S5: The real root of equation 3.8

3.7.5 The role of information in the CM problem

In order to investigate the role of information in the DM problem, we consider a set-
ting with an exogenous wholesale price w. In this case, we expect both the wholesale
price and the DM problem no longer interact with information, since the wholesale
price is exogenously fixed. Hence, information is only relevant to the CM problem.
The following Lemma formally summarizes the role of information in the CM prob-
lem in this setting.

In equilibrium of a decentralized supply chain with exogenous wholesale price
w ∈ [c + ck, p]:

(1) Information is beneficial to the CM problem, i.e., Eξπsc
ci (ξ) − Eξπsc

ii (ξ) ≥ 0;
Eξπsc

ci (ξ) = Eξπsc
ii (ξ), iff ck = 0, where Eξπsc

ci (ξ), Eξπsc
ii (ξ) is the expected

profit (with respect to ξ) of the total supply chain in equilibrium under com-
pete and incomplete information condition respectively.22

22For information’s role in supplier and retailer’s expected profit (with respect to ξ), we put it in
Proposition 3.7.5
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(2) If ξ follows an uniform distribution, i.e., ξ ∼ U[ξ, ξ] Eξπsc
ci (ξ) − Eξπsc

ii (ξ) =

ξ−ξ

(w−c)2

(
(w−c−ck)(w−c)

2 + p
6(ε−ε)

· ξ−ξ

w−c · c2
k

)
ck.

Information is always beneficial to the CM problem. This is because infor-
mation can always help the supplier set the “right” capacity decision according to
private forecast information ξ, which prevents the supplier from building too much
or too little capacity. This result is consistent with the previous literature regarding
information sharing in the capacity misalignment problem (Cachon and Lariviere
(2001), Özer and Wei (2006), and Oh and Özer (2013)).

When capacity cost is small, information’s role in the CM problem is incon-
sequential. When ck is zero, the CM problem does not exist, since the supplier can
always ensure enough capacity by building infinite capacity. In this case, informa-
tion cannot affect the CM problem. From Proposition 3.7.5, information’s role in the

CM problem is Eξπsc
ci (ξ) − Eξπsc

ii (ξ) =
ξ−ξ

(w−c)2

(
(w−c−ck)(w−c)

2 + p
6(ε−ε)

· ξ−ξ

w−c · c2
k

)
ck,

which is continuous in ck. Therefore, when capacity cost ck is small, the beneficial
role of information in the CM problem is inconsequential.

The Proof of the above Lemma is as following:
To capture the role of information sharing in the capacity misalignment prob-

lem alone, we examine the special case when the wholesale price is exogenous. In
this case, intuitively, information sharing cannot affect the double marginalization
problem because the margin is exogenous.

First, we consider the incomplete information scenario. Let the exogenous whole-
sale price be w ∈ [c + ck, p]. Given the wholesale price w and capacity K the supplier
decides, the retailer chooses an optimal q to maximize his expected profit under the
capacity constraint. The retailer faces the following maximization problem.

max
q

Πr(q, ξ) = pEε min(µ + ξ + ε, q)− wq

s.t. q ≤ K

where Πr(q, ξ) is retailer’s expected profit. Given w and K, retailer’s best response
is:

q∗(w, K, ξ) =


ξ + µ + G−1( p−w

p

)
w ≤ p, K > ξ + µ + G−1( p−w

p

)
K w ≤ p, K ≤ ξ + µ + G−1( p−w

p

)
0 w > p

Given retailer’s best response, the supplier chooses a capacity K to maximize his
expected profit without knowing the private forecast information ξ,

max
K

Πs
ii(K) =

(
w− c

)
Eξq∗(w, K, ξ)− ckK

where Πs
ii(w, K) is supplier’s expected profit (with respect to ξ), when informa-

tion is incomplete, i.e., supplier cannot get access to the private information ξ.
For any K > ξ + µ+ G−1( p−w

p

)
will be dominated by K = ξ + µ+ G−1( p−w

p

)
, be-

cause the possible maximum quantity order of the manufacturer is ξ +µ+G−1( p−w
p

)
.

Second, any K < ξ + µ + G−1( p−w
p

)
will be dominated by K = ξ + µ + G−1( p−w

p

)
,

because the supplier can always increase his profit by increasing his capacity to
K = ξ + µ + G−1( p−w

p

)
,when K < ξ + µ + G−1( p−w

p

)
and w ∈ (c + ck, p). Therefore,



3.7. Proofs and Omitted Analysis Cases 111

the supplier will choose a K ∈ [ξ + µ + G−1( p−w
p

)
, ξ + µ + G−1( p−w

p

)
]. We denote

that K ≡ ξ ′ + µ + G−1( p−w
p

)
, where ξ ′ ∈ [ξ, ξ]. Thus Eξq∗(K, ξ) =

∫ ξ ′

ξ

[
ξ + µ +

G−1( p−w
p

)]
dF(ξ) +

∫ ξ
ξ ′

[
ξ ′+ µ + G−1( p−w

p

)]
dF(ξ). We can change the maximization

problem of the supplier into:

Maximize
K

{(
w− c

){ ∫ ¸′

¸

[
¸ + ¯ + G−1(p−w

p
)]

dF(¸) +
∫ ¸

¸′

[
¸′ + ¯ + G−1(p−w

p
)]

dF(¸)
}
− ckK

}
subject to ξ ′ ∈ [ξ, ξ]

Taking no consideration about the constraint, we get the first order condition about
ξ ′, ∂Πs(ξ ′)

∂ξ ′ = (w− c)[1− F(ξ ′)]− ck, ∂2Πs(ξ ′)
∂ξ ′2

= −(w− c) f (ξ ′) < 0. Therefore, Πs(ξ ′)

is concave in ξ ′. We can get a global optimal ξ ′∗ = F−1(w−c−ck
w−c

)
∈ [ξ, ξ]. Therefore,

the unique optimal capacity will be K∗ii = F−1(w−c−ck
w−c

)
+ µ + G−1( p−w

p

)
.

Second, we analyze the scenario where information is complete, i.e., the supplier
can get access to the private information. Given retailer’s best response, the supplier
chooses a capacity K to maximize his expected profit when he can get access to the
forecast information ξ,

max
K

Πs
ci(K, ξ) =

(
w− c

)
q∗(w, K, ξ)− ckK

where Πs
ci(w, K) is supplier’s expected profit (with respect to ξ), when informa-

tion is complete, i.e., supplier can get access to the private information ξ. Similar
to the analysis to incomplete information case, the supplier will choose the optimal
capacity: K∗ci = ξ + µ + G−1( p−w

p

)
.

Therefore, if the wholesale price w ∈ [c + ck, p] is exogenous:

(1) when information is incomplete, the supplier chooses the optimal capacity:
K∗ii = ξ ′∗ + µ + G−1( p−w

p

)
, where ξ ′∗ = F−1(w−c−ck

w−c

)
∈ [ξ, ξ].

(2) when information is complete, the supplier chooses the optimal capacity: K∗ci =

ξ + µ + G−1( p−w
p

)
.

In equilibrium of the game, we define retailer’s expected profit (for every pos-
sible realization of private information ξ) under complete and incomplete informa-
tion scenario πr

ci(ξ) = Πr(q∗(w, K∗ci, ξ), ξ), πr
ii(ξ) = Πr(q∗(w, K∗ii, ξ), ξ); supplier’s

expected profit (for every possible realization of private information ξ) under com-
plete and incomplete information scenario πs

ci(ξ) = Πs
ci(K

∗
ci, ξ), πs

ii(ξ) = Πs
ii(K

∗
ii);

the expected profit of total supply chain under complete and incomplete informa-
tion scenario πsc

ci (ξ) = πs
ci(ξ) + πr

ci(ξ), πsc
ii (ξ) = πs

ii(ξ) + πr
ii(ξ).

First, if w = p, the retailer’s profit will always be zero, and in equilibrium
πr

ci(w, ξ) = πr
ii(w, ξ) = 0. If w = c + ck, the supplier’s profit will always be zero, and

in equilibrium πs
ci(w, ξ) = πs

ii(w, ξ) = 0.
Second, if ck = 0, ξ ′∗ = ξ. Therefore, capacity is always enough for the retailer

under incomplete information condition, the order quantities of the retailer under
both complete information condition and incomplete information condition are the
same. Therefore, the retailer’s profit will always be the same. In addition, since
capacity costs the supplier nothing, the supplier’s profit will be the same under both
complete information case and incomplete information case, since extra capacity
bring no costs to the supplier in the incomplete information condition.
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Third, we consider the case where ck 6= 0, c + ck < w < p and ξ < ξ ′∗. When in-
formation is incomplete, since we can know K∗ii = F−1(w−c−ck

w−c

)
+ µ + G−1( p−w

p

)
>

ξ + µ + G−1( p−w
p

)
, therefore q∗ii(w, K, ξ) = ξ + µ + G−1( p−w

p

)
. When information

is complete, we can easily get q∗ci(w, K, ξ) = ξ + µ + G−1( p−w
p

)
. Therefore, the op-

timized profit of the retailer under incomplete information and complete informa-
tion condition will be the same, ie., πr

ci(w, ξ) = πr
ii(w, ξ). For the supplier, when

information is incomplete, the extra capacity (ξ ′∗ − ξ) will be wasted. Therefore,
πs

ci(w, ξ) > πs
ii(w, ξ).

Fourth, we consider about the case where ck 6= 0, c + ck < w < p and ξ > ξ ′∗.
When information is incomplete, since we can know K∗ii = ξ ′∗ + µ + G−1( p−w

p

)
<

ξ + µ + G−1( p−w
p

)
, therefore q∗ii(w, K, ξ) = ξ ′∗ + µ + G−1( p−w

p

)
. When informa-

tion is complete, we can know that the optimal order quantity will be q∗ci(w, K, ξ) =

ξ + µ + G−1( p−w
p

)
. Since the expected profit function Πr(q, ξ) = pEε min(µ + ξ +

ε, q)− wq is strictly increasing on [0, ξ + µ + G−1( p−w
p

)
](with respect to q), we can

get πr
ci(w, ξ) > πr

ii(w, ξ). On the other hand, when w ∈ [c + ck, p], the expected
profit function of the supplier is strictly increasing with retailer’s order quantity if
the supplier’s capacity is equal to the order quantity. Thus, πs

ci(w, ξ) > πs
ii(w, ξ).

Fifth, we consider about the case where ck 6= 0, c + ck < w < p and ξ = ξ ′∗,
πs

ci(w, ξ) = πs
ii(w, ξ), since both the capacity decision and the order quantity in the

equilibrium are the same under both incomplete information condition and com-
plete information condition.

Combining all the cases and taking expectation about the profit with respect to
ξ, we can get the following Lemma 3.7.5.

If the wholesale price w ∈ [c + ck, p] is exogenous,

(1) Information sharing is beneficial to the total supply chain efficiency: Eξπsc
ci (ξ) ≥

Eξπsc
ii (ξ), the equality establishes if and only if ck = 0.

(2) Information sharing is beneficial to the retailer: Eξπr
ci(ξ) ≥ Eξπr

ii(ξ), the equal-
ity establishes if and only if w = p or ck = 0.

(3) Information sharing is beneficial to the supplier: Eξπs
ci(ξ) ≥ Eξπs

ii(ξ), the
equality establishes if and only if w = c + ck or ck = 0.

where Eξπsc
ci (ξ), Eξπsc

ii (ξ) is the expected profit (with respect to ξ) of the total
supply chain in equilibrium under compete and incomplete information condition
respectively. Eξπr

ci(ξ), Eξπr
ii(ξ) is the expected profit (with respect to ξ) of the re-

tailer in equilibrium under compete and incomplete information condition respec-
tively. Eξπs

ci(ξ), Eξπs
ii(ξ) is the expected profit (with respect to ξ) of the retailer in

equilibrium under compete and incomplete information case respectively.
In addition, for the total supply chain efficiency (the expect profit with respect to

ε, for every realization of ξ ) under complete information and incomplete informa-

tion condition: πsc
ci (ξ) = p(µ + ξ)− cq∗ci +

p
2(ε−ε)

[
− ε2 + 2(q∗ci − µ− ξ)ε− (q∗ci − µ−

ξ)2
]
− ckq∗ci, and πsc

ii (ξ) = p(µ + ξ) − cq∗ii +
p

2(ε−ε)

[
− ε2 + 2(q∗ci − µ − ξ)ε − (q∗ii −

µ− ξ)2
]
− ckK∗ii,

When information is incomplete and ξ ′∗ > ξ, the retailer with private type ξ
always gets enough capacity, and the supplier wasted some capacity. Specifically,
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(ξ ′∗ − ξ)ck will be wasted, where (ξ ′∗ − ξ) are the wasted quantity and ck is the cost
for each capacity unit.

When information is incomplete and ξ ′∗ < ξ, the retailer with private type ξ
cannot get enough capacity. This can reduce the order quantity of the supply chain
and lower the supply chain efficiency.

We can get the information’s role in the CM problem is: Eξπsc
ci (ξ)−Eξπsc

ii (ξ) =∫ ¸′∗

¸ (¸′∗ − ¸)ckdF(¸) +
∫ ¸

¸′∗(¸− ¸′∗)
[
(w− c− ck) +

p
2(ffl−ffl)

(¸− ¸′∗)
]
dF(¸), with the as-

sumption that ξ ∼ U[ξ, ξ]:

Eξπsc
ci (ξ)−Eξπsc

ii (ξ) =
ξ−ξ

(w−c)2

(
ck(w−c−ck)(w−c)

2 + p
6(ε−ε)

· ξ−ξ

w−c · c3
k

)
=

ξ−ξ

(w−c)2

(
(w−c−ck)(w−c)

2 +

p
6(ε−ε)

· ξ−ξ

w−c · c2
k

)
ck. When ck → 0, information’s role in the capacity misalignment

problem is Eξπsc
ci (ξ)−Eξπsc

ii (ξ)→ 0.
From Lemma 3.7.5, information is always beneficial for both the supplier and

retailer in the CM problem.

3.7.6 Proof of Proposition 18

We examine the special case where the capacity cost ck = 0 in this case. Intuitively,
as the cost of capacity goes to zero, the capacity misalignment problem disappears
since the supplier can always, trivially, provide enough capacity for maximum pos-
sible demand. Formally, when ck = 0, the supplier can choose any component ca-
pacity K ≥ ξ + µ + G−1( p−w

p

)
. By doing this, he can always ensure enough capacity

for the retailer and maximize his profit. Thus, we don’t need to consider the capac-
ity constraint in this model. This will allow us to capture the role of information
sharing in double marginalization problem alone, without considering the capacity
constraint in the model.

The following proposition summarizes the role of information sharing when we
only consider the double marginalization problem.

[Proposition 2.] In equilibrium of a decentralized supply chain with no capacity
costs.

(1) If DMI ≥ 0, information sharing is harmful to the total supply chain efficiency
(expected profit with respect to ξ), ie., Eξπsc

ci (ξ) < Eξπsc
ii (ξ); information shar-

ing is beneficial to the supplier, ie., Eξπs
ci(ξ) > Eξπs

ii(ξ); information sharing
is harmful to the retailer, ie., Eξπr

ci(ξ) < Eξπr
ii(ξ).

