# DEVELOPMENT OF A MODEL TO PRIORITIZE INSPECTION AND CONDITION ASSESSMENT OF GRAVITY SANITARY

### SEWER SYSTEMS

By

### KARTHIKEYAN LOGANATHAN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial

Fulfillment of Requirements for

the Degree of

### DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2021

© Copyright by Karthikeyan Loganathan 2021

All Rights Reserved

## Dedication

I dedicate this thesis to my parents, Loganathan and Subbulakshmi, and my beloved wife, Sharmila, and all my friends for their wish, love, and support.

#### Acknowledgements

I would like to express my most sincere gratitude and appreciation to my academic advisor and mentor Dr. Mohammad Najafi, P.E., F. ASCE, Associate Professor of Civil Engineering and Director of the Center for Underground Infrastructure Research and Education (CUIRE). It was a pleasure working under the supervision of Dr. Najafi. I feel honored assisting him in several courses and research projects over the last three years at the University of Texas at Arlington. He was always there to help me when I was in need, and I am indebted for the opportunities he provided me.

I should express my heartfelt thanks to Dr. Ardeshir Anjomani, Dr. Sharareh Kermanshachi, and Dr. Melanie Sattler, for their continued support and guidance as my dissertation committee members. Their valuable comments and suggestions made a great contribution to this dissertation.

I would like to extend my sincere thanks to Ms. Sonnie LaForce, Strategic Operations Supervisor, at the City of Fort Worth, Texas, for her continued commitment in providing all the data and information required for this research study. She was always there to listen amidst her busy schedule and instantly help without any hesitation; and I am indebted to her affection and care beyond her responsibilities. I would like to thank Mr. Mark Shell, Technical Services Coordinator, City of Fort Worth Wastewater Department for his amazing presentation at CUIRE and for his valuable interview about field operations with respect to condition assessment of sanitary sewer pipelines.

I would like to extend my special thanks to Dr. Praveen Kumar Madhuri for his keen interest towards my research study and endless support throughout the model development phases. Without his training and help, this study wouldn't have been accomplished by me.

It would be ungrateful if I forget to thank my parents, mother-in-law, and especially my wife, Sharmila. She has been and will always be the most important source of support and motivation through her endless love.

August 19, 2021

### Abstract

# DEVELOPMENT OF A MODEL TO PRIORITIZE INSPECTION AND CONDITION ASSESSMENT OF GRAVITY SANITARY SEWER SYSTEMS

Karthikeyan Loganathan, Ph.D.

The University of Texas at Arlington, 2021

Supervising Professor: Dr. Mohammad Najafi

Underground utilities and wastewater collection systems deteriorate over time demanding utility owners to involve in continuous revisions and development of their asset management frameworks to maintain the functionality of their assets. In any asset management framework, inspection of an asset and respective condition assessment plays a vital role in successful operation and maintenance of systems. In the United States, closed-circuit television (CCTV) is the commonly used device for inspecting the inner environment of sewer pipes, which considering the large length of pipe inventory in a city, is a relatively expensive and timeconsuming process. Therefore, inspection of every individual sanitary sewer pipe segment is not feasible in a short time period for any municipality owing to their large inventory of these pipes. However, sanitary sewer pipe segments in need of repair or a maintenance activity can be prioritized in advance for inspection based on their historical performance. Therefore, the primary objective of this dissertation is to develop a sanitary sewer pipe condition prediction model. Data collected from City of Fort Worth, Texas, is utilized in model development. Various supervised machine learning algorithms such as logistic regression (LR), k-nearest neighbors (k-NN) and random forests (RF) are employed. Numerous evaluation metrics such as precision, recall, F1-score and area under curve (AUC) are estimated to compare the performance of developed models. Resulted F1-score for the RF model is 0.94 while LR and k-NN models resulted 0.83 and 0.44, respectively. The results show that random forests model performed better than both LR and k-NN models. As a secondary objective of this dissertation, a decision support tool was developed for asset managers to utilize above models during inspection phase to estimate condition of their sanitary sewers for identification of critical sewers in need of immediate attention.

# Table of Contents

| CHA | PTER 1 INTRODUCTION AND BACKGROUND 1 |
|-----|--------------------------------------|
| 1.1 | Introduction1                        |
| 1.2 | Problem Statement                    |
| 1.3 | Objectives7                          |
| 1.4 | Scope of Work                        |
| 1.5 | Methodology                          |
| 1.6 | Hypothesis                           |
| 1.7 | Chapter Summary 10                   |
| CHA | PTER 2 LITERATURE REVIEW 11          |
| 2.1 | Background and Overview11            |
| 2.2 | Asset Management 12                  |
| 2.3 | Deterioration of Sewer Pipes         |
| 2.4 | Factors Influencing Deterioration14  |
| 2.4 | 4.1 Pipe Age                         |

| 2.4                | 4.2 Pipe Material                                                                                                     | . 17                 |
|--------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------|
| 2.4                | 4.3 Pipe Size (Diameter)                                                                                              | . 18                 |
| 2.4                | 4.4 Pipe Length                                                                                                       | . 19                 |
| 2.4                | 4.5 Pipe Gradient (Slope)                                                                                             | . 20                 |
| 2.4                | 4.6 Pipe Depth                                                                                                        | . 20                 |
| 2.4                | 4.7 Location of Pipe, Surface Type and Loading                                                                        | . 21                 |
| 2.4                | 4.8 Soil Type                                                                                                         | . 21                 |
| 2.4                | 4.9 Corrosion                                                                                                         | . 22                 |
| 2.4                | 4.10 Soil pH                                                                                                          | . 22                 |
| 2.4                | 4.11 Groundwater Level                                                                                                | . 23                 |
| 2.5                | Condition Assessment of Sanitary Sewer Pipelines                                                                      | . 24                 |
| 2.:                | 5.1 PACP Scoring System                                                                                               | . 24                 |
| 2.5                |                                                                                                                       | 24                   |
|                    | 5.2 Importance of Sewer Pipe Condition Prediction                                                                     | . 26                 |
| 2.6                | 5.2 Importance of Sewer Pipe Condition Prediction<br>Machine Learning and Artificial Intelligent models in Sewer Pipe | . 26                 |
|                    |                                                                                                                       |                      |
| Con                | Machine Learning and Artificial Intelligent models in Sewer Pipe                                                      | . 27                 |
| Con<br>2.7         | Machine Learning and Artificial Intelligent models in Sewer Pipe                                                      | . 27<br>. 33         |
| Con<br>2.7<br>CHAI | Machine Learning and Artificial Intelligent models in Sewer Pipe<br>adition Prediction                                | . 27<br>. 33<br>. 34 |

| 3.3 | Preliminary Data Insights     | 35 |
|-----|-------------------------------|----|
| 3.4 | Data Preparation              | 43 |
| 3.5 | Exploratory Data Analysis     | 44 |
| 3.  | 5.1 Age                       | 45 |
| 3.  | 5.2 Length                    | 45 |
| 3.  | 5.3 Slope or Gradient         | 46 |
| 3.  | 5.4 Diameter                  | 48 |
| 3.  | 5.5 Material                  | 48 |
| 3.  | 5.6 PACP                      | 50 |
| 3.6 | Chapter Summary               | 51 |
| СНА | PTER 4 MODEL DEVELOPMENT      | 52 |
| 4.1 | Introduction                  | 52 |
| 4.2 | Imbalanced Dataset Treatments | 53 |
| 4.  | 2.1 Random Under-Sampling     | 54 |
| 4.  | 2.2 Random Over-Sampling      | 55 |
| 4.3 | Cross-Validation              | 56 |
| 4.4 | Machine Learning Methods      | 57 |
| 4.  | 4.1 Logistic Regression       | 59 |

| 4.  | 4.2 k-Nearest Neighbors (k-NN)       | 61  |
|-----|--------------------------------------|-----|
| 4.  | 4.3 Tree Based Models                | 64  |
| 4.5 | Chapter Summary                      | 66  |
| СНА | PTER 5 MODELS PERFORMANCE COMPARISON | 67  |
| 5.1 | Introduction                         | 67  |
| 5.2 | Evaluation Metrics                   | 67  |
| 5.  | 2.1 Confusion Matrix                 | 67  |
| 5.  | 2.2 ROC Curve and AUC                | 69  |
| 5.  | 2.3 Accuracy                         | 71  |
| 5.  | 2.4 Precision                        | 71  |
| 5.  | 2.5 Recall                           | 72  |
| 5.  | 2.6 F1-Score                         | 72  |
| 5.  | 2.7 Summary of Evaluation Metrics    | 76  |
| 5.3 | Performance of Developed Models      | 77  |
| 5.  | 3.1 Logistic Regression              | 78  |
| 5.  | 3.2 k-Nearest Neighbors              | 87  |
| 5.  | 3.3 Random Forests                   | 96  |
| 5.4 | Chapter Summary                      | 106 |
| СНА | PTER 6 RESULTS AND CONCLUSIONS       | 107 |

| 6.1 | Introduction 107                                        | 1 |
|-----|---------------------------------------------------------|---|
| 6.2 | Results from Logistic Regression108                     | 3 |
| 6.3 | Results from k-Nearest Neighbors 109                    | ) |
| 6.4 | Results from Random Forests110                          | ) |
| 6.5 | Area Under the Curve (AUC) and F1-scores Comparison 111 | L |
| СНА | PTER 7 PRACTICAL APPLICATIONS 113                       | 3 |
| СНА | PTER 8 RECOMMENDATIONS FOR FUTURE STUDIES 115           | 5 |
| СНА | PTER 9 REFERENCES 117                                   | 7 |
| APP | ENDIX A ABBREVIATIONS 123                               | 3 |
| APP | ENDIX B DATA SAMPLE 126                                 | 5 |

# List of Figures

| Figure 1-1 Research Methodology                                      |
|----------------------------------------------------------------------|
| Figure 2-1 Serviceability of a Pipe 16                               |
| Figure 2-2 PACP Inspection Equipment Setup 25                        |
| Figure 2-3 Techniques Used in Prediction Model Development           |
| Figure 3-1 Overview of Length and PACP Scores                        |
| Figure 3-2 Sample of a MAPSCOGRID System in City of Fort Worth       |
| Figure 3-3 Overview of Diameter and PACP Scores                      |
| Figure 3-4 Pipe Materials and their Installation Years               |
| Figure 3-5 Pipe Materials and PACP Scores                            |
| Figure 3-6 Frequency Distribution Based on Pipe Age                  |
| Figure 3-7 Frequency Distribution Based on Pipe Length               |
| Figure 3-8 Frequency Distribution Based on Pipe Slope                |
| Figure 3-9 Frequency Distribution Based on Pipe Diameter             |
| Figure 3-10 Frequency Distribution Based on Type of Pipe Material 49 |
| Figure 3-11 Frequency Distribution of PACP Scores                    |
| Figure 4-1 Random Under-Sampling Technique                           |
| Figure 4-2 Random Over-Sampling Technique 55                         |
| Figure 4-3 5-Fold Cross Validation 57                                |
| Figure 4-4 Standard Logistic Function                                |

| Figure 4-5 Simplest form of a k-NN Model                              | 62  |
|-----------------------------------------------------------------------|-----|
| Figure 4-6 Lower-Dimensional Projection of the k-NN Predictor Space   | 63  |
| Figure 4-7 Working Structure of RF Algorithm                          | 65  |
| Figure 5-1 Confusion Matrix for a Binary Classification               | 68  |
| Figure 5-2 ROC Curve for a Binary Classification                      | 70  |
| Figure 5-3 Confusion Matrix for a Multi-Class Classification          | 73  |
| Figure 5-4 ROC Curves for Logistic Regression with Imbalanced Dataset | 79  |
| Figure 5-5 Error Prediction Rate for Imbalanced LR                    | 80  |
| Figure 5-6 ROC Curves for LR with Under-Sampled Dataset               | 82  |
| Figure 5-7 Error Prediction Rate for Under-Sampled LR                 | 82  |
| Figure 5-8 ROC Curves for LR with Over-Sampled Dataset                | 85  |
| Figure 5-9 Error Prediction Rate for Over-Sampled LR                  | 85  |
| Figure 5-10 ROC Curves for k-NN with Imbalanced Dataset               | 88  |
| Figure 5-11 Error Prediction Rate for Imbalanced k-NN                 | 89  |
| Figure 5-12 ROC Curves for k-NN with Under-Sampled Dataset            | 91  |
| Figure 5-13 Error Prediction Rate for Under-Sampled k-NN              | 92  |
| Figure 5-14 ROC Curves for k-NN with Over-Sampled Dataset             | 94  |
| Figure 5-15 Error Prediction Rate for Over-Sampled k-NN               | 94  |
| Figure 5-16 ROC Curves for RF with Imbalanced Dataset                 | 97  |
| Figure 5-17 Error Prediction Rate for Imbalanced RF                   | 98  |
| Figure 5-18 ROC Curves for RF with Under-Sampled Dataset              | 100 |

| Figure 5-19 Error Prediction Rate for Under-Sampled RF  | 100 |
|---------------------------------------------------------|-----|
| Figure 5-20 ROC Curves for RF with Over-Sampled Dataset | 103 |
| Figure 5-21 Error Prediction Rate for Over-Sampled RF   | 104 |
| Figure 6-1 Summary of Results from Logistic Regression  | 108 |
| Figure 6-2 Summary of Results from k-NN                 | 109 |
| Figure 6-3 Summary of Results from RF                   | 110 |
| Figure 6-4 AUC Comparison between LR, k-NN, and RF      | 111 |
| Figure 6-5 F1-score Comparison between LR, k-NN, and RF | 112 |
| Figure 7-1 Decision-Support Tool for PACP Prediction    | 113 |

## List of Tables

| Table 1-1 Factors Known to Influence Sanitary Sewer Deterioration  | 2   |
|--------------------------------------------------------------------|-----|
| Table 1-2 Scope of Work                                            | 8   |
| Table 2-1 Factors Affecting Sewer Pipe Deterioration               | 15  |
| Table 2-2 PACP Inspection Form Details Section                     | 26  |
| Table 2-3 PACP Condition Rating                                    | 26  |
| Table 3-1 Sample of Data Collected for the Study                   | 35  |
| Table 3-2 Details of Extracted Features                            | 44  |
| Table 4-1 Python Libraries Used in the Study                       | 58  |
| Table 5-1 Summary of Evaluation Metrics                            | 77  |
| Table 5-2 Precision, Recall, and F1 Metrics for Imbalanced LR      | 80  |
| Table 5-3 Precision, Recall, and F1 Metrics for Under-Sampled LR   | 83  |
| Table 5-4 Precision, Recall, and F1 Metrics for Over-Sampled LR    | 86  |
| Table 5-5 Precision, Recall, and F1 Metrics for Imbalanced k-NN    | 89  |
| Table 5-6 Precision, Recall, and F1 Metrics for Under-Sampled k-NN | 92  |
| Table 5-7 Precision, Recall, and F1 Metrics for Over-Sampled k-NN  | 95  |
| Table 5-8 Precision, Recall, and F1 Metrics for Imbalanced RF      | 98  |
| Table 5-9 Precision, Recall, and F1 Metrics for Under-Sampled RF   | 101 |
| Table 5-10 Precision, Recall, and F1 Metrics for Over-Sampled RF   | 105 |

#### CHAPTER 1

#### INTRODUCTION AND BACKGROUND

#### 1.1 Introduction

Underground pipeline systems in the U.S. span thousands of miles contributing a significant portion of the wastewater infrastructure assets (Najafi and Gokhale 2005). Since majority of wastewater infrastructure systems in the U.S. are more than 100 years old, any catastrophic failure to these wastewater systems could drastically disrupt the surrounding areas economically, socially and environmentally (EPA 2004). In addition to the effects on public health, emergency repair of failed sanitary pipes can cost an enormous amount to the municipality. Considering these social, economic, and environmental impacts, wastewater system must be protected from failure.

Unlike reactive maintenance practices carried out by some municipalities after failure of pipes, proactive maintenance must be accomplished that include inspection and maintenance activity in advance of failure or complete deterioration (Fenner 2000). Table 1-1 lists the common factors that could influence deterioration in sanitary sewer pipes. Generally, pipeline deterioration mechanism could be classified under any of the following:

- 1) Structural cracks, fractures, breaks and so on
- 2) Hydraulic flooding, encrustation, and grease
- 3) Corrosion chemical and external corrosion

#### 4) Erosion

5) Operational problems – roots, blockages, debris and so on

| <b>Construction Factors</b> | Local External Factors      | Other Factors                  |
|-----------------------------|-----------------------------|--------------------------------|
| Installation method         | Surface use                 | Sewage characteristics         |
| Standard of workmanship     | Surface loading (including  | Use of appropriate maintenance |
| Sewer size                  | construction traffic)       | methods                        |
| Sewer depth                 | Surface type                | Asset age                      |
| Sewer pipe material         | Traffic characteristics     | Sediment level                 |
| Bedding material and type   | Water main bursts/leakage   | Surcharge                      |
| Joint type and material     | Ground movement             |                                |
| Pipe section length         | Maintenance of other buried |                                |
| Connections                 | services                    |                                |
|                             | Groundwater level           |                                |
|                             | Infiltration/exfiltration   |                                |
|                             | Soil/backfill type          |                                |

# Table 1-1 Factors Known to Influence Sanitary Sewer Deterioration (Davies et al. 2001)

Underground utilities and wastewater collection systems deteriorate over time demanding utility owners to involve in continuous revisions and development of asset management frameworks to maintain the functionality of their assets (Najafi and Kulandaivel 2005). A study by the Environmental Protection Agency (EPA) has shown that up to half of the buried assets in studied systems might be beyond midpoint of their service lives (EPA 1999). Most of the municipal sewer systems in the United States are at least 60 years old and many communities have sewers that are older than 100 years (EPA 2015). In addition, this study stated that "among public agencies in the U.S., infrastructure asset management is used most extensively in the transportation sector." It has been found that nearly several hundred operational wastewater agencies in the United States did not develop or implement an asset management program (IIMM 2006). Therefore, the importance of updating asset management policies and programs can be emphasized.

"Asset management is defined as managing infrastructure capital assets to minimize the total cost of owning and operating them, while delivering the service levels customers desire (EPA 2002)." Basic requirements for an asset management system are: (1) to maintain an inventory of assets; (2) to assess the condition of assets; and (3) to provide an estimate of required budget to maintain an asset in a serviceable condition (Daziel and Macey 2004). Inspection and condition assessment of an asset are the preliminary tasks in an asset management program (Tscheikner-Gratl et al. 2020).

Condition assessment of sanitary sewer pipes are accomplished by various methods. In the U.S., sanitary sewers are commonly assessed using the Pipeline Assessment Certification Program (PACP), first developed by National Association of Sewer Service Companies (NASSCO) in 2002. However, it should be noted that not all municipalities follow the same program for inspecting condition of their sanitary sewer pipes (NASSCO 2018). The PACP defines each possible defect with a unique code as well as a score towards the structural integrity of pipe segment on a scale of 1 - 5, while 1 and 5 refer to good and poor conditions, respectively.

Historically, design, construction, maintenance, and operation of sanitary sewer systems were addressed by municipalities (Wirahadikusumah et al. 2001). Generally, closed-circuit television (CCTV) is employed to inspect the inner environment of pipes to capture their defects and failures. A certified operator by NASSCO observes the recorded video and manually appends defect codes to a spreadsheet or a computer program. The program is predefined with scores for each type of defect and their severity. Based on operator's judgement and coded defects, a final PACP score will be generated for an inspected sewer pipe segment (NASSCO 2018). However, inspecting a sewer pipe is an expensive and timeconsuming process since the PACP suggests a maximum camera speed of 30 feet or 9 meters per minute. Therefore, inspection of each sanitary sewer pipe is not feasible for any municipality or utility owner owing to their large inventory of assets (Malek Mohammadi 2019).

In addition, there are possibilities that sewer pipes in structurally good condition could be inspected by municipalities, which otherwise this considerable budget could be used for sewer pipe segments in need of repair and renewal. Efficient budget allocation could be achieved by predicting the condition of pipes based on historical performance of the same. Therefore, sanitary sewer pipes in need of repair or a maintenance activity must be prioritized in advance for inspection by predicting the future condition of sewer pipes.

#### 1.2 Problem Statement

A wide variety of researches have been accomplished to develop prediction models for future condition of sanitary sewer pipes (Malek Mohammadi et al. 2020, Salman and Salem 2012, Kienow and Kienow 2004, Najafi and Kulandaivel 2005, and Ariaratnam et al. 2001). Developed models employ traditional statistical methods as well as advanced machine learning techniques and artificial intelligent algorithms. However, there is no single standard model that could be employed by all municipalities owing to the differences in collected historical data about their sewer pipes (McDonald and Zhao 2001). Assessing the structural condition of a sanitary sewer pipe can be achieved by identifying the critical factors influencing deterioration of sewer pipes and by developing a prediction model based on identified factors. It should be noted that the factors are not examined for their causes on failures rather for their correlations with structural condition of sewer pipes. Therefore, for a condition prediction model to be employed by a municipality or a utility owner, the model must be able to predict the sanitary sewer pipe condition based on data collected by respective municipality or utility owner.

Based on literature studies focusing on condition prediction models, following limitations and recommendations are found:

• Malek Mohammadi (2019) recommended that a prediction model must be able to predict all five condition levels individually rather than transforming to binary classes.

5

- Laakso et al. (2018) suggested that potentially influential variables could be further investigated.
- Vladeanu (2018) developed a model using Markov chain but inadequate data limited the validation of developed model.
- Sousa et al. (2014) concluded that machine learning and artificial intelligent models were reliable over logistic regression models and further investigation could improve the accuracy of results.
- Opila (2011) developed a multi-dimensional linear model to predict the condition of sewer pipes and recommended that the model could be improved potentially.

Studied relevant research studies and models emphasize the knowledge gap in identifying critical factors on deterioration of sewer pipes and the need for machine learning and artificial intelligence algorithms in condition prediction model development. It was found that majority of the studies were based on binary classification. In addition, it was also found that majority of the studies trained their model with a limited number of material types, which prevents the model from predicting any critical pipe of excluded material type. It would be beneficial for an agency or utility owners when a developed a model can incorporates all material types from their inventory. Developed models in literature studies were compared based on a single evaluation metric such as accuracy or area under the curve value. This dissertation evaluates the developed models with different metrics rather than a single metric to effectively validate the performance of prediction models. Bridging the identified knowledge gap plays a key role as objectives for this study.

1.3 Objectives

The primary objectives of this research study are:

- To employ machine learning and artificial intelligent algorithms to develop a condition prediction model to predict the condition of sanitary sewers.
- To compare the results and accuracy levels of developed models; and recommend a suitable model for application.

The secondary objective of this research study is:

- To develop a decision-support tool for the asset managers and operators to effectively utilize the developed model.
- 1.4 Scope of Work

Table 1-2 illustrates the scope of this research study to include gravity flow sanitary sewers excluding force main sewer pipelines. To be consistent, sewer pipelines without any prior rehabilitation are considered for analysis and pipelines with a history of maintenance activity is not included. With respect to the pipe material, all 9 different types of materials, described in future sections, are included for further analysis.

| Description           | Included                                | Excluded                               |
|-----------------------|-----------------------------------------|----------------------------------------|
| 1. Pipe Functionality | Sanitary sewer pipes                    | -                                      |
| 2. Flow Type          | Gravity flow pipes                      | Force main pipes                       |
| 3. Rehabilitation     | Pipes in installed condition            | Pipes with any existing rehabilitation |
| 4. Inspection Type    | Pipes inspected based<br>on PACP manual | Pipes inspected without<br>PACP manual |

| Table 1-2 Scope | of Work |
|-----------------|---------|
|-----------------|---------|

#### 1.5 Methodology

Various machine learning and artificial intelligent algorithms are employed to develop a condition prediction model, which could predict the structural condition of sanitary sewers pipelines. Numerous factors recorded during prior inspections are used to develop the models. Figure 1-1 illustrates various steps involved in the model development.

