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ABSTRACT

SHAPE-BASED TIME SERIES MINING FOR PROCESS MONITORING

AND ANOMALY DETECTION

Li Zhang, Ph.D.

The University of Texas at Arlington, 2021

Supervising Professors: Chen Kan, Victoria C. P. Chen

Due to the rapid development of computing and sensing technology, Inter-

net of Things (IoT)-enabled monitoring plays a crucial role for people suffering

from cardiac problems. It is important to detect the abnormal ECG cycles dur-

ing the cardiac monitoring for the early treatment. However, most existing

methods focused on the full reading of time series, for the cycle-based time

series, it is wasting time to read the whole time series while we can find the

characteristic patterns instead. Characteristic patterns named shapelets are

time series subsequences, which are explainable and discriminative features

that can best classify time series. Shapelet-based classification that uses the

similarity between a shapelet and a time series has been widely used recently

in many applications. In this research, we extract the statistically signifi-

cant shapelets from the cycle-based ECG data, and apply the support vector

data description (SVDD) algorithm to statistical process control problem for

the cardiac monitoring. The experimental results on the real-world MIT-BIH

dataset demonstrate the effectiveness of proposed method.

Positive and unlabeled learning has attracted increasing interests in recent

years. The setting of the positive and unlabeled learning is that we only
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access the positive and unlabeled training data sets. Many methods have been

proposed for the positive and unlabeled learning, however, only a few papers

integrate the shapelet features into the positive and unlabeled learning. In this

paper, we proposed the positive and unlabeled shapelet learning model for the

time series classification, and the experiment results from the real-world data

sets demonstrate the effectiveness of our proposed method.
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CHAPTER 1

Introduction

1.1 Shapelet-based ECG anomaly detection

According to the American Heart Association 2021 report, cardiovascular dis-

eases (CVDs) remain the No. 1 cause of death in the US [1]. CVDs are a class

of diseases involving the heart or blood vessels such as heart attack, stroke,

congestive heart failure and other conditions. It is important to monitor the

patients’ heart conditions as early as possible so that the domain experts can

take the timely interventions [2, 3]. An electrocardiogram (ECG) records the

heart’s electrical activity of the patient by electrodes placed on the chests

and/or limbs, and it is the most commonly tool used to diagnose the car-

diac related diseases by cardiologists [4]. Hence, it is important to detect the

abnormal ECG cycles during the cardiac monitoring for the early treatment.

Despite the enormous ECG anomaly detection methods have been pro-

posed, only a few papers use the shapelet as morphology features [5] and
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CHAPTER 1. INTRODUCTION

statistical control chart to monitor the ECG signal [6]. Shapelets as explain-

able and discriminative features were introduced in 2009 [7] for time series

data mining, and can provide a model with better interpretability. Shapelets

are time series sub-sequences, and represent the maximally discriminative seg-

ments of time series that split the time series into two classes. Discovering

shapelets from time series has been increasing interests for researchers during

the past decade. Control chart as the important tool for statistical process

control is used to monitor the performance of the process over time and detect

anomalies. In this paper, we extracted the statistically significant shapelet

from ECG cycles, and then applied the shapelet transformation matrix with

the support vector data description (SVDD) algorithm to construct the con-

trol chart to detect abnormal ECG cycles for IoT-enabled cardiac monitoring.

The different methods with different features are experimentally studied on

the MIT-BIH data sets to show the effectiveness of the proposed method.

Our contributions for this research topic are summarized as follows:

• We propose the shapelet-based method for the ECG anomaly detection,

and the shapelets are the local features, which can provide better inter-

pretability and robust result than others, which help the domain experts

understand the model better behind results.

• Our method discovers the statistically significant shapelets based on the

statistical tests that have the explanatory power supported by p-values,

while the traditional shapelet discovery method does not have.

• We apply the shapelet-based features with the support vector data de-

scription to construct the control chart for the cardiac monitoring, and
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CHAPTER 1. INTRODUCTION

the domain experts can easier see the anomaly ECG cycle and take the

timely intervention.

1.2 Positive and unlabeled shapelet learning

Time series classification as a subset of the general classification problem, has

attracted many interests in the research for both academic and industry people,

as the data collected automatically by sensing and monitoring are time series.

However, in many real world problems, collecting a large amount of the labeled

data is costly, while the positive and unlabeled data are usually easily to be

obtained. In such situation, only a small set of positive labeled data and a

large amount of unlabeled data are available, which leads to the development

of the positive and unlabeled learning [8]. Positive and unlabeled learning

aims to learn a suitable binary classifier without the assistant of the negative

data.

Despite a large amount of methods have been proposed for the positive

and unlabeled learning, few efforts have been made to integrate the shapelets

with the positive and unlabeled learning for time series classification [9–11].

Based on the previous algorithm large-margin label-calibrated support vector

machines (LLSVM) for the positive and unlabeled learning [12], we integrated

the shapelet features into the LLSVM to introduce the positive and unlabeled

shapelet learning model. Benchmark time series data sets and MIT-BIH data

sets are experimented to validate the proposed method.

Our contributions for this research topic are summarized as follows:

3



CHAPTER 1. INTRODUCTION

• This is the first effort of shapelet learning that focuses on the positive

and unlabeled data setting.

• A new positive and unlabeled shapelet learning model is proposed that

incorporates the derived distribution information from the unlabeled

data.

• The proposed positive and shapelet learning method is applied for the

ECG anomaly detection.
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CHAPTER 2. SHAPELET-BASED ECG ANOMALY DETECTION FOR
IOT-ENABLED CARDIAC MONITORING

2.1 Abstract

Due to the rapid development of network and sensing technology, Internet of

Things (IoT)-enabled monitoring plays a crucial role for people suffering from

cardiac problems. It is essential to detect the abnormal ECG cycles during

cardiac monitoring for early treatment. However, most existing methods fo-

cused on the entire reading of time series; for the cycle-based time series, it

is wasting time to read the whole time series while we can find the charac-

teristic patterns instead. Distinctive patterns named shapelets are time series

subsequences, explainable and discriminative features that can best classify

time series. The shapelet-based classification that uses the similarity between

a shapelet and a time series has been widely used in many applications. In this

research, we extract the statistically significant shapelets from the cycle-based

ECG data and apply the support vector data description (SVDD) algorithm to

the statistical process control problem for cardiac monitoring. The experimen-

tal results on the real-world MIT-BIH dataset demonstrate the effectiveness

of the proposed method.

2.2 Introduction

According to the American Heart Association 2021 report, cardiovascular dis-

eases (CVDs) remain the No. 1 cause of death in the US [1]. CVDs are diseases

involving the heart or blood vessels such as heart attack, stroke, congestive

heart failure, and other conditions. It is essential to monitor the patients’

heart conditions as early as possible so that the domain experts can take the
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timely interventions [2, 3]. An electrocardiogram (ECG) records the heart’s

electrical activity by electrodes placed on the chests and/or limbs, and it is

the most common tool used to diagnose the cardiac-related diseases by car-

diologists [4]. Therefore, long-term ECG monitoring can track the patient’s

cardiac activities, and it is valuable and necessary for those who suffer CVDs.

As shown in Figure 1, the typical ECG signal has three most significant com-

ponents: P wave, QRS complex, and T wave. The P wave represents the atria

depolarization; the QRS complex represents the ventricles’ depolarization, and

the T wave indicates the ventricles’ repolarization.

Due to the rapid development of computing and sensing technology, the

Internet of Things (IoT)-enabled cardiac monitoring devices make it available

for people suffering the cardiac-related problems to regularly monitor their

health no matter where they are and what they are doing, and for doctors re-

motely check and analyze the monitoring data. Many portable ECG monitor-

ing systems are proposed as the healthcare-based cardiac monitoring for home

monitoring, remote monitoring or diagnosis, and intensive care unit (ICU), for

example, Singh et al. [5] presented the wearable smartphone based wireless

cardiac activity monitoring sensor, Wan et al. [6] proposed wearable IoT cloud

based health monitoring system, Verma and Sood [7] displayed the IoT-based

real-time remote ECG monitoring system, and Basu et al. [8] proposed the fog

assistant-IoT enabled patient health monitoring in smart homes. Hence, it is

necessary to analyze the IoT-enabled cardiac monitoring.

As shown in Figure 2.1, in the normal ECG signal, the P wave, QRS com-

plex, and T wave should be similar over time at a frequency ranging from 60

9
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Figure 2.1: A typical ECG signal with the corresponding notations

to 100bpm [9]. Based on the paper [10], anomalies are defined as any deviation

from normal behavior, in general. Hence, the ECG anomalies represent the

irregular heart activity and anomaly detection for the ECG signals can act as

an assistant for doctors to diagnose a cardiac condition [9]. During the past

decades, ECG anomaly detection is one of the most popular research topics for

these IoT-based healthcare monitoring systems, as it can get rapid response

to the acute heart related illnesses and improve the diagnostic efficiency and

accuracy [11–13]. Many methods have been proposed to analyze and classify

the ECG signals: for example, Risk et al. [14] proposed the self-organizing

maps for the beat detection and classification of ECG; Srinivasan et al. [15]

used the autoregressive modeling to classify the cardiac arrhythmias; Özbay

et al. [16] integrated the c-means clustering and wavelet transform for the ECG

classification; and Rai et al. [17] used multi-resolution wavelet transform and

artificial neural network for the ECG anomaly detection. Despite the fact that

10
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Figure 2.2: Top shapelet selected for GunPoint time series [20]

the enormous ECG anomaly detection methods have been proposed, only a

few papers use the shapelet as morphology features [18] and statistical control

chart to monitor the ECG signal [19].