(2) If 2ξ < DMI ≤ ξ, information sharing is beneficial to the total supply chain ef-
ficiency, ie.,Eξπsc

ci (ξ) > Eξπsc
ii (ξ); information sharing is beneficial to the sup-

plier, ie., Eξπs
ci(ξ) > Eξπs

ii(ξ); information sharing is beneficial to the retailer,
ie., Eξπr

ci(ξ) > Eξπr
ii(ξ)

(3) If DMI ≤ 2ξ, information sharing cannot affect the supply chain efficiency, ie.,
Eξπsc

ci (ξ) = Eξπsc
ii (ξ); Eξπs

ci(ξ) = Eξπs
ii(ξ); Eξπr

ci(ξ) = Eξπr
ii(ξ).

where Eξπsc
ci (ξ), Eξπsc

ii (ξ) is the expected profit (with respect to ξ) of the total supply
chain under compete and incomplete information condition respectively. Eξπr

ci(ξ),
Eξπr

ii(ξ) is the expected profit (with respect to ξ) of the retailer under compete and
incomplete information condition respectively. Eξπs

ci(ξ), Eξπs
ii(ξ) is the expected

profit (with respect to ξ) of the retailer under compete and incomplete information
condition respectively.
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The Proof of Proposition 18 is as following. Given the wholesale price w, re-
tailer’s best response is:

q∗(w, ξ) =

{
ξ + µ + G−1( p−w

p

)
i f w ≤ p

0 i f w > p
(3.9)

When the supplier does not have access to the private forecast information, ie.,
information is incomplete, he optimizes his expected profit:

max
w

Πs
ii(w) =

(
w− c

)
Eξq∗(w, ξ) (3.10)

where Πs
ii(w) is supplier’s expected profit (with respect to ξ) when information

is incomplete. In equilibrium, supplier decides the wholesale price:

w∗ii = min
( (µ + ε)p + (ε− ε)c

2(ε− ε)
, p
)

(3.11)

where w∗ii is the wholesale price in equilibrium when information is incomplete.
Then we consider the scenario where the supplier has access to the private fore-

cast information, ie., information is complete. The supplier optimizes his profit:

max
w

Πs
ci(w) =

(
w− c

)
q∗(w, ξ) (3.12)

where Πs
ci(w) is supplier’s profit when information is complete. The supplier

chooses the wholesale price in equilibrium:

w∗ci = min
( (µ + ξ + ε)p + (ε− ε)c

2(ε− ε)
, p
)

(3.13)

where w∗ci is the wholesale price in equilibrium when information is complete.
In the following analysis, we define ξt ≡ DMI + ξ. Therefore, considering dif-

ferent cases about ξt is equivalent to considering cases about DMI.

First, we consider the case where ξt ≥ ξ (i.e., DMI ≥ 0), we can get (µ+ξ+ε)p+(ε−ε)c
2(ε−ε)

≤
p. In this case, we maximize the supplier’s expected profit and get the optimal
wholesale price under complete information and incomplete information condition:w∗ci =

min
( (µ+ξ+ε)p+(ε−ε)(c+ck)

2(ε−ε)
, p
)
= (µ+ξ+ε)p+(ε−ε)c

2(ε−ε)
, and w∗ii = min

( (µ+ε)p+(ε−ε)c
2(ε−ε)

, p
)
=

(µ+ε)p+(ε−ε)c
2(ε−ε)

. According to the best response of the retailer, we can get the order
quantity in equilibrium under complete information and incomplete information
condition: q∗ii = ξ + (µ+ε)p−(ε−ε)c

2p ,and q∗ci =
ξ
2 +

(µ+ε)p−(ε−ε)c
2p . Insert these results into

the profit function of the retailer and supplier, after taking expectation, we can get:
Eξπsc

ci (ξ)−Eξπsc
ii (ξ) = −

p
8(ε−ε)

Eξξ2 = − p
8(ε−ε)

Var(ξ) < 0, EξΠs
ci(ξ)−EξΠs

ii(ξ) =
p

4(ε−ε)
Eξξ2 = p

4(ε−ε)
Var(ξ) > 0, and EξΠr

ci(ξ)−EξΠr
ii(ξ) = −

3p
8(ε−ε)

Var(ξ) < 0.
Second, we consider the case where ξt ∈ (ξ, 0] (i.e., 2ξ < DMI ≤ ξ), we can get

(µ+ε)p+(ε−ε)c
2(ε−ε)

≤ p. Therefore when information is incomplete, we always have w∗ii =

min
( (µ+ε)p+(ε−ε)c

2(ε−ε)
, p
)
= p, and q∗ii = µ+ ξ + ε. For complete information case, when

ξ > ξt, we can get the wholesale price in equilibrium w∗ci = min
( (µ+ξ+ε)p+(ε−ε)(c+ck)

2(ε−ε)
, p
)
=

p, and the order quantity in equilibrium q∗ci = µ + ξ + ε. Therefore, for ξ > ξt, the
efficiency of both the supplier and the retailer in equilibrium will be the same, ie.,
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πs
ci(ξ) = πs

ii(ξ), πr
ci(ξ) = πr

ii(ξ), πsc
ci (ξ) = πsc

ii (ξ). When ξ < ξt, we can get the
wholesale price in equilibrium w∗ci = min

( (µ+ξ+ε)p+(ε−ε)(c+ck)
2(ε−ε)

, p
)
= (µ+ξ+ε)p+(ε−ε)(c+ck)

2(ε−ε)
,

and the order quantity in equilibrium q∗ci = ξ
2 + (µ+ε)p−(ε−ε)c

2p . Because ξ < ξt =
2(ε−ε)p−(ε−ε)c

p − (µ + ε), we can know q∗ci − q∗ii = − ξ
2 −

(µ+ε)p+(ε−ε)c
2p + (ε − ε) >

− (µ+ε)p+(ε−ε)c
2p + (ε− ε)− 1

2

(
2(ε−ε)p−(ε−ε)c

p − (µ + ε)

)
= µ+ε

2 > 0. In the equilib-

rium, we can get the expected profit for the supply chain under complete informa-

tion and incomplete information as: πsc
ii (ξ) = p(µ + ξ)− cq∗ii +

p
2(ε−ε)

[
− ε2 + 2(q∗ii−

µ− ξ)ε− (q∗ii − µ− ξ)2
]

, and πsc
ci (ξ) = p(µ + ξ)− cq∗ci +

p
2(ε−ε)

[
− ε2 + 2(q∗ci − µ−

ξ)ε − (q∗ci − µ − ξ)2
]

. After some algebra, we can get: πsc
ci (ξ) − πsc

ii (ξ) = (q∗ci −

q∗ii)
(3ε−2ε+µ+ξ)p−3(ε−ε)c

4(ε−ε)
> (q∗ci − q∗ii)

(3ε−2ε−ε)p−3(ε−ε)c
4(ε−ε)

= (q∗ci − q∗ii)
3(p−c)

4 > 0. For the
supplier, we can get the expected profit under complete information and incomplete
information condition in equilibrium: πs

ii(ξ) = (w∗ii − c) ∗ q∗ii = (p− c)(µ + ξ + ε),

πs
ci(ξ) = (w∗ci − c) ∗ q∗ci =

(
(µ+ξ+ε)p+(ε−ε)(c+ck)

2(ε−ε)
− c
)(

ξ
2 +

(µ+ε)p−(ε−ε)c
2p

)
After some

algebra, we can get: πs
ci(ξ) − πs

ii(ξ) = (µ+ξ−ε+2ε)p+(ε−ε)c
−4(ε−ε)p

(
2(ε − ε)(p − c) − 2(µ +

ξ + ε)p + (µ + ξ − ε + 2ε)p + (ε − ε)c
)

. Because ξ < ξt = 2(ε−ε)p−(ε−ε)c
p − (µ +

ε), we can know (µ + ξ − ε + 2ε)p + (ε − ε)c <

(
µ + 2(ε−ε)p−(ε−ε)c

p − (µ + ε) −

ε + 2ε

)
p + (ε − ε) = 0 Thus, (µ+ξ−ε+2ε)p+(ε−ε)c

−4(ε−ε)p > 0. Also, because ξ < ξt =

2(ε−ε)p−(ε−ε)c
p − (µ + ε), we can get: 2(ε− ε)(p− c)− 2(µ + ξ + ε)p + (µ + ξ − ε +

2ε)p + (ε− ε)c > 2(ε− ε)(p− c)− 2(µ + 2(ε−ε)p−(ε−ε)c
p − (µ + ε) + ε)p + (µ + ξ −

ε + 2ε)p + (ε − ε)c = 0. Therefore, 2(ε − ε)(p − c) − 2(µ + ξ + ε)p(µ + ξ − ε +
2ε)p + (ε− ε)c > 0.Therefore, we can get: πs

ci(ξ)− πs
ii(ξ) > 0. For the retailer, be-

cause q∗ci > q∗ii, and because the expected profit function of the retailer is increasing
in [0, q∗ci], we can get πr

ci(ξ)− πr
ii(ξ) > 0. Take all the results’ expectation on ξ, we

have Eξπsc
ci (ξ) > Eξπsc

ii (ξ); Eξπs
ci(ξ) > Eξπs

ii(ξ); Eξπr
ci(ξ) > Eξπr

ii(ξ).

Third, we consider the case where ξt ≤ ξ (i.e., DMI ≤ 2ξ). We can get
(µ+ξ+ε)p+(ε−ε)c

2(ε−ε)
≤

p, thus (µ+ε)p+(ε−ε)c
2(ε−ε)

< p. Therefore when information is incomplete, we always

have w∗ii = min
( (µ+ε)p+(ε−ε)c

2(ε−ε)
, p
)
= p, and q∗ii = µ + ξ + ε. In addition, for complete

information case, we can get the wholesale price in equilibrium w∗ci = min
( (µ+ξ+ε)p+(ε−ε)(c+ck)

2(ε−ε)
, p
)
=

p, and the order quantity in equilibrium q∗ci = µ + ξ + ε. Therefore, the efficiency of
both the supplier and the retailer in equilibrium will be the same, ie., πs

ci(ξ) = πs
ii(ξ),

πr
ci(ξ) = πr

ii(ξ), πsc
ci (ξ) = πsc

ii (ξ). Take expectation of these results’ on ξ, we have
Eξπsc

ci (ξ) = Eξπsc
ii (ξ); Eξπs

ci(ξ) = Eξπs
ii(ξ); Eξπr

ci(ξ) = Eξπr
ii(ξ).

3.7.7 Proof of Proposition 19

In this case, we investigate the effect of information sharing on supply chain effi-
ciency when we add “a small amount of” incomplete information. Ideally, we want
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to capture the effect of information sharing on supply chain efficiency in terms of ca-
pacity misalignment problem and double marginalization problem simultaneously.
Since the general formulation, as far as we know, is not fully analytically tractable,
studying a case with "amount of" private information approaching zero allows us to
linearize part of the formulation (specifically, the wholesale price) and arrives at an
analytic solution.

We add “a small amount of” private information by assuming supplier’s prior
belief about ξ is uniformly distributed on [−a, a] (i.e., a = ξ), where a is a positive
small number, i.e., a → 0+. We denote the distribution function of the private in-
formation as Fa(·). The following Lemma (we can prove this Lemma by directly
applying Proposition 17.) describes the decisions of supplier in equilibrium.

When DMI ≥ 0, and we add “a small amount of” private information, i.e., a →
0+,

(1) If information is complete, in equilibrium, the supplier sets the wholesale price
and capacity: w∗ci = min

( (µ+ξ+ε)p+(ε−ε)(c+ck)
2(ε−ε)

, p
)
= (µ+ξ+ε)p+(ε−ε)(c+ck)

2(ε−ε)
, K∗ci =

0 + u + G−1( p−w(0)
p

)
, where w∗ci and K∗ci are the wholesale price and capacity

decision in equilibrium when information is complete.

(2) With “a small amount of” incomplete information, the supplier sets the whole-
sale price w∗ii and capacity K∗ii, where w∗ii = min

(
w∗r , p

)
= w∗r , where w∗r is the

real root, satisfying c + ck < w∗r < p(µ+ε)+(ε−ε)(c+ck)
2(ε−ε)

), of equation 2 ε−ε
p (w∗r −

c)2
(

w∗r −
p(µ+ε)+(ε−ε)(c+ck)

2(ε−ε)

)
+ c2

ka = 0, K∗ii = ξ ′∗ + u + G−1( p−w(a)
p

)
, where

ξ ′∗ = F−1
a
(w∗ii−c−ck

w∗ii)−c

)
∈ [−a, a], where w∗ii and K∗ii are the wholesale price and

capacity decision in equilibrium when information is incomplete.

(3) With “a small amount of” incomplete information, information sharing can
lower the wholesale price, and thus reduce the double marginalization prob-
lem, i.e., when a→ 0+, w∗ii < Eξw∗ii

23.

When DMI ≥ 0, information sharing can exacerbate the double marginaliza-
tion problem, when the supply chain has “a small amount of” private information.
Specifically, when a → 0+, we have w(a) < w(0), i.e., the wholesale price under
complete information condition is higher than that under incomplete information
condition, which means information sharing can worsen the double marginalization
problem. This is because when ξt ≥ a (this means the market uncertainty and profit
margin are high), the supplier has enough room to set different wholesale price for
different types of retailer. This allows the supplier to double marginalize more and
makes the double marginalization problem worsen. However, information sharing
can help the capacity misalignment problem. Taking these two problems into con-
sideration, we summarize the role of information sharing in supply chain efficiency
in the following Proposition.

[Proposition 3.] When the supply chain has “a small amount of” private infor-
mation, i.e., a→ 0, if ck = o(aN), where N is a positive integer with N ≥ 3 and o(aN)
is the N-order infinitesimal of a, and DMI ≥ 0:

(1) information sharing is harmful to the supply chain efficiency, ie., when a→ 0+,
πsc

ii > πsc
ci

24, where πsc
ii and πsc

ci are the total supply chain’s expected profit

23More formally, ∃ σ > 0, s.t. ∀a ∈ (0, σ), w∗ii < Eξ(w∗ci). Other contents regarding a → 0+ in this
case are similar to this definition.

24For notation’s conveniences, we have Eξ πsc
ci (ξ) ≡ πsc

ci ; Eξ πsc
ii (ξ) ≡ πsc

ii
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(with respect to ξ) under incomplete information condition and under com-
plete information condition respectively.

(2) Information sharing is harmful to the retailer, ie., when a → 0+, πr
ii > πr

ci,
where πr

ii and πr
ci are retailer’s expected profit (with respect to ξ) under in-

complete information condition and under complete information condition re-
spectively.

(3) Information sharing is beneficial to the supplier, ie., when a → 0+, πs
ii < πs

ci,
where πs

ii and πs
ci are supplier’s expected profit (with respect to ξ) under in-

complete information condition and under complete information condition re-
spectively.

As we mentioned in section 3.4.3, when DMI ≥ 0, information sharing will
benefit the supply chain efficiency, regarding the double marginalization problem.
In addition, when ck → 0 and its speed to zero is very fast (i.e., ck = o(aN), where N
is a positive integer with N ≥ 3 and o(aN) is the N-order infinitesimal of a), although
information sharing is beneficial to the capacity misalignment problem, but its effect
is small, since ck is very small in this case. Integrating these two effects, information
sharing is harmful to the total supply chain efficiency.

Moreover, for the supplier, he can always make use of the private information,
and make a better wholesale price and capacity decision, and thus get more profits
under complete information condition than he does under incomplete information
condition. Since information sharing allows the supplier to squeeze more profit from
retailer, information sharing can reduce retailer’s profit.

