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Abstract 

DEVELOPMENT OF A MODEL TO PRIORITIZE INSPECTION AND 

CONDITION ASSESSMENT OF GRAVITY SANITARY  

SEWER SYSTEMS  

Karthikeyan Loganathan, Ph.D. 

The University of Texas at Arlington, 2021 

Supervising Professor: Dr. Mohammad Najafi 

Underground utilities and wastewater collection systems deteriorate over 

time demanding utility owners to involve in continuous revisions and development 

of their asset management frameworks to maintain the functionality of their assets. 

In any asset management framework, inspection of an asset and respective 

condition assessment plays a vital role in successful operation and maintenance of 

systems. In the United States, closed-circuit television (CCTV) is the commonly 

used device for inspecting the inner environment of sewer pipes, which considering 

the large length of pipe inventory in a city, is a relatively expensive and time-

consuming process. Therefore, inspection of every individual sanitary sewer pipe 

segment is not feasible in a short time period for any municipality owing to their 

large inventory of these pipes. However, sanitary sewer pipe segments in need of 

repair or a maintenance activity can be prioritized in advance for inspection based 
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on their historical performance. Therefore, the primary objective of this dissertation 

is to develop a sanitary sewer pipe condition prediction model. Data collected from 

City of Fort Worth, Texas, is utilized in model development. Various supervised 

machine learning algorithms such as logistic regression (LR), k-nearest neighbors 

(k-NN) and random forests (RF) are employed. Numerous evaluation metrics such 

as precision, recall, F1-score and area under curve (AUC) are estimated to compare 

the performance of developed models. Resulted F1-score for the RF model is 0.94 

while LR and k-NN models resulted 0.83 and 0.44, respectively. The results show 

that random forests model performed better than both LR and k-NN models. As a 

secondary objective of this dissertation, a decision support tool was developed for  

asset managers to utilize above models during inspection phase to estimate 

condition of their sanitary sewers for identification of critical sewers in need of 

immediate attention.   
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CHAPTER 1  

INTRODUCTION AND BACKGROUND 

1.1 Introduction 

Underground pipeline systems in the U.S. span thousands of miles 

contributing a significant portion of the wastewater infrastructure assets (Najafi and 

Gokhale 2005). Since majority of wastewater infrastructure systems in the U.S. are 

more than 100 years old, any catastrophic failure to these wastewater systems could 

drastically disrupt the surrounding areas economically, socially and 

environmentally (EPA 2004). In addition to the effects on public health, emergency 

repair of failed sanitary pipes can cost an enormous amount to the municipality. 

Considering these social, economic, and environmental impacts, wastewater 

system must be protected from failure.  

Unlike reactive maintenance practices carried out by some municipalities 

after failure of pipes, proactive maintenance must be accomplished that include 

inspection and maintenance activity in advance of failure or complete deterioration 

(Fenner 2000). Table 1-1 lists the common factors that could influence deterioration 

in sanitary sewer pipes. Generally, pipeline deterioration mechanism could be 

classified under any of the following:  

1) Structural – cracks, fractures, breaks and so on  

2) Hydraulic – flooding, encrustation, and grease 

3) Corrosion – chemical and external corrosion  
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4) Erosion 

5) Operational problems – roots, blockages, debris and so on 

Table 1-1 Factors Known to Influence Sanitary Sewer Deterioration  

(Davies et al. 2001) 

Construction Factors Local External Factors Other Factors 

Installation method 

Standard of workmanship 

Sewer size 

Sewer depth 

Sewer pipe material 

Bedding material and type 

Joint type and material 

Pipe section length 

Connections 

Surface use 

Surface loading (including 

construction traffic) 

Surface type 

Traffic characteristics 

Water main bursts/leakage 

Ground movement 

Maintenance of other buried 

services 

Groundwater level 

Infiltration/exfiltration 

Soil/backfill type 

Sewage characteristics 

Use of appropriate maintenance 

methods 

Asset age 

Sediment level 

Surcharge 

 

Underground utilities and wastewater collection systems deteriorate over 

time demanding utility owners to involve in continuous revisions and development 

of asset management frameworks to maintain the functionality of their assets 

(Najafi and Kulandaivel 2005). A study by the Environmental Protection Agency 

(EPA) has shown that up to half of the buried assets in studied systems might be 

beyond midpoint of their service lives (EPA 1999). Most of the municipal sewer 

systems in the United States are at least 60 years old and many communities have 

sewers that are older than 100 years (EPA 2015). In addition, this study stated that 

“among public agencies in the U.S., infrastructure asset management is used most 
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extensively in the transportation sector.” It has been found that nearly several 

hundred operational wastewater agencies in the United States did not develop or 

implement an asset management program (IIMM 2006). Therefore, the importance 

of updating asset management policies and programs can be emphasized. 

“Asset management is defined as managing infrastructure capital assets to 

minimize the total cost of owning and operating them, while delivering the service 

levels customers desire (EPA 2002).” Basic requirements for an asset management 

system are: (1) to maintain an inventory of assets; (2) to assess the condition of 

assets; and (3) to provide an estimate of required budget to maintain an asset in a 

serviceable condition (Daziel and Macey 2004). Inspection and condition 

assessment of an asset are the preliminary tasks in an asset management program 

(Tscheikner-Gratl et al. 2020).  

Condition assessment of sanitary sewer pipes are accomplished by various 

methods. In the U.S., sanitary sewers are commonly assessed using the Pipeline 

Assessment Certification Program (PACP), first developed by National 

Association of Sewer Service Companies (NASSCO) in 2002. However, it should 

be noted that not all municipalities follow the same program for inspecting 

condition of their sanitary sewer pipes (NASSCO 2018). The PACP defines each 

possible defect with a unique code as well as a score towards the structural integrity 

of pipe segment on a scale of 1 – 5, while 1 and 5 refer to good and poor conditions, 

respectively.  
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Historically, design, construction, maintenance, and operation of sanitary 

sewer systems were addressed by municipalities (Wirahadikusumah et al. 2001). 

Generally, closed-circuit television (CCTV) is employed to inspect the inner 

environment of pipes to capture their defects and failures. A certified operator by 

NASSCO observes the recorded video and manually appends defect codes to a 

spreadsheet or a computer program. The program is predefined with scores for each 

type of defect and their severity. Based on operator’s judgement and coded defects, 

a final PACP score will be generated for an inspected sewer pipe segment 

(NASSCO 2018). However, inspecting a sewer pipe is an expensive and time-

consuming process since the PACP suggests a maximum camera speed of 30 feet 

or 9 meters per minute. Therefore, inspection of each sanitary sewer pipe is not 

feasible for any municipality or utility owner owing to their large inventory of 

assets (Malek Mohammadi 2019).  

In addition, there are possibilities that sewer pipes in structurally good 

condition could be inspected by municipalities, which otherwise this considerable 

budget could be used for sewer pipe segments in need of repair and renewal. 

Efficient budget allocation could be achieved by predicting the condition of pipes 

based on historical performance of the same. Therefore, sanitary sewer pipes in 

need of repair or a maintenance activity must be prioritized in advance for 

inspection by predicting the future condition of sewer pipes. 
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1.2 Problem Statement 

A wide variety of researches have been accomplished to develop prediction 

models for future condition of sanitary sewer pipes (Malek Mohammadi et al. 2020, 

Salman and Salem 2012, Kienow and Kienow 2004, Najafi and Kulandaivel 2005, 

and Ariaratnam et al. 2001). Developed models employ traditional statistical 

methods as well as advanced machine learning techniques and artificial intelligent 

algorithms. However, there is no single standard model that could be employed by 

all municipalities owing to the differences in collected historical data about their 

sewer pipes (McDonald and Zhao 2001). Assessing the structural condition of a 

sanitary sewer pipe can be achieved by identifying the critical factors influencing 

deterioration of sewer pipes and by developing a prediction model based on 

identified factors. It should be noted that the factors are not examined for their 

causes on failures rather for their correlations with structural condition of sewer 

pipes. Therefore, for a condition prediction model to be employed by a municipality 

or a utility owner, the model must be able to predict the sanitary sewer pipe 

condition based on data collected by respective municipality or utility owner.  

Based on literature studies focusing on condition prediction models, 

following limitations and recommendations are found: 

• Malek Mohammadi (2019) recommended that a prediction model 

must be able to predict all five condition levels individually rather 

than transforming to binary classes.  
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• Laakso et al. (2018) suggested that potentially influential variables 

could be further investigated. 

• Vladeanu (2018) developed a model using Markov chain but 

inadequate data limited the validation of developed model. 

• Sousa et al. (2014) concluded that machine learning and artificial 

intelligent models were reliable over logistic regression models and 

further investigation could improve the accuracy of results. 

• Opila (2011) developed a multi-dimensional linear model to predict 

the condition of sewer pipes and recommended that the model could 

be improved potentially. 

Studied relevant research studies and models emphasize the knowledge gap 

in identifying critical factors on deterioration of sewer pipes and the need for 

machine learning and artificial intelligence algorithms in condition prediction 

model development. It was found that majority of the studies were based on binary 

classification. In addition, it was also found that majority of the studies trained their 

model with a limited number of material types, which prevents the model from 

predicting any critical pipe of excluded material type. It would be beneficial for an 

agency or utility owners when a developed a model can incorporates all material 

types from their inventory. 
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Developed models in literature studies were compared based on a single 

evaluation metric such as accuracy or area under the curve value. This dissertation 

evaluates the developed models with different metrics rather than a single metric to 

effectively validate the performance of prediction models. Bridging the identified 

knowledge gap plays a key role as objectives for this study. 

1.3 Objectives 

The primary objectives of this research study are: 

• To employ machine learning and artificial intelligent algorithms to 

develop a condition prediction model to predict the condition of 

sanitary sewers. 

• To compare the results and accuracy levels of developed models; 

and recommend a suitable model for application. 

The secondary objective of this research study is: 

• To develop a decision-support tool for the asset managers and 

operators to effectively utilize the developed model. 

1.4 Scope of Work 

Table 1-2 illustrates the scope of this research study to include gravity flow 

sanitary sewers excluding force main sewer pipelines. To be consistent, sewer 

pipelines without any prior rehabilitation are considered for analysis and pipelines 

with a history of maintenance activity is not included. With respect to the pipe 
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material, all 9 different types of materials, described in future sections, are included 

for further analysis. 

Table 1-2 Scope of Work 

Description Included Excluded 

1. Pipe Functionality Sanitary sewer pipes - 

2. Flow Type Gravity flow pipes Force main pipes 

3. Rehabilitation 
Pipes in installed 

condition 

Pipes with any existing 

rehabilitation 

4. Inspection Type 
Pipes inspected based 

on PACP manual 

Pipes inspected without 

PACP manual 

 

1.5 Methodology 

Various machine learning and artificial intelligent algorithms are employed 

to develop a condition prediction model, which could predict the structural 

condition of sanitary sewers pipelines. Numerous factors recorded during prior 

inspections are used to develop the models. Figure 1-1 illustrates various steps 

involved in the model development.  

The methodology of this study starts by defining a problem statement 

followed by objectives and the scope for this study. A comprehensive relevant 

literature review is accomplished to effectively utilize the previously conducted 

research studies. In the next step, data required for further analysis is collected from 

City of Fort Worth, Texas, is processed. The processed data is then used as input 
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for various supervised learning algorithms to train the models. As a final step, the 

performances of various trained models is compared based on different evaluation 

metrics and a reliable model for condition prediction is selected. 

 

Figure 1-1 Research Methodology 
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1.6 Hypothesis 

Factors recorded by the wastewater department such as the age, length, 

slope, diameter, and material of pipe, location reference and drainage basin of a 

pipe, could forecast the condition of sanitary sewer pipes.  

1.7 Chapter Summary 

Primarily, this chapter briefly discussed asset management components and 

current practices involved in condition assessment of sanitary sewer pipes in the 

United States. The knowledge gap in identifying critical factors on deterioration of 

sewer pipes and the need for machine learning and artificial intelligence algorithms 

in condition prediction is listed. Secondly, this chapter explained the research 

needs, objectives, scope of work followed by methodology. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Background and Overview 

The ASCE 2021 infrastructure report card ranked an overall grade of D for 

wastewater infrastructure utilities, which means that the system is at poor condition. 

In the US, public sewage pipes span over 800,000 miles and lateral sewers span 

around 500,000 miles, contributing a significant portion of the underground utilities 

and infrastructure (ASCE 2017). The report also mentioned that in the future twenty 

years, 56 million new users will be connected to centralized treatment systems, 

which would require a significant budget to satisfy current and future demands. 

Combined investment needs for water and wastewater systems are estimated to be 

$150 billion during 2016 – 2025, and a $105 billion investment gap is found 

between estimated funds and required funds (ASCE 2017). Identified investment 

gap emphasizes the cruciality for efficient use of budget.  

The Congressional Budget Office (CBO) had compared the public spending 

on transportation and water infrastructure during 1956 – 2017 and found that the 

spending accomplished for water utilities are much lesser than that for 

transportation (CBO 2018). EPA had stated that most of the municipal sewer 

systems in the United States are at least 60 years old and many communities have 

sewers that are older than 100 years (EPA 2015). In addition, the report added that 

old and aging sewers cause at least 23,000 to 75,000 sanitary sewer overflows per 
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year. Therefore, effective maintenance and rehabilitation strategies must be 

followed to maintain the functionality of sewer systems. Interestingly, it was found 

that several hundred operational wastewater agencies in the United States did not 

develop or implement an asset management program (IIMM 2006). Therefore, the 

municipalities and utility owners are required to revise and update their asset 

management methods and programs. 

2.2 Asset Management 

“Asset management is defined as managing infrastructure capital assets to 

minimize the total cost of owning and operating them, while delivering the service 

levels customers desire (EPA 2002).” According to Environmental Finance Center 

(EFC), “Asset management is an approach to manage the assets of a system that 

can assist the utilities with making better decisions on managing the aging assets 

(EFC 2006).” 

New York’s Department of Environmental Conservation states that 

“Municipal sewage system asset management (MSSAM) is the practice of 

managing a municipal sewage treatment plant and the associated sewage collection 

system’s capital assets in a way that protect the public health and the environment 

while also minimizes the total cost of owning and operating those assets while 

delivering the desired levels of service (MSSAM Guide 2015).” The Orange Water 

and Sewer Authority’s (OWASA) comprehensive asset management program was 
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utilized to assess and prioritize infrastructure improvements needed to achieve 

desired customer and environmental service level (OWASA 2017). 

There are various definitions given to asset management by researchers and 

government agencies. However, most of the asset management programs include 

elements such as inventory of assets, prioritization of critical assets, and financial 

planning to maintain their performance. The importance of asset management will 

increase with aging sewer systems. Compared to data-intensive disciplines such as 

bioinformatics and medical sciences, the value of data collected and stored for 

urban drainage system has not yet been fully satisfied (Tscheikner-Gratl et al. 

2020). In addition, the sewer asset data handled by an agency must be stored and 

manipulated in such a way that it must be easily usable for operators and decision-

makers as well . 

2.3 Deterioration of Sewer Pipes 

Utility and pipeline systems form one of the most capital-intensive 

infrastructure systems, especially the sanitary sewer systems, owing to their direct 

and indirect effect on their surroundings environmentally as well as financially 

(Najafi and Gokhale 2005). A study by Davies et al. (2001) claimed that some of 

the basic performance requirements for sewer operation are  

a) Pipeline network cannot have blockages 

b) Drains and sewers must be watertight to avoid leakages  

c) Sewers shall not endanger existing adjacent structures  
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Deterioration of pipelines could be a result of different factors varying from 

structural loss of the pipe material to deterioration caused by the material 

transported by the utility system. Continued deterioration in these systems could 

result in failure of the pipes, which is termed as “collapse”. Deterioration in a sewer 

pipe could be caused by many reasons and hence, estimating the rate of 

deterioration is a difficult task. In addition, deterioration can be influenced by 

random events during the service life of a sewer pipe as well. Therefore, Water 

Research Center (WRc 1986) concluded that estimating the rate of deterioration is 

unrealistic.  

2.4 Factors Influencing Deterioration  

 Deterioration of underground sewer pipes is a most complicated process 

since various pipe characteristics could play a vital role in the process (Yan and 

Vairavamoorthy 2003). Although estimation of the rate of deterioration for a sewer 

pipe is unrealistic, it is well known that any sewer pipe failure or collapse would 

follow any or combination of the following mechanism(s): 1) Structural, 2) 

Hydraulic, 3) Corrosion, 4) Erosion, and 5) Operational problems (Najafi and 

Gokhale 2005).   

Detailed list of factors influencing the deterioration of sanitary sewer 

pipeline can be found in Table 2-1. These factors could be considered of primary 

importance during inspection processes, irrespective of the inspection technique 

(Malek Mohammadi et al. 2020).  
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Table 2-1 Factors Affecting Sewer Pipe Deterioration  

(adapted from Malek Mohammadi et al. 2020) 

Physical Factors Environmental Factors Operational Factors 

End invert elevation Backfill type Blockages Blockages 

Installation method Bedding material Burst history 

Joint type Ground movement Debris 

Pipe length Groundwater level Flow velocity 

Pipe shape pH Hydraulic condition 

Pipe slope Road type Infiltration/exfiltration 

Pipe age Root interference Previous maintenance 

Pipe depth Soil corrosivity Sediment level 

Pipe material Soil fracture potential Sewer type 

Pipe size Soil moisture - 

Start invert elevation Soil type - 

- Soil sulfate level - 

- Traffic characteristics - 

- Vehicle flow - 

 

2.4.1 Pipe Age 

The age of a pipe is generally estimated at the time of inspection for 

condition assessment from the time of installation of the same. Various studies have 

proved that the age of pipes could influence the condition of sewer pipes 

(Ariaratnam et al. 2001, Chughtai and Zayed 2008, Kienow and Kienow 2004). The 

serviceability of pipes decreases with time and is divided into five stages, as shown 
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in the Figure 2-1 (Misiunas 2005). Another study by Singh and Adachi (2011) 

presented that pipe age is a detrimental factor in pipe failure. According to the 

study, pipe failure is represented in the shape of a bathtub curve, which is derived 

when the pipe failure rate is plotted against time. The failure rate was calculated 

based on historical data of the number of pipe breaks per unit time per unit length 

of pipe. 

 

Figure 2-1 Serviceability of a Pipe  

(Misiunas 2005) 

However, few studies concluded that there is no relationship between 

deterioration and pipe age. These studies stated that the age could not be considered 

as a significant factor for deterioration modelling or condition prediction (Tran et 

al. 2007, Tafuri and Dzuray 2004, and Davies et al. 2001).  
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2.4.2 Pipe Material 

Sewer pipes are made of wide variety of materials such as vitrified clay pipe 

(VCP), ductile iron (DI), cast iron (CI), polyvinyl chloride (PVC), reinforced 

concrete pipe (RCP), and so on. Each material has its own properties and failure 

mechanisms would differ as well. For instance, CI pipes and DI pipes are more 

susceptible to internal and external corrosion unlike plastic pipes. Plastic pipes, 

such as PVC or high-density polyethylene (HDPE) on the other hand, may 

withstand acidic and alkaline wastes, but they may deform excessively when 

loaded. Likewise, abrasion resistance is high in concrete pipes, and acid resistance 

is high in clay pipes (Singh and Adachi 2013 and Davies et al. 2001). 

Material of the sewer pipes plays a major role during their service life. Pipe 

materials showed a direct relationship with pipe deterioration in few studies (Davies 

et al. 2001). Micevski et al. (2002) found that the pipe material is a significant factor 

of importance towards structural deterioration. The study indicated that concrete 

pipes are stronger and resilient compared to clay pipes. Bakry et al. (2016) stated 

that vitrified clay pipes are more resilient than asbestos cement and reinforced 

concrete pipes. The prediction model developed by Laasko et al. (2018) represented 

the significance of high-density polyethylene and concrete pipes. Different studies 

had discussed various effects of pipe material on the condition prediction models, 

and thus, any pipe material cannot be concluded as better than the other. 
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2.4.3 Pipe Size (Diameter) 

Numerous studies proved that the size of pipe or the diameter of pipe is an 

influential factor in the deterioration process.  Sewer pipes are classified as smaller 

sewer pipes when the diameter of pipe is between 6 and 8 inches and as larger pipes 

when the diameter is more than 10 inches. Based on condition prediction models 

developed in few studies, it was found that the rate of sewer pipe condition’s 

degradation decreases as the pipe diameter increases, whereas few other studies 

found that larger diameter pipes fail more frequently. Lubini and Fuamba (2011), 

Salman and Salem (2012) and Bakry et al. (2016) insisted that larger diameter pipes 

perform well than smaller diameter pipes.  Because when obstacles occurred in the 

larger diameter pipes, they can still run, not necessarily at the full capacity, whereas 

smaller pipe diameter losses the hydraulic flow. The study stated that larger pipes 

are buried relatively deep, which could be the reason for better structural condition 

of large diameter pipes. Therefore, the larger pipe diameter has lower deterioration 

rates as compared to smaller diameter pipes (Malek Mohammadi et al. 2020, 

Micevski et al. 2002, Wirahadikusumah et al. 2001, Najafi and Gokhale 2005).  

In contrast, the size of pipe was found to be insignificant in a study 

conducted by Tran et al. in 2007. In addition, according to the study by Jeong et al. 

(2005), larger pipes are more likely to deteriorate because they have more surface 

area exposed to sewage and the surrounding soil. 
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2.4.4 Pipe Length 

 The length of a sewer pipe generally refers to the distance from entry 

manhole to exit manhole along the run during inspection. It is believed that shorter 

pipes are more likely to deteriorate faster than longer pipes. Longer pipes would 

have a minimum number of severe bends along the run that could result in less 

accumulation of debris or blockages (Davies et al. 2001, Najafi and Gokhale 2005). 

In contrast, longer sewer pipes were found to have a higher rate of deterioration 

because the likelihood of defects is higher in longer pipes (Malek Mohammadi 

2019). It is also found that longer runs of sewers would eventually require a 

reasonable number of joints leading to the risk of infiltration (Jeong et al. 2005). 

Most common source of infiltration in pipelines is pipe joints, which can lead to 

soil and groundwater infiltration into sewer pipes. 

Khan et al. (2010) discovered that the change in the pipe length has dual 

performance in the pipe condition. According to the study, when the pipe segment 

is smaller than 230 feet, the effect on the condition of sewer pipes is zero. However, 

when the pipe segment is longer than 230 feet, the deterioration rate was found to 

increase due to the end joints. The end joints were assumed to be a possible source 

of break, infiltration, and exfiltration. Correspondingly, Laasko et al. (2018) found 

that pipe segments longer than 131 feet deteriorate earlier than other pipelines in 

the system due to higher bending stress and potential defects in the longer pipe 
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segments. On the other hand, Salman and Salem (2012) found that longer pipe 

segments perform better than smaller pipe segments. 

2.4.5 Pipe Gradient (Slope) 

Slope of the sewer pipe is a significant factor corresponding to the 

deterioration of sanitary sewer pipes (Baur and Herz 2002). Slope or gradient of a 

pipe can be estimated by dividing the difference between elevations from mean sea 

level (MSL) of pipe at start and end of the inspection by the inspected length as 

shown in Equation 2-1.  