Shapelets as explainable and discriminative features were introduced in

2009 [20] for time series data mining and can provide a model with better

interpretability. Shapelets are time series sub-sequences and represent the

maximally discriminative segments of time series that split the time series into

two classes. For example, GunPoint time series (available in UCR time series

repository [21]), which has been studied a lot in the time series classification

[20, 22–24], as shown in Figure 2.2, the solid red line represents one of the

best-selected shapelets. GunPoint time series has two classes: Gun-Draw and

Point: for the Gun-Draw, the actor took the gun from the hip-mounted holster

to point at a target; for the Point, the actor did the same action with index

finger instead of a gun to point a target. The shapelet shown in Figure 2.2

displayed the “dip” without the gun, which means that the actor is trying to

correct the action, while the actor is more careful to return the hand with the

gun. The shapelet captures the inherent characteristic of the time series and

provides an interpretation for the people who do not understand the inside

processes or algorithms.

11
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Discovering shapelets from time series has been increasing interest for re-

searchers during the past decade [20, 25–29]. Xing et al. [26] extracted the local

shapelets for the early time series classification. Lines et al. [30] proposed the

shapelet transform for the time series classification so that the feature vectors

can be used with any classifier. Ghalwash and Obradovic [31] extracted the

interpretable shapelets for the multivariate early time series classification. Li

et al. [32] proposed the shapelet-neural network approach for the multivariate

time series classification.

As an essential tool for statistical process control, the control chart is used

to monitor the performance of the process over time and detect anomalies [33].

For example, Sun and Tsung [34] proposed the kernel-distance-based charts (K

charts) based on a support vector data description (SVDD) algorithm using

the monitoring statistic derived from the distance between the new observation

and the decision boundary and showed that the proposed method is better

than Hotelling’s T 2 control chart when the data is non-normal data. Later,

Kumar et al. [35] proposed the robust K charts and revealed that the method

efficiently handled the autocorrelated process data. Moreover, Zhang et al.

[36] applied the one-class SVM-based control chart for anomaly detection in

computer networking applications. Moreover, for healthcare, Jung and Kim

[19] applied Hotelling’s T 2 control chart for the PVC detection in the ECG

signal.

However, previous paper [18] proposed the unsupervised approach to learn

the shapelets from the same streaming ECG time series, and they did not

consider ECG samples from more patients while we can get them easy right

12
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now, and also only a few research did the statistical tests to select the signif-

icant shapelets for the ECG time series [37]. In this paper, we extracted the

statistically significant shapelet from each training model, including more dif-

ferent patients, and then applied the shapelet transformation matrix with the

support vector data description (SVDD) algorithm to construct the control

chart to detect abnormal ECG cycles for IoT-enabled cardiac monitoring.

The highlights of this paper are summarized as follows:

• We propose the shapelet-based method for the ECG anomaly detection,

and the shapelets are the local features, which can provide better inter-

pretability and robust result than others, which help the domain experts

understand the model better behind results.

• Our method discovers the statistically significant shapelets based on the

statistical tests that have the explanatory power supported by p-values,

while the traditional shapelet discovery method does not have.

• We apply the shapelet-based features with the support vector data de-

scription to construct the control chart for the cardiac monitoring, and

the domain experts can easier see the anomaly ECG cycle and take the

timely intervention.

The remainder of the paper is organized as follows. Section 2.3 reviews the

ECG anomaly detection methods. We propose the methods for extracting the

statistically significant shapelets to construct the control chart in section 2.4.

Section 2.5 shows the experimental study and results. Section 2.6 concludes

the paper and points to future work.
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2.3 Literature review

In this section, we review the existing research related to our work. ECG

anomaly detection has two main parts: feature extraction and model training.

For the feature extraction, many morphological features or derived fea-

tures have been studied in the past research. For example, the previous paper

extracted the representation features mean, and trend [38], the paper [39] ex-

tracted the QRS complex as the morphology feature, and the paper [40] used

the Dynamic Time Warping(DTW) distance between a cycle segmentation

and the median cycle segmentation as the features. Most of the previous re-

search combined the morphological and derived features together to get the

higher classification accuracy, for example, Ye et al. [41] proposed the aver-

age R-R interval morphology and dynamic features for the anomaly detection.

However, only a few papers used the shapelets as the feature for the ECG

anomaly detection [18]. The previous paper [18] used the shapelet to detect

the anomalies from the steaming ECG signal, but that method is the unsuper-

vised learning without the prior labels for each ECG cycle, which is a suitable

method for the unlabeled data. While for the ECG signal, there are many

cardiologists that have annotated the ECG cycles, we can make full use of the

annotations to get a better prediction. To solve this problem, we proposed the

shapelet-based ECG anomaly detection features. The previous research that is

most similar to our method is the motif discovery anomaly detection proposed

by Sivaraks and Ratanamahatana [42]. While the motif method was focused

on the clean normal ECG cycles without the abnormal cycles, the motif best

represented the normal cycles. However, the difference between the normal
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and abnormal classes may lie in other places, and the two classes share the

same motif. Shapelets that represents the maximally discriminative segments

of time series that split the time series into two classes is the best way to make

up this shortage for the motif discovery method.

Based on the models used for training, there are clustering, traditional

machine learning classification, and deep learning classification for the ECG

anomaly detection [9]. For example, Veeravalli et al. [43] proposed the K-means

clustering-based algorithm for real-time and personalized anomaly detection

from wearable health care; Li et al. [44] presented the weighted transductive

one-class SVM, and Li et al. [45] proposed the convolutional neural network-

based classification methods. Although much research has been proposed for

all kinds of training methods, only a few papers integrated the classification

with statistical process control (SPC). Jung and Kim [19] showed the PVC

detection based on the SPC, while the monitoring statistics constructed are

based on Hotelling’s T 2 statistics, which is good at the normal distribution as-

sumption [33], and difficult to be applied to non-normal data. Kernel-distance-

based charts (K charts) based on the support vector data description (SVDD)

algorithm proposed by Sun and Tsung [34] is a suitable substitution. After

the feature extraction, we constructed the monitoring procedure using the K

charted-based SVDD algorithm.
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Figure 2.3: Flow chart of the proposed method: after the input of the ECG
signal, the first step is to segment the signal into cycles, then remove noise
with the Daubechies wavelet transform, and then extract features based on the
wavelet coefficients, the last step is to apply the one class SVDD algorithm
with the features to detect the abnormal ECG cycles

2.4 Research methodology

In this section, we propose the shapelet-based ECG anomaly detection method

for cardiac monitoring. Figures 2.3 shows the overall view of the proposed

method. Follow the flow chart of Figures 2.3, we will first present the data

pre-processing, as it is an essential part of ECG anomaly detection.

2.4.1 Data pre-processing

The ECG signal monitored from the IoT-based devices is the raw ECG signal,

and it may include the noise because of the non-stationary characteristic of the

ECG recording. We apply the discrete wavelet transform [46] for every cycle
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segmentation. Since the Daubechies wavelet family is similar to the ECG

recording [47], we selected it as the transformation. Low-order Daubechies

wavelets have high time resolution but low-frequency resolution, while high-

order ones have high-frequency resolution and low time resolution. As the

previous paper [48] did, we employ order 2, but with 2 levels of decomposition

instead of 4, which is more close to the original recording. After the discrete

wavelet transform, i.e., db2(2), the final cycle segmentations are used to extract

the shapelets.

2.4.2 Feature selection

The proposed method for feature selection has two steps. The first step is to

search the shapelets from the final cycle segmentations and select statistically

significant shapelets. The second step is to do the shapelet transform.

Shapelet searching

We now introduce the process of the shapelet searching. For each ECG cycle

segmentation, it is a univariate time series T with a set of ordered numerical

observations t1, t2, . . . , tm. A subsequence S of T is si, si+1, . . . , si+l−1 with

length l ≤ m, 1 ≤ l ≤ m − l + 1. The distance between subsequence S and

time series T is calculated by Euclidean Norm, dist(S, T ) =
√∑m

i=1(si − ti)2

if subsequence S and T have the same length. If they have different lengths,

and |S| < |T |, let Si be the subsequence of T with |Si| = |S|, dist(S, T ) =

min(dist(S, Si)). The shapelet is defined as the most distinctive time series

subsequence. Therefore, time series subsequence S is the shapelet candidate.

17



CHAPTER 2. SHAPELET-BASED ECG ANOMALY DETECTION FOR
IOT-ENABLED CARDIAC MONITORING

First, we will extract all of the subsequences with the length between the

minimum length and maximum length as the shapelet candidates. For each

shapelet candidate S, we calculate the minimum Euclidean distance between

this candidate and each time series in the training dataset as the similarity

similarity(S) = min(dist(S, T )), and store this similarity with the accordance

time series label. To find the best threshold for the given shapelet, we compare

the threshold candidates with the similarity to divide the training dataset

into two groups for which the information gain is calculated. The threshold

candidate with the maximum information gain is the best distance threshold

for this given shapelet candidate.