The Proof of Proposition 19 is as following.
According to Lemma 3.4.1, when information is complete, the supplier sets the

wholesale price and capacity in equilibrium:

w∗ci = min
( (µ + ξ + ε)p + (ε− ε)(c + ck)

2(ε− ε)
, p
)
=

(µ + ξ + ε)p + (ε− ε)(c + ck)

2(ε− ε)

K∗ci = 0 + u + G−1( p− w∗ci
p

)
where w∗ci and K∗ci are the wholesale price and capacity in equilibrium when infor-
mation is complete. We denote w(0) ≡ p(µ+ε)+(ε−ε)(c+ck)

2(ε−ε)

From Proposition 17, with “a small amount of” incomplete information, the sup-
plier sets the following wholesale price and capacity to maximize expected his profit:
w∗ii = min

(
w∗r , p

)
, K∗ii = ξ ′∗ + µ + G−1( p−w∗ii

p

)
, where ξ ′∗ = F−1

a
(w∗ii−c−ck

w∗ii−c

)
∈ [−a, a],

and w∗r is the unique solution of the following equation satisfying w∗r > c + ck:

2
ε− ε

p
(w∗r − c)2

(
w∗r −

p(µ + ε) + (ε− ε)(c + ck)

2(ε− ε)

)
+ c2

ka = 0

According to Proposition 17, we can easily know w∗r < w(0) < p with assump-
tion DMI ≥ 0. Therefore, with “a small amount of” incomplete information, in
equilibrium the supplier sets the wholesale price w∗ii and capacity K∗ii :

w∗ii = min
(
w∗r , p

)
= w∗r

K∗ii = ξ ′∗ + u + G−1( p− w∗ii
p

)
, ξ ′∗ = F−1

a
(w∗ii − c− ck

w∗ii − c
)
∈ [−a, a]
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Taking derivatives with respect to a on the cubic equation about w∗r , with w(0) =
p(µ+ε)+(ε−ε)(c+ck)

2(ε−ε)
, we can get:

∂w∗ii
∂a
|a = 0 =

−c2
k p

2(ε− ε)(w(0)− c)2

According to the Taylor formula:

w∗ii = w(0) +
−c2

k p
2(ε− ε)(w(0)− c)2 a + o(a2)

When information is complete, the order quantity q∗ci = ξ + µ + G−1(
p−w∗ci

p ).

When information is incomplete, q∗ii = ξ + µ + G−1( p−w∗ii
p

)
, if ξ < ξ ′∗; q∗ii = K∗ii,

if ξ ≥ ξ ′∗.

We have πsc
ci (ξ) = p(µ + ξ) − cq∗ci +

p
2(ε−ε)

[
− ε2 + 2(q∗ci − µ − ξ)ε − (q∗ci − µ −

ξ)2
]
− ckq∗ci,

and πsc
ii (ξ) = p(µ+ ξ)− cq∗ii +

p
2(ε−ε)

[
− ε2 + 2(q∗ci− µ− ξ)ε− (q∗ii− µ− ξ)2

]
− ckK∗ii,

Therefore, we can get:

πsc
ci − πsc

ii =
∫ ξ ′∗

−a
(ξ ′ − ξ)ck −

ε− ε

p
(w∗ii − w∗ci)

(
(c + ck)−

1
2
(w∗ii + w∗ci)

)
dFa(ξ)

+
∫ a

ξ ′∗

(
(ξ ′ − ξ)− ε− ε

p
(w∗ii − w∗ci)

)(
(c + ck)−

1
2
(w∗ii + w∗ci) +

p
2(ε− ε)

(ξ ′ − ξ))
)
dFa(ξ)

πsc
ci − πsc

ii =
∫ ξ ′∗

−a
(ξ ′ − ξ)ck −

ε− ε

p
(w∗ii − w∗ci)

(
(c + ck)−

1
2
(w∗ii + w∗ci)

)
dFa(ξ)

+
∫ a

ξ ′∗

(
(ξ ′ − ξ)− ε− ε

p
(w∗ii − w∗ci)

)(
(c + ck)−

1
2
(w∗ii + w∗ci) +

p
2(ε− ε)

(ξ ′ − ξ))
)
dFa(ξ)

where πsc
ii and πsc

ci are the total supply chain’s expected profit (with respect to ξ)
under incomplete information condition and under complete information condition
respectively..

After some algebra, we can get:

πsc
ci − πsc

ii =
1
2a

∫ a

−a
−ε− ε

p
(w∗ii − w∗ci)

(
(c + ck)−

1
2
(w∗ii + w∗ci)

)
dξ

+
1
2a

∫ ξ ′∗

−a
(ξ ′∗ − ξ)ckdξ

+
1
2a

∫ a

ξ ′∗
(ξ ′∗ − ξ)

(
(c + ck)−

1
2a

(w∗ii + w∗ci)
)
dξ

+
1
2a

∫ a

ξ ′∗

p
2(ε− ε)

(ξ ′∗ − ξ)2dξ

+
1
2a

∫ a

ξ ′∗

−1
2
(w∗ii − w∗ci)dξ

If ck = o(a3), we can get a− ξ ′∗ = 2ack
w∗ii−c = o(a4),
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Since (ξ ′∗− ξ)
(
(c+ ck)− 1

2 (w
∗
ii +w∗ci)

)
, p

2(ε−ε)
(ξ ′∗− ξ)2,−1

2 (w∗ii−w∗ci), are all bounded
when ξ ∈ [−a, a].

1
2a

∫ a

ξ ′∗
(ξ ′∗ − ξ)

(
(c + ck)−

1
2
(w∗ii + w∗ci)

)
dξ = o(a3)

1
2a

∫ a

ξ ′∗

p
2(ε− ε)

(ξ ′∗ − ξ)2dξ = o(a3)

1
2a

∫ a

ξ ′∗

(
(ξ ′ − ξ)− ε− ε

p
(w∗ii − w∗ci)

)(
(c + ck)−

1
2
(w∗ii + w∗ci) +

p
2(ε− ε)

(ξ ′ − ξ))
)
dFa(ξ) = o(a3)

1
2a

∫ ξ ′∗

−a
(ξ ′∗ − ξ)ckdξ =

(ξ ′∗ + a)2

4a
ck = o(a4)

1
2a

∫ a

−a
−ε− ε

p
(w∗ii − w∗ci)

(
(c + ck)−

1
2
(w∗ii + w∗ci)

)
dξ =

1
2a

∫ a

−a

1
2
(
ξ +

c2
k

(w(0)− c)2 a + 0(a2)
)( c + ck

2
− p(µ + ε)

2(ε− ε)
− pξ

4(ε− ε)
+

c2
k p

4(ε− ε)(w(0)− c)2 a + o(a2)
)
dξ

= o(a2)

when a→ 0+, omitting the high order infinitesimal, with ck = o(a3) we can get:

πsc
ci − πsc

ii =
1
2a

∫ a

−a
−ε− ε

p
(w∗ii − w∗ci)

(
(c + ck)−

1
2
(w∗ii + w∗ci)

)
dξ

+
1
2a

∫ ξ ′∗

−a
(ξ ′∗ − ξ)ckdξ

+
1
2a

∫ a

ξ ′∗
(ξ ′∗ − ξ)

(
(c + ck)−

1
2a

(w∗ii + w∗ci)
)
dξ

+
1
2a

∫ a

ξ ′∗

p
2(ε− ε)

(ξ ′∗ − ξ)2dξ

+
1
2a

∫ a

ξ ′∗

−1
2
(w∗ii − w∗ci)dξ

→ 1
2a

∫ a

−a

1
2
(
ξ +

c2
k

(w(0)− c)2 a + 0(a2)
)( c + ck

2
− p(µ + ε)

2(ε− ε)
− pξ

4(ε− ε)

+
c2

k p
4(ε− ε)(w(0)− c)2 a + o(a2)

)
dξ

→ 1
2a

∫ a

−a

1
2

ξ
( c

2
− p(µ + ε)

2(ε− ε)
− pξ

4(ε− ε)

)
dξ

=
1
2a

∫ a

−a
− pξ2

8(ε− ε)
dξ < 0

For the supplier, since the retailer’s response functions are always the same un-
der both complete information and incomplete information condition, the supplier
can always take advantage of the private information and get more profit when in-
formation is complete, i.e., πs

ci > πs
ii, when a → 0+. Since πsc

ci < πsc
ii ,when a → 0+.

We have πr
ci < πr

ii, when a→ 0+, because πr
ci = πsc

ci − πs
ci, and πr

ii = πsc
ii − πs

ii.
When ck = o(aN), and integer N > 3, obviously we can get the same results.
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3.7.8 Proof of Proposition 21

We assume the wholesale price w is exogenous in this case. Based on the assump-
tions in the trust-embedded model, if retailer report ξ̂ in the first stage of the game,
the supplier will believe ξ is uniformly distributed on [αs ξ̂ + (1− αs)ξ, αs ξ̂ + (1−
αs)ξ], we denote the distribution function of this belief of ξ as Ft. According to Ap-
pendix 3.7.5, the supplier sets the capacity as:

K(ξ̂) = ξ ′(ξ̂) + µ + G−1( p−w
p

)
, where ξ ′(ξ̂) = F−1

t
(w−c−ck

w−c

)
= αs ξ̂ + (1− αs)

[
ξ +

w−c−ck
w−c

(
ξ − ξ

)]
.

Therefore in the third stage of the game, the retailer sets the order quantity as:

q(ξ̂) =

{
ξ + µ + G−1( p−w

p

)
i f ξ ≤ ξ ′(ξ̂)

ξ ′(ξ̂) + µ + G−1( p−w
p

)
i f ξ > ξ ′(ξ̂)

(3.14)

By backward induction, the retailer will choose her reporting strategy in the first
stage of the game to maximize her expected profit:

max
ξ̂

Πr
t
(
ξ̂
)
= pEε min(µ + ξ + ε, q(ξ̂))− wq(ξ̂)− β|ξ̂ − ξ|

s.t. ξ̂ ∈ [ξ, ξ]
(3.15)

For the retailer’s reporting strategy in the first state of the game, any ξ̂ < ξ will
be dominated by ξ̂ = ξ. This is because reporting the true type can avoid the moral
cost and at the same time increasing ξ ′, which can possibly increase the capacity
decision and thus improve the retailer’s profit. Then, we consider different cases to
get the best reporting strategy.

Case 1: For ξ ≤ w−c−ck
w−c (ξ − ξ) + ξ. When ξ ≤ w−c−ck

w−c (ξ − ξ) + ξ, we can easily
get that ξ ≤ αsξ + (1− αs)

[
ξ + w−c−ck

w−c

(
ξ − ξ

)]
, which means reporting the true type

will ensure sufficient capacity for retailer. Therefore, the best reporting strategy will
be:

(1) ξ̂∗ = ξ if β > 0;

(2) ξ̂∗ can be any ξ̂ ∈ [ξ, ξ], which satisfies αs ξ̂ + (1− αs)
[
ξ + w−c−ck

w−c

(
ξ − ξ

)]
> ξ

if β = 0.

Case 2: For ξ > αsξ + (1− αs)
[
ξ + w−c−ck

w−c

(
ξ − ξ

)]
. We can know that even the re-

tailer report the highest type, she will still suffer from capacity insufficiency, since
ξ ′(ξ̂) = αs ξ̂ + (1− αs)

[
ξ + w−c−ck

w−c

(
ξ − ξ

)]
≤ αsξ + (1− αs)

[
ξ + w−c−ck

w−c

(
ξ − ξ

)]
< ξ.

Therefore, the retailer will order q(ξ̂) = ξ ′(ξ̂) + µ + G−1( p−w
p

)
. Retailer’s maximiza-

tion problem in the first stage will be:

max
ξ̂

Πr
t
(
ξ̂
)
= pEε min(µ + ξ + ε, q(ξ̂))− wq(ξ̂)− β|ξ̂ − ξ|

s.t. ξ̂ ∈ [ξ, ξ]

Without considering constraint, we can get: ∂Πr
t (ξ̂)

∂ξ̂
= (ξ−ξ ′)p

ε−ε αs− β, ∂2Πr
t (ξ̂)

∂ξ̂2 = − αs2 p
ε−ε <

0. Considering the constraint, the best reporting strategy will be:

(1) ξ̂∗ = ξ, if β ≥ (1−αs)ξ−(1−αs)
[

ξ+
w−c−ck

w−c

(
ξ−ξ
)]

ε−ε αs p

(2) ξ̂∗ = ξ, if β ≤ ξ−αsξ−(1−αs)
[

ξ+
w−c−ck

w−c

(
ξ−ξ
)]

ε−ε αs p
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(3) ξ̂∗ =
ξ−(1−αs)

[
ξ+

w−c−ck
w−c

(
ξ−ξ
)]
− (ε−ε)β

pαs

αs ,

if
ξ−αsξ−(1−αs)

[
ξ+

w−c−ck
w−c

(
ξ−ξ
)]

ε−ε αs p ≤ β ≤ (1−αs)ξ−(1−αs)
[

ξ+
w−c−ck

w−c

(
ξ−ξ
)]

ε−ε αs p.

Case 3: For w−c−ck
w−c (ξ − ξ) + ξ < ξ ≤ αsξ + (1 − αs)

[
ξ + w−c−ck

w−c

(
ξ − ξ

)]
. In this

case, the retailer can manipulate her reporting to achieve sufficient capacity. We
can derive the minimum reporting the retailer should report in order to achieve
sufficient capacity, we denote it as ξ0:

ξ0 ≡
ξ − (1− αs)

[
ξ + w−c−ck

w−c

(
ξ − ξ

)]
αs ∈

(w− c− ck

w− c
(ξ − ξ) + ξ, ξ

)
Obviously, ξ̂ = ξ0 will dominate any ξ̂ > ξ0 when β > 0, because ξ̂ = ξ0 already
ensure enough capacity for the retailer and larger reporting will bring more moral
costs when ξ̂ > ξ. We only need to consider ξ̂ ≤ ξ0. When ξ̂ ≤ ξ0 , we only
need to consider ξ ′(ξ̂) = αs ξ̂ + (1 − αs)

[
ξ + w−c−ck

w−c

(
ξ − ξ

)]
≤ ξ. Thus, retailer’s

order quantity will be q(ξ̂) = ξ ′(ξ̂) + µ + G−1( p−w
p

)
. Similar to case 2, in the first

state of the game, the retailer will optimize her expected profit by choosing the best
reporting strategy.

max
ξ̂

Πr
t
(
ξ̂
)
= pEε min(µ + ξ + ε, q(ξ̂))− wq(ξ̂)− β|ξ̂ − ξ|

s.t. ξ̂ ∈ [ξ, ξ0]

Without considering the constraint, we can get ∂Πr
t (ξ̂)

∂ξ̂
= (ξ−ξ ′)p

ε−ε αs − β,and ∂2Πr
t (ξ̂)

∂ξ̂2 =

− αs2 p
ε−ε < 0. Considering the constraint, we can get the optimal reporting strategy for

the retailer:

(1) ξ̂∗ = ξ, if β ≥ (1−αs)ξ−(1−αs)
[

ξ+
w−c−ck

w−c

(
ξ−ξ
)]

ε−ε αs p

(2) ξ̂∗ =
ξ−(1−αs)

[
ξ+

w−c−ck
w−c

(
ξ−ξ
)]
− (ε−ε)β

pαs

αs , if 0 < β ≤ (1−αs)ξ−(1−αs)
[

ξ+
w−c−ck

w−c

(
ξ−ξ
)]

ε−ε αs p.

(3) ξ̂∗ can be any ξ̂ ∈ [ξ, ξ], which satisfies αs ξ̂ + (1− αs)
[
ξ + w−c−ck

w−c

(
ξ − ξ

)]
≥ ξ ,

if β = 0.

From the aforementioned three cases, we can know that when β > 0, we can
always get ξ ′(ξ̂) = αs ξ̂ + (1− αs)

[
ξ + w−c−ck

w−c

(
ξ − ξ

)]
≤ ξ in the equilibrium. The

implication of this result is, two much capacity will not be useful for the retailer and
over-reporting is morally costing, she will not over-report to make the capacity to
surpass what she needs. Therefore, in the equilibrium we can always get qt = Kt =
ξ ′∗ + µ + G−1( p−w

p

)
. Hence, we can get the following result:

(1) For any ξ ≤ ξ + w−c−ck
w−c

(
ξ − ξ

)
, we can know that the retailer’s expected profit

is independent of αs.