Slope or Gradient (%) = 
𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑜𝑟𝑖𝑔𝑖𝑛−𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑒𝑛𝑑

𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑒𝑛𝑔𝑡ℎ
∗  100       Equation 2-1 

Relatively flat sewer pipes are found to deteriorate slower than pipes with 

greater gradient. When the slope is high, the flow rate will be high as well resulting 

in easier erosion (Najafi and Gokhale 2005). It is asserted that pipes with very less 

gradient could enable easier sediment deposition, which would lead to clogging and 

blockages. Sewer pipes with flat slopes tend to result in lower velocities, which 

would cause the wastewater to stay within the pipe for longer period resulting in 

natural hydrogen sulfide generation (Jeong et al. 2005).  

2.4.6 Pipe Depth 

Depth of a sewer pipe is generally the distance from the pipe’s crown (top) 

to the ground surface. Numerous studies have concluded that the failure or 

deterioration in sewer pipes are in correlation with the depth of the sewer pipes. 
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Studies claimed that sewer pipes buried at shallow depths are more likely to 

deteriorate sooner that those buried at greater depth (Gedam et al. 2016, Harvey 

and McBean 2014). According to a study by Khan et al. (2010), pipe depth was 

found to be a significant variable, and any rise in depth has a negative impact on 

sewer pipe condition level. However, studies by Davies et al. (2001), Tran et al. 

(2006), and Ana et al. (2009), insisted that depth of sewer pipe is insignificant 

during model development.  

2.4.7 Location of Pipe, Surface Type and Loading 

It is obvious that any underground utility structure will have an impact from 

the surface loads above it. The amount of surface loading carried to the sewer pipe 

is affected by land use and type of traffic above the pipe. Though the surface loads 

vary in frequency, making it difficult to estimate their effect on deterioration, a 

relationship can be found between the surface loading type and the sewer pipe (Kley 

and Caradot 2013, Najafi and Gokhale 2005). According to Bakry et al. (2016), 

sewage pipes deteriorate more quickly when they are situated near industrial areas. 

Few studies affirmed that there is no significant effect of pipe location on their 

structural condition (Tran et al. 2007, Micevski et al. 2002). 

2.4.8 Soil Type 

Wirahadikusumah et al. (2001) claimed that the underlying soil has a major 

impact on sewer pipe degradation. In addition, the type of soil surrounding the 

sewer pipe is one of the most important factors that could affect frost heave, 
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strength of soil-pipe interaction, and external corrosion, which could lead to failure 

mechanisms (Najafi and Gokhale 2005). It was determined that pipes installed in 

unstable soil experienced greater changes in condition compared to pipes installed 

in stable soil (Tafuri and Dzuray 2004). When there is a lack of soil support around 

the sewer pipe, it can be shifted. The lack of ground or soil support causes formation 

of voids around the pipe, making it more likely for the sewer pipe to break or 

deform. In contrast, Laakso et al. (2018) found that the soil type was not a 

significant factor in their developed model. 

2.4.9 Corrosion 

In general, corrosion in metallic pipes is caused by an electrochemical 

reaction between the exposed pipe's outer surface and the soil environment around 

it. It should be noted that different pipe materials have different corrosion resistance 

qualities. It is found that the corrosion rate is influenced by various factors such as 

soil acidity, resistivity, pH content, oxidation-reduction, sulfide, moisture, aeration, 

and so on.  Longitudinal failure may occur in conjunction with pipe wall weakening 

due to corrosion (Najafi and Gokhale 2005). 

2.4.10 Soil pH 

It is important to identify the influential parameters enhancing corrosivity 

of the soil, which could initiate the external corrosion in pipes. Since different pH 

ranges induce distinct corrosion mechanisms, soil pH is an excellent indicator of 

external corrosion (Najafi and Gokhale 2005). In conjunction with soil pH, the 
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material of pipe plays an important role as stated earlier. Compared to steel pipes, 

cast iron pipes are more likely to corrode in the same corrosive situations (Malek 

Mohammadi 2019). 

2.4.11 Groundwater Level 

One of the most common failures in sewer pipes is the infiltration of 

naturally available groundwater into the sewer pipes. This infiltration could cause 

overflows as well as soil sediments inside the sewer pipes. Malek Mohammadi et 

al. (2019) claimed that sewer pipes in areas where the groundwater level is 

considerably high are more likely to fail than sewer pipes in areas where the 

groundwater level is below sewer level, which was because of increase in amount 

of load on pipes from groundwater.  

The rate of frost heave is dictated by the available free water around the 

pipe, which is crucial for external corrosion as well. Lack of soil support and 

infiltration are caused by the groundwater around the pipe (Davies et al. 2001). As 

a result, sewer pipes fail structurally because of lack of proper support.  

Based on various literatures studied, various factors not limited to the above 

were identified to influence deterioration in a sewer pipe either internally or 

externally. However, it should be noted that it is not economically feasible for any 

municipality to track or collect all the listed factors to their inventory of data.  
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2.5 Condition Assessment of Sanitary Sewer Pipelines 

In sewer system asset management, there is no single standard procedure 

available to evaluate the structural condition of sewer pipes. Various manuals have 

been developed by agencies such as Water Research Center (WRc), National 

Association of Sewer Service Company (NASSCO), and Water Environment 

Federation (WEF), to evaluate the structural condition of sewer pipes. The manuals 

provide a step-by-step procedure to estimate a condition rating for the sewer pipes. 

In the US, PACP developed by NASSCO in partnership with WRc, is the well-

established manual for structural condition estimation of sanitary sewer pipes. 

2.5.1 PACP Scoring System 

In an aim to standardize the way of sewer pipes evaluation, the PACP was 

established by the NASSCO in 2002. The PACP is a flexible, customizable 

program to assist agencies and utility owners to record the defects and assess the 

condition of sewer pipes for decision-making on repair and rehabilitation. Various 

possible defects in the sewer pipes are uniquely coded in accordance with their 

severity. For a sewer pipe to be evaluated using the PACP manual, a CCTV camera 

is setup to record the inner environment of the pipe from one manhole to the other, 

as shown in Figure 2-2. 
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Figure 2-2 PACP Inspection Equipment Setup (NASSCO 2018) 

Once the camera is setup at the origin or upstream manhole, the slack is 

pulled from the next manhole opening. As per the manual, the maximum speed of 

CCTV camera setup is 30 feet per minute. While the camera moves from origin 

towards the next manhole, a certified PACP operator watch the live TV stream and 

record the visible defects into a predefined spreadsheet program. There are nearly 

230 different kinds of defects discussed in the program and a sample of the PACP 

inspection form is shown in Table 2-2. When the inspection is complete, computer 

program estimates the final condition score of each inspected pipe segment. Final 

score of inspected sewer pipe can be interpreted as shown in the Table 2-3. A PACP 

score of 1 refers to excellent condition pipe where PACP score 5 indicate that the 

pipe has already failed or would fail within the next 5 years. 
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Table 2-2 PACP Inspection Form Details Section (NASSCO 2018) 

Distance 

(feet) 

Video 

Ref 

Code 

Continuous 

Defect 

Value Joint 
Circumferential  

location 

Image 

Ref. 
Remarks 

Group/ 

Modifier 
Dimension %      

 
           

 
           

 
           

 

Table 2-3 PACP Condition Rating (NASCO 2018) 

PACP Description Estimated Time to Failure 

1 Excellent 
Unlikely to fail in the 

foreseeable future 

2 Good 20 years or more 

3 Fair 10 years to 20 years 

4 Poor 5 years to 10 years 

5 Needs Immediate Attention 
Already failed or likely to fail 

within the next 5 years 

 

2.5.2 Importance of Sewer Pipe Condition Prediction 

It is obvious that not all the sewer pipes in an inventory would be at a 

structurally bad condition or near failure. In addition, inspecting every individual 

sewer pipe in a system would be an expensive and time-consuming process. Based 

on the speed of operation and involved test setup as discussed in previous section, 

financial requirements for every inspection operation could be understood. 
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Therefore, there is a need to identify critical sewer pipes for inspection among the 

entire inventory. Inspection of sewer pipes can be limited by scrutinizing the pipes 

in bad condition by predicting them in advance. This prioritization in inspection of 

pipes would save thousands of dollars to any municipality (Chae and Abraham 

2001, Chae and Abraham 2000, Wright et al. 2006).  

Such prediction of sanitary sewer pipe’s condition is not a new concept. 

With the advancement in computer technology and advanced statistical analysis 

using machine learning algorithms or artificial intelligence, numerous studies have 

been accomplished by researchers to predict the condition of sewer pipes. However, 

there is no single standard model could be developed because every municipality 

do not record the same kind of data to their database inventory. Therefore, there is 

a huge demand in many municipalities for a proper asset management plan and 

inspection prioritization. 

2.6 Machine Learning and Artificial Intelligent Models in Sewer Pipe 

Condition Prediction 

The science (and art) of programming computers to learn from data is 

known as machine learning. Arthur Samuel defined machine learning in 1959 as a 

field of study that gives computers the ability to learn without being explicitly 

programmed (Géron 2017). The machine learning can be broadly classified into 2 

categories such as ‘supervised learning’ and ‘unsupervised learning’. Most of the 

data analysis performed in various studies related to condition prediction fall under 
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supervised learning. In supervised learning, the computer program or algorithm is 

trained or directed to study the recorded historical data that includes the output or 

target variable. Based on the training, prediction is estimated for a new set of data 

or unrecorded data. Whereas with respect to unsupervised learning, the data used 

for training would not include the target variable.  

Various training models and algorithms are being developed depending on 

the type of application. Most common techniques employed in machine learning 

models are either based on regression, classification, or combination of both. 

Various names are given to algorithms based on working principles of the program 

such as decision trees and k-Nearest Neighbors (clustering algorithm). Research 

studies conducted to predict the condition of sanitary sewer pipes are briefly 

summarized in the following section.   

In a binary logistic regression, the relationship between a single nonmetric 

(binary) dependent variable and a set of metric or nonmetric independent variables 

is estimated. Model's output would be a probability of the instance being either true 

or false, success or failure, and zero or one. For instance, the dependent variable in 

sewer condition prediction models could be characterized as structurally good or 

bad. As a notation, sewer pipes in good condition can be classified as 1 in output 

and pipes in poor condition as 0 (Malek Mohammadi 2019).  

Various studies have been performed to predict the structural condition of 

sewer pipes based on logistic regression models for decades. A study conducted by 
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Ariaratnam et al. in 2001 predicted the likelihood of a sewer infrastructure system 

to be in a structurally deficient state. The study developed a binary classification 

model and the developed model utilized various factors such as the age, diameter, 

and material of pipe, transported waste type, and average depth of installed pipe. 

However, the model was validated using only 86 records, which is comparatively 

lesser for a municipal database and therefore, the resulted model could lead to 

misclassification.  

An expert knowledge-based support system to prioritize sewer pipeline 

inspection was developed in a study by Hahn at al. in 2002. The study employed 

the probabilistic method, Bayesian belief network, to develop the model based on 

interviews and case studies. A decision support tool named Sewer Cataloging, 

Retrieval and Prioritization System (SCRAPS) was developed based on the 

likelihood and consequences of failures. However, the developed SCARPS tool 

was based on WRc’s 1986 paradigm of pipe assessment. In addition, the study did 

not focus on model’s applicability in field. 

Najafi and Kulandaivel in 2005 developed a condition prediction model 

using Artificial Neural Network (ANN) technique. Various factors such as age, 

length, size, material type, depth, slope, and sewer type were considered as 

independent variables to train the model. It was found the model performed well 

during training and the performance was unsatisfactory during testing. The study 

acknowledged that the results required thorough statistical analysis for further 
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application. It was recommended that a model must depend on a larger and more 

inclusive data. 

Structural and operational condition assessment models were developed in 

a study by Chughtai and Zayed (2008). Multiple regression models were developed 

based on independent variables such as age, diameter, depth, length, material, 

bedding factor, and street category. The study developed 3 models for 3 different 

pipe materials namely, concrete, asbestos cement, and PVC. Developed models 

were good at identifying sewer sections vulnerable to overflows and basement 

flooding. However, the models were not capable of quantifying the criticality of 

sewer pipes. 

Syacharni et al. (2013) developed a decision-tree based deterioration model 

for sewer pipes. The study employed various techniques such as regression, 

decision trees, and neural networks. Models were trained with parameters such as 

length, slope, diameter, material, root, sludge, and debris. It was found that decision 

tree model outperformed both regression and neural network models. It was 

interesting to notice that root and sludge were found to be influential factors over 

pipe material.  

Another study by Harvey and McBean (2014) developed a structural 

condition prediction model for individual sanitary sewer pipes. Machine learning 

technique, random forests was utilized to train the model. The model used sewer 

pipe age, material, diameter, depth, length, slope, sewer type, invert, and road type 
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as attributes while training the model. The developed model found to exhibit an 

area under the receiver operator characteristic (ROC) curve (AUC) value of 0.81. 

However, a model cannot be evaluated solely based on the ROC curve and AUC 

values; other evaluation metrics such as precision and recall must be considered.  

In 2017, Hernandez et al. developed a structural condition prediction model 

using various machine learning algorithms such as logistic regression, random 

forests, multinomial logistic regression, linear discriminant analysis, and support 

vector machine. The study compared the performance of various models. However, 

true positive rate and false positive rate were the only evaluation metrics used to 

compare the performance. In addition, prediction capability was found to be 

unsatisfactory as well. 

Another study by Laakso et al. in 2018 accomplished condition prediction 

model development using logistic regression based on a wide variety of factors such 

as age, material, diameter, depth, length, slope, sewer type, location, road type, 

number of trees, and flow rate. The developed model resulted an accuracy of 56%. 

However, the model utilized around 19 predictor variables, which is not economical 

or practically viable for municipalities to include all variables in their inspection 

databases. 

A study accomplished by Malek Mohammadi et al. in 2020 developed 

condition prediction models for sanitary sewer pipes using various machine 

learning models such as decision trees, random forests, and gradient boosting tree. 
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The developed model based on gradient boosting tree was found to have an 

accuracy of 87%. Though the accuracy level was acceptable, the model classified 

the condition rating of pipes on a binary class rather than multi-class condition 

ratings. The study had recommended that the future research could concentrate on 

multi-class condition prediction, which would be more beneficial for the 

municipality during inspection and condition assessment phases. 

 

Figure 2-3 Techniques Used in Prediction Model Development 

As a summary, different techniques employed in various research studies to 

develop condition prediction model is illustrated in the Figure 2-3. Majority of the 
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studies considered logistic regression to develop a prediction model. A significant 

number of studies has given importance to machine learning algorithms like 

decision trees and random forests. However, studied literature studies have 

recommended that the application of machine learning and artificial intelligent 

techniques could be further expanded.  

2.7 Chapter Summary 

This chapter discussed various factors that could lead to structural 

deterioration in sanitary sewer pipes. It was found that sewer pipe failure is a 

complex process involving multiple factors. Inspection and condition assessment 

of all pipes in an inventory of wastewater agencies or municipalities on a regular 

basis is not economically viable. Thus, prioritizing the inspection of sanitary sewer 

pipes by predicting their condition could be a beneficial solution for efficient 

budget allocation for any municipality. Secondly, the importance for machine 

learning and artificial intelligence in structural condition prediction of sanitary 

sewer pipes was discussed based on numerous research studies. It was found that 

further studies are recommended by various researchers to develop multi-class 

prediction models rather than binary classification. 
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CHAPTER 3  

DATA COLLECTION AND PREPARATION 

3.1 Introduction  

Inspection and condition assessment of sanitary sewer pipes are the critical 

steps involved in asset management of the system. It is well known that the CCTVs 

are most employed in the United States for inspection of sanitary sewer pipes 

(NASSCO 2018). Historical data collected by the City of Fort Worth (Texas) has 

been used in this study to develop a condition prediction model that could serve as 

a basis to prioritize future inspection of sanitary sewer pipes. In the City of Fort 

Worth, wastewater collection system (sewers) is separate from the storm drainage 

system and stormwater does not flow through the sewers. The scope of this study 

is limited to gravity flow sanitary sewer pipes excluding force main systems. 

Like most other municipalities, CCTVs are primarily employed in the 

inspection and condition assessment process of sanitary sewer pipes. Based on 

interviews with officials, it was found that sewer pipe inspection decisions were 

made based on engineering judgement and operator experience. The inventory of 

the sewer system is stored using geographic information system (GIS) databases. 

The inventory of recorded database includes information but not limited to the 

installation details of pipes, surrounding soil type, location of pipe with respect to 

geographical maps, and so on. Detailed discussion of various information collected 

from the wastewater department is explained in following sections.   
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3.2 Overview of Collected Data 

With more than 280-miles length of large diamter sewer interceptors whose 

diamters are greater than 24 inches, the wastewter system forms a complex 

underground infrastructure. The GIS is primarily employed to record, manage, and 

maintain the inventory of sewer systems. Based on the historical inspection data 

provided by the city, it was found that the CCTV inspection for inner environment 

of pipes accomplying to PACP manual started in the year 2000. During inspection, 

each and every pipe is given an unique name for future identification, referred as 

GIS ID.  A sample of the data collected from the city of Fort Worth is shown in the 

Table 3-1. Dataset contained 32,854 number of unique pipe segment details.  

Table 3-1 Sample of Data Collected for the Study 

GIS_ID 
INSPEC_ 

DATE 

INSTALL_ 

DATE 

INSPEC_ 

LENGTH 

MAPSCO 

GRID 
UPELEV 

DOWN 

ELEV 
SUBAREA STYPE DIAMETER MATERIAL PACP 

60717 6/6/2011 7/25/1958 460 93G 551.44 551.25 VC08_01 1 39 CI 2 

60718 12/12/2010 8/18/1988 844 93G 551.3 550.88 VC09_01 1 54 CONCRETE 2 

60719 12/28/2017 7/17/2001 415 46L 792 790.35 MC04_04 1 8 PVC 1 

60720 1/5/2018 7/1/2004 426 46H 760.1 752.45 MC04_04 1 8 PVC 1 

60723 11/16/2012 12/3/1964 259 89F 673.9 668.57 CF05_03 1 6 VCP 3 

60724 11/19/2012 12/9/1964 503 89F 689.06 673.9 CF05_03 1 6 CONCRETE 2 

60726 8/7/2019 3/1/2005 112 119G 641.37 640.73 VC11_03 1 8 PVC 1 

60728 8/9/2017 4/25/2002 444 106U 610.87 607.88 VC11_01 1 24 PVC 1 

60729 4/28/2017 2/28/2002 396 106S 647.17 645.67 VC11_01 1 24 PVC 2 

60732 11/13/2014 6/11/1947 203 47Y 723.7 716.86 MC03_06 1 6 VCP 2 

3.3 Preliminary Data Insights 

GIS_ID is an unique identification code given by the inspection operator at 

the time of inspection for future use. INSTALL_DATE refers to the date at which 
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the pipe was installed for service. It was interesting to note that sewer pipes were 

installed as early as 1909 and the same are in service to date. Majority of the pipes 

installed in the early twentieth were primarily concrete or vitrified clay pipes. In 

addition, it was found that around 70% of the total number of pipes were installed 

in a span of 30 years between 1980 and 2010.  

INSPEC_DATE refers to the date when the corresponding inspection was 

completed. Though the first inspection data dates back to the year 2000, only 

around 500 individual pipe segments were inspected for condition assessment until 

the year 2005. Difference between the installed date and inspection date would 

yield one of the important characteristics, age of the particular pipe segment.  

INSPEC_LENGTH is the total distance in feet measurements inspected 

from the upstream manhole to the downstream manhole of a sanitary sewer 

segment. The inspected length of pipes varied from a minimum of 8 feet all the way 

to 5,500 feet at few instances. Inspection records show that almost 99% of the sewer 

pipes do not run longer than 1,000 ft. 

Based on sewer design guidelines, the manual recommended a maximum 

of 600 ft spacing between manholes for sewer pipes with diameter greater than 27 

inches (American Iron and Steel Institute 1999). However, the manual metioned 

that upon approval by the agency, the spacing between manholes (i.e., the 

inspection length) can exceed the design manual specified 600 ft. Therefore, for 

this study, the maximum length of sewer segment is limited to 1,500 ft. 
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Interestingly, none of the sewer pipes with a PACP scores of 5 and 4 had their 

lengths greater than 1,500 ft and 2,000 ft, respectively, as shown in the Figure 3-1.  

  

  

Figure 3-1 Overview of Length and PACP Scores 

As illustrated in the Figure 3-1(a), highlighted number of pipes in the left 

are corresponding to the selected PACP score of 1 on the right. Similarly, in Figure 

3-1(b, c and d), the number of pipes in different length ranges can be found 

correspinding to the PACP scores of 2, 4, and 5, respectively. The comparison 

between the PACP scores of pipes and their corresponding lengths in the illustration 

(a) (b) 

(c) (d) 
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indicates that the shorter pipes are more prone to deterioration compared to longer 

pipes.  

MAPSCOGRID is basically a geographical location reference for the 

particular pipe. Mapsco, situated in Addison, Texas, was a privately held publisher 

of maps and atlases, founded in 1948. Since 1952, Mapsco has become a leading 

maker of maps for the states of Texas, New Mexico, Oklahoma, and Colorado 

areas. Maps for cities were developed in the form of numbered grid systems; and 

were referred as Mapscogrids. An example of a Mapscogrid for a part of City of 

Fort Worth is shown in the Figure 3-2. 

 

Figure 3-2 Sample of a MAPSCOGRID System in City of Fort Worth 

(Geography and Map Division, Library of Congress, 2020) 
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As shown in Table 3-1, MAPSCOGRID for each pipe segment is an unique 

alphanumeric code. The first numerical part refers to the rectangular box or grids 

in the map. Once the numerical grid is located, the pipe can be found at the 

following alphabet’s vicinity. The sanitary sewer systems in the city of Fort Worth 

runs under around 988 unique values. 

UPELEV and DOWNELEV are the elevations in feet above sea level at 

upstream manhole and downstream manhole, respectively. This information is of 

much importance to estimate the slope or gradient of the sewer pipe. The geography 

of City of Fort Worth is relatively flat and there is no huge difference between the 

elevations at upstream manhole and downstream manhole. Almost all of the 

sanitary sewer pipes have their UPELEV and DOWNELEV between 400 ft and 

1,000 ft above the sea level. 

SUBAREA refers to the drainage basin or the type of surrounding area. 

Based on the drainage basin, unique alphanumeric codes were used to refer to the 

subarea surrounding the sewer pipelines. The first two alphabets in SUBAREA 

refer to the type of the basin such as Clear Fork (CF), Village Creek (VC), Big 

Fossil (BF), and so on. It was noticed that majority of the sewer pipes were located 

at BF, CF, and VC basins.  

STYPE column in the collected data refers to the types of sewer pipelines 

based on their flow. The types of sewer flows are either gravitational or force mains. 



40 
 

The gravity main sewers are termed 1 and force main sewers are termed 2. For this 

study, gravity main sewers are considered for further analysis.  

DIAMETER column represents the size or diameter of the pipe in inches. 

Diameter of the sewer pipes ranged from 4 inches to 96 inches. However, almost 

90% of the pipes were found to be less than 20 inches in diameter and 6% of the 

pipes were in the range between 20 and 40 inches. Interestingly, none of the pipes 

with diameter greater than 60 inches were found to have a PACP score of 5, which 

indicates that pipes with larger diameter were in structurally fair condition 

compared to smaller diameter pipes. As shown in Figure 3-3, highlighted diameter 

values in the left are corresponding to the selected PACP score of 5. 

