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Abstract 

DEVELOPMENT AND COMPARISON OF PREDICTION MODELS FOR SANITARY SEWER PIPES 

CONDITION ASSESSMENT USING MULTINOMIAL LOGISTIC 

REGRESSION AND NEURAL NETWORK  

Daniel Ogaro Atambo, Ph.D. 

The University of Texas at Arlington, 2021 

 

Supervising Professor: Mohammad Najafi 

Sanitary sewer pipes infrastructure system in good condition is essential in providing safe 

conveyance of the wastewater from homes, businesses, and industries to the wastewater treatment 

plants. For sanitary sewer pipes to deliver the wastewater to the treatment plants, they must be in good 

condition. Most of the water utilities have aged sanitary sewer pipes. Water utilities inspect sewer pipes to 

decide which segments of the sanitary sewer pipes need rehabilitation or replacement. The process of 

inspecting the sewer pipes is described as condition assessment. This condition assessment process is 

costly and necessitates developing a model that predicts the condition rating of sanitary sewer pipes. The 

objective of this dissertation is to develop Multinomial Logistic Regression (MLR) and Artificial Neural 

Network (ANN) models to predict sanitary sewer pipes condition rating using inspection and condition 

assessment data. MLR and ANN models are developed from the City of Dallas' data. The MLR model is 

built using 80% of randomly selected data and validated using the remaining 20% of data. Similarly, the 

ANN model is trained, validated, and tested. The results of this research reveal that MLR and ANN 

models are acceptable. The significant physical factors influencing sanitary pipes condition rating include 

diameter, age, pipe material, and segment length. Soil type is the most important environmental factor 

that influences sanitary sewer pipes condition rating. The accuracy of the performance of the MLR and 

ANN is found to be 75% and 85%, respectively.  This dissertation contributes to the body of knowledge by 

developing models to predict sanitary sewer pipes condition rating that enables policymakers and sanitary 

sewer utilities managers to prioritize the sanitary sewer pipes to be rehabilitated and/or replaced.  
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Chapter 1 

Introduction and Background 

1.1 Introduction 

The provision of wastewater services to communities and municipalities is essential for public 

health, safety, and socioeconomic development. This requires wastewater infrastructure systems that  

collect wastewater from homes, businesses, and industry and convey the sewer to the treatment plants. 

The components of wastewater infrastructure systems include service laterals, sewer pipelines, manholes, 

force mains, siphons, combined sewer overflow regulations, pumping stations, and wet wells. According to 

the 2021 American Society of Civil Engineers (ASCE) Infrastructure Report Card, wastewater infrastructure 

was given a D+ score. It is unpredictable to know where or when an accidental pipeline failure would occur. 

Consequently, and to mitigate this, regulating agencies demand wastewater collection systems conduct 

periodic sewer inspections to comply with legal requirements. Due to limited budgets, however, not all 

segments of sewer pipes in wastewater collections systems can be inspected and assessed in a short time. 

To address this shortcoming of assessing criticality of the sewer pipes, utilities need pipe condition 

estimation models.  

There are three types of sewer infrastructure condition prediction models: physical, artificial 

intelligence, and statistical (Hawari et al. 2020). Sanitary sewer pipes prediction models are classified into 

different categories (Mohammadi et al. 2019). The category of the models are statistical models and artificial 

intelligence models. The statistical models are discriminant analysis, logistic regression, binary regression, 

linear regression, exponential regression, Markov-chain, semi Markov-chain, ordinal regression, and cohort 

survival. The artificial intelligence models are classified into two. The two categories of artificial intelligence 

models are neural network and genetic algorithms and machine learning. The neural network and genetic 

algorithms include Artificial Neural Network (ANN) and fuzzy logic. Machine learning models include 

support vector machine, decision trees, random forest, and Bayesian networks.  

In this dissertation, Multinomial Logistic Regression (MLR) and ANN prediction models are 

developed. MLR is a statistical tool that establishes relationships of independent and dependent variables. 

ANN is a computer mathematical tool that processes data as input and produces results as the output. The 

data is processed in layers. The input data is processed in the input layer. Between the input and output 
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layers there is a hidden layer. The hidden layer is like a black box. The layers are connected to each other 

by weighted connections. The weights are calculated through the training process. The basic elements of 

the layers are nodes or neurons. The nodes or neurons are interconnected to each other to perform 

numerical manipulations that produces results as output. Then physical and environmental factors 

influencing sanitary sewer pipe condition were evaluated. First, the physical variables evaluated are pipe 

material, pipe diameter, pipe length, age, depth, and pipe slope. Second, the environmental variables are 

surface condition, soil type, corrosivity concrete, corrosivity steel, and soil pH. The physical and 

environmental factors are used in the development of sanitary sewer pipe condition rating prediction 

models. To build estimation models, extensive inspections and condition assessment past data set are 

required. 

1.2 Background 

Many water utilities in the U.S. have aging sewer pipeline and critical utility infrastructure.  Critical 

utility and sewer pipeline infrastructure includes water, power, transportation, telecommunication, and 

wastewater management. Access to high levels of drinking water and wastewater services is fundamental 

for the protection of public health, the comfort and well-being of the population, sustainable development 

of the community, and environmental protection (Alegre, 2010). Most of the existing wastewater pipelines 

are deteriorating. In fact, the 2021 ASCE Infrastructure Report Card gave wastewater infrastructure a D+. 

The aging of wastewater pipes can result in an increase in pipe failure rates. Failed pipes are costly to 

repair and replace and can result in social and economic consequences (Opila, 2011). Water utilities are 

faced with challenges in operating and maintaining aging wastewater pipelines; the older the network gets, 

operation and maintenance (O&M) expenses increase (Ugarelli et al., 2008). Inspection, condition 

assessment, renewal of the sewer pipes is not fast enough to keep up with failure of sewer pipes. With 

limited budgets, policy makers and utility managers must make rational decisions in replacing and/or 

rehabilitating the pipelines. Asset managers need to make decisions regarding the selection of optimal 

rehabilitation action for each sewer condition (Wirahadikusumah et al., 1999). Managing these assets 

rationally is, therefore, fundamental for the sustainability of the services and to the economy of societies 

(Alegre, 2010). To be able to make effective decisions, most water utilities are implementing asset 

management concepts. This involves mapping and condition assessment of the wastewater collection 
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systems. In reviewing the sustainability of urban water systems, Bruaset et al., 2018 concluded that 

identifying and implementing sustainable rehabilitation interventions in the long-term is essential for the 

survival of a high service level urban water system.  

It is costly to perform condition assessment for all sanitary sewer collection system pipes. Most of 

the time, wastewater utilities set a goal of the percentage of sewer pipe segments to be inspected and 

replaced annually. Generally, condition check of the pipes is conducted when there is already a pipe failure. 

This dissertation is focused on development and comparison of MLR and ANN models. MLR and 

ANN prediction models were developed to determine sewer pipes condition rating. 

1.3 Problem Statement  

The development of models requires large amounts of data to be collected. In addition, sewer pipes 

condition assessment must be periodically repeated to capture changing conditions. The variables used to 

develop the models vary from one region to another. There is a high demand to develop models that can 

be applicable and accurate in all regions that have similar characteristics.  

In their review on sewer pipes condition prediction models Mohammadi et al. (2019) stated that 

more investigation is required to identify the influence of physical and environmental factors that affect 

deterioration of sewer pipes. To date, they noted, few studies had considered the effect of independent 

variables on condition of sewer pipes. Additionally, they recommended future research to investigate more 

pipe material such as steel and concrete pipes in sewer networks and compare the results, and that results 

of prediction models should be developed for different cities. 

Salman’s and Salem’s (2004) review on sewer pipes condition prediction models observed that 

there is a need for more research to predict condition of sewer pipes with higher accuracy and confidence 

level. Following his research on advanced sewer asset management using dynamic deterioration models 

Syachrani (2010) discovered there was still room for improvement. Accordingly, he recommended, in future 

research, a more comprehensive model be developed by incorporating additional location related attributes 

such as soil type, water table, among others. Further, Syachrani recommended it be necessary to improve 

the accuracy of the consequence of failure estimate by using quantitative measures. He maintained it would 

be interesting to determine how the consequence of failure components could change depending on the 

size of utility (small, medium, or large) and its setting (rural or urban). In a later study Syachrani et al., 
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(2013) advised municipalities to develop and implement risk assessment models for their utilities to get the 

best utility of their limited budgets available for replacing deteriorating assets.  

Vahidi et al., (2016) in their research on infrastructure management and deterioration risk 

assessment of wastewater collection systems advised that the deterioration models can be improved by 

addition or consideration of other independent variables such as soil type, groundwater level, and initial 

quality of construction. In line with Vahidi et al’s recommendation, environmental factors including surface 

condition, soil type, corrosivity concrete, corrosivity steel, and pH considered in building the models were 

included in this dissertation. Surface condition and corrosivity variables have not been studied more by 

others.  

According to Caradot et al., (2018), the improvement of technical asset management and the use 

of digital solutions to improve the efficiency of inspection and rehabilitation strategies is the promising 

leverage of utilities. Caradot et al., (2018), further stated that, most metrics are based on statistical and do 

not provide understanding of deteriorations for sewer operators. Accordingly, there is need to utilize artificial 

intelligence methods and compare the results to those of statistical methods. 

1.4 Objectives 

1.4.1 Main objective 

The main objective of this dissertation is to develop MLR and ANN models to predict sanitary sewer 

pipe condition rating using inspection and condition assessment data. The secondary objectives of this 

research include: 

i. To identify, evaluate, categorize, and develop relationships of different factors affecting sewer 

pipes condition rating. 

ii. To compare the performance of MLR and ANN models for predicting sewer pipes condition 

rating.  
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1.5 Scope of Work 

Table 1-1 presents scope of this dissertation. 

Table 1-1 Scope of Work 

Included Not Included 

• The condition scores and pipe material, 

diameter, age, slope, depth, surface condition, 

soil type, corrosivity concrete, corrosivity steel, 

and pH variables obtained from condition 

assessment. 

• Data extracted from GIS files for the City of 

Dallas GIS Database. 

 

• Pretreatment and Wastewater Treatment 

Plants (WTPs). 

• Financial infrastructure of wastewater 

collection system. 

• Use, storage, or handling of chemicals. 

• Stormwater pipes 

• Force main sewer pipes 

 

 

1.6 Methodology 

The methodology in this research involves five (5) steps, introduction, and background; literature review; 

methodology, data collection and model development; results and discussions; conclusions and 

recommendations for future research. These steps are presented in Figure 1-1. 

First, utilizing engineering journals, databases, and Google Scholar, a thorough literature review is 

conducted to mainly study current sewer pipe prediction models, modes of sewer pipe failure, and variables 

for sewer pipe failure. In addition to physical, environmental, and operational factors influencing sewer pipes 

failure, literature on the failure of sewer pipe and risk process evaluation is reviewed. Second, data is 

collected from Geographical Information System (GIS) shape files for the City of Dallas Water Utilities 

(DWU) GIS Database. The GIS data originates from condition assessment and CCTV inspection records. 

The data is comprised of pipe segments/locations, length (manhole to manhole), pipe material, pipe 

diameter, pipe age (current year minus year of installation), depth (depth of backfill over the crown of pipe 

in ft), soil conditions, corrosivity, slope, surface condition – highway/street, and PACP condition rating. 

Third, the data was prepared, processed, and analyzed. Condition rating was designated as the dependent 

variable while physical and environmental factors were used as independent variables. 
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Figure 1-1 Dissertation Methodology 

In this research, statistical (MLR) and artificial intelligence (ANN)models are developed to predict 

sewer pipes condition rating. The MLR and ANN models are applied to the Dallas Water Utilities’ 

wastewater collection System. It is expected the models could be generalized and applied to regions with 

similar characteristics as that of Dallas Fort Worth metropolitan area (DFW).  

Literature Review 

Sources: Engineering Journals, Databases, Google Scholar, etc.  

Review of Current Sewer Pipes 

Failure Prediction Models 

Review Modes of Sewer Pipe 

Failure  

Results and Discussions 

Prediction modeling using statistical methods: Logistic Regression and Artificial Intelligence 

methods: Artificial neural networks. Inputs: diameter, length, depth, slope, and age.  

Outputs: Pipe rating conditions. Predict sewer pipes condition.  

  

Conclusions and Recommendations for Future Research 

  

Data Collection and Model Development 

Data extracted from shape files and imported to Excel worksheets - Guidelines from 

CCTV inspection results using National Association of Sewer Service Companies 

(NASSCO) Pipeline Assessment and Certification Program (PACP). 

Data preparation and MLR and ANN models development.  

  

Define Variables for Sewer 

Pipes Failure  
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1.7 Expected Outcome  

In this this dissertation, MLR statistical and ANN Artificial Intelligence methods are used to build a 

model that predict sewer pipes condition rating. Utilizing the physical and environmental as independent 

variables the two methods are evaluated and compared. The comparison of the performance of the 

models assists in the selection of the best prediction model.   

1.8 Contributions to the Body of Knowledge 

In this dissertation wide range of physical and environmental factors are used to develop MLR and 

ANN pipes condition prediction models. All types of pipe materials, pipe sizes, and surface conditions are 

considered to estimate the condition of sewer pipe. In previous studies the comparison of MLR and ANN is 

not commonly conducted. Predicting and knowing the sanitary sewer pipes condition rating score enables 

policy makers and sanitary sewer utilities managers in decision making in prioritizing segments of sanitary 

sewer pipes to be rehabilitated and/ or replaced. 

1.9 Future Research 

The future research is discussed in chapter 7 section 7.2. 

1.10 Hypotheses 

1.10.1 Hypothesis 1 

Null hypothesis (H0): Pipe material, diameter, age, slope, and depth variables do not influence 

sewer pipes condition rating. 

Alternative hypothesis (HA): Pipe material, diameter, age, slope, and depth variables influence 

sewer pipes condition rating.  

1.10.2 Hypothesis 2 

Null hypothesis (H0): Surface condition, soil type, corrosivity concrete, corrosivity steel, and pH are 

insignificant variables in sewer pipes condition rating.  

Alternative hypothesis (HA): Surface condition, soil type, corrosivity concrete, corrosivity steel, and pH are 

significant in sewer pipes condition rating. 

1.11 Organization of Dissertation 

This dissertation is divided into seven chapters. Chapter one included introduction and background 

information about condition of sanitary sewer pipes as well as the importance of sewer pipes condition 
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assessment and prediction models. In addition, the problem statement, objectives, scope of work, 

methodology, expected outcome and contribution to the body of knowledge are discussed.   

Chapter two presents a comprehensive review of literature on risk factors associated with sanitary 

sewer pipe asset failures. In addition to sewer pipe classification by material, diameter, and other attributes, 

sewer pipe failure predictions methods are reviewed. Steps of acquiring a risk model is included as well.   

Chapter three present logistic regression and neural network methods. Regression assumptions 

test and test of significance of the coefficients of logistic regression models are discussed. In addition, the 

area under the receiver operating characteristic curve (ROC), ANN architecture backpropagation neural 

network (BPNN), validation, testing, and optimization of the performance of ANN model are discussed. 

Chapter four present data collection, preparation, and preliminary data analysis. In this chapter 

data collected is described. The description of dependent and independent variables is provided.  

Chapter five discusses model development. The MLR and ANN models are developed, validated, 

and tested. Logistic regression and ANN models are validated and tested. 

Chapter six presents results and discussions. Results of MLR and ANN models are discussed. 

Performance of MLR and ANN models, MLR classification table, ROC, and justification of results are 

discussed in this chapter. The MLR and ANN are compared, and best prediction model is selected.  

Chapter seven presents the dissertation conclusions, and recommendations for future research. 

The significant factors influencing sanitary sewer pipes condition rating are identified. The practical 

applications of the dissertation are discussed. 

1.12 Chapter Summary 

This chapter discussed background information about sanitary sewer pipes condition. The 

importance of sewer pipes condition assessment and prediction models were discussed.  The statement of 

the problem, objectives, scope of work, research methodology, expected outcome, and contribution to the 

body of knowledge were examined. 
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Literature Review 

2.1 Introduction  

This chapter presents the background of sewer pipes. A detailed literature review is presented in 

this chapter on sewer pipes classification, risk of sewer pipe, risk process evaluation and modelling 

methods, rehabilitation, and renewal strategies. Modes of sewer pipes failure are reviewed, and the 

parameters that affect the performance of sewer pipes are comprehensively analyzed. The mode and 

frequency of failure is dependent on the physical condition of pipe, performance (O&M) condition, and the 

effect of environmental condition. Each of these variables is discussed in detail. Figure 2-1 illustrates flow 

chart for the outline of this chapter. 

2.2 Sewer Pipe Classification  

Sewer pipe are classified based on several attributes. These include pipe material, pipe diameter, pipe age, 

pipe length, pipe depth Pipe slope, surface condition, soil type, and corrosivity. Burn et al. (2010), identified 

the pipe characteristics that are significant in sewer pipes failure as pipe material, diameter, soil type, 

operating pressure, road type, road surface condition, and density of service connection.  

2.2.1 Sewer Pipe Material 

Cement-based pipes, Vitrified clay pipe (VCP), plastic pipes, and metallic pipes are four categories 

of pipe material. Najafi (2016), discussed types of these pipe categories as: Cement based pipes include 

concrete pipes and asbestos-cement (AC) pipe. Concrete pipes are nonreinforced concrete pipe (CP), 

reinforced concrete pipe (RCP), prestressed concrete cylinder pipe (PCCP), reinforced concrete cylinder 

pipe, bar-wrapped steel-cylinder concrete pipe, and polymer concrete pipe (PCP).  

The plastic pipes are polyvinyl chloride (PVC) pipe, polyethylene (PE) pipe, glass reinforced pipe 

(GRP or Fiberglass Pipe). Metallic pipes are ductile iron (DI) pipe and steel pipe.  Burn et al., (2010), 

stated that sewer material ranges from brick, iron, vitrified clay, pitch fiber, plastic, composite materials, 

and concrete. 
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Figure 0-2 Literature Review Flow Chart 

2.2.2 Sewer Pipe Diameter 

Most water collection systems use a minimum of 6 in. sewer pipes while, a few, others use a 

minimum of 8 in. These two common sizes notwithstanding, pipes can be greater than 96 in. Pipe diameter 
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is one of the factors affecting deterioration of sewer pipes. Malek Mohammadi et al. (2020), stated that 

some condition prediction models identified that sewer deterioration rate decreases with increasing 

diameter. “With occurrence of obstacles in the conduit, segments with small diameters are more likely to 

experience a hydraulic performance drop than large diameter ones” (Lubini and Fuamba, 2011) 

2.2.3 Sewer Pipe Age 

Pipe age is one of the pipe characteristics that is a significant variable in sewer pipes failure. Pipe 

age is defined as the difference between the year the pipe was installed, and the date pipe was inspected.  

(Lubini and Fuamba, 2011) found that pipe age was a significant parameter in the sewer systems 

deterioration model. Muhlbauer (2004) established that the pipe age influenced sewer pipe condition and 

found that poor pipe sewer condition is higher for pipes more than 50 years. “Most of the condition prediction 

models developed in previous studies show that pipe age has a significant relationship with deterioration 

of sewer pipes” (Hou et al., 2020).  

2.2.4 Sewer Pipe Length 

Sewer pipe length is a segment of a pipe that is measured from manhole-to-manhole. Caradot et 

al., 2018, noted that length is relevant in describing sewer deterioration even though it is secondary to pipe 

material. “Typically, longer manhole-to-manhole sewer pipe segments have higher deterioration rates 

because the probability of defects is greater in longer pipes” (Najafi, 2016).  

2.2.5 Sewer Pipe Depth 

Pipe depth is the distance from ground surface to the top of the installed pipe in the ground. 

Syachrani et al. (2013) , determined that pipes buried in depths between 2 m (6 ft) and 3 m (9 ft) were least 

connected to poor sewer pipe condition. Najafi (2016) stated that shallowly buried pipes are subjected to 

more defects and higher deterioration rate due to surface load, illegal connections, and tree root intrusion.  

2.2.6 Sewer Pipe Slope 

Slope is the gradient of pipe installed from one manhole to manhole. Lubini and Fuamba (2011), 

described segment slope in percentage per length of a segment. Slope will determine the velocity of flow 

in the sewer. Flat slope will encourage deposition of debris inside the pipe. Muhlbauer (2004), stated that 

negative slopes and extremely low slopes lead to debris accumulation and blockages. Laakso et al., (2018) 
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found that negative and very low slopes were the most harmful conditions for sewer pipes, whereas steep 

slopes high velocities cause erosion in the pipe walls. 