(2) For any 0 ≤ αs
1 < αs

2 ≤ 1,we can show for any ξ ≥ αs
2ξ + (1 − αs

2)
[
ξ +

w−c−ck
w−c

(
ξ− ξ

)]
, we can prove that the retailer’s profit will strictly increase with

trust level αs when β > 0. ie., . We will always have πr
t (α

s
1) < πr

t (α
s
2). Since the

retailer with private information ξ ≥ αs
2ξ + (1− αs

2)
[
ξ + w−c−ck

w−c

(
ξ − ξ

)]
will

always suffer from capacity insufficiency, we can get πr
t (α

s
1) < πr

t (α
s
2) ⇐⇒

qr
t(α

s
1) < qr

t(α
s
2) ⇐⇒ ξ ′(αs

1) < ξ ′(αs
2). We can check ξ ′(ξ̂) = αs ξ̂ + (1− αs)

[
ξ +
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w−c−ck
w−c

(
ξ − ξ

)]
is always increasing with αs, when ξ̂ ≥ ξ > w−c−ck

w−c (ξ − ξ) + ξ.
Therefore, we can get πr

t (α
s
1) < πr

t (α
s
2).

(3) Similar to the reason in the previous case, For any 0 ≤ αs
1 < αs

2 ≤ 1, we can
show for any ξ + w−c−ck

w−c

(
ξ − ξ

)
< ξ < αs

2ξ + (1− αs
2)
[
ξ + w−c−ck

w−c

(
ξ − ξ

)]
, we

can prove that the retailer’s profit will increase with trust level αs when β > 0.
We will always have πr

t (α
s
1) < πr

t (α
s
2).

Since qt = Kt = ξ ′∗ + µ + G−1( p−w
p

)
in equilibrium, the supplier’s profit is also

increasing with order quantity, we can get the same result for the supplier and the
total supply chain.

3.7.9 Proof of Proposition 20

In this subsection, we assume capacity cost ck = 0, and the supplier can choose
any capacity K ≥ ξ + µ + G−1( p−w

p

)
. By doing this, he can always ensure enough

capacity for the retailer and maximize his profit. Thus, we don’t need to consider
the capacity constraint in this model. This allows us to capture the effect of trust and
trustworthiness on the DM problem alone, without considering the CM problem.

In equilibrium of this game, retailer’s reporting strategy ξ̂∗(ξ) is summarized in
the following Lemma. We define ξt ≡ DMI + ξ, and ξ

′
t ≡

ξt
αs . In equilibrium

of the trust embedded model, the optimal report strategy for the retailer will be as
following:

(1) If DMI ≥ 0, when β ≥ αs
[(

µ+ε+(2− αs
2 )ξ− αs

2 ξ
)

p−(ε−ε)c
]

4(ε−ε)
, the retailer with type ξ

choose ξ̂∗(ξ) = ξ

when β <
αs
[(

µ+ε+(2− αs
2 )ξ− αs

2 ξ
)

p−(ε−ε)c
]

4(ε−ε)
, the retailer with type ξ will choose

ξ̂∗(ξ) = ξ

(2) If 2ξ < DMI ≤ ξ and αs ≤ ξt
ξ , the retailer with type ξ will choose ξ̂∗(ξ) = ξ.

(3) If 2ξ < DMI ≤ ξ and αs > ξt
ξ ,

for the retailer with type ξ, which satisfies ξ ≤ ξ ≤ ξt
αs ,

– When β ≥ αs
[(

µ+ε+(2− αs
2 )ξ− αs

2 ξ
)

p−(ε−ε)c
]

4(ε−ε)
, the retailer with type ξ will

choose ξ̂∗(ξ) = ξ

– When β <
αs
[(

µ+ε+(2− αs
2 )ξ− αs

2 ξ
)

p−(ε−ε)c
]

4(ε−ε)
, the retailer with type ξ will

choose ξ̂∗(ξ) = ξ

for the retailer with type ξ, which satisfies ξ > ξt
αs ,

– When β ≥ ξ
′
t−ξ

ξ−ξ ·
αs
[(

µ+ε+2ξ− αs
2 ξ
′
t− αs

2 ξ
)

p−(ε−ε)c
]

4(ε−ε)
,the retailer with type ξ will

choose ξ̂∗(ξ) = ξ

– When β <
ξ
′
t−ξ

ξ−ξ ·
αs
[(

µ+ε+2ξ− αs
2 ξ
′
t− αs

2 ξ
)

p−(ε−ε)c
]

4(ε−ε)
the retailer with type ξ will

choose ξ̂∗(ξ) = ξ
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(4) If DMI ≤ 2ξ, the retailer with type ξ will choose ξ̂∗(ξ) = ξ when β > 0.

From Lemma 3.7.9, the optimal reporting strategy for the retailer with type ξ
can be either ξ̂∗(ξ) = ξ, or ξ̂∗(ξ) = ξ. On the one hand, the retailer always has
an incentive to under-report her type, because under-reporting her type can make
the supplier charge a lower wholesale price and thus increase her profit. On the
other hand, retailer always has an incentive to tell the truth, because lying brings
dis-utility to her. When the moral cost is very high, the incentive to tell the truth
is stronger than the incentive to under-report, the retailer chooses to report the true
type; On the contrary, when the dis-utility of deception is small, the retailer chooses
to report the lowest type in order to get a low wholesale price.

The proof of Lemma 3.7.9 is as following.
In this case , we assume capacity cost ck = 0, and the supplier can choose any ca-

pacity K ≥ ξ + µ + G−1( p−w
p

)
. By doing this, he can always ensure enough capacity

for the retailer and maximize his profit. Thus, we do not consider the capacity con-
straint in this model. This allows us to capture the effect of trust and trustworthiness
on double marginalization problem, without considering the capacity misalignment
problem.

Given the wholesale price w, retailer’s best response is:

q∗(w, ξ) =

{
ξ + µ + G−1( p−w

p

)
i f w ≤ p

0 i f w > p
(3.16)

Given retailer’s best response, the supplier optimizes his expected profit(with re-
spect to ξ) Πs(w):

max
w

Πs(w) = (w− c
)
Eξq∗(w, αs ξ̂ + (1− αs)ξ) (3.17)

Given retailer’s report ξ̂, in the second stage of the game, supplier choose the whole-
sale price wt(ξ̂):

wt(ξ̂) = min
(

p,
(µ + αs ξ̂ + ε)p + (ε− ε)c

2(ε− ε)

)
(3.18)

Given retailer’s report ξ̂, her order quantity qt(ξ̂) in the third stage of the game is:

qt(ξ̂) = ξ + µ + G−1( p− wt(ξ̂)

p
)

(3.19)

Therefore, in the first stage of the game, the retailer chooses an optimal ξ̂ to maximize
her expected profit:

max
ξ̂

Πr
t
(
ξ̂
)
= pEε min(µ + ξ + ε, qt(ξ̂))− wt(ξ̂)qt(ξ̂)− β|ξ̂ − ξ|

s.t. ξ̂ ∈ [ξ, ξ]
(3.20)

In the following analysis, we define ξt ≡ DMI + ξ. When we consider different
cases of ξt, it is equivalent to consider different cases of DMI.

(1) First, we consider the case where ξt ≥ ξ (i.e., DMI ≥ 0). Since we don’t
need to consider the constraint ck, in the third stage of the game, retailer’s best
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response will be:

q(w, ξ) =

{
ξ + µ + G−1( p−w

p

)
i f w ≤ p

0 i f w > p

Given retailer’s best response, supplier’s expected profit function will be: Πs(w) =(
w− c

)
Eξq(w, αs ξ̂ + (1− αs)ξ). Thus, given retailer’s report ξ̂, and her best or-

der quantity response, in the second stage of the game, we can get the optimal

w for the supplier: wt(ξ̂) = min
(

p, (µ+αs ξ̂+ε)p+(ε−ε)c
2(ε−ε)

)
. Because ξt ≥ ξ, we can

know (µ+ξ+ε)p+(ε−ε)c
2(ε−ε)

≤ p. Therefore, (µ+αs ξ̂+ε)p+(ε−ε)c
2(ε−ε)

≤ p. Therefore, we can

know: wt(ξ̂) = min
(

p, (µ+αs ξ̂+ε)p+(ε−ε)c
2(ε−ε)

)
= (µ+αs ξ̂+ε)p+(ε−ε)c

2(ε−ε)
. Since wt(ξ̂) ≤ p,

we can get the retailer’s optimal order quantity in the third stage of the game:

qt(ξ̂) = ξ + µ + G−1( p−wt(ξ̂)
p

)
= ξ + µ + ε − wt(ξ̂)

p (ε − ε) ≥ 0. Therefore, in

the first stage of the game, the retailer will choose a optimal ξ̂ to maximize the
expected profit:

Πr
t
(
ξ̂
)
= pEε min(µ + ξ + ε, q(ξ̂))− w(ξ̂)q(ξ̂)− β|ξ̂ − ξ| (3.21)

We define Πr(w, q
)
≡ pEε min(µ+ ξ + ε, q)−wq. Therefore, Πr

t
(
ξ̂
)
= Πr(qt(ξ̂), wt(ξ̂)

)
−

β|ξ̂ − ξ|. According to the envelope theorem: When ξ̂ > ξ

∂Πr
t

∂ξ̂
=

∂Πr
t

∂qt
· ∂qt(ξ̂)

∂ξ̂
+

∂Πr
t

∂wt
· ∂wt(ξ̂)

∂ξ̂
− ∂β(ξ̂ − ξ)

∂ξ̂

= 0 · ∂qt(ξ̂)

∂ξ̂
+ (−qt) ·

∂wt(ξ̂)

∂ξ̂
− ∂β(ξ̂ − ξ)

∂ξ̂

= −qt(ξ̂)
αs p

2(ε− ε)
− β < 0

When ξ̂ ≤ ξ

∂Πr
t

∂ξ̂
=

∂Πr
t

∂qt
· ∂q(t ξ̂)

∂ξ̂
+

∂Πr
t

∂wt
· ∂wt(ξ̂)

∂ξ̂
+

∂β(ξ̂ − ξ)

∂ξ̂

= 0 · ∂qt(ξ̂)

∂ξ̂
+ (−qt) ·

∂wt(ξ̂)

∂ξ̂
+

∂β(ξ̂ − ξ)

∂ξ̂

= −qt(ξ̂)
αs p

2(ε− ε)
+ β

We can also get: ∂2Πr
t

∂ξ̂2 = (αs)2 p
4(ε−ε)

> 0, Therefore, Πr
t
(
ξ̂
)

is convex. Because when

ξ̂ > ξ, ∂Πr
t

∂ξ̂
< 0 the retailer will never over report ξ̂ > ξ, ie., any ξ̂ > ξ will be

dominated by ξ̂ = ξ. In addition, due to the convexity of Πr
t
(
ξ̂
)

when ξ̂ ≤ ξ,
the optimal ξ̂ should be either ξ,or ξ. We can get when ξ̂ ≤ ξ:

Πr
t
(
ξ̂
)
= p(µ + ξ)− wt(ξ̂)qt(ξ̂) +

p
2(ε− ε)

[
− ε2 + 2(qt(ξ̂)− µ− ξ)ε− (qt(ξ̂)− µ− ξ)2

]
− β(ξ − ξ̂)
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After some algebra, we can get:

Πr
t
(
ξ̂ = ξ

)
−Πr

t
(
ξ̂ = ξ

)
= (ξ − ξ)

(
αs[− (µ + ε + (2− αs

2 )ξ −
αs

2 ξ
)

p + (ε− ε)c
]

4(ε− ε)
+ β

)
= (ξ − ξ)

(qt(ξ̂ = ξ) + qt(ξ̂ = ξ)

2
−αs p

2(ε− ε)
+ β

)
Therefore, for the retailer in the first stage, the optimal reporting strategy is as
following:

– If β ≥ αs
[(

µ+ε+(2− αs
2 )ξ− αs

2 ξ
)

p−(ε−ε)c
]

4(ε−ε)
, we can get: Πr

t
(
ξ̂ = ξ

)
≥ Πr

t
(
ξ̂ =

ξ
)
. The retailer with private type ξ will choose the optimal report ξ̂∗ = ξ

– When β <
αs
[(

µ+ε+(2− αs
2 )ξ− αs

2 ξ
)

p−(ε−ε)c
]

4(ε−ε)
.we can get: Πr

t
(
ξ̂ = ξ

)
< Πr

t
(
ξ̂ =

ξ
)
, The retailer with private type ξ will choose the optimal report ξ̂∗ = ξ

(2) Second, we consider the case where ξt ∈ (ξ, 0] (i.e., 2ξ < DMI ≤ ξ).

Note that any strategy ξ̂ > ξ will be weakly dominated by ξ̂ = ξ , because
over-reporting will always bring a higher whole sale price compared to report-
ing the true type, and at the same time bringing moral costs. We only consider
ξ̂ ≤ ξ to find the optimal strategy of the supplier. When αsξ ≥ ξt, i.e.,αs ≤ ξt

ξ ,

we can get p = (µ+ξt+ε)p+(ε−ε)c
2(ε−ε)

≤ (µ+αsξ+ε)p+(ε−ε)c
2(ε−ε)

≤ (µ+αs ξ̂+ε)p+(ε−ε)c
2(ε−ε)

. There-

fore, we can get, w∗t (ξ̂) = min
(

p, (µ+αs ξ̂+ε)p+(ε−ε)c
2(ε−ε)

)
= p. Thus the retailer’s

weakly dominating strategy will be ξ̂∗ = ξ, because reporting another types
will not change the wholesale price, and also bring some moral costs. In addi-
tion, when αsξ < ξt, i.e.,αs > ξt

ξ . We consider the following two cases:

1© We consider the case where the retailer with type ξ, which satisfies ξ ≤
ξ ≤ ξt

αs < ξt. Because we only consider ξ̂ ≤ ξ. We can get: (µ+αs ξ̂+ε)p+(ε−ε)c
2(ε−ε)

≤
(µ+αsξ+ε)p+(ε−ε)c

2(ε−ε)
≤ (µ+ξt+ε)p+(ε−ε)c

2(ε−ε)
= p. Thus, with retailer’s reporting

ξ̂ < ξ, the supplier will always get wt(ξ̂) ≤ p. Thus the retailer will face
the same optimal decision problem in the case where ξt ≥ ξ. Therefore,
the retailer will choose the optimal reporting either ξ̂∗ = ξ, or ξ̂∗ = ξ, de-
pending on which report will bring more profit. Similar to the case where
ξt ≥ ξ, for the retailer, the optimal reporting strategy is as following:

* When β ≥ αs
[(

µ+ε+(2− αs
2 )ξ− αs

2 ξ
)

p−(ε−ε)c
]

4(ε−ε)
, we can get: Πr

t
(
ξ̂ = ξ

)
≥

Πr
t
(
ξ̂ = ξ

)
The retailer with private type ξ will choose the optimal report ξ̂∗ =
ξ

* When β <
αs
[(

µ+ε+(2− αs
2 )ξ− αs

2 ξ
)

p−(ε−ε)c
]

4(ε−ε)
, we can get: Πm

t
(
ξ̂ = ξ

)
<

Πm
t
(
ξ̂ = ξ

)
, The retailer with private type ξ will choose the optimal

report ξ̂∗ = ξ
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2© We consider the case where the retailer with type ξ, which satisfies ξ >
ξt
αs . If the retailer report ξt

αs ≤ ξ̂ ≤ ξ. We can get: (µ+αs ξ̂+ε)p+(ε−ε)c
2(ε−ε)

≥
(µ+ξt+ε)p+(ε−ε)c

2(ε−ε)
= p. Therefore, any ξt

αs ≤ ξ̂ < ξ will be weakly dom-

inated by ξ̂ = ξ, because under reporting in this range will not lower
the whole sale price, but may bring moral costs. If the retailer report

ξ ≤ ξ̂ ≤ ξt
αs . We can get: (µ+αs ξ̂+ε)p+(ε−ε)c

2(ε−ε)
≤ (µ+ξt+ε)p+(ε−ε)c

2(ε−ε)
= p. Sim-

ilar to the case where ξt > ξ, we can know that the supplier will either
choose the optimal reporting strategy as either ξ̂ = ξt