 

Figure 3-3 Overview of Diameter and PACP Scores 
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MATERIAL column in the Table 3-1 represents the type of material used 

to manufacture the sewer pipe. Records indicate that 9 different material types were 

used in sewer pipes such as armco truss (AT), cast iron (CI), concrete, ductile iron 

(DI), fiberglass, high density polyethylene (HDPE), polyvinyl chloride (PVC), 

steel, and vitrified clay pipes (VCP). It was found that a very few number of pipes 

made of AT, CI, fiberglass, and steel, were used in gravity main sewers while the 

majority of the pipes are made of PVC, VC, concrete, and DI. AT is a type of plastic 

material with inner and outer PVC walls filled with a lightweight material called 

Mearlcrete for additional pipe stiffness and compressive strength (Moore 2015).   

 

Figure 3-4 Pipe Materials and their Installation Years 

It was interesting to notice that though PVC pipes constitute majority of the 

sewer pipes, most of them were installed after 1980 as shown in the Figure 3-4(a). 

(a) (b) 
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At the same time, vitrified clay pipes constitute a considerable amount of total pipes 

and were majorly installed before 1980. In addition, it was found that almost all 

types of pipes were facing deterioration as well, as shown in the Figure 3-5.  

 

Figure 3-5 Pipe Materials and PACP Scores 

The final column in the collected data lists the PACP scores for each 

inspected pipe segment. As already discussed, the PACP scores range on a scale 

from 1 to 5, where 1 refers to a structurally good condition and 5 refers to a pipe 
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nearing failure. The Figure 3-5 illustrates the distribution of PACP scores among 

different pipe materials.  

As shown in the Figure 3-5, structurally weak pipes are distributed in 

majority of the pipe materials such as concrete, PVC, VC, fiberglass, and HDPE.  

It was found that majority of pipes with PACP score of 5 are made of concrete and 

comparitively fewer pipes are made of PVC. However, it can not be concluded that 

a particular type of material is better than the other.  

3.4 Data Preparation 

The data collected from inventory of databases are in their original form 

and have to be processed in order to utilize them in model development or for any 

form of statistical analysis. Because, the GIS database collected might include 

erroneous or misleading data in its original form as they are manually entered to 

the databases. The pre-processing of collected data is one of the important step in 

preparing the data for further analysis.  

In the pre-processing step, collected original data is refined to exclude the 

redundant information from the dataset for further analysis. In other words, it can 

be defined as the extraction of required information from the original form of data, 

which can be utilized as input feed to computer programs. As one of the steps in 

data preparation, the collected data is processed to avoid any null values. Null 

values found in the MAPSCOGRID field were excluded from further analysis. 

Therefore, final dataset with 32,751 datapoints was utilized for analysis and model 
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development. As a next step in data preparation, individual features such as age and 

slope were calculated based on collected data to include in model development 

phase. Exploratory analysis of each feature is discussed in detail in the following 

section. 

3.5 Exploratory Data Analysis 

Processed dataset was then used to extract features for data analysis and 

model development. Final dataset processed for analysis included 6 independent 

variables and a multi-class categorical dependent variable. Extracted features 

include information such as age, length, diameter, slope, MAPSCOGRID, and 

SUBAREA. Details of individual feature is shown in Table 3-2.  

Table 3-2 Details of Extracted Features 

Variable Type 
Features Extracted 

(Variables) 

Description 

(Data Types) 

Independent 

(Response 

Variables) 

Age 

Continuous Numerical 
Length 

Slope 

Diameter 

MAPSCOGRID Nominal 

SUBAREA Nominal 

Dependent 

(Target Variable) 
PACP 

Multi-class 

Categorical 
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3.5.1 Age 

The first feature extracted from the collected data is the age of the inspected 

sewer pipe segment. The difference between inspection date and installation date 

would yield the age of the particular sewer pipe segment. The distribution of age of 

sewers is shown in the Figure 3-6. As illustrated in the Figure 3-6, the age of pipe 

was found to be from less than an year to a maximum of 107 years. Almost 73% of 

the pipes were found to be under 30 years in service since installation and 2% of 

the pipes were found to be more than 80 years of age.  

 

Figure 3-6 Frequency Distribution Based on Pipe Age 

3.5.2 Length 

Length of the sewer pipe segment is the manhole to manhole distance 

recorded during inspections. Distribution of frequency of pipe segment length in 
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percentage is shown in Figure 3-7. The length of inspected sewer pipe segment 

varies from 8 ft to 1,500 ft. It can be seen that around 81% of total pipe segments 

spans less than 400 ft and a very few observations were found to run more than 

1,000 ft of length.  

 

Figure 3-7 Frequency Distribution Based on Pipe Length 

3.5.3 Slope or Gradient 

Slope of the sewer pipe segment is calculated using the vertical and 

horizontal displacements. It is estimated by dividing the difference between 

upstream manhole elevation and downstream manhole elevation by the length of 

the inspected pipe segment. It was found that 99% of the pipes were relatively flat 

with a maximum slope of 0.2%. However, maximum slope was found to be 5%. 

The distribution of slope is illustrated in Figure 3-8. 
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Figure 3-8 Frequency Distribution Based on Pipe Slope 

 

Figure 3-9 Frequency Distribution Based on Pipe Diameter 
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3.5.4 Diameter 

Diameter of the sewer pipe segment is a basic information recorded at the 

time of inspection for each pipe. The diameter of the pipes ranged from as small as 

4 inches to as large as 96 inches, and the distribution of the same is shown in  

Figure 3-9. Based on the collected data as shown in  

Figure 3-9, almost 90% of the inventory of pipes can be categorized as 

smaller pipes since their diameter is less than 24 inches. Roughly 1% of the pipes 

are found to have a diameter greater than 60 inches.  

3.5.5 Material 

As discussed in previous sections, sewer pipes are made of different 

materials and as per processed dataset in this dissertation, there are 9 different types 

of sewer pipe materials are identified. As shown in the Figure 3-10, 4 pipe materials 

such as AT, steel, CI, and fiberglass, contribute less than 2% of total dataset. It was 

found that PVC constitute a major portion of the sewer pipes with around 60%, 

followed by vitrified clay and concrete pipes with 17% and 9%, respectively. Since 

structurally poor conition pipes are distributed in majority types of pipe materials, 

all different pipe materials are included in model development. 
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Figure 3-10 Frequency Distribution Based on Type of Pipe Material 

 

Figure 3-11 Frequency Distribution of PACP Scores 
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3.5.6 PACP 

The last column in processed dataset is the dependent or target variable for 

condition prediction model development, which is the PACP score of individual 

pipe segment. As discussed earlier, the scores range from 1 to 5, where 1 refer to 

structurally sound pipes and 5 refer to pipes in the verge of failure. As shown in the 

Figure 3-11, almost around 90% of the pipes are in structurally sound condition 

with PACP scores of 1 and 2.  

It was interesting to notice that only 2% of the pipes are ranked a PACP 

score of 4 and only 95 sewer pipe segments are in the verge of failure with a PACP 

score of 5. It should also be noted that more than 70% of the pipes are less than 30 

years old and around 60% of the pipes are in structurally good condition. Though 

age can not be a single influential factor to dictate structural condition of sewer 

pipes, a simple linear relationship can be assumed.  

Another crucial observation made from the PACP distribution is that the 

distribution is not even among all 5 classes. When one or more classes in a dataset 

is under represented compared to other classes, the scenario would be termed as 

class imbalance. Predictive accuracy of developed models for minority classes 

would be highly affected when imbalanced dataset is used in machine learning 

algorithms (Wallace et al. 2011). Various studies have mentioned that the 

imbalanced classification must be treated before training the dataset in any machine 
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learning algrorithms (Rout et al. 2018), which will be discussed in following 

chapter.   

3.6 Chapter Summary 

In this chapter, preliminary insights about the data collected for this study 

was discussed. It was observed that the PVC pipes constitute majority of the total 

sewer pipes followed by VCP and concrete material pipes. It was noticed that 

around 81% of total pipe segments spans less than 400 ft and almost 90% of the 

inventory of pipes can be categorized as smaller pipes whose diameter is less than 

24 inches. In addition, a linear relationship was observed between age of the pipe 

segments and structural condition. Finally, it was found that the dependent variable 

is unevenly distributed causing a severe class-imbalance, which must be treated 

while developing the prediction models. 
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CHAPTER 4  

MODEL DEVELOPMENT  

4.1 Introduction 

Developing a condition prediction model based on various machine 

learning algorithms is discussed in this chapter. Machine learning is a wide term 

that refers to computational algorithms that rely on prior knowledge to generate 

precise predictions (Mohri et al. 2018). Prior knowledge in the context refers to the 

recorded historical data that a computer program can learn, which is termed as 

training the algorithm. As discussed in previous chapters, supervised learning 

techniques are employed in the study and numerous machine learning techniques 

are in practice for developing a prediction model under supervised learning.  

Classification and regression are the two major types of supervised machine 

learning methods. Regression method is used when a continuous dependent 

variable must be predicted based on various independent variables (Müller and 

Guido 2016). In this study, the dependent or output variable is not a continuous 

number rather it is categorical with 5 different classes. Hence, classification type of 

machine learning techniques is used in this study to develop the model. Processed 

data from the previous chapter is utilized as input for training the models. One of 

the most popular programming languages in the field of data science, Python, is 

used in this study to develop prediction models. The reason for using Python is that 

it is open-source and the availability of large number of free add-on libraries.  
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4.2 Imbalanced Dataset Treatments 

As discussed earlier, PACP score of 5 has rare instances compared to PACP 

score of 1, which is termed as imbalance in the dataset. When the imbalanced or 

skewed data is used in traditional classification algorithms, it could often result in 

poor performance of trained models (Tanha et al. 2020, Teh et al. 2020, Yijing et 

al. 2016). Generally, minority class must be given more importance while handling 

imbalanced dataset because after-effects of minority class’s misclassification 

would be exponential than the other classes. In this study, PACP score of 5 class is 

given more importance because misclassifying PACP score of 5 as 1 would be 

worse.  

It was found that classification algorithms such as logistic regression, 

support vector machine, and decision tree are well suited for training a balanced 

dataset. When an imbalanced dataset is trained using these algorithms, majority 

class was highly represented distorting the minority class instances (López et al. 

2013). Various treatment techniques are performed by researchers and data 

scientists to yield better results out of imbalanced dataset (Haixian et al. 2017). One 

of the commonly employed treatment for imbalanced dataset, data resampling 

technique is performed in this study. Basically, in data resampling technique, the 

imbalanced data is resampled to match either of the majority class or minority class 

by replication or removal of datapoints, respectively. Data resampling technique is 
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divided into two categories: (1) Random under-sampling and (2) Random over-

sampling.  

4.2.1 Random Under-Sampling 

Random under-sampling technique is nothing but the removal of 

observations in random from the majority class to match the minority class. As 

illustrated in the Figure 4-1, instances from PACP score 1 was removed in random. 

It can be considered a better choice when the dataset contains extensively large 

number of observations. However, it should be noted that valuable information 

might be lost during random removal of instances.  

 

Figure 4-1 Random Under-Sampling Technique 
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4.2.2 Random Over-Sampling 

Random over-sampling is also a resampling technique similar to random 

under-sampling, in which the majority class is not removed rather the minority class 

is replicated to match the majority class. Illustration for random over-sampling is 

shown in the Figure 4-2. This technique would be highly helpful when very 

minimal data is available. However, when a severely imbalanced dataset is 

replicated as a balanced dataset, it might cause the algorithms to memorize or 

overfit the minority class instances. 

 

Figure 4-2 Random Over-Sampling Technique 

Since both of the discussed resampling techniques are found to be effective 

in different studies, over-sampling technique cannot be rated as better over the 
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under-sampling technique and vice versa (Estabrooks et al. 2004). It was found that 

both resampling techniques has their advantages and disadvantages. Therefore, in 

this study, models are trained with both resampling techniques and corresponding 

performances are evaluated.   

4.3 Cross-Validation  

Cross-validation is basically the most employed validation technique in any 

prediction problem. Basic concept behind cross-validation is that some portion of 

the input dataset is excluded while training the model and the excluded portion is 

used while testing the trained model. Primary reason for using cross-validation is 

that it would avoid overfitting and sample from all classes could be represented 

while training the model. The key element of cross-validation technique is that the 

entire dataset will be used in training and testing the model (Malek Mohammadi 

2019).  

For example, in a 10-fold cross-validation, the entire dataset is bagged into 

10 equal parts. From 10 parts, 9 parts will be used to train the model and 1 part will 

be used while testing the trained model. Owing to the fact that increase in folds 

would decrease the number of data points in each part, 5-fold cross-validation is 

employed in this study, as shown in the Figure 4-3. In a 5-fold cross-validation, 4 

parts or 80% of the dataset in random was used in training and the rest 20% of the 

data was used in testing.  
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Figure 4-3 5-Fold Cross Validation 

4.4 Machine Learning Methods 

As discussed in earlier chapter and previous sections of this dissertation, 

collected data was cleaned and final dataset for further analysis is prepared. 

Imbalanced target variable was identified and hence, resampling techniques were 

employed to the dataset before it can be trained using machine learning algorithms. 

Therefore, the final dataset is now ready to be fed as input to various classification 

algorithms. As mentioned earlier, numerous open-source libraries in Python 

programing language are utilized to train the models. Some of the libraries used in 

this study are shown in the Table 4-1. 
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Table 4-1 Python Libraries Used in the Study 

S. No Name of the Library Description or Functions of the Library 

1 Pandas 
To open spreadsheet files and manipulate 

numerical tables. 

2 Scikit learn 
This library features various classification 

algorithms 

3 Matplotlib 
It is the most common plotting library to plot 

graphs 

4 Seaborn It is a data visualization library 

5 Streamlit 
To develop an interactive decision-support 

tool 

 

Using different libraries listed in the Table 4-1, various machine learning 

classification methods such as logistic regression, support vector machine, k-

nearest neighbors, and random forests, are trained to develop the prediction models. 

Above mentioned methods are trained with all three sets of data, namely 

imbalanced dataset, under-sampled dataset, and over-sampled dataset. Each of the 

method employed in the study is discussed in the following sections. It should be 

noted that for logistic regression and k-nearest neighbors, the continuous 

independent variables such as age, length, slope, and diameter, must be on uniform 

scale and therefore, log transformed variables are used in model development. 
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4.4.1 Logistic Regression 

Logistic regression (LR) is one of the most employed statistical methods in 

machine learning. Though the term used in this method is regression, the output is 

basically a probability of an event to happen. Generally, LR methods are used to 

analyze the relationship between multiple independent variables and a categorical 

or continuous dependent variable. In this method, the data is fit to a logistic or 

sigmoid curve and is used to estimate the probability of an event. When the target 

(dependent) variable is binary or dichotomous, binary logistic regression is utilized 

to create prediction models.  

Dependent variables in a binary LR model have two possible values, which 

are mostly 0s and 1s. For example, if the pipe classification is based on either of 

two conditions, say good or bad, pipes in good condition could be given a label of 

1 and pipes in poor condition can be labeled as 0. For a binary response variable Y 

and a single dependent variable X, let π(X) = P (Y = 1 | X = x) = 1 – P (Y = 0 | X = 

x), the logistic regression model has linear form for the logit of this probability as 

shown in the Equation 4-1 (Agresti 2007). Figure 4-4 illustrates the simple logistic 

function used in estimating the parameter coefficients. In the illustration, the 

horizontal axis (x) varies from -6 to +6 and the vertical axis (f(x)) corresponds to 

the probability from 0 to 1. 

logit [π(X)] = log  (
π(X)

1− π(X)
 ) =  α +  βx  Equation 4-1 
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Figure 4-4 Standard Logistic Function 

Logistic regression can also be employed where the dependent variable is 

discrete with more than two classes. This type of LR with more than 2 classes in 

output variable is termed as multinomial LR. While employing LR for multi-class 

classification, the likelihood of one class would be estimated over the rest all 

classes. For instance, to develop a prediction model for PACP score of 5 in this 

study, sewer pipes with a PACP score of 5 would be considered as one of the binary 

classes and all other classes such as PACP scores of 1, 2, 3, and 4, would be the 

other class in binary classification.  
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For a multinomial or multiple logistic regression, the final model would take 

the form as shown in the Equation 4-2. 

logit [
π

1 −  π
] = log  (

P(Y = 1 | X1, X2, . . Xp

1 −  P(Y = 1 | X1, X2, . . Xp
) = α + β1x1 + β2x2+. . +βpxp 

Equation 4-2  

Where: 

 X1, X2, …, Xp are independent variables 

 α is the intercept for ith category 

 𝛽 is the regression coefficient 

4.4.2 k-Nearest Neighbors (k-NN) 

The k-NN algorithm is a supervised machine learning technique that can be 

utilized in both classification and regression problems. k-NN algorithm is named 

lazy not because of its seeming simplicity, but because it memorizes the training 

dataset rather than learning a discriminative function from it (Guo et al. 2003). The 

training dataset is all that is required to build a k-NN model. The algorithm finds 

the closest data points in the training dataset – its "nearest neighbors" – to classify 

a new data point.  

In the most basic form, the k-NN algorithm only analyzes one nearest 

neighbor, which is the training data point that is closest to the point we wish to 

classify. The known output for this training point is then used to make the prediction 
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as illustrated in the Figure 4-5. However, to increase accuracy, an arbitrary number 

of neighbors, k, can be considered (Müller and Guido 2016).  

 

Figure 4-5 Simplest form of a k-NN Model  

(Müller and Guido 2016)  

For example, predictor space of the k-NN model utilized in this study is 

shown in the Figure 4-6. Here, the number of neighbors is selected as 3, which is k 

= 3. It should also be noted that though there are 7 independent variables used to 

train the model, only 3 variables are shown in the illustration referring to a lower-

dimensional space.  



63 
 

When more than one neighbor is considered, a technique called voting is 

used to assign a label to the new data point of interest. Voting is nothing but the 

total count of different class labels near the data point of interest. When a majority 

of class labels belong to a particular class, the test data point will be assigned to 

that majority class. Therefore, it is always recommended to use an odd number for 

k, which would eventually avoid confusions during prediction based on nearest 

neighbors. 

 

Figure 4-6 Lower-Dimensional Projection of the k-NN Predictor Space 
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4.4.3 Tree Based Models 

Tree based models are multi-purpose machine learning algorithms that can 

handle classification, regression, and multi-output problems. Decision trees (DT) 

and random forests (RF) are most popular tree-based machine learning models. 

They are extremely powerful algorithms that can fit large datasets (Loh 2014). 

Although DT is considered as an effective supervised learning algorithm in 

classification problems, one of the most common limitation is that DT tend to 

overfit the training data (Müller and Guido 2016). Therefore, RF method is used in 

this study to overcome the limitation of DT. 

RF is based on ensemble learning, which is a method of integrating many 

classifiers to solve a complicated problem and enhance the model's performance. 

In simple words, RF is a combination of different DT during training the data. An 

RF is essentially a collection of various DTs, where each tree is a little different 

from the others. In DT, though each tree may accomplish an acceptable job of 

predicting, it will almost certainly overfit on some part of the data. The amount of 

overfitting could then be limited by averaging the outcomes of numerous trees, 

which operate well and overfit in diverse ways (Estabrooks et al. 2004 and Caruana 

and Niculescu-Mizil 2006). The final collection of numerous DTs with retained 

predictive power can be collectively named as RF. A schematic illustration of RF 

technique is shown in the Figure 4-7. 
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Figure 4-7 Working Structure of RF Algorithm 

For tree growth, tree combination, self-testing, and post-processing, RF 

follows specific principles. RF is identified to be steadier in the presence of outliers 

and in high-dimensional parameter spaces than other machine learning methods and 

therefore, it is resistant to overfitting (Caruana and Niculescu-Mizil 2006). The Gini 

index (Gi) is a measure of the predictive capacity of variables in classification. Gi 

is non-parametric, which means it does not depend on data from a specific sort of 
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distribution (Alessia et al. 2017). For a simple binary classification, the Gi of a node 

‘n’ is calculated as: 

𝐺𝑖 (𝑛) = 1 − ∑ (𝑝𝑗)
22

𝑗=1     Equation 4-3 

Where Pj is the relative frequecy of clas j in the node n. 

4.5 Chapter Summary 

This chapter discussed about the imbalanced dataset treatments such as 

resampling techniques to prepare the data to be trained using machine learning 

algorithms. Under-sampled and over-sampled datasets will be utilized to train and 

develop the condition prediction models as discussed in following chapters. 

Various supervised learning algorithms such as LR, k-NN, and RF, utilized in this 

study are also discussed.  
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CHAPTER 5  

MODELS PERFORMANCE COMPARISON 

4.1 Introduction 

In previous chapters, collected data from GIS databases was preprocessed 

and prepared as input for machine learning algorithms. The final dataset was 

utilized in training various supervised learning techniques. In this chapter, 

performance of the trained models in predicting the condition of sewer pipes will 

be discussed. To identify a better prediction model, all trained models must be 

validated and evaluated. There are various evaluation metrics such as confusion 

matrix, accuracy, precision, recall, and so on, are available to evaluate the 

performance of machine learning models. Various evaluation metrics used in 

evaluating the performance of prediction models are discussed in following 

sections. 

4.2 Evaluation Metrics 

This section of the dissertation discusses about various evaluation metrics 

in detail. The selection of a particular metric would be based on the type of 

anticipated output from the classification model.  

4.2.1 Confusion Matrix 

Confusion matrix is one of the most important model evaluation metrics, 

which is widely employed to evaluate the performance of a trained machine 

learning model. The number of occurrences between two raters, the true/actual 
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classification and the predicted classification are all recorded in a cross table, which 

is referred as a confusion matrix. Representation of a simple binary classification 

confusion matrix is shown in the Figure 5-1. A confusion matrix could yield an 

overall understanding of the performance of a model by visual observation 

(Grandini et al. 2020, Hossin and Sulaiman 2015). 

 

Figure 5-1 Confusion Matrix for a Binary Classification 

In a confusion matrix, the correctly classified items are placed from top left 

to bottom right on the major diagonal, and they correlate to the number of instances 

the two classes agree. In the confusion matrix shown above, TP (True Positive) 

refers to truly predicted positive instances and TN (True Negative) refers to 

correctly predicted negative instances. FN (False Negative) elements are those that 

the model has predicted as negative but are positive and similarly, FP (False 

Positive) elements are those that the model has predicted as positive but are 

negative. It could be emphasized that the number of elements in cells other than the 
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major diagonal cells must be minimal for a better performing model (Malek 

Mohammadi 2019).  

The confusion matrix is considered one of the most important metrics 

because majority of the evaluation metrics are calculated based on the developed 

confusion matrix and the elements present in different cells. For a better 

understanding, various evaluation metrics are explained based on a binary 

confusion matrix and multi-class evaluation metrics will be discussed in the later 

sections. 

4.2.2 ROC Curve and AUC 

A receiver operator characteristics (ROC) graph is another commonly 

employed visualization, organization, and selection tool for classification-based 

models. ROC curve is a two-dimensional graph that displays how efficiently a 

classification model behaves as the discrimination cut-off value is tweaked across 

the predictor variable's range. In the graph, the predictive test's false positive rate is 

represented on the x axis and the true positive rate is represented on the y axis, as 

shown in the Figure 5-2 (Malek Mohammadi 2019).  

True Positive Rate (TPR) – is the ratio of TP to the sum of TP and FN, 

which is TP / (TP + FN).  