Next, we need to assess if this shapelet candidate is significant by the

statistical indicator p-value which can be obtained by the statistical association

tests. For each shapelet candidate, there is the best distance threshold θ which

is used to construct the contingency table between two groups as shown in

Table 2.1, where dist(S, T ) is the minimum distance between the shapelet S

and the time series T . Both of the Fisher’s exact test [49] and Pearson’s χ2

test [50] can be used for the test for the contingency table. Since χ2 test

is more appropriate for the larger sample sizes, we will use the χ2 test here

to calculate the p-value based on the contingency table. The χ2 statistic is

defined as χ2
c = N(n1n4−n2n3)2

(n1+n2)(n3+n4)(n1+n3)(n2+n4)
.

This shapelet candidate is significant if the accordance p-value from the

statistical test is less than a certain significance level α. Since the number

of the shapelet candidates is very large, it is likely to have a large number

of false positives which means that the shapelet candidate will be mistak-
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Table 2.1: Contingency table between two classes

Class label dist(S, T ) ≤ θ dist(S, T ) > θ Total
normal n1 n2 nr1

abnormal n3 n4 nr2
Total nc1 nc2 N

enly considered statistically significant. This is also known as the multiple

hypothesis testing problem. To solve this problem, the Bonferroni correction

factor is introduced, which is the number of the statistical tests we have for

all of the shapelet candidates. As stated in [37], the correction factor is the

product of the training cycle segments number, the number of the distance

threshold candidates, and the number of the shapelet candidates we extract

from each cycle segment. Hence, the Bonferroni correction significance level

is: αcorrected = α
Correctionfactor

.

Once all of the significant shapelet candidates have been selected, they

may have the similar pattern or morphology from the same cycle segment.

We store the sorted shapelet candidates by the ascending p value in the same

cycle segment, and remove the shapelet candidates if they have any overlap

with the previous one. We keep all of the left shapelets candidates together

in the ascending p value, and retain the top 50 so that we have the shapelet

candidates from different cycle segments. Finally, we apply the hierarchical

clustering with the top 50 shapelet candidates to have five clusters, and select

the best one from each cluster.

In the shapelet searching, it is time consuming to calculate the similarity

between each shapelet candidate and cycle segment. Here in this research,

we follow the Mueen’s ultra-fast algorithm for similarity search (MASS) [51].
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The most important part for this algorithm is the convolution calculation. As

shown in paper [52], the Euclidean distance can be rewritten in the following:

dist(S, T ) =

√√√√ m∑
i=1

(si − ti)2 ≈
√

2m(1− corr(S, T )) (2.1)

where corr(S, T ) =
∑
st−mµsµt
mσsσt

is the correlation coefficient between shapelet

candidate S and cycle segment T . µs = 1
m

∑
s, σ2

s = 1
m

∑
s2 − µ2

s. The

sliding dot product
∑
st can be calculated by convolution. Since

∑
st,
∑
s,∑

t,
∑
s2 and

∑
t2 are the sufficient statistics, then the correlation coeffi-

cient is a constant operation. Hence, this algorithm can speed up the calcula-

tion between shapelet candidate and the cycle segments. The whole shapelet

searching method is shown in Algorithm 1.

Algorithm 1: Shapelet extraction
Input: the training data D, minimum length minL and maximum length

maxL
Result: shapelets

1 finalS = ∅
2 for each T in D do
3 candidates = ExactCandiates(T , minL, maxL)
4 for each S in candidates do
5 distance = MASS(T , S)
6 (threshold, informationGain) = inforCalculation(S)
7 p value = ChiSquaredTest(S)
8 if p value < Bonferroni correction α then
9 Spool add S

10 end

11 end
12 removeSimilar(Spool)

13 end
14 sort(Spool)
15 finalS = top50(Spool)
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Shapelet transform

Shapelet transform was proposed by Lines et al. [30] to downsize the long time

series into the feature vector, and at the same time, it preserves the shape

information for the dataset. After the shapelet transform, we can disassociate

the shapelet extracting from building the classifier. Most importantly, after

the shapelet transform, the feature vectors can be used with any classifier.

For the final selected shapelets, the shapelet transformed matrix is formed by

calculating the minimum Euclidean distance between this shapelet and testing

cycle segmentations to represent the features to do the classification.

2.4.3 Statistical process control

Control chart as the important tool for statistical process control is used to

monitor the performance of the process over time to keep the process in an

in-control state [33]. Here, it will be used as the ECG anomaly detection for

the cardiac monitoring.

The statistical process control with control chart is implemented in two

phases. Phase I is also called retrospective phase, that analyzes the in-control

data from the training examples to estimate the control limit for the next

step. In our method, phase I is the model training procedure, and the input

will be the shapelet transformed matrix, then using the support vector data

description (SVDD) algorithm [53] to get the control limit as the monitoring

statistic. Phase II is called the prospective or monitoring phase, that based

on the control limit from phase I to construct the control chart for the testing

cycle segmentation to monitor the new cycle, and then to finish the ECG
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anomaly detection.

Support vector data description (SVDD) is a method to solve the one-

class classification problem by mixing SVM and the data description method

together [53]. SVDD is to find the minimal enclosing sphere to provide a

hypersphere boundary around the data. Let a be the center of the hypersphere,

and R2 be the radius of the hypersphere. {xi} ∈ X for i = 1, 2, . . . , N is the

training observations. The objective for SVDD is to:

minimizeR2 + C
N∑
i=1

ξi (2.2)

with constraint:

‖ xi − a ‖2≤ R2 + ξi (2.3)

ξi ≥ 0,∀i (2.4)

The parameter C is a constant, which controls the trade-off between the

volume of the hypersphere and the errors. The previous paper [54] defined

the user-specified parameter f to represent the fraction of the training data

outside the decision boundary:

f = 1/NC

where N is the number of the training target observations. As the increasing

of f , the volume of the hypersphere becomes smaller and the misclassifica-

tion error in the training class becomes larger. This objective function with

constrains can be solved by using the Lagrange multipliers and KKT com-
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plementarity conditions of Fletcher [55], and the optimization problem finally

becomes:

L =
∑
i

αiK(Xi, Xi)−
∑
i,j

αiαjK(Xi, Xj) (2.5)

The solution can be obtained by maximizing this equation subject to 0 ≤ αi ≤

C.

As with conventional SVM, the SVDD algorithm can generate more flexible

decision boundaries by replacing the inner product with kernel functions:

K(Xi, Xj) = exp(−
∣∣Xi −Xj

∣∣2/S2) (2.6)

where S > 0 is the width of the Gaussian kernel that controls the complexity

of the SVDD boundary. The control boundaries of SVDD are decided by the

input parameters f and S: for the same f value, as the increasing of S, the

shape of the control boundary becomes smoother; for the same S value, as the

increasing of f , the control boundary becomes smaller.

For the new testing data point z, D2 that measures the distance between

z and the center a can be calculated by the following equation:

D2 = K(z, z)− 2
∑
i

αiK(z,Xi) +
∑
i,j

αiαjK(Xi, Xj) (2.7)

For classification, the new observation z is classified as the target or in-control

if D2 is less than or equal to R2.
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2.5 Experimental study

Following the method proposed in section 2.4, the extensive experiments are

carried out to validate the effectiveness of the method in this section. We

introduce the MIT-BIH data used for the experiment in section 2.5.1. Section

2.5.2 demonstrates the data preprocessing used. Finally, in section 2.5.3, we

show the experiment results of cardiac monitoring using the SVDD-based con-

trol charts, and compare the proposed method with the commonly used and

the state-of-the-art methods.

2.5.1 Data set

We evaluate our method with the publicly available real-world data sets from

the MIT-BIH ECG arrhythmia database from PhysioNet [56, 57]. There are 48

records from 47 subjects in the dataset. Each record has a 30-min two-channel

ECG recording. One channel is modified limb lead II, and the other one is

modified lead V1, V2, V4 or V5. Each record has the computer-readable refer-

ence annotations for each beat. For all records, the experiment only used the

first channel modified limb lead II, as many previous papers [58] did. There

are two groups of data in this database: the first group includes the represen-

tative common samples from the arrhythmias in routine clinical practice; the

second group includes the less common but clinically significant arrhythmias,

such as ventricular, junctional, and supraventricular arrhythmias. According

to AAMI recommended practice [59], the paced records (#102, #104, #107

and #217) are excluded in the experiment. Then the first group has 20 records
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Table 2.2: Cycle classes

Classes Labels Types
normal N Normal beat, atrial escape beat, and junctional escape beat

abnormal L Left bundle branch block beat
R Right bundle branch block beat

S
Atrial premature beat, aberrated atrial premature beat, junctional
premature beat, and supraventricular premature beat

V Premature ventricular contraction, and ventricular escape beat
F Fusion of ventricular and normal beat
Q Paced beat, fusion of paced and normal beat, and unclassifiable beat

with label # starting from 1, and the second group has 24 records with label

# starting from 2.

As most previous papers [48, 58, 60–62] did, in our experiment, the first

group of data is used as the training and the second group is used as the testing.

The model is trained individually for each record in the testing group, as

some papers [48, 62] did. The data used for training individual patient record

includes two parts: the common representative cycles, which are the same for

each patient record, and the patient-specific cycles from each patient record.