αs or ξ̂ = ξ in the
range ξ̂ ∈ [ξ, ξt

αs ]. Because any ξt
αs ≤ ξ̂ < ξ will be weakly dominated

by ξ̂ = ξ, we can know that the retailer will either choose the optimal
reporting strategy as either ξ̂ = ξ or ξ̂ = ξ. We can get when ξ̂ ≤ ξ:

Πr
t
(
ξ̂
)
= p(µ + ξ)− wt(ξ̂)qt(ξ̂) +

p
2(ε− ε)

[
− ε2 + 2(qt(ξ̂)− µ− ξ)ε− (qt(ξ̂)− µ− ξ)2

]
− β(ξ − ξ̂)

Also, because (µ+αsξ+ε)p+(ε−ε)c
2(ε−ε)

> (µ+ξt+ε)p+(ε−ε)c
2(ε−ε)

= p, wt(ξ̂ = ξ) =

min( (µ+αsξ+ε)p+(ε−ε)c
2(ε−ε)

, p) = p = (µ+ξt+ε)p+(ε−ε)c
2(ε−ε)

, thus qt(ξ̂ = ξ) = µ +

ξ + ε = ξ− ξt +
(µ+ε)p−(ε−ε)c

2p . Because
(µ+αsξ+ε)p+(ε−ε)c

2(ε−ε)
< (µ+ξt+ε)p+(ε−ε)c

2(ε−ε)
=

p, we can get: wt(ξ̂ = ξ) = min(
(µ+αsξ+ε)p+(ε−ε)c

2(ε−ε)
, p) = (µ+αsξ+ε)p+(ε−ε)c

2(ε−ε)
,

thus qt(ξ̂ = ξ) = ξ − αs

2 ξ + (µ+ε)p−(ε−ε)c
2p . After some algebra, we can get:

Πr
t
(
ξ̂ = ξ

)
−Πr

t
(
ξ̂ = ξ

)
= (ξ

′
t − ξ)

(
αs[− (µ + ε + 2ξ − αs

2 ξ
′
t − αs

2 ξ
)

p + (ε− ε)c
]

4(ε− ε)

)
+ β(ξ − ξ)

= (ξ
′
t − ξ)

(qt(ξ̂ = ξ) + qt(ξ̂ = ξ
′
t)

2
−αs p

2(ε− ε)

)
+ β(ξ − ξ)

(3.22)

Thus, in this case, the retailer’s optimal reporting strategy in the first
stage will be:

* If β ≥
αs(ξ

′
t−ξ)

([(
µ+ε+2ξ− αs

2 ξ
′
t−

αs
2 ξ

)
p−(ε−ε)c

]
4(ε−ε)

)
ξ−ξ , we can get: Πr

t
(
ξ̂ = ξ

)
≥

Πr
t
(
ξ̂ = ξ

)
The retailer with private type ξ will choose the optimal report ξ̂∗ =
ξ

* When β <

αs(ξ
′
t−ξ)

([(
µ+ε+2ξ− αs

2 ξ
′
t−

αs
2 ξ

)
p−(ε−ε)c

]
4(ε−ε)

)
ξ−ξ ,

we can get: Πm
t
(
ξ̂ = ξ

)
< Πm

t
(
ξ̂ = ξ

)
, The retailer with private type

ξ will choose the optimal report ξ̂∗ = ξ

(3) Third, we consider the case where ξt ≤ ξ (DMI ≤ 2ξ). Since we
don’t need to consider the capacity constraint, in the third stage of
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the game, retailer’s best response will be:

q(w, ξ) =

{
ξ + µ + G−1( p−w

p

)
i f w ≤ p

0 i f w > p

Given retailer’s best response, supplier’s expected profit function
will be: Πs(w) =

(
w − c

)
Eξq(w, αs ξ̂ + (1− αs)ξ). Thus, given re-

tailer’s report ξ̂, and her best order quantity response, in the sec-
ond stage of the game, we can get the optimal w for the supplier:

wt(ξ̂) = min
(

p, (µ+αs ξ̂+ε)p+(ε−ε)c
2(ε−ε)

)
. Because ξt ≤ ξ, we can know

(µ+ξ+ε)p+(ε−ε)c
2(ε−ε)

≥ p. Therefore, (µ+αs ξ̂+ε)p+(ε−ε)c
2(ε−ε)

≥ (µ+ξ+ε)p+(ε−ε)c
2(ε−ε)

≥

p. Therefore, we can know: wt(ξ̂) = min
(

p, (µ+αs ξ̂+ε)p+(ε−ε)c
2(ε−ε)

)
= p.

Since the trust level cannot affect the wholesale price, which is al-
ways the fixed market price, trust cannot affect supply chain effi-
ciency.

To make the model tractable and capture the essential insights, we use two spe-
cial cases of β and investigate the effect of trust on supply chain efficiency. When

the retailer is trustworthy,i.e., β ≥ (µ+ε+3ξ)p−(ε−ε)c
4(ε−ε)

, in the equilibrium she reports

ξ̂∗(ξ) = ξ, according to Lemma 3.7.9. On the contrary, when retailer is fully un-
trustworthy, i.e., β = 0, she will report ξ̂∗(ξ) = ξ to lower the wholesale price and
get more profit. The role of trust and trustworthiness in supply chain efficiency is
summarized in the following Lemma 3.7.9.

In equilibrium of the trust-embedded model when ck = 0 and capacity is al-
ways enough, we investigate the effect of trust and trustworthiness on supply chain
efficiency, and summarize the results in Table 1, and Table 2.

TABLE S7: The effect of trust and trustworthiness on Supply Chain Efficiency: DMI ≥ 0

0 < αs < 1 αs = 0 αs = 1

∂Eξ πsc
t (ξ)

∂αs = −2pαs

8(ε−ε)
var(ξ) < 0 Eξ πsc

t (ξ) = Eξπsc
ii (ξ) Eξ πsc

t (ξ) = Eξ πsc
ci (ξ)

β ≥ (µ+ε+2ξ)p−(ε−ε)c
4(ε−ε)

∂Eξ πs
t (ξ)

∂αs = p(1−αs)
2(ε−ε)

var(ξ) > 0 Eξ πs
t (ξ) = Eξ πs

ii(ξ) Eξ πs
t (ξ) = Eξ πs

ci(ξ)

∂Eξ πr
t (ξ)

∂αs =
−(1− αs

2 )p
2(ε−ε)

var(ξ) < 0 Eξπr
t (ξ) = Eξ πr

ii(ξ) Eξπr
t (ξ) = Eξ πr

ci(ξ)

∂Eξ πsc
t (ξ)

∂αs = −ξ · (µ+ε+αsξ)p−(ε−ε)c
4(ε−ε)

> 0 Eξ πsc
t (ξ) = Eξπsc

ii (ξ) Eξ πsc
t (ξ) > Eξ πsc

ci (ξ)

β = 0 ∂Eξ πs
t (ξ)

∂αs = − αsξ2 p
2(ε−ε)

< 0 Eξ πs
t (ξ) = Eξ πs

ii(ξ) Eξ πs
t (ξ) < Eξ πs

ci(ξ)

∂Eξ πr
t (ξ)

∂αs = −ξ · (µ+ε+2ξ−αsξ)p−(ε−ε)c
4(ε−ε)

> 0 Eξπr
t (ξ) = Eξ πr

ii(ξ) Eξπr
t (ξ) > Eξ πr

ci(ξ)

Eξ πr
t (ξ), Eξ πs

t (ξ), Eξ πsc
t (ξ), are the retailer, the supplier and the total supply chain’s expected profit with

respect to ξ in equilibrium of the trust-embedded model. Eξπr
ci(ξ), Eξπs

ci(ξ), Eξ πsc
ci (ξ), are expected profit with

respect to ξ when information is complete. Eξ πr
ii(ξ), Eξπs

ii(ξ), Eξ πsc
ii (ξ), are expected profit with respect to ξ

when information is incomplete.



128 Chapter 3. Trust in Supply Chain with Double Marginalization

TABLE S8: The effect of trust and trustworthiness on Supply Chain Efficiency: 2ξ < DMI ≤
ξ

ξt
ξ < αs < 1 0 ≤ αs ≤ ξt

ξ αs = 1

∂Eξ πsc
t (ξ)

∂αs =
∫ ξt

αs
ξ − ξ

2 ·
(µ+ε+αsξ)p−(ε−ε)c

2(ε−ε)
dF(ξ) > 0 Eξπsc

t (ξ) = Eξ πsc
ii (ξ) Eξ πsc

t (ξ) = Eξπsc
ci (ξ)

β ≥ (µ+ε+3ξ)p−(ε−ε)c
4(ε−ε)

∂Eξ πs
t (ξ)

∂αs =
∫ ξt

αs
ξ

ξ2 p(1−αs )
2(ε−ε)

dF(ξ) > 0 Eξ πs
t (ξ) = Eξ πs

ii(ξ) Eξ πs
t (ξ) = Eξ πs

ci(ξ)

∂Eξ πr
t (ξ)

∂αs =
∫ ξt

αs
ξ −ξ · (µ+ε+2ξ−αsξ)p−(ε−ε)c

4(ε−ε)
dF(ξ) > 0 Eξ πr

t (ξ) = Eξ πr
ii(ξ) Eξ πr

t (ξ) = Eξ πr
ci(ξ)

∂Eξ πsc
t (ξ)

∂αs = −ξ · (µ+ε+αsξ)p−(ε−ε)c
4(ε−ε)

> 0 Eξπsc
t (ξ) = Eξ πsc

ii (ξ) Eξ πsc
t (ξ) > Eξπsc

ci (ξ)

β = 0 ∂Eξ πs
t (ξ)

∂αs = − αsξ2 p
2(ε−ε)

< 0 Eξ πs
t (ξ) = Eξ πs

ii(ξ) Eξ πs
t (ξ) < Eξ πs

ci(ξ)

∂Eξ πr
t (ξ)

∂αs = −ξ · (µ+ε+2ξ−αs ξ)p−(ε−ε)c
4(ε−ε)

> 0 Eξ πr
t (ξ) = Eξ πr

ii(ξ) Eξ πr
t (ξ) > Eξ πr

ci(ξ)

Eξπr
t (ξ), Eξ πs

t (ξ), Eξ πsc
t (ξ), are the retailer, the supplier and the total supply chain’s expected profit

with respect to ξ in equilibrium of the trust-embedded model. Eξπr
ci(ξ), Eξ πs

ci(ξ), Eξ πsc
ci (ξ), are ex-

pected profit with respect to ξ when information is complete. Eξπr
ii(ξ), Eξ πs

ii(ξ), Eξ πsc
ii (ξ), are expected

profit with respect to ξ when information is incomplete.

The Proof of Lemma 3.7.9 is as following.

(1) First, we consider the case where ξt ≥ ξ (i.e., DMI ≥ 0). Because we know that

qt(ξ̂ = ξ) ≥ qt(ξ̂ = ξ) ≥ µ+ ξ + ε > 0, we can get:
αs
[(

µ+ε+(2− αs
2 )ξ− αs

2 ξ
)

p−(ε−ε)c
]

4(ε−ε)
=

q∗t (ξ̂=ξ)+q∗t (ξ̂=ξ)

2
αs p

2(ε−ε)
≥ αs p

2(ε−ε)
(µ+ ξ + ε). Also note that

αs
[(

µ+ε+(2− αs
2 )ξ− αs

2 ξ
)

p−(ε−ε)c
]

4(ε−ε)
≤

αs
[(

µ+ε+(2− αs
2 )ξ− αs

2 ξ
)

p−(ε−ε)c
]

4(ε−ε)
≤
(

µ+ε+2ξ
)

p−(ε−ε)c
4(ε−ε)

. Combining the aforemen-

tioned two conditions, we can get: 0 ≤ αs p
2(ε−ε)

(µ+ ξ + ε) ≤ αs
[(

µ+ε+(2− αs
2 )ξ− αs

2 ξ
)

p−(ε−ε)c
]

4(ε−ε)
≤(

µ+ε+2ξ
)

p−(ε−ε)c
4(ε−ε)

.

Therefore, when β ≥
(

µ+ε+2ξ
)

p−(ε−ε)c
4(ε−ε)

. For any ξ and any αs, we can always

have β ≥ αs
[(

µ+ε+(2− αs
2 )ξ− αs

2 ξ
)

p−(ε−ε)c
]

4(ε−ε)
. According to Lemma 3.7.9, the retailer

with any private type ξ will choose the optimal report ξ̂∗ = ξ. Thus in the equi-
librium, we can get the optimal w∗t , and q∗t : w∗t = min

(
p, (µ+αsξ+ε)p+(ε−ε)c

2(ε−ε)

)
=

(µ+αsξ+ε)p+(ε−ε)c
2(ε−ε)

. Since w∗t (ξ̂) ≤ p, we can get the retailer’s optimal order

quantity in the third stage of the game: q∗t = ξ + µ + G−1( p−w∗t (ξ̂)
p

)
= ξ −

αs

2 ξ + (µ+ε)p−(ε−ε)c
2p . Therefore, in the equilibrium, πs

t (ξ) = (w∗t − c) ∗ q∗t =(
(µ+αsξ+ε)p+(ε−ε)c

2(ε−ε)
− c
)(

ξ − αs

2 ξ + (µ+ε)p−(ε−ε)c
2p

)
. We can get the derivatives

of πs
t (ξ) with αs, we can get: ∂πs

t (ξ)
∂αs = ξ2 p(1−αs)

2(ε−ε)
≥ 0. Specifically, when αs = 0,

πs
t (ξ) = πs

ii(ξ), when αs = 1, πs
t (ξ) = πs

ci(ξ). In the equilibrium, for the to-

tal supply chain efficiency. πsc
t (ξ) = p(µ + ξ) − cq∗t +

p
2(ε−ε)

[
− ε2 + 2(q∗t −

µ − ξ)ε − (q∗t − µ − ξ)2
]

, where q∗t = ξ − αs

2 ξ + (µ+ε)p−(ε−ε)c
2p . When α = 0,
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the trust model will go back to the incomplete information case, πsc
ii (ξ) =

p(µ + ξ) − cq∗ii +
p

2(ε−ε)

[
− ε2 + 2(q∗ii − µ − ξ)ε − (q∗ii − µ − ξ)2

]
,where q∗ii =

ξ + (µ+ε)p−(ε−ε)c
2p . After some algebra, we can get: Eξπsc

t (ξ) − Eξπsc
ii (ξ) =

−p
8(ε−ε)

Eξξ2 = −p(αs)2

8(ε−ε)
var(ξ) < 0. Specifically, when αs = 0, Eξπsc

t (ξ) = Eξπsc
ii (ξ)

when αs = 1, Eξπsc
t (ξ) = Eξπsc

ci (ξ). In the equilibrium, for the retailer,πr
t (ξ) =

p(µ + ξ)− w∗t q∗t +
p

2(ε−ε)

[
− ε2 + 2(q∗t − µ− ξ)ε− (q∗t − µ− ξ)2

]
. According

to the envelope theorem, we can get: ∂Eξ πr
t (ξ)

∂αs =
−(1− αs

2 )p
2(ε−ε)

var(ξ) < 0.

When β = 0, for any ξ and any αs, we can always have β ≤ αs
[(

µ+ε+(2− αs
2 )ξ− αs

2 ξ
)

p−(ε−ε)c
]

4(ε−ε)
.