2.2.7 Environmental Factors 

Environmental factors associated with sewer pipe failure include, but not limited to, surface 

condition, soil type, soil pH, and corrosivity. Surface condition is the ground surface beneath which a sewer 

pipe is located.  Najafi (2016), stated that the location of pipe affect the magnitude of surface loading to 

which it is subject. The most common types of soil classified as soil texture are sand, loam, clay, and rock. 

Najafi and Gokhale (2005), stated that the type of soil is a factor that affects ground loss and stability of the 

sewer pipeline. The interaction of the soil with the sewer pipes determines the deterioration of pipes.  Najafi 

and Gokhale (2005) found that environmental features such as soil, tree density, groundwater level show 

little or no influence in sewer pipe failure. 
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Table 0-2 Characteristics of Common Piping Materials 

Adapted from Salman and Salem (2004) 

 
Material  Application  Key Advantages  Key Disadvantages 

Ductile Iron High pressure 
Good resistance to 
pressure surges  

More expensive than 
reinforced concrete and 
fiberglass 

  Available sizes 4-54 in.     

Reinforced 
Concrete 

Moderate pressure Low corrosion rate  
Relatively brittle, heavy, and 
high transportation cost 

  Available sizes 12-72 in.     

Vitrified Clay 
Low Pressure for larger-
diameter applications 

Low thermal 
expansion, long life 
cycle, raw materials 
availability, corrosion 
resistant 

High transportation cost, 
heavy and labor-intensive to 
work 

PVC 
Low Pressure for up to 
36-inch pipe sizes 

Light weight, no 
corrosion 

Suitable for small pipe sizes 
and low pressure only 

Reinforced 
Plastic Mortar 

Moderate pressure 
available sizes up to 72 
inches 

Light weight, no 
corrosion 

Expensive 

HDPE 
Moderate pressure 
available sizes of 4-63 in. 

Light weight and 
flexible, leak-free joints 

Sensitivity to temperature 
changes and mechanical 
loading 

 

2.3 Risk  

According to Najafi (2016), risk is commonly evaluated as the product of likelihood of occurrence 

and the impact severity of occurrence of an event.  

RISK (
Consequence

Time
) = LIKELIHOOD (

Event

Time
) × IMPACT (

Consenquence

Event
)                Eq. 2-1 

Syachrani et al. (2013), stated that risk is the probability of an event that causes a loss and the 

potential magnitude of that loss. Hence, Syachrani et al., (2013) expressed risk as the following 

mathematical relationship: 

Risk = (event likelihood) x (event consequence)                                                                        Eq. 2-2 

NASSCO (2018) and Muhlbauer (2004), described risk as the product of the probability and consequences 

of failure occurrence presented in the relationship below: 

Risk = Probability x Consequence                     Eq. 2-3 
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Najafi (2016), described risk as the probability of pipe failure happening, or likelihood of a negative 

impact occuring. Mathematically, Najafi 2016 expressed risk as a product of Likelihood of Failure (LoF) and 

Consequence of Failure (CoF): 

Risk = LoF x CoF                                                                                    Eq. 2-4 

Vladeanu and Matthews (2019), posited that  risk score can be calculated as a product of probability 

of failure and the consequence of failure. Najafi (2016), described Likelihood of failure as a curated 

numerical representation (rating) denoting the probability of failure based upon an asset’s physical 

condition. 

2.3.1 Failure of Sewer Pipe 

According to NASSCO (2018), failure can be defined as a pipeline system not accomplishing its 

agreed level of service (LOS). NASSCO (2018), described pipe failure as the inability to convey flow. Pipe 

failure occurs when pipes are exposed to stresses. NASSCO (2018) suggested, internal pressure, soil 

overburden, extreme temperatures, external forces, and fatigue are examples of stresses that must be 

resisted by pipelines. 

An asset can be consindered to have failed when it no longer achieves the required levels of service 

or when it is no longer providing the most cost effect means of providing the service (NASSCO, 2018) 

2.3.2 Probability of Failure or Likelihood of Failure 

Likelihood of failure considers two different modes of failure, physical and performance. The 

physical condition is similar to structural condition. 

Likelihood of failure = Performance Score + Structural Score                                              Eq. 2-5 

Age of the pipe is one pipe attribute that contributes to pipe failure. Khazraeializadeh (2012), stated 

that classical survival function relating the age of the pipeline to the failure rate is denoted by a bathtub. As 

the pipes tend toward the end of their useful life the failure rate increases exponentially. 
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Figure 0-3 Bathtub of Pipe Performance with Age 

(Najafi and Gokhale, 2005) 

According to Najafi (2005), the factors that accelerate pipe aging process are pipe size, pipe section 

length, pipe gradient, pipe depth, surface loading and surface type, frost heave, frost load, sewage 

characteristics, soil-pipe interaction, pipe wall temperature gradients, corrosion, differential pipe 

temperature, soil type, soil pH, groundwater level, overburden pressure, temperature, and precipitation 

(snow or rain). 

The most common predictor of estimating the probability of failure for sewer pipes is age of the 

asset. The bathtub illustrates three zones of pipe failure with age. The first zone is part of the curve with 

failure probability due to construction defects. In this portion the curve defects that developed during initial 

manufacture of a component cause failures. The curve levels off into the second zone. This is a constant 

failure rate zone. The third zone has failure rate increase. USEPA (2009), stated this is a zone where things 

begin to wear out as they reach the end of their useful service life. 

2.3.4 Consequence of Failure 

USEPA (2010), indicated that CoF is associated with cost of repair, social cost, collateral damage 

cost, and legal cost. Syachrani et al. 2013, specified that environmental damage, threat to public health, 

regulatory compliance, and impact to public relations, are among those which are hard to quantify CoF. 

Najafi (2016), grouped CoF into direct and indirect categories, where direct costs include property damage, 

damages to human health, environmental damages, loss of product, repair cost, and cleanup and 
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remediation costs. NASSCO (2018), defined critical assets as assets with a high probability of failure and 

high CoF).  

It is important to consider all the possible CoFs. Traditionally, CoF is always associated with cost 

or dollar value such as cost of repair, social cost, collateral damage cost, and legal cost (Chung, Jeong, & 

Syachrani, 2013). However, not every CoF component can be valued easily. According to NASSCO (2018), 

environmental damage, threat to public health, regulatory compliance, and impact to public relations, are 

among those which are hard to quantify.   

According to Khazraeializadeh (2012), CoF is a combination of direct and indirect impact on the 

vicinity and community due to a potential asset failure. This type of impact is expressed in “Triple Bottom 

Line (TBL) terms. TBL goes beyond considering organization’s finance but also focus on social and 

environmental aspects. TBL concept focusses on direct economic costs, social costs, and environmental 

costs with an aim of sustainability. 

 

 

Figure 0-4 Consideration of Sustainability in Social, Environmental, and Economic Costs 

(Kaushal, 2019) 

NASSCO (2018) identified factors that are used to determine a sewer segment’s TBL COF. These 

factors are pipe diameter, depth of burial, location of the pipe, relative network position of the pipe, proximity 

to environmentally sensitive features, type of customers served, and pipe accessibility. 
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The three types of costs are considered when assigning weighting factors. CoF is relative to factors 

such as diameter of pipe, depth, relative network position, location of pipe, proximity to environmental 

sensitivity features, significant customer service, and accessibility for maintenance and inspection. 

The features considered critical are infrastructure, water bodies, hospitals, and central business 

district (CBD). The features are categorized into causing either economic, social, or environmental 

consequences in case of failure. 

The economic feature is developed based on previous emphasis on pipe diameter to assign COF. 

Larger size indicates higher capital, operating, and replacement costs incurred because of failure. 

Economic costs can be direct and/or indirect. Direct costs could include repairs, legal fees, or fines. Indirect 

costs could include property values, increased insurance rates 

Social category is based on the cost of community impact resulting from a failure. These costs are 

indirect. Consequences include duration of failure, public health and safety, road closures, damage to 

property, and affecting critical services. 

Environmental category is based on the impact to ecological conditions because of an asset failure. The 

costs include a violation of regulatory statures resulting in a fine, proximity to wetlands and waterways, 

possible contamination of water source, and sensitivity of nearby soils. 

According to NASSCO, 2018, the CoF is assigned a scale from 1 to 6. Six (6) is the highest 

consequence and 1 is the least. 

Table 0-3 Consequences of Failure Factor 

(Yang and Su, 2006) 

Diameter CoF 
Factor 

Depth CoF 
Factor 

Relative 
network 
position 
of pipe 

CoF 
Factor 

Location of pipe (Class 
of road) 

CoF 
Factor 

Less than 8" 1 Less than 6" 1 10 or less 1 Unpaved 1 

≥ 8" - < 10" 2 ≥ 6" - < 10" 2 11-30 2 Minor Local 2 

≥ 10" - < 15" 3 ≥ 10" - < 14" 3 31-70 3 Major Local 3 

≥ 15" - < 21" 4 ≥ 14" - < 18" 4 71-120 4 Collector 4 

≥ 21" - < 30" 5 ≥ 18" - < 24" 5 121-150 5 Arterial/Building/Pool 5 

≥ 30" 6 ≥ 24" 6 >150 6 Highway/Waterway 6 
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Table 0-4 Consequence of Failure Factor 

(NASSCO, 2018) 

Distance 
between pipe 
and waterway 

(LF) 

CoF 
Factor 

Distance between 
downstream pipe to a 

service lateral for 
customer with high 

importance (LF) 

CoF 
Factor 

Accessibility of Pipe CoF 
Factor 

150 LF or more 1 
20,000 LF or more 

1 
On Right-of-way - no 

traffic control 
1 

100-150 LF 2 
15,000-20,000 LF 

2 
On Right-of-way - with 

traffic control 
2 

75-150 LF 3 
10,000-15,000 LF 

3 
On public lands with 

vehicle access 
3 

50-75 LF 4 
5,000-10,000 LF 

4 On public lands without 
vehicle access 

4 

25-50 LF 5 
1,000-5,000 LF 

5 On Private lands without 
vehicle access 

5 

Less than 25 LF 6 
Less than 1,000 LF 

6 Behind built structures 
and no vehicle access 

6 

 

The overall CoF score is calculated as weighted average of individual CoF. Table 2-4 illustrates 

CoF computation. 
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Table 0-5 Overall Consequence of Failure Factor 

(NASSCO, 2018) 

 
Economic Social Environmental 

Weighting Factor  1/4 1/4 1/2 

Network Position 

Diameter (12") 3 3   

Depth (9") 2     

Location of Pipe 

Collector road 4 4   

Proximity to Sensitive Environment  

40" from creek     5 

Serves Important Customer       

2 miles downstream of hospital   3   

Accessibility        

Needs traffic control  2     

Total 11 10 5 

Total/Possible (6*#) 11/24 = 0.458 10/18 = 0.555 5/6 = 0.833 

Weighted (Total * Weighting Factor) 0.458*1/4 = 0.115 0.555*1/4 = 0.139 0.833*1/2 = 0.417 

CoF = SUM (of Weighted)/*6 4.03 

 

 

Figure 0-5 Risk Management Strategy  

(NASSCO, 2018) 
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Figure 2-4 shows a relationship between LoF and its CoF. Pipe renewal priority has direct relationship with 

CoF. 

2.4 Risk Process Evaluation  

The process of risk evaluation includes data collection, condition assessment, and condition rating. 

2.4.1 Inspection Data Collection 

There is a variety of pipeline inspection methods utilized by water utilities. These methods include 

leak detection, electromagnetic, ultra/infra spectrum, physical, and visual. Closed Circuit Television (CCTV) 

camera inspection is the most common visual method used. Tscheikner-Gratl et al., (2017), in their journal 

article stated that pipeline management programs look at asset’s condition with high sensitivity in the case 

of failure.  

The costs associated with aftereffects on municipal utilities and its users can run high immediately, 

plus longstanding environmental and health concerns. “Condition monitoring of sewers by means of closed-

circuit television (CCTV) inspection is a labor-intensive source of data, because inspections are performed 

and interpreted manually, but the condition assessment information retrieved is nevertheless one of the 

most important diagnostic sources when planning the renewal of sewer infrastructures” (Caradot et al., 

2018). 

2.4.2 Condition Assessment 

Wastewater utilities operators conduct pipeline condition checks. This technique involves gathering 

data on the likelihood of the pipeline failure and the current structural, operational, capacity, and conditions 

of the pipeline. Pipeline condition assessment is a primary task in running an efficient urban asset 

management program because in the case of system failure, the consequences can be significant to both 

municipalities and users (Khazraeializadeh, 2012).  
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Figure 0-6 Condition Assessment Flow Chart (USEPA, 2009) 

Figure 2-5 illustrates the process of condition assessment. The term condition assessment relates 

to establishing the existing physical condition, identifying the deterioration pattern, and determining the 

potential of asset collapse or failure (Khazraeializadeh, 2012).  

“Understanding the deterioration trends and the remaining asset life could help in identifying 

underperforming assets from which decisions regarding required future expenses can be made efficiently” 

(Rokstad and Ugarelli, 2015). Table 2-5 summarizes condition assessment technologies and their 

applications. 
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Table 0-6 Condition Assessment Technologies and their Applications 
(USEPA, 2010) 

 

2.4.3 Risk and Condition Rating 

The sewer system is one element of urban infrastructure that is expected to operate without 

interruptions. A proactive approach to sewer asset management is of key importance for preventing 

uncontrolled deterioration and for reducing both direct and indirect costs (i.e. social, environmental, and 

third-party damage) associated with sewer failures. Existing guidelines for condition assessment and 

rehabilitation of sewer assets suggest that prioritization of inspections should precede the decision-making 

process (Berardi et al., 2009). 

In a risk-based decision-making process for selecting the set of pipes to be inspected, it is 

necessary to consider the trade-off between economic, technical, and management criteria. Accordingly, 

an inspection program could be developed using a multi-objective optimization approach where decision 

variables are the sewer pipes to inspect, and the objectives represent distinct selection criteria. Berardi et 

al, 2009 concluded that inspection strategies are less effective for decision makers who must select from a 

large set of different feasible pipe combinations. Muhlbauer (2004), described two methods of rating a pipe 
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asset – index overall rating and quick rating.  Index overal total rating  by dividing it by the total  number of 

particular observations that contributed to the total. Another method is that of rating a buried pipe is a “quick 

rating,” the quantities of observations associated with the most significant ratings. An example is a quick 

rating of 4232. This figure is associated with Two grade-4 and two grade-3 defects, with no grade-5 defects. 

According to NASSCO (2018), the PACP quick Rating expreses the number of occurrences for the 

two highest severity grades as shown in Figure 2-6. 

 

 

Figure 0-7 PACP Quick Rating   

(NASSCO, 2018) 

The first characater represents the highest severity grade occurring along the pipe length. The 

second character represents the number of occurrences of that highest severity grade. When the number 

exceeds 9, then alphabetical characters are used as follows: 

10 to 14 =A, 15 to 19 = B and 20 to 24 = C etc. 

According to NASSCO, 2018, the quick rating is calculated separately for Structural (OSR) and 

(OMR) coded defects. 

Pipe segments are gven separate segment grade score. Each condition grade number is multiplied 

by the number of occurances in a pipe segment.  

SGN = number of grade N defects × condition grade N                                              Eq. 2-6 

For example, if a pipe has 6 structural defects of grade 5, 2 defects of grades 3 and 4 defect of grade 2, 

the segment grade scores are respectively 𝑆𝐺5  = 30, 𝑆𝐺3  = 6 and 𝑆𝐺2  = 8. The O & M defects grades are 

separately calculated. Overall pipe rating (OR) is calculated by adding five individual segment grade scores 

as in equation 2-7.  
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OR = SG1 + SG2 + SG3 + SG4 SG5                                                             Eq. 2-7 

For instance, the overall pipe rating is 44 for structural defects in previous example. Structural and O&M 

defect grades are used separately to calculate the overall pipe index for each pipe segment. Table 2-6 

provides an example of overall pipe rating and segment grade score calculation. 

Table 0-7 Overall Rating 

Source: (NASSCO, 2018) 

Overall Rating Defects Segment Grade 

Structural O&M Structural O&M 

5 6 0 30 0 

4 0 0 0 0 

3 2 2 6 6 

2 4 4 8 8 

1 0 0 0 0 

Total Defects = 12 6   

Overall Rating = 44 14 

 

NASSCO (2018) defined Pipe Rating Index (RI) as an indicator defect severity of pipe segment. 

PRI is expressed in equation 2.8.  

RI =
Overall Rating

Total number of defects
                                                       Eq. 2.8 

The pipe rating indices are calculating separately for structural and O&M conditions. For example, in 

previous case the RIStructural is 3.7 and RIO&M is 2.3. A pipe in with condition 1 is in excellent condition and 

pipe with condition 5 pipe has failed or is likely to fail. The pipe segment that is in condition 5 needs 

immediate renewal. 

The LoF is determined from PACP Quick rating.  
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Table 0-8 Common Pipe Material Defects 

(USEPA, 2010) 

 

The table 2-7 summarizes the common pipe materials defects. Water utilities use National Association of 

Sewer Service Companies (NASSCO) Pipeline Assessment and Certificate Program (PACP) standard for 

defect coding and collection of data. Lubini and Fuamba (2011), stated that the PACP assigns a grade of 

one to five to each of the structural defects and features. These grades are defined as:     

1- Excellent; 2- Good; 3- Fair; 4- Poor and 5- Immediate. 

Tables 2-7 and 2-8 presents some examples of structural and operational defect codes.  
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Table 0-9 Structural Defects 

(NASSCO, 2018) 

Group Description Code Structural Grade 

Crack 

Crack Longitudinal CL 2 

Crack Circumferential CC 1 

Crack Multiple CM 3 

Crack Spiral CS 2 

Fracture 

Fracture Longitudinal FL 3 

Fracture Circumferential FC 2 

Fracture Multiple FM 4 

Fracture Spiral FS 3 

Broken Broken B 4 

Hole Hole H < 2 clock pcs →4,>2 clock pcs 5 

Deformed 

Deformed Rigid DR ≤ 5% →4, >5% → 5, 

Deformed Flexible Bulging Round DFBR 
≤ 5% →3, >5% to ≤ 10 →4, 

>10% →5 

Collapse Collapse X 5 

Joint 

Joint Offsite Medium Defective JOMD 3 

Joint Offsite Large Defective JOLD 4 

Weld Failure 

Weld Failure Circumference WFC 2 

Weld Failure Longitudinal WFL 2 

 

Sousa et al., (2014) stressed that inspectors categorize the structural failures into 9 classes, such 

as open joint, displaced joint, cracked, fractured, broken, hole, collapsed, spalling, wear, and deformation. 
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Table 0-10 Operation and Maintenance (O&M) Defects 

(NASSCO, 2018) 

Description Code O&M Grade 

Deposits Attached Encrustation  DAE 
≤ 10% →2, >10% to ≤ 20 →3,       
>20% to ≤ 30 →4, >30% →5 

Deposits Attached Grease DAGS 
≤ 10% →2, >10% to ≤ 20 →3,        
>20% to ≤ 30 →4, >30% →5 

Deposits Attached Ragging DAR 
≤ 10% →2, >10% to ≤ 20 →3,         
>20% to ≤ 30 →4, >10% →5 

Deposits Attached Other DAZ 
≤ 10% →2, >10% to ≤ 20 →3,         
>20% to ≤ 30 →4, >10% →5 

Obstruction Brick or Masonry OBB 
≤ 10% →2, >10% to ≤ 20 →3,         
>20% to ≤ 30 →4, >30% →5 

Obstruction Pipe Material in invert OBM 
≤ 10% →2, >10% to ≤ 20 →3,         
>20% to ≤ 30 →4, >30% →5 

Obstruction intruding through Wall OBI 
≤ 10% →2, >10% to ≤ 20 →3,         
>20% to ≤ 30 →4, >10% →5 

Obstruction External Pipe or Cable  OBP 
≤ 10% →2, >10% to ≤ 20 →3,         
>20% to ≤ 30 →4, >10% →5 

Obstruction Built into Structure OBS 
≤ 10% →2, >10% to ≤ 20 →3,         
>20% to ≤ 30 →4, >30% →5 

Obstruction Construction Debris OBN 
≤ 10% →2, >10% to ≤ 20 →3,         
>20% to ≤ 30 →4, >30% →5 

Obstacle/Obstruction Rocks OBR 
≤ 10% →2, >10% to ≤ 20 →3,         
>20% to ≤ 30 →4, >10% →5 

Obstacle/Obstruction Other Objects OBZ 
≤ 10% →2, >10% to ≤ 20 →3,         
>20% to ≤ 30 →4, >10% →5 

 

Yang and Su, (2006), study revealed that cracks, joint displacement, cross sectional reductions, 

infiltration, deposits are the most common defects in pipes.  