The common representative cycles are selected from all training records, and

the patient-specific cycles are from the first 5 minutes of each testing record,

which is in compliance with AAMI recommended practice [59]. The remaining

25 minutes of the record was used for testing.

In our experiment, the cycles are classified into two classes: normal and

abnormal shown in Table 2.2, as the normal is the target class, the model is to

detect the abnormal cycles for individual patient record. Based on the AAMI

recommended practice, most previous papers [58, 60–62] applied the five class

labels: N, S, V, F and Q, some previous papers [48, 63] used seven class labels:

N, L, R, S, V, F and Q. Here, we treat N as the normal class label, and the
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rest L, R, S, V, F and Q are the abnormal class labels.

2.5.2 Data pre-processing

The modified limb lead II ECG recording of each record is segmented into a

sequence of cycles. Each cycle is segmented based on its R peak marked in

the database. As the previous paper [48] did, each cycle segmentation has the

fixed length 255, and includes the 0.25 seconds length of ECG recording before

the detected R peak and the 0.45 seconds after the R peak. After the discrete

wavelet transform, i.e. db2(2), the final cycle segmentation length is fixed to

66 which reduced the computational time for the experiment.

2.5.3 Results

In the experiments, we randomly selected 45 common representative normal

cycles from each training record, as it would be time consuming if we use all of

the cycles from the recording. The number chosen was decided carefully based

on the number of abnormal cycles in the training records. However, we didn’t

select all of the abnormal cycles from the training records, we want to keep

the data as balance as possible. If the number of specific abnormal label is

less than or equal to 43 in the training record, we selected all of the abnormal

labels, otherwise, we only randomly selected 43 cycles. For example, in Record

118, the number of abnormal label A is 1, we selected 1 cycle with label A;

the number of abnormal label V is 109, we only selected 43 cycles with label

V. Finally, in the common representative part for the training, there are 720

normal cycles, and 664 abnormal cycles (including 86 L, 86 R, 139 A, 333 V,
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Figure 2.4: Five shapelets selected for Record 221

Figure 2.5: First 2000 datapoints of Record 221 ECG signal, N is the normal
label, and V is the abnormal label

13 F and 7 Q).

We set the shapelet length to be 20, 25, 30, 40, and 45, and the sliding

window to be 2. For the Bonferroni correction significance level, we set α =

0.05, and then αcorrected = 0.05/(Correctionfactor). As shown in Figures 2.4,

it represents the five best shapelets selected from the training model for record

221. Figures 2.5 displays the first 2000 data points from the ECG lead II in

Record 221. As seen from Figures 2.5, the difference lies in the QRS between

label N and V, it is easier for the shapelets to detect the abnormal label V.

For the evaluation of the performance, we used the accuracy (acc), sensi-

tivity (sen), specificity (spe), and F1 score as the previous paper [45, 48, 60–

62, 64, 65] did.

acc =
TP + TN

TP + TN + FP + FN
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sen =
TP

TP + FN

spe =
TN

TN + FP

F1 =
2 ∗ TP

2 ∗ TP + FN + FP

TP, TN, FP and FN represent the true positive, true negative, false positive

and false negative for the binary classification.

For the construction of the optimal shapelet-based SVDD classifier, the

shapelet-based K-nearest neighbor (KNN) based control charts are constructed

to compare with the shapelet-based SVDD control charts as shown in Ta-

ble 2.3. Since some testing records only have one class, then the cell may be

indicated with NaN. The highest accuracy is marked with bold. As can be

seen from Table 2.3, in most testing records, the accuracy is higher in SVDD

than KNN based control chart. And then it shows the ability of SVDD based

control chart for classifying the ECG cycles.

In the following, six other different benchmark methods are also experi-

mentally studied with the same training and testing cycles to demonstrate the

effectiveness of proposed method, but with the principle-component-analysis

(PCA) based features and Autoregressive model (AR) based features instead

of shapelet-based features. Here, the first 12 principal components are kept in

the PCA, and Burg’s method is used to estimate the AR coefficients with order

4. For the PCA-based features, these four classifiers used are random forest

[66], multilayer perceptron (MLP) of Artificial Neural Network (ANN) [67],

multivariate Hoteling’s T 2 control chart [68] and multivariate exponentially
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Table 2.3: Comparison between shapelet-based SVDD and shapelet-based
KNN control chart

Proposed shapelet-based SVDD Shapeled-based KNN control chart
Record acc sen spe F1 acc sen spe F1

200 0.9788 0.9411 0.9979 0.9676 0.9359 0.9658 0.9207 0.9103
201 0.9658 0.8571 0.9966 0.9172 0.6822 0.8750 0.6275 0.5490
202 0.9834 0.6338 0.9972 0.7438 0.9497 0.6901 0.9600 0.5104
203 0.9597 0.8836 0.9734 0.8698 0.9343 0.9418 0.9330 0.8137
205 0.9945 0.8462 1.0000 0.9167 0.9936 0.8462 0.9991 0.9041
207 1.0000 1.0000 NaN 1.0000 1.0000 1.0000 NaN 1.0000
208 0.9019 0.8043 0.9862 0.8837 0.9089 0.8707 0.9419 0.8985
209 0.9079 0.4826 0.9818 0.6081 0.8209 0.7212 0.8382 0.5440
210 0.9873 0.8763 0.9980 0.9239 0.9732 0.9330 0.9771 0.8599
212 0.9877 0.9886 0.9861 0.9906 0.9947 0.9946 0.9950 0.9960
213 0.9303 0.6314 0.9968 0.7673 0.7955 0.8310 0.7876 0.5965
214 1.0000 1.0000 NaN 1.0000 0.8504 0.8504 NaN 0.9191
215 0.9871 0.7537 0.9989 0.8487 0.9964 0.9552 0.9985 0.9624
219 0.9927 0.9424 0.9983 0.9626 0.8867 0.9634 0.8781 0.6301
220 0.9545 0.2258 0.9969 0.3529 0.9539 0.2688 0.9938 0.3906
221 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
222 0.7905 0.0000 0.9870 0.0000 0.5730 0.1473 0.6789 0.1207
223 0.9700 0.9300 0.9831 0.9387 0.9172 0.9558 0.9045 0.8508
228 0.9812 0.9508 0.9878 0.9477 0.9783 0.9869 0.9764 0.9421
230 1.0000 1.0000 1.0000 1.0000 0.9925 1.0000 0.9925 0.1250
231 0.9898 0.9949 0.9735 0.9933 0.7940 0.7590 0.9073 0.8491
232 1.0000 1.0000 NaN 1.0000 0.6175 0.6175 NaN 0.7635
233 0.9965 0.9915 0.9984 0.9936 0.9875 1.0000 0.9828 0.9777
234 0.9782 0.0566 1.0000 0.1071 0.9773 0.0566 0.9991 0.1034
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weighted moving average (MEWMA) control chart [69]. For the AR-based

features, the two classifiers are support vector machine (SVM) and k-nearest

neighbors (KNN). Table 2.4 shows the comparison between the shapelet-based

SVDD control chart and the PCA-based classifiers random forest and ANN.

the proposed shapelet-based SVDD method has 17 highest accuracies out of

total 24 testing records, while PCA-based random forest has 7 highest and

PCA-based ANN has 2 highest. In most of the testing records, the accuracies

from the shapelet-based SVDD control chart are higher than the PCA-based

classifiers (random forest and ANN), which shows the effectiveness of the pro-

posed shapelet-based features. Table 2.5 compares the accuracy between the

shapelet-based SVDD control chart and AR-based classifiers SVM and KNN,

and shapelet-based SVDD control charts has 21 highest accuracies, AR-based

classifier SVM has 7 highest accuracies, and AR-based classifier KNN has 0,

which again shows the effectiveness of the proposed shapelet-based features.

Table 2.6 displays the comparison results between the shapelet-based SVDD

control chart and the PCA-based control charts: T 2 and MEWMA. The pro-

posed shapelet-based SVDD control chart has 20 highest accuracies, while

PCA-based multivariate T 2 control charts have 4 highest and MEWMA only

have one. In most of the testing records, the accuracies from the shapelet-

based SVDD control chart are higher than the PCA-based control chart meth-

ods (Hoteling’s T 2 and MEWMA), which shows the effectiveness of proposed

SVDD method.