The methodology of this study starts by defining a problem statement followed by objectives and the scope for this study. A comprehensive relevant literature review is accomplished to effectively utilize the previously conducted research studies. In the next step, data required for further analysis is collected from City of Fort Worth, Texas, is processed. The processed data is then used as input for various supervised learning algorithms to train the models. As a final step, the performances of various trained models is compared based on different evaluation metrics and a reliable model for condition prediction is selected.

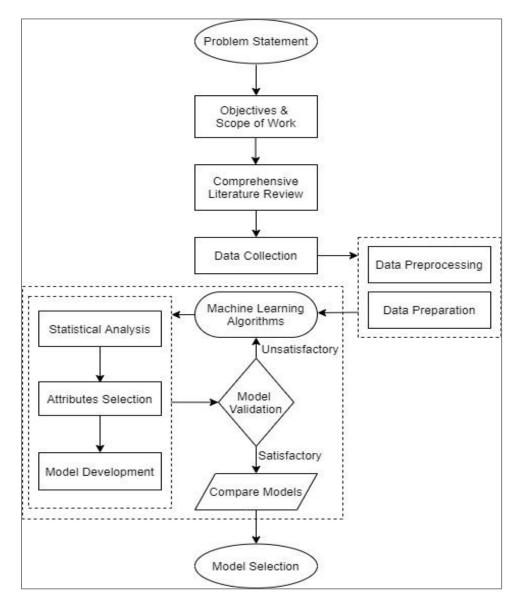



Figure 1-1 Research Methodology

#### 1.6 Hypothesis

Factors recorded by the wastewater department such as the age, length, slope, diameter, and material of pipe, location reference and drainage basin of a pipe, could forecast the condition of sanitary sewer pipes.

#### 1.7 Chapter Summary

Primarily, this chapter briefly discussed asset management components and current practices involved in condition assessment of sanitary sewer pipes in the United States. The knowledge gap in identifying critical factors on deterioration of sewer pipes and the need for machine learning and artificial intelligence algorithms in condition prediction is listed. Secondly, this chapter explained the research needs, objectives, scope of work followed by methodology.

#### CHAPTER 2

#### LITERATURE REVIEW

#### 2.1 Background and Overview

The ASCE 2021 infrastructure report card ranked an overall grade of D for wastewater infrastructure utilities, which means that the system is at poor condition. In the US, public sewage pipes span over 800,000 miles and lateral sewers span around 500,000 miles, contributing a significant portion of the underground utilities and infrastructure (ASCE 2017). The report also mentioned that in the future twenty years, 56 million new users will be connected to centralized treatment systems, which would require a significant budget to satisfy current and future demands. Combined investment needs for water and wastewater systems are estimated to be \$150 billion during 2016 – 2025, and a \$105 billion investment gap is found between estimated funds and required funds (ASCE 2017). Identified investment gap emphasizes the cruciality for efficient use of budget.

The Congressional Budget Office (CBO) had compared the public spending on transportation and water infrastructure during 1956 – 2017 and found that the spending accomplished for water utilities are much lesser than that for transportation (CBO 2018). EPA had stated that most of the municipal sewer systems in the United States are at least 60 years old and many communities have sewers that are older than 100 years (EPA 2015). In addition, the report added that old and aging sewers cause at least 23,000 to 75,000 sanitary sewer overflows per year. Therefore, effective maintenance and rehabilitation strategies must be followed to maintain the functionality of sewer systems. Interestingly, it was found that several hundred operational wastewater agencies in the United States did not develop or implement an asset management program (IIMM 2006). Therefore, the municipalities and utility owners are required to revise and update their asset management methods and programs.

#### 2.2 Asset Management

"Asset management is defined as managing infrastructure capital assets to minimize the total cost of owning and operating them, while delivering the service levels customers desire (EPA 2002)." According to Environmental Finance Center (EFC), "Asset management is an approach to manage the assets of a system that can assist the utilities with making better decisions on managing the aging assets (EFC 2006)."

New York's Department of Environmental Conservation states that "Municipal sewage system asset management (MSSAM) is the practice of managing a municipal sewage treatment plant and the associated sewage collection system's capital assets in a way that protect the public health and the environment while also minimizes the total cost of owning and operating those assets while delivering the desired levels of service (MSSAM Guide 2015)." The Orange Water and Sewer Authority's (OWASA) comprehensive asset management program was utilized to assess and prioritize infrastructure improvements needed to achieve desired customer and environmental service level (OWASA 2017).

There are various definitions given to asset management by researchers and government agencies. However, most of the asset management programs include elements such as inventory of assets, prioritization of critical assets, and financial planning to maintain their performance. The importance of asset management will increase with aging sewer systems. Compared to data-intensive disciplines such as bioinformatics and medical sciences, the value of data collected and stored for urban drainage system has not yet been fully satisfied (Tscheikner-Gratl et al. 2020). In addition, the sewer asset data handled by an agency must be stored and manipulated in such a way that it must be easily usable for operators and decision-makers as well .

#### 2.3 Deterioration of Sewer Pipes

Utility and pipeline systems form one of the most capital-intensive infrastructure systems, especially the sanitary sewer systems, owing to their direct and indirect effect on their surroundings environmentally as well as financially (Najafi and Gokhale 2005). A study by Davies et al. (2001) claimed that some of the basic performance requirements for sewer operation are

- a) Pipeline network cannot have blockages
- b) Drains and sewers must be watertight to avoid leakages
- c) Sewers shall not endanger existing adjacent structures

Deterioration of pipelines could be a result of different factors varying from structural loss of the pipe material to deterioration caused by the material transported by the utility system. Continued deterioration in these systems could result in failure of the pipes, which is termed as "collapse". Deterioration in a sewer pipe could be caused by many reasons and hence, estimating the rate of deterioration is a difficult task. In addition, deterioration can be influenced by random events during the service life of a sewer pipe as well. Therefore, Water Research Center (WRc 1986) concluded that estimating the rate of deterioration is unrealistic.

#### 2.4 Factors Influencing Deterioration

Deterioration of underground sewer pipes is a most complicated process since various pipe characteristics could play a vital role in the process (Yan and Vairavamoorthy 2003). Although estimation of the rate of deterioration for a sewer pipe is unrealistic, it is well known that any sewer pipe failure or collapse would follow any or combination of the following mechanism(s): 1) Structural, 2) Hydraulic, 3) Corrosion, 4) Erosion, and 5) Operational problems (Najafi and Gokhale 2005).

Detailed list of factors influencing the deterioration of sanitary sewer pipeline can be found in Table 2-1. These factors could be considered of primary importance during inspection processes, irrespective of the inspection technique (Malek Mohammadi et al. 2020).

| Physical Factors       | <b>Environmental Factors</b> | <b>Operational Factors</b> |
|------------------------|------------------------------|----------------------------|
| End invert elevation   | Backfill type Blockages      | Blockages                  |
| Installation method    | Bedding material             | Burst history              |
| Joint type             | Ground movement              | Debris                     |
| Pipe length            | Groundwater level            | Flow velocity              |
| Pipe shape             | pH                           | Hydraulic condition        |
| Pipe slope             | Road type                    | Infiltration/exfiltration  |
| Pipe age               | Root interference            | Previous maintenance       |
| Pipe depth             | Soil corrosivity             | Sediment level             |
| Pipe material          | Soil fracture potential      | Sewer type                 |
| Pipe size              | Soil moisture                | -                          |
| Start invert elevation | Soil type                    | -                          |
| -                      | Soil sulfate level           | -                          |
| -                      | Traffic characteristics      | -                          |
| -                      | Vehicle flow                 | -                          |

Table 2-1 Factors Affecting Sewer Pipe Deterioration (adapted from Malek Mohammadi et al. 2020)

## 2.4.1 Pipe Age

The age of a pipe is generally estimated at the time of inspection for condition assessment from the time of installation of the same. Various studies have proved that the age of pipes could influence the condition of sewer pipes (Ariaratnam et al. 2001, Chughtai and Zayed 2008, Kienow and Kienow 2004). The serviceability of pipes decreases with time and is divided into five stages, as shown

in the Figure 2-1 (Misiunas 2005). Another study by Singh and Adachi (2011) presented that pipe age is a detrimental factor in pipe failure. According to the study, pipe failure is represented in the shape of a bathtub curve, which is derived when the pipe failure rate is plotted against time. The failure rate was calculated based on historical data of the number of pipe breaks per unit time per unit length of pipe.

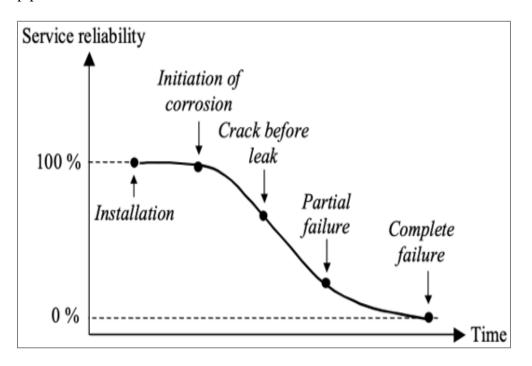



Figure 2-1 Serviceability of a Pipe (Misiunas 2005)

However, few studies concluded that there is no relationship between deterioration and pipe age. These studies stated that the age could not be considered as a significant factor for deterioration modelling or condition prediction (Tran et al. 2007, Tafuri and Dzuray 2004, and Davies et al. 2001).

#### 2.4.2 Pipe Material

Sewer pipes are made of wide variety of materials such as vitrified clay pipe (VCP), ductile iron (DI), cast iron (CI), polyvinyl chloride (PVC), reinforced concrete pipe (RCP), and so on. Each material has its own properties and failure mechanisms would differ as well. For instance, CI pipes and DI pipes are more susceptible to internal and external corrosion unlike plastic pipes. Plastic pipes, such as PVC or high-density polyethylene (HDPE) on the other hand, may withstand acidic and alkaline wastes, but they may deform excessively when loaded. Likewise, abrasion resistance is high in concrete pipes, and acid resistance is high in clay pipes (Singh and Adachi 2013 and Davies et al. 2001).

Material of the sewer pipes plays a major role during their service life. Pipe materials showed a direct relationship with pipe deterioration in few studies (Davies et al. 2001). Micevski et al. (2002) found that the pipe material is a significant factor of importance towards structural deterioration. The study indicated that concrete pipes are stronger and resilient compared to clay pipes. Bakry et al. (2016) stated that vitrified clay pipes are more resilient than asbestos cement and reinforced concrete pipes. The prediction model developed by Laasko et al. (2018) represented the significance of high-density polyethylene and concrete pipes. Different studies had discussed various effects of pipe material on the condition prediction models, and thus, any pipe material cannot be concluded as better than the other.

#### 2.4.3 Pipe Size (Diameter)

Numerous studies proved that the size of pipe or the diameter of pipe is an influential factor in the deterioration process. Sewer pipes are classified as smaller sewer pipes when the diameter of pipe is between 6 and 8 inches and as larger pipes when the diameter is more than 10 inches. Based on condition prediction models developed in few studies, it was found that the rate of sewer pipe condition's degradation decreases as the pipe diameter increases, whereas few other studies found that larger diameter pipes fail more frequently. Lubini and Fuamba (2011), Salman and Salem (2012) and Bakry et al. (2016) insisted that larger diameter pipes perform well than smaller diameter pipes. Because when obstacles occurred in the larger diameter pipes, they can still run, not necessarily at the full capacity, whereas smaller pipe diameter losses the hydraulic flow. The study stated that larger pipes are buried relatively deep, which could be the reason for better structural condition of large diameter pipes. Therefore, the larger pipe diameter has lower deterioration rates as compared to smaller diameter pipes (Malek Mohammadi et al. 2020, Micevski et al. 2002, Wirahadikusumah et al. 2001, Najafi and Gokhale 2005).

In contrast, the size of pipe was found to be insignificant in a study conducted by Tran et al. in 2007. In addition, according to the study by Jeong et al. (2005), larger pipes are more likely to deteriorate because they have more surface area exposed to sewage and the surrounding soil.

#### 2.4.4 Pipe Length

The length of a sewer pipe generally refers to the distance from entry manhole to exit manhole along the run during inspection. It is believed that shorter pipes are more likely to deteriorate faster than longer pipes. Longer pipes would have a minimum number of severe bends along the run that could result in less accumulation of debris or blockages (Davies et al. 2001, Najafi and Gokhale 2005). In contrast, longer sewer pipes were found to have a higher rate of deterioration because the likelihood of defects is higher in longer pipes (Malek Mohammadi 2019). It is also found that longer runs of sewers would eventually require a reasonable number of joints leading to the risk of infiltration (Jeong et al. 2005). Most common source of infiltration in pipelines is pipe joints, which can lead to soil and groundwater infiltration into sewer pipes.

Khan et al. (2010) discovered that the change in the pipe length has dual performance in the pipe condition. According to the study, when the pipe segment is smaller than 230 feet, the effect on the condition of sewer pipes is zero. However, when the pipe segment is longer than 230 feet, the deterioration rate was found to increase due to the end joints. The end joints were assumed to be a possible source of break, infiltration, and exfiltration. Correspondingly, Laasko et al. (2018) found that pipe segments longer than 131 feet deteriorate earlier than other pipelines in the system due to higher bending stress and potential defects in the longer pipe

segments. On the other hand, Salman and Salem (2012) found that longer pipe segments perform better than smaller pipe segments.

#### 2.4.5 Pipe Gradient (Slope)

Slope of the sewer pipe is a significant factor corresponding to the deterioration of sanitary sewer pipes (Baur and Herz 2002). Slope or gradient of a pipe can be estimated by dividing the difference between elevations from mean sea level (MSL) of pipe at start and end of the inspection by the inspected length as shown in Equation 2-1.

Slope or Gradient (%) = 
$$\frac{Elevation at origin - Elevation at end}{Inspected Length} * 100$$
 Equation 2-1

Relatively flat sewer pipes are found to deteriorate slower than pipes with greater gradient. When the slope is high, the flow rate will be high as well resulting in easier erosion (Najafi and Gokhale 2005). It is asserted that pipes with very less gradient could enable easier sediment deposition, which would lead to clogging and blockages. Sewer pipes with flat slopes tend to result in lower velocities, which would cause the wastewater to stay within the pipe for longer period resulting in natural hydrogen sulfide generation (Jeong et al. 2005).

#### 2.4.6 Pipe Depth

Depth of a sewer pipe is generally the distance from the pipe's crown (top) to the ground surface. Numerous studies have concluded that the failure or deterioration in sewer pipes are in correlation with the depth of the sewer pipes.

Studies claimed that sewer pipes buried at shallow depths are more likely to deteriorate sooner that those buried at greater depth (Gedam et al. 2016, Harvey and McBean 2014). According to a study by Khan et al. (2010), pipe depth was found to be a significant variable, and any rise in depth has a negative impact on sewer pipe condition level. However, studies by Davies et al. (2001), Tran et al. (2006), and Ana et al. (2009), insisted that depth of sewer pipe is insignificant during model development.

### 2.4.7 Location of Pipe, Surface Type and Loading

It is obvious that any underground utility structure will have an impact from the surface loads above it. The amount of surface loading carried to the sewer pipe is affected by land use and type of traffic above the pipe. Though the surface loads vary in frequency, making it difficult to estimate their effect on deterioration, a relationship can be found between the surface loading type and the sewer pipe (Kley and Caradot 2013, Najafi and Gokhale 2005). According to Bakry et al. (2016), sewage pipes deteriorate more quickly when they are situated near industrial areas. Few studies affirmed that there is no significant effect of pipe location on their structural condition (Tran et al. 2007, Micevski et al. 2002).

## 2.4.8 Soil Type

Wirahadikusumah et al. (2001) claimed that the underlying soil has a major impact on sewer pipe degradation. In addition, the type of soil surrounding the sewer pipe is one of the most important factors that could affect frost heave,

21

strength of soil-pipe interaction, and external corrosion, which could lead to failure mechanisms (Najafi and Gokhale 2005). It was determined that pipes installed in unstable soil experienced greater changes in condition compared to pipes installed in stable soil (Tafuri and Dzuray 2004). When there is a lack of soil support around the sewer pipe, it can be shifted. The lack of ground or soil support causes formation of voids around the pipe, making it more likely for the sewer pipe to break or deform. In contrast, Laakso et al. (2018) found that the soil type was not a significant factor in their developed model.

### 2.4.9 Corrosion

In general, corrosion in metallic pipes is caused by an electrochemical reaction between the exposed pipe's outer surface and the soil environment around it. It should be noted that different pipe materials have different corrosion resistance qualities. It is found that the corrosion rate is influenced by various factors such as soil acidity, resistivity, pH content, oxidation-reduction, sulfide, moisture, aeration, and so on. Longitudinal failure may occur in conjunction with pipe wall weakening due to corrosion (Najafi and Gokhale 2005).

### 2.4.10 Soil pH

It is important to identify the influential parameters enhancing corrosivity of the soil, which could initiate the external corrosion in pipes. Since different pH ranges induce distinct corrosion mechanisms, soil pH is an excellent indicator of external corrosion (Najafi and Gokhale 2005). In conjunction with soil pH, the material of pipe plays an important role as stated earlier. Compared to steel pipes, cast iron pipes are more likely to corrode in the same corrosive situations (Malek Mohammadi 2019).

### 2.4.11 Groundwater Level

One of the most common failures in sewer pipes is the infiltration of naturally available groundwater into the sewer pipes. This infiltration could cause overflows as well as soil sediments inside the sewer pipes. Malek Mohammadi et al. (2019) claimed that sewer pipes in areas where the groundwater level is considerably high are more likely to fail than sewer pipes in areas where the groundwater level is below sewer level, which was because of increase in amount of load on pipes from groundwater.

The rate of frost heave is dictated by the available free water around the pipe, which is crucial for external corrosion as well. Lack of soil support and infiltration are caused by the groundwater around the pipe (Davies et al. 2001). As a result, sewer pipes fail structurally because of lack of proper support.

Based on various literatures studied, various factors not limited to the above were identified to influence deterioration in a sewer pipe either internally or externally. However, it should be noted that it is not economically feasible for any municipality to track or collect all the listed factors to their inventory of data.

### 2.5 Condition Assessment of Sanitary Sewer Pipelines

In sewer system asset management, there is no single standard procedure available to evaluate the structural condition of sewer pipes. Various manuals have been developed by agencies such as Water Research Center (WRc), National Association of Sewer Service Company (NASSCO), and Water Environment Federation (WEF), to evaluate the structural condition of sewer pipes. The manuals provide a step-by-step procedure to estimate a condition rating for the sewer pipes. In the US, PACP developed by NASSCO in partnership with WRc, is the wellestablished manual for structural condition estimation of sanitary sewer pipes.

### 2.5.1 PACP Scoring System

In an aim to standardize the way of sewer pipes evaluation, the PACP was established by the NASSCO in 2002. The PACP is a flexible, customizable program to assist agencies and utility owners to record the defects and assess the condition of sewer pipes for decision-making on repair and rehabilitation. Various possible defects in the sewer pipes are uniquely coded in accordance with their severity. For a sewer pipe to be evaluated using the PACP manual, a CCTV camera is setup to record the inner environment of the pipe from one manhole to the other, as shown in Figure 2-2.

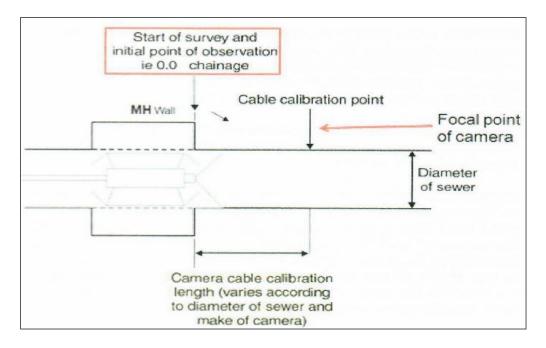



Figure 2-2 PACP Inspection Equipment Setup (NASSCO 2018)

Once the camera is setup at the origin or upstream manhole, the slack is pulled from the next manhole opening. As per the manual, the maximum speed of CCTV camera setup is 30 feet per minute. While the camera moves from origin towards the next manhole, a certified PACP operator watch the live TV stream and record the visible defects into a predefined spreadsheet program. There are nearly 230 different kinds of defects discussed in the program and a sample of the PACP inspection form is shown in Table 2-2. When the inspection is complete, computer program estimates the final condition score of each inspected pipe segment. Final score of inspected sewer pipe can be interpreted as shown in the Table 2-3. A PACP score of 1 refers to excellent condition pipe where PACP score 5 indicate that the pipe has already failed or would fail within the next 5 years.

| Distance<br>(feet) | Video<br>Ref | Code               | Continuous<br>Defect | Value     |  |   | Joint | Circumf<br>locat | Image<br>Ref. | Remarks |
|--------------------|--------------|--------------------|----------------------|-----------|--|---|-------|------------------|---------------|---------|
|                    |              | Group/<br>Modifier |                      | Dimension |  | % |       |                  |               |         |
|                    |              |                    |                      |           |  |   |       |                  |               |         |
|                    |              |                    |                      |           |  |   |       |                  |               |         |
|                    |              |                    |                      |           |  |   |       |                  |               |         |

 Table 2-2 PACP Inspection Form Details Section (NASSCO 2018)

Table 2-3 PACP Condition Rating (NASCO 2018)

| PACP | Description               | Estimated Time to Failure                                   |  |  |
|------|---------------------------|-------------------------------------------------------------|--|--|
| 1    | Excellent                 | Unlikely to fail in the foreseeable future                  |  |  |
| 2    | Good                      | 20 years or more                                            |  |  |
| 3    | Fair                      | 10 years to 20 years                                        |  |  |
| 4    | Poor                      | 5 years to 10 years                                         |  |  |
| 5    | Needs Immediate Attention | Already failed or likely to fail<br>within the next 5 years |  |  |

# 2.5.2 Importance of Sewer Pipe Condition Prediction

It is obvious that not all the sewer pipes in an inventory would be at a structurally bad condition or near failure. In addition, inspecting every individual sewer pipe in a system would be an expensive and time-consuming process. Based on the speed of operation and involved test setup as discussed in previous section, financial requirements for every inspection operation could be understood. Therefore, there is a need to identify critical sewer pipes for inspection among the entire inventory. Inspection of sewer pipes can be limited by scrutinizing the pipes in bad condition by predicting them in advance. This prioritization in inspection of pipes would save thousands of dollars to any municipality (Chae and Abraham 2001, Chae and Abraham 2000, Wright et al. 2006).

Such prediction of sanitary sewer pipe's condition is not a new concept. With the advancement in computer technology and advanced statistical analysis using machine learning algorithms or artificial intelligence, numerous studies have been accomplished by researchers to predict the condition of sewer pipes. However, there is no single standard model could be developed because every municipality do not record the same kind of data to their database inventory. Therefore, there is a huge demand in many municipalities for a proper asset management plan and inspection prioritization.

2.6 Machine Learning and Artificial Intelligent Models in Sewer Pipe

Condition Prediction

The science (and art) of programming computers to learn from data is known as machine learning. Arthur Samuel defined machine learning in 1959 as a field of study that gives computers the ability to learn without being explicitly programmed (Géron 2017). The machine learning can be broadly classified into 2 categories such as 'supervised learning' and 'unsupervised learning'. Most of the data analysis performed in various studies related to condition prediction fall under supervised learning. In supervised learning, the computer program or algorithm is trained or directed to study the recorded historical data that includes the output or target variable. Based on the training, prediction is estimated for a new set of data or unrecorded data. Whereas with respect to unsupervised learning, the data used for training would not include the target variable.