According to Lemma 3.7.9,the retailer with any private type ξ will choose
the optimal report ξ̂∗ = ξ. Thus in the equilibrium, we can get the opti-

mal w∗t , and q∗t : w∗t = min
(

p, (µ+αsξ+ε)p+(ε−ε)c
2(ε−ε)

)
=

(µ+αsξ+ε)p+(ε−ε)c
2(ε−ε)

. Since

w∗t (ξ̂) ≤ p, we can get the retailer’s optimal order quantity in the third stage
of the game: q∗t = ξ + µ + G−1( p−w∗t

p

)
= ξ − αs

2 ξ + (µ+ε)p−(ε−ε)c
2p . Thus πs

t (ξ) =

(w∗t − c) ∗ q∗t =

(
(µ+αsξ+ε)p+(ε−ε)c

2(ε−ε)
− c
)(

ξ − αs

2 ξ + (µ+ε)p−(ε−ε)c
2p

)
. We can get

the derivatives of Eξπs
t (ξ) with αs, we can get: ∂Eξ πs

t (ξ)
∂αs = − αsξ2 p

2(ε−ε)
≤ 0. Specif-

ically, when αs = 0, Eξπs
t (ξ) = Eξπs

ii(ξ).In equilibrium, for the total supply

chain, Πsc
t (ξ) = p(µ+ ξ)− cq∗t +

p
2(ε−ε)

[
− ε2 + 2(q∗t −µ− ξ)ε− (q∗t −µ− ξ)2

]
,

where q∗t = ξ− αs

2 ξ + (µ+ε)p−(ε−ε)c
2p . For the retailer, πr

t (ξ) = p(µ+ ξ)−w∗t q∗t +

p
2(ε−ε)

[
− ε2 + 2(q∗t − µ− ξ)ε− (q∗t − µ− ξ)2

]
. According to the envelope theo-

rem, we can get: ∂Eξ Πr
t (ξ)

∂αs =
∫ ξ

ξ q∗t
−ξ p

2(ε−ε)
dF(ξ) > 0. According to the incomplete

information model: πsc
ii (ξ) = p(µ + ξ)− cq∗ii +

p
2(ε−ε)

[
− ε2 + 2(q∗ii − µ− ξ)ε−

(q∗ii − µ − ξ)2
]

,where q∗ii = ξ + (µ+ε)p−(ε−ε)c
2p After some algebra, we can get:

πsc
t (ξ) − πsc

ii (ξ) = − αsξ

2 ·
(µ+ε+ αs

2 ξ)p−(ε−ε)c
2(ε−ε)

> 0. Also, we can get: ∂Πsc
t (ξ)

∂αs =

−ξ · (µ+ε+αsξ)p−(ε−ε)c
4(ε−ε)

> 0. Specifically, when αs = 0, πsc
t (ξ) = πsc

ii (ξ), when
αs = 1, in equilibrium, we can compare the expected profit of the complete in-
formation model and the trust model, and get πs

t (ξ) < πs
ci(ξ), πr

t (ξ) > πr
ci(ξ),

and πsc
t (ξ) > πsc

ci (ξ).

(2) Second, we consider the case where ξt ∈ (ξ, 0] (i.e., 2ξ < DMI ≤ ξ). When
ξ
′
t = ξt

αs > ξ, because we have q∗t (ξ̂ = ξ) > q∗t (ξ̂ = ξ
′
t) = µ + ξ + ε > 0.

We can get:
αs(ξ

′
t−ξ)

([(
µ+ε+2ξ− αs

2 ξ
′
t−

αs
2 ξ

)
p−(ε−ε)c

]
4(ε−ε)

)
ξ−ξ =

αs(ξ
′
t−ξ)

(
q∗t (ξ̂=ξ)+q∗t (ξ̂=ξ

′
t )

2 · p
2(ε−ε)

)
ξ−ξ >

αs(ξ
′
t−ξ)

(
(µ+ξ+ε)· p

2(ε−ε)

)
ξ−ξ > 0.Also because ξ > ξ

′
t, ξ − ξ > ξ

′
t − ξ = ξt

αs − ξ, we
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can get:
αs(ξ

′
t−ξ)

([(
µ+ε+2ξ− αs

2 ξ
′
t−

αs
2 ξ

)
p−(ε−ε)c

]
4(ε−ε)

)
ξ−ξ <

αs(ξ
′
t−ξ)

([(
µ+ε+2ξ− αs

2 ξ
′
t−

αs
2 ξ

)
p−(ε−ε)c

]
4(ε−ε)

)
ξt
αs−ξ

=

αs(ξ
′
t−ξ)

([(
µ+ε+2ξ− αs

2 ξ
′
t−

αs
2 ξ

)
p−(ε−ε)c

]
4(ε−ε)

)
ξ
′
t−ξ

= αs
([(

µ+ε+2ξ− αs
2 ξ
′
t− αs

2 ξ
)

p−(ε−ε)c
]

4(ε−ε)

)
<

(
µ+ε+3ξ

)
p−(ε−ε)c

4(ε−ε)
.

According to Lemma 3.7.9, when β ≥
(

µ+ε+3ξ
)

p−(ε−ε)c
4(ε−ε)

, we can get: for any

ξ and any αs, we can always have β ≥ αs
[(

µ+ε+(2− αs
2 )ξ− αs

2 ξ
)

p−(ε−ε)c
]

4(ε−ε)
, and

β ≥
αs(ξ

′
t−ξ)

([(
µ+ε+2ξ− αs

2 ξ
′
t−

αs
2 ξ

)
p−(ε−ε)c

]
4(ε−ε)

)
ξ−ξ Therefore, the retailer with any private

type ξ will choose the optimal report ξ̂∗ = ξ. Thus in the equilibrium, we
can get the optimal w∗t , and q∗t : w∗t = min

(
p, (µ+αsξ+ε)p+(ε−ε)c

2(ε−ε)

)
,q∗t = ξ + µ +

G−1( p−w∗t
p

)
. We can easily get: when αs = 0, w∗t = w∗ii, q∗t = q∗ii, for any ξ;

When αs = 1, w∗t = w∗ci, q∗t = q∗ci, for any ξ; For the ξ: ξ > ξt
αs > ξ We can get:

(µ+αsξ+ε)p+(ε−ε)c
2(ε−ε)

> (µ+ξt+ε)p+(ε−ε)c
2(ε−ε)

= p. Thus, w∗t = min
(

p, (µ+αsξ+ε)p+(ε−ε)c
2(ε−ε)

)
=

p, and q∗t = µ + ξ + ε. For the ξ: ξ ≤ ξ < ξt
αs , because (µ+αsξ+ε)p+(ε−ε)c

2(ε−ε)
<

(µ+ξt+ε)p+(ε−ε)c
2(ε−ε)

,w∗t = min
(

p, (µ+αsξ+ε)p+(ε−ε)c
2(ε−ε)

)
= (µ+αsξ+ε)p+(ε−ε)c

2(ε−ε)
,and q∗t =

ξ + µ + G−1( p−w∗t
p

)
= ξ − αs

2 ξ + (µ+ε)p−(ε−ε)c
2p . In equilibrium, the supplier’s

profit will be πs
t (ξ) = (w∗t − c) ∗ q∗t =

(
(µ+αsξ+ε)p+(ε−ε)c

2(ε−ε)
− c
)(

ξ − αs

2 ξ +

(µ+ε)p−(ε−ε)c
2p

)
. Therefore, we can get: Eξπs

t (ξ) =
∫ ξt

αs
ξ

(
(µ+αsξ+ε)p+(ε−ε)c

2(ε−ε)
−

c
)(

ξ − αs

2 ξ + (µ+ε)p−(ε−ε)c
2p

)
dF(ξ) +

∫ ξ
ξt
αs

(
p − c

)(
µ + ξ + ε

)
dF(ξ). Accord-

ing to the Leibniz integral rule, we can get: ∂Eξ Πs
t (ξ)

∂αs =
∫ ξt

αs
ξ

ξ2 p(1−αs)
2(ε−ε)

dF(ξ) > 0.

For the total supply chain, EξΠsc
t (ξ) =

∫ ξt
αs

ξ

(
p(µ + ξ)− cq∗t1 +

p
2(ε−ε)

[
− ε2 +

2(q∗t1− µ− ξ)ε− (q∗t1− µ− ξ)2
])

dF(ξ)+
∫ ξ

ξt
αs

(
p(µ+ ξ)− cq∗t2 +

p
2(ε−ε)

[
− ε2 +

2(q∗t2 − µ− ξ)ε− (q∗t2 − µ− ξ)2
])

dF(ξ), where q∗t1 = ξ − αs

2 ξ + (µ+ε)p−(ε−ε)c
2p ,

q∗t2 = µ+ ξ + ε > 0. According to the Leibniz integral rule, we can get: ∂Eξ πsc
t (ξ)

∂αs =∫ ξt
αs

ξ −
ξ
2 ·

(µ+ε+αsξ)p−(ε−ε)c
2(ε−ε)

dF(ξ) > 0. In the equilibrium, for the retailer:Eξπr
t (ξ) =∫ ξt

αs
ξ

(
p(µ+ ξ)−w∗t1q∗t1 +

p
2(ε−ε)

[
− ε2 + 2(q∗t1−µ− ξ)ε− (q∗t1−µ− ξ)2

])
dF(ξ)+∫ ξ

ξt
αs

(
p(µ+ ξ)−w∗t2q∗t2 +

p
2(ε−ε)

[
− ε2 + 2(q∗t2−µ− ξ)ε− (q∗t2−µ− ξ)2

])
dF(ξ),

where w∗t1 = (µ+αsξ+ε)p+(ε−ε)c
2(ε−ε)

, w∗t2 = p q∗t1 = ξ − αs

2 ξ + (µ+ε)p−(ε−ε)c
2p , q∗t2 = µ +

ξ + ε. According to the Leibniz integral rule, we can get: ∂Eξ Πr
t (ξ)

∂αs =
∫ ξt

αs
ξ q∗t1

−ξ p
2(ε−ε)

dF(ξ) >

0. When 0 < αs ≤ ξt
ξ , we can know (µ+αsξ+ε)p+(ε−ε)c

2(ε−ε)
>

(µ+αsξ+ε)p+(ε−ε)c
2(ε−ε)

≥
(µ+ξt+ε)p+(ε−ε)c

2(ε−ε)
= p. Thus, w∗t = min

(
p, (µ+αsξ+ε)p+(ε−ε)c

2(ε−ε)

)
= p.Because
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(µ+ε)p+(ε−ε)c
2(ε−ε)

> (µ+ξt+ε)p+(ε−ε)c
2(ε−ε)

= p, we can get:w∗ii = min
(

p, (µ+ε)p+(ε−ε)c
2(ε−ε)

)
=

p. Therefore, when 0 < αs ≤ ξt
ξ , we can always have w∗ii = w∗t , q∗ii = q∗t , for any

ξ. Therefore, in equilibrium of the trust model, the retailer, supplier, and total
supply chain expected profit will be the same as that in incomplete information
condition.

When β = 0, the retailer has a dominating strategy ξ̂∗ = ξ. Obviously, when
αs = 0, we can get w∗t = w∗ii, q∗t = q∗ii.Therefore, in equilibrium of the trust
model, the retailer, supplier, and total supply chain expected profit will be the
same as that in incomplete information condition. When 0 < αs ≤ ξt

ξ , we can

get αsξ ≥ ξt. Therefore, w∗t = min
(

p,
(µ+αsξ+ε)p+(ε−ε)c

2(ε−ε)

)
= p. We can get the

retailer’s order quantity in equilibrium in the third stage of the game: q∗t =

ξ + µ + G−1( p−w∗t
p

)
= µ + ξ + ε. Therefore, we can also get: we can get w∗t =

w∗ii = p, q∗t = q∗ii = µ+ ξ + ε. When ξt
ξ < αs ≤ 1, we can get

(µ+αsξ+ε)p+(ε−ε)c
2(ε−ε)

<

(µ+ξt+ε)p+(ε−ε)c
2(ε−ε)

= p. Therefore,w∗t = min
(

p,
(µ+αsξ+ε)p+(ε−ε)c

2(ε−ε)

)
=

(µ+αsξ+ε)p+(ε−ε)c
2(ε−ε)

.

In the equilibrium, the supplier’s profit will be πs
t (ξ) = (w∗t − c) ∗ q∗t =

(
(µ+αsξ+ε)p+(ε−ε)c

2(ε−ε)
−

c
)(

ξ− αs

2 ξ + (µ+ε)p−(ε−ε)c
2p

)
. We can get the derivatives of Eξπs

t (ξ) with αs, we

can get the derivatives of Eξπs
t (ξ) with αs, we can get: ∂Eξ πs

t (ξ)
∂αs = − αsξ2 p

2(ε−ε)
≤ 0.

In equilibrium,the total supply chain expected profit will be Πsc
t (ξ) = p(µ +

ξ)− cq∗t +
p

2(ε−ε)

[
− ε2 + 2(q∗t − µ− ξ)ε− (q∗t − µ− ξ)2

]
, where q∗t = ξ− αs

2 ξ +

(µ+ε)p−(ε−ε)c
2p . We have Eξπsc

t (ξ) =
∫ ξ

ξ πsc
t (ξ)dF(ξ). Therefore, ∂Eξ πsc

t (ξ)
∂αs =

− ξ

2 ·
(µ+ε+αsξ)p−(ε−ε)c

2(ε−ε)
> 0. In equilibrium, the retailer’s expected profit will

be Eξπr
t (ξ) =

∫ ξ
ξ

(
p(µ + ξ) − w∗t q∗t +

p
2(ε−ε)

[
− ε2 + 2(q∗t − µ − ξ)ε − (q∗t −

µ − ξ)2
])

dF(ξ), where w∗t =
(µ+αsξ+ε)p+(ε−ε)c

2(ε−ε)
, q∗t = ξ − αs

2 ξ + (µ+ε)p−(ε−ε)c
2p .

According to the Leibniz integral rule, we can get: ∂Eξ Πr
t (ξ)

∂αs = q∗t
−ξ p

2(ε−ε)
> 0.

We can summarize Lemma 3.7.9, and get the result in Proposition 20.

3.7.10 Trust-embedded model: capacity cost is small

In this section, we consider the case where capacity cost is small, ie., ck → 0.25 The
following Lemma 3.7.10 (see proof in Appendix 3.7.11) summarizes the decisions
in equilibrium of the trust embedded model in this case. If ck → 0, DMI ≥ 0,
β = 0,and p−2c

p
(ε−ε)

2 + µ > 5ξ, in equilibrium of the trust embedded model:

(1) The report of the retailer with any type ξ is ξ̂∗(ξ) = ξ.

(2) The wholesale price supplier decides is w∗t =
(µ+αsξ+ε)p+(ε−ε)c

2(ε−ε)
.

25When ck → 0, the decisions in equilibrium are approximate results. To keep the notation simple,
we omit the approximation, and use equality instead. When ck = 0, all the approximate results become
exact value.
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(3) The capacity decision the supplier decides is K∗t = ξ ′∗+ u+ G−1( p−w∗t
p

)
, where

ξ ′∗ = αsξ + (1− αs)ξ

(4) The order quantity for the retailer is:

q∗t =

{
q∗1t = ξ + µ + G−1( p−w∗t

p

)
i f ξ ≤ ξ ′∗

q∗2t = ξ ′∗ + µ + G−1( p−w∗t
p

)
i f ξ > ξ ′∗

With the assumptions, retailer with any type ξ always reports the lowest type.
In particular, β = 0 implies that retailer can manipulate her report without any dis-
utility. Thus, the retailer always has incentive to under-report her type in order to
lower the wholesale price and get more profit. On the other hand, the retailer can
suffer from capacity insufficiency, if she has a high type ξ. Therefore, retailer with
high type ξ has an incentive to not under-report, in order to get enough capacity.