The following shows the comparison between the proposed method with the

state-of-the-art convolutional neural network method proposed [45] for MIT-
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Table 2.4: Comparison between shapelet-based control chart and PCA-based
classifiers

Shapelet-based PCA-based classification
SVDD control chart Random forest ANN

Record acc F1 acc F1 acc F1
200 0.9788 0.9676 0.9709 0.9569 0.9280 0.8997
201 0.9658 0.9172 0.9651 0.9163 0.9164 0.7678
202 0.9834 0.7438 0.9118 0.3478 0.8840 0.2791
203 0.9597 0.8698 0.9496 0.8474 0.8247 0.6253
205 0.9945 0.9167 0.9914 0.8774 0.9918 0.8696
207 1.0000 1.0000 0.9906 0.9953 0.9975 0.9987
208 0.9019 0.8837 0.9807 0.9792 0.9319 0.9303
209 0.9079 0.6081 0.8797 0.3399 0.8809 0.3304
210 0.9873 0.9239 0.9837 0.9077 0.9782 0.8776
212 0.9877 0.9906 0.9961 0.9970 0.6550 0.7910
213 0.9303 0.7673 0.9548 0.8778 0.9333 0.7810
214 1.0000 1.0000 0.9878 0.9938 0.9984 0.9992
215 0.9871 0.8487 0.9989 0.9887 0.9914 0.9070
219 0.9927 0.9626 0.9150 0.6908 0.9449 0.6263
220 0.9545 0.3529 0.9776 0.7683 0.9457 0.0213
221 1.0000 1.0000 0.9985 0.9952 0.9965 0.9890
222 0.7905 0.0000 0.7470 0.1301 0.8005 0.0094
223 0.9700 0.9387 0.9199 0.8491 0.8985 0.7722
228 0.9812 0.9477 0.9965 0.9901 0.9759 0.9311
230 1.0000 1.0000 0.9849 0.0667 0.9871 0.0000
231 0.9898 0.9933 0.8794 0.9268 0.7635 0.8659
232 1.0000 1.0000 0.9414 0.9698 1.0000 1.0000
233 0.9965 0.9936 0.9895 0.9808 0.9867 0.9758
234 0.9782 0.1071 0.9782 0.4565 0.9694 0.0541
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Table 2.5: Comparison between shapelet-based SVDD and AR-based classi-
fiers

Shapelet-based AR-based classification
SVDD control chart SVM KNN

Record acc F1 acc F1 acc F1
200 0.9788 0.9676 0.9603 0.9392 0.8906 0.8346
201 0.9658 0.9172 0.9553 0.8882 0.9125 0.7726
202 0.9834 0.7438 0.9717 0.4536 0.8631 0.2147
203 0.9597 0.8698 0.7420 0.4255 0.6574 0.3541
205 0.9945 0.9167 0.9955 0.9333 0.9873 0.8228
207 1.0000 1.0000 0.9969 0.9984 0.9485 0.9736
208 0.9019 0.8837 0.9688 0.9655 0.9364 0.9305
209 0.9079 0.6081 0.8523 0.0053 0.8189 0.1231
210 0.9873 0.9239 0.9492 0.7037 0.8484 0.4698
212 0.9877 0.9906 0.9869 0.9900 0.9759 0.9816
213 0.9303 0.7673 0.9303 0.7632 0.9014 0.7412
214 1.0000 1.0000 1.0000 1.0000 0.9196 0.9581
215 0.9871 0.8487 0.9803 0.8197 0.9613 0.6197
219 0.9927 0.9626 0.9218 0.3605 0.9019 0.3529
220 0.9545 0.3529 0.9451 NaN 0.9510 0.2095
221 1.0000 1.0000 0.9946 0.9827 0.9624 0.8911
222 0.7905 0.0000 0.7939 0.0091 0.7882 0.1284
223 0.9700 0.9387 0.7675 0.1824 0.7921 0.5360
228 0.9812 0.9477 0.9806 0.9477 0.8984 0.7539
230 1.0000 1.0000 1.0000 1.0000 0.9935 0.1429
231 0.9898 0.9933 0.9366 0.9594 0.9193 0.9463
232 1.0000 1.0000 0.9475 0.9730 0.8586 0.9239
233 0.9965 0.9936 0.8488 0.6466 0.8148 0.6965
234 0.9782 0.1071 0.9782 0.1071 0.9773 0.1875

32



CHAPTER 2. SHAPELET-BASED ECG ANOMALY DETECTION FOR
IOT-ENABLED CARDIAC MONITORING

Table 2.6: Comparison between shapelet-based SVDD and PCA-based control
charts

Shapelet-based PCA-based control chart
SVDD control chart T 2 MEWMA

Record acc F1 acc F1 acc F1
200 0.9788 0.9676 0.9645 0.9479 0.6617 0.0027
201 0.9658 0.9172 0.9382 0.8605 0.7533 0.0053
202 0.9834 0.7438 0.7840 0.2406 0.7422 0.0837
203 0.9597 0.8698 0.7622 0.5597 0.8484 0.0259
205 0.9945 0.9167 0.9859 0.8098 0.9386 0.4000
207 1.0000 1.0000 1.0000 1.0000 0.9994 0.9997
208 0.9019 0.8837 0.9142 0.9144 0.4975 0.2312
209 0.9079 0.6081 0.9392 0.7941 0.8872 0.5860
210 0.9873 0.9239 0.9505 0.7615 0.9110 0.0485
212 0.9877 0.9906 0.9873 0.9904 0.6524 0.7886
213 0.9303 0.7673 0.8577 0.6837 0.8181 NaN
214 1.0000 1.0000 0.9941 0.9971 0.0895 0.1642
215 0.9871 0.8487 0.9617 0.7147 0.9520 NaN
219 0.9927 0.9626 0.8778 0.6136 0.8987 0.0000
220 0.9545 0.3529 0.9835 0.8409 0.9415 0.0000
221 1.0000 1.0000 0.9401 0.8389 0.8411 0.0123
222 0.7905 0.0000 0.5258 0.3097 0.7986 0.0000
223 0.9700 0.9387 0.9568 0.9103 0.7525 0.0000
228 0.9812 0.9477 0.9777 0.9406 0.8180 0.0000
230 1.0000 1.0000 0.9451 0.0192 0.9962 0.0000
231 0.9898 0.9933 0.9303 0.9564 0.7635 0.8659
232 1.0000 1.0000 0.9542 0.9766 0.4451 0.6160
233 0.9965 0.9936 0.9168 0.8679 0.7250 0.0000
234 0.9782 0.1071 0.9764 0.4906 0.8189 0.2004
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BIH dataset. As we used the different cycle classes with most of the previous

papers [45, 60–62, 64, 65], we want to make the results comparable, then we

removed the testing records with the abnormal label L and R (#207, #212,

#214, #231 and #232) when doing the comparison. Even we have the same

cycle classes as paper [48], since this paper didn’t have results for every testing

record, then we just compared the classification result of every testing record

with the paper [45]. Table 2.7 shows the comparisons of accuracy for every

testing record except the abnormal label L and label R (#207, #212, #214,

#231 and #232) between proposed method and previous paper [45]. The

previous paper [45] only has the classification results based on abnormal label

S and V, and then we recalculated the paper’s results based on all abnormal

labels: all types [45] column from Table 2.7 is recalculated based on the data

from the previous paper [45]. Although the proposed method only has few

testing records outperform the previous paper, it still shows the comparable

accuracy with the state-of-art research, and most of important, our proposed

method with shapelets has the good interpretation ability and the shapeletes

are statistically significant

Finally, we apply the testing records to evaluate the performance of the

proposed shapelet-based SVDD control chart for the individual cardiac mon-

itoring. The common ECG cycles combined with the first five minutes ECG

cycles from the individual testing record are used in Phase I training. The op-

timal value of the Gaussian kernel width is found based on the highest value of

the F measure in the training dataset. Figures 2.6 displays the Phase II from

SVDD based control charts for testing record 221. The samples with red color
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Table 2.7: Comparisons of accuracy for every testing record between proposed
method and paper [45]

Record
Cycle labels

V[45] S[45]
All Proposed

N S V F Q types[45] all types
200 1436 28 700 2 0 0.9780 0.9810 0.9751 0.9788
201 1193 126 198 2 0 0.9930 0.9760 0.9776 0.9658
202 1798 55 15 1 0 0.9950 0.9580 0.9535 0.9834
203 2101 0 373 1 4 0.9760 0.9970 0.9873 0.9597
205 2122 2 64 11 0 0.9980 1.0000 1.0000 0.9945
208 1306 2 824 301 2 0.9790 0.9860 0.9869 0.9019
209 2144 372 1 0 0 0.9990 0.9620 0.9612 0.9079
210 2008 20 165 9 0 0.9900 0.9960 0.9917 0.9873
213 2208 27 195 268 0 0.9830 0.9940 0.9834 0.9303
215 2659 2 131 1 0 1.0000 1.0000 1.0000 0.9871
219 1713 7 51 0 0 0.9650 0.9390 0.9131 0.9927
220 1599 93 0 0 0 1.0000 0.9730 0.9730 0.9545
221 1702 0 316 0 0 0.9980 1.0000 1.0000 1.0000
222 1905 209 0 0 0 0.9830 0.9230 0.9074 0.7905
223 1668 66 455 8 0 0.9240 0.9710 0.9589 0.9700
228 1396 3 302 0 0 0.9990 0.9980 0.9975 0.9812
230 1856 0 1 0 0 0.9990 1.0000 0.9990 1.0000
233 1857 4 692 6 0 0.9910 0.9960 0.9949 0.9965
234 2236 50 3 0 0 0.9990 0.9870 0.9870 0.9782

represents the abnormal cycles, and the blue color represents the normal cy-

cles. As we have 2020 testing monitoring statistics, it is difficult to see if using

the line connection between points. Here, we omit the line connection. The

control limit is determined by phase I training model. As shown in Figures 2.6,

abnormal cycles are clearly detected, and the accuracy is 1. Figures 2.7 dis-

plays the Phase II for testing record 233, and the accuracy is 0.9965. Three

false positive cycles are identified with square sign, and the arrows point to

the six false negative cycles. The two subplots show the corresponding ECG

cycles detected for the first false positive and false negative samples. Hence,

it proves the effectiveness of the proposed shapelet-based SVDD control chart

in monitoring the ECG cycles.
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Figure 2.6: Phase II of the shapelet-based SVDD control chart for Record 221,
the black line represents the control limit calculated from Phase I, the blue dot
represents the normal labeled cycles, and the red dot represents the abnormal
labeled cycles

Figure 2.7: Phase II of the shapeled-based SVDD control chart for Record 233,
the square shows the false positive, and the arrow points the false negative
cycle
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2.6 Conclusions and future work

As the increasing of the cardiac related disease, it is important to detect the

abnormal ECG cycles during the cardiac monitoring for the early treatment.