Various training models and algorithms are being developed depending on the type of application. Most common techniques employed in machine learning models are either based on regression, classification, or combination of both. Various names are given to algorithms based on working principles of the program such as decision trees and k-Nearest Neighbors (clustering algorithm). Research studies conducted to predict the condition of sanitary sewer pipes are briefly summarized in the following section.

In a binary logistic regression, the relationship between a single nonmetric (binary) dependent variable and a set of metric or nonmetric independent variables is estimated. Model's output would be a probability of the instance being either true or false, success or failure, and zero or one. For instance, the dependent variable in sewer condition prediction models could be characterized as structurally good or bad. As a notation, sewer pipes in good condition can be classified as 1 in output and pipes in poor condition as 0 (Malek Mohammadi 2019).

Various studies have been performed to predict the structural condition of sewer pipes based on logistic regression models for decades. A study conducted by Ariaratnam et al. in 2001 predicted the likelihood of a sewer infrastructure system to be in a structurally deficient state. The study developed a binary classification model and the developed model utilized various factors such as the age, diameter, and material of pipe, transported waste type, and average depth of installed pipe. However, the model was validated using only 86 records, which is comparatively lesser for a municipal database and therefore, the resulted model could lead to misclassification.

An expert knowledge-based support system to prioritize sewer pipeline inspection was developed in a study by Hahn at al. in 2002. The study employed the probabilistic method, Bayesian belief network, to develop the model based on interviews and case studies. A decision support tool named Sewer Cataloging, Retrieval and Prioritization System (SCRAPS) was developed based on the likelihood and consequences of failures. However, the developed SCARPS tool was based on WRc's 1986 paradigm of pipe assessment. In addition, the study did not focus on model's applicability in field.

Najafi and Kulandaivel in 2005 developed a condition prediction model using Artificial Neural Network (ANN) technique. Various factors such as age, length, size, material type, depth, slope, and sewer type were considered as independent variables to train the model. It was found the model performed well during training and the performance was unsatisfactory during testing. The study acknowledged that the results required thorough statistical analysis for further application. It was recommended that a model must depend on a larger and more inclusive data.

Structural and operational condition assessment models were developed in a study by Chughtai and Zayed (2008). Multiple regression models were developed based on independent variables such as age, diameter, depth, length, material, bedding factor, and street category. The study developed 3 models for 3 different pipe materials namely, concrete, asbestos cement, and PVC. Developed models were good at identifying sewer sections vulnerable to overflows and basement flooding. However, the models were not capable of quantifying the criticality of sewer pipes.

Syacharni et al. (2013) developed a decision-tree based deterioration model for sewer pipes. The study employed various techniques such as regression, decision trees, and neural networks. Models were trained with parameters such as length, slope, diameter, material, root, sludge, and debris. It was found that decision tree model outperformed both regression and neural network models. It was interesting to notice that root and sludge were found to be influential factors over pipe material.

Another study by Harvey and McBean (2014) developed a structural condition prediction model for individual sanitary sewer pipes. Machine learning technique, random forests was utilized to train the model. The model used sewer pipe age, material, diameter, depth, length, slope, sewer type, invert, and road type

30

as attributes while training the model. The developed model found to exhibit an area under the receiver operator characteristic (ROC) curve (AUC) value of 0.81. However, a model cannot be evaluated solely based on the ROC curve and AUC values; other evaluation metrics such as precision and recall must be considered.

In 2017, Hernandez et al. developed a structural condition prediction model using various machine learning algorithms such as logistic regression, random forests, multinomial logistic regression, linear discriminant analysis, and support vector machine. The study compared the performance of various models. However, true positive rate and false positive rate were the only evaluation metrics used to compare the performance. In addition, prediction capability was found to be unsatisfactory as well.

Another study by Laakso et al. in 2018 accomplished condition prediction model development using logistic regression based on a wide variety of factors such as age, material, diameter, depth, length, slope, sewer type, location, road type, number of trees, and flow rate. The developed model resulted an accuracy of 56%. However, the model utilized around 19 predictor variables, which is not economical or practically viable for municipalities to include all variables in their inspection databases.

A study accomplished by Malek Mohammadi et al. in 2020 developed condition prediction models for sanitary sewer pipes using various machine learning models such as decision trees, random forests, and gradient boosting tree.

31

The developed model based on gradient boosting tree was found to have an accuracy of 87%. Though the accuracy level was acceptable, the model classified the condition rating of pipes on a binary class rather than multi-class condition ratings. The study had recommended that the future research could concentrate on multi-class condition prediction, which would be more beneficial for the municipality during inspection and condition assessment phases.

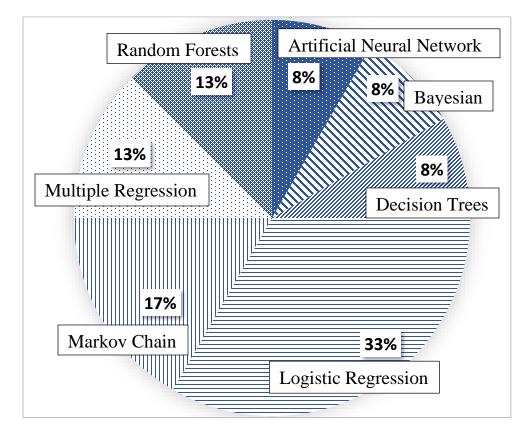



Figure 2-3 Techniques Used in Prediction Model Development

As a summary, different techniques employed in various research studies to develop condition prediction model is illustrated in the Figure 2-3. Majority of the

studies considered logistic regression to develop a prediction model. A significant number of studies has given importance to machine learning algorithms like decision trees and random forests. However, studied literature studies have recommended that the application of machine learning and artificial intelligent techniques could be further expanded.

### 2.7 Chapter Summary

This chapter discussed various factors that could lead to structural deterioration in sanitary sewer pipes. It was found that sewer pipe failure is a complex process involving multiple factors. Inspection and condition assessment of all pipes in an inventory of wastewater agencies or municipalities on a regular basis is not economically viable. Thus, prioritizing the inspection of sanitary sewer pipes by predicting their condition could be a beneficial solution for efficient budget allocation for any municipality. Secondly, the importance for machine learning and artificial intelligence in structural condition prediction of sanitary sewer pipes was discussed based on numerous research studies. It was found that further studies are recommended by various researchers to develop multi-class prediction models rather than binary classification.

## CHAPTER 3

### DATA COLLECTION AND PREPARATION

### 3.1 Introduction

Inspection and condition assessment of sanitary sewer pipes are the critical steps involved in asset management of the system. It is well known that the CCTVs are most employed in the United States for inspection of sanitary sewer pipes (NASSCO 2018). Historical data collected by the City of Fort Worth (Texas) has been used in this study to develop a condition prediction model that could serve as a basis to prioritize future inspection of sanitary sewer pipes. In the City of Fort Worth, wastewater collection system (sewers) is separate from the storm drainage system and stormwater does not flow through the sewers. The scope of this study is limited to gravity flow sanitary sewer pipes excluding force main systems.

Like most other municipalities, CCTVs are primarily employed in the inspection and condition assessment process of sanitary sewer pipes. Based on interviews with officials, it was found that sewer pipe inspection decisions were made based on engineering judgement and operator experience. The inventory of the sewer system is stored using geographic information system (GIS) databases. The inventory of recorded database includes information but not limited to the installation details of pipes, surrounding soil type, location of pipe with respect to geographical maps, and so on. Detailed discussion of various information collected from the wastewater department is explained in following sections.

# 3.2 Overview of Collected Data

With more than 280-miles length of large diamter sewer interceptors whose diamters are greater than 24 inches, the wastewter system forms a complex underground infrastructure. The GIS is primarily employed to record, manage, and maintain the inventory of sewer systems. Based on the historical inspection data provided by the city, it was found that the CCTV inspection for inner environment of pipes accomplying to PACP manual started in the year 2000. During inspection, each and every pipe is given an unique name for future identification, referred as GIS ID. A sample of the data collected from the city of Fort Worth is shown in the Table 3-1. Dataset contained 32,854 number of unique pipe segment details.

INSPEC INSTALL INSPEC MAPSCO DOWN GIS ID UPELEV **SUBAREA** STYPE DIAMETER MATERIAL PACP DATE LENGTH GRID ELEV DATE 60717 6/6/2011 7/25/1958 93G 551.25 VC08\_01 1 2 460 551.44 39 CI 60718 12/12/2010 8/18/1988 93G 550.88 VC09 01 CONCRETE 844 551.3 1 54 2 60719 12/28/2017 7/17/2001 415 46L 790.35 MC04\_04 1 PVC 1 792 8 60720 1/5/2018 7/1/2004 426 46H 760.1 752.45 MC04 04 1 8 PVC 1 11/16/2012 12/3/1964 CF05\_03 1 VCP 3 60723 259 89F 673.9 668.57 6 11/19/2012 12/9/1964 CF05\_03 1 6 CONCRETE 2 60724 503 89F 689.06 673.9 60726 8/7/2019 3/1/2005 112 119G 641.37 640.73 VC11\_03 1 8 PVC 1 60728 8/9/2017 4/25/2002 607.88 VC11\_01 PVC 444 106U 610.87 1 24 1 2/28/2002 VC11\_01 PVC 2 60729 4/28/2017 396 106S 647.17 645.67 1 24 2 6/11/1947 47Y VCP 60732 11/13/2014 203 723.7 716.86 MC03\_06 1 6

 Table 3-1 Sample of Data Collected for the Study

### 3.3 Preliminary Data Insights

GIS\_ID is an unique identification code given by the inspection operator at the time of inspection for future use. INSTALL\_DATE refers to the date at which

the pipe was installed for service. It was interesting to note that sewer pipes were installed as early as 1909 and the same are in service to date. Majority of the pipes installed in the early twentieth were primarily concrete or vitrified clay pipes. In addition, it was found that around 70% of the total number of pipes were installed in a span of 30 years between 1980 and 2010.

INSPEC\_DATE refers to the date when the corresponding inspection was completed. Though the first inspection data dates back to the year 2000, only around 500 individual pipe segments were inspected for condition assessment until the year 2005. Difference between the installed date and inspection date would yield one of the important characteristics, age of the particular pipe segment.

INSPEC\_LENGTH is the total distance in feet measurements inspected from the upstream manhole to the downstream manhole of a sanitary sewer segment. The inspected length of pipes varied from a minimum of 8 feet all the way to 5,500 feet at few instances. Inspection records show that almost 99% of the sewer pipes do not run longer than 1,000 ft.

Based on sewer design guidelines, the manual recommended a maximum of 600 ft spacing between manholes for sewer pipes with diameter greater than 27 inches (American Iron and Steel Institute 1999). However, the manual metioned that upon approval by the agency, the spacing between manholes (i.e., the inspection length) can exceed the design manual specified 600 ft. Therefore, for this study, the maximum length of sewer segment is limited to 1,500 ft.

36

Interestingly, none of the sewer pipes with a PACP scores of 5 and 4 had their lengths greater than 1,500 ft and 2,000 ft, respectively, as shown in the Figure 3-1.



Figure 3-1 Overview of Length and PACP Scores

As illustrated in the Figure 3-1(a), highlighted number of pipes in the left are corresponding to the selected PACP score of 1 on the right. Similarly, in Figure 3-1(b, c and d), the number of pipes in different length ranges can be found correspinding to the PACP scores of 2, 4, and 5, respectively. The comparison between the PACP scores of pipes and their corresponding lengths in the illustration indicates that the shorter pipes are more prone to deterioration compared to longer pipes.

MAPSCOGRID is basically a geographical location reference for the particular pipe. Mapsco, situated in Addison, Texas, was a privately held publisher of maps and atlases, founded in 1948. Since 1952, Mapsco has become a leading maker of maps for the states of Texas, New Mexico, Oklahoma, and Colorado areas. Maps for cities were developed in the form of numbered grid systems; and were referred as Mapscogrids. An example of a Mapscogrid for a part of City of Fort Worth is shown in the Figure 3-2.

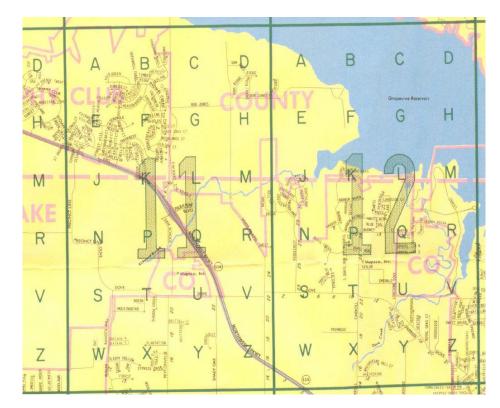



Figure 3-2 Sample of a MAPSCOGRID System in City of Fort Worth (Geography and Map Division, Library of Congress, 2020)

As shown in Table 3-1, MAPSCOGRID for each pipe segment is an unique alphanumeric code. The first numerical part refers to the rectangular box or grids in the map. Once the numerical grid is located, the pipe can be found at the following alphabet's vicinity. The sanitary sewer systems in the city of Fort Worth runs under around 988 unique values.

UPELEV and DOWNELEV are the elevations in feet above sea level at upstream manhole and downstream manhole, respectively. This information is of much importance to estimate the slope or gradient of the sewer pipe. The geography of City of Fort Worth is relatively flat and there is no huge difference between the elevations at upstream manhole and downstream manhole. Almost all of the sanitary sewer pipes have their UPELEV and DOWNELEV between 400 ft and 1,000 ft above the sea level.

SUBAREA refers to the drainage basin or the type of surrounding area. Based on the drainage basin, unique alphanumeric codes were used to refer to the subarea surrounding the sewer pipelines. The first two alphabets in SUBAREA refer to the type of the basin such as Clear Fork (CF), Village Creek (VC), Big Fossil (BF), and so on. It was noticed that majority of the sewer pipes were located at BF, CF, and VC basins.

STYPE column in the collected data refers to the types of sewer pipelines based on their flow. The types of sewer flows are either gravitational or force mains. The gravity main sewers are termed 1 and force main sewers are termed 2. For this study, gravity main sewers are considered for further analysis.

DIAMETER column represents the size or diameter of the pipe in inches. Diameter of the sewer pipes ranged from 4 inches to 96 inches. However, almost 90% of the pipes were found to be less than 20 inches in diameter and 6% of the pipes were in the range between 20 and 40 inches. Interestingly, none of the pipes with diameter greater than 60 inches were found to have a PACP score of 5, which indicates that pipes with larger diameter were in structurally fair condition compared to smaller diameter pipes. As shown in Figure 3-3, highlighted diameter values in the left are corresponding to the selected PACP score of 5.

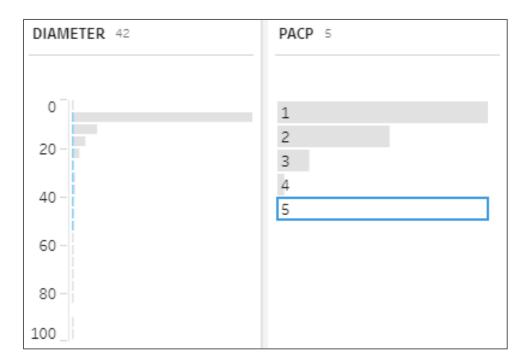



Figure 3-3 Overview of Diameter and PACP Scores

MATERIAL column in the Table 3-1 represents the type of material used to manufacture the sewer pipe. Records indicate that 9 different material types were used in sewer pipes such as armco truss (AT), cast iron (CI), concrete, ductile iron (DI), fiberglass, high density polyethylene (HDPE), polyvinyl chloride (PVC), steel, and vitrified clay pipes (VCP). It was found that a very few number of pipes made of AT, CI, fiberglass, and steel, were used in gravity main sewers while the majority of the pipes are made of PVC, VC, concrete, and DI. AT is a type of plastic material with inner and outer PVC walls filled with a lightweight material called Mearlcrete for additional pipe stiffness and compressive strength (Moore 2015).

| INSTALL_DATE 5K | MATERIAL 9           | INSTALL_DATE 5K | MATERIAL 9           |  |
|-----------------|----------------------|-----------------|----------------------|--|
| 01/01/1900      | P.V.C.               | 01/01/1900      | P.V.C.               |  |
| 01/01/1940 -    | V.C.<br>CONCRETE     | 01/01/1940 -    | V.C.<br>CONCRETE     |  |
| 01/01/1980 -    | D.I.<br>H.D.P.E.     | 01/01/1980 -    | D.I.<br>H.D.P.E.     |  |
| 01/01/2020 -    | FIBERGLASS<br>C.I.   | 01/01/2020 -    | FIBERGLASS<br>C.I.   |  |
| (a)             | ARMCO TRUSS<br>STEEL | (b)             | ARMCO TRUSS<br>STEEL |  |

Figure 3-4 Pipe Materials and their Installation Years

It was interesting to notice that though PVC pipes constitute majority of the sewer pipes, most of them were installed after 1980 as shown in the Figure 3-4(a).

At the same time, vitrified clay pipes constitute a considerable amount of total pipes and were majorly installed before 1980. In addition, it was found that almost all types of pipes were facing deterioration as well, as shown in the Figure 3-5.

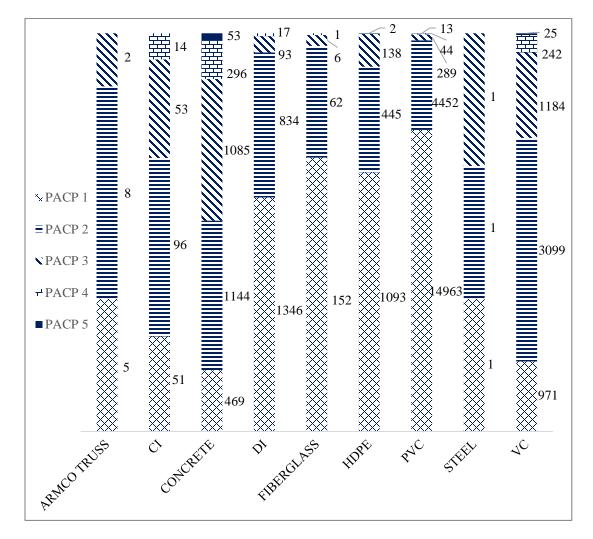



Figure 3-5 Pipe Materials and PACP Scores

The final column in the collected data lists the PACP scores for each inspected pipe segment. As already discussed, the PACP scores range on a scale from 1 to 5, where 1 refers to a structurally good condition and 5 refers to a pipe

nearing failure. The Figure 3-5 illustrates the distribution of PACP scores among different pipe materials.

As shown in the Figure 3-5, structurally weak pipes are distributed in majority of the pipe materials such as concrete, PVC, VC, fiberglass, and HDPE. It was found that majority of pipes with PACP score of 5 are made of concrete and comparitively fewer pipes are made of PVC. However, it can not be concluded that a particular type of material is better than the other.

3.4 Data Preparation

The data collected from inventory of databases are in their original form and have to be processed in order to utilize them in model development or for any form of statistical analysis. Because, the GIS database collected might include erroneous or misleading data in its original form as they are manually entered to the databases. The pre-processing of collected data is one of the important step in preparing the data for further analysis.

In the pre-processing step, collected original data is refined to exclude the redundant information from the dataset for further analysis. In other words, it can be defined as the extraction of required information from the original form of data, which can be utilized as input feed to computer programs. As one of the steps in data preparation, the collected data is processed to avoid any null values. Null values found in the MAPSCOGRID field were excluded from further analysis. Therefore, final dataset with 32,751 datapoints was utilized for analysis and model

development. As a next step in data preparation, individual features such as age and slope were calculated based on collected data to include in model development phase. Exploratory analysis of each feature is discussed in detail in the following section.

# 3.5 Exploratory Data Analysis

Processed dataset was then used to extract features for data analysis and model development. Final dataset processed for analysis included 6 independent variables and a multi-class categorical dependent variable. Extracted features include information such as age, length, diameter, slope, MAPSCOGRID, and SUBAREA. Details of individual feature is shown in Table 3-2.

| Variable Type                  | Features Extracted<br>(Variables) | Description<br>(Data Types) |  |  |
|--------------------------------|-----------------------------------|-----------------------------|--|--|
|                                | Age                               |                             |  |  |
|                                | Length                            | Continuous Numerical        |  |  |
| Independent                    | Slope                             |                             |  |  |
| (Response<br>Variables)        | Diameter                          |                             |  |  |
|                                | MAPSCOGRID                        | Nominal                     |  |  |
|                                | SUBAREA                           | Nominal                     |  |  |
| Dependent<br>(Target Variable) | РАСР                              | Multi-class<br>Categorical  |  |  |

Table 3-2 Details of Extracted Features

# 3.5.1 Age

The first feature extracted from the collected data is the age of the inspected sewer pipe segment. The difference between inspection date and installation date would yield the age of the particular sewer pipe segment. The distribution of age of sewers is shown in the Figure 3-6. As illustrated in the Figure 3-6, the age of pipe was found to be from less than an year to a maximum of 107 years. Almost 73% of the pipes were found to be under 30 years in service since installation and 2% of the pipes were found to be more than 80 years of age.

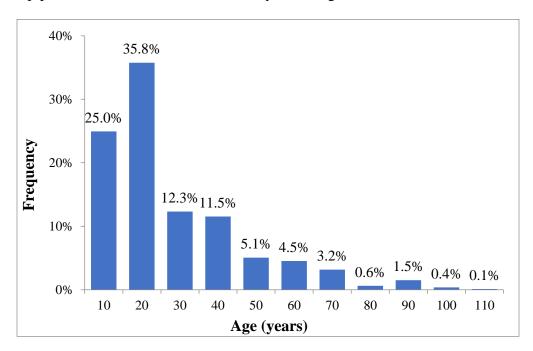



Figure 3-6 Frequency Distribution Based on Pipe Age

# 3.5.2 Length

Length of the sewer pipe segment is the manhole to manhole distance recorded during inspections. Distribution of frequency of pipe segment length in percentage is shown in Figure 3-7. The length of inspected sewer pipe segment varies from 8 ft to 1,500 ft. It can be seen that around 81% of total pipe segments spans less than 400 ft and a very few observations were found to run more than 1,000 ft of length.

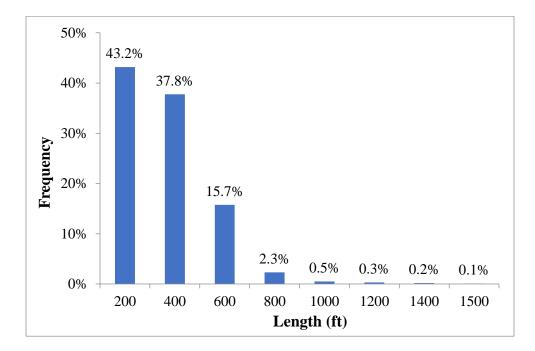



Figure 3-7 Frequency Distribution Based on Pipe Length

## 3.5.3 Slope or Gradient

Slope of the sewer pipe segment is calculated using the vertical and horizontal displacements. It is estimated by dividing the difference between upstream manhole elevation and downstream manhole elevation by the length of the inspected pipe segment. It was found that 99% of the pipes were relatively flat with a maximum slope of 0.2%. However, maximum slope was found to be 5%. The distribution of slope is illustrated in Figure 3-8.