False Positive Rate (FPR) – is the ratio of FP to the sum of TN and FP, 

which is FP / (TN + FP).  
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Figure 5-2 ROC Curve for a Binary Classification 

The illustration shown in Figure 5-2 is based on binary classification or a 

classification for two classes. Area under the ROC curve (AUC) is another 

interesting metric extracted from the ROC curve, which is the shaded portion under 

the curve in the illustration. The AUC of a classifier could be defined as the 

likelihood that the classifier will rank a randomly chosen positive instance higher 

than a randomly chosen negative instance. As the dimension of the chart is a unit 

square, the AUC ranges from 0 to 1. It can be concluded that higher the AUC, better 

would be the model performance in prediction.  
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4.2.3 Accuracy 

Another popular metric in classification models, which is also estimated 

from the confusion matrix, is the accuracy. It is the ratio of sum of TP and TN to 

the grand total of the confusion matrix, as shown in the Equation 5-1 (Hossin and 

Sulaiman 2015). Since the formula for accuracy incorporates entire confusion 

matrix including incorrectly classified elements, it is an overall measure of the 

model’s correct predictions. However, accuracy is found to be efficient for binary 

classifications compared to multi-class classification (Hossin and Sulaiman 2015).  

Accuracy = TP + TN / (TP + TN + FP + FN)  Equation 5-1 

4.2.4 Precision  

The Precision is defined as the ratio of true positive elements to the total 

number of positively predicted units. In other words, it is the proportion of predicted 

positives, which are truly positive as shown in the Equation 5-2 (Hossin and 

Sulaiman 2015). Based on the definition, precision of a model is significant when 

accuracy in the prediction is much required.  

Precision = TP / (TP + FP)    Equation 5-2 

In simple words, the precision of a model is crucial when one class of the 

output variable has rare occurrences compared to the other class. Since PACP score 

of 5 has a comparatively lesser instances than other classes, it is more important for 
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accurate prediction and therefore, precision would be a critical evaluation metric of 

interest during model selection. 

4.2.5 Recall 

The Recall can be expressed as the ratio of true positive elements to the total 

number of positively classified elements. Generally, recall yields the fraction of 

positive elements, which are correctly classified and is shown in the Equation 5-3 

(Hossin and Sulaiman 2015).   

Recall = TP / (TP + FN)    Equation 5-3 

It can be understood that the model's predictive accuracy for the positive 

class is measured by the recall. Recall of a model is significant to evaluate the 

model's ability to capture all positive elements in the dataset. For instance, when a 

model is trained, it should be capable to capture all the pipe segments with a PACP 

score of 5. Based on the discussion on precision and recall, it can be understood 

that both are relatively important and therefore, a new metric was introduced by 

combining both precision and recall. 

4.2.6 F1-Score 

Aggregating precision and recall into a single metric to assess classification 

model’s performance, F1-score was developed by estimating the harmonic mean of 

precision and recall, as shown in the Equation 5-4. The F1-score ranges on a scale 

from 0 to 1, where a value of 1 corresponds to a better performance of a model and 

vice versa.  
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F1-Score = 2 *( 
Precision∗Recall

Precision+Recall
 )   Equation 5-4 

Since the F1-score is calculated as a weighted average of precision and 

recall, both contribute equally, and hence, it can be used to identify the optimal 

trade-off between the two quantities. Based on the evaluation metrics, it is found 

that F1-score would be a significant metric to evaluate the performance of a 

developed model. However, it should be noted that all metrics discussed so far are 

based on binary classification confusion matrix. 

In this study, the condition of pipe must be predicted among 5 different 

classes and binary classification cannot be employed. To evaluate a multi-class 

classification model, F1-score must account for all the classes and as a result, two 

different F1-scores were introduced: Micro F1-score and Macro F1-score (Grandini 

et al. 2020).  

 

Figure 5-3 Confusion Matrix for a Multi-Class Classification 
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To include all the classes in F1-score, multiple precision and recall were 

estimated for different classes from the multi-class confusion matrix. An example 

for a multi-class classification confusion matrix is shown in the Figure 5-3. The 

confusion matrix shown in the above figure consists of 5 output classes namely a, 

b, c, d, and e. Like a binary classification confusion matrix, metrics are estimated 

based on the confusion matrix by considering one class of interest at a time.  

For instance, in the Figure 5-3, class b is considered as target class of 

interest. So, TP corresponds to number of correctly predicted class b elements. 

Similar to a binary confusion matrix, FP and FN correspond to incorrectly classified 

elements along row and column of class b, respectively. Finally, all other cells are 

referred to as TN. When a class of interest is switched from one to another, 

quantities are estimated again, and the confusion matrix cell labels are changed 

accordingly (Visani et al. 2020).  

Micro F1-Score – Based on a multi-class confusion matrix with K number 

of classes, to estimate Micro F1-score and Macro F1-score, micro and macro 

average precision and recall quantities must be calculated. Micro average precision 

and recall are estimated using Equation 5-5 and Equation 5-6, respectively. 

Micro Average Precision = 
∑ TPk

K
k=1

∑ Total Columnk
K
k=1

 = 
∑ TPk

K
k=1

Grand Total
 Equation 5-5 

Micro Average Recall = 
∑ TPk

K
k=1

∑ Total Rowk
K
k=1

 = 
∑ TPk

K
k=1

Grand Total
  Equation 5-6 
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It is well known that F1-score is harmonic mean of precision and recall. 

Since micro average precision and recall are same, the harmonic mean of both 

quantities are also the same, which is the Micro F1-score (Visani et al. 2020).  

Micro Average F1-Score = 
∑ TPk

K
k=1

Grand Total
  Equation 5-7 

By looking at the formula for Micro-F1 score in the Equation 5-7, it can be 

found that the formula is same as that of the accuracy. Since the calculation account 

the grand total of dataset, more importance will be given to majority classes. Hence 

it can be concluded that micro F1-score is not a choice of metric for this study.  

Macro F1-Score – It is estimated by calculating the macro average 

precision and recall for each target class. Macro average precision and recall are 

directly estimated as the arithmetic mean of the same for individual classes, as 

shown in Equation 5-8 and Equation 5-9. Therefore, macro F1-score will be the 

harmonic mean of macro average precision and macro average recall, as shown in 

Equation 5-10 (Visani et al. 2020).  

Macro Average Precision = 

∑
TPk  

TPk+FPk

K

k=1

K
   Equation 5-8 

Macro Average Recall = 

∑
TPk  

TPk+FNk

K

k=1

K
   Equation 5-9 
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Macro F1-Score = 2 * ( 
Macro Precision ∗ Macro Recall

Macro Precision + Macro Recall
 )  Equation 5-10 

From the formulas of macro average precision and recall, the numerators 

are composed of values in the range 0 – 1. This indicates that different sized classes 

are equally weighted and there is no impact of class size on the metric. In other 

words, minority class will have the same importance as that of the majority class. 

Therefore, it can be concluded that high Macro F1-score values depict that the 

trained model performs well across all classes, whereas low Macro F1-score values 

indicate that classes are poorly predicted by the trained model. Therefore, for this 

study, Macro F1-score could be considered as a significant metric for model’s 

performance evaluation.  

4.2.7 Summary of Evaluation Metrics 

Choice of evaluation metric for a machine learning model would be based 

on the type of algorithm used and the expected outcome. In this study, classification 

of sewer pipes in structurally poor condition or a PACP score of 5 is of high 

importance. Since the number of pipes in poor condition is comparatively lesser in 

number over the other conditions, considered evaluation metric must be capable to 

capture the prediction performance of minority class. As a summary of discussed 

evaluation metrics, Table 5-1 displays various metrics based on importance for this 

study. Based on important evaluation metrics listed in the table, a better performing 

model over other models can be scrutinized. 
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Table 5-1 Summary of Evaluation Metrics 

S. No Evaluation Metric Important Not important 

1 Confusion matrix *  

2 ROC Curve *  

3 AUC *  

4 Accuracy  * 

5 Precision *  

6 Recall *  

7 Micro F1-score  * 

8 Macro F1-score *  

 

4.3 Performance of Developed Models 

The final dataset is trained with various supervised learning algorithms as 

discussed in the previous chapter. It is concluded that the metrics such as accuracy 

and micro F1-score are not effective for classifying the minority class. Therefore, 

the performances of trained models are compared based on the rest of the discussed 

evaluation metrics. Each algorithm is trained with 3 types of data namely: 

1. Imbalanced dataset,  

2. Under-sampled dataset, and 

3. Over-sampled dataset 

For any trained model with all the datasets, confusion matrices will be 

developed. In a developed confusion matrix, the rows represent actual class 

elements corresponding to PACP scores from 1 to 5, and the columns indicate the 
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predicted class elements corresponding to PACP scores from 1 to 5. Evaluation 

metrics are estimated for each type of dataset under every algorithm based on 

respective confusion matrix. Prediction performance of three individual algorithms 

such as LR, k-NN, and RF, are discussed in the following section. 

4.3.1 Logistic Regression 

4.3.1.1 LR Imbalanced Dataset 

One of the basic and most important evaluation metrics for classification 

methods, the confusion matrix for imbalanced logistic regression is shown. In the 

confusion matrix, it can be seen that the columns 4 and 5 corresponding to predicted 

PACP scores of 4 and 5, respectively, are all zeros. The zeros in two columns 

indicate that none of the data points predicted in the model belongs to PACP scores 

4 and 5. This is because structurally poor condition pipes constitute only a 2.2% of 

total dataset, which was discussed in chapter 3 and illustrated in the Figure 3-11. 

Confusion matrix for Imbalanced LR = 

[
 
 
 
 
3575 177 12 0 0
1383 611 65 0 0
171 336 79 0 0
25 71 25 0 0
5 11 5 0 0]

 
 
 
 

 

Based on the developed confusion matrix, true positive rate and false 

positive rate were estimated. ROC curve is plotted for individual PACP score 

prediction as shown in the Figure 5-4. Though classes 4 and 5 were not at all 

predicted by the model, AUC for the two classes were estimated as 0.89 and 0.80, 
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respectively. This is because the formula to estimate the FPR and TPR includes 

entire elements in the confusion matrix.  

Error in the prediction rate is illustrated in the Figure 5-5. The distribution 

shows the counts of each class misclassified by the model as other classes. The 

higher the misclassification in a model, the model would be unreliable. For 

instance, around 4,000 observations were predicted as PACP score 1 but more than 

500 observations were belonged to PACP score of 2. Likewise, majority of the 

observations predicted as PACP score of 2 were incorrectly classified from PACP 

scores 1, 3, and 4. Since none of the observations were predicted as PACP 4 or 5, 

there is no counts for the two classes. 

 

Figure 5-4 ROC Curves for Logistic Regression with Imbalanced Dataset 
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Figure 5-5 Error Prediction Rate for Imbalanced LR 

Table 5-2 Precision, Recall, and F1 Metrics for Imbalanced LR 

PACP Score Macro-Precision Macro-Recall Macro-F1 

1 0.693 0.950 0.801 

2 0.507 0.297 0.374 

3 0.425 0.135 0.205 

4 0.000 0.000 0.000 

5 0.000 0.000 0.000 

 

Evaluation metrics such as precision, recall, and F1-score were calculated 

based on the confusion matrix as displayed in the Table 5-2. Since high number of 

observations from PACP score of 1 is correctly classified compared to observations 

with PACP scores 2 and 3, the precision, recall, and F1-score of PACP score 1 is 
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greater than the other two classes. As there was no classification by the model for 

PACP scores 4 and 5, precision, recall, and resulting F1-score is estimated as zero.  

4.3.1.2 LR Under-Sampled Dataset 

Under-sampled dataset was utilized in logistic regression analysis and the 

obtained results are discussed in this section. In the under-sampled dataset, all 5 

classes are modified to match the minority class in the dataset, which is PACP score 

of 5 with 95 observations. The confusion matrix for the trained LR model with 

under-sampled data is shown below: 

Confusion matrix = 

[
 
 
 
 
14 0 2 0 1
7 5 3 3 0
1 3 8 4 3
3 1 3 10 3
1 0 1 8 11]

 
 
 
 

 

The pipes with PACP scores 1, 4, and 5 were correctly classified compared 

to PACP scores 2 and 3. This can be understood by observing the major diagonal 

of the confusion matrix, which is expected to have greater numbers than other cell 

elements. It can be seen from the confusion matrix that the model is not capable of 

classifying any class to a reliable extent because FP and FN for every class has 

integers rather than zeros.   
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Figure 5-6 ROC Curves for LR with Under-Sampled Dataset 

 

Figure 5-7 Error Prediction Rate for Under-Sampled LR 
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To visualize the performance of misclassification by the trained model, 

error prediction graph was created. Similar to LR model with imbalanced dataset, 

prediction of under-sampled LR model resulted in higher misclassification as well. 

Created error prediction bar chart is displayed in the Figure 5-7. It can be noticed 

that majority of the observations were classified as PACP scores 1 and 4 while most 

of the predictions were belonging to other classes. In addition, it can be noticed that 

PACP scores 1 and 5 have higher number of correctly classified instances and as a 

result, F1-score for these two classes is greater than other classes. Various 

evaluation metrics were estimated from the confusion matrix and are listed in the 

Table 5-3. Since none of the class has higher number of correct classifications, the 

precision and recall are not closer to one.  

Table 5-3 Precision, Recall, and F1 Metrics for Under-Sampled LR 

PACP Score Macro-Precision Macro-Recall Macro-F1 

1 0.538 0.824 0.651 

2 0.556 0.278 0.370 

3 0.471 0.421 0.444 

4 0.400 0.500 0.444 

5 0.611 0.524 0.564 

 

4.3.1.3 LR Over-Sampled Dataset 

Thirdly, over-sampled data was utilized to train the logistic regression and 

the results are discussed in this section. In over-sampled dataset, number of 
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observations in all classes were modified to match the class with highest number of 

observations. All classes were made to include around 19,050 instances. Like LR 

models based on imbalanced and under-sampled dataset, the confusion matrix 

developed for the over-sampled LR model is shown below. From the confusion 

matrix, it can be found that false positives and false negatives are greater than the 

true positives of a respective class. 

Confusion matrix = 

[
 
 
 
 
2839 508 162 29 221
1455 1027 592 297 455
462 510 1041 1034 807
269 189 923 1356 1128
425 240 154 536 2391]

 
 
 
 

 

Figure 5-8 illustrates the ROC curves for each class. ROC curves for PACP 

scores 1 and 5 covers larger area compared to other three classes. As a result, AUC 

for the 2 classes are found to be 0.87 and 0.78, respectively. However, each class 

comprise a high number of misclassifications resulting in higher error rate in 

prediction. As illustrated in Figure 5-9, majority of sewer pipes with PACP score 2 

are misclassified as PACP score 1. Correspondingly, in the prediction of PACP 

score 5, all the other four classes constitute more than half of the total predictions 

as PACP score 5.   
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Figure 5-8 ROC Curves for LR with Over-Sampled Dataset 

 

Figure 5-9 Error Prediction Rate for Over-Sampled LR 
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Evaluation metrics such as precision, recall, and F1-score were estimated 

for all 5 PACP scores. Since PACP scores 1 and 5 had relatively higher number of 

correctly classified observations, F-1 score is higher for the two classes than the 

other classes.  

Table 5-4 Precision, Recall, and F1 Metrics for Over-Sampled LR 

PACP Score Macro-Precision Macro-Recall Macro-F1 

1 0.521 0.755 0.617 

2 0.415 0.268 0.326 

3 0.362 0.270 0.310 

4 0.417 0.351 0.381 

5 0.478 0.638 0.547 

 

4.3.1.4 Summary of LR Results 

Logistic regression model based on imbalanced dataset was able to capture 

only PACP score 1 to a considerable extent. From the imbalanced dataset’s 

confusion matrix, it was found that the model is inefficient to represent PACP 

scores 4 and 5. Under-sampled LR model performed comparatively better than the 

imbalanced LR model. The model resulted a maximum F1-score of 0.65 for PACP 

score 1 and a minimum F1-score of 0.37 for PACP score 2. Misclassification was 

found in all 5 classes and the model cannot be considered reliable for prediction. 

On the other hand, over-sampled LR model also experienced severe 

misclassifications in prediction.  
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4.3.2 k-Nearest Neighbors 

Another supervised machine learning algorithm utilized in the study is k-

nearest neighbors (k-NN). It is one of the simplest methods in machine learning. 

Similar to LR, k-NN models are also trained for 3 different datasets and the 

performance of models are discussed in the following sections.  

4.3.2.1 k-NN Imbalanced Dataset 

Imbalanced dataset is used as input features for the k-NN algorithm and 

confusion matrix is generated as shown. It can be seen that all predicted elements 

for PACP score 5 are zeros. Unlike the LR model with imbalanced dataset, PACP 

score 4 is represented by the k-NN model. Since the number of instances in false 

positives and false negatives outnumber the true positives, it can be concluded that 

there is a higher chance for incorrect classification than correct classification.  

Confusion matrix = 

[
 
 
 
 
3248 509 37 5 0
1094 832 106 4 0
149 249 145 9 0
30 64 40 8 0
8 10 3 1 0]

 
 
 
 

 

Metrics such as FPR and TPR were estimated from the confusion matrix 

and resulting ROC curves were plotted for each PACP score, as shown in the Figure 

5-10. As expected from the observation of confusion matrix, AUC of ROC curve 

for PACP score 5 has the least value of 0.54 while the curves for PACP scores 1 

and 3 resulted an AUC value of 0.76. However, visualizing the errors in prediction 

would be of much importance and therefore, error rate in prediction is illustrated in 
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the Figure 5-11. It can be observed that around 80% of the predictions as PACP 

score 1 is PACP 1 and the rest 20% was misclassified from PACP 2. Whereas 

predictions classified as PACP 2 and 3 had majority of misclassified observations 

from the rest of the classes. On the other hand, model did not predict any 

observation as PACP score 5 and henceforth, there is no error prediction rate shown 

for the class 5.  

 

Figure 5-10 ROC Curves for k-NN with Imbalanced Dataset 
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Figure 5-11 Error Prediction Rate for Imbalanced k-NN 

To quantify the performance of trained model for comparison, evaluation 

metrics were estimated and listed as in Table 5-5. As observed in the confusion 

matrix and Figure 5-11, majority of class 1 or pipes under PACP score 1 category 

was correctly classified and hence, the F1-score for class 1 was found to be the 

maximum among all 5 classes with a value of 0.777.  

Table 5-5 Precision, Recall, and F1 Metrics for Imbalanced k-NN 

PACP Score Macro-Precision Macro-Recall Macro-F1 

1 0.709 0.859 0.777 

2 0.503 0.399 0.445 

3 0.436 0.242 0.344 

4 0.250 0.058 0.094 

5 0.500 0.048 0.087 
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It should be noted that most of predicted classification under PACP score 4 

was not actually from PACP score 4, resulting in a minimal recall score and 

therefore, the F1-score is near zero as well. Similarly, there were no true positives 

predicted by the model and thus, the F1-score for PACP score 5 is the least among 

all classes. 

4.3.2.2 k-NN Under-Sampled Dataset 

Secondly, the k-NN algorithm was trained with under-sampled dataset. The 

results obtained from the model is discussed in this section. Primary evaluation 

metric for a trained model is the confusion matrix and is shown below. Almost all 

elements in the matrix other than the major diagonal are non-zeros resulting in high 

misclassification. PACP score 1 has the highest true positives followed by PACP 

score 2. However, PACP score 1 constitutes a significant number of false positives 

as well.  

Confusion matrix = 

[
 
 
 
 
8 3 6 0 0
7 4 5 1 1
3 6 3 2 5
3 5 6 3 3
3 5 6 5 2]

 
 
 
 

 

ROC curves were plotted for all 5 classes as displayed in Figure 5-12. It is 

interesting to notice that almost all the curves are near the diagonal line representing 

an AUC value of 0.5. The AUC values of different classes range from a minimum 

of 0.54 to a maximum of 0.61, which indicates that there is no significant difference 

in model performance between classes.  
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For a better understanding, it is important to verify the error rates in 

classification and is illustrated in the Figure 5-13. It can be noticed that classes 2, 3 

and 4 are misclassified in all other classes. For instance, out of 18 observations 

classified as PACP 1, 4 belonged to PACP 2, 3 were from PACP 3, 4 observations 

from PACP 4. More than half of the classified predictions were misclassified. 

Similarly, errors in classified predictions can be noticed, which indicates that the 

trained model is not reliable for prediction. In addition, the AUC values depicted 

that the overall performance of this model is not reliable as well.  

 

Figure 5-12 ROC Curves for k-NN with Under-Sampled Dataset 

As expected, based on confusion matrix and prediction error rate, estimated 

metrics such as precision, recall, and F1-score were minimum. The F1-score ranged 
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from a minimum of 0.22 to a maximum of 0.4. The maximum value of precision 

was 0.389 for pipes with PACP score 1, which indicates that around 39% of the 

data was correctly classified. In addition, the precision was less than 0.3 for all other 

classes leading to a conclusion that the model cannot be relied for prediction. 

 

Figure 5-13 Error Prediction Rate for Under-Sampled k-NN 

Table 5-6 Precision, Recall, and F1 Metrics for Under-Sampled k-NN 

PACP Score Macro-Precision Macro-Recall Macro-F1 

1 0.389 0.412 0.400 

2 0.238 0.278 0.256 

3 0.269 0.368 0.311 

4 0.250 0.200 0.222 

5 0.286 0.190 0.229 
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4.3.2.3 k-NN Over-Sampled Dataset 

In this section, performance of k-NN algorithm trained with over-sampled 

dataset is discussed. In the over-sampled dataset, number of instances in different 

classes are matched to the majority class. Hence, all classes in an over-sampled 

dataset contain around 19,000 observations. Confusion matrix was generated based 

on the trained k-NN model as shown below. 

Confusion matrix = 

[
 
 
 
 
2477 963 290 45 10
889 2267 531 95 15
46 105 3650 44 8
0 0 0 3866 0
0 0 0 0 3749]

 
 
 
 

 

It is interesting to notice that there is a significant change in performance of 

the model with over-sampled data compared to imbalanced and under-sampled 

dataset. In the confusion matrix, almost all cells under the major diagonal are zeros, 

which is a good indication that the model is performing better. However, it should 

be noted that the cells above the major diagonal are all non-zeros, which are 

misclassified observations. 

To better understand the performance of the k-NN model, ROC curves were 

plotted as shown in the Figure 5-14. AUC values for curves corresponding to PACP 

scores 3, 4, and 5, are almost unity, which indicates that the model is highly accurate 

at predicting these classes. AUC for classes 1 and 2 were found to be 0.90 and 0.91, 

respectively. The reason for the difference can be understood by examining the 

classification error prediction rates illustrated in the Figure 5-15. 
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Figure 5-14 ROC Curves for k-NN with Over-Sampled Dataset 

 

Figure 5-15 Error Prediction Rate for Over-Sampled k-NN 
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As observed in the Figure 5-15, PACP scores 1 and 2 are majorly 

misclassified among each other than any other class in the graph. This could be the 

reason for lower AUC compared to AUC values of classes 3, 4, and 5. However, 

various metrics are estimated from the confusion matrix to evaluate the 

performance of the trained model and are listed in the Table 5-7. It can be noticed 

that class 5 do not have any misclassified observation in it and as a result, the 

precision and recall are near unity. It is interesting to notice the F1-score of 0.68 

for PACP score 1 even though the AUC was 0.91 for the same. The importance of 

different metrics to evaluate the performance of a model can be understood.  