The IoT-enabled cardiac monitoring devices make it available for people suf-

fering the cardiac related problems to regularly monitor their health, and for

doctors remotely analyze the monitoring data to provide the timely service.

We proposed a method to extract the statistically significant shapelets from

the long time ECG monitoring, and applied the shapelet-based feature with

the SVDD algorithm to construct the control chart in statistical process con-

trol for the ECG anomaly detection. The different methods are experimentally

studied, and the comparison results demonstrate the effectiveness of the pro-

posed shapelet-based SVDD control chart method. The experimental results

on the real-world MIT-BIH dataset show that our proposed method is compa-

rable with the state-of-art method. Since we only used one lead ECG signal

in our experiments, as future work, we plan to extend the method to the mul-

tivariate time series so that we can make full use of the available ECG signals.

Because the IoT-based devices require the algorithm to be more efficient dur-

ing the calculation, it is also a good direction to propose a speed-up algorithm

for shapelet-based feature in the future.
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3.1 Abstract

Positive and unlabeled learning has attracted increasing interest in recent

years. The setting of the positive and unlabeled learning is that we only ac-

cess the positive and unlabeled training data sets. Many methods have been

proposed for the positive and unlabeled learning. However, only a few paper

integrate the shapelet features into the positive and unlabeled learning. In

this paper, we propose the positive and unlabeled shapelet learning model for

the ECG anomaly detection, and the experiment results from the real-world

data sets demonstrate the effectiveness of our proposed method.

3.2 Introduction

Time series classification as a subset of the general classification problem has

attracted many interests in the research for both academic and industry people,

as the data collected automatically by sensing and monitoring are time series.

However, in many real-world problems, collecting a large amount of the labeled

data is costly, while the positive and unlabeled data are usually easily to be

obtained. In such a situation, only a small set of positive labeled data and a

large amount of unlabeled data is available, which leads to the development

of positive and unlabeled learning [1]. Positive and unlabeled learning aims

to learn a suitable binary classifier without the assistant of the negative data.

Here, the positive data can be exchanged to the target class.

Positive and unlabeled learning has been applied in many applications

in recent years. For example, Wei and Li [2] proposed the software clone
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detection for software maintenance and evolution in computer science, Youngs

et al. [3] introduced the protein function prediction in biology, Li et al. [4]

applied the remote-sensing data with positive and unlabeled learning for the

image classification, and Li et al. [5] identified the fake reviews for the online

shopping website, etc.

Given the broad applications of the positive and unlabeled learning, many

different algorithms have been proposed, such as two-step techniques, biased

learning and class prior incorporation, etc. For the two-step techniques, the

first step is to identify the reliable negative and positive from the unlabeled

data, for example, Liu et al. [6] proposed the S-EM algorithm using the spy

techniques, Yu et al. [7] proposed the PEBL algorithm using the 1-DNF map-

ping, Li and Liu [8] introduced the Roc-SVM method using the Rocchio algo-

rithm; the second step is to build a set of classifiers by applying the classifica-

tion algorithm and then select the best classifier like the traditional supervised

learning, for example, S-EM algorithm used the expectation maximization al-

gorithm, PEBL and Roc-SVM used the support vector machines (SVM). For

the biased learning, the methods treat the unlabeled data as the negative data

with class label noise, and then a penalty is considered on the misclassified

positive data, for example, Liu et al. [9] used the biased SVM that penal-

ize the misclassified positive and negative data differently with the standard

SVM, Mordelet and Vert [10] used the bagging SVM that train on the positive

data and a subset of the negative data, Lee and Liu [11] applied the weighted

logistic regression to favor the correct positive classification over the correct

negative classification by giving the larger weights to the positive data. For
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the class prior incorporation, it adapts the algorithm to incorporate the class

prior information during the learning or preprocess the training data to assign

weights to the unlabeled data, for example, Elkan and Noto [12] trained the

classifier on the part of the data while keeping a separate validation set and

then estimate the label frequency as the average predicted probability of a

labeled validation set, Bekker and Davis [13] estimated the class prior using

the decision tree induction.

Despite the fact that a large amount of methods have been proposed for the

positive and unlabeled learning, few efforts have been made to integrate the

shapelets with the positive and unlabeled learning for time series classification

[14–16]. Shapelets as explainable and discriminative features were introduced

in 2009 [17] for time series data mining, and can provide a model with better

interpretability. Shapelets are time series sub-sequences, and represent the

maximally discriminative segments of time series that split the time series

into two classes. As shown in Figure 3.1, leftmost plots show the two shapelets

learned from the coffee dataset [18]), which captures the inherent characteristic

of the time series, and provides an interpretation for the people who do not

understand the inside processes or algorithms. Hence, discovering shapelets

from time series has been increasing interest for researchers during the past

decade.

For the shapelet learning, Wang et al. [15] proposed the semi-supervised

shapelet learning (SSSL) model, which treats the unlabeled data in a super-

vised way by using the pseudo-labels and then uses the regularized least-square

technique to learn both shapelets and classification boundaries. Yamaguchi
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Figure 3.1: Two shapelets S1 and S2 learned from Coffee dataset [17]

and Nishikawa [14] introduced the one-class learning time series shapelet (OCLTS),

which aims to learn the shapelets and classifiers using only training data for the

majority class without the minority class. Although both of SSSL and OCLTS

can be applied with the positive and unlabeled data, SSSL mainly focused on

the labeled data with positive and negative, and then treated the labeled and

unlabeled data in the same way, which may underestimate the importance of

the positive labeled data and induce inaccurate classification, and OCLTS’s

target class is the majority, while in the positive and unlabeled setting, the

target may be the minority class like the heart disease. Liang et al. [16] pro-

posed the extracting method for positive and unlabeled shapelets, which is

the only paper that combine shapelets and positive and unlabeled data to-

gether. However, they used the traditional way to label the unlabeled data

first, and then extract the shapelets as the supervised classification, it is still

time-consuming to find shapelets. And then in this paper, we integrate the

shapelet with the exactly positive and unlabeled learning setting for the time

series classification. We include the data distribution information that derived

from unlabeled data as the paper [19] did to amend the label bias caused by

the missing negative data and incorporate the hat loss to SVM for shapelet

learning.
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One of the important topics for time series classification is ECG anomaly

detection. Anomalies are defined as any deviation from the normal behavior,

and hence, the ECG anomalies represent the irregular heart activity. ECG

anomaly detection can assist the domain experts to diagnose the cardiac con-

dition, and provide the timely treatment for patients. Many methods have

been proposed for the ECG anomaly detection in the past research includ-

ing the supervised and unsupervised learning. However, since the supervised

learning requires the annotation for each ECG cycle from domain experts prior

to the training model and there are no labels for ECG cycles with unsuper-

vised learning, semi-supervised learning would be a better choice. Because in

the real situation, there are a lot of normal ECG cycles available, then in this

paper, we apply the proposed positive and unlabeled shapelet learning method

for the ECG anomaly detection.

The highlights of this paper are summarized as follows:

• This is the first effort of shapelet learning that focuses on the positive

and unlabeled data setting.

• A new positive and unlabeled shapelet learning model is proposed that

incorporates the derived distribution information from the unlabeled

data.

• The proposed positive and shapelet learning method is applied for the

ECG anomaly detection.

The remainder of the paper is organized as follows. Section 3.3 reviews

the existing research related to our work. We propose the positive and unla-

beled shapelet learning model (PUSL) in section 3.4. Section 3.5 shows the
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experimental study and results. Section 3.6 concludes the paper, and points

the future work.

3.3 Literature review

Shapelet was first introduced by Ye and Keogh in 2009 for time series classi-

fication [17], and then it becomes as an important research area in the time

series classification. The basic idea to find the shapelet is to consider all of the

sub-sequences with the length less than the shortest time series, and assess

the quality of all of the shapelet candidates based on the accuracy for the

prediction of the training data. Because of the high number of candidates,

the exhaustive search of shapelets is time-consuming, and then a series of the

shapelets research has been focused on the speed-up technique. For example:

sub-sequence distance early abandon and entropy pruning of the information

gain [17]; computation intelligent cashing and reuse, and admissible prun-

ing of the search space [20]; a random projection technique on the Symbolic

Aggregate approximation (SAX) [21]; extracting the infrequent shapelet can-

didates to find shapelets [22]; a dynamic programming algorithm implemented

in highly parallel graphic process units (GPUs) [23]; etc.