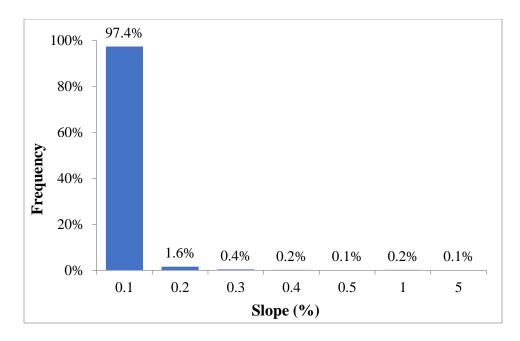



Figure 3-8 Frequency Distribution Based on Pipe Slope

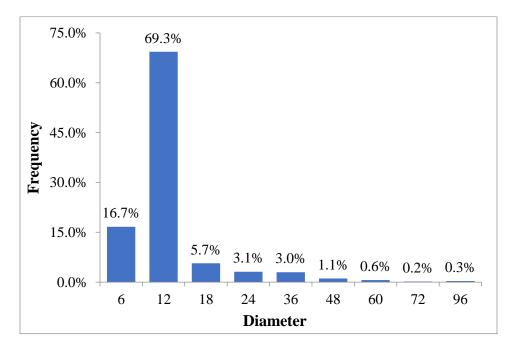



Figure 3-9 Frequency Distribution Based on Pipe Diameter

## 3.5.4 Diameter

Diameter of the sewer pipe segment is a basic information recorded at the time of inspection for each pipe. The diameter of the pipes ranged from as small as 4 inches to as large as 96 inches, and the distribution of the same is shown in

Figure 3-9. Based on the collected data as shown in

Figure 3-9, almost 90% of the inventory of pipes can be categorized as smaller pipes since their diameter is less than 24 inches. Roughly 1% of the pipes are found to have a diameter greater than 60 inches.

### 3.5.5 Material

As discussed in previous sections, sewer pipes are made of different materials and as per processed dataset in this dissertation, there are 9 different types of sewer pipe materials are identified. As shown in the Figure 3-10, 4 pipe materials such as AT, steel, CI, and fiberglass, contribute less than 2% of total dataset. It was found that PVC constitute a major portion of the sewer pipes with around 60%, followed by vitrified clay and concrete pipes with 17% and 9%, respectively. Since structurally poor conition pipes are distributed in majority types of pipe materials, all different pipe materials are included in model development.

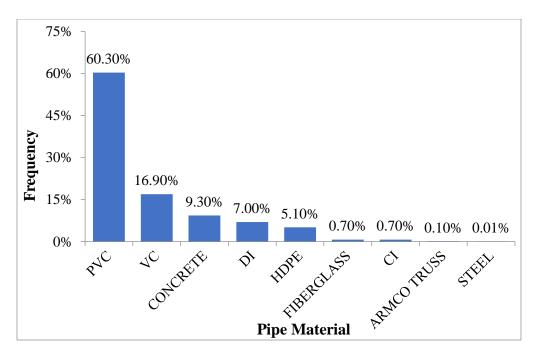



Figure 3-10 Frequency Distribution Based on Type of Pipe Material

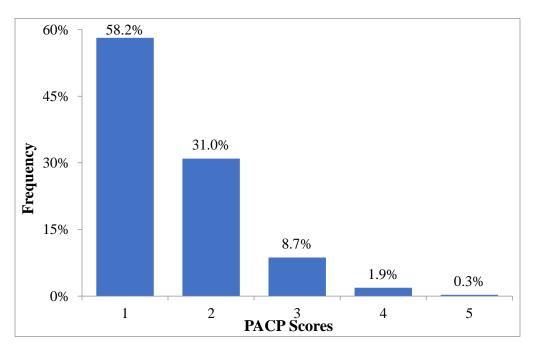



Figure 3-11 Frequency Distribution of PACP Scores

# 3.5.6 PACP

The last column in processed dataset is the dependent or target variable for condition prediction model development, which is the PACP score of individual pipe segment. As discussed earlier, the scores range from 1 to 5, where 1 refer to structurally sound pipes and 5 refer to pipes in the verge of failure. As shown in the Figure 3-11, almost around 90% of the pipes are in structurally sound condition with PACP scores of 1 and 2.

It was interesting to notice that only 2% of the pipes are ranked a PACP score of 4 and only 95 sewer pipe segments are in the verge of failure with a PACP score of 5. It should also be noted that more than 70% of the pipes are less than 30 years old and around 60% of the pipes are in structurally good condition. Though age can not be a single influential factor to dictate structural condition of sewer pipes, a simple linear relationship can be assumed.

Another crucial observation made from the PACP distribution is that the distribution is not even among all 5 classes. When one or more classes in a dataset is under represented compared to other classes, the scenario would be termed as class imbalance. Predictive accuracy of developed models for minority classes would be highly affected when imbalanced dataset is used in machine learning algorithms (Wallace et al. 2011). Various studies have mentioned that the imbalanced classification must be treated before training the dataset in any machine

learning algorithms (Rout et al. 2018), which will be discussed in following chapter.

# 3.6 Chapter Summary

In this chapter, preliminary insights about the data collected for this study was discussed. It was observed that the PVC pipes constitute majority of the total sewer pipes followed by VCP and concrete material pipes. It was noticed that around 81% of total pipe segments spans less than 400 ft and almost 90% of the inventory of pipes can be categorized as smaller pipes whose diameter is less than 24 inches. In addition, a linear relationship was observed between age of the pipe segments and structural condition. Finally, it was found that the dependent variable is unevenly distributed causing a severe class-imbalance, which must be treated while developing the prediction models.

## **CHAPTER 4**

### MODEL DEVELOPMENT

### 4.1 Introduction

Developing a condition prediction model based on various machine learning algorithms is discussed in this chapter. Machine learning is a wide term that refers to computational algorithms that rely on prior knowledge to generate precise predictions (Mohri et al. 2018). Prior knowledge in the context refers to the recorded historical data that a computer program can learn, which is termed as training the algorithm. As discussed in previous chapters, supervised learning techniques are employed in the study and numerous machine learning techniques are in practice for developing a prediction model under supervised learning.

Classification and regression are the two major types of supervised machine learning methods. Regression method is used when a continuous dependent variable must be predicted based on various independent variables (Müller and Guido 2016). In this study, the dependent or output variable is not a continuous number rather it is categorical with 5 different classes. Hence, classification type of machine learning techniques is used in this study to develop the model. Processed data from the previous chapter is utilized as input for training the models. One of the most popular programming languages in the field of data science, Python, is used in this study to develop prediction models. The reason for using Python is that it is open-source and the availability of large number of free add-on libraries.

## 4.2 Imbalanced Dataset Treatments

As discussed earlier, PACP score of 5 has rare instances compared to PACP score of 1, which is termed as imbalance in the dataset. When the imbalanced or skewed data is used in traditional classification algorithms, it could often result in poor performance of trained models (Tanha et al. 2020, Teh et al. 2020, Yijing et al. 2016). Generally, minority class must be given more importance while handling imbalanced dataset because after-effects of minority class's misclassification would be exponential than the other classes. In this study, PACP score of 5 class is given more importance because misclassifying PACP score of 5 as 1 would be worse.

It was found that classification algorithms such as logistic regression, support vector machine, and decision tree are well suited for training a balanced dataset. When an imbalanced dataset is trained using these algorithms, majority class was highly represented distorting the minority class instances (López et al. 2013). Various treatment techniques are performed by researchers and data scientists to yield better results out of imbalanced dataset (Haixian et al. 2017). One of the commonly employed treatment for imbalanced dataset, data resampling technique is performed in this study. Basically, in data resampling technique, the imbalanced data is resampled to match either of the majority class or minority class by replication or removal of datapoints, respectively. Data resampling technique is

divided into two categories: (1) Random under-sampling and (2) Random oversampling.

## 4.2.1 Random Under-Sampling

Random under-sampling technique is nothing but the removal of observations in random from the majority class to match the minority class. As illustrated in the Figure 4-1, instances from PACP score 1 was removed in random. It can be considered a better choice when the dataset contains extensively large number of observations. However, it should be noted that valuable information might be lost during random removal of instances.

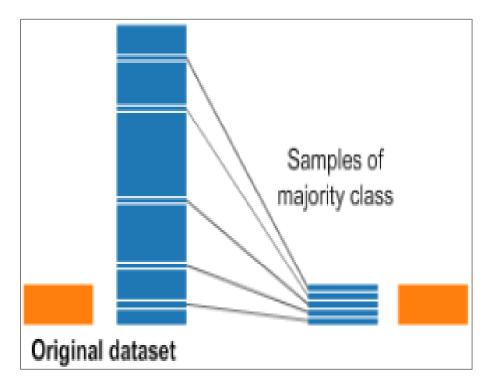



Figure 4-1 Random Under-Sampling Technique

# 4.2.2 Random Over-Sampling

Random over-sampling is also a resampling technique similar to random under-sampling, in which the majority class is not removed rather the minority class is replicated to match the majority class. Illustration for random over-sampling is shown in the Figure 4-2. This technique would be highly helpful when very minimal data is available. However, when a severely imbalanced dataset is replicated as a balanced dataset, it might cause the algorithms to memorize or overfit the minority class instances.

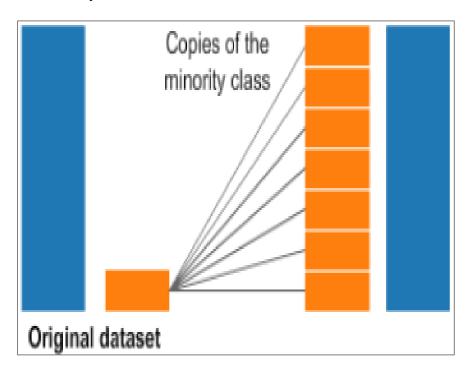



Figure 4-2 Random Over-Sampling Technique

Since both of the discussed resampling techniques are found to be effective in different studies, over-sampling technique cannot be rated as better over the under-sampling technique and vice versa (Estabrooks et al. 2004). It was found that both resampling techniques has their advantages and disadvantages. Therefore, in this study, models are trained with both resampling techniques and corresponding performances are evaluated.

### 4.3 Cross-Validation

Cross-validation is basically the most employed validation technique in any prediction problem. Basic concept behind cross-validation is that some portion of the input dataset is excluded while training the model and the excluded portion is used while testing the trained model. Primary reason for using cross-validation is that it would avoid overfitting and sample from all classes could be represented while training the model. The key element of cross-validation technique is that the entire dataset will be used in training and testing the model (Malek Mohammadi 2019).

For example, in a 10-fold cross-validation, the entire dataset is bagged into 10 equal parts. From 10 parts, 9 parts will be used to train the model and 1 part will be used while testing the trained model. Owing to the fact that increase in folds would decrease the number of data points in each part, 5-fold cross-validation is employed in this study, as shown in the Figure 4-3. In a 5-fold cross-validation, 4 parts or 80% of the dataset in random was used in training and the rest 20% of the data was used in testing.

| Test  | Train            |       |  |      |  |
|-------|------------------|-------|--|------|--|
| Train | Test             | Train |  |      |  |
| Т     | rain Test Train  |       |  |      |  |
|       | Train Test Train |       |  |      |  |
| Train |                  |       |  | Test |  |

Figure 4-3 5-Fold Cross Validation

## 4.4 Machine Learning Methods

As discussed in earlier chapter and previous sections of this dissertation, collected data was cleaned and final dataset for further analysis is prepared. Imbalanced target variable was identified and hence, resampling techniques were employed to the dataset before it can be trained using machine learning algorithms. Therefore, the final dataset is now ready to be fed as input to various classification algorithms. As mentioned earlier, numerous open-source libraries in Python programing language are utilized to train the models. Some of the libraries used in this study are shown in the Table 4-1.

| S. No | Name of the Library | Description or Functions of the Library                    |
|-------|---------------------|------------------------------------------------------------|
| 1     | Pandas              | To open spreadsheet files and manipulate numerical tables. |
| 2     | Scikit learn        | This library features various classification algorithms    |
| 3     | Matplotlib          | It is the most common plotting library to plot<br>graphs   |
| 4     | Seaborn             | It is a data visualization library                         |
| 5     | Streamlit           | To develop an interactive decision-support<br>tool         |

Table 4-1 Python Libraries Used in the Study

Using different libraries listed in the Table 4-1, various machine learning classification methods such as logistic regression, support vector machine, k-nearest neighbors, and random forests, are trained to develop the prediction models. Above mentioned methods are trained with all three sets of data, namely imbalanced dataset, under-sampled dataset, and over-sampled dataset. Each of the method employed in the study is discussed in the following sections. It should be noted that for logistic regression and k-nearest neighbors, the continuous independent variables such as age, length, slope, and diameter, must be on uniform scale and therefore, log transformed variables are used in model development.

### 4.4.1 Logistic Regression

Logistic regression (LR) is one of the most employed statistical methods in machine learning. Though the term used in this method is regression, the output is basically a probability of an event to happen. Generally, LR methods are used to analyze the relationship between multiple independent variables and a categorical or continuous dependent variable. In this method, the data is fit to a logistic or sigmoid curve and is used to estimate the probability of an event. When the target (dependent) variable is binary or dichotomous, binary logistic regression is utilized to create prediction models.

Dependent variables in a binary LR model have two possible values, which are mostly 0s and 1s. For example, if the pipe classification is based on either of two conditions, say good or bad, pipes in good condition could be given a label of 1 and pipes in poor condition can be labeled as 0. For a binary response variable Y and a single dependent variable X, let  $\pi(X) = P(Y = 1 | X = x) = 1 - P(Y = 0 | X = x)$ , the logistic regression model has linear form for the logit of this probability as shown in the Equation 4-1 (Agresti 2007). Figure 4-4 illustrates the simple logistic function used in estimating the parameter coefficients. In the illustration, the horizontal axis (x) varies from -6 to +6 and the vertical axis (f(x)) corresponds to the probability from 0 to 1.

logit 
$$[\pi(X)] = \log \left(\frac{\pi(X)}{1 - \pi(X)}\right) = \alpha + \beta x$$
 Equation 4-1

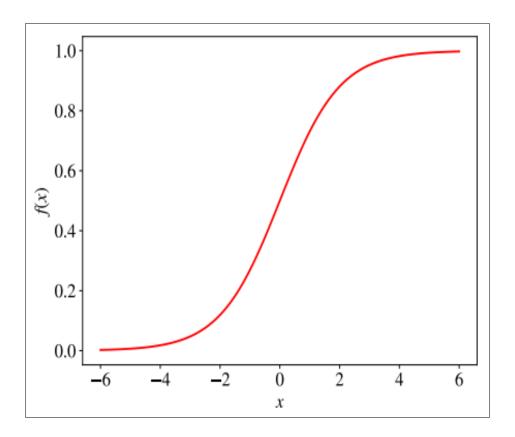



Figure 4-4 Standard Logistic Function

Logistic regression can also be employed where the dependent variable is discrete with more than two classes. This type of LR with more than 2 classes in output variable is termed as multinomial LR. While employing LR for multi-class classification, the likelihood of one class would be estimated over the rest all classes. For instance, to develop a prediction model for PACP score of 5 in this study, sewer pipes with a PACP score of 5 would be considered as one of the binary classes and all other classes such as PACP scores of 1, 2, 3, and 4, would be the other class in binary classification.

For a multinomial or multiple logistic regression, the final model would take the form as shown in the Equation 4-2.

$$logit \left[\frac{\pi}{1-\pi}\right] = log \left(\frac{P(Y=1 \mid X_1, X_2, \dots X_p)}{1-P(Y=1 \mid X_1, X_2, \dots X_p)}\right) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

Equation 4-2

Where:

 $X_1, X_2, ..., X_p$  are independent variables

 $\alpha$  is the intercept for i<sup>th</sup> category

 $\beta$  is the regression coefficient

4.4.2 k-Nearest Neighbors (k-NN)

The k-NN algorithm is a supervised machine learning technique that can be utilized in both classification and regression problems. k-NN algorithm is named lazy not because of its seeming simplicity, but because it memorizes the training dataset rather than learning a discriminative function from it (Guo et al. 2003). The training dataset is all that is required to build a k-NN model. The algorithm finds the closest data points in the training dataset – its "nearest neighbors" – to classify a new data point.

In the most basic form, the k-NN algorithm only analyzes one nearest neighbor, which is the training data point that is closest to the point we wish to classify. The known output for this training point is then used to make the prediction as illustrated in the Figure 4-5. However, to increase accuracy, an arbitrary number of neighbors, k, can be considered (Müller and Guido 2016).

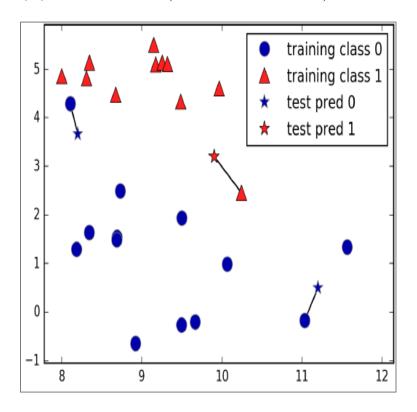



Figure 4-5 Simplest form of a k-NN Model

```
(Müller and Guido 2016)
```

For example, predictor space of the k-NN model utilized in this study is shown in the Figure 4-6. Here, the number of neighbors is selected as 3, which is k = 3. It should also be noted that though there are 7 independent variables used to train the model, only 3 variables are shown in the illustration referring to a lower-dimensional space.

When more than one neighbor is considered, a technique called voting is used to assign a label to the new data point of interest. Voting is nothing but the total count of different class labels near the data point of interest. When a majority of class labels belong to a particular class, the test data point will be assigned to that majority class. Therefore, it is always recommended to use an odd number for k, which would eventually avoid confusions during prediction based on nearest neighbors.

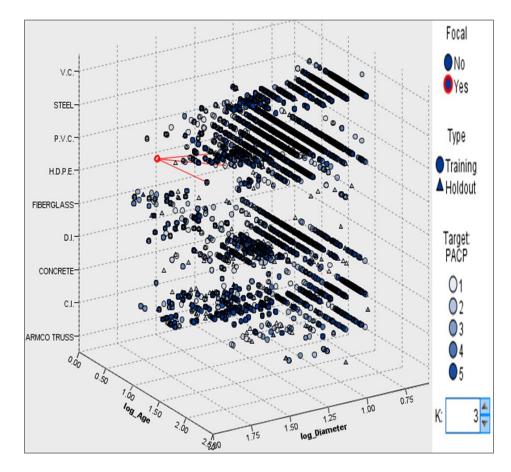



Figure 4-6 Lower-Dimensional Projection of the k-NN Predictor Space

## 4.4.3 Tree Based Models

Tree based models are multi-purpose machine learning algorithms that can handle classification, regression, and multi-output problems. Decision trees (DT) and random forests (RF) are most popular tree-based machine learning models. They are extremely powerful algorithms that can fit large datasets (Loh 2014). Although DT is considered as an effective supervised learning algorithm in classification problems, one of the most common limitation is that DT tend to overfit the training data (Müller and Guido 2016). Therefore, RF method is used in this study to overcome the limitation of DT.

RF is based on ensemble learning, which is a method of integrating many classifiers to solve a complicated problem and enhance the model's performance. In simple words, RF is a combination of different DT during training the data. An RF is essentially a collection of various DTs, where each tree is a little different from the others. In DT, though each tree may accomplish an acceptable job of predicting, it will almost certainly overfit on some part of the data. The amount of overfitting could then be limited by averaging the outcomes of numerous trees, which operate well and overfit in diverse ways (Estabrooks et al. 2004 and Caruana and Niculescu-Mizil 2006). The final collection of numerous DTs with retained predictive power can be collectively named as RF. A schematic illustration of RF technique is shown in the Figure 4-7.

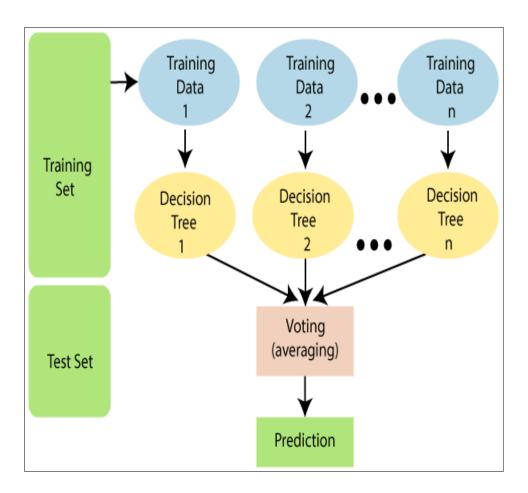



Figure 4-7 Working Structure of RF Algorithm

For tree growth, tree combination, self-testing, and post-processing, RF follows specific principles. RF is identified to be steadier in the presence of outliers and in high-dimensional parameter spaces than other machine learning methods and therefore, it is resistant to overfitting (Caruana and Niculescu-Mizil 2006). The Gini index (Gi) is a measure of the predictive capacity of variables in classification. Gi is non-parametric, which means it does not depend on data from a specific sort of

distribution (Alessia et al. 2017). For a simple binary classification, the Gi of a node 'n' is calculated as:

$$Gi(n) = 1 - \sum_{j=1}^{2} (p_j)^2$$
 Equation 4-3

Where  $P_j$  is the relative frequecy of clas j in the node n.

# 4.5 Chapter Summary

This chapter discussed about the imbalanced dataset treatments such as resampling techniques to prepare the data to be trained using machine learning algorithms. Under-sampled and over-sampled datasets will be utilized to train and develop the condition prediction models as discussed in following chapters. Various supervised learning algorithms such as LR, k-NN, and RF, utilized in this study are also discussed.

## CHAPTER 5

#### MODELS PERFORMANCE COMPARISON

### 4.1 Introduction

In previous chapters, collected data from GIS databases was preprocessed and prepared as input for machine learning algorithms. The final dataset was utilized in training various supervised learning techniques. In this chapter, performance of the trained models in predicting the condition of sewer pipes will be discussed. To identify a better prediction model, all trained models must be validated and evaluated. There are various evaluation metrics such as confusion matrix, accuracy, precision, recall, and so on, are available to evaluate the performance of machine learning models. Various evaluation metrics used in evaluating the performance of prediction models are discussed in following sections.

## 4.2 Evaluation Metrics

This section of the dissertation discusses about various evaluation metrics in detail. The selection of a particular metric would be based on the type of anticipated output from the classification model.

#### 4.2.1 Confusion Matrix

Confusion matrix is one of the most important model evaluation metrics, which is widely employed to evaluate the performance of a trained machine learning model. The number of occurrences between two raters, the true/actual classification and the predicted classification are all recorded in a cross table, which is referred as a confusion matrix. Representation of a simple binary classification confusion matrix is shown in the Figure 5-1. A confusion matrix could yield an overall understanding of the performance of a model by visual observation (Grandini et al. 2020, Hossin and Sulaiman 2015).

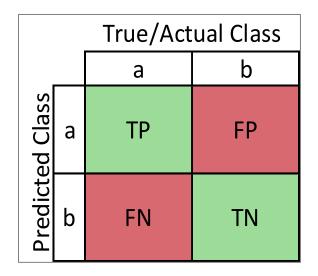



Figure 5-1 Confusion Matrix for a Binary Classification

In a confusion matrix, the correctly classified items are placed from top left to bottom right on the major diagonal, and they correlate to the number of instances the two classes agree. In the confusion matrix shown above, TP (True Positive) refers to truly predicted positive instances and TN (True Negative) refers to correctly predicted negative instances. FN (False Negative) elements are those that the model has predicted as negative but are positive and similarly, FP (False Positive) elements are those that the model has predicted as positive but are negative. It could be emphasized that the number of elements in cells other than the major diagonal cells must be minimal for a better performing model (Malek Mohammadi 2019).

The confusion matrix is considered one of the most important metrics because majority of the evaluation metrics are calculated based on the developed confusion matrix and the elements present in different cells. For a better understanding, various evaluation metrics are explained based on a binary confusion matrix and multi-class evaluation metrics will be discussed in the later sections.

## 4.2.2 ROC Curve and AUC

A receiver operator characteristics (ROC) graph is another commonly employed visualization, organization, and selection tool for classification-based models. ROC curve is a two-dimensional graph that displays how efficiently a classification model behaves as the discrimination cut-off value is tweaked across the predictor variable's range. In the graph, the predictive test's false positive rate is represented on the x axis and the true positive rate is represented on the y axis, as shown in the Figure 5-2 (Malek Mohammadi 2019).