Table 5-7 Precision, Recall, and F1 Metrics for Over-Sampled k-NN 

PACP Score Macro-Precision Macro-Recall Macro-F1 

1 0.715 0.664 0.688 

2 0.684 0.589 0.633 

3 0.827 0.957 0.887 

4 0.957 1.000 0.978 

5 0.995 1.000 0.997 

 

4.3.2.4 Summary of k-NN Results 

It was interesting to notice that the k-NN model with over-sampled dataset 

had a better overall performance compared to the imbalanced and under-sampled 

k-NN models. PACP scores 1 and 2 were found to be misclassified within each 

other. However, F1-scores for classes 4 and 5 were found to be near unity, which 
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indicates that the model is much reliable in predicting the sewer pipes in structurally 

poor condition.  

4.3.3 Random Forests (RF) 

Finally, another most commonly employed supervised machine learning 

technique, random forests (RF) algorithm is used in this study. RF is considered a 

powerful algorithm that can fit complex datasets (Géron 2017). Visualizing options 

of RF makes it an effective and easily interpretable machine learning algorithm. As 

discussed earlier, the model is trained based on sequential if/else questions. Similar 

to other two methods, RF is also trained with three datasets and the obtained results 

are discussed in this section. 

4.3.3.1 RF Imbalanced Dataset 

One of the primary evaluation metrics for the trained RF model with 

imbalanced dataset, the confusion matrix is shown below. Like the results from 

other two models, almost all classes have considerable false positives and false 

negatives. Interestingly, there are some observations predicted as PACP score 5 by 

the RF imbalanced dataset model while the other two models did not classify any 

observation as PACP score 5.  

Confusion matrix = 

[
 
 
 
 
3388 368 41 2 0
737 1176 117 6 0
75 236 222 18 1
20 40 53 27 2
5 8 5 3 1]
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ROC curves were plotted for individual class to compare the performance 

of model for each class prediction as shown in the Figure 5-16. Unlike the other 

two models with imbalanced dataset, AUC values for all classes are found to be 

higher than 0.75, which indicate that the model has a better performance than other 

two models. However, each class is constituted by a considerable total of 

misclassified observations, which must be examined.  

 

Figure 5-16 ROC Curves for RF with Imbalanced Dataset 

To examine individual class prediction performance, errors in prediction 

rates were estimated and illustrated in the Figure 5-17. It can be observed that 

misclassification of PACP 2 as 1 is relatively lesser than other two models. PACP 

scores 2 and 3 are significantly misclassified within each other. However, it should 
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be noted that PACP score 5 predictions are accurate without any misclassification. 

In addition, prediction of PACP score 4 is found to have a minimal 

misclassification. However, other evaluation metrics must be considered before 

concluding the performance of a model.  

 

Figure 5-17 Error Prediction Rate for Imbalanced RF 

Table 5-8 Precision, Recall, and F1 Metrics for Imbalanced RF 

PACP Score Macro-Precision Macro-Recall Macro-F1 

1 0.772 0.886 0.825 

2 0.617 0.518 0.563 

3 0.517 0.382 0.440 

4 0.382 0.215 0.275 

5 0.250 0.048 0.080 
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Estimated metrics such as precision, recall, and F1-scores for imbalanced 

RF model is displayed in the Table 5-8.  It can be seen that class 1 has a higher F1-

score of 0.825. Even though PACP score 5 had no misclassification, the F1-score 

was estimated as 0.08, indicating that the model is unreliable. This phenomenon is 

because of the minimal recall value of 0.048, which is because of significantly 

higher total of false negatives compared to true positives. 

4.3.3.2 RF Under-Sampled Dataset 

The RF algorithm is trained with the under-sampled dataset and the obtained 

results are discussed in this section. As a primary evaluation metric, generated 

confusion matrix is shown below.  

Confusion matrix = 

[
 
 
 
 
13 3 0 0 1
6 5 4 0 3
2 2 6 6 3
1 1 10 6 2
2 3 2 7 7]

 
 
 
 

 

It was interesting to notice that all classes have considerable observations. 

However, there are a major number of observations in false positives and false 

negatives. ROC curves for all classes were plotted based on FPR and TPR estimated 

from the confusion matrix as shown in the Figure 5-18. ROC curve of class 1 covers 

larger area whereas ROC curves of PACP scores 3 and 4 covers a relatively smaller 

area. Hence, the AUC for PACP 1 is higher than that of the other classes. However, 

the false positives and false negatives in the confusion matrix must be accounted 
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for the performance evaluation of the model. Therefore, the errors in prediction rate 

for different classes are examined as shown in the Figure 5-19.  

 

Figure 5-18 ROC Curves for RF with Under-Sampled Dataset 

 

Figure 5-19 Error Prediction Rate for Under-Sampled RF 
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It can be seen in the error prediction chart that all the predicted classes are 

contributed by major misclassifications. None of the predicted classes have a 

majority of correct classification. Considering PACP score 3 for instance, 6 

observations from PACP 3 were correctly classified as 3 but, 10 observations and 

2 observations from PACP scores 4 and 5, respectively, were predicted as PACP 3 

as well. Similarly, 7 instances from PACP score 5 was predicted correct while 9 

instances from other 4 classes were misclassified as PACP 5. Therefore, better 

insight on other metrics is required to quantify the performance evaluation. 

Metrics such as precision, recall, and corresponding F1-scores were 

estimated for all classes and are shown in the Table 5-9. As observed in the error 

prediction chart for PACP score 1, majority of the pipes with PACP score 1 was 

correctly classified as 1 and hence, the F1-score is higher than the other 4 classes. 

Majority of the predicted PACP score 3 classifications were misclassified from 

other classes and therefore, the F1-score of class 3 is the minimal. 

Table 5-9 Precision, Recall, and F1 Metrics for Under-Sampled RF 

PACP Score Macro-Precision Macro-Recall Macro-F1 

1 0.542 0.765 0.634 

2 0.357 0.278 0.313 

3 0.273 0.316 0.293 

4 0.316 0.300 0.308 

5 0.438 0.333 0.378 
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4.3.3.3 RF Over-Sampled Dataset 

Finally, the RF algorithm was trained with the over-sampled data in which 

number of observations in all classes are matched to the class with higher number 

of observations, which is PACP score 1 with 19,050 observations. Results of the 

RF model trained with over-sampled dataset is discussed in this section. As a basic 

evaluation metric, confusion matrix was generated and is shown below. 

Confusion matrix = 

[
 
 
 
 
3204 500 73 7 1
348 3336 112 1 0
7 5 3841 0 0
0 0 0 3866 0
0 0 0 0 3749]

 
 
 
 

 

It was interesting to notice in the confusion matrix that majority of elements 

other than the major diagonal are zeros, which is a good indication for a better 

performing model. Especially with the PACP score 5 predictions, only one 

observation was found to be misclassified from other classes. Similarly, 

considering PACP score 4 predictions, only a few observations are misclassified as 

well. The total false positives and false negatives for the classes 4 and 5 are almost 

negligible, which indicates that the model is capable to correctly predict all the 

pipes in structurally poor condition. However, PACP scores 1, 2, and 3 were found 

to have minor misclassifications and hence, their performance can de compared 

using ROC curves.  

ROC curves for all classes were plotted as shown in the Figure 5-20. It can 

be seen that the AUC for ROC curves of PACP scores 3, 4, and 5, are unity. ROC 
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curves of PACP scores 1 and 2 are visible because of minor misclassification 

observed in the confusion matrix. However, as discussed earlier, error in prediction 

rate and other metrics such as precision, recall, and F1-scores must be estimated to 

evaluate the performance of a prediction model in detail.  

 

Figure 5-20 ROC Curves for RF with Over-Sampled Dataset 

Errors in classified predictions are illustrated in the Figure 5-21. Classes 1 

and 2 were found to have minor misclassifications within each other, and PACP 

score 3 had a minor misclassification from classes 1 and 2 as well. However, it 

should be noticed that PACP scores 4 and 5 had zero misclassification from other 

classes in their predictions.  
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Figure 5-21 Error Prediction Rate for Over-Sampled RF 

As discussed in earlier chapters, performance of developed models can be 

compared based on evaluation metrics. Therefore, various metrics were calculated 

and are listed in the Table 5-10. It is obvious from the confusion matrix that the 

evaluation metrics would yield better scores compared to the imbalanced and 

under-sampled dataset models. As expected, based on confusion matrix and error 

in prediction chart, precision, recall, and F1-scores for PACP 4 and 5 were found 

to be almost unity, which indicates that the model could perform better than the 

models trained with imbalanced and under-sampled datasets. The F1-scores for 

PACP scores 1 and 2 are around 0.87, which indicate that the model is reliable for 

future prediction.  
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Table 5-10 Precision, Recall, and F1 Metrics for Over-Sampled RF 

PACP Score Macro-Precision Macro-Recall Macro-F1 

1 0.888 0.853 0.870 

2 0.871 0.860 0.866 

3 0.955 0.998 0.976 

4 0.995 1.000 0.998 

5 1.000 1.000 1.000 

 

4.3.3.4 Summary of RF Results 

The RF model is trained with all 3 kinds of datasets to develop a condition 

prediction model and respective results were discussed in previous sections. RF 

model with imbalanced dataset couldn’t successfully classify the pipes in poor 

condition and the F1-scores were found to be 0.08 and 0.275 for PACP scores 5 

and 4, respectively. Though the F1-scores of PACP scores 4 and 5 were improved 

to 0.308 and 0.378, respectively, in under-sampled dataset trained RF model, it is 

not reliable because of high misclassification rate. It was found that the trained RF 

model with over-sampled dataset performed better than the other two models. 

Based on the errors in prediction and F1-scores, it can be concluded that the RF 

model trained with over-sampled dataset would be a reliable model to accurately 

predict the sewer pipes in structurally poor condition. 
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4.4 Chapter Summary 

Primarily, various evaluation metrics to compare the performance of 

different machine learning models are discussed in detail. Relevant metrics for 

reliable prediction of pipes in poor condition are scrutinized. Secondly, machine 

learning algorithms such as logistic regression, k-nearest neighbors, and random 

forests are trained with imbalanced, under-sampled, and over-sampled datasets, 

individually. Each method yielded three different results and evaluation metrics for 

all 9 results were calculated. 

Based on the confusion matrix developed for all 3 methods, it was found 

that the models trained with imbalanced dataset failed to classify structurally poor 

condition pipes. Though the methods trained with under-sampled dataset was able 

to classify the pipes with PACP score 5, there was a considerable amount of 

misclassification that resulted the models to be unreliable. It was found that all 3 

methods relatively performed better than imbalanced when trained with over-

sampled dataset.  
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CHAPTER 6  

RESULTS AND CONCLUSIONS 

6.1 Introduction 

In the previous chapters, collected sanitary sewer dataset was processed and 

prepared for training with various supervised machine learning algorithms. As 

discussed in chapter 4, different algorithms were selected for the required 

classification output in this study. As a result of training various algorithms, their 

performances were discussed in detail in the previous chapter. In this chapter, a 

machine learning model will be selected as a suitable model for prediction 

application.  

It should be noted that the evaluation metrics were discussed based on 

individual class for each trained algorithm. It is possible that the performance of 

one model to predict class 5 would be better than the other model while the same 

model would perform poor to predict another class and vice versa. Therefore, there 

is a necessity to average the metrics of all 5 classes to compare the performance of 

different models. Hence, evaluation metrics from different algorithm results such 

as precision, recall, and F1-scores, were averaged for all 5 classes.  

The following sections will discuss the performances of all three algorithms 

based on 3 different datasets namely imbalanced dataset, under-sampled dataset, 

and over-sampled dataset.  
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6.2 Results from Logistic Regression 

Results from trained logistic regression models are illustrated in the Figure 

6-1. It can be seen that the F1-score was found to be a maximum of 0.49 for under-

sampled dataset and a minimum of 0.28 for the imbalanced dataset. Likewise, 

precision and recall were also found to be maximum in under-sampled dataset 

compared to imbalanced and over-sampled datasets. It can be concluded from the 

figure that under-sampled dataset trained model performs better than the other two. 

However, the precision score of 0.52 indicates that the model is capable to correctly 

predict the given data to an extent of 52%.  

 

Figure 6-1 Summary of Results from Logistic Regression 
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6.3 Results from k-Nearest Neighbors 

Obtained results from k-NN trained models are illustrated in the Figure 6-2. 

Unlike the logistic regression results, the over-sampled dataset trained model was 

found to perform better. It was found that the trained model with under-sampled 

dataset resulted a poor performance compared to imbalanced and over-sampled 

dataset trained models. The maximum F1-sccore was found to be 0.83 from over-

sampled dataset. Recall score of 0.84 indicates that 84% of the given test data would 

be correctly captured by the model. Though the F1-score of 0.83 is considered 

reliable, it could be further improved.  

 

Figure 6-2 Summary of Results from k-NN 
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6.4 Results from Random Forests 

As illustrated in the Figure 6-3, it was found that the results of random 

forests models outperformed both logistic regression and k-NN models. Precision 

and recall scores of 0.94 indicates that the model could correctly predict the given 

data and almost all correct observations would be predicted by the model. 

Interestingly, the F1-score was found to be a maximum of 0.94 for over-sampled 

dataset, which indicates that the model is greatly reliable. It should also be noted 

that the results from imbalanced dataset and under-sampled dataset did not differ 

in great extent as seen in other two algorithms.  

 

Figure 6-3 Summary of Results from RF 
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6.5 Area Under the Curve (AUC) and F1-scores Comparison 

Other critical parameters in evaluating a prediction model such as AUC and 

F1-scores are compared between various algorithms in this section. As discussed 

in earlier sections, the AUC would provide an overall performance of a trained 

model. Resulted AUCs for various algorithms are compared as shown in the Figure 

6-4 and RF models were found to perform better than that of LR and k-NN. 

However, it should be noted that the effect of misclassification is not accounted by 

the AUC and hence, F1-score is considered for model evaluation. 

 

Figure 6-4 AUC Comparison between LR, k-NN, and RF 
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As a part of evaluating the trained models, F1-score was compared as shown 

in the Figure 6-5. F1-score was observed to drastically improve from 0.44 with LR 

model to 0.94 with RF model for the over-sampled dataset. The F1-score could be 

considered as an important metric to evaluate the performance of a model since it 

includes both precision and recall as discussed earlier.  

 

Figure 6-5 F1-score Comparison between LR, k-NN, and RF 

Based on the evaluation metrics discussed from results of various trained 
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CHAPTER 7  

PRACTICAL APPLICATIONS  

To effectively utilize the developed condition prediction model, a decision-

support tool was developed. Developed web-based application as shown in the 

Figure 7-1 utilizes an open-source library from Python, called “Streamlit”. 

Application file can be shared with the utility owners to estimate the condition of 

uninspected pipes in their inventory. 

 

Figure 7-1 Decision-Support Tool for PACP Prediction 
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The web-application can be used by the asset managers to forecast the 

condition of their sewer pipes and hence, critical sewer pipes can be prioritized for 

inspection. Based on the data used for this dissertation, the PACP score of an 

uninspected sanitary sewer pipe segment could be assessed by the utility managers 

without an extensive CCTV operation in field. The following details are needed as 

inputs for the decision support tool: 

1) Age  

2) Length  

3) Diameter  

4) Slope  

5) Pipe Material  

6) location of the pipe such as MAPSCOGRID reference 

7) SUBAREA of the pipe 

Based on inputs given to the program, condition of the pipe in PACP score 

will be provided as output. For instance, sewer pipes predicted as PACP score 5 

would require immediate attention whereas sewer pipe with PACP score 3 would 

need inspection after 15 years. 
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CHAPTER 8  

RECOMMENDATIONS FOR FUTURE STUDIES 

Additional research studies could be accomplished to further improve the 

research work discussed in this dissertation. Potential future development could 

include but not limited to the following: 

• Number of joints in inspected sanitary sewer pipe segment could be 

analyzed and included in the model development. 

• Surface loads such as the traffic and population intensity could be 

investigated as influential factors. 

• Cost-benefit analysis could be accomplished to examine the cost savings 

for the municipality or utility owners. 

• Other machine learning algorithms and artificial intelligent techniques 

could be utilized to further investigate effects of influential factors. 

• Studies could intend to include sanitary sewer pipe segments with history 

of maintenance activities such as CIPP. 

• Developed model in this dissertation could be validated on inspection data 

from a different municipality.  

• It should be noted that the model developed in this dissertation is based 

on data collected from the City of Fort Worth. The program must be 

modified corresponding to any other agency’s data inventory prior to 

practical application.  
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• Integration of Global Positioning System (GPS) during inspection of pipe 

segment would help in mapping the critical pipelines during inspection 

and condition assessment phases. 
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ANN – Artificial Neural Network 

ASCE – American Society of Civil Engineering 

AT – Armco Truss 

AUC – Area under the Curve 

BF – Big Fossil 

CBO – Congressional Budget Office 

CCTV – Closed-Circuit Television 

CF – Clear Fork  

CI – Cast Iron 

DI – Ductile Iron 

DT – Decision Trees 

EFC – Environmental Finance Center 

EPA – Environmental Protection Agency 

FN – False Negative 

FP – False Positive 

FPR – False Positive Rate 

Gi – Gini Index 

GIS – Geographic Information System 

GPS – Global Positioning System 

HDPE – High-Density Polyethylene 

IIMM – International Infrastructure Management Manual 

k-NN – k-Nearest Neighbors 

LR – Logistic Regression 

MSSAM – Municipal Sewage System Asset Management 
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NASSCO – National Association of Sewer Service Company 

OWASA – Orange Water and Sewer Authority 

PACP – Pipeline Assessment Certification Program 

PVC – Polyvinyl Chloride 

RF – Random Forests 

ROC – Receiver Operator Characteristic 

SCRAPS – Sewer Cataloging, Retrieval and Prioritization System 

TN – True Negative 

TP – True Positive 

TPR – True Positive Rate 

VC – Village Creek 

VCP – Vitrified Clay Pipe 

WEF – Water Environment Federation 

WRc – Water Research Center 
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Appendix B  

Data Sample (1,000 pipe segments)  
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Sl. 

No 
Age Length 

MAPSCO 

GRID 
Slope SUBAREA Size Material   PACP 

1 22.3 844 93G 0.0005 VC09_01 54 Concrete 2 

2 16.4 415 46L 0.004 MC04_04 8 PVC 1 

3 13.5 426 46H 0.018 MC04_04 8 PVC 1 

4 48 259 89F 0.0206 CF05_03 6 VCP 3 

5 47.9 503 89F 0.0301 CF05_03 6 Concrete 2 

6 14.4 112 119G 0.0057 VC11_03 8 PVC 1 

7 15.3 444 106U 0.0067 VC11_01 24 PVC 1 

8 15.2 396 106S 0.0038 VC11_01 24 PVC 2 

9 67.4 203 47Y 0.0337 MC03_06 6 VCP 2 

10 33.3 95 103H 0.0168 SC09_05 6 VCP 3 

11 35.4 382 103D 0.0183 SC09_02 6 PVC 1 

12 20.2 431 78K 0.0257 SC10_03 8 HDPE 1 

13 35.7 180 103H 0.0563 SC09_02 6 PVC 1 

14 17.6 71 103D 0.0331 SC09_01 12 PVC 1 

15 15.1 417 103D 0.0142 SC09_02 21 PVC 1 

16 7.5 345 71L 0.0038 PCF15_01 36 PVC 1 

17 78.3 17 48Y 0.0118 MC03_01 6 Concrete 2 

18 9.5 271 62E 0.0316 MC06_04 8 PVC 1 

19 3 65 62E 0.0365 MC06_04 8 PVC 1 

20 25.3 195 75Y 0.0018 CF05_01 30 Concrete 1 

21 30.8 379 63Y 0.0014 BF04_01 15 VCP 1 

22 14.3 521 90A 0.0059 CF04_03 8 PVC 2 

23 82.5 252 90B 0.0041 CF04_03 8 Concrete 4 

24 82.6 142 90A 0.0222 CF04_03 8 Concrete 4 

25 11.4 301 61C 0.0219 MC03_06 8 PVC 1 

26 28.8 531 61H 0.088 WF01_02 6 VCP 3 

27 7.8 81 89D 0.004 CF04_05 8 HDPE 1 

28 7.8 502 89D 0.0042 CF04_05 8 HDPE 3 

29 7.8 141 89D 0.0065 CF04_05 8 HDPE 3 

30 62.2 30 90E 0.1133 CF04_05 8 Concrete 4 

31 16.3 295 74Y 0.0039 CF12_02 8 CI 1 

32 12.9 460 92G 0.0061 VC09_04 8 HDPE 1 

33 12.4 439 92L 0.011 VC09_03 8 PVC 1 

34 12.5 363 92F 0.004 VC09_04 8 PVC 2 

35 7.5 242 72N 0.0019 CF14_02 36 PVC 1 
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36 1.1 327 78F 0.0638 SC10_04 8 PVC 3 

37 13.4 460 19Z 0.0055 BF05_08 8 PVC 1 

38 10.7 552 19Z 0.0089 BF05_08 8 PVC 1 

39 61 412 74N 0.0194 CF12_03 8 VCP 4 

40 27.5 230 103J 0.0104 CF09_04 10 PVC 1 

41 29.9 376 88T 0.004 CF08_02 8 PVC 1 

42 20 163 87Z 0.0141 CF08_05 8 PVC 1 

43 10.6 437 103X 0.006 CF09_03 8 PVC 1 

44 88.8 565 73X 0.0121 CF13_01 15 Concrete 3 

45 5.9 316 21X 0.0099 BF09_03 8 PVC 1 

46 10.2 288 21X 0.0197 BF09_03 8 PVC 1 

47 17.9 488 61D 0.0438 MC03_06 8 PVC 2 

48 8.1 80 89D 0.0041 CF04_05 8 HDPE 1 

49 8.1 304 89D 0.0055 CF04_05 8 HDPE 1 

50 7.7 73 89H 0.0069 CF04_05 8 HDPE 1 

51 7.7 290 89H 0.0052 CF04_05 8 HDPE 1 

52 26.3 634 74Y 0.0023 CF12_02 10 PVC 1 

53 64.9 121 88A 0.006 CF12_01 12 Concrete 3 

54 4.8 625 23J 0.004 DC03_01 30 PVC 1 

55 14.8 48 31H 0.0015 MC05_07 36 PVC 1 

56 12.9 408 72D 0.0146 WF05_02 8 PVC 1 

57 4.1 100 35S 0.0219 BF05_03 8 PVC 1 

58 33.2 663 47J 0.0023 MC04_04 30 VCP 3 

59 88.3 98 76B 0.0061 WF02_01 8 Concrete 5 

60 13.8 69 76D 0.0033 CF01_04 27 DI 2 

61 14.3 240 76D 0.0072 CF01_04 27 DI 3 

62 15.6 187 76D 0.0235 CF01_05 24 DI 1 

63 20.5 45 63W 0.0071 CF01_07 10 HDPE 1 

64 8 463 76D 0.0069 CF01_04 10 HDPE 1 

65 15.8 295 103N 0.0051 CF09_02 15 PVC 1 

66 16.4 238 102R 0.0408 CF09_02 8 PVC 1 

67 10.8 221 78A 0.0013 SC10_01 42 PVC 3 

68 44.1 94 50Y 0.0143 BF02_01 30 Concrete 3 

69 49 99 62L 0.0017 MC03_01 45 Concrete 2 

70 28.3 900 65B 0.0007 BF01_04 54 Concrete 2 

71 22.3 14 93D 0.0007 VC08_01 54 Concrete 1 

72 34.1 10 93G 0.55 VC08_01 8 VCP 1 
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73 13.5 84 46H 0.0032 MC04_04 10 PVC 1 