The final condition rating is defined from two major categories which are structural and operation 

and maintenance (O&M). The list below presents the grades and definitions of grades respectively (Moselhi 

and Shehab-Eldeen, 2000):  

5 - Most significant defect grades  

4 - Significant defect grade  

3 - Moderate defect grade  
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2 - Minor to moderate defect grade  

1 - Minor defect grade  

The pipe networks are divided into pipe sections. Pipe sections are defined as a homogeneous 

part of the street section with constant parameters like material, diameter, and construction year. A street 

section consists of several pipe sections. For each network influencing factors or criteria are assigned which 

represent different elements of their rehabilitation decision (e.g., condition of the pipe section). To evaluate 

the characteristics within the criteria, score scales between zero (0) and hundred (100) are used where 0 

denotes no influence and 100 means significant influence (Lubini and Fuamba, 2011). 

2.5 Sewer Pipe Condition Prediction Models 

2.5.1 Introduction 

Sanitary sewer pipes condition rating prediction models are utilized to determine the condition of 

non-inspected pipes. These assists operators of water utilities to develop renewal strategies of the pipes 

and to forecast the evolution of the condition of the sewer network under different investment strategies. 

Caradot et al. (2018), emphasized the need for model outputs to provide key information to operators and 

municipalities in inspection and the planning of rehabilitation budgets. Tscheikner-Gratl et al., (2014), stated 

that the combination of inspection data and model predictions form the analysis, which will help in identifying 

rehabilitation needs and support Infrastructure Asset Management (IAM) decisions. Vladeanu and 

Matthews (2019), stated that condition modelling at pipe level is the optimal way of supporting inspection 

decisions.  

According to Selvakumar et al., (2015), there are 5 steps to risk management. The steps are 

acquiring a risk assessment model, data collection and preparation, segmentation, assessing risks, and 

managing risks. 

Step 1: Acquire a risk assessment model: This refers to selecting commercially available models or building 

a required model from the available data.  

Step 2: Data collection and preparation: Data preparation are the processes that result in data sets that are 

ready to be read into and used by the risk assessment model. 

Step 3: Segmentation: Risks are assigned along the pipe sections. 
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Step 4: Assessing Risks: Each pipeline segment will get a unique risk score that reflects its current 

condition, environment, and the operating/maintenance activities.  

Step 5: Managing risks: Determining appropriate actions given risk assessment results. 

According to Muhlbauer (2004), there are three general types of models namely, matrix, 

probabilistic, and indexing models. Matrix models rank pipeline risks according to the likelihood and the 

potential consequences of an event by simple scale, such as high, medium, or low, or a numerical scale: 

from 1 to 5. 

 

Figure 0-8 Simple Risk Matrix   

  (Muhlbauer, 2004) 

The index matrix in Figure 2-7, numerical values (scores) are assigned to important conditions and 

activities on the pipeline system that contribute to the risk. Each pipeline section is scored based on all its 

attributes. The various pipe segments may then be ranked according to their relative risk scores to prioritize 

repairs, inspections, and other risk mitigating efforts. A risk assessment model can be acquired 

commercially or be built from the scratch. Statistical models and Artificial intelligence are the two main 

approaches of predicting pipe condition.  
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2.5.2 Statistical Methods 

Statistical models establish relations between known pipe variables and the sewer pipe condition 

based on the condition assessment inspection data. Statistical models include discriminant analysis, logistic 

regression, binary regression, exponential regression, Markov, Gomptiz, and Bayesian. “The model is 

calibrated using maximum likelihood fitting methods to provide the best match between model predictions 

and recorded failure data. Goodness of fit between model forecasts and actual observations is then 

demonstrated by comparison with a blind data set that was not part of the calibration process” (Burn et al., 

2010) 

Multiple linear regression analysis allows many observed factors to affect y. The general multiple 

linear regression model can be written as: 

y = β0 + β1x1 + β2x2 + β3x1 + ⋯ + βkxk + u   (Wooldridge, 2013)                                      Eq. 2-9 

β0 is the intercept  

β1 is the parameter associated with x1, 

β2 is the parameter associated with x2, and so on 

The equation below is a multiple regression where Y is a predicted outcome for individual based 

on (a) the Y intercept, a, the value of Y when all predictor values are 0, (b) the product of the independent 

variables, Xs, and the regression coefficients, bk; and (c) the residual, εi 

Yi = a + b1X1 + ⋯ + bkXk + εi   (Lomax & Hahs-Vaughn, 2012)                        Eq. 2-10 

Odds and Logit 

Odds(Y = 1) = P(Y=1)

1−P(Y=1)
  Eq. 2-11                                                               Eq. 2-11 

Log odds 

ln P(Y=1)

1−P(Y=1)
= Logit(Y) = α + β1X1 + β2X2 + ⋯ + βmXm                                                       Eq. 2-12 

Lubini and Fuamba (2011), used age, diameter, length, slope, and material and built a logistic 

regression model as follows. 

Y∗ =∝0+ β1 × Age + β2 × diameter + β3 × length + β4 × slope + β5 × material + ε   Eq. 2-13 

Where Y* is the unobservable conduit condition, α0 is the threshold β1…. β5 are regressor coefficients. 
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2.5.3 Artificial Intelligence System 

An artificial intelligence system (ANN) is one of the modeling techniques of artificial intelligence 

modeling techniques. According to Elmasry et al., (2017), some emerging techniques for artificial 

intelligence systems seek to make better use of human reasoning to solve problems involving incomplete 

knowledge and use of descriptive terms. ANN predict output from input information in a manner that 

simulates the operation of the human central nervous system (Syachrani et al., 2013). Burn et al., (2010), 

stated that ANN is being increasingly used to solve complex problems, it is also often treated as ‘black box’ 

solution. Burn et al., (2010) stated that ANN has layers of nodes, which provide a functional relationship 

between input information and predicted output. The layers are trained on historical data sets. These data 

sets demonstrate the actual relationship between input and output information.  

According to Ward and Savić (2012), ANN can learn the patterns of the underlying process from 

past data, capturing the relations between the inputs and the outputs. According to Peponi et al., 2019, 

ANN is a set of independent neurons linked together in the same way as the synapses, neurons, and 

dendrites of our brain (Rokstad and Ugarelli, 2015). The neural network learn and execute tasks. During 

training, the network modifies the weights of the links among the neurons in a way that each input produces 

the expected outputs. The output is the dependent variable, and the inputs are independent variables. 

Machine learning is another type of artificial intelligence modeling technique. Machine Learning 

include Support Vector Machine, Decision Trees, Random Forest, and Bayesian Forest. 
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Figure 0-9 General Model for Back-propagation Neural Network  

 adapted from (Yang and Su, 2006) 

Figure 2-8 shows that ANN has input layer, an output layer, and one or more hidden layers. These 

layers are connected to each other by weighted connections. The weights associated with these 

connections (i.e., Wi1 and Wj1) are calculated through the training process and generally represent the 

network’s state of knowledge (Moselhi and Shehab-Eldeen 2000). 

In this study, ANN will be developed and compared with the logistic regression. 
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Table 0-11 Advantages and Limitations of Sewer Deterioration Models 

 (Adopted from Salman and Salem, 2004) 

Method Advantages Limitations 

Multiple linear 
regression  

• Simple method  
• Linear regression equations can be generated 
by using common spreadsheet applications.  

• Validity of the model depends on satisfying several assumptions.  
• The functional relationship between condition rating and independent 
variables is assumed to be linear.  

Binary logistic 
regression  

• Probability of a pipe segment to be in a 
deficient state can be obtained.  
 

• This method is applicable for identifying the odds ratio associated with 
dichotomous (such as fail – not fail) variables.  
 

Ordinal 
regression  

• Probability of a pipe segment to be in different 
condition states can be obtained based on the 
relationship between ordinal dependent variable 
and independent variables.  
 

• Poor fit to the observed condition ratings may be obtained if a cross-
sectional dataset is used.  
• Proportionality of odds assumption must be satisfied.  
 

Markov chains  

• Probability of a pipe segment to be in different 
condition states can be obtained.  
• Transition matrices can be generated based 
on experience of the personnel.  
 

• Markov chains assumes the deterioration rate to be time-independent 
(unless different transition matrices are used for different time zones).  
• Dataset should be divided into cohorts and a new Markov-chain 
deterioration curve must be generated for each cohort unless ordinal 
regression is used to estimate transition probability values.  
 

Artificial neural 
networks  

• Exact functional form does not have to be 
identified beforehand.  
• Complex nonlinear relationships can be 
modeled.  
 

• An extensive dataset is required for the model to learn all possible 
combinations.  
 

Survival 
functions  

• Allows the user to analyze the percentages of 
pipe segments in each condition state with 
respect to time.  
 

• Cohorts of sewer pipes must be generated.  
 

Simulation  
• Condition ratings and confidence levels can be 
estimated based on limited data.  
 

• Data points with limited information are assumed to have the same 
deterioration pattern.  
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Table 0-12 Summary of Literature Review with Models 

Author/References Title Methodology Variables Results Critique 

Ugarelli et al., (2013) 

Modeling of 
deterioration 
timeline of 
sewer 
systems 

Multinomial 
logistic 
regression 

Age, diameter, 
length, slope, 
material, and 
condition  

Predicted 54% of 
outcomes for transition 
probabilities involving 
both condition classes 1 
(excellent) and 2 (good), 
and it showed a 59% 
correct prediction for 
class 3 condition (fair). 

Less than 100 sewer segments were 
considered. Larger data sample is 
necessary to obtain a better realistic 
model. Soil type not considered 

Tade et al., ( 2019) 

Practical 
benchmarking 
of statistical 
and machine 
learning 
models for 
predicting the 
condition of 
sewer pipes in 
Berlin, 
Germany 

GompitZ, 
Markov-
chains, and 
machine 
learning 
(Random 
Forest) 

Age, material, 
effluent type, width, 
depth, 
District/location 

Pipe condition rates 

At pipe level Random Forest performs 
better than GompitZ 
The main weakness of the Random 
Forest model lies in its high False 
Positive rate 
Another weakness of the Random 
Forest model is the lack of physical 
information about pipe deterioration in 
the model’s structure. 

Sousa et al., (2014) 

Adaptation of 
sewer 
networks 
using 
integrated 
rehabilitation 
management 

Binary 
logistic 
regression 

Shape, age, 
diameter, slope, and 
length, costs 

Developed logistic 
regression model 
Relationships graphs of 
costs vs pipe diameter 
sensitivity vs specificity, 
and sensitivity vs 
probability cutoff. 

The study considered climate change 
scenarios, used storm water and 
flooding. The models did not consider 
the consequences of failure. The data 
utilized is not large enough. 

Shehab-Eldeen et al., 
(2001) 

Consequence-
of-Failure 
Model for 
Risk-Based 
Asset 
Management 
of Wastewater 
Pipes Using 
AHP 

Analytic 
Hierarchy 
Process 
(AHP) 
Expert 
Opinion 

Pipe age, pipe 
diameter, pie length, 
depth, access to 
pipe, distance to 
critical laterals, soil 
type, seismic zone, 
other infrastructure, 
water body and land 
use 

Weighted risk scores 
and ranking 

Not exhaustive enough for certain 
utilities to use. Requires more 
questionnaires and more subject matter 
experts. only 6 experts responded to 
the questionnaire. O&M hydraulic 
factors were not considered. 
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Table 0-13 Summary of Literature Review with Models  

Author/References Title Methodology Variables Results Critique 

Laakso et al., 
(2018) 

Risk assessment 
of sewer 
condition using 
artificial 
intelligence tools: 
application to the 
SANEST sewer 
system 

ANN and support 
vector machines 
(SVM) 

Material cohorts, diameter, 
depth, length, slope, and 
age 

Tables of predicted and 
observed - operation & 
structural. 
 

All models revealed more 
limited accuracy for 
estimating the sewers in 
worse condition. 

Elmasry et al., 
(2017) 

A decision 
support system 
for rehabilitation 
of sewer pipes 

Database 
management 
system (DBMS) and 
decision support 
system (DSS) 

Defect, structural, 
diameter of pipe, bends, 
hydraulic, original pipe, 
distance, duration, by-
pass, future settlements, 
years in business and 
length, life, local suppliers, 
access, services, and cost  

Calculated utility values. The model overestimates 
condition ratings for good 
conditions and 
underestimates condition 
ratings for poor conditions. 

Syachrani et al., 
(2013) 

Modelling asset 
lifetimes and their 
role in asset 
management 

Ordinal regression, 
Markov chain, 
Bayesian, monte 
Carlo, and 
simulation Artificial 
neural networks. 

Pipe diameter, soil type, 
and pipe age 

Relationships of LoF Vs 
CoF.  
Approaches of predicting 
asset failure. 
Practical Paper with 
recommendations. 

Data collected was not large 
enough.  

Ward and Savić 
(2012) 

Sewer condition 
prediction and 
analysis of 
explanatory 
factors 

Binary logistic 
regression, 
multinomial logistic 
regression, ordinal 
regression, random 
forest, and Boruta 
Algorithm 

Installation depth, material 
type, age, pipe Diameter, 
length, and pipe slope 

Random forest attained 
accuracy 62% when false 
negative rate (FNR) is 
20%. binary logistic 
regression accuracy 56 % 
when FNR is 20%. 

Did not consider hydraulic 
factors such as cracks, roots 
intrusion, and deformation 
and surface defects. 
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Table 0-14 Summary of Literature Review with Models 

 

Author/References Title Methodology Variables Results Critique 

Rokstad and 
Ugarelli (2015) 

Defect based 
deterioration 
model for 
sewer pipelines 
using Bayesian 
belief networks 

Dynamic 
Bayesian network 
(DBN) and Monte 
Carlo simulation 
(MCS) 

Age, size, material, 
diameter, length, 
street category, and 
effluent Inspection: 
Types of defects, 
structural condition 
rating, operational 
condition 
rating, overall 
condition rating 

Structural, operational, 
and overall condition 
ratings were determined 
using the developed 
BBN model. 
Mean absolute error 
(MAE) and root mean 
square error (RMSE) 
were calculated between 
the predicted condition 
rating resulting from the 
BBN model and the 
actual ones. 

The model overestimates the 
structural and overall condition 
ratings for good conditions and 
underestimates the structural and 
overall condition ratings for poor 
conditions 

Yang and Su (2006) Advanced 
criticality 
assessment 
method for 
sewer pipeline 
assets. 

Real age 
prediction model 
Delphi workshop 
method, 
Probabilities of 
failure (PoF), 
Consequences of 
Failure (CoF) 

Length, root, sludge, 
debris, diameter, 
slope, location, and 
Soil type. 

Probability of failure 
(PoF) and Consequence 
of failure (CoFs) were 
generated. 
Criticality was measured 
as the combined effects 
of the event likelihood 
and the event 
consequence. 

Data collected was not large 
enough. Location (land use) and 
capacity (pipe size) two 
components of consequence of 
failure were considered. 
Consequence of failure factors, 
such as environmental impacts, 
were incorporated.  
The study did not quantify the risk 
into monetized values. 

Berardi et al., (2009) A multi-
objective 
optimization 
model for 
sewer 
rehabilitation 
considering 
critical risk of 
failure 

Optimization 
model 

Age, material, 
diameter, and 
criticality  

Arrays of solutions are 
presented as Pareto 
optimal trade-off curves. 
Two non-monetary 
based 
objective functions were 
presented. 

Optimizing the model globally is 
not guaranteed. 
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Table 0-15 Summary of Literature Review with Models 

Author/References Title Methodology Variables Results Critique 

Tade et al., (2019) Automation 
model of 
sewerage 
rehabilitation 
planning 

Sewer inspection, 
assessment of structural 
conditions, computational 
of structural condition 
grades, determination of 
rehabilitation methods 
and substitution of 
materials 

Sewer 
inspections, 
structural 
conditions of pipe 
sections, failure 
lengths, and 
rehabilitation 
methods and 
substitution 
materials 

Adopt the appropriate 
rehabilitation methods 
and substitution 
materials for the 
failure pipes 

Large amount of data will be 
required before such an 
automation model of planning 
optimal sewerage rehabilitation 
strategies can be broadly applied 
to other sewer systems. 

Berardi et al., (2009) An effective 
multi-
objective 
approach to 
prioritization 
sewer pipe 
inspection 

Markov chain model Diameter, age, 
shape, material, 
length, gradient, 
cover depth, 
proximity to 
important 
locations, traffic 
load, and soil type 

The statistical and 
artificial intelligence 
models predicted 
condition of sanitary 
sewer pipes with more 
than 80% accuracy 

Limitations in terms of search 
effectiveness and efficiency. 
 
 

Ugarelli et al., 
(2013) 

Wastewater 
pipes in Oslo: 
from 
condition 
monitoring to 
rehabilitation 
planning 

GompitZ tool model Age, material, 
length 

Obtained 4 scenarios 
with low and High 
consequences 

Only emphasized data collection 

Tade et al., (2019) Modified 
sewer asset 
management 
to 
accommodat
e London's 
future 
sustainable 
development 

Deterioration models 
(MDs)  

Depth, location, 
length, size, slope, 
effluent type, and 
soil type. 

Deterioration model 
for concrete sewer 
Y = 9.169 x ln(x) +C 

This paper did not determine the 
risk values. The model only 
considered concrete sewer pipes 
cohorts. 
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Table 0-16 Summary of Literature Review with Models 

Author/References Title Methodology Variables Results Critique 

      

Burn et al., (2010) Innovative 
research program 
on the renewal of 
aging water 
infrastructure 
systems 

GIS based 
genetic 
algorithm 

Diameter, 
length, 
Accessibility 

Large and small diameter 
sewers in two cities that were in 
excellent condition after being in 
use for 25, 23, 21, and 5 years, 
respectively 

Data on current condition is not big 
enough. 

Ugarelli et al., 
(2013) 

 
Evaluating the 
role of 
deterioration 
models for 
condition 
assessment of 
sewers 
 

GompitZ 
(non-
homogenous 
Markov 
Chain) 
statistical 
model and 
Random 
Forest (RF) 
model 

Pipe diameter, 
Age, Road 
Traffic, 
bedding soil 

GompitZ outperformed RF on 
individual pipe predictions 
RF outperformed GompitZ 
network-level predictions with 
respect to predictive accuracy 

 
Model predictions had lower accuracy 
than an uninformed estimate of the 
distribution of conditions (the 
selection variance). 
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2.6 Chapter Summary 

This chapter reviewed the existing literature on sanitary sewer pipes asset condition. In this chapter, 

sewer pipes classification by material, diameter, and other attributes were discussed. The failure of sewer 

pipe and risk process evaluation were discussed. The risk process evaluation includes inspection data 

collection, condition assessment, risk, and condition rating. NASSCO, PACP quick rating protocol was 

discussed. Sewer pipe condition prediction methods steps acquiring a risk model were reviewed. The steps 

of risk assessment model included, data collection and preparation, segmentation, assessing risks, and 

managing risks. In addition, the risk matrix and logistic regression statistical and ANN artificial intelligence 

methods were discussed.  The literature review indicated that MLR and ANN models can be developed to 

predict sanitary sewer pipes condition using inspection and condition assessment data. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

40 
 

Chapter 3 

Logistic Regression and Neural Network Methods 

3.1 Introduction 

In this chapter, statistical logistic and multiple linear regressions are discussed. Artificial Intelligence 

ANN method is discussed. An explanation of ANN training, validation, and testing procedure and 

performance of the model is discussed. Lastly, summary of this chapter is described.  

3.2 Logistic Regression Method 

Regression methods describe relationships between independent and dependent variables. Lomax and 

Hahs-Vaughn (2012), described independent variable as a predictor and dependent variable a criterion 

variable. The common regression methods are simple linear regression, multiple linear regression, and 

Logistic regression. These methods are represented in form of equations described as models. Equation 

3-1, below, describes a simple linear regression.  