**True Positive Rate (TPR)** – is the ratio of TP to the sum of TP and FN, which is TP / (TP + FN).

**False Positive Rate (FPR)** – is the ratio of FP to the sum of TN and FP, which is FP / (TN + FP).

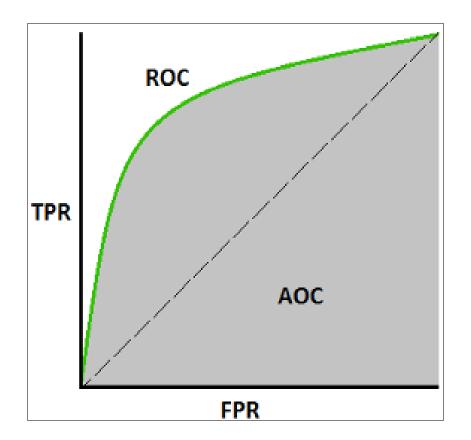



Figure 5-2 ROC Curve for a Binary Classification

The illustration shown in Figure 5-2 is based on binary classification or a classification for two classes. Area under the ROC curve (AUC) is another interesting metric extracted from the ROC curve, which is the shaded portion under the curve in the illustration. The AUC of a classifier could be defined as the likelihood that the classifier will rank a randomly chosen positive instance higher than a randomly chosen negative instance. As the dimension of the chart is a unit square, the AUC ranges from 0 to 1. It can be concluded that higher the AUC, better would be the model performance in prediction.

## 4.2.3 Accuracy

Another popular metric in classification models, which is also estimated from the confusion matrix, is the accuracy. It is the ratio of sum of TP and TN to the grand total of the confusion matrix, as shown in the Equation 5-1 (Hossin and Sulaiman 2015). Since the formula for accuracy incorporates entire confusion matrix including incorrectly classified elements, it is an overall measure of the model's correct predictions. However, accuracy is found to be efficient for binary classifications compared to multi-class classification (Hossin and Sulaiman 2015).

Accuracy = 
$$TP + TN / (TP + TN + FP + FN)$$
 Equation 5-1

### 4.2.4 Precision

The Precision is defined as the ratio of true positive elements to the total number of positively predicted units. In other words, it is the proportion of predicted positives, which are truly positive as shown in the Equation 5-2 (Hossin and Sulaiman 2015). Based on the definition, precision of a model is significant when accuracy in the prediction is much required.

$$Precision = TP / (TP + FP)$$
 Equation 5-2

In simple words, the precision of a model is crucial when one class of the output variable has rare occurrences compared to the other class. Since PACP score of 5 has a comparatively lesser instances than other classes, it is more important for accurate prediction and therefore, precision would be a critical evaluation metric of interest during model selection.

### 4.2.5 Recall

The Recall can be expressed as the ratio of true positive elements to the total number of positively classified elements. Generally, recall yields the fraction of positive elements, which are correctly classified and is shown in the Equation 5-3 (Hossin and Sulaiman 2015).

$$Recall = TP / (TP + FN)$$
Equation 5-3

It can be understood that the model's predictive accuracy for the positive class is measured by the recall. Recall of a model is significant to evaluate the model's ability to capture all positive elements in the dataset. For instance, when a model is trained, it should be capable to capture all the pipe segments with a PACP score of 5. Based on the discussion on precision and recall, it can be understood that both are relatively important and therefore, a new metric was introduced by combining both precision and recall.

## 4.2.6 F1-Score

Aggregating precision and recall into a single metric to assess classification model's performance, F1-score was developed by estimating the harmonic mean of precision and recall, as shown in the Equation 5-4. The F1-score ranges on a scale from 0 to 1, where a value of 1 corresponds to a better performance of a model and vice versa.

F1-Score = 
$$2 * \left( \frac{\text{Precision}*\text{Recall}}{\text{Precision}+\text{Recall}} \right)$$
 Equation 5-4

Since the F1-score is calculated as a weighted average of precision and recall, both contribute equally, and hence, it can be used to identify the optimal trade-off between the two quantities. Based on the evaluation metrics, it is found that F1-score would be a significant metric to evaluate the performance of a developed model. However, it should be noted that all metrics discussed so far are based on binary classification confusion matrix.

In this study, the condition of pipe must be predicted among 5 different classes and binary classification cannot be employed. To evaluate a multi-class classification model, F1-score must account for all the classes and as a result, two different F1-scores were introduced: Micro F1-score and Macro F1-score (Grandini et al. 2020).

|                 | True / Actual Class |    |    |    |    |    |  |
|-----------------|---------------------|----|----|----|----|----|--|
|                 |                     | а  | b  | С  | d  | е  |  |
|                 | а                   | ΤN | FN | ΤN | ΤN | ΤN |  |
| S               | b                   | FP | ΤP | FP | FP | FP |  |
| Predicted Class | с                   | ΤN | FN | ΤN | ΤN | ΤN |  |
| Predict         | d                   | ΤN | FN | ΤN | ΤN | ΤN |  |
|                 | е                   | ΤN | FN | ΤN | ΤN | ΤN |  |

Figure 5-3 Confusion Matrix for a Multi-Class Classification

To include all the classes in F1-score, multiple precision and recall were estimated for different classes from the multi-class confusion matrix. An example for a multi-class classification confusion matrix is shown in the Figure 5-3. The confusion matrix shown in the above figure consists of 5 output classes namely a, b, c, d, and e. Like a binary classification confusion matrix, metrics are estimated based on the confusion matrix by considering one class of interest at a time.

For instance, in the Figure 5-3, class b is considered as target class of interest. So, TP corresponds to number of correctly predicted class b elements. Similar to a binary confusion matrix, FP and FN correspond to incorrectly classified elements along row and column of class b, respectively. Finally, all other cells are referred to as TN. When a class of interest is switched from one to another, quantities are estimated again, and the confusion matrix cell labels are changed accordingly (Visani et al. 2020).

**Micro F1-Score** – Based on a multi-class confusion matrix with K number of classes, to estimate Micro F1-score and Macro F1-score, micro and macro average precision and recall quantities must be calculated. Micro average precision and recall are estimated using Equation 5-5 and Equation 5-6, respectively.

Micro Average Precision = 
$$\frac{\sum_{k=1}^{K} TP_k}{\sum_{k=1}^{K} Total Column_k} = \frac{\sum_{k=1}^{K} TP_k}{Grand Total}$$
 Equation 5-5

Micro Average Recall = 
$$\frac{\sum_{k=1}^{K} TP_k}{\sum_{k=1}^{K} Total Row_k} = \frac{\sum_{k=1}^{K} TP_k}{Grand Total}$$
 Equation 5-6

It is well known that F1-score is harmonic mean of precision and recall. Since micro average precision and recall are same, the harmonic mean of both quantities are also the same, which is the Micro F1-score (Visani et al. 2020).

Micro Average F1-Score = 
$$\frac{\sum_{k=1}^{K} TP_k}{Grand Total}$$
 Equation 5-7

By looking at the formula for Micro-F1 score in the Equation 5-7, it can be found that the formula is same as that of the accuracy. Since the calculation account the grand total of dataset, more importance will be given to majority classes. Hence it can be concluded that micro F1-score is not a choice of metric for this study.

**Macro F1-Score** – It is estimated by calculating the macro average precision and recall for each target class. Macro average precision and recall are directly estimated as the arithmetic mean of the same for individual classes, as shown in Equation 5-8 and Equation 5-9. Therefore, macro F1-score will be the harmonic mean of macro average precision and macro average recall, as shown in Equation 5-10 (Visani et al. 2020).

Macro Average Precision = 
$$\frac{\sum_{k=1}^{K} \frac{TP_{k}}{TP_{k}+FP_{k}}}{K}$$
Equation 5-8

Macro Average Recall = 
$$\frac{\sum_{k=1}^{\frac{TP_k}{TP_k + FN_k}}}{K}$$
Equation 5-9

Macro F1-Score = 
$$2 * \left( \frac{\text{Macro Precision * Macro Recall}}{\text{Macro Precision + Macro Recall}} \right)$$
 Equation 5-10

From the formulas of macro average precision and recall, the numerators are composed of values in the range 0 - 1. This indicates that different sized classes are equally weighted and there is no impact of class size on the metric. In other words, minority class will have the same importance as that of the majority class. Therefore, it can be concluded that high Macro F1-score values depict that the trained model performs well across all classes, whereas low Macro F1-score values indicate that classes are poorly predicted by the trained model. Therefore, for this study, Macro F1-score could be considered as a significant metric for model's performance evaluation.

## 4.2.7 Summary of Evaluation Metrics

Choice of evaluation metric for a machine learning model would be based on the type of algorithm used and the expected outcome. In this study, classification of sewer pipes in structurally poor condition or a PACP score of 5 is of high importance. Since the number of pipes in poor condition is comparatively lesser in number over the other conditions, considered evaluation metric must be capable to capture the prediction performance of minority class. As a summary of discussed evaluation metrics, Table 5-1 displays various metrics based on importance for this study. Based on important evaluation metrics listed in the table, a better performing model over other models can be scrutinized.

| S. No | <b>Evaluation Metric</b> | Important | Not important |
|-------|--------------------------|-----------|---------------|
| 1     | Confusion matrix         | *         |               |
| 2     | ROC Curve                | *         |               |
| 3     | AUC                      | *         |               |
| 4     | Accuracy                 |           | *             |
| 5     | Precision                | *         |               |
| 6     | Recall                   | *         |               |
| 7     | Micro F1-score           |           | *             |
| 8     | Macro F1-score           | *         |               |

Table 5-1 Summary of Evaluation Metrics

#### 4.3 Performance of Developed Models

The final dataset is trained with various supervised learning algorithms as discussed in the previous chapter. It is concluded that the metrics such as accuracy and micro F1-score are not effective for classifying the minority class. Therefore, the performances of trained models are compared based on the rest of the discussed evaluation metrics. Each algorithm is trained with 3 types of data namely:

- 1. Imbalanced dataset,
- 2. Under-sampled dataset, and
- 3. Over-sampled dataset

For any trained model with all the datasets, confusion matrices will be developed. In a developed confusion matrix, the rows represent actual class elements corresponding to PACP scores from 1 to 5, and the columns indicate the predicted class elements corresponding to PACP scores from 1 to 5. Evaluation metrics are estimated for each type of dataset under every algorithm based on respective confusion matrix. Prediction performance of three individual algorithms such as LR, k-NN, and RF, are discussed in the following section.

#### 4.3.1 Logistic Regression

#### 4.3.1.1 LR Imbalanced Dataset

One of the basic and most important evaluation metrics for classification methods, the confusion matrix for imbalanced logistic regression is shown. In the confusion matrix, it can be seen that the columns 4 and 5 corresponding to predicted PACP scores of 4 and 5, respectively, are all zeros. The zeros in two columns indicate that none of the data points predicted in the model belongs to PACP scores 4 and 5. This is because structurally poor condition pipes constitute only a 2.2% of total dataset, which was discussed in chapter 3 and illustrated in the Figure 3-11.

| Confusion matrix for Imbalanced LR = | r3575 | 177 | 12 | 0 | ך0 |
|--------------------------------------|-------|-----|----|---|----|
|                                      | 1383  | 611 | 65 | 0 | 0  |
| Confusion matrix for Imbalanced LR = | 171   | 336 | 79 | 0 | 0  |
|                                      | 25    | 71  | 25 | 0 | 0  |
|                                      | L 5   | 11  | 5  | 0 | 0] |

Based on the developed confusion matrix, true positive rate and false positive rate were estimated. ROC curve is plotted for individual PACP score prediction as shown in the Figure 5-4. Though classes 4 and 5 were not at all predicted by the model, AUC for the two classes were estimated as 0.89 and 0.80, respectively. This is because the formula to estimate the FPR and TPR includes entire elements in the confusion matrix.

Error in the prediction rate is illustrated in the Figure 5-5. The distribution shows the counts of each class misclassified by the model as other classes. The higher the misclassification in a model, the model would be unreliable. For instance, around 4,000 observations were predicted as PACP score 1 but more than 500 observations were belonged to PACP score of 2. Likewise, majority of the observations predicted as PACP score of 2 were incorrectly classified from PACP scores 1, 3, and 4. Since none of the observations were predicted as PACP 4 or 5, there is no counts for the two classes.

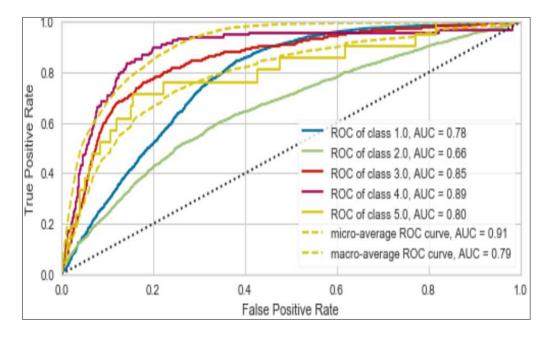



Figure 5-4 ROC Curves for Logistic Regression with Imbalanced Dataset

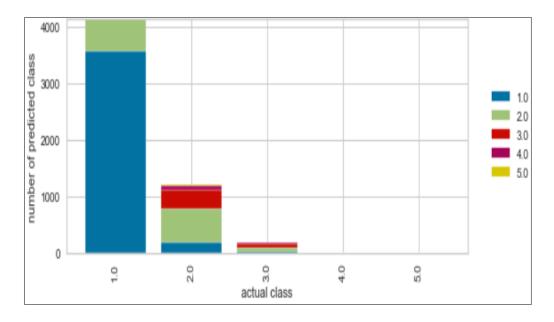



Figure 5-5 Error Prediction Rate for Imbalanced LR

| PACP Score | Macro-Precision | Macro-Recall | Macro-F1 |
|------------|-----------------|--------------|----------|
| 1          | 0.693           | 0.950        | 0.801    |
| 2          | 0.507           | 0.297        | 0.374    |
| 3          | 0.425           | 0.135        | 0.205    |
| 4          | 0.000           | 0.000        | 0.000    |
| 5          | 0.000           | 0.000        | 0.000    |

Table 5-2 Precision, Recall, and F1 Metrics for Imbalanced LR

Evaluation metrics such as precision, recall, and F1-score were calculated based on the confusion matrix as displayed in the Table 5-2. Since high number of observations from PACP score of 1 is correctly classified compared to observations with PACP scores 2 and 3, the precision, recall, and F1-score of PACP score 1 is greater than the other two classes. As there was no classification by the model for PACP scores 4 and 5, precision, recall, and resulting F1-score is estimated as zero.

## 4.3.1.2 LR Under-Sampled Dataset

Under-sampled dataset was utilized in logistic regression analysis and the obtained results are discussed in this section. In the under-sampled dataset, all 5 classes are modified to match the minority class in the dataset, which is PACP score of 5 with 95 observations. The confusion matrix for the trained LR model with under-sampled data is shown below:

Confusion matrix = 
$$\begin{bmatrix} 14 & 0 & 2 & 0 & 1 \\ 7 & 5 & 3 & 3 & 0 \\ 1 & 3 & 8 & 4 & 3 \\ 3 & 1 & 3 & 10 & 3 \\ 1 & 0 & 1 & 8 & 11 \end{bmatrix}$$

The pipes with PACP scores 1, 4, and 5 were correctly classified compared to PACP scores 2 and 3. This can be understood by observing the major diagonal of the confusion matrix, which is expected to have greater numbers than other cell elements. It can be seen from the confusion matrix that the model is not capable of classifying any class to a reliable extent because FP and FN for every class has integers rather than zeros.

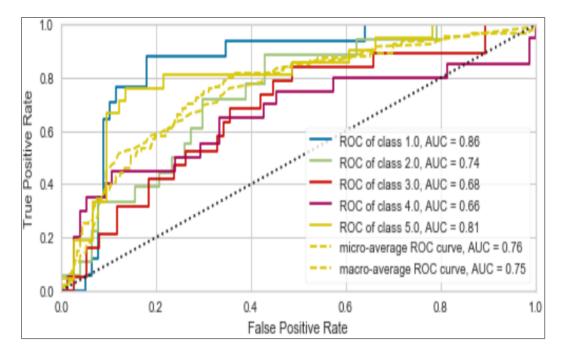



Figure 5-6 ROC Curves for LR with Under-Sampled Dataset

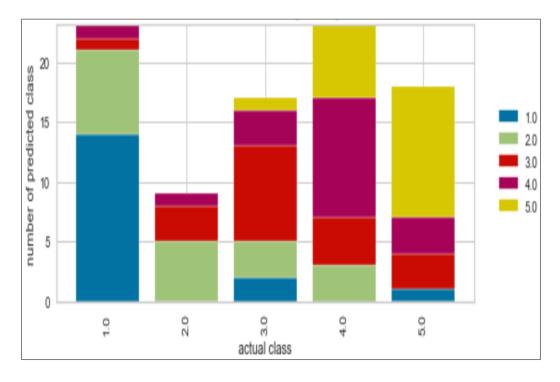



Figure 5-7 Error Prediction Rate for Under-Sampled LR

To visualize the performance of misclassification by the trained model, error prediction graph was created. Similar to LR model with imbalanced dataset, prediction of under-sampled LR model resulted in higher misclassification as well. Created error prediction bar chart is displayed in the Figure 5-7. It can be noticed that majority of the observations were classified as PACP scores 1 and 4 while most of the predictions were belonging to other classes. In addition, it can be noticed that PACP scores 1 and 5 have higher number of correctly classified instances and as a result, F1-score for these two classes is greater than other classes. Various evaluation metrics were estimated from the confusion matrix and are listed in the Table 5-3. Since none of the class has higher number of correct classifications, the precision and recall are not closer to one.

| PACP Score | Macro-Precision | Macro-Recall | Macro-F1 |
|------------|-----------------|--------------|----------|
| 1          | 0.538           | 0.824        | 0.651    |
| 2          | 0.556           | 0.278        | 0.370    |
| 3          | 0.471           | 0.421        | 0.444    |
| 4          | 0.400           | 0.500        | 0.444    |
| 5          | 0.611           | 0.524        | 0.564    |

Table 5-3 Precision, Recall, and F1 Metrics for Under-Sampled LR

#### 4.3.1.3 LR Over-Sampled Dataset

Thirdly, over-sampled data was utilized to train the logistic regression and the results are discussed in this section. In over-sampled dataset, number of observations in all classes were modified to match the class with highest number of observations. All classes were made to include around 19,050 instances. Like LR models based on imbalanced and under-sampled dataset, the confusion matrix developed for the over-sampled LR model is shown below. From the confusion matrix, it can be found that false positives and false negatives are greater than the true positives of a respective class.

| Confusion matrix = | 2839 | 508  | 162  | 29   | ך 221 |  |
|--------------------|------|------|------|------|-------|--|
|                    | 1455 | 1027 | 592  | 297  | 455   |  |
| Confusion matrix = | 462  | 510  | 1041 | 1034 | 807   |  |
|                    | 269  | 189  | 923  | 1356 | 1128  |  |
|                    | 425  | 240  | 154  | 536  | 2391  |  |

Figure 5-8 illustrates the ROC curves for each class. ROC curves for PACP scores 1 and 5 covers larger area compared to other three classes. As a result, AUC for the 2 classes are found to be 0.87 and 0.78, respectively. However, each class comprise a high number of misclassifications resulting in higher error rate in prediction. As illustrated in Figure 5-9, majority of sewer pipes with PACP score 2 are misclassified as PACP score 1. Correspondingly, in the prediction of PACP score 5, all the other four classes constitute more than half of the total predictions as PACP score 5.

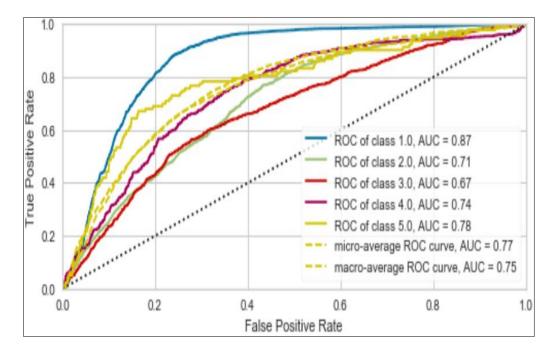



Figure 5-8 ROC Curves for LR with Over-Sampled Dataset

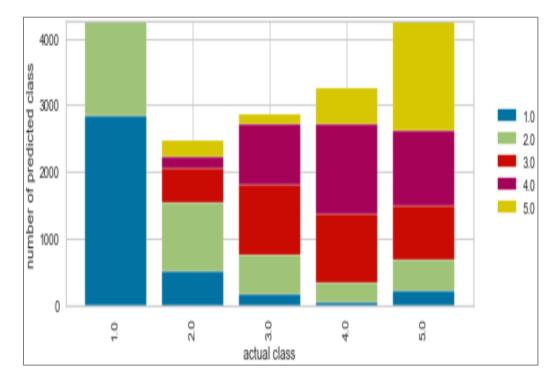



Figure 5-9 Error Prediction Rate for Over-Sampled LR

Evaluation metrics such as precision, recall, and F1-score were estimated for all 5 PACP scores. Since PACP scores 1 and 5 had relatively higher number of correctly classified observations, F-1 score is higher for the two classes than the other classes.

| PACP Score | Macro-Precision | Macro-Recall | Macro-F1 |
|------------|-----------------|--------------|----------|
| 1          | 0.521           | 0.755        | 0.617    |
| 2          | 0.415           | 0.268        | 0.326    |
| 3          | 0.362           | 0.270        | 0.310    |
| 4          | 0.417           | 0.351        | 0.381    |
| 5          | 0.478           | 0.638        | 0.547    |

Table 5-4 Precision, Recall, and F1 Metrics for Over-Sampled LR

#### 4.3.1.4 Summary of LR Results

Logistic regression model based on imbalanced dataset was able to capture only PACP score 1 to a considerable extent. From the imbalanced dataset's confusion matrix, it was found that the model is inefficient to represent PACP scores 4 and 5. Under-sampled LR model performed comparatively better than the imbalanced LR model. The model resulted a maximum F1-score of 0.65 for PACP score 1 and a minimum F1-score of 0.37 for PACP score 2. Misclassification was found in all 5 classes and the model cannot be considered reliable for prediction. On the other hand, over-sampled LR model also experienced severe misclassifications in prediction.

#### 4.3.2 k-Nearest Neighbors

Another supervised machine learning algorithm utilized in the study is knearest neighbors (k-NN). It is one of the simplest methods in machine learning. Similar to LR, k-NN models are also trained for 3 different datasets and the performance of models are discussed in the following sections.

#### 4.3.2.1 k-NN Imbalanced Dataset

Imbalanced dataset is used as input features for the k-NN algorithm and confusion matrix is generated as shown. It can be seen that all predicted elements for PACP score 5 are zeros. Unlike the LR model with imbalanced dataset, PACP score 4 is represented by the k-NN model. Since the number of instances in false positives and false negatives outnumber the true positives, it can be concluded that there is a higher chance for incorrect classification than correct classification.

Confusion matrix = 
$$\begin{bmatrix} 3248 & 509 & 37 & 5 & 0 \\ 1094 & 832 & 106 & 4 & 0 \\ 149 & 249 & 145 & 9 & 0 \\ 30 & 64 & 40 & 8 & 0 \\ 8 & 10 & 3 & 1 & 0 \end{bmatrix}$$

Metrics such as FPR and TPR were estimated from the confusion matrix and resulting ROC curves were plotted for each PACP score, as shown in the Figure 5-10. As expected from the observation of confusion matrix, AUC of ROC curve for PACP score 5 has the least value of 0.54 while the curves for PACP scores 1 and 3 resulted an AUC value of 0.76. However, visualizing the errors in prediction would be of much importance and therefore, error rate in prediction is illustrated in the Figure 5-11. It can be observed that around 80% of the predictions as PACP score 1 is PACP 1 and the rest 20% was misclassified from PACP 2. Whereas predictions classified as PACP 2 and 3 had majority of misclassified observations from the rest of the classes. On the other hand, model did not predict any observation as PACP score 5 and henceforth, there is no error prediction rate shown for the class 5.