74 26.9 422 106U 0.0033 VC11_01 24 Concrete 3 

75 39.6 374 72C 0.0175 SC06_01 12 VCP 2 

76 17.5 412 74Y 0.0039 CF12_02 8 PVC 1 

77 12.5 281 92H 0.0009 VC09_02 18 PVC 1 

78 43.6 632 64H 0.0015 BF02_01 35 Concrete 3 

79 44.2 1109 64C 0.0035 BF02_01 30 Concrete 5 

80 25.3 535 72B 0.0474 WF05_05 6 PVC 1 

81 17 363 32P 0.0183 MC05_02 8 PVC 1 

82 13.5 507 93U 0.0003 VC10_01 48 Concrete 1 

83 12.5 38 92H 0.0053 VC09_02 18 PVC 1 

84 7.1 73 63W 0.0137 CF01_03 12 PVC 1 

85 27 311 102R 0.0174 CF09_04 8 PVC 1 

86 62.5 157 74N 0.0241 CF12_03 8 VCP 2 

87 27.5 308 103J 0.0388 CF09_04 8 PVC 1 

88 15.7 306 103N 0.008 CF09_02 8 PVC 1 

89 15.7 47 103P 0.0268 CF09_02 8 PVC 1 

90 46.2 474 93Y 0.0004 VC10_01 36 Concrete 1 

91 6 342 78F 0.0258 SC10_04 8 PVC 1 

92 6 103 78G 0.0407 SC10_04 8 PVC 1 

93 13.5 204 46H 0.0032 MC04_04 10 PVC 1 

94 13.5 102 46H 0.1121 MC04_04 10 PVC 1 

95 22.3 600 93L 0.0004 VC09_01 54 Concrete 2 

96 15 291 106S 0.0023 VC11_01 24 PVC 2 

97 14.7 320 79F 0.0148 VC06_03 15 PVC 1 

98 10.8 376 78M 0.0133 VC07_03 8 PVC 1 

99 19.2 158 66Y 0.0246 VC03_02 6 PVC 1 

100 43.3 196 120B 0.0012 VC11_02 36 VCP 3 

101 13.5 411 119Z 0.0039 VC11_03 8 PVC 1 

102 35 562 80F 0.006 VC04_02 6 VCP 2 

103 12.8 168 81E 0.0482 VC01_01 8 PVC 1 

104 38.3 600 80H 0.0439 VC03_03 6 VCP 2 

105 12.5 187 92H 0.0016 VC09_02 18 PVC 1 

106 9.8 139 47Y 0.035 MC03_06 8 PVC 1 

107 17.8 253 78L 0.0049 SC10_03 8 HDPE 1 

108 57.9 76 74P 0.0442 CF12_05 6 Concrete 2 

109 35.7 308 103H 0.036 SC09_02 6 PVC 1 
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110 63.2 130 74P 0.0546 CF12_05 6 Concrete 3 

111 7.1 480 71F 0.002 PCF15_01 36 PVC 2 

112 7.5 400 71L 0.0038 PCF15_01 36 PVC 1 

113 7.5 356 72N 0.0021 CF14_02 36 PVC 3 

114 2.2 155 77T 0.0173 SC02_05 8 PVC 1 

115 1.6 228 80N 0.0033 VC01_05 24 DI 1 

116 51.6 470 89C 0.0029 CF05_02 24 Concrete 3 

117 46.2 370 93U 0.0002 VC10_01 36 Concrete 1 

118 16.3 212 74Y 0.0029 CF12_02 10 CI 1 

119 7.7 24 93C 0.0613 VC08_01 24 Concrete 1 

120 16.6 165 88C 0.0031 CF12_01 18 PVC 1 

121 52.2 233 89L 0.03 CF05_03 8 Concrete 3 

122 50.5 43 89L 0.0861 CF05_03 6 VCP 2 

123 52.7 180 90N 0.0256 SC08_02 6 Concrete 3 

124 15.7 119 88Q 0.0347 CF07_03 8 PVC 2 

125 12.1 236 76Q 0.0416 CF02_02 8 PVC 1 

126 64.9 220 87D 0.0081 CF12_01 12 Concrete 1 

127 9 266 48F 0.0029 MC02_04 10 PVC 1 

128 9.2 291 74K 0.0003 WF04_02 8 PVC 1 

129 35.7 170 103G 0.0832 SC09_02 6 PVC 1 

130 35.7 302 103G 0.0424 SC09_02 6 PVC 1 

131 14.4 559 74L 0.0051 CF11_04 8 HDPE 3 

132 16.1 138 21X 0.008 BF09_03 15 DI 1 

133 0.2 52 78Q 0 SC11_04 8 HDPE 4 

134 35.7 42 103H 0.0245 SC09_02 6 PVC 1 

135 3 141 62E 0.0745 MC06_04 8 PVC 1 

136 53 494 63T 0.0004 MC01_01 68 Concrete 3 

137 60 243 80A 0.0288 VC04_04 8 Concrete 3 

138 24.5 369 78E 0.0192 SC10_02 8 PVC 1 

139 83.1 370 61D 0.0458 MC03_05 6 Concrete 3 

140 13.4 202 19Z 0.0185 BF05_08 8 PVC 1 

141 8.9 150 49W 0.0015 MC02_03 8 PVC 1 

142 17.9 101 35X 0.0025 BF05_02 8 PVC 2 

143 25 86 48U 0.019 MC02_04 6 DI 1 

144 7.5 487 71R 0.0035 PCF15_01 36 PVC 1 

145 6 84 74Y 0.0012 CF12_02 10 PVC 1 

146 6 98 74Y 0.001 CF12_02 10 PVC 1 
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147 10.9 128 76H 0.004 CF01_06 8 PVC 1 

148 25.3 261 72B 0.0307 WF05_05 6 PVC 1 

149 30.7 494 65G 0.0008 BF01_04 54 Concrete 2 

150 15.1 314 103D 0.0057 SC09_02 21 PVC 1 

151 7.1 250 71F 0.0036 PCF15_01 36 PVC 1 

152 7.5 367 71L 0.0038 PCF15_01 36 PVC 1 

153 7.8 549 77T 0.013 SC02_05 8 PVC 1 

154 26.6 132 102D 0.0369 CF07_04 8 PVC 1 

155 6 35 74Y 0.01 CF12_02 10 PVC 1 

156 61.3 219 48Y 0.0161 MC03_01 6 Concrete 4 

157 3 180 62E 0.0421 MC06_04 8 PVC 1 

158 27 147 78B 0.052 SC10_01 8 VCP 2 

159 48.5 289 80C 0.0228 VC04_01 6 Concrete 2 

160 46.1 51 93X 0.0024 VC10_01 36 Concrete 2 

161 83.8 111 90M 0.0865 SC04_02 6 Concrete 3 

162 26.3 129 74Y 0.0038 CF12_02 10 PVC 1 

163 26.3 366 88C 0.0029 CF12_02 10 PVC 3 

164 41 405 79T 0.003 VC07_02 18 Concrete 3 

165 8.5 68 79S 0.0028 VC07_02 10 DI 4 

166 69.4 247 88B 0.003 CF12_01 12 Concrete 3 

167 12.1 128 76Q 0.0577 CF02_02 8 PVC 1 

168 16.8 8 74X 0.2825 CF12_02 16 DI 3 

169 35.6 226 74X 0.1231 CF12_02 6 VCP 1 

170 2.9 113 89M 0.0099 CF06_07 8 PVC 1 

171 2.9 276 90N 0.0065 CF06_07 8 PVC 1 

172 2.9 127 90N 0.0161 CF06_07 8 PVC 1 

173 22.8 297 36L 0.0202 BF06_05 8 PVC 1 

174 13.7 385 90N 0.0636 CF06_07 8 PVC 1 

175 0.3 88 75G 0.0265 CF10_04 8 PVC 1 

176 9.3 82 76K 0.0111 CF02_02 8 PVC 1 

177 23.4 40 76P 0.0425 CF03_01 10 HDPE 2 

178 24.5 72 76P 0.0117 CF03_02 21 PVC 1 

179 11.5 264 76K 0.0061 CF02_02 8 PVC 1 

180 13.8 481 76Q 0.0062 CF02_02 8 PVC 1 

181 19.5 385 76P 0.0112 CF03_02 8 VCP 3 

182 24.5 35 76T 0.0034 CF03_02 21 PVC 1 

183 13.8 27 76T 0.0219 CF03_02 10 DI 1 



132 
 

184 33.4 280 80D 0.0464 VC03_03 6 VCP 2 

185 65.1 186 74P 0.0097 CF12_05 8 Concrete 3 

186 35.7 400 103G 0.0238 SC09_02 8 VCP 2 

187 59.1 559 74J 0.0201 WF04_03 8 PVC 2 

188 7.1 415 71E 0.0021 PCF15_02 36 PVC 1 

189 7.1 250 71E 0.0021 PCF15_01 36 PVC 1 

190 7.5 150 72N 0.0023 CF14_02 36 Fiberglass 1 

191 30.1 191 73K 0.0201 CF13_02 8 VCP 3 

192 12.5 101 88U 0.0462 CF08_02 8 PVC 1 

193 82.9 170 90B 0.0082 CF03_04 10 Concrete 2 

194 12.1 303 103E 0.0198 SC09_04 8 PVC 1 

195 15.5 231 104A 0.0089 SC09_01 24 DI 1 

196 38.7 380 103H 0.0292 SC09_02 6 PVC 1 

197 38.7 192 103C 0.0059 SC09_02 6 VCP 2 

198 38.7 295 103C 0.0059 SC09_02 6 VCP 2 

199 59.9 127 74K 0.0638 CF12_05 6 Concrete 2 

200 7.1 400 71F 0.0021 PCF15_01 36 PVC 1 

201 7.5 400 71L 0.0038 PCF15_01 36 PVC 1 

202 52.1 108 73Z 0.0735 CF12_09 6 Concrete 3 

203 61.5 27 64Z 0.0148 SC10_01 6 Concrete 2 

204 37.5 311 80H 0.0172 VC03_03 8 VCP 2 

205 40 400 103G 0.0344 SC09_03 6 VCP 2 

206 30.1 480 103F 0.0099 SC09_04 8 PVC 1 

207 39.4 247 76T 0.0326 CF03_01 8 HDPE 1 

208 43.7 347 76K 0.0021 CF04_01 24 CI 1 

209 14 168 76Y 0.0139 CF03_05 8 DI 1 

210 82.9 28 90B 0.0071 CF03_04 10 Concrete 2 

211 27.6 30 76V 0.1617 CF02_04 8 PVC 2 

212 12.1 383 76L 0.0218 CF02_02 8 DI 1 

213 16.6 77 76K 0.006 CF03_01 8 PVC 2 

214 12.7 85 106W 0.0053 VC11_06 10 PVC 1 

215 0.1 22 62P 0.0032 MC06_02 8 DI 1 

216 14.8 21 62K 0.0052 MC06_02 15 PVC 1 

217 3.5 248 22B 0.004 DC02_03 8 PVC 1 

218 46.2 915 93Q 0.0008 VC09_05 34 Concrete 2 

219 46.1 740 93X 0.0002 VC10_01 36 Concrete 2 

220 87 55 76Y 0 CF03_05 6 Concrete 3 
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221 39.7 161 72D 0.0186 WF05_02 18 VCP 2 

222 3.4 9 103P 0.0322 CF09_05 8 PVC 1 

223 0.4 483 79M 0.0242 VC01_05 8 PVC 1 

224 12.6 32 88T 0.1681 CF08_02 8 PVC 1 

225 12.1 237 103E 0.0136 SC09_04 8 PVC 1 

226 14.8 222 103N 0.0402 CF09_05 8 PVC 1 

227 14.8 544 103K 0.01 CF09_05 8 PVC 1 

228 11.7 78 92H 0.0019 VC09_02 8 DI 2 

229 12.9 78 35U 0.036 BF09_02 8 PVC 1 

230 12.9 208 35U 0.0289 BF09_02 8 PVC 1 

231 3.6 25 21Y 0.0088 BF08_04 8 PVC 1 

232 20 97 49Q 0.0112 BF02_03 8 DI 2 

233 3.4 254 21T 0.0158 BF09_03 10 PVC 1 

234 43.3 778 120B 0.0012 VC11_02 36 VCP 4 

235 69.1 308 63E 0.0091 MC02_01 6 Concrete 3 

236 9.3 268 76K 0.0209 CF02_02 8 PVC 1 

237 17.4 258 76K 0.0248 CF02_02 8 PVC 1 

238 31.1 409 76K 0.0111 CF03_01 8 PVC 1 

239 12.9 288 72D 0.0163 WF05_02 8 PVC 1 

240 12.9 504 72C 0.0211 WF05_02 8 PVC 1 

241 18.4 405 66W 0.0041 VC04_04 8 PVC 1 

242 60.6 142 79D 0.087 VC04_04 6 Concrete 3 

243 54.9 403 81A 0.0062 VC03_03 18 VCP 2 

244 12.7 568 106W 0.0024 VC11_06 10 PVC 1 

245 12.7 539 106W 0.0028 VC11_06 10 PVC 1 

246 13.8 222 76Q 0.0023 CF02_02 8 PVC 3 

247 12.2 213 76Q 0.0057 CF02_02 8 HDPE 3 

248 20.7 82 66N 0.0063 VC02_03 8 PVC 3 

249 85.7 300 63Y 0.0003 BF04_01 15 Concrete 4 

250 7.5 472 72N 0.002 PCF15_01 36 Fiberglass 1 

251 6 92 74Y 0.0051 CF12_02 8 PVC 1 

252 61.9 43 89H 0.0091 CF04_05 6 Concrete 4 

253 12.8 360 92G 0.0209 VC09_03 8 HDPE 1 

254 51.5 36 89C 0.0044 CF05_02 24 Concrete 2 

255 46.1 38 93X 0 VC10_01 36 Concrete 2 

256 60.8 457 79X 0.0045 VC07_02 10 CI 4 

257 7.6 155 119Z 0.003 VC11_03 10 PVC 1 
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258 13.2 437 92G 0.011 VC09_03 8 HDPE 1 

259 14 50 92L 0.0082 VC09_04 8 DI 1 

260 12.2 408 92L 0.0116 VC09_03 8 HDPE 1 

261 13.2 125 92L 0.0039 VC09_03 8 PVC 1 

262 11.7 345 92M 0.0063 VC09_02 8 HDPE 2 

263 7.6 507 92M 0.0099 VC09_02 8 PVC 1 

264 13.9 434 73U 0.0129 CF13_01 8 PVC 1 

265 37.5 427 73V 0.0141 CF12_09 8 VCP 2 

266 50.1 60 62L 0.0757 MC06_01 21 Concrete 3 

267 10.3 377 21X 0.005 BF09_03 8 PVC 1 

268 25.3 128 72B 0.0363 WF05_05 8 PVC 1 

269 28.6 12 65G 0.0008 BF01_04 54 Concrete 2 

270 13.5 203 78X 0.0232 SC11_03 8 PVC 1 

271 28.2 375 35S 0.0022 BF05_04 36 Concrete 1 

272 46.4 294 89N 0.0228 CF07_03 18 Concrete 2 

273 38.8 606 47J 0.004 MC04_04 21 VCP 2 

274 10.6 381 62F 0.0084 MC06_04 12 PVC 1 

275 30.7 204 73P 0.055 CF13_02 6 VCP 2 

276 16.4 218 103N 0.0136 CF09_02 8 PVC 1 

277 14.8 98 103P 0.0244 CF09_05 8 PVC 1 

278 9.9 37 103W 0.0784 CF09_03 8 PVC 1 

279 27.4 113 66S 0.0904 VC02_03 8 PVC 1 

280 86.1 280 78A 0.2229 SC10_01 6 VCP 3 

281 15.2 11 90A 0.0082 CF04_03 15 PVC 1 

282 3.5 264 21P 0.004 BF09_03 8 PVC 1 

283 58.4 3 80B 4.9033 VC04_03 6 Concrete 3 

284 18.9 121 61D 0.004 MC03_06 8 PVC 1 

285 8.1 297 89D 0.0057 CF04_05 8 HDPE 1 

286 7.8 56 89D 0.0045 CF04_05 8 HDPE 1 

287 6.9 109 74X 0.0655 CF12_02 8 PVC 1 

288 16.8 9 74X 0.09 CF12_02 16 DI 1 

289 22.3 712 93G 0.0005 VC08_01 54 Concrete 2 

290 58.2 145 92D 0.0052 VC08_05 10 VCP 2 

291 53 389 62M 0.0004 MC02_01 69 Concrete 3 

292 3.4 217 21T 0.006 BF09_03 10 PVC 1 

293 46.3 291 93U 0.0007 VC10_01 36 Concrete 2 

294 46.1 119 93X 0.0004 VC10_01 36 Concrete 2 
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295 60.8 708 79X 0.004 VC07_02 10 VCP 4 

296 5.3 248 90S 0.0351 SC08_02 8 HDPE 3 

297 50.4 240 89G 0.006 CF05_03 8 Concrete 4 

298 61.9 84 89H 0.007 CF04_05 6 Concrete 3 

299 12.9 118 92G 0.0081 VC09_04 8 HDPE 2 

300 12.2 341 92L 0.0072 VC09_03 8 HDPE 1 

301 12.5 528 92F 0.006 VC09_04 8 PVC 1 

302 10.6 226 93J 0.0121 VC09_01 8 PVC 1 

303 28.7 456 74Z 0.0012 CF12_04 21 Concrete 2 

304 22.3 473 92N 0.0048 SC05_02 8 PVC 1 

305 15.9 180 87D 0.0208 CF12_09 8 PVC 1 

306 15.9 75 73Z 0.0184 CF12_09 8 PVC 1 

307 11.4 182 75G 0.0141 CF10_04 8 PVC 1 

308 48.7 250 62F 0.0018 MC03_02 39 Concrete 3 

309 85.1 602 62Y 0.0012 WF02_01 12 Concrete 3 

310 58.4 600 79D 0.0445 VC06_01 6 VCP 4 

311 53 1431 63U 0.0004 MC01_01 68 Concrete 3 

312 48.5 289 80C 0.032 VC04_01 6 Concrete 1 

313 22.8 237 76Q 0.0125 CF02_02 8 PVC 1 

314 13.2 126 92L 0.0041 VC09_03 8 PVC 1 

315 10.6 374 93J 0.0397 VC09_01 8 PVC 2 

316 4.4 5 63W 0.008 MC01_01 8 PVC 1 

317 7.1 472 63W 0.0199 CF01_03 12 DI 1 

318 32.2 172 74Y 0.182 CF12_02 6 VCP 1 

319 22.3 334 92N 0.005 SC05_02 8 PVC 1 

320 11.9 195 92H 0.004 VC09_02 8 PVC 2 

321 1.6 152 80N 0.0032 VC01_05 24 DI 1 

322 1.6 191 80N 0.0033 VC01_05 24 DI 1 

323 34.3 77 89F 0.032 CF05_03 6 VCP 2 

324 52.4 314 76N 0.006 CF04_01 6 Concrete 3 

325 10.9 320 119Z 0.0084 VC11_03 8 PVC 1 

326 35.4 133 66P 0.0309 VC02_03 6 VCP 1 

327 59.2 309 74T 0.067 CF12_02 6 VCP 3 

328 1.6 325 76B 0.005 WF02_01 8 PVC 1 

329 56.4 196 74X 0.0792 CF12_02 6 VCP 3 

330 29.1 302 88W 0.0093 CF08_05 10 PVC 1 

331 27.5 247 102M 0.0463 CF09_04 8 PVC 1 
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332 11.2 89 87Z 0.004 CF08_04 8 DI 1 

333 35.4 217 103H 0.0254 SC09_02 6 PVC 1 

334 35.7 395 103G 0.0094 SC09_02 8 VCP 2 

335 34 263 103G 0.0152 SC09_02 6 VCP 1 

336 35.7 285 103G 0.0161 SC09_02 8 VCP 2 

337 38.7 503 103C 0.0441 SC09_02 6 VCP 3 

338 38.7 289 103C 0.0087 SC09_02 6 VCP 2 

339 19.6 200 74L 0.011 CF11_04 8 HDPE 2 

340 7.5 300 71L 0.0039 PCF15_01 36 PVC 1 

341 14.9 219 67Y 0.0049 VC03_02 8 PVC 1 

342 52.8 587 93G 0.0005 VC09_01 39 Concrete 2 

343 5.5 270 46G 0.0075 MC04_02 8 PVC 1 

344 44.3 993 106V 0.0031 VC11_01 33 VCP 3 

345 14.4 320 119G 0.0378 VC11_03 8 PVC 1 

346 33.3 284 72C 0.0154 WF05_05 8 VCP 1 

347 33.3 251 80D 0.0039 VC03_03 8 VCP 3 

348 63 116 74T 0.2303 CF12_02 10 VCP 5 

349 16.7 321 74T 0.0027 CF12_02 16 DI 1 

350 23.8 750 89Q 0.0026 CF06_02 20 DI 1 

351 44.1 217 89S 0.0068 CF07_04 18 Concrete 2 

352 3.2 94 75W 0.0038 CF11_06 8 PVC 1 

353 1.6 143 75H 0.075 CF10_03 8 PVC 1 

354 2.1 287 22W 0.0109 BF08_02 8 PVC 1 

355 3.1 528 19W 0.0039 PBF10_01 8 PVC 1 

356 4.2 10 19Z 0.004 BF05_08 8 PVC 1 

357 4.2 9 19Z 0.0044 BF05_08 8 PVC 1 

358 14.3 241 76D 0.0078 CF01_04 30 DI 1 

359 20.5 95 63W 0.0221 CF01_07 10 HDPE 1 

360 13.8 230 76D 0.0022 CF01_04 30 DI 1 

361 49.6 101 91C 0.003 SC03_01 45 Concrete 5 

362 43.6 1053 64C 0.0025 BF02_01 35 Concrete 3 

363 30.6 360 66D 0.0064 BF01_03 8 PVC 1 

364 18 187 78H 0.007 SC10_05 8 HDPE 1 

365 4 182 63Z 0.0032 BF04_01 8 PVC 1 

366 13.8 359 67Q 0.071 VC02_01 8 PVC 1 

367 6 95 74Y 0.0011 CF12_02 10 PVC 1 

368 8.3 104 65U 0.0032 VC05_01 16 DI 2 
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369 31.6 356 102D 0.0095 CF07_06 6 VCP 2 