Yi = bYXXi + aYX + ei                                                                            Eq. 3-1 

Where: 

Y is the criterion variable 

X is the predictor variable 

byx is the population slope for Y predicted by X 

ayx is the population intercept for Y predicted by X 

ei are sample residuals or errors of prediction  

i represents an index for a case 

Equation 3-2 represents multiple linear relationship of independent and dependent variables 

according to (Hawari et al. 2020) and (Mohammadi et al. 2019) 

Y = a + β1x1 + β2x2 … . . +βnxn + ε                                                                  Eq. 3-2 

Where: 

Y = dependent variable 

a = intercept 

𝛽1….𝛽𝑛 = slope or coefficient 

N = number of observations.  
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x = independent variables in the datasets 

Simple and multiple regression models demonstrate relationship between one or more predictors 

or variables when the outcome is continuous. The relationship of independent variables and dependent 

variable is linear. Binary or dichotomous outcome variable in logistic regression distinguishes logistic model 

from linear regression model (Hosmer Jr et al., 2013). 

 A logistic model describes the relationship between an outcome (i.e., dependent or response) and 

a set of prediction (i.e., independent, or explanatory) variables, often referred to as covariates (Khashei and 

Bijari, 2010). Equation 3-3 represents logistic regression model according to (Hawari et al., 2020) 

log [
π

1−π
] Y =  ⌊

p(y=1|x1….xn)

1−p(y=1|x1….xn)
⌋ = a + β1x1 + β2x2 … . . +βpxp                                          Eq. 3-3 

Where: 

Y = dependent variable 

a = intercept parameter 

βp = regression coefficients associated with p independent variables. 

Probability of (y =1) determined using exponential transformation.  

π = p(y = 1|x1 … . xn) 

In this model new values of Y can be forecasted with new observed values of X. 

Equation 3-3 shows general function of binary logistic regression. π represents Pr(Y=1) meaning probability 

associated with outcome of condition 1. Consequently, 1- π represents Pr(Y=0) meaning probability of 

outcome of condition 0.  π/(1-π) means the odds of having (Y=1). 

Multinomial logistic regression is an extension of binary logistic regression and can be used when 

dependent variable is categorical and has more than two levels (Hawari et al. 2020). 

ln ⌊
Pr(Y=i|x1…xn)

Pr(Y=k|x1…xn)
⌋ = β0 + βi1x1 + βi2x2 … . . +βinxn                                          Eq. 3-4 

where, 

i = 1, 2, …, k – 1 correspond to categories of the dependent variable, 

xs are independent variables, 

n is the number of independent variables, 

β0 is the intercept for category i, 
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βis are the regression coefficients of independent variables defined for each category i. 

Assuming three sewer pipe conditions, equations 3.5 and 3.6 represents multinomial logistic regression for 

a pipe system with three condition levels 0, 1 and 2. Category zero (0) is used as the reference value. The 

model is developed with logit functions. To develop the model, p covariate and a constant term denoted by 

the vector x (Hosmer et al., 2013). 

g1(x) =  ln ⌊
Pr(Y=1|x)

Pr(Y=0|X)
⌋ = β10 + β11x1 + β12x2 … . . +β1pxp = 𝑥′β1                                          Eq. 3-5 

 

g2(x) =  ln ⌊
Pr(y=2|x)

Pr(y=0|X)
⌋ = β20 + β21x1 + β22x2 … . . +β2pxp = 𝑥′β2                                          Eq. 3-6 

Pr(Y = 0|x) =
1

1+𝑒𝑔1(𝑥)+𝑒
𝑔2(𝑥)′

                                         Eq. 3-7 

Pr(Y = 1|x) =
𝑒𝑔1(𝑥)

1+𝑒𝑔1(𝑥)+𝑒
𝑔2(𝑥)′

                                         Eq. 3-8 

Pr(Y = 2|x) =
𝑒

𝑔2(𝑥)

1+𝑒𝑔1(𝑥)+𝑒
𝑔2(𝑥)′

                                         Eq. 3-9 

Using the convention for the binary model, πj (x) = Pr (Y = j |x) for j = 0, 1, 2. 

3.2.1 Regression Assumptions Test 

The commonly regression assumptions tested are independence, homogeneity, linearity, 

normality, multicollinearity, no outliers, and homoscedasticity. The tests are conducted by checking for 

symmetry in a histogram, frequency distribution, boxplot, or skewness and kurtosis statistics. of the 

assumptions are fixed by transformation. Transformation is used to correct for non-normality in regression 

analysis by transforming the dependent variable using log (to correct for positive skew) or the square root 

(to correct for positive skew) (Chughtai et al. 2008 and Ariaratnam et al., 2001). The most common form of 

transformation is log-transformation. 

Skewness and Kurtosis test normality of data. Skewness measures the direction and degree of 

asymmetry of the data. Values between -3 and +3 are typical values of samples from a normal distribution 

(Young, 2017). The equation 3-10 presents skewness. 

𝑔 =
𝑚3

𝑚2

3
2

                                                                                    Eq. 3-10 

Where m is central moment of the residuals. 



 

43 
 

Kurtosis is another moment estimator that measures the heaviness of the tails of a distribution. If 

the kurtosis statistic equals 3 and the skewness is o, then the distribution is normal (Young, 2017).  Kurrtosis 

is presented in the equation 3-11. 

g =
m3

m2
2                                                                                                     Eq. 3-11 

3.2.2 Test of Significance of the Coefficients of Logistic Models. 

The logistic regression model was checked for statistical validity utilizing change in Log Likelihood, 

Hosmer-Lemeshow Goodness-of-fit Test, Pseudo-variance explained coefficient of multiple determination 

(R2), and Wald Test. Lomax and Hahs-Vaughn (2012) , described Log Likelihood as a ratio test that is like 

F test and that it tests the null hypothesis. The hypothesis test is that all the regression coefficients are 

equal to zero. Richard G. Lomax and Debbie L. Hahs-Vaughn, 2012, denoted the null hypothesis and 

alternative hypotheses as follows: 

H0: β1=β2 =…= βm =0 

H1: H0 is false 

The equation for the likelihood-ratio test statistic is denoted by equation 3-12 (Kulandaivel, 2004) 

−2log (
L0

L1
) = (−2 log L0) − (−2 log L1)                                                              Eq. 3-12 

A chi-square test is produced with degrees of freedom equal to the difference in degrees of freedom 

of the models by multiplying the loglikelihood by -2 as shown in equation 3-13. 

Χ2=-2(LLmodel – LLbaseline)                                                         Eq. 3-13 

There is a possibility of making type I and II errors. (Young, 2017), described Type I error as when 

a null hypothesis is rejected when it is true and Type II as when there is failure to reject null hypothesis 

when is false. Significance testing measures the strength of hypothesis (H0) with probability (the p-value). 

In this study a significance is set to P-value ≤ 0.05 (95% confidence level). 

Hypothesis test is important. The null hypothesis (H0) assumes that coefficients β0, β1...βp-1 are 

zero. The alternative hypothesis (Ha) assumes that not all the coefficients are equal to zero. 

The likelihood function is used in the comparison of the observed and predicted values as shown 

in equation 3-14 (Hosmer Jr et al., 2013).  

𝐷 = −2𝑙𝑛 [
(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑡𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙)

(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙)
]                                     Eq. 3-14 
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D is the likelihood ratio.  

The likelihood ratio test is presented in equation 3-15. 

D = −2 ∑ [yiln (
π̂i

yi
) + (1 − yi)ln (

1−π̂i

1−yi
)]n

i=1                                     Eq. 3-15 

Where �̂�𝑖 = �̂�(xi) 

The statistic D is called deviance and plays a role of residual sum-of-squares (SSE).  

The error sum of square is  

SSE = ∑ (yi − ỳ)2n
i=1                                                   Eq. 3-16 

SSE is the sum of squared residuals. 

This follows the definition of a saturated model that Where �̂�𝑖 = 𝑦𝑖 and the likelihood is (Hosmer 

W. D et al., 2013). 

l(saturated model) = ∏ yi
yin

i=1 × (1 − yi)
1−yi = 1.0                           Eq. 3-17 

This implies that the deviance is:  

𝐷 = −2𝑙𝑛(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑡𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙)                            Eq. 3-18 

Hosmer-Lemeshow Goodness-of-Fit-Test is a tool that is used to examine the overall model fit 

(Lomax and Hahs-Vaughn, 2012). This is a chi-square test that is not statistically significant. A model is 

accepted when there is non-statistical results of Hosmer-Lemeshow test. 

Pseudo-variance explained is another overall model fit index for logistic regression. Cox and Snell, 

Nagelkerke; Hosmer and Lameshow; and traditional R2 are the R2 pseudo-variance explained values 

computed in logistic regression (Lomax and Hahs-Vaughn, 2012).  

The Cox and Snell R2 is computed in as in equation 3-19 (Lomax and Hahs-Vaughn, 2012). 

𝑅𝐶𝑆
2 = 1 − (

𝐿𝐿𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐿𝐿𝑚𝑜𝑑𝑒𝑙
)

2

𝑛
                                                       Eq. 3-19 

To achieve a maximum value 1, Nageklkerke adjusts the Cox and Snell value as in Equation 3-20. 

 

𝑅𝑁
2 =

𝑅𝐶𝑆
2

1−(𝐿𝐿𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
2
𝑛

                                                              Eq. 3-20 

Hosmer-Lemeshow R2 is computed as in equation 3-21 (Lomax and Hahs-Vaughn, 2012). 

𝑅𝐿
2 =

−2𝐿𝐿𝑚𝑜𝑑𝑒𝑙

−2𝐿𝐿𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
                                                                Eq. 3-21 
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Adamowski et al., (2012), described R2 a measure of proportional variation in the structural and 

operational condition explained by a sewer’s attributes. Young (2017), explained that R2 is highly sensitive 

to sample size, its value is increased by adding more predictors, and magnitude of the slopes is not 

measured by R2. Pearson Correlation was used to explain the strength of the relationship between 

variables. This is a way of identifying multi-collinearity. Pearson Correlation value indicates the strength of 

linear association between two independent variables. It describes the degree and direction of relationship 

of two variables. The coefficient of correlation is usually denoted as R and it ranges between -1< R <1. The 

plus and minus signs indicate the direction of the relation. The closer the value of coefficient to -1.00 or 

+1.00 the stronger the correlation between two variables (Hinton et al., 2014). The closer the value of R to 

0, the weaker the linear relationship between the variables. Usually, if  

0.0 ≤ │R│≤ 0.3: weak correlation                                                  Eq. 3-22 

0.3 ≤ │R│≤ 0.7: Moderate Correlation                                           Eq. 3-23 

0.7 ≤ │R│≤ 1: Strong Correlation                                                   Eq. 3-24 

Wald Test is another test of significance of coefficients of variables in logistic regression. Wald test 

is the same as when using t-test in linear regression and is a ratio for maximum likelihood as shown in 

equation 3-25 (Young, 2017). 

Z =
βĵ

s.e.β̂j
                                                     Eq. 3-25                                                                  

where 𝛽𝑗 is the coefficient of the predictor variable, and s.e. is the standard error of the coefficient.  

Wald is used to test the hypothesis H0: 𝛽𝑗 = 0. If 𝛽𝑗 = 0 for independent variables, the variables are not 

significant and should be removed from model. Alternatively, if Wald is not zero, the variables should be 

included in the model. 

3.2.3 Classification Tables 

In logistic regression, classification table is used to show the accuracy of the model prediction. This 

presented inform of the percent correct predictions. The classification table shows the actual or observed 

values versus the predicted values. Classification is the goal for the model (Hosmer et al., 2013).  

3.2.4 Area Under the Receiver Operating Characteristic Curve (ROC) 

The area under ROC has become the standard that evaluates the ability of the model to assign a 

higher probability to the outcome. ROC plots the probability of detecting true signal (Sensitivity) and false 
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signal (1-specificity) (Hosmer et al., 2013). According to Hosmer et at, 2013, the area under the ROC 

curve is described as in the Table 3-1. Figure 3-1 shows the ROC. 

Table 3-17 ROC Curve 

ROC = 0.5  Suggests no discrimination 

0.5 < ROC = 0.7 Poor discrimination 

0.7 ≤ ROC < 0.8 Acceptable discrimination 

0.8 ≤ ROC < 0.9 Excellent discrimination  

ROC ≥ 0.9 Outstanding discrimination 

 

 

Figure 3-10 Sensitivity and 1-Specificity 

(Hosmer et al., 2013) 

3.3 Artificial Neural Network Method 

ANN method is one of the machine learning intelligence techniques used to develop problem 

solving model. ANN is a computational model that is inspired by the biological nervous system (Chakraverty 

and Mall, 2017). The ANN is a structure with neurons or nodes interconnected in layers that are 

interconnected ANN method demonstrates a relationship between the input and output variables. ANN 

learns by processing information through neurons. The interneuron connections are assigned “weights”. 

The ANN structure is comprised of the input layer, hidden layer, and output layer. It is in the hidden layer 

where the processing takes place. This process is like a black box. ANN is used to analyze data with non-
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linear relations. Adamowski et al., (2012), described ANN as data-driven process that has a flexible 

mathematical algorithm which can solve complex nonlinear relationships between input and output data 

sets.  

3.3.1 Artificial Neural Network Architecture 

The structure of ANN is comprised of three layers namely, input, hidden, and output layers. The input layer 

is where the data is entered in the model and computation is conducted. While data are processed in the 

hidden layer, results of ANN are produced in the output layer. Each layer consists of neurons as basic 

elements. A neural network can be described as a network of simple processing nodes or neurons, 

interconnected to each other in a specific order, performing simple numerical manipulations. There is 

number of neurons in the input, hidden and output layers. In this study, three-layer feed-forward neural 

networks with back propagation (BP) learning were constructed for computation of eleven physical and 

environmental input variables as shown in Figure 3-2.  

 

 

Figure 3-11 Neural Network Structure 

(Chughtai et al., 2008) 
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Figure 3-2 shows the algorithm having nodes and network lines. The lines are assigned weights of 

the connecting nodes. Equation 3-26 shows a relationship between the input and output variables. 

yt = w0 +  ∑ wj
q
j=1 . g(w0j + ∑ wij

p
i=1 yt−i) + εt                              Eq. 3-26 

Where, wij(i=0,1,2,…..p,j =1,2……q) and wj(j = 0,1,2,…..,q) are model parameters often called connection 

weights; p is the number of input nodes; and q is the number of hidden nodes. 

 

 

Figure 3-12 Schematic Diagram of a Single Artificial Neuron 

(Adamowski et al., 2012 and Kulandaivel, 2004) 

Figure 3-3 shows a diagram demonstrating input with a summation n feed into a neuron that 

computes the inputs produces a binary output y which is either +1 or -1. The bias weight, Ɵ, is introduced 

with a fixed input at +1. The bias weight allows greater flexibility of the learning process.  

y = ƒ(∑ WiXi
n
i=1 ) = |

−1 when ∑ WiXi
n
i=1 ≥0

1 when ∑ WiXi>0n
i=1                                             Eq. 3-27 

In equation 3-27, y is the neuron and f is a threshold function known as the neuron’s transfer function, which 

gives an output of +1 whenever Σwixi is greater than zero (the threshold value) or -1 whenever Σwixi is less 

than (or equal to) zero (Kulandaivel, 2004). 

In this study the activation function used to act upon input to get output is bipolar sigmoid 

function. The bipolar sigmoid function Formula is in equation 3-28 and Figure 3-4 (Chakraverty and 

Susmita, 2017). 
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Figure 3-13 Plot on Bipolar Sigmoid Function 

The output of the bipolar sigmoid function is between -1 and 1. 

ƒ(𝑥) =
1

1+𝑒−𝜆𝑥 − 1 =
1−𝑒−𝜆𝑥

1+𝑒−𝜆𝑥                                                       Eq. 3-28 

3.3.2 Backpropagation Neural Network (BPNN) 

BPNN comprises of Feed-Forward Neural network and Feedback Neural network. In Feed-Forward 

Neural network, the data is placed in the input layer is received by neurons as input and then feed their 

outputs to the next layer. The data comes from the input node to the output node in a forward way 

(Chakraverty and Mall, 2017). In feedback neural network the output of one-layer loops back to the previous 

layer. Feedback neural networks are used in optimization problems, where the network looks the best 

arrangement of interconnected factors (Chakraverty and Susmita, 2017). Figure 3-5 shows BPNN. 
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Figure 3-14 Diagram of Feedback Neural Network 

(Chakraverty and Susmita, 2017) 

According to Tavakoli, 2018, the BPNN network operates in two modes: mapping and training. The 

information flows forward in the mapping mode substitutes between forward and backward in training mode. 

The input layer sends the information of the independent variables to the hidden layer. The hidden later 

computes and assign weights to each variable. The hidden layer sends the results to the output layer. Each 

output-layer neuron completes a similar calculation and outputs the resulting value as an estimate of the 

dependent variable it represents (Tavakoli, 2018). 

3.3.3 ANN Training 

Training of ANNs is achieved by trial-and-error method with weights randomly taking numbers in 

training the model. The training stops when the neural network reaches lowest training and testing errors.  

Error calculation involves the derivative of output with respect to the input (Chakraverty and Mall, 2017). 

Considering a multilayer ANN with one input node x with h number of data, a hidden layer with m nodes, 

and one output unit. The network output N(x,p) is developed as (Chakraverty and Mall, 2017). 

N(x, p) = ∑ vj
m
j=1 s(Zj)                                                      Eq. 3-29 

The derivative of N(x,p) with respect to input x is  
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dkN

dxk = ∑ vj
m
i=1 wj

ksj
k                                                           Eq. 3-30 

The derivative Na of the network with respect to other paraments is computed as in equation 3-31 

∂Na

∂wj
  = xvjPjsj

(⋀+1)
+ vj⋀jwj

⋀j=1
   i = 1,2, … , n                                   Eq. 3-31 

The gradient of error is found from the derivatives. The error function is minimized using the error back 

propagation learning method for unsupervised training (Chakraverty and Mall, 2017). 

During training, the model can either be supervised or unsupervised learning. In supervised 

learning a comparison of computed output and corrected expected output is compared. The error is 

determined and then used to improve the performance of the model. In unsupervised learning, the network 

is provided with input data without desired outputs.  The learning process is to adjust all the weights and let 

the output y approach the desired output so that the neuron performs the classification task correctly. 

3.3.4 ANN Validation and Test data 

When the model is being trained, validation and testing happens concurrently. The testing process 

utilized training and validation to assess the performance of the model. The performance of the ANN model 

was optimized by varying the number of neurons using a trial-and-error procedure. The number of neurons 

in the input and output layers were based on the input and output variables. Chughtai et al., 2008 stated 

that the performance of different models is assessed in terms of goodness of fit. Adamowski et al., (2012), 

described the coefficient of determination (R2) as measures the degree of correlation among the observed 

and predicted values. The R2 values are between 0 to 1. One (1) represents a perfect relationship between 

the data and the line drawn through them, and 0 represents no correlation between the data and the line. 

Adamowski et al. (2012) further stated that the root mean square error (RMSE) evaluates the variance of 

errors independently of the sample size. Adamowski et al., (2012), stated that a perfect fit between 

observed and forecasted values would have a RMSE of 0.  

The metrics of precision, recall, and accuracy are also used in measuring performance of the model 

in category classification (Yin et al., 2020).The metrics of precision, recall, and accuracy are presented in 

Equations 3-32, 3-33, and 3-34, respectively (Yin et al., 2020).  

Precision =
TP

TP+FP
                                                                      Eq. 3-32 

Recall =
TP

TP+FN
                                                                           Eq. 3-33 
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Accuracy =
TP+TN

TP+TN+FP+FN
                                                             Eq. 3-34 

Where the definitions of TP, FN, FP, TN are summarized in Table 3-2.  

 

Table 3-18 Metrics of Measuring Performance 

  True condition   

  Positive Negative  

Predicted Positive True Positive (TP) False Positive (FP) 

Predicted Negative  False Negative (FN) True Negative (TN) 

 

Equations 3-35, 3-36, 3-37, 3-38, and 3-39 describes the metrics of measuring model performance.  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝑇𝑃𝑅 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                  Eq. 3-35 

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝑇𝑁𝑅 = 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑃+𝑇𝑁
                   Eq. 3-36 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝑇𝑃𝑅 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                   Eq. 3-37 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝐹𝑃𝑅 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦                    Eq. 3-38 

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝐹𝑁𝑅 = 1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦                         Eq. 3-39 

Precision describes the correct rate for specific category, while recall is the rate of completeness 

of the classified sample for a specific category and accuracy description of percentage correctly classified 

sample for specific category (Yin et al., 2020).  