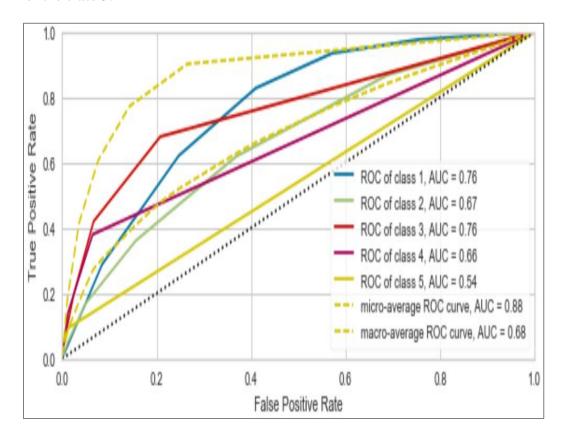



Figure 5-10 ROC Curves for k-NN with Imbalanced Dataset

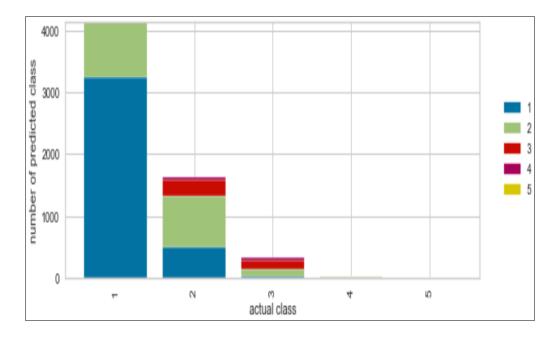



Figure 5-11 Error Prediction Rate for Imbalanced k-NN

To quantify the performance of trained model for comparison, evaluation metrics were estimated and listed as in Table 5-5. As observed in the confusion matrix and Figure 5-11, majority of class 1 or pipes under PACP score 1 category was correctly classified and hence, the F1-score for class 1 was found to be the maximum among all 5 classes with a value of 0.777.

Table 5-5 Precision, Recall, and F1 Metrics for Imbalanced k-NN

| PACP Score | Macro-Precision | Macro-Recall | Macro-F1 |
|------------|-----------------|--------------|----------|
| 1          | 0.709           | 0.859        | 0.777    |
| 2          | 0.503           | 0.399        | 0.445    |
| 3          | 0.436           | 0.242        | 0.344    |
| 4          | 0.250           | 0.058        | 0.094    |
| 5          | 0.500           | 0.048        | 0.087    |

It should be noted that most of predicted classification under PACP score 4 was not actually from PACP score 4, resulting in a minimal recall score and therefore, the F1-score is near zero as well. Similarly, there were no true positives predicted by the model and thus, the F1-score for PACP score 5 is the least among all classes.

4.3.2.2 k-NN Under-Sampled Dataset

Secondly, the k-NN algorithm was trained with under-sampled dataset. The results obtained from the model is discussed in this section. Primary evaluation metric for a trained model is the confusion matrix and is shown below. Almost all elements in the matrix other than the major diagonal are non-zeros resulting in high misclassification. PACP score 1 has the highest true positives followed by PACP score 2. However, PACP score 1 constitutes a significant number of false positives as well.

Confusion matrix = 
$$\begin{bmatrix} 8 & 3 & 6 & 0 & 0 \\ 7 & 4 & 5 & 1 & 1 \\ 3 & 6 & 3 & 2 & 5 \\ 3 & 5 & 6 & 3 & 3 \\ 3 & 5 & 6 & 5 & 2 \end{bmatrix}$$

ROC curves were plotted for all 5 classes as displayed in Figure 5-12. It is interesting to notice that almost all the curves are near the diagonal line representing an AUC value of 0.5. The AUC values of different classes range from a minimum of 0.54 to a maximum of 0.61, which indicates that there is no significant difference in model performance between classes.

For a better understanding, it is important to verify the error rates in classification and is illustrated in the Figure 5-13. It can be noticed that classes 2, 3 and 4 are misclassified in all other classes. For instance, out of 18 observations classified as PACP 1, 4 belonged to PACP 2, 3 were from PACP 3, 4 observations from PACP 4. More than half of the classified predictions were misclassified. Similarly, errors in classified predictions can be noticed, which indicates that the trained model is not reliable for prediction. In addition, the AUC values depicted that the overall performance of this model is not reliable as well.

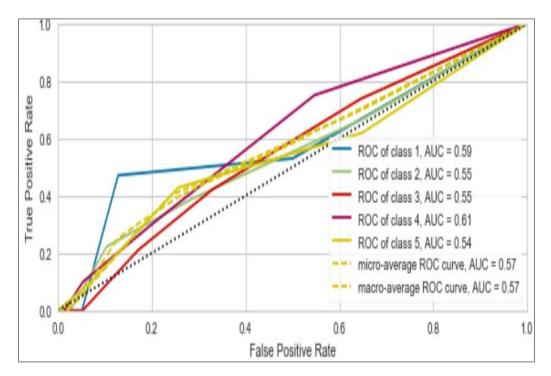



Figure 5-12 ROC Curves for k-NN with Under-Sampled Dataset

As expected, based on confusion matrix and prediction error rate, estimated metrics such as precision, recall, and F1-score were minimum. The F1-score ranged

from a minimum of 0.22 to a maximum of 0.4. The maximum value of precision was 0.389 for pipes with PACP score 1, which indicates that around 39% of the data was correctly classified. In addition, the precision was less than 0.3 for all other classes leading to a conclusion that the model cannot be relied for prediction.

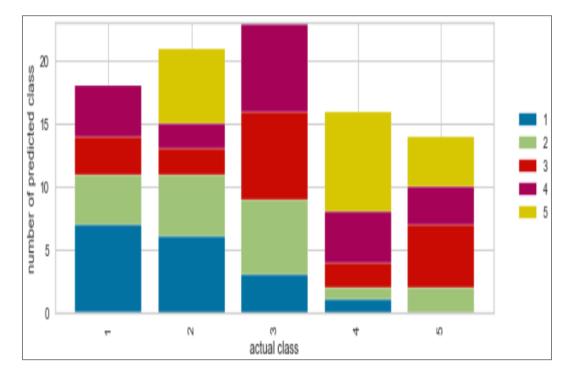



Figure 5-13 Error Prediction Rate for Under-Sampled k-NN

| PACP Score | Macro-Precision | Macro-Recall | Macro-F1 |
|------------|-----------------|--------------|----------|
| 1          | 0.389           | 0.412        | 0.400    |
| 2          | 0.238           | 0.278        | 0.256    |
| 3          | 0.269           | 0.368        | 0.311    |
| 4          | 0.250           | 0.200        | 0.222    |
| 5          | 0.286           | 0.190        | 0.229    |

Table 5-6 Precision, Recall, and F1 Metrics for Under-Sampled k-NN

#### 4.3.2.3 k-NN Over-Sampled Dataset

In this section, performance of k-NN algorithm trained with over-sampled dataset is discussed. In the over-sampled dataset, number of instances in different classes are matched to the majority class. Hence, all classes in an over-sampled dataset contain around 19,000 observations. Confusion matrix was generated based on the trained k-NN model as shown below.

|                    | 2477 | 963  | 290  | 45   | ן 10  |
|--------------------|------|------|------|------|-------|
| Confusion matrix = | 889  | 2267 | 531  | 95   | 15    |
| Confusion matrix = | 46   | 105  | 3650 | 44   | 8     |
|                    | 0    | 0    | 0    | 3866 | 0     |
|                    | L 0  | 0    | 0    | 0    | 3749] |

It is interesting to notice that there is a significant change in performance of the model with over-sampled data compared to imbalanced and under-sampled dataset. In the confusion matrix, almost all cells under the major diagonal are zeros, which is a good indication that the model is performing better. However, it should be noted that the cells above the major diagonal are all non-zeros, which are misclassified observations.

To better understand the performance of the k-NN model, ROC curves were plotted as shown in the Figure 5-14. AUC values for curves corresponding to PACP scores 3, 4, and 5, are almost unity, which indicates that the model is highly accurate at predicting these classes. AUC for classes 1 and 2 were found to be 0.90 and 0.91, respectively. The reason for the difference can be understood by examining the classification error prediction rates illustrated in the Figure 5-15.

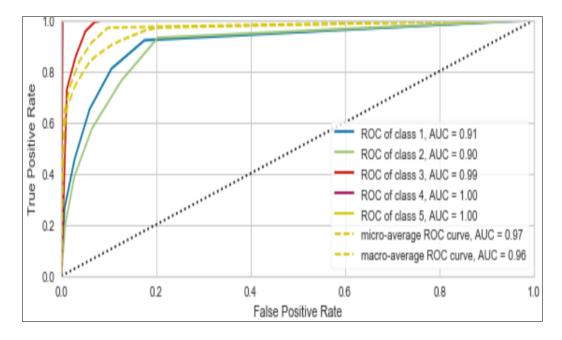



Figure 5-14 ROC Curves for k-NN with Over-Sampled Dataset

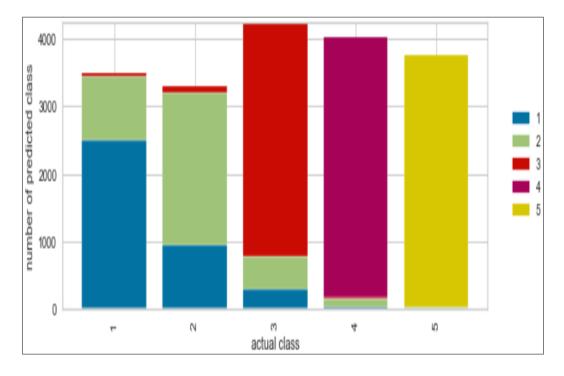



Figure 5-15 Error Prediction Rate for Over-Sampled k-NN

As observed in the Figure 5-15, PACP scores 1 and 2 are majorly misclassified among each other than any other class in the graph. This could be the reason for lower AUC compared to AUC values of classes 3, 4, and 5. However, various metrics are estimated from the confusion matrix to evaluate the performance of the trained model and are listed in the Table 5-7. It can be noticed that class 5 do not have any misclassified observation in it and as a result, the precision and recall are near unity. It is interesting to notice the F1-score of 0.68 for PACP score 1 even though the AUC was 0.91 for the same. The importance of different metrics to evaluate the performance of a model can be understood.

| PACP Score | Macro-Precision | Macro-Recall | Macro-F1 |  |
|------------|-----------------|--------------|----------|--|
| 1          | 0.715           | 0.664        | 0.688    |  |
| 2 0.684    |                 | 0.589        | 0.633    |  |
| 3          | 3 0.827         |              | 0.887    |  |
| 4          | 4 0.957         |              | 0.978    |  |
| 5 0.995    |                 | 1.000        | 0.997    |  |

Table 5-7 Precision, Recall, and F1 Metrics for Over-Sampled k-NN

#### 4.3.2.4 Summary of k-NN Results

It was interesting to notice that the k-NN model with over-sampled dataset had a better overall performance compared to the imbalanced and under-sampled k-NN models. PACP scores 1 and 2 were found to be misclassified within each other. However, F1-scores for classes 4 and 5 were found to be near unity, which indicates that the model is much reliable in predicting the sewer pipes in structurally poor condition.

#### 4.3.3 Random Forests (RF)

Finally, another most commonly employed supervised machine learning technique, random forests (RF) algorithm is used in this study. RF is considered a powerful algorithm that can fit complex datasets (Géron 2017). Visualizing options of RF makes it an effective and easily interpretable machine learning algorithm. As discussed earlier, the model is trained based on sequential if/else questions. Similar to other two methods, RF is also trained with three datasets and the obtained results are discussed in this section.

# 4.3.3.1 RF Imbalanced Dataset

One of the primary evaluation metrics for the trained RF model with imbalanced dataset, the confusion matrix is shown below. Like the results from other two models, almost all classes have considerable false positives and false negatives. Interestingly, there are some observations predicted as PACP score 5 by the RF imbalanced dataset model while the other two models did not classify any observation as PACP score 5.

| Confusion matrix = | <sub>5</sub> 3388 | 368  | 41  | 2  | ך0 |  |
|--------------------|-------------------|------|-----|----|----|--|
|                    | 737               | 1176 | 117 | 6  | 0  |  |
| Confusion matrix = | 75                | 236  | 222 | 18 | 1  |  |
|                    | 20                | 40   | 53  | 27 | 2  |  |
|                    | L 5               | 8    | 5   | 3  | 1] |  |

ROC curves were plotted for individual class to compare the performance of model for each class prediction as shown in the Figure 5-16. Unlike the other two models with imbalanced dataset, AUC values for all classes are found to be higher than 0.75, which indicate that the model has a better performance than other two models. However, each class is constituted by a considerable total of misclassified observations, which must be examined.

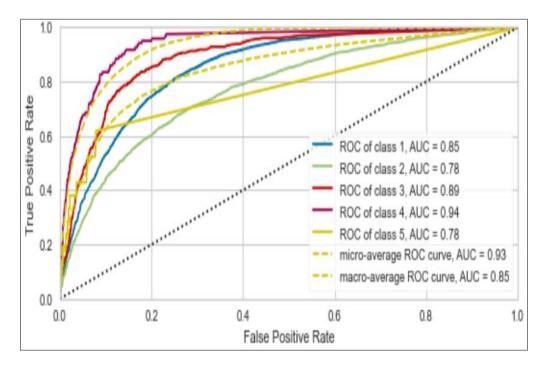



Figure 5-16 ROC Curves for RF with Imbalanced Dataset

To examine individual class prediction performance, errors in prediction rates were estimated and illustrated in the Figure 5-17. It can be observed that misclassification of PACP 2 as 1 is relatively lesser than other two models. PACP scores 2 and 3 are significantly misclassified within each other. However, it should be noted that PACP score 5 predictions are accurate without any misclassification. In addition, prediction of PACP score 4 is found to have a minimal misclassification. However, other evaluation metrics must be considered before concluding the performance of a model.

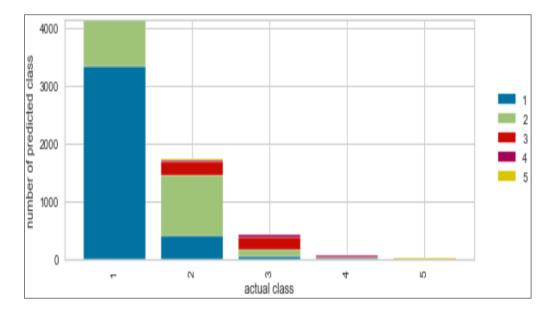



Figure 5-17 Error Prediction Rate for Imbalanced RF

| PACP Score | Macro-Precision | Macro-Recall | Macro-F1 |  |
|------------|-----------------|--------------|----------|--|
| 1          | 0.772           | 0.886        | 0.825    |  |
| 2          | 2 0.617         |              | 0.563    |  |
| 3 0.517    |                 | 0.382        | 0.440    |  |
| 4 0.382    |                 | 0.215        | 0.275    |  |
| 5          | 0.250           | 0.048        | 0.080    |  |

Estimated metrics such as precision, recall, and F1-scores for imbalanced RF model is displayed in the Table 5-8. It can be seen that class 1 has a higher F1-score of 0.825. Even though PACP score 5 had no misclassification, the F1-score was estimated as 0.08, indicating that the model is unreliable. This phenomenon is because of the minimal recall value of 0.048, which is because of significantly higher total of false negatives compared to true positives.

#### 4.3.3.2 RF Under-Sampled Dataset

The RF algorithm is trained with the under-sampled dataset and the obtained results are discussed in this section. As a primary evaluation metric, generated confusion matrix is shown below.

Confusion matrix = 
$$\begin{bmatrix} 13 & 3 & 0 & 0 & 1 \\ 6 & 5 & 4 & 0 & 3 \\ 2 & 2 & 6 & 6 & 3 \\ 1 & 1 & 10 & 6 & 2 \\ 2 & 3 & 2 & 7 & 7 \end{bmatrix}$$

It was interesting to notice that all classes have considerable observations. However, there are a major number of observations in false positives and false negatives. ROC curves for all classes were plotted based on FPR and TPR estimated from the confusion matrix as shown in the Figure 5-18. ROC curve of class 1 covers larger area whereas ROC curves of PACP scores 3 and 4 covers a relatively smaller area. Hence, the AUC for PACP 1 is higher than that of the other classes. However, the false positives and false negatives in the confusion matrix must be accounted for the performance evaluation of the model. Therefore, the errors in prediction rate for different classes are examined as shown in the Figure 5-19.

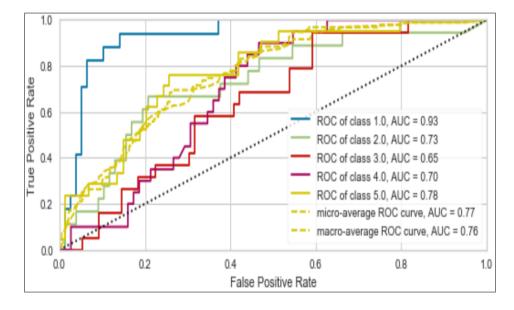



Figure 5-18 ROC Curves for RF with Under-Sampled Dataset

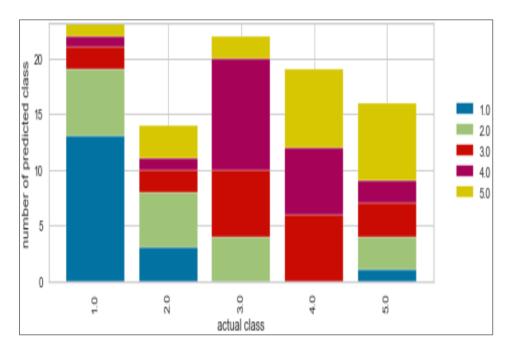



Figure 5-19 Error Prediction Rate for Under-Sampled RF

It can be seen in the error prediction chart that all the predicted classes are contributed by major misclassifications. None of the predicted classes have a majority of correct classification. Considering PACP score 3 for instance, 6 observations from PACP 3 were correctly classified as 3 but, 10 observations and 2 observations from PACP scores 4 and 5, respectively, were predicted as PACP 3 as well. Similarly, 7 instances from PACP score 5 was predicted correct while 9 instances from other 4 classes were misclassified as PACP 5. Therefore, better insight on other metrics is required to quantify the performance evaluation.

Metrics such as precision, recall, and corresponding F1-scores were estimated for all classes and are shown in the Table 5-9. As observed in the error prediction chart for PACP score 1, majority of the pipes with PACP score 1 was correctly classified as 1 and hence, the F1-score is higher than the other 4 classes. Majority of the predicted PACP score 3 classifications were misclassified from other classes and therefore, the F1-score of class 3 is the minimal.

| PACP Score | PACP Score Macro-Precision |       | Macro-F1 |
|------------|----------------------------|-------|----------|
| 1 0.542    |                            | 0.765 | 0.634    |
| 2 0.357    |                            | 0.278 | 0.313    |
| 3 0.273    |                            | 0.316 | 0.293    |
| 4          | 4 0.316                    |       | 0.308    |
| 5 0.438    |                            | 0.333 | 0.378    |

Table 5-9 Precision, Recall, and F1 Metrics for Under-Sampled RF

#### 4.3.3.3 RF Over-Sampled Dataset

Finally, the RF algorithm was trained with the over-sampled data in which number of observations in all classes are matched to the class with higher number of observations, which is PACP score 1 with 19,050 observations. Results of the RF model trained with over-sampled dataset is discussed in this section. As a basic evaluation metric, confusion matrix was generated and is shown below.

|                    | 3204 | 500              | 73   | 7    | ן 1  |  |
|--------------------|------|------------------|------|------|------|--|
|                    | 348  | 500<br>3336<br>5 | 112  | 1    | 0    |  |
| Confusion matrix = | 7    | 5                | 3841 | 0    | 0    |  |
|                    | 0    | 0                | 0    | 3866 | 0    |  |
|                    | L O  | 0                | 0    | 0    | 3749 |  |

It was interesting to notice in the confusion matrix that majority of elements other than the major diagonal are zeros, which is a good indication for a better performing model. Especially with the PACP score 5 predictions, only one observation was found to be misclassified from other classes. Similarly, considering PACP score 4 predictions, only a few observations are misclassified as well. The total false positives and false negatives for the classes 4 and 5 are almost negligible, which indicates that the model is capable to correctly predict all the pipes in structurally poor condition. However, PACP scores 1, 2, and 3 were found to have minor misclassifications and hence, their performance can de compared using ROC curves.

ROC curves for all classes were plotted as shown in the Figure 5-20. It can be seen that the AUC for ROC curves of PACP scores 3, 4, and 5, are unity. ROC curves of PACP scores 1 and 2 are visible because of minor misclassification observed in the confusion matrix. However, as discussed earlier, error in prediction rate and other metrics such as precision, recall, and F1-scores must be estimated to evaluate the performance of a prediction model in detail.

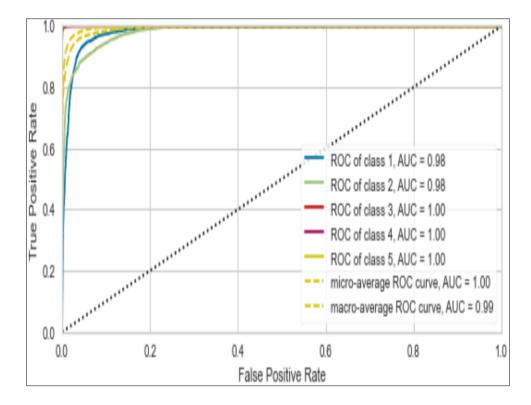



Figure 5-20 ROC Curves for RF with Over-Sampled Dataset

Errors in classified predictions are illustrated in the Figure 5-21. Classes 1 and 2 were found to have minor misclassifications within each other, and PACP score 3 had a minor misclassification from classes 1 and 2 as well. However, it should be noticed that PACP scores 4 and 5 had zero misclassification from other classes in their predictions.

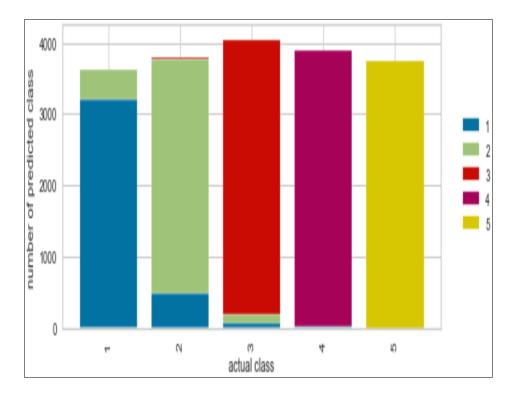



Figure 5-21 Error Prediction Rate for Over-Sampled RF

As discussed in earlier chapters, performance of developed models can be compared based on evaluation metrics. Therefore, various metrics were calculated and are listed in the Table 5-10. It is obvious from the confusion matrix that the evaluation metrics would yield better scores compared to the imbalanced and under-sampled dataset models. As expected, based on confusion matrix and error in prediction chart, precision, recall, and F1-scores for PACP 4 and 5 were found to be almost unity, which indicates that the model could perform better than the models trained with imbalanced and under-sampled datasets. The F1-scores for PACP scores 1 and 2 are around 0.87, which indicate that the model is reliable for future prediction.

| PACP Score | PACP Score Macro-Precision |       | Macro-F1 |  |
|------------|----------------------------|-------|----------|--|
| 1          | 0.888                      | 0.853 | 0.870    |  |
| 2          | 0.871                      | 0.860 | 0.866    |  |
| 3          | 3 0.955                    |       | 0.976    |  |
| 4 0.995    |                            | 1.000 | 0.998    |  |
| 5 1.000    |                            | 1.000 | 1.000    |  |

Table 5-10 Precision, Recall, and F1 Metrics for Over-Sampled RF

### 4.3.3.4 Summary of RF Results

The RF model is trained with all 3 kinds of datasets to develop a condition prediction model and respective results were discussed in previous sections. RF model with imbalanced dataset couldn't successfully classify the pipes in poor condition and the F1-scores were found to be 0.08 and 0.275 for PACP scores 5 and 4, respectively. Though the F1-scores of PACP scores 4 and 5 were improved to 0.308 and 0.378, respectively, in under-sampled dataset trained RF model, it is not reliable because of high misclassification rate. It was found that the trained RF model with over-sampled dataset performed better than the other two models. Based on the errors in prediction and F1-scores, it can be concluded that the RF model trained with over-sampled dataset would be a reliable model to accurately predict the sewer pipes in structurally poor condition.