Although the speed-up technique has improved a lot on time using, they

are still based on the exhaustive search, and it is time-consuming, and then

learning-based shapelets were proposed by the researchers. Learning-based

shapelet was first proposed by Grabocka et al. [24] to use the mathemati-

cal formulation to optimize the classification objective function, which can

55



CHAPTER 3. POSITIVE AND UNLABELED SHAPELET LEARNING FOR ECG
ANOMALY DETECTION

learn the near-to-optimal shapelets instead of searching from the candidates.

This improves the time efficiency compared with the searching-based shapelet

methods. However, this paper used the fully labeled training data, in the

real world problems, it is costly to label all the time series data. Based on

this work, Zhang et al. [25] proposed the unsupervised shapelet learning algo-

rithm with the unlabeled data, Wang et al. [15] proposed the semi-supervised

shapelet learning algorithm with the mixed labeled and unlabeled data, and

Yamaguchi and Nishikawa [14] introduced the one class shapelet learning algo-

rithm with the majority class labeled data. However, all the previous methods

are not specified for the positive and unlabeled data setting, based on the large-

margin label-calibrated support vector machines (LLSVM) algorithm for the

positive and unlabeled learning proposed by Gong et al. [19], we integrate

the shapelet features into the LLSVM model to introduce the positive and

unlabeled shapelet learning model.

3.4 Research methodology

In this section, we first propose the positive and unlabeled shapelet learning

model in section 3.4.1, and then explain the optimization process in section

3.4.2.

3.4.1 Positive and unlabeled shapelet learning model

The data set that contains n training examples is denoted as T = (T1, T2, . . . , Tn).

Each time series has ordered real-valued observations and a class value −1 or
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1. In the positive and unlabeled training problem setting, there are two types

of time series: positive labeled P and unlabeled time series U . The classifi-

cation is performed according to its class value, and to find the real-valued

decision function f based on the training set T = P ∩ U . For a sliding win-

dow of length L, a set of ordered segments can be obtained when the window

slides along the time series. The segment starting at time j is defined as

(T(i,j), T(i,j+1), . . . , T(i,j+L−1)) for Ti. As the shapelet definition said, time series

segments are shapelet candidates and denoted by S. Shapelet transform was

proposed by Lines et al. [26], and a new transformed shapelet matrix is formed

where each column represents a shapelet, and each value is the distance be-

tween this shapelet and the corresponding time series. For a set of shapelets

S = (S1, S2, . . . , Sm) and a set of time series T = (T1, T2, . . . , Tn), the distance

between the i − th time series Ti and k − th shapelet Sk is defined as the

minimum distance Xi(Sk) among the distances between the shapelet Sk and

each segment of time series Ti, where each segment has the same length as the

shapelet Sk. Hence, the shapelet transformed matrix is represented as X(S),

and each element Xi(Sk) is shown in the following equation:

Xi(Sk) = min
j=1,...,Q−L+1

1

L

L∑
l=1

(T(i,j+l−1) − S(k,l))
2 (3.1)

where L is the length of the shapelet and Q is the length of time series,

Q − L + 1 is the total number of segments with length L in time series Ti.

Since Equation 3.1 is not differential, we approximate it with the soft minimum

function which is the differentiable approximation of the minimum function
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introduced by [24] in the following:

Xi(Sk) ≈
∑Q−L+1

j=1 d(i,k,j)e
θd(i,k,j)∑Q−L+1

j′=1 eθd(i,k,j′)
(3.2)

where d(i,k,j) = 1
L

∑L
l=1(T(i,j+l−1) − S(k,l))

2 is the distance between the j − th

segment of time series Ti and the k − th shapelet Sk, and θ is the parameter

that controls the precision of the Equation 3.2. As shown in [24], θ = −100 is

small enough to make the soft minimum yield exactly the same result as the

true minimum. Hence, we set θ = −100 in the following experiments.

Let n, p, and u as the sizes of T , P , and U , respectively, the model is

formulated in the following as the LLSVM model proposed [19]:

min 1
2
‖w‖2 + α

p

∑p
i=1 max(1− wTXi(S), 0)

+β
u

∑p+u
i=p+1 max(1− |wTXi(S)|, 0)

+γmax( 1
u

∑p+u
i=p+1 Φ(wTXi(S))− t, 0)

(3.3)

where α ≥ 0, β ≥ 0, and γ ≥ 0 are trade-off parameters, and Φ(y) =

2
π

tan−1(y) made the value of y between −1 and 1. Most importantly, we

integrate the shapelet S into the features, and for i− th example, the feature

is denoted as Xi(S). The first term 1
2
‖w‖2 in the objective function is to pre-

vent over-fitting. The second term in the objective function requires the label

to be positive, which means that wTXi(S) ≥ 1 in the training model if the fea-

ture is in the positive training examples. The third term makes the unlabeled

training time series to have the clear label which means that wTXi(S) ≥ 1

or wTXi(S) ≤ −1, otherwise it will get penalized. The fourth term sets the
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upper bound of the mean value of unlabeled training time series’ real labels to

be parameter t which will be estimated using the class prior in the unlabeled

examples.

Many methods have been proposed to estimate the class prior such as

[13, 27–31]. Here, we follow the decision tree based method introduced in [13],

which estimates the class prior by estimating the probability that a positive

example is selected to be labeled. Specifically, let label frequency c = P (s =

1|y = 1) be the constant probability to be selected to be labeled, and here,

y is the true class, s is the positive labeled class. Following the “selected

completely at random” assumption, the label frequencies are equal in any

subdomain A, which means the label frequency is the ratio of the probabilities

to be labeled positive and to be positive in any subdomain A: c = P (s=1|x∈A)
P (y=1|x∈A) .

Since the probability P (y = 1|x ∈ A) is at most to be 1, then in general,

c ≥ P (s = 1|x ∈ A).

Hence, the lower bound on c can be estimated in any subset of data with

L labeled positive and N total examples, i.e. c ≥ L/N . Because of the

stochastic nature of the labeling positive, the error term derived from the one-

sided Chebyshev inequality is included, and the probabilistic lower bound for

c is shown in the following:

P (c ≤ L

N
−
√

(1− δ)c(1− c)
δN

) ≤ δ (3.4)

where the number of the labeled examples L exceeding the expected number

by at least λ, the labeling variance is σ2, δ = σ2/(σ2 +λ2), and the error term
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is shrinking with the total sample size N .

The next step is to use the decision tree induction to split the dataset

into two separate sets in each node to look for the interesting highly labeled

subdomains using one set and estimate label frequency c using the other set

by taking the maximum lower bound. There is one parameter δ = 1
1+4ε2Nmin

that needs to be tuned, here, we follow the rule in the paper [13] that bigger

dataset with more than 10000 examples needs 1000 samples to update with an

error ε = 0.1, and smaller dataset needs one tenth of the sample size. Hence,

δ = max(0.025, 1
1+0.004N

).

Hence, class prior τT = P (s = 1)/c can be estimated from the label fre-

quency c, but the estimated class prior is in the total sample size, we need to

change it back to the class prior in the unlabeled examples: τU = (τTn− p)/u,

and the t is estimated in the following equation:

t =
uτU − u(1− τU)

u
= 2τU − 1 (3.5)

To make the objective function differentiable everywhere, as shown in [19]

applying the squared hinge loss, squared label calibration term and the smooth

Gaussian-like function [32] approximation of the hat loss, the final objective

function is shown in the following:

min 1
2
‖w‖2 + α

p

∑p
i=1 max(1− wTXi(S), 0)2

+β
u

∑p+u
i=p+1 e

−3(wTXi(S))
2

+γ
u

∑p+u
i=p+1(max(Φ(wTXi(S))− t, 0))2

(3.6)

60



CHAPTER 3. POSITIVE AND UNLABELED SHAPELET LEARNING FOR ECG
ANOMALY DETECTION

3.4.2 Optimization

Because of the non-convex term of objective function 3.6, we use the minibatch

SGD as [19] for optimization. Divide the training dataset T into N nonover-

lapped minibatches which means that the minibatch size m = n/N , and then

update w and S successively by batches. Rewrite the objective function 3.6

into positive and unlabeled, respectively as the followings:

Fi(w, S) =
1

2
‖w‖2 +

α

p

p∑
i=1

max(1− wTXi(S), 0)2, Xi(S) ∈ P (3.7)

1
2
‖w‖2 + β

u

∑p+u
i=p+1 e

−3(wTXi(S))
2

+γ
u

∑p+u
i=p+1(max(Φ(wTXi(S))− t, 0))2, Xi(S) ∈ U

(3.8)

The gradient on w are:

∂Fi(w, S)

∂w
= w +

2α

p
min(wTXi(S)− 1, 0)Xi(S), Xi(S) ∈ P (3.9)

w − 6β
u
wTXi(S)e−3(w

TXi(S))
2
Xi(S)

+ 4γ
πu(1+(wTXi(S))2)

max(Φ(wTXi(S))− t, 0)Xi(S), Xi(S) ∈ U
(3.10)

The gradient on S are:

∂Fi(w, S)

∂S
=

2α

p
min(wTXi(S)− 1, 0)wT

∂Xi(S)

∂S
,Xi(S) ∈ P (3.11)

−6β
u
wTXi(S)e−3(w

TXi(S))
2
wT ∂Xi(S)

∂S

+ 4γ
πu(1+(wTXi(S))2)

max(Φ(wTXi(S))− t, 0)wT ∂Xi(S)
∂S

, Xi(S) ∈ U
(3.12)
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where for each shapelet Sk,
∂Xi(Sk)
∂Sk