3.3.5 Optimization of the ANN Structure 

The minimum value of the mean squared error (MSE) of the training and validation sets is used to 

determine the optimization of the architecture of the ANN models and its parameters variation.   

The mean squared error is calculated in equation 3-40 (Young, 2017). 

MSE =
SSE

dfE
=

SSE

n−2̀
                                                                    Eq. 3-40 

Where SSE is the error sum squares, dfE = n-p., p is the dimension of β in the model, including intercept 

β0. 

The Lowest MSE for the training and the validation sets is used as the criteria for selecting the best neural 

networks architecture. 
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The root mean square error (RMSE) and the coefficient of determination (R2) are used to determine 

the performance of the model.  Chughtai et al., 2008, describe RMSE criteria as in equation 3-41. 

RMSE =  
√∑ (Ci−Ei)2n

i=1

n
                                                           Eq. 3-41 

Where n = number of observations, Ci = actual value, and Ei = estimated or predicted value. 

3.4 Chapter Summary 

This chapter discussed logistic regression and ANN methods. Regression assumptions test, test 

of significance coefficients, and the classification table of logistic regression models were described. ANN 

architecture, BPNN, ANN training, validation, testing, performance, and optimization of ANN structure were 

explained.  
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Chapter 4 

Data Collection, Preparation, and Analysis 

4.1 Introduction 

In this chapter, data collection, preparation, and processing were discussed. Histograms showing 

the frequency of variables influencing the condition rating of sewer pipes were provided and discussed. 

The histograms were used to make comparisons of the factors influencing sewer pipes condition. In data 

collection, the data was grouped into independent and dependent variables. Descriptive statistics and 

correlation analysis of the data was presented in tables 4-2 and 4-3, respectively. Lastly, summary of this 

chapter is described.  

4.2 Data Collection 

This research was based on data collected from Dallas Water Utilities Wastewater collection 

system. The City of Dallas uses geographic information system (ArcGIS) as the primary source of 

information to manage and maintain their wastewater networks. The data was extracted from Geographical 

Information System (GIS) files for the City of Dallas Water Utilities (DWU) GIS web/data base and imported 

to excel worksheets.  

 

Figure 4-15 City of Dallas Sanitary Sewer Pipe Network 

(Source: Dallas Water Utilities) 
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The database was initially filtered, and insufficient data was removed. The GIS data originated from 

condition assessment and CCTV inspection records. The condition of the sewer pipe was assessed using 

Pipeline Assessment and Certification Program (PACP) standard developed by National Association of 

Sewer Service Companies (NASSCO) (2018). The dataset in this study included pipe material, diameter, 

age, slope, depth, surface condition, soil type, corrosivity concrete, corrosivity steel, and pH variables. 

 

 

Figure 4-16 Sanitary Sewer Pipe Segments 

(Source: Dallas Water Utilities) 

Figure 4-2 shows sewer pipes segments and their locations. Pipes sizes in inches, type of pipe 

materials, lot numbers and street names are shown.  

4.3 Data Preparation and Processing 

The data was grouped into input and output variables. The input variables were pipe material, 

diameter, age, slope, depth, surface condition, soil type, corrosivity concrete, corrosivity steel, and pH. The 
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output variable was condition rating.  The Dallas Wastewater Collection pipeline data acquired comprised 

of pipe segments/locations, length (manhole to manhole), pipe material, pipe diameter, pipe age (year of 

installation), depth (depth of backfill over the crown of pipe in ft), soil conditions, corrosivity (concrete and 

steel), slope, surface condition (highway, street, alley, and easement), and condition rating. 

The following variables were transformed by recoding them into different variables. 

Material: Materials were re-coded in three (3) types by assigning new values of 1 to 3. 

1- CONC 

2- PVC  

3- VCP 

There were few materials not in the category provided above. They were classified as missing data 

and were removed from the data sets.  

Surface Condition: The surface condition where the pipes are located was grouped into four (4) and 

assigned new values 1 to 4. 

1- Highway 

2- Street 

3- Alley 

4- Easement 

Soil type (Soil Texture): There were five (5) soil texture types. The soil texture types were assigned 

new values numbers as follows. 

1- Sand  

2- Loam 

3- Clay 

4- Rock 

Corrosivity: Corrosivity for concrete (Corrosivity Concrete) and Steel (Corrosivity Steel) were 

assigned new values as follows.  

Corrosivity Concrete: Nineteen (19) data sets were missing. They were removed. 

1- Low 

2- Moderate 
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3- High 

Corrosivity Steel: The nineteen (19) missing data sets were removed. 

2- Moderate 

3- High 

Condition Rating: 

 

Figure 4-17 Sanitary Sewer Pipes Condition 

(Source: Dallas Water Utilities) 

The pipe condition score recorded from 1 to 5 were assigned new values. 

1- Excellent, 2-Good, 3-Fair, 4- Poor, and 5-Extremely Poor 

Twenty-four (24) data sets that were missing were removed. 

Capacity: There were erroneous data sets with negative values of -67 and -4. The capacity or flow cannot 

be negative. The 2 data sets were removed. 

Age: One (1) data set that had an age of 170 was removed. 

Pipe material, diameter, depth, length, slope, age, surface condition, soil type, PH, and corrosivity, 

were grouped as physical and environmental independent variables. The condition rating score was used 

as the dependent variable. The variables were grouped into physical and environmental factors. 
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Table 4-19  Factors Influencing Sewer Pipe Condition Rating 

Factors Pipe Variables Variables Description 

Physical Pipe material Concrete (CONC.), Polyvinyl chloride (PVC), and Vitrified 
Clay (VCP). Continuous variable. 

Pipe Diameter (in.) Nominal value of diameter of pipe. Categorical variable. 

Pipe length (feet) Length of pipe between two manholes measured in feet. 
Continuous variable. 

Age (years) Age of installed pipe is obtained by subtracting installation 
or rehabilitation year from inspection year. Continuous 
variable. 

Depth (feet) Installation depth of pipe in ft 

Pipe slope (%) Segment bed slope of pipe in percentage (upstream invert 
elevation – downstream invert elevation)/length. 
Continuous variable. 

Environmental  Surface condition Category of ground surface where the pipe is located 
(Highway, Street, Alley, and Easement) 

Soil type Different texture of soils physical and chemical properties 
(Sand, Loam, Clay, and Rock ). 

Corrosivity steel Level of corrosion attack on steel (Moderate or High) 

Corrosivity concrete Level of corrosion attack on steel (Low, Moderate, and 
High) 

pH Soil pH 

 

4.4  Regression Assumptions Tests 

Regression analysis assumptions were checked using linear regression in IBM SPSS Statistics 27 

data analysis software. The assumptions tested were independence, homogeneity, linearity, normality, 

multicollinearity, no outliers, and homoscedasticity. A test was conducted by checking for symmetry in a 

histogram, frequency distribution, boxplot, or skewness and kurtosis statistics.  

4.5 Descriptive Statistics 

The descriptive statistics in Table 4-2 shows 2,616 datasets for eleven (11) independent variables 

and one (1) dependent variable. The minimum and maximum age of the sewer pipes were one (1) year and 

120 years, respectively. The minimum diameter of the sewer pipes was 6 in. whereas the maximum 

diameter was 90 in. The mean depth and length of the sewer pipes were 7.6 ft and 311 ft, respectively. The 

average kurtosis standard error was 0.096, while the average skewness standard error was 0.048
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Table 4-20 Descriptive Statistics 

Variables 

N Minimum Maximum Mean   
Std. 

Deviation Variance Skewness Kurtosis 

Statistic Statistic Statistic Statistic 
Std. 
Error Statistic Statistic Statistic 

Std. 
Error Statistic Std. Error 

Diameter 2616 6 90 12.87 0.221 11.30 127.64 3.33 0.048 12.81 0.096 

Age 2616 1 120 44.05 0.465 23.78 565.31 0.19 0.048 -1.10 0.096 

Slope 2616 0 573 1.29 0.222 11.36 129.06 48.84 0.048 2455.65 0.096 

Depth 2616 3 20 7.61 0.044 2.27 5.17 1.19 0.048 1.91 0.096 

Length 2616 0 2054 310.97 4.861 248.62 61813.42 1.95 0.048 5.91 0.096 

pH 2616 5.3 8.2 7.87 0.011 0.55 0.30 -2.30 0.048 5.68 0.096 

Material 2614 1 3 2.07 0.014 0.72 0.52 -0.11 0.048 -1.09 0.096 

Surface Condition 2616 1 4 2.59 0.016 0.84 0.70 0.78 0.048 -0.95 0.096 

Soil Type 2616 1 4 2.64 0.015 0.77 0.60 -0.81 0.048 0.15 0.096 

Corrosivity Concrete 2616 1 3 1.20 0.010 0.51 0.26 2.51 0.048 5.27 0.096 

Corrosivity Steel 2616 1 2 1.94 0.005 0.24 0.06 -3.61 0.048 11.04 0.096 

Condition Rating 2616 1 5 1.68 0.024 1.24 1.53 1.64 0.048 1.38 0.096 
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4.6 Condition Rating Score 

Condition rating score was the dependent variable used in the data analysis. Each dataset was 

assigned a condition score generated from the condition assessment of the sanitary sewer pipes. The 

score followed the NASSCO PACP standard. 

 

 
 

Figure 4-18 Distribution of Sewer Pipe Condition Rating 

Figure 4-4 describes sewer pipe condition rating. Condition 1 represented sewer pipes in excellent 

condition. Condition 2 represents sewer pipes in good condition. Conditions 3,4, and 5 represents sewer 

pipes in Fair, Poor, and Extremely Poor conditions, respectively. The sewer pipes in excellent (1) and good 

(2) conditions have higher percent frequency compared to sewer pipes in fair (3), poor (4), and extremely 

poor (5) conditions. It was found that Seventy-two percent (73%) of the sewer pipes segments were in 

condition 1. Conditions 2, 3, and 4 of the sewer pipes segments were comprised of 4%, 13%, 3%, and 7%, 

respectively. This revealed that most of the sanitary sewer pipes were in good condition.  
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4.7 Physical Factors 

The physical variables include pipe material, pipe diameter, pipe length, age, depth, and pipe slope. 

 

 

Figure 4-19 Pipe Material Distribution  

Figure 4-5 shows pipe material distribution in the dataset. The pipe materials were evenly 

distributed. The distribution percent frequency demonstrated that most of the pipes comprised of PVC 

material. PVC pipe material had the highest frequency of 47%. VCP had the second-highest frequency 

followed by CONC pipe materials, respectively. The percent segments with VCP and CONC sewer pipes 

were 30% and 23%, respectively. 

Figure 4-6 shows the distribution of pipe size in the datasets. Figure 4-6 shows that the minimum 

and maximum sewer pipes diameters were 6 in. and 72 in., respectively. Figure 4-6 illustrates that small 

diameter (<18 in.) sewer pipes were more in the dataset compared with larger diameter (>18 in.) sewer 

pipes. It was found that sewer pipes diameter of 8 inch had the largest frequency of 48%. 
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Figure 4-20 Pipe Size Distribution 

Figure 4-7 shows pipe length distribution in the dataset. The mean and standard deviation of the 

sanitary sewer pipes length were 311 ft and 2450 ft, respectively. Figure 4-7 shows that most pipe lengths 

are between 100 ft to 500 ft. The longer sewer pipe means the number of pipe joints is reduced.  

Figure 4-7 demonstrates that pipe lengths greater than 1000 ft were less compared to shorter lengths less 

than 1000 ft.  
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Figure 4-21 Pipe Length Distribution 

Figure 4-8 shows the age of the distribution in the dataset. The mean and standard deviation of the 

sanitary sewer pipes age was 44 years and 24 years, respectively. The age of pipes with the highest 

frequency was 15-45 years and 55-75 years, respectively. The graph shows that more than 50% of the 

sewer pipes were more than 55 years old. 
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Figure 4-22 Pipe Age Distribution 

Figure 4-9 shows the distribution of depth in the dataset. Figure 4-9 illustrates that most of the 

sewer pipes were buried from 5 ft to 10 ft. The Sewer pipe depth with the highest frequency was 7 ft followed 

by 5 ft, 8 ft, and 10 ft, respectively. 
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Figure 4-23 Pipe Depth Distribution 

4.8 Environmental Factors 

The environmental variables included surface condition, soil type, corrosivity concrete, corrosivity 

steel, and soil pH. Figure 4-10 shows the distribution of surface conditions in the location where the pipes 

were buried. Figure 4-13 reveals that sewer pipes located beneath streets were 61% of the total segments 

in the datasets. This was followed by sewer pipes located beneath easements (22%), alleys (16%), and 

Highways (1%) surface conditions, respectively, from the highest frequency to the least. The sewer pipes 

located beneath easements were more than the ones located in the alleys. 

Figure 4-11 shows the frequency distribution of soil types in the location of the sewer pipes. 

There are four soil types: sand, loam, clay, and rock. Figure 4-11 demonstrates that 63% of the sewer 

pipe segments were installed in locations with clay soil. Loam soil had the next high frequency with 19% 

of the sewer pipes segments. Sandy soil type had 12% of the sewer pipes segments in the datasets   

Sewer pipes located in the rock soil type had the lowest frequency (7%).  
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Figure 4-24 Surface Condition Distribution 

 
 

Figure 4-25 Soil Type Distribution 

Figure 4-12 shows the distribution of soil corrosivity for concrete ranging from low to high. Figure 

4-12 illustrates that most of the sewer pipes were in soils with low corrosivity for concrete. The soils with 
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low corrosivity for concrete were 85% of the sewer pipe segments in the datasets. The sewer pipes 

located in soil with high corrosivity for concrete were 7% of the segments in the datasets. This is possible 

since most of the sewer pipes were in clay and loam soils. In addition, most of the pipe materials were 

PVC which was low in susceptibility to corrosion.  

 

 

Figure 4-26 Level of Corrosivity for Concrete Distribution 
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Figure 4-27 Level of Corrosivity Steel Distribution of 

Figure 4-13 shows the distribution of sewer pipes with the level of moderate to high corrosivity 

steel. The sewer pipes in the soils with moderate corrosivity for steel were 6% of the sewer pipes segments 

in the datasets. Whereas the soils with high corrosivity for steel were 94% of the sewer pipes segments in 

the datasets.  

 

 
Figure 4-28 pH Distribution 
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Figure 4-14 shows the distribution of sewer pipes by pH. Figure 4-14 showed that most of the pipes 

were in soils with pH greater than 7.5. Few sewer pipes were in soils with pH of less than 7.5. Sewer pipes 

located in the soils with a pH of 8.2 were 53% of the sewer pipe segments provided in the datasets. Soils 

with pH 7.5 and 7.9 were 7% and 28% of the sewer pipes segments of the datasets, respectively. 

4.9 Correlation Analysis 

Table 4-3 demonstrates the relationship between the variables. Table 4-3 revealed all the variables 

correlated at a significance level of 0.01 and 0.05. The correlation efficiency was below 0.5 except for the 

correlation between pH and corrosivity steel (0.712), pH and Soil Type (0.673), pH corrosivity concrete 

(0.575), and soil type and corrosivity steel (0.542), respectively. 
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Table 4-21 Pearson Correlation Analysis 

Variables Diameter Age Slope Depth Length pH Material Surface Soil 
Type 

Corrosivity 
Concrete 

Corrosivity 
Steel 

Condition 
Rating 

Diameter 1 0.107** -0.036 0.138** 0.339** 0.027 -0.365** -0.017 -0.129** -0.042* -0.011 0.183** 

Age   1 -0.041* 0.037 0.165** 0.038 0.070** 0.009 -0.029 -0.064** -0.009 0.475** 

Slope     1 0.015 -0.024 0.028 0.004 0.010 0.021 -0.020 0.010 -0.027 

Depth       1 0.048* 0.017 -0.076** 0.080** 0.052** 0.010 0.014 -0.008 

Length         1 -0.015 -0.133** -0.028 -0.069** -0.010 0.012 0.215** 

pH           1 -0.096** -0.016 0.673** -0.575** 0.712** 0.031 

Material             1 0.018 0.011 0.075** -0.033 -0.025 

Surface               1 -0.020 0.021 0.034 -0.017 

Soil Type                 1 -0.288** 0.542** -0.020 

Corrosivity Concrete                   1 -0.117** -0.045* 

Corrosivity Steel                     1 -0.010 

Condition Rating                       1 

** Correlation is significant at the 0.01 level (2-tailed).         

* Correlation is significant at the 0.05 level (2-tailed).         
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4.10 Chapter Summary 

This chapter discussed data collection, data preparation and processing presented, descriptive 

statistics, preliminary data analysis, condition rating score, factors influencing pipe condition rating, and 

correlation analysis were presented. The physical and environmental factors influencing sewer pipes 

condition rating were discussed. The frequency distribution of independent variables and dependent 

variables was illustrated and described.  
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Chapter 5 

Prediction Model Development  

5.1 Introduction 

In this chapter, MLR and ANN model development are illustrated. The MLR modis developed using 

IBM SPSS Statistics (version 27). ANN model is developed using Brainmaker California Scientific Software. 

Before the development of the models, eighty percent (80%) of the data is randomly selected and the 

remaining 20% is set aside to validate the models and or used as a case study to check the applicability of 

the models. Eighty-five percent (85%) and fifteen percent (15%) of the randomly selected 80 % data are 

used in developing and testing the ANNs model, respectively.  Table 5-1 shows a sample of the 80% sewer 

pipes dataset. 

5.2 Multinomial Logistic Regression Model 

The objective of MLR analysis was to study the relationship between eleven (11) independent or 

predictor variables and one (1) dependent variable. Pipe material, diameter, age, slope, depth, surface 

condition, soil type, corrosivity concrete, corrosivity steel, and pH were independent variables used to 

generate prediction models. The condition rating score was the dependent variable.  

5.2.1 Model Parameters Estimation 

The data that was utilized to develop the prediction model was randomly divided into 80% and 20% 

for MLR model development and validation, respectively. MLR analysis was conducted and got one set of 

results which represents statistics for four (4) sewer pipes conditions (5-1). A Multinomial logistic regression 

model was developed with sewer pipe condition rating dependent variable with 5 categories, category 5 

being reference category. One (1) model was built for five sewer pipes condition ratings 1, 2, 3, and 4. 

Condition 5 was used as the reference category.  
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Table 5-22 Sample of 80% of Sewer Pipes Dataset 

ID Diameter Age 
Pipe 
Material Slope 

Surface 
Condition Depth Length pH 

Soil 
Type CorCon CorSteel 

Condition 
Rating 

2472 12 43 PVC 0.24 Street 15 480 6.7 Sand Low Moderate 1 

1814 10 50 VCP 0.1 Easement 15 421 6.7 Sand Low Moderate 1 

843 6 97 VCP 0.8 Alley 15 264 6.7 Sand Low Moderate 1 

2343 8 23 PVC 0.3 Street 15 236 6.7 Sand Low Moderate 1 

2795 18 50 VCP 0.08 Alley 15 81 6.7 Sand Low Moderate 1 

65 8 50 VCP 0.3 Street 11 536 6.7 Sand Low Moderate 1 

623 12 71 CONC 0.6 Highway 10 472 6.7 Sand Low Moderate 1 

624 24 64 CONC 0.12 Street 10 465 6.7 Sand Low Moderate 1 

2366 12 51 VCP 0.3 Alley 10 401 6.7 Sand Low Moderate 1 

3215 8 22 PVC 0.33 Street 10 384 6.7 Sand Low Moderate 1 

3097 12 51 VCP 0.3 Street 10 325 6.7 Sand Low Moderate 1 

1365 8 24 PVC 0.4 Alley 10 284 6.7 Sand Low Moderate 1 

3327 48 29 PVC 0.14 Street 10 278 6.7 Sand Low Moderate 1 

2146 12 39 PVC 2.1 Street 10 159 6.7 Sand Low Moderate 1 

2295 15 66 VCP 0.32 Street 10 156 6.7 Sand Low Moderate 1 

285 8 35 PVC 0.8 Easement 10 99 6.7 Sand Low Moderate 1 

181 10 48 VCP 0.8 Alley 10 70 6.7 Sand Low Moderate 1 

47 8 16 PVC 0.4 Street 10 24 6.7 Sand Low Moderate 1 

2428 12 9 PVC 0.2 Street 8 480 6.7 Sand Low Moderate 1 
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Table 5-1 shows a sample of 80 % of the sewer pipes dataset.  Likelihood ratio tests, the 

significance of variables was determined by Wald test and P-values set at 95% confidence levels. Table 5-

2 shows likelihood ratio tests. Table 5-3 shows the model fit information. 