## 4.4 Chapter Summary

Primarily, various evaluation metrics to compare the performance of different machine learning models are discussed in detail. Relevant metrics for reliable prediction of pipes in poor condition are scrutinized. Secondly, machine learning algorithms such as logistic regression, k-nearest neighbors, and random forests are trained with imbalanced, under-sampled, and over-sampled datasets, individually. Each method yielded three different results and evaluation metrics for all 9 results were calculated.

Based on the confusion matrix developed for all 3 methods, it was found that the models trained with imbalanced dataset failed to classify structurally poor condition pipes. Though the methods trained with under-sampled dataset was able to classify the pipes with PACP score 5, there was a considerable amount of misclassification that resulted the models to be unreliable. It was found that all 3 methods relatively performed better than imbalanced when trained with oversampled dataset.

### CHAPTER 6

### **RESULTS AND CONCLUSIONS**

#### 6.1 Introduction

In the previous chapters, collected sanitary sewer dataset was processed and prepared for training with various supervised machine learning algorithms. As discussed in chapter 4, different algorithms were selected for the required classification output in this study. As a result of training various algorithms, their performances were discussed in detail in the previous chapter. In this chapter, a machine learning model will be selected as a suitable model for prediction application.

It should be noted that the evaluation metrics were discussed based on individual class for each trained algorithm. It is possible that the performance of one model to predict class 5 would be better than the other model while the same model would perform poor to predict another class and vice versa. Therefore, there is a necessity to average the metrics of all 5 classes to compare the performance of different models. Hence, evaluation metrics from different algorithm results such as precision, recall, and F1-scores, were averaged for all 5 classes.

The following sections will discuss the performances of all three algorithms based on 3 different datasets namely imbalanced dataset, under-sampled dataset, and over-sampled dataset.

## 6.2 Results from Logistic Regression

Results from trained logistic regression models are illustrated in the Figure 6-1. It can be seen that the F1-score was found to be a maximum of 0.49 for undersampled dataset and a minimum of 0.28 for the imbalanced dataset. Likewise, precision and recall were also found to be maximum in under-sampled dataset compared to imbalanced and over-sampled datasets. It can be concluded from the figure that under-sampled dataset trained model performs better than the other two. However, the precision score of 0.52 indicates that the model is capable to correctly predict the given data to an extent of 52%.

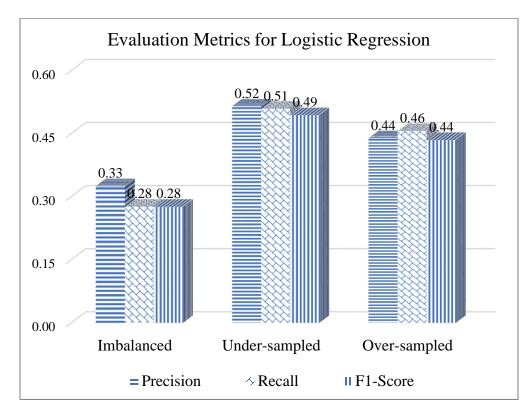



Figure 6-1 Summary of Results from Logistic Regression

## 6.3 Results from k-Nearest Neighbors

Obtained results from k-NN trained models are illustrated in the Figure 6-2. Unlike the logistic regression results, the over-sampled dataset trained model was found to perform better. It was found that the trained model with under-sampled dataset resulted a poor performance compared to imbalanced and over-sampled dataset trained models. The maximum F1-sccore was found to be 0.83 from oversampled dataset. Recall score of 0.84 indicates that 84% of the given test data would be correctly captured by the model. Though the F1-score of 0.83 is considered reliable, it could be further improved.

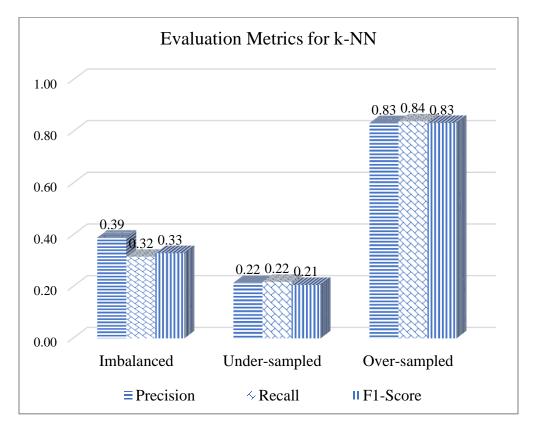



Figure 6-2 Summary of Results from k-NN

## 6.4 Results from Random Forests

As illustrated in the Figure 6-3, it was found that the results of random forests models outperformed both logistic regression and k-NN models. Precision and recall scores of 0.94 indicates that the model could correctly predict the given data and almost all correct observations would be predicted by the model. Interestingly, the F1-score was found to be a maximum of 0.94 for over-sampled dataset, which indicates that the model is greatly reliable. It should also be noted that the results from imbalanced dataset and under-sampled dataset did not differ in great extent as seen in other two algorithms.

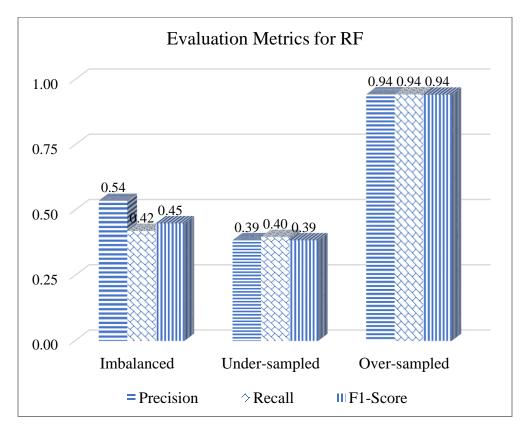



Figure 6-3 Summary of Results from RF

## 6.5 Area Under the Curve (AUC) and F1-scores Comparison

Other critical parameters in evaluating a prediction model such as AUC and F1-scores are compared between various algorithms in this section. As discussed in earlier sections, the AUC would provide an overall performance of a trained model. Resulted AUCs for various algorithms are compared as shown in the Figure 6-4 and RF models were found to perform better than that of LR and k-NN. However, it should be noted that the effect of misclassification is not accounted by the AUC and hence, F1-score is considered for model evaluation.

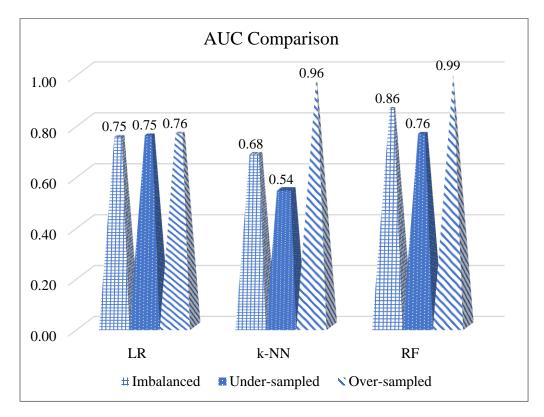



Figure 6-4 AUC Comparison between LR, k-NN, and RF

As a part of evaluating the trained models, F1-score was compared as shown in the Figure 6-5. F1-score was observed to drastically improve from 0.44 with LR model to 0.94 with RF model for the over-sampled dataset. The F1-score could be considered as an important metric to evaluate the performance of a model since it includes both precision and recall as discussed earlier.

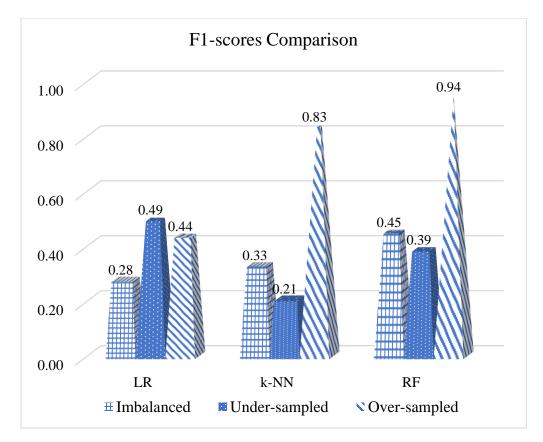



Figure 6-5 F1-score Comparison between LR, k-NN, and RF

Based on the evaluation metrics discussed from results of various trained models, it can be concluded that the over-sampled RF model perform better than the other two models. The trained RF model is capable to correctly predict every observation from each class with high reliability.

## CHAPTER 7

### PRACTICAL APPLICATIONS

To effectively utilize the developed condition prediction model, a decisionsupport tool was developed. Developed web-based application as shown in the Figure 7-1 utilizes an open-source library from Python, called "Streamlit". Application file can be shared with the utility owners to estimate the condition of uninspected pipes in their inventory.

| PACP Prediction                                                                                       |        |      |
|-------------------------------------------------------------------------------------------------------|--------|------|
| Enter pipe details below:                                                                             |        |      |
| Age:                                                                                                  |        |      |
| 88.00                                                                                                 | -      | +    |
| Length:                                                                                               |        |      |
| 98.00                                                                                                 | -      | +    |
| Slope:                                                                                                |        |      |
| 0.01                                                                                                  | -      | +    |
| Diameter:                                                                                             |        |      |
| 8.00                                                                                                  | -      | +    |
| Armco Truss: 0, Cast Iron: 1, Concrete: 2, Ductile Iron: 3, Fiberglass: 4, HDPE:<br>Steel: 7, Clay: 8 | 5, PVC | : 6, |
| Material:                                                                                             |        |      |
| 0 8                                                                                                   |        |      |
| SubArea:                                                                                              |        |      |
| WF02_01                                                                                               |        |      |
| MapscoGrid reference:                                                                                 |        |      |
| 76B                                                                                                   |        |      |
| PACP Score is: [5]                                                                                    |        |      |
| Pipe failed/likely to fail; Inspect No                                                                | ow     | !    |

Figure 7-1 Decision-Support Tool for PACP Prediction

The web-application can be used by the asset managers to forecast the condition of their sewer pipes and hence, critical sewer pipes can be prioritized for inspection. Based on the data used for this dissertation, the PACP score of an uninspected sanitary sewer pipe segment could be assessed by the utility managers without an extensive CCTV operation in field. The following details are needed as inputs for the decision support tool:

- 1) Age
- 2) Length
- 3) Diameter
- 4) Slope
- 5) Pipe Material
- 6) location of the pipe such as MAPSCOGRID reference
- 7) SUBAREA of the pipe

Based on inputs given to the program, condition of the pipe in PACP score will be provided as output. For instance, sewer pipes predicted as PACP score 5 would require immediate attention whereas sewer pipe with PACP score 3 would need inspection after 15 years.

## CHAPTER 8

### **RECOMMENDATIONS FOR FUTURE STUDIES**

Additional research studies could be accomplished to further improve the research work discussed in this dissertation. Potential future development could include but not limited to the following:

- Number of joints in inspected sanitary sewer pipe segment could be analyzed and included in the model development.
- Surface loads such as the traffic and population intensity could be investigated as influential factors.
- Cost-benefit analysis could be accomplished to examine the cost savings for the municipality or utility owners.
- Other machine learning algorithms and artificial intelligent techniques could be utilized to further investigate effects of influential factors.
- Studies could intend to include sanitary sewer pipe segments with history of maintenance activities such as CIPP.
- Developed model in this dissertation could be validated on inspection data from a different municipality.
- It should be noted that the model developed in this dissertation is based on data collected from the City of Fort Worth. The program must be modified corresponding to any other agency's data inventory prior to practical application.

• Integration of Global Positioning System (GPS) during inspection of pipe segment would help in mapping the critical pipelines during inspection and condition assessment phases.

### **CHAPTER 9**

#### REFERENCES

- Alessia, S., Antonio, C., and Aldo, Q. (2017). Random Forest Algorithm for the Classification of Neuroimaging Data in Alzheimer's Disease: A Systematic Review. *Frontiers in Aging Neuroscience*, 9, 329.
- AMERICAN IRON AND STEEL INSTITUTE. (1999). *Modern Sewer Design*. Washington, DC.
- Ana, E. V., and Bauwens, W. (2010). Modeling the structural deterioration of urban drainage pipes: the state-ofthe-art in statistical methods. *Urban Water Journal*, 47-59.
- Ariaratnam, S. T., El-Assaly, A., and Yang, Y. (2001). Assessment of Infrastrucure Inspection Needs Using Logistic Models. *Journal of Infrastructure Systems*, 160 - 165.
- Bakry, I., Alzraiee, H., Masry, M. E., Kaddoura, K., and Zayed, T. (2016). Condition Prediction for Cured-in-Place Pipe Rehabilitation of Sewer Mains. *Journal of Performance of Constructed Facilities*, 30(5), 04016016, 1-12.
- Baur, R., and Herz, R. (2002). Selective inspection planning with ageing forecast for sewer types. *Water Science and Technology*, 389-396.
- Caruana, R., and Niculescu-Mizil, A. (2006). An Empirical Comparison of Supervised Learning Algorithms. *Proceedings of the 23rd International Conference on Machine Learning*, (pp. 161-168). Pittsburgh.
- Chae, M. J., and Abraham, D. M. (2000). Automated Condition Assessment of Sanitary Sewer Pipelines. *Computing in Civil and Building Engineering*, 1196-1203.
- Chae, M. J., and Abraham, D. M. (2001). NEURO-FUZZY APPROACHES FOR SANITARY SEWER PIPELINE CONDITION ASSESSMENT. JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 4-14.
- Chughtai, F., and Zayed, T. (2008). Infrastructure Condition Prediction Models for Sustainable Sewer Pipelines. *Journal of Performance of Constructed Facilities*, 333-341.

- Davies, J., Clarke, B., Whiter, J., and Cunningham, R. (2001). Factors in uencing the structural deterioration of collapse of rigid sewer pipes. *Urban Water*, 73-89.
- Daziel, A., and Macey, C. (2004, February). The benefits of using quality sewer condition data in the asset management process. *Trenchless Technology*, pp. 36-39.
- DEC. (2015). *Municipal Sewage System Asset Management Guide (MSSAM)*. Albany, NY: Department of Environmental Conservation.
- Dzuray, E. J., and Tafuri, A. N. (2000). Sewer Pipeline Performance Indicators: Learning from the European Experience. *Joint Conference on Water Resource Engineering and Water Resources Planning and Management* 2000. Minneapolis: ASCE.
- EFC. (2006). A Guide for Water and Wastewater Systems. New Mexico: Environmental Finance Center.
- EPA. (2002). Asset Management for Sewer Collection Systems. Washington, DC: Office of Wastewater Management.
- EPA. (2004, August). *Report to Congress on Impacts and control of CSOs and SSOs*. Washington, D.C.: Office of Water. Retrieved from EPA: https://www.epa.gov/npdes/2004-npdes-cso-report-congress
- Estabrooks, A., Jo, T., and Japkowicz, N. (2004). A Multiple Resampling Method for Learning from Imbalanced Data Sets. *Computational Intelligence*, 18-36.
- Fenner, R. A. (2000). Approaches to sewer maintenance: a review. *Urban Water*, 343-356.
- Gedam, A., Mangulkar, S., and Gandhi, B. (2016). Prediction of sewer pipe main condition using the linear regression approach. *Journal of Geoscience and Environment Protection*, 100-105.
- Géron, A. (2017). *Hands-On Machine Learning with Scikit-Learn and TensorFlow*. Sebastopol: O'Reilly.
- Grandini, M., Bagli, E., and Visani, G. (2020). *METRICS FOR MULTI-CLASS CLASSIFICATION: AN OVERVIEW*. Bologna (BO), Italy: Università degli Studi di Bologna.

- Guo, G., Wang, H., Bell, D., Bi, Y., and Greer, K. (2003). k-NN Model-Based Approach in Classification. *On The Move to Meaningful Internet Systems*, 986-996.
- Hahn, M., Palmer, R., Merrill, S., and Lukas, A. (2002). Expert System for Prioritizing the Inspection of Sewers: Knowledge Base Formulation and Evaluation. *Journal of Water Resources Planning and Management*, 121-129.
- Haixiang, G., Yijing, L., Shang, J., Mingyun, G., and Yuanyue, H. (2017). Learning from class-imbalanced data: Review of methods and applications. *Expert Systems With Applications*, 220-239.
- Harvey, R. R., and McBean, E. A. (2014). Comparing the utility of decision trees and support vector machines when planning inspections of linear sewer infrastructure. *Journal of Hydroinformatics*, 1265-1279.
- Hernandez, N., Caradot, N., Sonnenberg, H., Rouault, P., and Torres, A. (2017).
  Support Tools to Predict the Critical Structural Condition of Uninspected Sewer Pipes in Bogota D.C. *The Leading Edge Sustainable Asset Management of Water and Wastewater Infrastructure Conference*. Trondheim, Norway.
- Hossin, M., and Sulaiman, M. (2015). A Review on Evaluation Metrics for Data Classification Evaluations. *International Journal of Data Mining and Knowledge Management Process*.
- (2006). International Infrastructure Management Manual.
- Jeong, H. S., Baik, H.-S., and Abraham, D. M. (2005). An ordered probit model approach for developing Markov chain-based deterioration model for wastewater infrastructure systems. *ASCE Pipelines*, 649-661.
- Khan, Z., and Zayed, T. M. (2010). Structural Condition Assessment of Sewer Pipelines. *Journal of Performance of Constructed Facilities*, 24(2), 170-179.
- Kienow, K. E., and Kienow, K. K. (2004). Risk Management... Predicting your Next Concrete Pipe Sewer Failure Before it Happens. *ASCE Pipeline Engineering and Construction*.
- Kley, G., and Caradot, N. (2013). *D 1.2 Review of Sewer Deterioration Models*. Berlin: Kompetenzzentrum Wasser Berlin.

- Laakso, T., Kokkonen, T., Mellin, I., and Vahala, R. (2018). Sewer Condition Prediction and Analysis of Explanatory Factors. *Water*, 1239.
- Loh, W.-Y. (2014). Fifty Years of Classification and Regression Trees. International Statistical Review, 82(3), 329-348.
- López, V., Fernández, A., García, S., Palade, V., and Herrera, F. (2013). An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. *Information Sciences*, 113-141.
- Malek Mohammadi, M., Najafi, M., Kaushal, V., Serajiantehrani, R., Salehabadi, N., and Ashoori, T. (2019). Sewer Pipes Condition Prediction Models: A State-of-the-Art Review. *Infrastructures*.
- Malek Mohammadi, M., Najafi, M., Kermanshachi, S., Kaushal, V., and Serajiantehrani, R. (2020). Factors Influencing the Condition of Sewer Pipes: State-of-the-Art Review. *Journal of Pipeline System and Engineering*, 11(4).
- Malek Mohammadi, M., Najafi, M., Salehabadi, N., Serajiantehrani, R., and Kaushal, V. (2020). Predicting Condition of Sanitary Sewer Pipes with Gradient Boosting Tree. *ASCE Pipelines*, 80-89.
- Malek Mohammadi, M., Najafi, m., Tabesh, A., Riley, J., and Gruber, J. (2019). Condition Prediction of Sanitary Sewer Pipes. *ASCE Pipelines*, 117-126.
- McDonald, S. E., and Zhao, J. Q. (2001). Condition assessment and rehabilitation of large sewers. *International Conference on Underground Infrastructure Research* (pp. 361-369). Waterloo: National Research Council Canada.
- Micevski, T., Kuczera, G., and Coombes, P. (2002). Markov Model for Storm Water Pipe Deterioration. *Journal of Infrastructure Systems*, 49-56.
- Misiunas, D. (2005). Failure monitoring and asset condition assessment in water supply systems. Sweden: Lund University.
- Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2018). *Foundations of Machine Learning (second edition)*. Cambridge, MA: The MIT Press.
- Moore, Bob. (2015, December 01). *TRUSS PIPE for Sanitary Sewers 52 Years and Counting*. Retrieved from Contech: https://www.conteches.com/pipearticle/article/26/truss-pipe-for-sanitary-sewers-52-years-and-counting

- Moteleb, M. (2010). *Risk Based Decision Making Tools for Sewer Infrastructure Management*. Ohio: the University of Cincinnati.
- Müller, A. C., and Guido, S. (2016). *Introduction to Machine Learning with Python: A Guide for Data Scientists*. Boston: O'Reilly.
- Najafi, M., and Gokhale, S. (2005). *Trenchless Technology*. New York: McGraw-Hill.
- Najafi, M., and Kulandaivel, G. (2005). Pipeline Condition Assessment Prediction Using Neural Network Models. *ASCE Pipelines*, 767-781.
- NASSCO. (2018, January). Pipeline Assessment Certificate Program .
- Opila, M. C. (2011). Structural Condition Scoring of Buried Sewer Pipes for Risk-Based Decision-Making. Delaware: University of Delaware.
- OWASA. (2017). *Asset Management Program.* Carrboro, NC: Orange Water and Sewer Authority.
- Rout, N., Kuhoo, Mishra, D., and Mallick, M. K. (2018). Analysing the Multiclass Imbalanced Datasets using Boosting Methods and Relevant Information. *International Journal of Pure and Applied Mathematics*, 120(6), 6171-6191.
- Singh, A., and Adachi, S. (2011). Bathtub curves and pipe prioritization based on failure rate. *Built Environment: Project Asset Management*, 105-122.
- Sousa, V., Matos, J. P., and Matias, N. (2014). Evaluation of artificial intelligence tool performance and uncertainty for predicting sewer structural condition. *Automation in Construction*, 84-91.
- Syachrani, S., Jeong, H. S., and Chung, C. S. (2013). Decision Tree–Based Deterioration Model for Buried Wastewater Pipelines. ASCE Journal of Performance of Constructed Facilities, 633-645.
- Tafuri, A. N., and Dzuray, E. J. (2004). Sewer Pipeline Performance Indicators: Learning from the European Experience. *Building Partnerships, Water Resources 2000*, 1-10.
- Tanha, J., Abdi, Y., Samadi, N., Razzaghi, N., and Asadpour, M. (2020). Boosting methods for multi-class imbalanced data classification: an experimental review. *Journal of Big Data*, 1-47.