370 2.9 150 90N 0.0087 CF06_07 8 PVC 1 

371 2.9 450 90N 0.0378 CF06_07 8 PVC 1 

372 2.9 293 90N 0.0149 CF06_07 8 PVC 1 

373 2.9 21 90N 0.0276 CF06_07 8 PVC 1 

374 7.6 88 21L 0.0225 DC02_04 8 PVC 2 

375 2.9 30 90N 0.02 CF06_07 8 PVC 1 

376 2.9 29 90N 0.0103 CF06_07 8 PVC 1 

377 15.7 340 103S 0.021 CF09_02 8 PVC 1 

378 14.7 437 103S 0.0045 CF09_02 8 PVC 1 

379 14.8 444 103N 0.0179 CF09_05 8 PVC 1 

380 10.2 291 103X 0.004 CF09_03 8 PVC 1 

381 13 265 103S 0.011 CF09_02 8 PVC 1 

382 2.9 155 90N 0.0054 CF06_07 8 PVC 1 

383 2.9 108 90N 0.0546 CF06_07 8 PVC 1 

384 54.1 428 90W 0.0072 SC08_06 12 Concrete 3 

385 15.7 347 90V 0.0071 SC08_01 35 Concrete 3 

386 2.9 56 89R 0.07 CF06_07 6 HDPE 1 

387 3.5 237 75M 0.004 CF10_05 8 PVC 1 

388 2.9 52 90N 0.005 CF06_07 8 PVC 1 

389 0.8 147 77T 0.0195 SC03_05 8 PVC 1 

390 73.2 11 62G 0.1909 MC03_02 10 PVC 5 

391 5 138 63L 0.0583 BF04_02 8 HDPE 1 

392 12.5 28 63L 0.1436 BF04_02 8 PVC 1 

393 32.7 77 92S 0.0807 VC10_01 10 PVC 3 

394 6 42 74Y 0.0024 CF12_02 10 PVC 1 

395 46.5 331 76N 0.0204 CF04_01 6 Concrete 3 

396 14.8 245 32E 0.004 MC05_06 24 DI 2 

397 12.7 60 89G 0.2803 CF05_03 8 PVC 1 

398 33.1 501 66N 0.0322 VC02_03 6 VCP 2 

399 35.6 269 74X 0.0137 CF12_02 6 VCP 2 

400 66.3 224 74T 0.0037 CF12_02 10 VCP 3 

401 31 232 89N 0.0039 CF07_03 8 PVC 2 

402 46.2 8 93X 0.0013 VC10_01 36 Concrete 1 

403 14.8 286 103P 0.005 CF09_05 8 PVC 1 

404 51.6 54 79M 0.0074 VC01_05 10 Concrete 4 

405 51.5 302 79M 0.0034 VC01_05 10 Concrete 3 
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406 15.9 153 76K 0.0079 CF02_02 8 PVC 1 

407 83.5 420 79K 0.0157 VC06_03 6 VCP 4 

408 67.3 565 79F 0.0046 VC06_03 6 Concrete 3 

409 16.2 170 90X 0.0027 SC08_03 33 PVC 2 

410 18.2 377 76Q 0.0193 CF02_02 10 HDPE 3 

411 86.1 31 78A 0.321 SC10_01 6 VCP 3 

412 17.2 208 36R 0.0158 BF06_02 10 PVC 1 

413 12.3 350 62D 0.0153 MC02_02 24 PVC 2 

414 0.9 306 90N 0.0061 CF06_07 8 HDPE 1 

415 2.9 121 89M 0.035 CF06_07 8 PVC 1 

416 2.9 244 89R 0.0051 CF06_07 8 PVC 1 

417 15.7 25 90V 0.0088 SC08_01 35 Concrete 1 

418 29.1 89 76K 0.0367 CF03_01 8 PVC 1 

419 23.2 228 76P 0.0233 CF03_01 8 PVC 1 

420 5.8 147 76P 0.0081 CF03_02 8 HDPE 1 

421 76.8 107 76P 0.0561 CF03_02 6 VCP 3 

422 78.6 581 76S 0.0455 CF03_01 8 HDPE 2 

423 26.8 914 76K 0.0012 CF03_01 30 Concrete 1 

424 28.8 61 76J 0.0013 CF04_01 30 DI 1 

425 0.3 306 75G 0.0229 CF10_04 8 PVC 1 

426 0.6 287 62W 0.004 WF02_03 8 PVC 1 

427 21.6 176 72A 0.0434 WF05_05 8 PVC 1 

428 48.6 245 89K 0.0486 CF05_03 6 Concrete 3 

429 13.4 23 80K 0.2444 VC01_04 12 DI 2 

430 13.4 98 80J 0.0041 VC01_04 8 DI 2 

431 11.3 112 75K 0.0433 CF11_07 12 PVC 1 

432 34.7 381 103F 0.0082 SC09_04 10 VCP 2 

433 33.5 403 103F 0.0043 SC09_04 8 VCP 2 

434 6.9 437 63Q 0.0097 BF04_03 8 HDPE 1 

435 52.9 547 93C 0.0004 VC08_01 39 Concrete 2 

436 3.2 75 75S 0.0144 CF11_06 10 PVC 1 

437 7.5 550 71R 0.0022 PCF15_01 36 PVC 1 

438 6.2 466 78F 0.0147 SC10_04 8 PVC 1 

439 8.3 142 76J 0.026 CF10_05 8 PVC 1 

440 10.7 40 90J 0.0538 SC05_05 8 HDPE 1 

441 63.7 61 79D 0.0643 VC06_01 6 VCP 2 

442 18.6 65 76D 0.0155 CF01_05 8 DI 1 
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443 35.7 269 91G 0.002 SC04_01 27 VCP 2 

444 0.6 17 62W 0.0535 WF02_03 15 PVC 1 

445 7.8 45 62X 0.0091 WF02_03 24 DI 1 

446 42.1 3 62W 0.7567 WF02_03 8 Concrete 2 

447 9.6 221 67U 0.0101 VC03_01 8 PVC 1 

448 13.8 381 67V 0.0074 VC02_01 8 PVC 1 

449 3.9 291 21N 0.0051 BF09_03 8 PVC 1 

450 2.9 118 89M 0.0208 CF06_07 8 PVC 1 

451 2.9 139 90N 0.0069 CF06_07 8 PVC 1 

452 2.9 73 90N 0.0715 CF06_07 8 PVC 1 

453 2.9 27 90N 0.0111 CF06_07 8 PVC 1 

454 15.7 377 90V 0.005 SC08_01 35 Concrete 2 

455 16.2 286 90X 0.0041 SC08_03 27 PVC 2 

456 2.9 26 90N 0.0223 CF06_07 8 PVC 1 

457 13.5 56 76L 0.0004 CF02_02 6 PVC 1 

458 19.5 152 76T 0.023 CF03_02 8 VCP 3 

459 24.5 161 76P 0.0037 CF03_02 21 PVC 1 

460 13.8 51 76T 0.0165 CF03_02 12 PVC 1 

461 12 378 76Q 0.0116 CF02_02 8 HDPE 1 

462 20.7 79 66N 0.0062 VC02_03 8 PVC 1 

463 85.7 234 63Y 0.0034 BF04_01 15 Concrete 4 

464 90.6 297 63Y 0.0019 BF04_01 15 Concrete 3 

465 16.5 236 46H 0.0139 MC04_04 8 PVC 1 

466 22.3 795 79Z 0.0005 VC07_01 54 Concrete 2 

467 3.5 133 93L 0.001 VC09_05 54 Fiberglass 2 

468 15.2 400 106S 0.0032 VC11_01 24 PVC 2 

469 54.9 329 81A 0.007 VC03_03 18 VCP 3 

470 1.8 496 73Z 0.0106 CF12_08 8 PVC 1 

471 7.8 17 62X 0.0035 WF02_03 24 DI 1 

472 6.2 127 62W 0.0039 WF02_03 8 DI 2 

473 7.5 352 76B 0.0047 WF02_01 12 PVC 1 

474 0.8 260 79H 0.0058 VC01_05 8 PVC 1 

475 49.8 370 91G 0.0009 SC03_01 45 Concrete 2 

476 28.6 1200 65G 0.0008 BF01_04 54 Concrete 3 

477 46.1 591 93X 0.0003 VC10_01 36 Concrete 1 

478 55.4 1023 63Z 0 BF04_01 72 Concrete 4 

479 17.1 191 32T 0.1382 MC05_02 8 PVC 1 
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480 17 80 32N 0.1088 MC05_02 8 PVC 1 

481 86.6 492 76N 0.0012 CF04_01 24 Concrete 5 

482 33.4 154 80D 0.0468 VC03_03 6 VCP 2 

483 13.2 114 76V 0.0487 CF02_04 8 PVC 1 

484 48.5 187 89K 0.03 CF05_03 6 Concrete 2 

485 13.7 112 80K 0.0222 VC01_03 10 PVC 2 

486 48.7 95 89G 0.0121 CF05_03 6 VCP 2 

487 82.5 695 62B 0.021 MC03_02 6 Concrete 4 

488 15.9 200 49U 0.0053 BF02_02 8 PVC 1 

489 17.5 121 49U 0.0052 BF02_02 8 PVC 1 

490 90.9 479 62D 0.0129 MC02_02 10 VCP 2 

491 16.2 450 90X 0.0042 SC08_03 27 PVC 2 

492 13.7 251 90N 0.0477 CF06_07 8 PVC 1 

493 1.1 441 75M 0.0126 CF10_02 8 PVC 1 

494 3.6 504 75L 0.0396 CF10_05 8 PVC 1 

495 0.1 181 62X 0.0033 WF02_03 10 DI 4 

496 66.2 7 62W 0.0071 WF02_03 6 Concrete 1 

497 43.2 77 89F 0.0812 CF05_03 6 Concrete 2 

498 19 223 103D 0.0022 SC09_06 15 PVC 1 

499 35.7 274 103H 0.0289 SC09_02 6 PVC 1 

500 63.2 78 74P 0.0513 CF12_05 6 Concrete 3 

501 7.5 395 71L 0.0039 PCF15_01 36 PVC 1 

502 7.5 400 71Q 0.0038 PCF15_01 36 PVC 1 

503 45.7 97 89W 0.0078 CF07_05 12 Concrete 2 

504 2.1 199 22W 0.01 BF08_02 8 PVC 1 

505 3.5 178 22B 0.0039 DC02_03 8 PVC 1 

506 34.4 257 31H 0.0023 MC05_04 12 VCP 1 

507 26.6 130 62N 0.01 MC06_02 6 VCP 1 

508 13.6 242 93U 0.0003 VC10_01 48 Concrete 1 

509 6 233 76D 0.0028 CF01_04 10 PVC 2 

510 13.8 128 76D 0.0345 CF01_05 24 DI 2 

511 18.5 354 76D 0.0635 CF01_04 10 HDPE 1 

512 44.1 406 64C 0.0027 BF02_01 33 Concrete 2 

513 28.7 746 65B 0.0008 BF01_04 54 Concrete 2 

514 26.3 98 74Y 0.0028 CF12_02 10 DI 1 

515 41 504 79X 0.003 VC07_02 18 Concrete 3 

516 41 385 79T 0.003 VC07_02 18 Concrete 3 
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517 15.9 74 88C 0.0015 CF12_01 12 PVC 1 

518 10.9 84 119Z 0.0066 VC11_03 8 PVC 1 

519 46.2 18 90A 0.0567 CF04_03 15 Concrete 3 

520 96.5 127 76D 0.01 CF01_07 6 VCP 2 

521 0.3 184 75G 0.0051 CF10_04 8 PVC 1 

522 0.8 279 79H 0.0157 VC01_05 8 PVC 1 

523 13.8 161 76Q 0.0086 CF02_02 8 PVC 3 

524 20.7 292 66N 0.0199 VC02_03 8 PVC 1 

525 19.1 211 62B 0.015 MC03_02 8 PVC 2 

526 86.5 118 62D 0.0403 MC02_02 10 VCP 4 

527 0.9 168 90N 0.0136 CF06_07 8 HDPE 1 

528 12.9 22 35U 0.1277 BF09_02 8 PVC 1 

529 12.9 63 35U 0.0656 BF09_02 8 PVC 1 

530 3.6 16 21Y 0.5338 BF09_03 8 PVC 1 

531 28.4 70 76C 0.0007 CF10_01 54 Concrete 4 

532 65.8 147 77A 0.0495 CF01_07 8 VCP 2 

533 14.6 150 32B 0.0073 MC05_08 24 DI 2 

534 3.2 57 75W 0.004 CF11_06 8 PVC 1 

535 3.2 349 75W 0.0029 CF11_06 10 PVC 1 

536 34.7 162 36W 0.004 BF05_01 8 VCP 1 

537 2.1 502 22W 0.005 BF08_02 8 PVC 1 

538 2.1 146 22W 0.0199 BF08_02 8 PVC 1 

539 28.7 501 65G 0.0008 BF01_04 54 Concrete 3 

540 87.9 176 62F 0.0035 MC06_04 18 Concrete 2 

541 22.2 239 93L 0.0008 VC09_05 54 Concrete 1 

542 43.6 525 64D 0.0018 BF02_01 35 Concrete 2 

543 44.1 679 64C 0.0027 BF02_01 33 Concrete 3 

544 4 459 92C 0.0465 VC08_04 8 PVC 4 

545 45 383 63Y 0.004 BF04_01 8 VCP 2 

546 13.5 200 78X 0.0191 SC11_03 8 PVC 1 

547 13.4 274 80K 0.0025 VC01_04 16 DI 1 

548 48.5 9 66Y 0.0233 VC04_01 6 Concrete 2 

549 27.6 82 65V 0.039 VC02_04 6 VCP 3 

550 19.8 71 78J 0.0051 SC11_01 27 PVC 1 

551 22.3 1384 93C 0.0005 VC08_01 54 Concrete 3 

552 0.2 418 75H 0.0058 CF10_03 8 DI 2 

553 2.1 414 22W 0.01 BF08_02 8 PVC 1 
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554 0.1 71 62P 0.0652 MC06_02 8 PVC 1 

555 0.5 57 62N 0.079 MC06_02 8 PVC 1 

556 13.8 65 76D 0.1142 CF01_04 30 DI 1 

557 14.2 533 63W 0.0049 CF01_07 24 PVC 1 

558 4.6 35 76D 0.0046 CF01_05 8 DI 1 

559 18.3 338 77A 0.0002 CF01_07 8 Concrete 2 

560 15.2 101 76D 0.0045 CF01_05 8 DI 1 

561 10.5 329 75R 0.0123 CF04_01 32 DI 1 

562 0.9 891 62B 0.0196 MC03_02 8 PVC 2 

563 3.5 105 21P 0.0592 BF09_03 8 PVC 1 

564 3.4 272 21T 0.0091 BF09_03 10 PVC 1 

565 3.4 278 21T 0.0087 BF09_03 10 PVC 1 

566 7.5 35 72N 0.0046 CF14_02 36 PVC 2 

567 6 80 74Y 0.0013 CF12_02 10 PVC 1 

568 6 52 74Y 0.0019 CF12_02 10 PVC 1 

569 33.2 165 65U 0.0061 VC02_05 6 VCP 3 

570 34.6 271 103F 0.004 SC09_04 8 VCP 1 

571 34.6 245 103F 0.004 SC09_04 8 VCP 1 

572 38.2 413 103F 0.0042 SC09_04 8 VCP 2 

573 39.9 322 103C 0.0334 SC09_06 6 VCP 2 

574 30.7 14 65G 0.0021 BF01_04 54 Concrete 4 

575 6.3 60 78M 0.0165 SC10_06 8 HDPE 1 

576 13.8 95 67U 0.036 VC02_01 8 PVC 1 

577 35.5 108 67U 0.0235 VC03_01 6 VCP 1 

578 9.6 275 21S 0.0185 BF09_03 8 PVC 1 

579 61.7 133 77A 0.0137 CF01_07 8 VCP 3 

580 31.9 1303 66G 0.0008 BF01_03 78 Concrete 3 

581 45.3 1301 66G 0.0007 BF01_03 96 Concrete 3 

582 22.3 232 93G 0.0005 VC08_01 54 Concrete 2 

583 100.4 792 62Y 0.0005 CF01_04 48 Concrete 3 

584 47.7 291 80D 0.008 VC04_01 6 Concrete 2 

585 57.3 373 80A 0.0327 VC04_04 6 Concrete 3 

586 73.2 280 62G 0.0018 MC03_02 10 PVC 2 

587 13 35 76L 0.1686 CF02_02 8 PVC 1 

588 8.8 95 35Y 0.0098 BF05_02 8 PVC 2 

589 66.8 182 78M 0.0125 SC10_05 6 VCP 3 

590 11.4 39 75R 0.0018 CF04_01 48 PVC 2 
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591 5.4 62 62F 0.0182 MC03_02 8 DI 1 

592 15.9 199 49U 0.005 BF02_02 8 PVC 1 

593 17.2 507 36R 0.0125 BF06_02 10 PVC 1 

594 67.3 137 62X 0.0058 WF02_03 6 VCP 2 

595 14.7 175 62J 0.059 MC06_02 8 PVC 1 

596 13.4 787 93Y 0.0003 VC10_01 42 Concrete 3 

597 3 174 62E 0.0101 MC06_04 8 DI 1 

598 108.7 312 62L 0.0058 MC06_01 6 VCP 2 

599 7.2 377 63N 0.0039 MC01_01 12 PVC 1 

600 25.3 39 75Y 0.0015 CF05_01 30 Concrete 2 

601 4.1 205 35S 0.0512 BF05_03 8 PVC 1 

602 87.1 91 90A 0.0033 CF04_03 10 Concrete 2 

603 16.8 152 74X 0.0077 CF12_02 16 DI 1 

604 29.1 66 89S 0.0117 CF07_04 18 Concrete 2 

605 31 462 89E 0.0089 CF05_03 6 PVC 1 

606 9.7 144 78H 0.0106 SC10_05 8 HDPE 1 

607 66.8 109 78M 0.0275 SC10_05 6 VCP 3 

608 8.8 74 35Y 0.0105 BF05_02 8 PVC 2 

609 7.9 137 76H 0.0073 CF01_05 8 PVC 1 

610 10.9 274 76L 0.0107 CF02_02 8 PVC 1 

611 31.1 33 76K 0.0482 CF03_01 8 PVC 1 

612 23.2 168 76P 0.022 CF03_01 8 PVC 2 

613 13.8 203 76Q 0.0217 CF02_02 8 PVC 3 

614 2 107 76P 0.0067 CF03_02 8 PVC 1 

615 23.2 173 76P 0.0291 CF03_01 8 PVC 1 

616 7.7 130 76T 0.0153 CF03_02 8 PVC 1 

617 76.5 138 76N 0.0609 CF03_01 6 VCP 3 

618 3.1 353 92D 0.0059 VC08_05 8 DI 1 

619 13.5 41 78X 0.0181 SC11_03 8 DI 2 

620 102.8 48 62Y 0.0042 CF01_04 21 Concrete 2 

621 59.1 304 90N 0.0201 CF06_07 8 PVC 1 

622 43.3 950 120C 0.0013 VC11_02 36 VCP 4 

623 3 298 79R 0.0064 VC01_06 15 PVC 1 

624 11 37 22C 0.0049 DC02_03 8 PVC 1 

625 34.4 423 31H 0.0473 MC05_04 6 VCP 2 

626 34.4 166 31H 0.0023 MC05_04 12 VCP 1 

627 22.2 657 93Q 0.0009 VC09_05 54 Concrete 2 
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628 13.4 746 93U 0.0004 VC10_01 42 Concrete 1 

629 35.4 374 103H 0.0059 SC09_02 6 PVC 1 

630 38.7 126 103C 0.0319 SC09_02 6 VCP 2 

631 14.4 443 74K 0.0089 CF11_04 8 HDPE 2 

632 7.5 400 71L 0.0038 PCF15_01 36 PVC 1 

633 6 107 74Y 0.0037 CF12_02 10 PVC 1 

634 60.3 205 63D 0.0132 BF03_04 6 Concrete 3 

635 41.9 1025 61Q 0.0013 WF01_05 36 Concrete 2 

636 3.2 425 75S 0.0148 CF11_06 10 DI 1 

637 2.1 103 22W 0.0145 BF08_02 8 PVC 1 

638 4.4 431 19Y 0.0035 BF05_08 18 PVC 1 

639 0.1 66 62P 0.0379 MC06_02 8 PVC 1 

640 3.5 160 22B 0.0039 DC02_03 8 PVC 1 

641 0 275 62F 0.032 MC06_01 8 PVC 1 

642 22.3 319 93D 0.0005 VC08_01 54 Concrete 1 

643 52.6 710 93D 0.0004 VC08_01 39 Concrete 2 

644 32.2 17 93C 0.0153 VC08_01 8 DI 2 

645 41.9 1146 61Q 0.0013 WF01_05 36 Concrete 2 

646 3.2 182 75S 0.0181 CF11_06 8 PVC 1 

647 2.1 206 22W 0.005 BF08_02 8 PVC 1 

648 4.6 177 62P 0.004 MC06_02 8 PVC 1 

649 5.2 54 62N 0.0326 MC06_02 8 PVC 1 

650 13.4 37 19Z 0.0995 BF05_08 8 PVC 1 

651 14.4 478 17Y 0.0092 MC05_07 8 PVC 1 

652 17.9 261 35X 0.0038 BF05_02 10 PVC 2 

653 8.9 77 49W 0.0033 MC02_03 8 DI 1 

654 12 290 49D 0.0045 BF05_02 8 PVC 1 

655 13.8 193 67Q 0.0099 VC02_01 8 PVC 1 

656 35.6 308 67U 0.0101 VC03_01 6 VCP 3 

657 14 11 49C 0.0191 BF02_02 8 PVC 2 

658 19.5 207 80N 0.0291 VC01_05 8 PVC 1 

659 26.3 282 74Y 0.0021 CF12_02 10 PVC 1 

660 62.8 201 77J 0.0164 CF01_02 6 VCP 3 

661 64.9 409 88B 0.0022 CF12_01 12 Concrete 3 

662 46.7 27 88H 0.0263 CF07_02 24 Concrete 3 

663 4 22 88H 0.0086 CF07_02 24 DI 1 

664 31.2 189 88H 0.0064 CF07_02 8 VCP 2 
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665 39.6 179 67V 0.0182 VC02_01 6 VCP 2 

666 9.6 274 21T 0.0066 BF09_03 10 PVC 1 

667 4.6 295 76D 0.0105 CF01_05 8 DI 1 

668 7.9 106 76H 0.0381 CF01_05 8 PVC 1 

669 21.6 365 76K 0.0203 CF02_02 10 PVC 1 

670 15.9 192 76K 0.0072 CF02_02 8 PVC 3 

671 15.9 169 76K 0.0071 CF02_02 8 PVC 1 

672 12 57 76Q 0.0074 CF02_02 8 HDPE 1 

673 24.5 25 76P 0.004 CF03_02 21 PVC 1 

674 25.3 331 76T 0.009 CF03_01 6 VCP 3 

675 87.8 72 62G 0.0043 MC06_04 18 VCP 2 

676 24.5 150 72B 0.0099 WF05_05 10 PVC 1 

677 6.7 135 90Q 0.0104 SC05_03 8 PVC 1 

678 13.8 144 67U 0.0398 VC02_01 8 PVC 1 

679 13.8 156 67U 0.0299 VC02_01 8 PVC 1 

680 9.6 175 21T 0.0049 BF09_03 10 PVC 1 

681 9.6 271 21N 0.0039 BF09_03 8 PVC 1 

682 52.9 591 93D 0.0004 VC08_01 39 Concrete 1 

683 3.2 351 75S 0.0029 CF11_06 10 PVC 1 

684 1.6 3 75H 3.7233 CF10_03 8 PVC 1 

685 35.9 133 67V 0.0088 VC03_01 6 VCP 1 

686 9.6 277 21T 0.0158 BF09_03 8 PVC 1 

687 3.9 344 21N 0.005 BF09_03 8 PVC 1 

688 3.9 265 21N 0.005 BF09_03 8 PVC 1 

689 21.6 183 76K 0.0028 CF02_02 10 PVC 1 

690 23.2 471 76P 0.001 CF03_01 30 Concrete 1 

691 19.1 314 76P 0.0055 CF03_01 8 PVC 2 

692 24.5 518 76P 0.0039 CF03_02 21 PVC 1 

693 13.8 196 76T 0.0039 CF03_02 8 PVC 1 

694 13.8 144 67U 0.0313 VC02_01 8 PVC 1 

695 35.5 506 67U 0.0317 VC03_01 10 VCP 1 

696 35.6 538 67U 0.0393 VC03_01 6 VCP 3 

697 9.6 273 21S 0.0277 BF09_03 8 PVC 1 

698 10.5 331 21S 0.0204 BF09_03 8 PVC 1 

699 10.5 475 21S 0.0316 BF09_03 8 PVC 1 

700 13.4 291 20W 0.0093 BF05_08 8 PVC 1 

701 11.4 36 35X 0.0042 BF05_03 8 PVC 1 
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702 4.2 1 35Z 0.42 BF05_02 8 PVC 1 