However, when p−2c
p

(ε−ε)
2 + µ > 5ξ, the profit margin and market uncertainty

should be high, compared with the private information. This means the high type
retailer has enough room the manipulate the wholesale price down, and thus the in-
centive to under-report is stronger than the incentive to not under-report. Therefore,
the retailer chooses to report ξ̂∗ = ξ. Then the supplier decides the wholesale price
and capacity. On the one hand, ξ ′∗ = αsξ + (1− αs)ξ is decreasing with αs. Higher
trust level makes the retailer more likely to suffer from capacity insufficiency, which

can harm the supply chain efficiency. On the other hand, w∗t =
(µ+αsξ+ε)p+(ε−ε)c

2(ε−ε)
is

decreasing with αs. Higher trust level leads to a lower wholesale price, which can
improve the supply chain efficiency. Therefore, trust needs to trade off these two
effects in terms of supply chain efficiency. The role of trust in supply chain efficiency
is formally stated in the following Lemma 3.7.10 (see proof in Appendix 3.7.12). If
ck → 0, DMI ≥ 0, β = 0,and p−2c

p
(ε−ε)

2 + µ > 5ξ, in equilibrium of the trust model,
the following properties regarding the expected profit (with respect to ξ) of the total
supply chain, i.e., Eξπsc

t (α
s), is satisfied:

(1)
∂Eξπsc

t (α
s)

∂αs =
∫ ξ ′∗

ξ

ξ

2
p

ε− ε

( (u + ξ + ε)p− (ε− ε)c
p

− q∗1t
)

︸ ︷︷ ︸
>0,trust decreases the wholesale price

dF(ξ)

+
∫ ξ

ξ ′∗

−3ξ

2
p

ε− ε

( (u + ξ + ε)p− (ε− ε)c
p

− q∗2t
)

︸ ︷︷ ︸
<0,trust lowers the capacity

dF(ξ)

(2) when αs → 0, ∂Eξ πsc
t (αs)

∂αs > 0; when αs → 1, ∂Eξ πsc
t (αs)

∂αs < 0;

(3) ∂2Eξ πsc
t (αs)

∂αs2 < 0, Eξπsc
t (α

s) is concave in αs.

(4) There exists an unique trust level αs∗ ∈ (0, 1) s.t. ∂Eξ πsc
t (αs)

∂αs |αs=αs∗ = 0 and
maximizes Eξπsc

t (α
s).

In Lemma 3.7.10, trust has to trade off between decreasing the wholesale price
and lowering the capacity. There exists an trust level αs ∈ (0, 1) which maximizes
total supply chain efficiency. On the one hand, higher trust level leads to lower
wholesale price and thus higher supply chain efficiency. On the other hand, higher
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trust can lower the ξ ′∗ and the capacity decision, this makes retailer more likely to
suffer from insufficient capacity and thus lower the supply chain efficiency. Com-
bination of theses two effects will lead to an optimal trust level for the total supply
chain efficiency.

3.7.11 Proof of Lemma 3.7.10

Given retailer’s report ξ̂ in the first stage, according to the assumption in trust model,
supplier’s posterior belief of ξ has the same distribution as αs ξ̂ + (1− αs)ξ, where
0 ≤ αs ≤ 1 denotes the supplier’s degree of trust. We denote this belief of ξ has
distribution function Fα(· ). According to the second part of Lemma 17, the sup-

plier will decide the capacity Kt(ξ̂) = ξ ′t(ξ̂) + µ + G−1( p−wt(ξ̂)
p

)
, where ξ ′t(ξ̂) =

F−1
α

(wt(ξ̂)−c−ck
wt(ξ̂)−c

)
∈ [ξ, ξ], and wt(ξ̂) is the decide wholesale price. Because ck →

0, ξ ′t(ξ̂) = F−1
α

(wt(ξ̂)−c−ck
wt(ξ̂)−c

)
→ αs ξ̂ + (1 − αs)ξ, and Kt(ξ̂) → αs ξ̂ + (1 − αs)ξ +

µ + G−1( p−wt(ξ̂)
p

)
. In addition, the supplier decides the wholesale price wt(ξ̂) =

min
(
wr, p

)
, where wr is the unique real root satisfying c+ ck < wr <

p(µ+ε)+(ε−ε)(c+ck)
2(ε−ε)

of equation−2 ε−ε
p (wr− c)3 + p(µ+αs ξ̂+ε)−(ε−ε)(c−ck)

p (wr− c)2 + c2
k(1− αs)ξ = 0. When

ck → 0, wr → (µ+αs ξ̂+ε)p+(ε−ε)c
2(ε−ε)

. With the assumption ξt ≥ ξ, wt(ξ̂)→ (µ+αs ξ̂+ε)p+(ε−ε)c
2(ε−ε)

.
26

First, we will show that for the retailer any report ξ̂ > ξ will be dominated by
ξ̂ = ξ. Note that when the retailer reports ξ̂ = ξ, the supplier will set the ξ ′ =
αsξ + (1− αs)ξ ≥ ξ. Therefore, reporting the true type will ensure the retailer get
enough capacity. Since reporting lower type will also decrease the whole sale price
and thus increase the profit, reporting ξ̂ = ξ will dominate any ξ̂ ≥ ξ. Therefore, we
only consider ξ̂ ≥ ξ.

For retailers with type ξ ≤ αsξ + (1− αs)ξ , we can get ξ ≤ αs ξ̂ + (1− αs)ξ for
any ξ̂. Therefore, they will always get enough capacity no matter what report is.
Since lowering the report will decrease the wholesale price, and increase the profit,
they will choose ξ̂∗ = ξ, since lying will cost no utility for the retailer when β = 0.

For retailers with type ξ > αsξ + (1− αs)ξ. We will show that any ξ̂ > ξ−(1−αs)ξ
αs

will be dominated by ξ̂ = ξ−(1−αs)ξ
αs . Because when retailer reports ξ̂ = ξ−(1−αs)ξ

αs ,

we can get ξ ′ = αs ξ̂ + (1− αs)ξ = ξ. Thus reporting ξ̂ = ξ−(1−αs)ξ
αs will ensure her

to get sufficient capacity. Since reporting lower type will decrease the whole sale

price, and thus increase the profit, ξ̂ = ξ−(1−αs)ξ
αs will dominate any ξ̂ > ξ−(1−αs)ξ

αs .

Therefore we only consider ξ̂ ≤ ξ−(1−αs)ξ
αs . When ξ̂ ≤ ξ−(1−αs)ξ

αs , we can know

ξ ′ = αs ξ̂ + (1− αs)ξ ≤ ξ. Since we only need to consider ξ̂ ≤ ξ−(1−αs)ξ
αs , we have:

qt(ξ̂) = ξ ′+ µ+ G−1( p−wt(ξ̂)
p

)
, where ξ ′ = αs ξ̂ + (1− αs)ξ. With the assumption that

ε follows uniform distribution, qt(ξ̂) =

(
u+ε+2(1−αs)ξ+αs ξ̂

)
p−(ε−ε)c

2p . In the first stage

26We will omit the approaching symbol, and use equality in the following proof. This will give us
approximate results, the exact results hold when the capacity cost ck = 0.
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of the game, the optimization problem of the retailer will be:

max
ξ̂

Πr
t
(
ξ̂
)
= p(µ + ξ)− w∗t (ξ̂)q

∗
t (ξ̂) +

p
2(ε− ε)

[
− ε2 + 2(q∗t (ξ̂)− µ− ξ)ε− (q∗t (ξ̂)− µ− ξ)2

]
s.t. ξ̂ ∈ [ξ,

ξ − (1− αs)ξ

αs ]

∂Πr
t (ξ)

∂ξ̂
= −αs

4(ε−ε)

[(
u + ε− 2ξ + 4(1− αs)ξ + 3αs ξ̂

)
p− (ε− ε)c

]
. Because

(
u + ε− 2ξ +

4(1− αs)ξ + 3αs ξ̂
)

p− (ε− ε)c ≥ (u+ ε− 5ξ)p− (ε− ε)c for any ξ, any αs, and any ξ̂.

If p−2c
2p (ε− ε) > µ + 5ξ, we have (u + ε− 5ξ)p− (ε− ε)c > 0, we can get ∂Πr

t (ξ)
∂ξ < 0

for any ξ, any αs. Therefore the optimal reporting strategy will be ξ̂∗ = ξ, if (u + ε−
5ξ)p− (ε− ε)c > 0. When β = 0, ξt ≥ ξ, and (u + ε− 5ξ)p− (ε− ε)c > 0, ξ̂∗ = ξ

for all types of ξ, the decision in the equilibrium: w∗t = min
(

p, (µ+αs ξ̂∗+ε)p+(ε−ε)c
2(ε−ε)

)
=

(µ+αsξ+ε)p+(ε−ε)c
2(ε−ε)

, K∗t = ξ ′∗ + u + G−1( p−w∗t
p

)
, where ξ ′∗ = αsξ + (1− αs)ξ,

q∗t =

{
q∗1t = ξ + µ + G−1( p−w∗t

p

)
i f ξ ≤ ξ ′∗

q∗2t = ξ ′∗ + µ + G−1( p−w∗t
p

)
i f ξ > ξ ′∗

3.7.12 Proof of Proposition 22

From Lemma 3.7.10, the expected profit (on ξ) of the supply chain in the equilibrium
will be:

Eξπsc
t (α

s) =
∫ ξ ′∗

ξ
p(µ + ξ)− cq∗1t +

p
2(ε− ε)

[
− ε2 + 2(q∗1t − µ− ξ)ε− (q∗1t − µ− ξ)2

]
dF(ξ)

+
∫ ξ

ξ ′∗
p(µ + ξ)− cq∗2t +

p
2(ε− ε)

[
− ε2 + 2(q∗2t − µ− ξ)ε− (q∗2t − µ− ξ)2

]
dF(ξ)

Because w∗t = min
(

p, (µ+αs ξ̂∗+ε)p+(ε−ε)c
2(ε−ε)

)
=

(µ+αsξ+ε)p+(ε−ε)c
2(ε−ε)

>
(µ+ξ+ε)p+(ε−ε)c

2(ε−ε)
≥

(ε−ε)p+(ε−ε)c
2(ε−ε)

> (ε−ε)c+(ε−ε)c
2(ε−ε)

= c, q∗1t = ξ + µ + G−1( p−w∗t
p

)
< ξ + µ + G−1( p−c

p

)
=

(u+ξ+ε)p−(ε−ε)c
p . When ξ > ξ ′∗, q∗2t = ξ ′∗ + µ + G−1( p−w∗t

p

)
< ξ + µ + G−1( p−w∗t

p

)
<

ξ + µ + G−1( p−c
p

)
= (u+ξ+ε)p−(ε−ε)c

p . Therefore,

∂Eξπsc
t (α

s)

∂αs =
∫ ξ ′∗

ξ

ξ

2
p

ε− ε

( (u + ξ + ε)p− (ε− ε)c
p

− q∗1t
)

︸ ︷︷ ︸
>0,trust decreases the whole sale price

dF(ξ)

+
∫ ξ

ξ ′∗

−3ξ

2
p

ε− ε

( (u + ξ + ε)p− (ε− ε)c
p

− q∗2t
)

︸ ︷︷ ︸
<0,trust lowers the capacity

dF(ξ)

∂2Eξπsc
t (α

s)

∂αs2 =
∫ ξ ′∗

ξ
− ξ

2

4
p

ε− ε︸ ︷︷ ︸
<0

dF(ξ) +
∫ ξ

ξ ′∗
−9ξ

2

4
p

ε− ε︸ ︷︷ ︸
<0

dF(ξ) +
(u + ε + αsξ)p− (ε− ε)c

(ε− ε)
(−2ξ

2
) f (ξ ′∗)︸ ︷︷ ︸

<0

< 0
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Because when αs → 0, we have ξ ′∗ → ξ, then ∂Eξ Πsc
t (αs)

∂αs →
∫ ξ

ξ

ξ

2
p

ε− ε

( (u + ξ + ε)p− (ε− ε)c
p

− q∗1t
)

︸ ︷︷ ︸
>0,trust decreases the whole sale price

dF(ξ).

When αs → 1, we have ξ ′∗ → ξ, then ∂Eξ Πsc
t (αs)

∂αs →
∫ ξ

ξ ′∗
−3ξ

2
p

ε− ε

( (u + ξ + ε)p− (ε− ε)c
p

− q∗2t
)

︸ ︷︷ ︸
<0,trust lowers the capacity

dF(ξ).

Because ∂Eξ Πsc
t (αs)

∂αs is continuous, according to the intermediate value theorem, there

exists an αs∗ ∈ (0, 1) s.t. ∂Eξ Πsc
t (αs)

∂αs |αs=αs∗ = 0. Because ∂2Eξ Πsc
t (αs)

∂αs2 < 0, we can know
the αs∗ is unique and maximizing EξΠsc

t (α
s).

3.8 Figures for Numerical Analysis

FIGURE S6: p = 200, c = 10, ck = 180, µ = 400. The mar-
ket uncertainty is ε − ε = 400, where ε = −200, ε = 200.
The amount of incomplete information ξ − ξ = 400, where
ξ = −200, ξ = 200. ε, and ξ follows uniform distribution. The

vertical axis is the expected profit of the models.
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FIGURE S7: p = 200, c = 10, ck = 180, µ = 400. The market
uncertainty is ε − ε = 400, where ε = −200, ε = 200. The
amount of incomplete information ξ − ξ = 80, where ξ = −40,
ξ = 40. ε, and ξ follows uniform distribution. The vertical axis

is the expected profit of the models.

FIGURE S8: p = 200, c = 10, ck = 180, µ = 400. The market
uncertainty is ε− ε = 80, where ε = −40, ε = 40. The amount
of incomplete information ξ − ξ = 400, where ξ = −200, ξ =
200. ε, and ξ follows uniform distribution. The vertical axis is

the expected profit of the models.
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FIGURE S9: p = 200, c = 10, ck = 0.7, µ = 400. The mar-
ket uncertainty is ε − ε = 400, where ε = −200, ε = 200.
The amount of incomplete information ξ − ξ = 400, where
ξ = −200, ξ = 200. ε, and ξ follows uniform distribution. The

vertical axis is the expected profit of the models.

FIGURE S10: p = 200, c = 10, ck = 180, µ = 400. The market
uncertainty is ε− ε = 80, where ε = −40, ε = 40. The amount
of incomplete information ξ − ξ = 80, where ξ = −40, ξ = 40.
ε, and ξ follows uniform distribution. The vertical axis is the

expected profit of the models.
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FIGURE S11: p = 200, c = 10, ck = 0.7, µ = 400. The market
uncertainty is ε− ε = 80, where ε = −40, ε = 40. The amount
of incomplete information ξ − ξ = 400, where ξ = −200, ξ =
200. ε, and ξ follows uniform distribution. The vertical axis is

the expected profit of the models.

FIGURE S12: p = 200, c = 10, ck = 0.7, µ = 400. The market
uncertainty is ε − ε = 400, where ε = −200, ε = 200. The
amount of incomplete information ξ − ξ = 80, where ξ = −40,
ξ = 40. ε, and ξ follows uniform distribution. The vertical axis

is the expected profit of the models.
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FIGURE S13: p = 200, c = 10, ck = 0.7, µ = 400. The market
uncertainty is ε− ε = 80, where ε = −40, ε = 40. The amount
of incomplete information ξ − ξ = 80, where ξ = −40, ξ = 40.
ε, and ξ follows uniform distribution. The vertical axis is the

expected profit of the models.

FIGURE S14: p = 200, c = 10, ck = 180, µ = 400, β = 200. The
market uncertainty is ε − ε = 400, where ε = −200, ε = 200. The
amount of incomplete information ξ − ξ = 400, where ξ = −200,
ξ = 200. ε, and ξ follows uniform distribution. The horizontal axis
is trust level, αs ∈ [0, 1]. The vertical axis is the expected profit of the

models.
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FIGURE S15: p = 200, c = 10, ck = 180, µ = 400, β = 200. The
market uncertainty is ε − ε = 400, where ε = −200, ε = 200. The
amount of incomplete information ξ − ξ = 80, where ξ = −40, ξ =
40. ε, and ξ follows uniform distribution. The horizontal axis is trust
level, αs ∈ [0, 1]. The vertical axis is the expected profit of the models.

FIGURE S16: p = 200, c = 10, ck = 180, µ = 400, β = 200. The
market uncertainty is ε− ε = 80, where ε = −40, ε = 40. The amount
of incomplete information ξ − ξ = 400, where ξ = −200, ξ = 200. ε,
and ξ follows uniform distribution. The horizontal axis is trust level,

αs ∈ [0, 1]. The vertical axis is the expected profit of the models.
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FIGURE S17: p = 200, c = 10, ck = 0.7, µ = 400, β = 200. The
market uncertainty is ε − ε = 400, where ε = −200, ε = 200. The
amount of incomplete information ξ − ξ = 400, where ξ = −200,
ξ = 200. ε, and ξ follows uniform distribution. The horizontal axis
is trust level, αs ∈ [0, 1]. The vertical axis is the expected profit of the

models.