Table 5-23 Likelihood Ratio Tests 

Effect Model Fitting Criteria Likelihood Ratio Tests 

  -2 Log Likelihood of Reduced Model Chi-Square df Sig. 

Intercept 3811.161 0.00 0 . 

Diameter 3840.62 29.46 4 0.000 

Age 3938.10 126.94 4 0.000 

Slope 3817.32 6.16 4 0.188 

Depth 3822.03 10.87 4 0.028 

Length 3839.21 28.04 4 0.000 

pH 3813.12 1.96 4 0.743 

Pipe Material 3888.90 77.74 8 0.000 

Surface Condition 3827.65 16.49 12 0.170 

Soil Type 3832.76 21.60 12 0.042 

Corrosivity Concrete 3828.06 16.90 8 0.031 

Corrosivity Steel 3818.21 7.05 4 0.133 

 

Table 5-24 Model Fitting Information 

Model Model Fitting 
Criteria 

Likelihood Ratio Tests 

-2 Log Likelihood Chi-Square df Sig. 

Intercept Only 4839.163       

Final 3811.161 1028.002 68 0.000 

 

From Table 5-3, the -2 Log-likelihood (-2LL) for the constant only model was the sum of Chi-

square and (-2LL) for the full model. This was equal to 1028.002 plus 3811.161 which was equal to 

4839.163. Since -2LL for the full model was less than (4839.163) and (1028.002) for the constant-only 

model, the model was a good fit. The developed model with a dependent variable with 5 categories is 

presented. The model is broken down into 4 tables of each category relative to condition 5 being 

reference category.  Sewer pipe prediction parameter estimates for conditions 1, 2, 3, and 4 were 

presented in tables 5-4, 5-5, 5-6, and 5-7, respectively. 
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Table 5-25 Condition 1 Parameter Estimates 

Variables B Std. 
Error 

Wald df Sig. Exp(B) 

Intercept 4.650 3.790 1.505 1 0.220   

Diameter -0.022 0.007 10.390 1 0.001 0.978 

Age -0.056 0.006 81.139 1 0.000 0.945 

Slope 0.022 0.056 0.156 1 0.693 1.022 

Depth 0.016 0.038 0.183 1 0.669 1.016 

Length -0.001 0.000 20.852 1 0.000 0.999 

pH 0.279 0.630 0.196 1 0.658 1.322 

Pipe Material = CONC 0.145 0.204 0.503 1 0.478 1.156 

Pipe Material = PVC 0.646 0.372 3.020 1 0.082 1.908 

Pipe Material = VCP 0b . . 0 . . 

Surface Condition = Alley 0.128 0.240 0.286 1 0.593 1.137 

Surface Condition = Easement 0.257 0.219 1.376 1 0.241 1.293 

Surface Condition = Highway -0.071 0.803 0.008 1 0.930 0.931 

Surface Condition = Street 0b . . 0 . . 

Soil Type = Clay 0.399 0.858 0.216 1 0.642 1.491 

Soil Type = Loam 0.506 0.900 0.316 1 0.574 1.658 

Soil Type=Rock 0.460 0.942 0.238 1 0.626 1.584 

Soil Type = Sand 0b . . 0 . . 

Corrosivity Concrete = High -1.287 0.828 2.414 1 0.120 0.276 

Corrosivity Concrete = Low -1.332 0.863 2.385 1 0.123 0.264 

Corrosivity Concrete = Moderate 0b . . 0 . . 

Corrosivity Steel = High -0.410 0.988 0.172 1 0.678 0.664 

Corrosivity Steel = Moderate 0b . . 0 . . 
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Table 5-26 Condition 2 Parameter Estimates 

 Variables B Std. 
Error 

Wald df Sig. Exp(B) 

Intercept 5.024 5.799 0.751 1 0.386   

Diameter -0.080 0.022 12.975 1 0.000 0.923 

Age -0.032 0.009 11.571 1 0.001 0.968 

Slope -0.037 0.093 0.158 1 0.691 0.964 

Depth 0.018 0.057 0.094 1 0.759 1.018 

Length -0.001 0.000 1.456 1 0.228 0.999 

pH -0.514 0.976 0.277 1 0.598 0.598 

Pipe Material = CONC -0.752 0.335 5.030 1 0.025 0.472 

Pipe Material = PVC  -0.968 0.534 3.288 1 0.070 0.380 

Pipe Material = VCP (Reference) 0b . . 0 . . 

Surface Condition = Alley 0.164 0.353 0.216 1 0.642 1.179 

Surface Condition = Easement 0.039 0.322 0.015 1 0.903 1.040 

Surface Condition = Highway 0.148 1.261 0.014 1 0.906 1.160 

Surface Condition = Street (Reference) 0b . . 0 . . 

Soil Type = Clay -0.704 1.192 0.348 1 0.555 0.495 

Soil Type = Loam 0.175 1.235 0.020 1 0.887 1.192 

Soil Type = Rock -1.021 1.343 0.578 1 0.447 0.360 

Soil Type = Sand (Reference) 0b . . 0 . . 

Corrosivity Concrete = High 0.785 1.198 0.429 1 0.512 2.192 

Corrosivity Concrete = Low 0.222 1.340 0.027 1 0.869 1.248 

Corrosivity Concrete = Moderate (Reference) 0b . . 0 . . 

Corrosivity Steel = High 2.176 1.532 2.018 1 0.155 8.814 

Corrosivity Steel = Moderate (Reference) 0b . . 0 . . 
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Table 5-27 Condition 3 Parameter Estimate 

 Variables  B Std. Error Wald df Sig. Exp(B) 

Intercept 0.817 4.342 0.035 1 0.851   

Diameter -0.009 0.007 1.650 1 0.199 0.991 

Age -0.026 0.007 15.222 1 0.000 0.974 

Slope -0.081 0.081 1.002 1 0.317 0.922 

Depth -0.078 0.043 3.269 1 0.071 0.925 

Length 0.000 0.000 2.515 1 0.113 1.000 

pH 0.424 0.720 0.347 1 0.556 1.528 

Pipe Material = CONC 0.737 0.224 10.828 1 0.001 2.089 

Pipe Materia = PVC -0.659 0.440 2.244 1 0.134 0.517 

Pipe Material = VCP (Reference) 0b . . 0 . . 

Surface Condition = Alley 0.416 0.259 2.567 1 0.109 1.515 

Surface Condition = Easement 0.418 0.239 3.047 1 0.081 1.519 

Surface Condition = Highway  -18.955 6041.973 0.000 1 0.997 0.000 

Surface Condition = Street (Reference) 0b . . 0 . . 

Soil Type = Clay 0.142 0.978 0.021 1 0.884 1.153 

Soil Type = Loam 0.628 1.026 0.374 1 0.541 1.873 

Soil Type = Rock -0.146 1.088 0.018 1 0.893 0.864 

Soil Type = Sand (Reference) 0b . . 0 . . 

Corrosivity Concrete = High -0.025 0.901 0.001 1 0.977 0.975 

Corrosivity Concrete = Low -0.705 0.948 0.552 1 0.457 0.494 

Corrosivity Concrete = Moderate 
(Reference) 

0b . . 0 . . 

Corrosivity Steel = High -1.005 1.112 0.817 1 0.366 0.366 

Corrosivity Steel = Moderate 
(Reference) 

0b . . 0 . . 
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Table 5-28 Condition 4 Parameter Estimates 

Variables  B Std. 
Error 

Wald df Sig. Exp(B) 

Intercept 3.952 5.541 0.509 1 0.476   

Diameter -0.050 0.019 7.020 1 0.008 0.951 

Age -0.002 0.010 0.060 1 0.807 0.998 

Slope -0.159 0.147 1.160 1 0.282 0.853 

Depth -0.078 0.070 1.247 1 0.264 0.925 

Length 0.000 0.000 0.001 1 0.980 1.000 

pH -0.409 0.929 0.194 1 0.660 0.664 

Pipe Material = CONC -0.211 0.332 0.403 1 0.526 0.810 

Pipe Material = PVC -0.714 0.661 1.165 1 0.280 0.490 

Pipe Material = VCP (Reference) 0b . . 0 . . 

Surface Condition = Alley  0.337 0.365 0.851 1 0.356 1.401 

Surface Condition = Easement -0.070 0.372 0.036 1 0.850 0.932 

Surface Condition = Highway -18.332 0.000 . 1 . 0.000 

Surface Condition = Street (Reference) 0b . . 0 . . 

Soil Type=Clay 2.21 1.12 3.89 1 0.05 9.12 

Soil Type = Loam 2.27 1.15 3.93 1 0.05 9.68 

Soil Type = Rock 2.01 1.30 2.39 1 0.12 7.46 

Soil Type = Sand (Reference) 0b . . 0 . . 

Corrosivity Concrete = High -2.340 1.114 4.411 1 0.036 0.096 

Corrosivity Concrete = Low -2.515 1.163 4.673 1 0.031 0.081 

Corrosivity Concrete = Moderate (Reference) 0b . . 0 . . 

Corrosivity Steel = High 0.328 1.425 0.053 1 0.818 1.389 

Corrosivity Steel = Moderate (Reference) 0b . . 0 . . 

 

From Tables 5-4, 5-5, 5-6, and 5-7, in the column with the values of B means for one-unit change 

natural log of condition rating, results in unit change natural log of variables. The negative value of B means 

that an increase in the value of the independent variable results in a decrease in the predicted probability 

of the dependent variable. A positive value of B means an increase of the independent variable leads to an 

increase in the predicted sewer pipe condition (dependent variable). Wald value revealed the significance 

of the independent variables. The odds ratios Exp(B) shows the number of times greater (or percent) an 

independent variable was for everyone unit of the dependent variable (condition rating). 



 

79 
 

Table 5-4 represents sewer pipe condition 1, the highest Wald value is for age (81.139) followed 

by length (20.852) and diameter (10.390). This demonstrated that length, age, and diameter had more 

significance in the model. Diameter, age, and length have P Values of 0.001, 0.000, and 0.000, respectively. 

This means diameter, age, and length variables had a high influence on the sewer pipes condition 1. For 

this model, the Exp(B) values for the significant variables were diameter (97.9%), age (94.5%), and length 

(99.9%). 

Table 5-5 represents sewer pipe condition 2. From Table 5-5, diameter had the highest Wald value 

(12.975) followed by age (11.571) and pipe material (CONC) (5.030). This revealed that diameter, age, and 

pipe material had more significance in the model predicting sewer pipe condition 2. Diameter, age, and pipe 

material (CONC) have P Values of 0.000, 0.001, and 0.025, respectively. This means diameter, age, and 

pipe material (CONC) variables had a high influence on the sewer pipes condition 2. For this model, the 

Exp(B) values for the significant variables were diameter (92.3%), age (96.8%), and pipe material (CONC) 

(47.2%). 

Table 5-6 shows sewer pipe condition 3. In table 5-6, age had the highest Wald value (15.222) 

followed by pipe material (CONC) (10.828). It was revealed that age and pipe material had more 

significance in the model predicting sewer pipe condition 3. Diameter, age, and pipe material (CONC) have 

P Values of 0.000, 0.001, and 0.025, respectively. This means an age and pipe material (CONC) variables 

had a high influence on the sewer pipes condition 3. For this model, the Exp(B) values for the significant 

variables were age (97.4%), and pipe material (CONC) (208.9%). 

Table 5-7 represents sewer pipe condition 4. Diameter had the highest Wald value (7.020) followed 

by corrosivity concrete (Low) (4.673), corrosivity concrete (High)(4.411), soil type (Loam) (3.93), and soil 

type (Clay) (3.89). It was demonstrated that age and pipe material had more significance in the model 

predicting sewer pipe condition 3. Diameter, soil type (Clay), soil type (Loam), corrosivity concrete (High), 

and corrosivity concrete (Low) have P Values of 0.008, 0.05, 0.05, 0.036, and 0.031, respectively. This 

means diameter, soil type (Clay), soil type (Loam), corrosivity concrete (High), and corrosivity concrete 

(Low) variables had a high influence on the sewer pipes condition 4. For this model, the Exp(B) values for 

the significant variables were diameter (95.1%), soil type (Clay) (912%), soil type (Loam) (968%), corrosivity 

concrete (High) (9.6%), and corrosivity concrete (Low) (8.1%). 
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5.2.2 Validation of MLR Model 

The model parameters estimation tables in section 5.2.1 were used to derive four MLR equations. 

The one set model equation was broken down to 4 equations, one for each category relative to the 

reference category for sewer pipe condition 5.  The four equations were used to predict sewer pipe 

conditions 1, 2, 3, and 4 relative to sewer pipes condition 5 that was used as a reference category.  The 

variables coefficients (β) were used to develop the 4 multinomial logistic regression equations relative to 

condition 5 (C=5) reference category. 

Equation 5-1 presents a MLR model developed to predict sewer pipe condition 1.   

g1(x) =  ln [
Pr(C=1)

Pr(C=5)
] = 𝟎. 𝟗𝟕𝟖 ∗ 𝐃𝐢𝐚𝐦𝐞𝐭𝐞𝐫 + 𝟎. 𝟗𝟒𝟓 ∗ 𝐀𝐠𝐞 + 1.023 ∗ Slope + 1.018 ∗ Depth + 𝟎. 𝟗𝟗𝟗 ∗

𝐋𝐞𝐧𝐠𝐭𝐡 + 1.321 ∗ pH + 1.146 ∗ MaterialCONC + 1.899 ∗ MaterialPVC + 0.721 ∗ SurfaceAlley + 0.771 ∗
SurfaceEasement + 0.879 ∗ SurfaceHighway + 0.619 ∗ SoilTypeClay + 1.037 ∗ SoilTypeLoam + 0.942 ∗
SoilTypeRock + 0.962 ∗ CorrosivityConcreteHigh + 3.653 ∗ CorrosivityConcreteLow + 1.533 ∗
CorrosivitySteelHigh           Eq. 5-1 
 

Where: 

Pr (C = 1) is the probability of sanitary sewer pipe condition dependent variable being condition 1 relative 

to condition 5.  

Pr (C = 5) is the probability of reference category condition 5 

Diameter, Age, Slope, Depth, Length, Material, Surface, Soil Type, and Corrosivity are independent 

variables that influence sanitary sewer pipe condition
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Equation 5-2 presents a MLR model developed to predict sewer pipe condition 2.   

g2(x) = 𝑙𝑛 [
Pr(C=2)

Pr(C=5)
] = 𝟎. 𝟗𝟐𝟑 ∗ 𝐃𝐢𝐚𝐦𝐞𝐭𝐞𝐫 + 𝟎. 𝟗𝟔𝟖 ∗ 𝐀𝐠𝐞 + 0.964 ∗ Slope + 1.018 ∗ Depth + 0.999 ∗

Length + 0.598 ∗ pH + 𝟎. 𝟒𝟕𝟑 ∗ 𝐌𝐚𝐭𝐞𝐫𝐢𝐚𝐥𝐂𝐎𝐍𝐂 + 0.379 ∗ MaterialPVC + 1.116 ∗ SurfaceAlley + 0.961 ∗
SurfaceEasement + 1.133 ∗ SurfaceHighway + 2.758 ∗ SoilTypeClay + 3.289 ∗ SoilTypeLoam + 1.374 ∗
SoilTypeRock + 0.572 ∗ CorrosivityConcreteHigh + 0.459 ∗ CorrosivityConcreteLow + 0.114 ∗
CorrosivitySteelHigh                                                                                                                       Eq. 5-2                                                                                                                        
 

Where: 

Pr (C = 2) is the probability of sanitary sewer pipe condition dependent variable being condition 2 relative 

to condition 5.  

Pr (C = 5) is the probability of reference category condition 5 

Diameter, Age, Slope, Depth, Length, Material, Surface, Soil Type, and Corrosivity are independent 

variables that influence sanitary sewer pipe condition. 

Equation 5-3 represents a MLR model developed to predict sewer pipe condition 3.   

g3(x) = ln  [
Pr(C=2)

Pr(C=5)
] = 0.991 ∗ Diameter + 𝟎. 𝟗𝟕𝟒 ∗ 𝐀𝐠𝐞 + 0.922 ∗ Slope + 0.924 ∗ Depth + 1.00 ∗ Length +

1.532 ∗ pH + 𝟐. 𝟎𝟗𝟎 ∗ 𝐌𝐚𝐭𝐞𝐫𝐢𝐚𝐥𝐂𝐎𝐍𝐂 + 0.518 ∗ MaterialPVC + 0.660 ∗ SurfaceEasement + 0.998 ∗
SurfaceHighway + 1.163 ∗ SoilTypeClay + 2.168 ∗ SoilTypeLoam + 1.335 ∗ SoilTypeRock + 0.507 ∗
CorrosivityConcreteHigh + 1.029 ∗ CorrosivityConcreteLow + 2.731 ∗ CorrosivitySteelHigh                Eq. 5-3                    
 

Where: 

Pr (C =3) is the probability of sanitary sewer pipe condition dependent variable being condition 3 in relative 

to condition 5.  

Pr (C = 5) is the probability of reference category condition 5 

.  

Diameter, Age, Slope, Depth, Length, Material, Surface, Soil Type, and Corrosivity are independent 

variables that influence sanitary sewer pipe condition. 

Equation 5-4 represents a MLR model developed to predict sewer pipe condition 4.   

 g4(x) = ln [
Pr( C=4)

Pr(C=5)
] = 𝟎. 𝟗𝟓𝟏 ∗ 𝐃𝐢𝐚𝐦𝐞𝐭𝐞𝐫 + 0.998 ∗ Age + 0.853 ∗ Slope + 0.925 ∗ Depth + 1.00 ∗ Length +

0.663 ∗ pH + 0.812 ∗ MaterialCONC + 0.489 ∗ MaterialPVC + 1.073 ∗ SurfaceEasement + 1.503 ∗
SurfaceHighway + 0.134 ∗ SoilTypeClay + 1.298 ∗ SoilTypeLoam + 1.223 ∗ SoilTypeRock + 0.843 ∗
CorrosivityConcreteHigh + 𝟏𝟎. 𝟑𝟕𝟕 ∗ 𝐂𝐨𝐫𝐫𝐨𝐬𝐢𝐯𝐢𝐭𝐲𝐂𝐨𝐧𝐜𝐫𝐞𝐭𝐞𝐋𝐨𝐰 + 0.719 ∗ CorrosivitySteelHigh   Eq. 5-4 
   
 

Where: 
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Pr (C =4) is the probability of sanitary sewer pipe condition dependent variable being condition 4 in relative 

to condition 5.  

Pr (C = 5) is the probability of reference category condition 5 

Diameter, Age, Slope, Depth, Length, Material, Surface, Soil Type, and Corrosivity are independent 

variables that influence sanitary sewer pipe condition. 

Equations 5-5, 5-6, 5-7, 5-8, and 5-9 shows probabilities of sewer pipes conditions 1, 2,3, 4, and 5 occurring.  

Pr(C = 1|x) =
𝑒

𝑔1(𝑥)

1+𝑒𝑔1(𝑥)+𝑒𝑔2(𝑥)+𝑒
𝑔3(𝑥)+𝑒

𝑔4(𝑥)
                                         Eq. 5-5 

Pr(C = 2|x) =
𝑒

𝑔2(𝑥)

1+𝑒𝑔1(𝑥)+𝑒𝑔2(𝑥)+𝑒
𝑔3(𝑥)+𝑒

𝑔4(𝑥)
                                         Eq. 5-6 

Pr(C = 3|x) =
𝑒

𝑔3(𝑥)

1+𝑒𝑔1(𝑥)+𝑒𝑔2(𝑥)+𝑒
𝑔3(𝑥)+𝑒

𝑔4(𝑥)
                                         Eq. 5-7 

Pr(C = 4|x) =
𝑒

𝑔4(𝑥)

1+𝑒𝑔1(𝑥)+𝑒𝑔2(𝑥)+𝑒
𝑔3(𝑥)+𝑒

𝑔4(𝑥)
                                         Eq. 5-8 

 Pr(C = 5|x) =
1

1+𝑒𝑔1(𝑥)+𝑒𝑔2(𝑥)+𝑒
𝑔3(𝑥)+𝑒

𝑔4(𝑥)
                                         Eq. 5-9 

5.3 ANN Model 

Development of neural network model included preparing data as inputs and output, training and 

testing the model. The data sets were randomly divided as follows: Training (85%), and Testing (15%). 