703 15.7 216 91W 0.0173 SC06_01 8 PVC 1 

704 26.8 21 76K 0.0005 CF04_01 24 DI 1 

705 10.6 425 76X 0.0151 CF03_04 12 PVC 2 

706 51.6 511 89C 0.004 CF05_02 24 Concrete 2 

707 8.8 40 81J 0.0015 VC01_02 54 DI 1 

708 28.8 526 81J 0.0014 VC01_02 54 Concrete 1 

709 76.5 154 76W 0.0188 CF03_03 8 PVC 2 

710 62.8 115 77J 0.0244 SC01_03 6 VCP 3 

711 7.7 44 93C 0.0034 VC08_01 24 Concrete 2 

712 16.6 187 88C 0.0026 CF12_01 21 PVC 1 

713 6.9 351 75P 0.0356 CF11_02 8 PVC 1 

714 6 45 74Y 0.0098 CF12_02 10 PVC 1 

715 6 103 74Y 0.0101 CF12_02 10 PVC 1 

716 8.8 136 89X 0.0147 CF05_05 8 PVC 1 

717 51.2 580 63B 0.0043 MC02_05 8 VCP 3 

718 62.5 60 74N 0.05 CF12_03 6 VCP 2 

719 25.5 364 93N 0.0231 VC10_01 6 PVC 1 

720 4.4 346 63P 0.0015 MC01_01 18 PVC 1 

721 15.7 66 77A 0.0174 CF01_03 16 DI 1 

722 8.8 239 35Y 0.0091 BF05_02 8 PVC 2 

723 17.4 199 78M 0.0309 SC10_05 8 HDPE 3 

724 27.8 172 63Z 0.0034 BF04_01 8 VCP 2 

725 14.5 214 88H 0.0074 CF07_02 24 DI 2 

726 38.9 526 31H 0.003 MC05_04 12 VCP 2 

727 22.2 832 93Q 0.0006 VC09_05 54 Concrete 2 

728 0.1 405 78R 0.0654 SC11_04 8 HDPE 2 

729 35.7 520 103H 0.0173 SC09_02 6 PVC 1 

730 35.8 329 103C 0.0273 SC09_02 6 VCP 1 

731 7.1 492 71F 0.002 PCF15_01 36 PVC 2 

732 7.1 477 71F 0.0021 PCF15_01 36 PVC 1 

733 7.5 198 72N 0.0163 CF14_02 36 Fiberglass 1 

734 50.4 13 89G 0.1308 CF05_03 8 Concrete 3 

735 16.3 482 90X 0.0205 SC08_03 8 PVC 1 

736 16.8 258 74X 0.0014 CF12_02 16 DI 1 

737 59.2 13 74T 0.1023 CF12_02 6 VCP 3 

738 18.9 131 76Q 0.0295 CF02_02 8 PVC 1 
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739 23.8 298 89Q 0.002 CF06_02 20 DI 1 

740 29.1 11 89S 0.0427 CF07_04 18 Concrete 2 

741 26 79 89S 0.0029 CF07_04 15 PVC 1 

742 13.4 450 74P 0.0834 CF12_05 8 PVC 1 

743 29.7 285 88T 0.0218 CF08_02 8 PVC 1 

744 27.5 305 102M 0.0279 CF09_04 8 PVC 1 

745 16.2 900 90X 0.0025 SC08_03 33 Concrete 1 

746 12.7 192 119D 0.0189 VC11_06 10 PVC 1 

747 13.5 4 20W 0.005 BF05_08 8 PVC 1 

748 3.9 123 21N 0.005 BF09_03 8 PVC 1 

749 5 68 63L 0.0382 BF04_02 8 HDPE 1 

750 12.5 322 92K 0.008 VC09_04 8 HDPE 1 

751 14.6 358 76J 0.0132 CF10_05 8 PVC 1 

752 17.3 173 90D 0.0189 SC04_04 8 PVC 1 

753 16.9 21 79K 0.0095 VC06_03 8 PVC 1 

754 1.2 54 64T 0.0054 BF03_01 8 PVC 1 

755 55.4 239 90T 0.005 SC08_02 10 Concrete 2 

756 1.5 74 90T 0.0151 SC08_02 8 PVC 1 

757 40 354 103G 0.0136 SC09_03 6 VCP 2 

758 35.4 93 103H 0.1139 SC09_02 6 PVC 2 

759 35.7 197 103G 0.0112 SC09_02 8 VCP 3 

760 7.5 350 71L 0.0038 PCF15_01 36 PVC 1 

761 11.4 198 77S 0.0482 SC02_05 8 PVC 1 

762 6 70 74Y 0.0014 CF12_02 10 PVC 1 

763 6.2 411 76T 0.0056 CF03_01 8 HDPE 1 

764 12.5 431 76S 0.0488 CF04_01 8 HDPE 1 

765 14.2 302 76X 0.0048 CF03_03 18 PVC 2 

766 15.1 34 76W 0.0024 CF04_03 8 PVC 1 

767 6.9 168 90B 0.0004 CF03_04 8 PVC 1 

768 61.2 101 74N 0.0268 CF12_03 8 VCP 2 

769 27.5 190 103J 0.0295 CF09_04 8 PVC 1 

770 24.7 608 91T 0.0107 SC05_03 8 DI 2 

771 25 128 93P 0.0791 VC09_05 6 PVC 1 

772 52.9 679 93C 0.0004 VC08_01 39 Concrete 1 

773 55.5 111 61Q 0.0045 WF01_05 12 Concrete 3 

774 0.6 88 75D 0.0256 CF10_02 8 HDPE 1 

775 38 65 76K 0.1663 CF03_01 6 VCP 2 
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776 33.6 140 76K 0.01 CF02_01 6 CI 1 

777 2.7 123 64N 0.005 BF03_02 8 PVC 1 

778 5.6 59 75H 0.0324 CF10_03 8 PVC 4 

779 3.1 523 19W 0.004 PBF10_01 8 PVC 1 

780 14.7 165 62K 0.0052 MC06_02 15 PVC 1 

781 14.8 229 62J 0.0228 MC06_02 15 PVC 1 

782 11.1 132 22B 0.0049 DC02_03 8 PVC 1 

783 0.6 135 62P 0.0028 MC06_02 8 PVC 1 

784 0.5 198 62P 0.0034 MC06_02 8 PVC 1 

785 15.8 220 62J 0.005 MC06_03 15 PVC 1 

786 13.1 450 93Q 0.0003 VC09_05 48 Concrete 1 

787 46.2 734 93U 0.0004 VC10_01 36 Concrete 1 

788 46.2 795 93U 0.0004 VC10_01 36 Concrete 2 

789 16 275 19Z 0.0054 BF05_08 27 PVC 1 

790 32.5 1398 67R 0.0005 BF01_01 96 Concrete 2 

791 82.3 95 76B 0.033 WF02_01 6 Concrete 4 

792 12.9 67 92B 0.0179 SC03_04 8 PVC 2 

793 6.7 96 90Q 0.0442 SC05_03 6 PVC 4 

794 52.1 15 73Z 0.0727 CF12_09 6 Concrete 1 

795 59.5 86 74V 0.1138 CF11_06 6 Concrete 3 

796 46.2 392 107B 0.0003 VC10_02 36 Concrete 2 

797 26.9 592 106R 0.0082 VC11_01 21 PVC 2 

798 22.7 943 80N 0.0005 VC01_04 54 Concrete 5 

799 10.2 175 21X 0.034 BF09_03 8 PVC 1 

800 11.2 220 76H 0.0085 CF01_05 8 PVC 1 

801 34.4 31 103F 0.0394 SC09_04 8 VCP 2 

802 15.9 78 76H 0.0076 CF01_06 8 PVC 1 

803 3 90 62E 0.0073 MC06_04 8 PVC 2 

804 15.2 336 103S 0.0206 CF09_02 15 PVC 1 

805 15.7 91 88Q 0.004 CF07_03 8 PVC 2 

806 12.5 396 88U 0.0444 CF08_02 8 PVC 1 

807 12.1 337 103E 0.0178 SC09_04 8 PVC 1 

808 16.4 317 103N 0.0602 CF09_02 8 PVC 1 

809 14.8 324 103N 0.0151 CF09_05 8 PVC 1 

810 14.8 408 103N 0.0253 CF09_05 8 PVC 1 

811 16.8 265 103K 0.0101 CF09_05 8 PVC 2 

812 12.3 191 103J 0.0318 SC09_04 8 PVC 1 
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813 10.6 25 72D 0.0252 WF05_02 18 PVC 2 

814 36.4 492 67U 0.091 VC03_01 6 VCP 1 

815 13.8 287 67U 0.0264 VC02_01 8 PVC 1 

816 14 175 49D 0.0224 BF05_02 8 PVC 2 

817 11.4 573 75F 0.0327 CF10_04 8 PVC 1 

818 78.7 219 76B 0.0082 WF02_01 6 Concrete 3 

819 89.9 99 76G 0.0009 CF02_01 30 Concrete 2 

820 52.8 21 79D 0.4586 VC06_01 6 VCP 3 

821 26.5 269 63W 0.0126 CF01_07 12 DI 1 

822 3.8 78 91W 0.0041 SC06_01 8 PVC 1 

823 55.1 141 91Y 0.0186 SC05_07 6 VCP 2 

824 10.3 509 21X 0.005 BF09_03 8 PVC 2 

825 15.7 214 103N 0.032 CF09_02 8 PVC 1 

826 9.8 238 73J 0.0127 CF13_03 12 PVC 1 

827 9.9 144 73J 0.0097 CF13_03 12 PVC 1 

828 14.8 123 103J 0.0252 CF09_05 8 PVC 1 

829 13 90 103N 0.0103 CF09_02 8 PVC 1 

830 12.3 205 103E 0.0173 SC09_04 8 PVC 1 

831 13 243 103N 0.0538 CF09_02 8 PVC 1 

832 31 98 73N 0.0304 CF13_03 6 VCP 1 

833 17.6 154 87D 0.0248 CF12_08 8 PVC 1 

834 16.3 417 103R 0.004 SC07_02 8 PVC 1 

835 0.4 166 79H 0.018 VC01_05 8 DI 1 

836 10 312 76K 0.0121 CF02_02 8 HDPE 1 

837 2.1 338 22W 0.005 BF08_02 8 PVC 1 

838 5.9 292 76E 0.0143 CF10_02 20 DI 1 

839 16.5 476 90T 0.0025 SC08_02 8 PVC 1 

840 55.4 255 90T 0.004 SC08_02 10 Concrete 1 

841 6.3 249 75D 0.0102 CF10_02 8 PVC 1 

842 3.2 298 75S 0.004 CF11_06 8 PVC 1 

843 2.1 422 22W 0.005 BF08_02 8 PVC 1 

844 4.2 277 19Z 0.0122 BF05_08 18 PVC 2 

845 0.6 212 62P 0.0492 MC06_02 8 PVC 1 

846 3.5 172 22B 0.004 DC02_03 8 PVC 1 

847 16.1 17 19Z 0.0018 BF05_08 18 PVC 1 

848 10.1 25 67U 0.0104 VC03_01 8 PVC 1 

849 24.4 149 104G 0.078 SC06_05 8 PVC 1 
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850 9.6 265 21S 0.0286 BF09_03 8 PVC 1 

851 10.5 188 21N 0.0141 BF09_03 8 PVC 1 

852 18 406 47Y 0.0059 MC03_06 8 PVC 2 

853 7.8 374 89D 0.0088 CF04_05 8 HDPE 3 

854 7.8 123 89D 0.0051 CF04_05 8 HDPE 1 

855 7.7 123 89H 0.007 CF04_05 8 HDPE 1 

856 61.8 44 90E 0.0068 CF04_05 6 Concrete 3 

857 12.9 92 92G 0.0159 VC09_04 8 HDPE 1 

858 42.4 299 67U 0.022 VC03_01 6 VCP 2 

859 14 220 49C 0.0202 BF05_02 8 PVC 2 

860 18 259 66D 0.0017 BF01_03 18 PVC 1 

861 9.6 206 21S 0.0134 BF09_03 8 PVC 1 

862 3.9 275 21N 0.0041 BF09_03 8 PVC 1 

863 61 195 74N 0.0039 CF12_03 8 VCP 1 

864 53.4 17 74T 0.0477 CF12_05 6 VCP 3 

865 61.2 412 74N 0.0214 CF12_03 8 VCP 2 

866 27.5 141 103J 0.0043 CF09_04 8 PVC 1 

867 18.6 45 90S 0.0067 SC08_02 8 HDPE 2 

868 58.2 141 76J 0.0064 CF04_01 8 Concrete 2 

869 6 173 76P 0.0254 CF03_02 8 HDPE 1 

870 6 168 76P 0.021 CF03_02 8 HDPE 1 

871 14 477 76T 0.0016 CF03_03 18 PVC 1 

872 23.2 98 76P 0.0022 CF03_01 15 PVC 1 

873 33 111 72C 0.0103 WF05_05 6 VCP 1 

874 17.6 45 74Y 0.0093 CF12_02 18 PVC 1 

875 12.5 172 92H 0.0026 VC09_02 18 PVC 1 

876 43.2 118 89K 0.1057 CF05_03 6 Concrete 2 

877 1.1 344 92D 0.0082 VC08_05 8 DI 4 

878 33.2 874 47J 0.0023 MC04_04 30 VCP 2 

879 56.7 31 73Z 0.0065 CF12_09 6 Concrete 2 

880 48.4 222 80C 0.056 VC04_01 6 Concrete 2 

881 25.4 358 72B 0.003 WF05_05 10 PVC 1 

882 28.3 187 76C 0.0064 CF10_01 36 DI 1 

883 11.4 25 76C 0.3732 CF02_01 6 DI 2 

884 62.7 534 79D 0.0305 VC06_01 6 VCP 3 

885 14 40 62Z 0.009 CF01_07 8 DI 1 

886 13.8 268 90D 0.0034 SC04_04 10 PVC 1 
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887 1.2 70 64T 0.004 BF03_01 8 PVC 1 

888 55.4 214 90T 0.0053 SC08_02 10 Concrete 1 

889 6.5 57 22T 0.0797 BF08_02 8 PVC 1 

890 15.3 396 63Z 0.0041 BF04_01 8 PVC 1 

891 22.7 284 77J 0.017 SC01_03 8 PVC 1 

892 46.7 250 88H 0.0091 CF07_02 24 Concrete 2 

893 9.7 307 90C 0.0235 CF03_04 8 HDPE 1 

894 35.9 282 67V 0.0147 VC03_01 6 VCP 1 

895 32.7 158 67U 0.0863 VC03_01 6 VCP 3 

896 14.3 65 62Y 0.0045 CF01_04 30 DI 1 

897 6.2 50 63W 0.032 CF01_07 4 PVC 1 

898 4.6 81 76D 0.0496 CF01_05 8 DI 1 

899 16.3 53 77A 0.0085 CF01_07 8 DI 1 

900 14.8 278 103P 0.015 CF09_05 8 PVC 2 

901 14.8 149 103P 0.0101 CF09_05 8 PVC 1 

902 0.4 494 79M 0.0216 VC01_05 8 PVC 1 

903 19.4 40 91B 0.0155 SC04_01 10 PVC 1 

904 17.2 512 90D 0.006 SC04_04 8 PVC 1 

905 12.1 470 76K 0.008 CF02_02 8 HDPE 3 

906 0.6 108 76E 0.0357 CF10_02 8 PVC 1 

907 8.5 289 20V 0.004 BF05_05 8 PVC 1 

908 61.8 643 76G 0.0232 CF02_01 6 Concrete 3 

909 35.9 429 67V 0.0062 VC03_01 6 VCP 2 

910 68.1 234 74P 0.0681 CF12_05 6 Concrete 2 

911 27.5 153 103J 0.0046 CF09_04 8 PVC 1 

912 15.7 324 103N 0.0146 CF09_02 8 PVC 1 

913 16.4 170 102R 0.0555 CF09_02 8 PVC 1 

914 63 217 76C 0.0369 CF01_04 6 Concrete 1 

915 46.9 1152 67R 0.0005 BF01_01 96 Concrete 3 

916 17 24 72D 0.0021 WF05_02 15 PVC 1 

917 71.5 163 75M 0.0061 CF10_05 6 VCP 3 

918 2.9 180 90N 0.0237 CF06_07 8 PVC 1 

919 22.9 72 36L 0.0051 BF06_05 10 PVC 1 

920 7.5 226 47L 0.0109 MC07_01 8 PVC 1 

921 15.3 381 90U 0.0071 SC08_01 33 PVC 1 

922 16.2 302 90X 0.0093 SC08_03 27 PVC 2 

923 13.7 181 89R 0.0504 CF06_07 8 PVC 1 
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924 5.5 183 75G 0.0197 CF10_04 8 PVC 1 

925 0.3 187 75G 0.0166 CF10_04 8 PVC 1 

926 1 278 80G 0.0342 VC04_02 8 PVC 1 

927 0.8 314 79H 0.0162 VC01_05 8 PVC 1 

928 5.1 271 79H 0.0156 VC06_01 8 PVC 2 

929 12.5 366 92F 0.0061 VC09_04 8 HDPE 1 

930 51.6 229 79M 0.0128 VC01_05 10 Concrete 3 

931 17.2 495 90D 0.006 SC04_04 8 PVC 1 

932 1.2 208 64T 0.004 BF03_01 8 PVC 1 

933 34.3 3 91X 0.42 SC06_01 10 CI 3 

934 28.2 364 93N 0.0576 VC10_01 6 PVC 1 

935 5.5 83 49M 0.0052 BF02_02 10 PVC 1 

936 14 64 92K 0.0066 VC09_04 16 DI 1 

937 39.7 430 72D 0.0096 WF05_02 18 VCP 2 

938 32.7 287 91V 0.0051 VC10_01 10 PVC 3 

939 0.4 261 78U 0.0417 SC11_05 8 PVC 1 

940 6 329 20V 0.004 BF05_05 8 PVC 2 

941 1.5 322 22T 0.0449 BF08_02 8 PVC 1 

942 10.6 95 92L 0.0688 VC09_03 8 DI 1 

943 52.9 355 92H 0.006 VC09_02 18 Concrete 3 

944 17 238 73Z 0.0114 CF12_09 12 DI 1 

945 26.1 112 74Y 0.0021 CF12_02 12 PVC 1 

946 12.8 45 75M 0.11 CF10_02 12 PVC 1 

947 15.9 94 76H 0.0072 CF01_06 15 PVC 1 

948 3 181 48Y 0.0113 MC03_01 12 PVC 1 

949 82.6 225 90A 0.0079 CF04_03 8 Concrete 4 

950 23.2 75 76P 0.0029 CF03_01 15 PVC 1 

951 3.4 83 76T 0.0039 CF03_02 8 PVC 1 

952 12.9 128 76W 0.0032 CF04_03 8 PVC 1 

953 11.3 33 76A 0.0112 WF02_02 6 PVC 1 

954 62.7 460 79D 0.0529 VC06_01 6 VCP 1 

955 14.4 67 76D 0.0091 CF01_05 24 DI 2 

956 13 153 103N 0.0249 CF09_02 8 PVC 1 

957 11.2 412 103T 0.0175 CF09_03 8 PVC 1 

958 11.2 403 103T 0.0051 CF09_03 8 PVC 1 

959 13.7 446 103N 0.011 CF09_05 8 PVC 1 

960 27.5 160 103J 0.0263 CF09_04 8 PVC 1 
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961 16.6 126 87Z 0.0049 CF08_05 8 PVC 1 

962 27 185 103N 0.0213 CF09_04 8 PVC 1 

963 15.7 276 103P 0.0059 CF09_02 8 PVC 1 

964 16.4 463 102R 0.0324 CF09_02 8 PVC 1 

965 9.8 164 73J 0.0093 CF13_03 12 PVC 1 

966 14.8 475 103P 0.009 CF09_05 8 PVC 1 

967 13 359 103N 0.0598 CF09_02 8 PVC 1 

968 34.1 131 73J 0.0061 CF13_03 6 VCP 2 

969 15.8 190 76D 0.0077 CF01_05 24 DI 1 

970 17.9 103 61D 0.0097 MC03_06 8 PVC 1 

971 8.1 125 89D 0.0049 CF04_05 8 HDPE 1 

972 16.3 296 74Y 0.0029 CF12_02 10 CI 1 

973 13.2 120 92G 0.025 VC09_03 8 HDPE 1 

974 12.4 530 92L 0.0063 VC09_03 8 PVC 1 

975 13.2 127 92L 0.004 VC09_03 8 PVC 1 

976 10.4 265 92H 0.0229 VC09_01 8 HDPE 1 

977 46 303 73U 0.0492 CF12_09 6 VCP 2 

978 33 28 67U 0.0064 VC03_01 6 VCP 1 

979 13.8 143 67R 0.049 VC02_01 8 PVC 1 

980 14 305 49C 0.0114 BF05_02 8 PVC 2 

981 3.9 344 21N 0.0322 BF09_03 8 PVC 1 

982 9.6 264 21N 0.0041 BF09_03 8 PVC 1 

983 27.6 164 103N 0.0123 CF09_04 8 PVC 1 

984 27.5 96 103J 0.0309 CF09_04 8 PVC 2 

985 45.2 179 62L 0.0112 MC06_01 21 Concrete 1 

986 42.2 27 65U 0.0074 VC05_01 6 VCP 2 

987 25.3 92 75Y 0.0019 CF05_01 30 Concrete 1 

988 4.1 244 35S 0.0059 BF05_03 8 PVC 1 

989 12 48 78D 0.2383 SC10_01 8 HDPE 1 

990 9.9 27 73N 0.0044 CF13_03 8 PVC 2 

991 16.5 312 103T 0.0382 SC07_06 8 PVC 1 

992 12.3 308 103J 0.0098 SC09_04 8 PVC 1 

993 10.6 102 103T 0.0051 CF09_03 8 PVC 1 

994 11.2 337 103T 0.005 CF09_03 8 PVC 1 

995 9.9 298 103W 0.0049 CF09_03 8 PVC 1 

996 16.3 248 103R 0.004 SC07_02 8 PVC 1 

997 11.8 301 103T 0.0162 CF09_03 8 PVC 1 
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998 7.7 101 93C 0.0033 VC08_01 24 Concrete 1 

999 31.3 473 80S 0.0024 VC07_01 6 VCP 4 

1000 46.2 327 93X 0.0004 VC10_01 36 Concrete 2 

 

 

 

 

 

 

 

 

 

 