FIGURE S18: p = 200, c = 10, ck = 180, µ = 400, β = 200. The
market uncertainty is ε− ε = 80, where ε = −40, ε = 40. The amount
of incomplete information ξ − ξ = 80, where ξ = −40, ξ = 40. ε,
and ξ follows uniform distribution. The horizontal axis is trust level,

αs ∈ [0, 1]. The vertical axis is the expected profit of the models.
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FIGURE S19: p = 200, c = 10, ck = 0.7, µ = 400, β = 200. The
market uncertainty is ε− ε = 80, where ε = −40, ε = 40. The amount
of incomplete information ξ − ξ = 400, where ξ = −200, ξ = 200. ε,
and ξ follows uniform distribution. The horizontal axis is trust level,

αs ∈ [0, 1]. The vertical axis is the expected profit of the models.

FIGURE S20: p = 200, c = 10, ck = 0.7, µ = 400, β = 200. The
market uncertainty is ε − ε = 400, where ε = −200, ε = 200. The
amount of incomplete information ξ − ξ = 80, where ξ = −40, ξ =
40. ε, and ξ follows uniform distribution. The horizontal axis is trust
level, αs ∈ [0, 1]. The vertical axis is the expected profit of the models.
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FIGURE S21: p = 200, c = 10, ck = 0.7, µ = 400, β = 200. The
market uncertainty is ε− ε = 80, where ε = −40, ε = 40. The amount
of incomplete information ξ − ξ = 80, where ξ = −40, ξ = 40. ε,
and ξ follows uniform distribution. The horizontal axis is trust level,

αs ∈ [0, 1]. The vertical axis is the expected profit of the models.

FIGURE S22: p = 200, c = 10, ck = 180, µ = 400, β = 0.2. The
market uncertainty is ε − ε = 400, where ε = −200, ε = 200. The
amount of incomplete information ξ − ξ = 400, where ξ = −200,
ξ = 200. ε, and ξ follows uniform distribution. The horizontal axis
is trust level, αs ∈ [0, 1]. The vertical axis is the expected profit of the

models.
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FIGURE S23: p = 200, c = 10, ck = 180, µ = 400, β = 0.2. The
market uncertainty is ε − ε = 400, where ε = −200, ε = 200. The
amount of incomplete information ξ − ξ = 80, where ξ = −40, ξ =
40. ε, and ξ follows uniform distribution. The horizontal axis is trust
level, αs ∈ [0, 1]. The vertical axis is the expected profit of the models.

FIGURE S24: p = 200, c = 10, ck = 180, µ = 400, β = 0.2. The
market uncertainty is ε− ε = 80, where ε = −40, ε = 40. The amount
of incomplete information ξ − ξ = 400, where ξ = −200, ξ = 200. ε,
and ξ follows uniform distribution. The horizontal axis is trust level,

αs ∈ [0, 1]. The vertical axis is the expected profit of the models.
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FIGURE S25: p = 200, c = 10, ck = 0.7, µ = 400, β = 0.2. The market
uncertainty is ε − ε = 400, where ε = −200, ε = 200. The amount
of incomplete information ξ − ξ = 400, where ξ = −200, ξ = 200. ε,
and ξ follows uniform distribution. The horizontal axis is trust level,

αs ∈ [0, 1]. The vertical axis is the expected profit of the models.

FIGURE S26: p = 200, c = 10, ck = 180, µ = 400, β = 0.2. The
market uncertainty is ε− ε = 80, where ε = −40, ε = 40. The amount
of incomplete information ξ − ξ = 80, where ξ = −40, ξ = 40. ε,
and ξ follows uniform distribution. The horizontal axis is trust level,

αs ∈ [0, 1]. The vertical axis is the expected profit of the models.
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FIGURE S27: p = 200, c = 10, ck = 0.7, µ = 400, β = 0.2. The market
uncertainty is ε − ε = 80, where ε = −40, ε = 40. The amount of
incomplete information ξ − ξ = 400, where ξ = −200, ξ = 200. ε,
and ξ follows uniform distribution. The horizontal axis is trust level,

αs ∈ [0, 1]. The vertical axis is the expected profit of the models.

FIGURE S28: p = 200, c = 10, ck = 0.7, µ = 400, β = 0.2. The market
uncertainty is ε − ε = 400, where ε = −200, ε = 200. The amount
of incomplete information ξ − ξ = 80, where ξ = −40, ξ = 40. ε,
and ξ follows uniform distribution. The horizontal axis is trust level,

αs ∈ [0, 1]. The vertical axis is the expected profit of the models.
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FIGURE S29: p = 200, c = 10, ck = 0.7, µ = 400, β = 0.2. The market
uncertainty is ε − ε = 80, where ε = −40, ε = 40. The amount
of incomplete information ξ − ξ = 80, where ξ = −40, ξ = 40. ε,
and ξ follows uniform distribution. The horizontal axis is trust level,

αs ∈ [0, 1]. The vertical axis is the expected profit of the models.





149

Bibliography

Alós-Ferrer, Carlos and Federica Farolfi (2019). “Trust games and beyond”. In: Fron-
tiers in Neuroscience 13, p. 887.

Ashraf, Nava, Iris Bohnet, and Nikita Piankov (2006). “Decomposing trust and trust-
worthiness”. In: Experimental economics 9.3, pp. 193–208.

Asker, John and Estelle Cantillon (2008). “Properties of scoring auctions”. In: The
RAND Journal of Economics 39.1, pp. 69–85.

— (2010). “Procurement when price and quality matter”. In: The Rand journal of eco-
nomics 41.1, pp. 1–34.

Aviv, Yossi (2003). “A time-series framework for supply-chain inventory manage-
ment”. In: Operations Research 51.2, pp. 210–227.

Bagnoli, Mark and Ted Bergstrom (2005). “Log-concave probability and its applica-
tions”. In: Economic theory 26.2, pp. 445–469.

Balzer, Benjamin and Antonio Rosato (2020). “Expectations-Based Loss Aversion in
Auctions with Interdependent Values: Extensive vs. Intensive Risk”. In: Manage-
ment Science.

Banerji, Abhijit and Neha Gupta (2014). “Detection, identification, and estimation
of loss aversion: Evidence from an auction experiment”. In: American Economic
Journal: Microeconomics 6.1, pp. 91–133.

Baron, Opher et al. (2015). “Newsvendor selling to loss-averse consumers with stochas-
tic reference points”. In: Manufacturing & Service Operations Management 17.4,
pp. 456–469.

Battermann, Harald L, Udo Broll, and Jack E Wahl (1997). Constant relative risk aver-
sion and form equivalence classes. Tech. rep. Diskussionsbeiträge-Serie II.

Beer, Ruth, Hyun-Soo Ahn, and Stephen Leider (2018). “Can trustworthiness in a
supply chain be signaled?” In: Management science 64.9, pp. 3974–3994.

Ben-Ner, Avner and Freyr Halldorsson (2010). “Trusting and trustworthiness: What
are they, how to measure them, and what affects them”. In: Journal of Economic
Psychology 31.1, pp. 64–79.

Ben-Ner, Avner and Louis Putterman (2001). “Trusting and trustworthiness”. In:
BUL Rev. 81, p. 523.

Berg, Joyce, John Dickhaut, and Kevin McCabe (1995). “Trust, reciprocity, and social
history”. In: Games and economic behavior 10.1, pp. 122–142.

Bernath, Michael S and Norma D Feshbach (1995). “Children’s trust: Theory, assess-
ment, development, and research directions”. In: Applied and Preventive Psychol-
ogy 4.1, pp. 1–19.

Bertsekas, Dimitri P et al. (1995). Dynamic programming and optimal control. Vol. 1. 2.
Athena scientific Belmont, MA.

Bichler, Martin (2000). “An experimental analysis of multi-attribute auctions”. In:
Decision Support Systems 29.3, pp. 249–268.

Bohnet, Iris and Rachel Croson (2004). “Trust and trustworthiness.” In:
Bohnet, Iris and Steffen Huck (2004). “Repetition and reputation: Implications for

trust and trustworthiness when institutions change”. In: American economic review
94.2, pp. 362–366.



150 Bibliography

Bolton, Gary, Ben Greiner, and Axel Ockenfels (2013). “Engineering trust: reciprocity
in the production of reputation information”. In: Management science 59.2, pp. 265–
285.

Bolton, Gary E, Elena Katok, and Axel Ockenfels (2004). “How effective are elec-
tronic reputation mechanisms? An experimental investigation”. In: Management
science 50.11, pp. 1587–1602.

Bowlby, John (1969). “Attachment and Loss. Vol 1: Attachment, Vol 2: Separation,
Vol 3: Loss”. In: London: Hogarth Press 1973, p. 1980.

Bowling, Michael et al. (2015). “Heads-up limit hold’em poker is solved”. In: Science
347.6218, pp. 145–149.

Branco, Fernando (1997). “The design of multidimensional auctions”. In: The RAND
Journal of Economics, pp. 63–81.

Brown, Alexander L et al. (2021). “Meta-analysis of empirical estimates of loss-aversion”.
In:

Cachon, Gérard P (2003). “Supply chain coordination with contracts”. In: Handbooks
in operations research and management science 11, pp. 227–339.

Cachon, Gérard P and Martin A Lariviere (2001). “Contracting to assure supply:
How to share demand forecasts in a supply chain”. In: Management science 47.5,
pp. 629–646.

Camerer, Colin F (2018). “Artificial intelligence and behavioral economics”. In: The
Economics of Artificial Intelligence: An Agenda. University of Chicago Press, pp. 587–
608.

Campbell, Murray, A Joseph Hoane Jr, and Feng-hsiung Hsu (2002). “Deep blue”.
In: Artificial intelligence 134.1-2, pp. 57–83.

Charness, Gary, Ninghua Du, and Chun-Lei Yang (2011). “Trust and trustworthi-
ness reputations in an investment game”. In: Games and economic behavior 72.2,
pp. 361–375.

Chaturvedi, Aadhaar and Victor Martínez-de Albéniz (2011). “Optimal procurement
design in the presence of supply risk”. In: Manufacturing & Service operations man-
agement 13.2, pp. 227–243.

Chaturvedi, Aadhaar, Elena Katok, and Damian R Beil (2019). “Split-award auctions:
Insights from theory and experiments”. In: Management Science 65.1, pp. 71–89.

Che, Yeon-Koo (1993). “Design competition through multidimensional auctions”. In:
The RAND Journal of Economics, pp. 668–680.

Chen, Fangruo (2007). “Auctioning supply contracts”. In: Management Science 53.10,
pp. 1562–1576.

Chen, Ningyuan and Javad Nasiry (2020). “Does Loss Aversion Preclude Price Vari-
ation?” In: Manufacturing & Service Operations Management 22.2, pp. 383–395.

Chen, Ying-Ju, Sridhar Seshadri, and Eitan Zemel (2008). “Sourcing through auctions
and audits”. In: Production and Operations Management 17.2, pp. 121–138.

Chen-Ritzo, Ching-Hua et al. (2005). “Better, faster, cheaper: An experimental anal-
ysis of a multiattribute reverse auction mechanism with restricted information
feedback”. In: Management science 51.12, pp. 1753–1762.

Chu, Leon Yang (2009). “Truthful bundle/multiunit double auctions”. In: Manage-
ment Science 55.7, pp. 1184–1198.

Cohen, Chen and Aner Sela (2005). “Manipulations in contests”. In: Economics Letters
86.1, pp. 135–139.

Coller, Maribeth and Melonie B Williams (1999). “Eliciting individual discount rates”.
In: Experimental Economics 2.2, pp. 107–127.

Courty, Pascal and Javad Nasiry (2018). “Loss aversion and the uniform pricing puz-
zle for media and entertainment products”. In: Economic Theory 66.1, pp. 105–140.



Bibliography 151

Crawford, Vincent P and Joel Sobel (1982). “Strategic information transmission”. In:
Econometrica: Journal of the Econometric Society, pp. 1431–1451.

Croson, Rachel and Nancy Buchan (1999). “Gender and culture: International exper-
imental evidence from trust games”. In: American Economic Review 89.2, pp. 386–
391.

Davis, Andrew M, Elena Katok, and Anthony M Kwasnica (2014). “Should sellers
prefer auctions? A laboratory comparison of auctions and sequential mecha-
nisms”. In: Management Science 60.4, pp. 990–1008.

Dirks, Kurt T and Donald L Ferrin (2001). “The role of trust in organizational set-
tings”. In: Organization science 12.4, pp. 450–467.

Eckel, Catherine C and Rick K Wilson (2004). “Is trust a risky decision?” In: Journal
of Economic Behavior & Organization 55.4, pp. 447–465.

Eisenhuth, Roland (2010). “Auction design with loss averse bidders:The optimality
of all pay mechanisms”. In:

Engelbrecht-Wiggans, Richard, Ernan Haruvy, and Elena Katok (2007). “A compar-
ison of buyer-determined and price-based multiattribute mechanisms”. In: Mar-
keting Science 26.5, pp. 629–641.

Engle-Warnick, Jim and Robert L Slonim (2004). “The evolution of strategies in a re-
peated trust game”. In: Journal of Economic Behavior & Organization 55.4, pp. 553–
573.

— (2006). “Learning to trust in indefinitely repeated games”. In: Games and Economic
Behavior 54.1, pp. 95–114.

Erikson, Erik H (1993). Childhood and society. WW Norton & Company.
Fan, Xiaoshuai, Ying-Ju Chen, and Christopher S Tang (2020). “To Bribe or Not in a

Procurement Auction under Disparate Corruption Pressure”. In: Production and
Operations Management.

Fehr, Ernst, Urs Fischbacher, and Michael Kosfeld (2005). “Neuroeconomic foun-
dations of trust and social preferences: initial evidence”. In: American Economic
Review 95.2, pp. 346–351.

Fu, Qiang, Jingfeng Lu, and Yuanzhu Lu (2012). “Incentivizing R&D: Prize or subsi-
dies?” In: International Journal of Industrial Organization 30.1, pp. 67–79.

Fugger, Nicolas, Elena Katok, and Achim Wambach (2016). “Collusion in dynamic
buyer-determined reverse auctions”. In: Management Science 62.2, pp. 518–533.

— (2019). “Trust in procurement interactions”. In: Management Science 65.11, pp. 5110–
5127.

Gächter, Simon, Benedikt Herrmann, and Christian Thöni (2004). “Trust, voluntary
cooperation, and socio-economic background: survey and experimental evidence”.
In: Journal of Economic Behavior & Organization 55.4, pp. 505–531.

Glaeser, Edward L et al. (2000). “Measuring trust”. In: The quarterly journal of eco-
nomics 115.3, pp. 811–846.

Gupta, Shivam et al. (2021). “Artificial intelligence for decision support systems in
the field of operations research: review and future scope of research”. In: Annals
of Operations Research, pp. 1–60.

Ha, Albert Y and Shilu Tong (2008). “Contracting and information sharing under
supply chain competition”. In: Management science 54.4, pp. 701–715.

Hanazono, Makoto, Jun Nakabayashi, and Masanori Tsuruoka (2013). “Procurement
auctions with general price-quality evaluation”. In: KIER Discussion Paper 845.

Harrison, Glenn W, Morten I Lau, and Melonie B Williams (2002). “Estimating in-
dividual discount rates in Denmark: A field experiment”. In: American economic
review 92.5, pp. 1606–1617.



152 Bibliography

Haruvy, Ernan and Elena Katok (2013). “Increasing revenue by decreasing informa-
tion in procurement auctions”. In: Production and Operations Management 22.1,
pp. 19–35.
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