During training, the network was fed with inputs. The network then generated output. The network checked 

the results with correct answers and made corrections to internal connections while minimizing the errors. 

During testing, inputs were paired with outputs were provided. Testing is the same as training. Validation 

of the model was conducted after the model was developed. In model validation, only inputs were used to 

predict the sewer pipes condition.   

5.3.1 ANN Data Processing Software Selection 

The data was stored in Microsoft Excel. It was processed and grouped into input and output 

variables. The created input data comprised of independent variables. These variables included pipe 

material, diameter, age, slope, depth, surface condition, soil type, corrosivity concrete, corrosivity steel, and 

pH. The created output data comprised of the dependent variable. The dependent variable was sewer pipes 

condition rating.  
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The BrainMaker, a commercially available Simulator distributed by California Scientific Software 

was used to develop the neural network model. BrainMaker used data stored in neural networks files. The 

neural network files were Definition (.def), Fact (.fct), and Testing (.tst). The definition file is a text file that 

was created to be read by BrainMaker. The definition file is given an extension.def. The definition file 

explains all the information that the BrainMaker needs to know such as the number of neurons, type of 

data, and output. The fact file provides data into BrainMaker. There are fact files for training, testing, and 

validation (running). The fact file for training, testing, and running have extensions “. fct”, “. tst”, and “. in”, 

respectively. During training, BrainMaker used data stored in the training fact file and the definition file.  

 

Figure 5-29 ANN Model Development Procedure 

Source: Kulandaivel, (2004) 

Figure 5-1 shows the process of developing the ANN model. The following are the steps that were 

used to develop the neural network model. 

• Acquire inspection and condition assessment data.  
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• Prepare and process data. Categorical data were split into categories. The data was labeled into 

inputs and outputs. 

• Train network model. Twelve different neural network architectures were trained and obtained the 

optimal architecture with the lowest errors. 

• Tested network model. The architectures were tested using 15% of the data. 

• Validated model. New data was used as a case study to validate the use of the model. 

Datasets randomly divided: Training (70%), and Testing (30%) for IBM SPSS Neural network 

Software and Training (85%), and Testing (15%) for Brain Maker Neural Network Software, California 

Scientific Software.  

Table 5-29 Training and Testing Data 

Data 
Data 

Evaluation N Percent 

Sample 

Training 1850 70% 

Testing 764 30% 

Valid -- 2614 100% 

Excluded -- 2 -- 

Total -- 2616 -- 

 

Table 5-8 shows datasets divided into Training (70%) and Testing (30%) using IBM SPSS Neural network 

Software. 

The backpropagation algorithm was used in training the neural network model. Training involved 

presenting inputs to the network. The network uses the input variables to establish a relation between the 

inputs and outputs that are placed in NetMaker. The dataset is split randomly into training (85%) and testing 

(15%) facts using the NetMaker preferences. NetMaker puts percentage of the data to be trained and 

tested. The data is processed in Netmaker and saved in the BrainMaker file. Figure 5-2 shows prepared 

data in NetMaker that is ready for modeling by the BrainMaker software. 
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Figure 5-30 View of NetMaker Data Processing 

NetMaker created three files, namely, definition (.def), training (.fct), and testing (.tst). The training 

and testing files were saved in the BrainMaker software.  

5.3.3 ANN Architecture 

The neural network architecture comprises there (3) layers, namely, input, hidden, and output 

layers. The hidden layer is known as hidden neurons. The number of `neurons should be sufficient to 

provide optimal performance in the modeling prediction process. Too few or too many neurons will not 

enable the network to acquire knowledge that can be generalized for future predictions. There are 3 ways 

of determining the ideal number of hidden neurons. Equations 5-1 and 5-2 show 2 ways of calculating the 

number of hidden neurons. 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 =
𝑜𝑓 𝐷𝑎𝑡𝑎 𝑠𝑒𝑡𝑠−𝑂𝑢𝑡𝑝𝑢𝑡𝑠

𝐶(#𝐼𝑛𝑝𝑢𝑡+#𝑂𝑢𝑡𝑝𝑢𝑡+1)
                                Eq. 5-1 

Where, C = 2-5 
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𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑒𝑢𝑟𝑜𝑛𝑠 = (
# 𝐼𝑛𝑝𝑢𝑡𝑠+# 𝑂𝑢𝑡𝑝𝑢𝑡𝑠)

2
)                                                                    Eq. 5-2 

Equation 5-2 was suggested by BrainMaker Manual. In this study, Equation 5-2 was used to calculate the 

number of neurons. 

    = (22+1)/2 =12 Neurons 

In this study, starting at one (1) neuron experiment was conducted from 1 neuron to 15 neurons. The neural 

network with the least testing error was selected. 

Table 5-30 Training and Testing Errors 

Model 
# 

Architecture  RMS 
Training 

RMS 
Testing 

1 22-4-1 0.3089 0.2745 

2 22-5-1 0.3165 0.2857 

3 22-6-1 0.2860 0.2620 

4 22-7-1 0.3001 0.2647 

5 22-8-1 0.3048 0.2720 

6 22-9-1 0.3009 0.2662 

7 22-10-1 0.3010 0.2751 

8 22-11-1 0.3021 0.2716 

9 22-12-1 0.3001 0.2730 

10 22-13-1 0.3001 0.2695 

11 22-14-1 0.3002 0.2712 

12 22-15-1 0.3001 0.2700 

 

Model # 3 was found to be optimal with the least training and testing errors. Model # 3 was 

chosen for model development. 
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Figure 5-31 Training and Testing Errors for different Architectures 

 Figure 5-3 shows a graph that represents training and testing errors. In the graph, the optimal 

neurons were selected. It was shown that the optimal neurons were 6. The training and testing errors show 

a consistent trend. 

The neural networks structure of the model was presented in Figure 5-4. The structure was 

comprised of the input layer, hidden layer, and output layer. The input layer was comprised of independent 

variables. The input variables used were diameter, age, slope., depth, length, pH, material, surface 

condition, soil type, corrosivity concrete, and corrosivity steel. The hidden layer was comprised of the 6 

neurons. The output layer consisted of sewer pipe condition s 1, 2, 3,4, and 5. Like it is shown for diameter 

parameter there is a network of a relation between the input, hidden, and output layers. Similar relationships 

apply for all other parameters. This illustrates how ANN is working. 
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Figure 5-32 ANN Structure 

Figure 5-4 shows a network with 3 layers. 

5.3.4 ANN Model Development 

In BrainMaker, the network size of the optimal neurons was set at 6. Various training and testing 

tolerances were tested starting at 0.1 and 0.1, respectively.  Training and testing tolerance of 0.3 and 0.3, 

respectively, was selected to be optimal having the lowest training and testing errors. The training was 

achieved by the trial-and-error method with weights randomly taking numbers in training the model.  The 

training was stopped when the neural network reached the lowest training and testing errors. The training 

algorithm helps distribute the error to arrive at the minimum error. The information moves forward in the 

network to predict the output. While minimizing the error achieved through several iterations, the 

backpropagation algorithm redistributes the error and adjusts the weights. A complete cycle of training is 

called ‘epoch’.  



 

89 

 

Figure 5-33 Neural Network Training Progression Snapshot 

 
Figures 5-6 and 5-7 show results of average and RMS errors and testing results of model #3. 
 

 
 

Figure 5-34 Average and RMS Errors 
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Figure 5-35 Testing Results of Model #3 

 
Table 5-31 Summary of Training and Testing Results of Model #3 

Total Facts Good Bad Tolerance  Average 
Error 

RMS 
Error 

Training Configuration 
     

2224 1599(72%) 625 
(28%) 

0.3 0.2519 0.3048 

Testing Configuration 
     

392 334(85%) 58 (15%) 0.3 0.227 0.2823 

 
Table 5-10 shows that the model learned 72% of the facts and predicted 85% of the testing factors.  

Figure 5-8 shows a tested neural networks model. Figure 5-8 shows that the model 

underpredicted sewer pipe conditions 4 and 5. In the future research the model will need to be further 
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fine-tuned for sewer pipe conditions 4 and 5. 

 

Figure 5-36 Plot showing Testing Results of Actual and Predicted Sewer Condition 

5.4 Chapter Summary 

 In this chapter MLR model was developed using 80 % of randomly selected datasets. The MLR 

model were validated by using 20 % of the remaining randomly selected datasets. The ANN model was 

developed through training, validation, and testing.  
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Chapter 6 

Results and Discussions 

6.1 Introduction 

In this chapter results and discussions of MLR and ANN models are presented. The accuracy of 

the models was discussed using a classification table, sensitivity, and 1-specificity curves, and ROC 

curve, Model influence variables were presented. The significance coefficients of the models are used to 

point out the variables that influence sewer pipe conditions. The confidence level used in the data 

analysis was 95%.  The validation of MLR was discussed. The justification of the results was discussed. 

6.2 Performance of the Models 

6.2.1 MLR Model Classification Table 

Table 6-1 shows that overall, 75% of the sewer pipe conditions were correctly predicted by the 

multinomial logistic regression model. Prediction of sewer pipe condition 1 was 97% correctly with 3 

percent incorrectly predicted. This demonstrated that the model had a high accuracy in predicting 

condition 1. According to the classification table conditions 2, 3, 4, and 5 were 0%, 28%, 4%, and 14% 

correctly estimated. The prediction was consistent with the available datasets that were analyzed. From 

Chapter 4, section 4.6 condition rating score, sewer condition 1 datasets were 73% of the sewer pipe 

segments. 
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Table 6-32 Classification Table 

Observed Predicted 

  1 2 3 4 5 Percent  

  Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect 

1 1846 -- -- -- -- 44 -- -- -- 11 97% 3% 

2 -- 104 -- -- -- 2 -- -- -- 2 0% 100% 

3 -- 233 -- -- 93 0 -- -- -- 10 28% 72% 

4 -- 66 -- -- -- 4 3 -- -- 7 4% 96% 

5 -- 138 -- -- -- 27 -- -- 26 -- 14% 86% 

Overall Percentage 75% 25% 

 

Sewer pipes datasets condition 2, 3, 4, and 5 were 4%, 12%, 3%, and 7%, respectively of the sewer pipes segments. This explains why 

the percent prediction correct rate was low in conditions 2, 3, 4, and 5 compared to condition 1.  
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6.2.2. ANN model Performance 

 

 

Figure 6-37 Plot of Model Sensitivity and 1-Specificity 

Figure 6-1 is derived from the metrics of measuring model performance, equations 3-35, 3-36, 3-

37, and 3-38.  

Table 6-33 ROC Curve 

Condition Area Under Curve 

1 0.833 

2 0.768 

3 0.794 

4 0.815 

5 0.802 

 

The area under the ROC curve provided in Table 6 -1 demonstrated the performance of the ANN 

model. According to Hosmer et al., 2013, when the area is close to one (1), it refers to the perfect model. 

When the area is greater than 0.7, it implies an acceptable model. From Table 6-2, it was shows that the 

model is acceptable to be used in the prediction of sewer pipes conditions. 
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Figure 6-38 Comparison of Model Performance 

 The accuracy of MLR and ANN model was compared. The ANN model was found to be better in 

predicting the sewer pipe condition compared to the MLR model. Figure 6-2 shows that the prediction 

accuracy of the logistic regression model was 75% and that of the ANN model was 85%. 

6.3 Discussions 

This study was set to develop MLR and ANN sanitary sewer condition assessment prediction 

models. Observed datasets independent and dependent variables were utilized to develop the models. 

The independent variables that influenced the condition rating of the sewer pipes were presented in order 

of significance in Figure 6 -3. Age, depth, slope, diameter, and depth which are physical factors were 

found to be the most important predictors compared to environmental factors. 
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Figure 6-39 Influence of Variables 

The significant variables that influence sewer pipes condition rating were diameter, age, length, 

pipe material (CONC), soil type (Loam), soil type (Clay), corrosivity concrete (High), and corrosivity 

concrete (Low). Influencing and non-influencing Variables were determined by significance Value 

(P<0.05) based on a 95% Confidence Level. 

Pipe diameter was found to be significant in sewer conditions 1, 2, and 4 with a significant level of 

95% the significant value P <0.05. In condition 1, 2, and 4, the value P was 0.001, 0.000, and 0.008, 

respectively. Age was one of the significant variables. Age was found to be significant in sewer pipe 

conditions 1, 2, 3, and 4 with a significant value of P<0.05. The significant P value in conditions 1, 2, and 

3 were 0.000, 0.001, and 0.000, respectively. Pipe length was a significant factor in sewer pipe condition 

1. The significant value of the pipe length was 0.000. Pipe material was a significant variable in the 

prediction model in sewer pipe conditions 2 and 3. The significant value of P was 0.025 and 0.001, 

respectively. The PVC material had most of the pipes that were in good condition.  

Loam and clay soil types were found to be significant predictors. The significant value P was 

<0.05 in condition 4. The significant values were 0.05 and 0.05, respectively. Corrosivity Concrete (High) 
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and corrosivity Concrete (Low) variables are significant in the sewer pipes condition.  The significant 

value P was <0.05 was found to be in condition 4. The significant values were 0.036 and 0.031, 

respectively. Depth, slope, corrosivity steel, and pH variables were found not to be significant in predicting 

sewer pipes condition. 

6.4 Justification of Results 

The model results were consistent with similar studies conducted by other authors. Significant P-

Value and ODDs ratio (Exp(B)) generated in this study were compared with the results of other authors.  In 

this dissertation, the diameter was found to be significant in conditions 1, 2, and 4 with P values of 0.001, 

0.000, and 0.008, respectively. The Exp(B) was 0.978, 0.923, and 0.951 for sewer pipes condition 1, 2 and 

4, respectively. The Wald for sewer conditions 1, 2, and 4 were found to be 10.390, 12.975, 7.020, 

respectively. The diameter of the pipe being significant was consistent with Tscheikner-Gratl et al., (2014), 

Fuamba and Lubini (2011), and Laakaso et al., (2018). 

Age was another important factor that influences sewer pipes condition. In this dissertation, age 

was found to be significant in predicting sewer pipe conditions. The P-value for age factor in conditions 1, 

2, and 3 were 0.000, 0.001, and 0.000, respectively. Wald was 81.139, 11.57, and 15.222 for conditions 1, 

2, and 3. The Exp(B) was 0.845, 0.968, and 0.974 for conditions 1 and 2, respectively.  Tscheikner-Gratl et 

al. (2014), Fuamba and Lubini (2011), and Laakaso et al., (2018) found age to be a significant factor.  

It was revealed that length was a significant factor in influencing the sewer pipes condition 1. The 

P-value was 0.000, Wald and Exp (B) were 20.852 and 0.999, respectively. This was confirmed by a study 

conducted by Tscheikner-Gratl et al., (2014), Davies et al. (2001), Fuamba and Lubini (2011), Laakaso et 

al., (2018). Pipe material (Conc) was a significant factor in influencing sewer pipe conditions. In conditions 

2, P-value, Wald, and Exp(B) were 0.025, 5.030, and 0.472, respectively. In condition 3, P-value, Wald, 

and Exp(B) were 0.001, 10.828, and 2.089, respectively. Pipe material was found to be insignificant in 

conditions 1, and 4. This is consistent with Fuamba and Lubini (2011). 

Soil type (Clay), soil type (Loam), and soil type rock were illustrated to be significant in sewer 

conditions 2,3, and 4. In condition 2 for clay soil P-value, Wald, and Exp(B) were 0.05, 3.89, and 9.12. In 

condition 3 for clay soil P-value, Wald, and Exp(B) were 0.021, 0.021, and 1.153. Similarly for loam soil, 
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the P-value, Wald, and Exp(B) were 0.05, 3.89, and 9.12, respectively and for loam soil, the P-value, Wald, 

Exp(B) for soil type (Rock) was 0.018, 0.0.18, and 0.864, respectively. Laakaso et al., (2018) found that soil 

type is a significant variable in the prediction of sewer pipe condition. In condition 4, soil type clay and loam 

have Wald of 3.89 and 3.93, P-value 0.05 and 0.05, and Exp(B) of 9.12 and 9.68, respectively. 

Corrosivity concrete was found to be significant in influencing pipe conditions. The P-value, Wald, 

and Exp(B) were 0.036, 4.411, and 0.096, respectively. Laakaso et al., (2018) found corrosivity to be of 

very high significance. The model prediction accuracy in this dissertation was compared with other authors. 

The results are presented in Table 6-3. 

Table 6-34 Prediction Accuracy 

Model Author Prediction Accuracy 

Multinomial Logistic 
Regression 

Salman and Salem (2012) 52% 

Malek (2019) 65% 

Laakaso et al., (2018) 62% 

Sousa et al., (2014) 65% 

Chughtai and Zayed (2008) 72% 

 Neural Network Sousa et al., (2014) 72%-82% 

 

6.5 Chapter Summary 

 In this chapter results of MLR and ANN models were discussed. Accuracy of the models was 

discussed using classification table, sensitivity and 1-specificity curves, and ROC curve, and Model 

influence variables were presented. The justification of the results was discussed.  
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Chapter 7 

Conclusions and Recommendations for Future Research 

7.1 Conclusions 

In this dissertation, MLR and ANN models were developed to predict sanitary sewer pipe 

conditions. The models were developed, validated, and tested in prediction sewer pipe condition scores to 

prioritize pipes to be rehabilitated and or replaced and further condition assessment. The developed models 

added knowledge in the tools used to predict sanitary sewer pipes condition. Predicting and knowing the 

sanitary sewer pipes condition rating score would be beneficial to policymakers and sanitary sewer utilities 

managers in prioritizing rehabilitation and/or replacement of sanitary sewer pipes. The MLR was built with 

80% of the randomly selected dataset. The randomly remaining 20% of the data was utilized in the 

validation of the model. The ANNs model was trained, validated, and tested. The feed-forward network with 

a backpropagation learning algorithm was employed. Based on the model results, the significant physical 

factors influencing sanitary pipes condition rating included diameter, age, pipe material, and length. Soil 

type was the environmental factor that influenced sanitary sewer pipes failure.  

The accuracy of the performance of the MLR and ANN was found to 75 % and 85%, respectively.  

About this research’s main objective, it was determined that the use ANN model provided an accurate 

prediction of sanitary sewer pipes condition by testing the results of the condition rating values.  

The significance of the independent variables was found to be in the following order. Age (100%), 

Diameter (80%), Slope (62%), Length (62%), Flow (60%), pH (40%), Corrosivity Steel (38%), Soil Type 

(36%), Depth (35%), Pipe Material (25%), Surface Condition (22%), and Corrosivity (20%). With 95% 

significance level the following variables were found to be significant. Diameter (Pvalue=0.001), age 

(Pvalue=0.000), length (Pvalue=0.000), pipe material(CONC) (Pvalue=0.001)), soil type (Loam) 

(Pvalue=0.05), soil type (Clay) (Pvalue=0.001), corrosivity concrete (Pvalue=0.001), and corrosivity 

concrete (Low) (Pvalue=0.001). 
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7.2 Practical Applications 

Prediction models may be instrumental to sanitary sewer utilities managers in the decision-making 

process in rehabilitation and replacement of sewer pipes. Sanitary sewer condition assessment and data 

collection through CCTV inspection can be costly. Due to inaccessibility and inadequate funding, only about 

one third of sanitary sewer systems are inspected every 5 years. Prediction models can assist in expediting 

the evaluation of the condition rating of sewer pipes using independent variables. City Engineers can use 

existing data and use one of the models to predict the condition of sewer pipes underground. Using the 

existing data, the MLR and ANN models can predict the sewer pipes conditions 1 through 5. 

Steps of the practical application of the MLR Model. 

1. Obtain following variables for a specific sewer pipe segment:  Pipe material, diameter, age, slope, 

depth, surface condition, soil type, corrosivity concrete, corrosivity steel, and pH. 

2. Substitute the values of the variables of the sewer pipe segment in equations 5-1, 5-2, 5-3, and 5-

4. 

3. Apply the results from Equations 5-1, 5-2,5-3, and 5-4 in equations 5-5, 5-6, 5-7, 5-8, and 5-9 to 

determine the probability of that pipe segment being in one of the 5 conditions (1, 2, 3, 4, and 5). 

The probability will be between 0 and 1. A close value to 1 will mean the sewer pipe is in the given 

condition represented by the equation. The value being close to zero (0) it means that the sewer 

pipe is not in condition represented by the equation.  