= ∂Xi(Sk)
∂d(i,k,j)

∂d(i,k,j)
∂Sk

, and
∂d(i,k,j)
∂Sk

= 2
L

(S(k,l) −

T(i,j+l−1)),
∂Xi(Sk)
∂d(i,k,j)

= e
−100d(i,k,j)(1−100(d(i,k,j)−Xi(Sk)))∑J

j′=1 e
−100d(i,k,j′)

. Hence, the updating w and S

for each iteration will be:

w := w − η
m

∑m
i=1

∂Fi(w,S)
∂w

S := S − η
m

∑m
i=1

∂Fi(w,S)
∂S

(3.13)

where η is the step size. The algorithm of the PU shapelet learning model is

shown in Algorithm 2:

Algorithm 2: PU shapelet learning
Input: the non-negative parameters α, β, and γ
Number of minibatches N
Maximum number of epochs epoch
Initialization of w and S
Step size η
Result: Optimal w and S

1 for ite = 1 : epoch do
2 for batch = 1 : N do
3 update w
4 update S

5 end

6 end

3.5 Experimental study

In this section, we demonstrate the experiment results for the different data

sets to validate the effectiveness of the proposed PUSL model, and com-

pare PUSL with the state-of-art SSSL method. Experiments of three data

sets from UCR time series repository are shown in section 3.5.1, and section
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Table 3.1: Data set description

Data set Size of data set Length
SonyAIBORobot Surface 621 70

ECG200 200 96
ItalyPowerDemand 1096 24

3.5.2 displays the experiments for the ECG anomaly detection from MIT-BIH

database.

3.5.1 Real-world data sets from the UCR time series

repository

We evaluate our proposed PUSL algorithm on the three publicly available

real-world data sets from the UCR time series repository [18], and the details

of the size of data and length of each time series are shown in Table 3.1. In

the experiments, we use the 75% for the training and 25% left for the testing.

For each training data set, we randomly treat 30%, 60% and 90% positive

data as labeled and leave the remaining 70%, 40% and 10% positive data as

well as all the negative data as unlabeled. The performance of the proposed

algorithm and state-of-art algorithm is measured by the classification accuracy:

(tp + tn)/(tp + fp + tn + fn), where tp is true positive, fp is false positive,

tn is true negative, fn is false negative. For each data set, we repeated all

experiments 10 times, and the best result is reported.

Figure 3.2 shows the classification accuracy of each data set based on the

different parameters: the number of the shapelets and the length percentage

of the shapelet. For each data set, we did the experiment with the 0.1, 0.2

and 0.3 of the time series length on the four different shapelets. The learning
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.2: Parameter study based on the classification accuracy of PUSL with
respect to the number of the shapelets and length percentage of the shapelets

rate is set to 0.01 and the number of the non-overlapped minibatches is set to

40. The parameters in the objective function are searched from 10−4 to 104.

As shown in Figure 3.2, the algorithm can perform well for each dataset with

the small length percentage of the shapelets and less number of shapelets.

Table 3.2 shows the comparisons of the classification accuracy for each data

set on the different label ratios between proposed PUSL and SSSL. For the

comparison SSSL method, the parameters of the objective function are set as

the paper had, and the length percentage of the shapelet and the number of

the shapelet are set as our experiment: 0.1, 0.2, 0.3 for the length percentage
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Table 3.2: Comparison of the classification accuracy between PUSL and SSSL

Data set
Ratio of positive Best accuracy achieved

labeled SSSL PUSL (proposed)

SonyAIBORobot Surface
30% 0.7051 0.6154
60% 0.8269 0.9551
90% 0.8846 0.9808

ECG200
30% 0.6863 0.7059
60% 0.7059 0.7451
90% 0.7255 0.8750

ItalyPowerDemand
30% 0.6982 0.6545
60% 0.6945 0.6667
90% 0.7127 0.7055

of shapelet, and four different shapelets. As shown Table 3.2, the proposed

algorithm performs better for the ECG200 data set with the three different

ratios of the positive labeled; for the SonyAIBORobot Surface data set, the

proposed method performs better for the 60% and 90% positive labeled. For

the ItalyPowerDemand dataset, the length of each time series is 24, and the

SSSL performs better., which indicate that our proposed method may not be

good for the short time series.

Figure 3.3 shows the classification accuracy of the proposed PUSL algo-

rithm for each data set with respect to the different ratios of the positive

labeled data, and the accuracy is increasing as the ratio of the positive labeled

data increases, which demonstrate the effectiveness of our proposed PUSL

algorithm.

3.5.2 MIT-BIH database

We consider another publicly available real-world data sets from the MIT-BIH

ECG arrhythmia database from PhysioNet [33, 34]. We evaluate the proposed

PUSL algorithm with two records 200 and 221. Each record has a 30-min
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Figure 3.3: Classification accuracy of the proposed PUSL method with respect
to the three different ratios of positive labeled data

two-channel ECG recording. We apply one channel modified limb lead II for

these two records. As AAMI recommended practice [35] said, we use the first

five minutes of the signal for training, and the rest 25 minutes are for testing.

Each ECG cycle is segmented based on its R peak marked in the database.

Each ECG cycle has the fixed length 255, and includes the 0.25 seconds length

of ECG recording before the detected R peak and the 0.45 seconds after the

R peak. Discrete wavelet transform db2(2) is applied for each ECG cycle

segmentation to remove the noise. The length of the final cycle segmentation

is fixed to 66.

The first 10000 datapoints of Record 221 are shown in Figure 3.4. There

are two beat types: normal beat and abnormal beat (premature ventricular

contraction). As shown in Figure 3.5, left plot shows one shapelet learned

for Record 221, and last two plots show the pattern of two classes from the

training data. We can see the shapelet captures the difference between normal

and abnormal cycles.
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Figure 3.4: Part of ECG signal (first 10000 points) for Record 221

(a) (b) (c)

Figure 3.5: Training data pattern and one shapelet learned for Record 221

Figure 3.6 shows the parameter study of the ECG signal for Record 200

and Record 221 with three different lengths on four different shapelets, and the

PUSL method can achieve high accuracy even with the 60% positive labeled

data. Table 3.3 compares the classification accuracy between the proposed

PUSL and state-of-art method SSSL, and the proposed PUSL performs better

for the three different positive labeled ratios.

Table 3.3: Comparison of the classification accuracy between PUSL and SSSL
for Record 200 and 221

Data set
Ratio of positive Best accuracy achieved

labeled SSSL PUSL (proposed)

Record 200
30% 0.9492 0.9275
60% 0.9548 0.9654
90% 0.9719 0.9806

Record 221
30% 0.8673 0.9262
60% 0.9282 0.9995
90% 0.9678 0.9995
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Parameter study based on the classification accuracy of PUSL with
respect to the number of the shapelets and length percentage of the shapelets
for Record 200 and 221

3.6 Conclusions and future work

In this paper, we integrated the shapelet features into the positive and un-

labeled learning setting, and based on the previous research model LLSVM,

we proposed the PUSL algorithm. The experiment results on the real data

sets demonstrate the effectiveness of our proposed algorithm. We compared

our algorithm with the state-of-art method SSSL on the public available data

sets, and it shows that our PUSL can achieve better in most of the data sets.

Especially for the ECG data set, the proposed PUSL model performs well

even with the lower positive labeled ratio, and then it is effective to apply our

algorithm for the ECG anomaly detection. Since we only verify our method

with ECG anomaly detection and benchmark time series data sets, then in

the future, we will do more experiments with the different applications. Our
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algorithm focuses on the univariate time series data, and in the future, we may

apply this with the multivariate time series data.
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CHAPTER 4

Conclusion

In this research, we focused on the shapelet-based features for time series clas-

sification, and proposed two different methods to deal with the healthcare

data. Because of the rapid development of computing and sensing technol-

ogy, the Internet of Things (IoT)–enabled monitoring plays a crucial role for

people suffering from the cardiac problems, and it is important to detect the

abnormal ECG cycles during the cardiac monitoring. We extracted the statis-

tically significant shapelets from the cycle-based ECG data, and applied the

shapelet-based features with the support vector data description algorithm to

construct the control charts in statistical process control for the IoT-enabled

cardiac monitoring. The different methods are experimentally studied, and

the comparison results demonstrate the effectiveness of the proposed shapelet-

based SVDD control chart method. The experimental results on the real-

world MIT-BIH dataset show that our proposed method is comparable with

the state-of-art method.
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CHAPTER 4. CONCLUSION

Since it is costly to collect a large amount of the labeled data in the real-

world applications, then we face the problem to deal with the situation that

only a small set of positive and unlabeled data are available, which is called

the positive and unlabeled (PU) learning. Based on the previous large-margin

label-calibrated support vector machines (LLSVM) model, we integrated the

shapelet-based feature into it, and learned the optimal shapelets to achieve

high accuracy in time series classification. We compared with the state-of-

art semi-supervised shapelet learning (SSSL) method on the benchmark time

series data sets, and the experiment results demonstrate the effectiveness of

our proposed positive and unlabeled shapelet learning (PUSL) method. We

also did the experiment with the real-world MIT-BIH dataset, and our PUSL

method can performs well even with the lower labeled data.
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