4. Compare the values calculated in equations 5-5, 5-6, 5-7, 5-8, and 5-9. The equation which gives 

the highest value, will imply the condition rating of the sewer pipe segment.  The highest value 

indicates the condition rating of the pipe.  

5. Decide to replace or not to replace the sewer pipe or recommend condition assessment upon 

determining the condition of the sewer pipe. 

Steps of the Practical Application of ANN model 

1. Obtain the following data for sewer pipe segments with known condition as a pattern: Pipe material, 

diameter, age, slope, depth, surface condition, soil type, corrosivity concrete, corrosivity steel, and 

pH. 
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2. Place the data in an excel spreadsheet. 

3. Label variables as input, training pattern, annotation or not used in Netmaker. 

4. Training the network using 85% of data with known sewer pipe condition rating. 

5. Test the network using 15% of data with known sewer pipe condition rating. 

6. Get data of a sewer pipe segment without known condition rating and run it to generate the 

condition of a sewer pipe. 

7. Determine the condition rating of the pipe segment from the generated from the run.  

8. Pipe segments with condition ratings 4 and 5 are flagged and selected to be replaced. 

9. Decide to either replace or not replace the sewer pipe or recommend condition assessment. 

7.3 Recommendations for Future Research 

This dissertation raised several important points to be considered for future research as listed below:  

• There is a need of utilizing more datasets to increase the accuracy of the prediction models. Data 

collected for analysis should include more uniformly distributed number of observations in every 

condition. 

• More training and testing of the ANN model are needed to validate its prediction strength for 

conditions 4 and 5.  

• The data for this dissertation was collected from the City of Dallas. Other cities should be included 

in future studies and results compared with results of this research. 

• Excluded pipe material types could be included for further model development. 

• These models can be improved by utilizing wastewater type and volumetric flow rate variables in 

predicting and comparing the MLR and ANN models.  

• Consequences of Failure should be considered in developing these prediction models. 
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Appendix A 

Abbreviations 
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AC - asbestos-cement 

ASCE – American Society of Civil Engineers 

ANN - Artificial Neural Network 

BPNN - Backpropagation Neural Network 

CBD - central business district 

CCTV - Closed-circuit television 

COF – Consequence of Failure 

CP - concrete pipe 

CUIRE - Center for Underground Infrastructure Research and Education 

DBMS - Database management system 

DBN - Dynamic Bayesian network 

DFW - Dallas Fort Worth 

DI - ductile iron 

DSS - Decision support system 

DWU - Dallas Water Utilities 

FNR - False Negative Rate 

FRP -Fiberglass Reinforced Plastic 

GIS - Geographical Information System 

HDPE - High Density Polyethylene 

-2LL - -2 Log likelihood 

LF - Linear Feet 

LOF – Likelihood of Failure 

in - inch 

MCS - Monte Carlo simulation 

MLR – Multinomial Logistic Regression 

MSE - mean squared error 

NASSCO - National Association of Sewer Service Companies 
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O&M - Operation and maintenance 

OMR – Operational Maintenance Rating 

OSR - Operational Structural Rating  

PACP - Pipeline Assessment and Certificate Program 

PCCP - prestressed concrete cylinder pipe 

PCP - polymer concrete pipe 

PE – polyethylene 

PoF - Probability of failure 

PVC - Polyvinyl Chloride Pipe 

R - Coefficient of correlation 

R2 – Coefficient of Determination 

RCP – Reinforced Concrete 

RF - Random Forest 

RI – Rating Index 

RMSE - root mean squared error 

ROC - Receiver Operating Characteristic Curve 

RRSE – Root Relative Square Error 

SG - Structural grade  

SVMs - Support Vector Machines 

USEPA - United States Environmental Protection Agency 

TBL - Triple Bottom Line 

UTA - The University of Texas at Arlington 

VCP - Vitrified clay pipe 

WTPs - Pretreatment and Wastewater Treatment Plants 
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Appendix B 

Tests of Assumptions 
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B-1 Check Normality of variables 

Normality of dependent variable pipe condition rating and independent variables was checked to 

show whether there is the skewedness or normality. The frequency histograms were derived and presented 

in Figures B-1 to B-11. 

The basic statistics of the independent and dependent variables are presented in Table B-1. Based 

on existing measured values of different variables and their correlative analysis, total 11 factors (variables) 

including diameter, age, and pH influence the model development. The data sets were statistically 

compared for any significant difference among them using F-test (p = 0.05) for each of the measured 

variables. 

B-2 Standardize data 

Table B-35 Standardized Variables Case processing 

Variables Cases 

Valid 
 

Missing 
 

Total 
 

N Percent N Percent N Percent 

Zscore(Pipe Material) 1096 96.10% 44 3.90% 1140 100.00% 

Zscore(Surface Condition) 1096 96.10% 44 3.90% 1140 100.00% 

Zscore(Soil Type) 1096 96.10% 44 3.90% 1140 100.00% 

Zscore(Condition Rating) 1096 96.10% 44 3.90% 1140 100.00% 

Zscore(Corrosivity Concrete) 1096 96.10% 44 3.90% 1140 100.00% 

Zscore(Corrosivity Steel) 1096 96.10% 44 3.90% 1140 100.00% 

Zscore(Diameter) 1096 96.10% 44 3.90% 1140 100.00% 

Zscore(Age) 1096 96.10% 44 3.90% 1140 100.00% 

Zscore(Slope) 1096 96.10% 44 3.90% 1140 100.00% 

Zscore(Depth) 1096 96.10% 44 3.90% 1140 100.00% 

Zscore(Length) 1096 96.10% 44 3.90% 1140 100.00% 

Zscore(pH) 1096 96.10% 44 3.90% 1140 100.00% 

 

Table B-1 shows standardized variables. The data is standardized with only 3.9% of the cases missing.  
  



 

107 

Table B-36 Tests of Normality of Standardized Data 

Variables Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Zscore (Pipe Material) 0.273 1096 0.000 0.875 1096 0.000 

Zscore(Surface Condition) 0.372 1096 0.000 0.723 1096 0.000 

Zscore(Soil Type) 0.361 1096 0.000 0.766 1096 0.000 

Zscore(Condition Rating) 0.471 1096 0.000 0.533 1096 0.000 

Zscore(Corrosivity Concrete) 0.54 1096 0.000 0.237 1096 0.000 

Zscore(Corrosivity Steel) 0.536 1096 0.000 0.299 1096 0.000 

Zscore(Diameter) 0.246 1096 0.000 0.724 1096 0.000 

Zscore(Age) 0.112 1096 0.000 0.945 1096 0.000 

Zscore(Slope) 0.313 1096 0.000 0.321 1096 0.000 

Zscore(Depth) 0.221 1096 0.000 0.87 1096 0.000 

Zscore(Length) 0.127 1096 0.000 0.836 1096 0.000 

Zscore(pH) 0.351 1096 0.000 0.635 1096 0.000 

a. Lilliefors Significance Correction 

Table B-2 shows that all variables are significant. 
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B-3 Correlations 

Table B-37 Standardized Variables Descriptive Statistics 

Variables Mean Std. Deviation N 

Zscore(Pipe Material) 0 1 1112 

Zscore(Surface Condition) 0 1 1139 

Zscore(Soil Type) 0 1 1135 

Zscore(Condition Rating) 0 1 1136 

Zscore(Corrosivity Concrete) 0 1 1137 

Zscore(Corrosivity Steel) 0 1 1137 

Zscore(Diameter) 0 1 1140 

Zscore(Age) 0 1 1140 

Zscore(Slope) 0 1 1137 

Zscore(Depth) 0 1 1137 

Zscore(Length) 0 1 1140 

Zscore(pH) 0 1 1135 

 

Table B-3 shows all variables were standardized with a mean of 0 and Standard Deviation of 1. 

 

 

 

 

 

 

  



 

109 

B-4 Validation Data Descriptive Statistics 

Table 4-38 Validation Data Descriptive Statistics 

Variables N Minimum Maximum Mean Std. Deviation 

Pipe Material 259.00 1.00 5.00 2.36 0.99 

Surface Condition 263.00 1.00 4.00 2.62 0.88 

Soil Type 258.00 1.00 4.00 2.53 0.73 

Condition Rating 262.00 0.00 1.00 0.75 0.44 

Corrosivity Concrete 260.00 0.00 1.00 0.05 0.21 

Corrosivity Steel 260.00 0.00 1.00 0.92 0.27 

Diameter 263.00 6.00 78.00 18.92 14.53 

Age 263.00 1.00 101.00 42.83 22.70 

Slope 263.00 0.00 4.80 0.76 0.91 

Depth 263.00 4.00 20.00 7.67 2.47 

Length 263.00 17.00 2054.00 329.24 261.94 

pH 258.00 5.30 8.20 7.86 0.56 

 

Table B-4 shows that the descriptive data for validation. 
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Table B-39 Standardized Validation Case Processing Summary 

 Variables Cases 

Valid Missing Total 

N Percent N Percent N Percent 

Zscore(Pipe Material) 253 96.2% 10 3.8% 263 1 

Zscore(Surface Condition) 253 96.2% 10 3.8% 263 1 

Zscore(Soil Type) 253 96.2% 10 3.8% 263 1 

Zscore(Condition Rating) 253 96.2% 10 3.8% 263 1 

Zscore(Corrosivity Concrete) 253 96.2% 10 3.8% 263 1 

Zscore(Corrosivity Steel) 253 96.2% 10 3.8% 263 1 

Zscore(Diameter) 253 96.2% 10 3.8% 263 1 

Zscore(Age) 253 96.2% 10 3.8% 263 1 

Zscore(Slope) 253 96.2% 10 3.8% 263 1 

Zscore(Depth) 253 96.2% 10 3.8% 263 1 

Zscore(Length) 253 96.2% 10 3.8% 263 1 

Zscore(pH) 253 96.2% 10 3.8% 263 1 

 

Table B-5 shows only 3.8% of the data was missing. 
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Table B-40 Tests of Normality of the Validation Datasets 

Variables Kolmogorov-Smirnova Shapiro-Wilk 
 

Statistic df Sig. Statistic df Sig. 

Zscore(Pipe Material) 0.26 253.00 0.00 0.87 253.00 0.00 

Zscore(Surface Condition) 0.35 253.00 0.00 0.76 253.00 0.00 

Zscore(Soil Type) 0.34 253.00 0.00 0.79 253.00 0.00 

Zscore(Condition Rating) 0.47 253.00 0.00 0.54 253.00 0.00 

Zscore(Corrosivity Concrete) 0.54 253.00 0.00 0.21 253.00 0.00 

Zscore(Corrosivity Steel) 0.54 253.00 0.00 0.30 253.00 0.00 

Zscore(Diameter) 0.27 253.00 0.00 0.70 253.00 0.00 

Zscore(Age) 0.12 253.00 0.00 0.95 253.00 0.00 

Zscore(Slope) 0.24 253.00 0.00 0.72 253.00 0.00 

Zscore(Depth) 0.20 253.00 0.00 0.88 253.00 0.00 

Zscore(Length) 0.16 253.00 0.00 0.81 253.00 0.00 

Zscore(pH) 0.34 253.00 0.00 0.63 253.00 0.00 

 

Table B-6 shows that all variables are significant.
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B-5 Check Linearity 

Figures B-1 to B-12 show the scatterplots comparing the observed and forecasted. 

 

 

Figure B-40 Checking linearity between pipe condition rating and pipe material datasets 

Figure B-1 shows scatter graph of pipe material standardized datasets. The plot shows that material 

variable scattered. The plot shows that material variable is independent. The negative residuals do not 

cluster together, and the positive residuals do not cluster together. 
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Figure B-41 Checking linearity between pipe condition rating and pipe diameter datasets. 

Figure B-2 shows a scatter graph of pipe diameter variable standardized datasets. The plot shows 

that the diameter variable is scattered. The plot shows that the diameter variable is independent. The 

negative residuals do not cluster together, and the positive residuals do not cluster together. 

 



 

114 

 

Figure B-42 Checking linearity between pipe condition rating and age datasets. 

Figure B-3 shows a scatter graph of pipe age variable standardized datasets. The plot shows that 

diameter variable datasets are scattered. The negative residuals do not cluster together, and the positive 

residuals do not cluster together. 
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Figure B-43 Checking linearity between pipe condition rating and slope datasets. 

Figure B-4 shows that the slope variable datasets are scattered. The plot shows that the slope 

variable is independent. The negative residuals do not cluster together, and the positive residuals do not 

cluster together. 
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Figure B-44 Checking linearity between pipe condition rating and depth datasets. 

 
Figure B-5 shows that the depth variable datasets are scattered. The plot shows that the depth 

variable is independent. The negative residuals do not cluster together, and the positive residuals do not 

cluster together. 
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Figure B-45 Checking linearity between pipe condition rating and length datasets. 

 

Figure B-6 shows that the length variable datasets are scattered. The plot shows that the length 

variable is independent. The negative residuals do not cluster together, and the positive residuals do not 

cluster together. 

 

 

Figure B-46 Checking linearity between pipe condition rating and surface condition datasets. 

Figure B-7 shows that the surface condition variable datasets are scattered. The plot shows that 

the surface condition variable is independent. The negative residuals do not cluster together, and the 

positive residuals do not cluster together. 
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Figure B-47 Checking linearity between pipe condition rating and soil type datasets. 

 
Figure B-8 shows that the soil type variable datasets are scattered. The plot shows that the soil 

type variable is independent. The negative residuals do not cluster together, and the positive residuals do 

not cluster together. 
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Figure B-48 Checking Linearity between Pipe Condition Rating and Corrosivity Concrete Datasets 

Figure B-9 shows that the corrosivity concrete variable datasets are scattered. The plot shows that 

the corrosivity concrete variable is independent. The negative residuals do not cluster together, and the 

positive residuals do not cluster together. 
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Figure B-49 Checking linearity between pipe condition rating and corrosivity steel datasets. 

Figure B-10 shows that the corrosivity steel variable datasets are scattered. The negative residuals 

do not cluster together, and the positive residuals do not cluster together. The plot shows that soil corrosivity 

for the steel variable is independent. The negative residuals do not cluster together, and the positive 

residuals do not cluster together. 
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Figure B-50 Checking linearity between pipe condition rating and pH datasets. 

 
Figure B-11 shows that the pH variable datasets are scattered. The negative residuals do not 

cluster together, and the positive residuals do not cluster together. The plot shows that the pH variable is 

independent. The negative residuals do not cluster together, and the positive residuals do not cluster 

together. 
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Appendix C 

Sample Sanitary Sewer Pipes Data 
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Figure C-51 Sample of Sanitary Sewer Pipes Data

DWUKEY Material

Surface 

Condition

Soil 

Texture CORCON CORSTEELPACP Score Flow 

Pipe 

Material

Surface 

Condition

Soil 

Type

Condition 

Rating

Corrosivity 

Concrete

Corrosivity 

Steel Diameter Age Slope Depth Length pH

1154492 PVC Highway Clay Low High 1 - Excellent 0.79 2 1 3 1 0 1 10 28 0.30 9 87.20 7.90

197151 CONC Street Loam Low High 1 - Excellent 1.41 1 2 2 1 0 1 12 71 0.30 6 235.92 8.20

191381 CONC Street Clay Low High 1 - Excellent 43.79 1 2 3 1 0 1 33 84 0.22 10 71.92 7.90

138828 CONC Alley Clay High High 3 - Fair 3.94 1 3 3 0 1 1 15 59 0.87 11 305.81 7.50

1370645 RC Highway Loam Low High 5 - Extremely Poor 47.05 4 1 2 0 0 1 54 43 0.07 8 572.12 8.20

905305 VCT Easement Rock Low High 2 - Good 5.44 3 4 4 1 0 1 18 61 0.60 15 205.62 8.20

1091486 PVC Highway Clay Low High 1 - Excellent 2.07 2 1 3 1 0 1 10 20 2.16 8 131.25 8.20

1005827 VCT Street Clay Low High 2 - Good 1.36 3 2 3 1 0 1 12 100 0.30 8 578.98 7.90

131811 PVC Street Clay Low High 1 - Excellent 1.25 2 2 3 1 0 1 15 39 0.10 10 886.35 7.90

1482573 PVC Street Clay Low High 1 - Excellent 2.35 2 2 3 1 0 1 18 12 0.12 7 599.09 7.90

1291736 PVC Street Clay Low High 1 - Excellent 1.67 2 2 3 1 0 1 8 15 4.50 8 43.45 8.20

195447 RC Easement Loam Low High 3 - Fair 10.87 4 4 2 0 0 1 33 91 0.72 5 39.56 8.20

1409376 RC Street Clay High High 3 - Fair 71.37 4 2 3 0 1 1 30 83 1.20 10 68.81 7.50

203021 CONC Street Loam Low High 1 - Excellent 17.49 1 2 2 1 0 1 30 62 0.07 11 954.07 8.20

1246929 PVC Street Clay Low High 1 - Excellent 0.48 2 2 3 1 0 1 8 18 0.40 5 103.23 7.90

924610 VCT Easement Clay Low High 2 - Good 1.47 3 4 3 1 0 1 12 53 0.30 10 187.39 7.90

176461 PVC Street Clay Low High 1 - Excellent 1.64 2 2 3 1 0 1 12 22 0.56 7 485.49 7.90

195527 CONC Street Loam Low High 5 - Extremely Poor 17.14 1 2 2 0 0 1 24 68 0.30 5 157.83 8.20

209751 VCT Street Loam Moderate High 1 - Excellent 1.94 3 2 2 1 0 1 15 50 0.20 11 1037.16 7.50

928037 VCT Street Sand Low Moderate 1 - Excellent 0.79 3 2 1 1 0 0 8 50 0.01 5 576.66 6.70

921859 VCT Street Sand Low Moderate 2 - Good 0.64 3 2 1 1 0 0 8 49 0.94 8 173.54 6.70

872259 PVC Street Rock Low High 1 - Excellent 4.65 2 2 4 1 0 1 12 15 4.00 5 183.34 8.20

866360 CONC Alley Clay Low High 1 - Excellent 0.89 1 3 3 1 0 1 8 85 0.01 5 221.62 8.20

187853 RC Easement Clay High High 3 - Fair 31.08 4 4 3 0 1 1 60 40 0.03 10 997.39 7.50

1457769 PVC Street Clay High High 1 - Excellent 0.81 2 2 3 1 1 1 8 14 0.56 8 209.06 7.50

1284262 PVC Street Clay Low High 1 - Excellent 1.23 2 2 3 1 0 1 8 16 2.45 5 296.75 8.20

203248 RC Easement Loam Low High 3 - Fair 21.27 4 4 2 0 0 1 27 67 0.58 7 503.25 8.20

1130716 PVC Street Sand Moderate Moderate 1 - Excellent 0.70 2 2 1 1 0 0 12 16 0.20 8 83.51 6.50

153486 PVC Alley Clay Low High 1 - Excellent 1.00 2 3 3 1 0 1 10 16 0.80 8 180.96 7.90

1125956 PVC Street Clay Low High 1 - Excellent 1.04 2 2 3 1 0 1 12 24 0.20 8 583.69 7.90

1369859 PVC Alley Sand Moderate Moderate 5 - Extremely Poor 0.96 2 3 1 0 0 0 10 40 0.01 6 476.89 5.80

1631253 VCT Street Loam Low High 3 - Fair 7.11 3 2 2 0 0 1 18 68 1.10 8 165.70 8.20

1314780 PVC Street Clay Low High 1 - Excellent 0.65 2 2 3 1 0 1 12 15 0.09 8 37.59 7.90

1100657 PVC Street Clay Low High 1 - Excellent 1.13 2 2 3 1 0 1 12 17 0.32 7 270.18 8.20

1101157 RC Street Clay Low High 3 - Fair 40.19 4 2 3 0 0 1 66 18 0.03 8 495.76 7.90

1466860 PVC Street Sand Moderate Moderate 1 - Excellent 184.12 2 2 1 1 0 0 36 15 0.38 6 58.62 5.30

139506 CONC Street Clay Low High 1 - Excellent 1.04 1 2 3 1 0 1 10 74 0.40 8 25.73 7.90

117810 PVC Street Clay Low High 1 - Excellent 5.62 2 2 3 1 0 1 18 41 0.63 7 125.33 7.90

190358 PVC Street Sand Moderate High 1 - Excellent 1.61 2 2 1 1 0 1 12 25 0.20 8 583.25 6.80
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