- Teh, K., Armitage, P., Tesfaye, S., Selvarajah, D., and Wilkinson, I. D. (2020). Imbalanced learning: Improving classification of diabetic neuropathy from magnetic resonance imaging. *Oversampling improvements in diabetic neuropathy MRI*.
- Tran, D., Ng, A. W., Perera, B. J., Burn, S., and Davis, P. (2007). Application of probabilistic neural networks in modelling structural deterioration of stormwater pipes. *Urban Water Journal*, 175-184.
- Tscheikner-Gratl, F., Caradot, N., Cherqui, F., Leitão, J. P., Ahmadi, M., Langeveld, J. G., . . . Clemens, F. (2020). Sewer asset management – state of the art and research needs. *Urban Water Journal*, 662-675.
- Visani, G., Bagli, E., and Grandini, M. (2020). *Metrics for Multi-class Classification: An Overview*. Italy: Università degli Studi di Bologna.
- Vladeanu, G. J. (2018). Wastewater Pipe Condition and Deterioration Modeling for Risk-Based Decision Making. Louisiana: Louisiana Tech University.
- Wallace, B. C., Small, K., Brodley, C. E., and Trikalinos, T. A. (2011). Class Imbalance, Redux. 11th IEEE International Conference on Data Mining, 754-763.
- Water Reseach Center. (1986). *Sewerage Rehabilitation Book 2nd edition*. United Kingdom.
- Wirahadikusumah, R., Abraham, D., and Iseley, T. (June 2001). Challenging Issues in Modeling Deterioration of Combined Sewers. ASCE Journal of Infrastructure Systems, 77-84.
- WRc. (1986). Sewerage Rehabilitation Manual. England.
- Wright, L. T., Heaney, J. P., and Dent, S. (2006). Prioritizing Sanitary Sewers for Rehabilitation Using Least-Cost Classifiers. ASCE JOURNAL OF INFRASTRUCTURE SYSTEMS, 174-183.
- Yan, J., and Vairavamoorthy, K. (2003). Fuzzy approach for pipe condition assessment. *New Pipeline Technologies*, 466-476.
- Yijing, L., Haixiang, G., Xiao, L., Yanan, L., and Jinling, L. (2016). Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data. *Knowledge-Based Systems*, 94, 88-104.

Appendix A

Abbreviations

- ANN Artificial Neural Network
- ASCE American Society of Civil Engineering
- AT Armco Truss
- AUC Area under the Curve
- BF Big Fossil
- CBO Congressional Budget Office
- CCTV Closed-Circuit Television
- CF Clear Fork
- CI Cast Iron
- DI Ductile Iron
- DT Decision Trees
- EFC Environmental Finance Center
- EPA Environmental Protection Agency
- FN False Negative
- FP False Positive
- FPR False Positive Rate
- Gi Gini Index
- GIS Geographic Information System
- GPS Global Positioning System
- HDPE High-Density Polyethylene
- IIMM International Infrastructure Management Manual
- k-NN k-Nearest Neighbors
- LR Logistic Regression
- MSSAM Municipal Sewage System Asset Management

NASSCO - National Association of Sewer Service Company

OWASA - Orange Water and Sewer Authority

PACP - Pipeline Assessment Certification Program

PVC – Polyvinyl Chloride

RF – Random Forests

ROC - Receiver Operator Characteristic

SCRAPS - Sewer Cataloging, Retrieval and Prioritization System

TN – True Negative

TP - True Positive

TPR – True Positive Rate

VC – Village Creek

VCP – Vitrified Clay Pipe

WEF -- Water Environment Federation

WRc-Water Research Center

Appendix B

Data Sample (1,000 pipe segments)

| Sl.<br>No | Age  | Length | MAPSCO<br>GRID | Slope  | SUBAREA  | Size | Material | PACP |
|-----------|------|--------|----------------|--------|----------|------|----------|------|
| 1         | 22.3 | 844    | 93G            | 0.0005 | VC09_01  | 54   | Concrete | 2    |
| 2         | 16.4 | 415    | 46L            | 0.004  | MC04_04  | 8    | PVC      | 1    |
| 3         | 13.5 | 426    | 46H            | 0.018  | MC04_04  | 8    | PVC      | 1    |
| 4         | 48   | 259    | 89F            | 0.0206 | CF05_03  | 6    | VCP      | 3    |
| 5         | 47.9 | 503    | 89F            | 0.0301 | CF05_03  | 6    | Concrete | 2    |
| 6         | 14.4 | 112    | 119G           | 0.0057 | VC11_03  | 8    | PVC      | 1    |
| 7         | 15.3 | 444    | 106U           | 0.0067 | VC11_01  | 24   | PVC      | 1    |
| 8         | 15.2 | 396    | 106S           | 0.0038 | VC11_01  | 24   | PVC      | 2    |
| 9         | 67.4 | 203    | 47Y            | 0.0337 | MC03_06  | 6    | VCP      | 2    |
| 10        | 33.3 | 95     | 103H           | 0.0168 | SC09_05  | 6    | VCP      | 3    |
| 11        | 35.4 | 382    | 103D           | 0.0183 | SC09_02  | 6    | PVC      | 1    |
| 12        | 20.2 | 431    | 78K            | 0.0257 | SC10_03  | 8    | HDPE     | 1    |
| 13        | 35.7 | 180    | 103H           | 0.0563 | SC09_02  | 6    | PVC      | 1    |
| 14        | 17.6 | 71     | 103D           | 0.0331 | SC09_01  | 12   | PVC      | 1    |
| 15        | 15.1 | 417    | 103D           | 0.0142 | SC09_02  | 21   | PVC      | 1    |
| 16        | 7.5  | 345    | 71L            | 0.0038 | PCF15_01 | 36   | PVC      | 1    |
| 17        | 78.3 | 17     | 48Y            | 0.0118 | MC03_01  | 6    | Concrete | 2    |
| 18        | 9.5  | 271    | 62E            | 0.0316 | MC06_04  | 8    | PVC      | 1    |
| 19        | 3    | 65     | 62E            | 0.0365 | MC06_04  | 8    | PVC      | 1    |
| 20        | 25.3 | 195    | 75Y            | 0.0018 | CF05_01  | 30   | Concrete | 1    |
| 21        | 30.8 | 379    | 63Y            | 0.0014 | BF04_01  | 15   | VCP      | 1    |
| 22        | 14.3 | 521    | 90A            | 0.0059 | CF04_03  | 8    | PVC      | 2    |
| 23        | 82.5 | 252    | 90B            | 0.0041 | CF04_03  | 8    | Concrete | 4    |
| 24        | 82.6 | 142    | 90A            | 0.0222 | CF04_03  | 8    | Concrete | 4    |
| 25        | 11.4 | 301    | 61C            | 0.0219 | MC03_06  | 8    | PVC      | 1    |
| 26        | 28.8 | 531    | 61H            | 0.088  | WF01_02  | 6    | VCP      | 3    |
| 27        | 7.8  | 81     | 89D            | 0.004  | CF04_05  | 8    | HDPE     | 1    |
| 28        | 7.8  | 502    | 89D            | 0.0042 | CF04_05  | 8    | HDPE     | 3    |
| 29        | 7.8  | 141    | 89D            | 0.0065 | CF04_05  | 8    | HDPE     | 3    |
| 30        | 62.2 | 30     | 90E            | 0.1133 | CF04_05  | 8    | Concrete | 4    |
| 31        | 16.3 | 295    | 74Y            | 0.0039 | CF12_02  | 8    | CI       | 1    |
| 32        | 12.9 | 460    | 92G            | 0.0061 | VC09_04  | 8    | HDPE     | 1    |
| 33        | 12.4 | 439    | 92L            | 0.011  | VC09_03  | 8    | PVC      | 1    |
| 34        | 12.5 | 363    | 92F            | 0.004  | VC09_04  | 8    | PVC      | 2    |
| 35        | 7.5  | 242    | 72N            | 0.0019 | CF14_02  | 36   | PVC      | 1    |

|    |      | -   |      |        |         |    |          | - |
|----|------|-----|------|--------|---------|----|----------|---|
| 36 | 1.1  | 327 | 78F  | 0.0638 | SC10_04 | 8  | PVC      | 3 |
| 37 | 13.4 | 460 | 19Z  | 0.0055 | BF05_08 | 8  | PVC      | 1 |
| 38 | 10.7 | 552 | 19Z  | 0.0089 | BF05_08 | 8  | PVC      | 1 |
| 39 | 61   | 412 | 74N  | 0.0194 | CF12_03 | 8  | VCP      | 4 |
| 40 | 27.5 | 230 | 103J | 0.0104 | CF09_04 | 10 | PVC      | 1 |
| 41 | 29.9 | 376 | 88T  | 0.004  | CF08_02 | 8  | PVC      | 1 |
| 42 | 20   | 163 | 87Z  | 0.0141 | CF08_05 | 8  | PVC      | 1 |
| 43 | 10.6 | 437 | 103X | 0.006  | CF09_03 | 8  | PVC      | 1 |
| 44 | 88.8 | 565 | 73X  | 0.0121 | CF13_01 | 15 | Concrete | 3 |
| 45 | 5.9  | 316 | 21X  | 0.0099 | BF09_03 | 8  | PVC      | 1 |
| 46 | 10.2 | 288 | 21X  | 0.0197 | BF09_03 | 8  | PVC      | 1 |
| 47 | 17.9 | 488 | 61D  | 0.0438 | MC03_06 | 8  | PVC      | 2 |
| 48 | 8.1  | 80  | 89D  | 0.0041 | CF04_05 | 8  | HDPE     | 1 |
| 49 | 8.1  | 304 | 89D  | 0.0055 | CF04_05 | 8  | HDPE     | 1 |
| 50 | 7.7  | 73  | 89H  | 0.0069 | CF04_05 | 8  | HDPE     | 1 |
| 51 | 7.7  | 290 | 89H  | 0.0052 | CF04_05 | 8  | HDPE     | 1 |
| 52 | 26.3 | 634 | 74Y  | 0.0023 | CF12_02 | 10 | PVC      | 1 |
| 53 | 64.9 | 121 | 88A  | 0.006  | CF12_01 | 12 | Concrete | 3 |
| 54 | 4.8  | 625 | 23J  | 0.004  | DC03_01 | 30 | PVC      | 1 |
| 55 | 14.8 | 48  | 31H  | 0.0015 | MC05_07 | 36 | PVC      | 1 |
| 56 | 12.9 | 408 | 72D  | 0.0146 | WF05_02 | 8  | PVC      | 1 |
| 57 | 4.1  | 100 | 35S  | 0.0219 | BF05_03 | 8  | PVC      | 1 |
| 58 | 33.2 | 663 | 47J  | 0.0023 | MC04_04 | 30 | VCP      | 3 |
| 59 | 88.3 | 98  | 76B  | 0.0061 | WF02_01 | 8  | Concrete | 5 |
| 60 | 13.8 | 69  | 76D  | 0.0033 | CF01_04 | 27 | DI       | 2 |
| 61 | 14.3 | 240 | 76D  | 0.0072 | CF01_04 | 27 | DI       | 3 |
| 62 | 15.6 | 187 | 76D  | 0.0235 | CF01_05 | 24 | DI       | 1 |
| 63 | 20.5 | 45  | 63W  | 0.0071 | CF01_07 | 10 | HDPE     | 1 |
| 64 | 8    | 463 | 76D  | 0.0069 | CF01_04 | 10 | HDPE     | 1 |
| 65 | 15.8 | 295 | 103N | 0.0051 | CF09_02 | 15 | PVC      | 1 |
| 66 | 16.4 | 238 | 102R | 0.0408 | CF09_02 | 8  | PVC      | 1 |
| 67 | 10.8 | 221 | 78A  | 0.0013 | SC10_01 | 42 | PVC      | 3 |
| 68 | 44.1 | 94  | 50Y  | 0.0143 | BF02_01 | 30 | Concrete | 3 |
| 69 | 49   | 99  | 62L  | 0.0017 | MC03_01 | 45 | Concrete | 2 |
| 70 | 28.3 | 900 | 65B  | 0.0007 | BF01_04 | 54 | Concrete | 2 |
| 71 | 22.3 | 14  | 93D  | 0.0007 | VC08_01 | 54 | Concrete | 1 |
| 72 | 34.1 | 10  | 93G  | 0.55   | VC08_01 | 8  | VCP      | 1 |

| 73  | 13.5 | 84   | 46H        | 0.0032 | MC04_04 | 10 | PVC        | 1 |
|-----|------|------|------------|--------|---------|----|------------|---|
| 74  | 26.9 | 422  | 106U       | 0.0032 | VC11_01 | 24 | Concrete   | 3 |
| 75  | 39.6 | 374  | 72C        | 0.0035 | SC06_01 | 12 | VCP        | 2 |
| 76  | 17.5 | 412  | 72C<br>74Y | 0.0039 | CF12 02 | 8  | PVC        | 1 |
| 70  | 12.5 | 281  | 92H        | 0.0009 | VC09_02 | 18 | PVC        | 1 |
| 78  | 43.6 | 632  | 64H        | 0.0005 | BF02_01 | 35 | Concrete   | 3 |
| 79  | 44.2 | 1109 | 64C        | 0.0015 | BF02_01 | 30 | Concrete   | 5 |
| 80  | 25.3 | 535  | 72B        | 0.0033 | WF05_05 | 6  | PVC        | 1 |
| 81  | 17   | 363  | 32P        | 0.0474 | MC05_02 | 8  | PVC        | 1 |
| 82  | 13.5 | 507  | 93U        | 0.0003 | VC10_01 | 48 | Concrete   | 1 |
| 83  | 12.5 | 38   | 930<br>92H | 0.0003 | VC09_02 | 18 | PVC        | 1 |
| 84  |      | 73   |            |        |         | 10 |            | 1 |
|     | 7.1  |      | 63W        | 0.0137 | CF01_03 |    | PVC        |   |
| 85  | 27   | 311  | 102R       | 0.0174 | CF09_04 | 8  | PVC<br>VCP | 1 |
| 86  | 62.5 | 157  | 74N        | 0.0241 | CF12_03 | 8  | VCP        | 2 |
| 87  | 27.5 | 308  | 103J       | 0.0388 | CF09_04 | 8  | PVC        | 1 |
| 88  | 15.7 | 306  | 103N       | 0.008  | CF09_02 | 8  | PVC        | 1 |
| 89  | 15.7 | 47   | 103P       | 0.0268 | CF09_02 | 8  | PVC        | 1 |
| 90  | 46.2 | 474  | 93Y        | 0.0004 | VC10_01 | 36 | Concrete   | 1 |
| 91  | 6    | 342  | 78F        | 0.0258 | SC10_04 | 8  | PVC        | 1 |
| 92  | 6    | 103  | 78G        | 0.0407 | SC10_04 | 8  | PVC        | 1 |
| 93  | 13.5 | 204  | 46H        | 0.0032 | MC04_04 | 10 | PVC        | 1 |
| 94  | 13.5 | 102  | 46H        | 0.1121 | MC04_04 | 10 | PVC        | 1 |
| 95  | 22.3 | 600  | 93L        | 0.0004 | VC09_01 | 54 | Concrete   | 2 |
| 96  | 15   | 291  | 106S       | 0.0023 | VC11_01 | 24 | PVC        | 2 |
| 97  | 14.7 | 320  | 79F        | 0.0148 | VC06_03 | 15 | PVC        | 1 |
| 98  | 10.8 | 376  | 78M        | 0.0133 | VC07_03 | 8  | PVC        | 1 |
| 99  | 19.2 | 158  | 66Y        | 0.0246 | VC03_02 | 6  | PVC        | 1 |
| 100 | 43.3 | 196  | 120B       | 0.0012 | VC11_02 | 36 | VCP        | 3 |
| 101 | 13.5 | 411  | 119Z       | 0.0039 | VC11_03 | 8  | PVC        | 1 |
| 102 | 35   | 562  | 80F        | 0.006  | VC04_02 | 6  | VCP        | 2 |
| 103 | 12.8 | 168  | 81E        | 0.0482 | VC01_01 | 8  | PVC        | 1 |
| 104 | 38.3 | 600  | 80H        | 0.0439 | VC03_03 | 6  | VCP        | 2 |
| 105 | 12.5 | 187  | 92H        | 0.0016 | VC09_02 | 18 | PVC        | 1 |
| 106 | 9.8  | 139  | 47Y        | 0.035  | MC03_06 | 8  | PVC        | 1 |
| 107 | 17.8 | 253  | 78L        | 0.0049 | SC10_03 | 8  | HDPE       | 1 |
| 108 | 57.9 | 76   | 74P        | 0.0442 | CF12_05 | 6  | Concrete   | 2 |
| 109 | 35.7 | 308  | 103H       | 0.036  | SC09_02 | 6  | PVC        | 1 |

|     |      | 1   | r    | T      | 1        | 1  |          |   |
|-----|------|-----|------|--------|----------|----|----------|---|
| 110 | 63.2 | 130 | 74P  | 0.0546 | CF12_05  | 6  | Concrete | 3 |
| 111 | 7.1  | 480 | 71F  | 0.002  | PCF15_01 | 36 | PVC      | 2 |
| 112 | 7.5  | 400 | 71L  | 0.0038 | PCF15_01 | 36 | PVC      | 1 |
| 113 | 7.5  | 356 | 72N  | 0.0021 | CF14_02  | 36 | PVC      | 3 |
| 114 | 2.2  | 155 | 77T  | 0.0173 | SC02_05  | 8  | PVC      | 1 |
| 115 | 1.6  | 228 | 80N  | 0.0033 | VC01_05  | 24 | DI       | 1 |
| 116 | 51.6 | 470 | 89C  | 0.0029 | CF05_02  | 24 | Concrete | 3 |
| 117 | 46.2 | 370 | 93U  | 0.0002 | VC10_01  | 36 | Concrete | 1 |
| 118 | 16.3 | 212 | 74Y  | 0.0029 | CF12_02  | 10 | CI       | 1 |
| 119 | 7.7  | 24  | 93C  | 0.0613 | VC08_01  | 24 | Concrete | 1 |
| 120 | 16.6 | 165 | 88C  | 0.0031 | CF12_01  | 18 | PVC      | 1 |
| 121 | 52.2 | 233 | 89L  | 0.03   | CF05_03  | 8  | Concrete | 3 |
| 122 | 50.5 | 43  | 89L  | 0.0861 | CF05_03  | 6  | VCP      | 2 |
| 123 | 52.7 | 180 | 90N  | 0.0256 | SC08_02  | 6  | Concrete | 3 |
| 124 | 15.7 | 119 | 88Q  | 0.0347 | CF07_03  | 8  | PVC      | 2 |
| 125 | 12.1 | 236 | 76Q  | 0.0416 | CF02_02  | 8  | PVC      | 1 |
| 126 | 64.9 | 220 | 87D  | 0.0081 | CF12_01  | 12 | Concrete | 1 |
| 127 | 9    | 266 | 48F  | 0.0029 | MC02_04  | 10 | PVC      | 1 |
| 128 | 9.2  | 291 | 74K  | 0.0003 | WF04_02  | 8  | PVC      | 1 |
| 129 | 35.7 | 170 | 103G | 0.0832 | SC09_02  | 6  | PVC      | 1 |
| 130 | 35.7 | 302 | 103G | 0.0424 | SC09_02  | 6  | PVC      | 1 |
| 131 | 14.4 | 559 | 74L  | 0.0051 | CF11_04  | 8  | HDPE     | 3 |
| 132 | 16.1 | 138 | 21X  | 0.008  | BF09_03  | 15 | DI       | 1 |
| 133 | 0.2  | 52  | 78Q  | 0      | SC11_04  | 8  | HDPE     | 4 |
| 134 | 35.7 | 42  | 103H | 0.0245 | SC09_02  | 6  | PVC      | 1 |
| 135 | 3    | 141 | 62E  | 0.0745 | MC06_04  | 8  | PVC      | 1 |
| 136 | 53   | 494 | 63T  | 0.0004 | MC01_01  | 68 | Concrete | 3 |
| 137 | 60   | 243 | 80A  | 0.0288 | VC04_04  | 8  | Concrete | 3 |
| 138 | 24.5 | 369 | 78E  | 0.0192 | SC10_02  | 8  | PVC      | 1 |
| 139 | 83.1 | 370 | 61D  | 0.0458 | MC03_05  | 6  | Concrete | 3 |
| 140 | 13.4 | 202 | 19Z  | 0.0185 | BF05_08  | 8  | PVC      | 1 |
| 141 | 8.9  | 150 | 49W  | 0.0015 | MC02_03  | 8  | PVC      | 1 |
| 142 | 17.9 | 101 | 35X  | 0.0025 | BF05_02  | 8  | PVC      | 2 |
| 143 | 25   | 86  | 48U  | 0.019  | MC02_04  | 6  | DI       | 1 |
| 144 | 7.5  | 487 | 71R  | 0.0035 | PCF15_01 | 36 | PVC      | 1 |
| 145 | 6    | 84  | 74Y  | 0.0012 | CF12_02  | 10 | PVC      | 1 |
| 146 | 6    | 98  | 74Y  | 0.001  | CF12_02  | 10 | PVC      | 1 |

| · · · · · · |      |     |      | 1      |          |    |          |   |
|-------------|------|-----|------|--------|----------|----|----------|---|
| 147         | 10.9 | 128 | 76H  | 0.004  | CF01_06  | 8  | PVC      | 1 |
| 148         | 25.3 | 261 | 72B  | 0.0307 | WF05_05  | 6  | PVC      | 1 |
| 149         | 30.7 | 494 | 65G  | 0.0008 | BF01_04  | 54 | Concrete | 2 |
| 150         | 15.1 | 314 | 103D | 0.0057 | SC09_02  | 21 | PVC      | 1 |
| 151         | 7.1  | 250 | 71F  | 0.0036 | PCF15_01 | 36 | PVC      | 1 |
| 152         | 7.5  | 367 | 71L  | 0.0038 | PCF15_01 | 36 | PVC      | 1 |
| 153         | 7.8  | 549 | 77T  | 0.013  | SC02_05  | 8  | PVC      | 1 |
| 154         | 26.6 | 132 | 102D | 0.0369 | CF07_04  | 8  | PVC      | 1 |
| 155         | 6    | 35  | 74Y  | 0.01   | CF12_02  | 10 | PVC      | 1 |
| 156         | 61.3 | 219 | 48Y  | 0.0161 | MC03_01  | 6  | Concrete | 4 |
| 157         | 3    | 180 | 62E  | 0.0421 | MC06_04  | 8  | PVC      | 1 |
| 158         | 27   | 147 | 78B  | 0.052  | SC10_01  | 8  | VCP      | 2 |
| 159         | 48.5 | 289 | 80C  | 0.0228 | VC04_01  | 6  | Concrete | 2 |
| 160         | 46.1 | 51  | 93X  | 0.0024 | VC10_01  | 36 | Concrete | 2 |
| 161         | 83.8 | 111 | 90M  | 0.0865 | SC04_02  | 6  | Concrete | 3 |
| 162         | 26.3 | 129 | 74Y  | 0.0038 | CF12_02  | 10 | PVC      | 1 |
| 163         | 26.3 | 366 | 88C  | 0.0029 | CF12_02  | 10 | PVC      | 3 |
| 164         | 41   | 405 | 79T  | 0.003  | VC07_02  | 18 | Concrete | 3 |
| 165         | 8.5  | 68  | 79S  | 0.0028 | VC07_02  | 10 | DI       | 4 |
| 166         | 69.4 | 247 | 88B  | 0.003  | CF12_01  | 12 | Concrete | 3 |
| 167         | 12.1 | 128 | 76Q  | 0.0577 | CF02_02  | 8  | PVC      | 1 |
| 168         | 16.8 | 8   | 74X  | 0.2825 | CF12_02  | 16 | DI       | 3 |
| 169         | 35.6 | 226 | 74X  | 0.1231 | CF12_02  | 6  | VCP      | 1 |
| 170         | 2.9  | 113 | 89M  | 0.0099 | CF06_07  | 8  | PVC      | 1 |
| 171         | 2.9  | 276 | 90N  | 0.0065 | CF06_07  | 8  | PVC      | 1 |
| 172         | 2.9  | 127 | 90N  | 0.0161 | CF06_07  | 8  | PVC      | 1 |
| 173         | 22.8 | 297 | 36L  | 0.0202 | BF06_05  | 8  | PVC      | 1 |
| 174         | 13.7 | 385 | 90N  | 0.0636 | CF06_07  | 8  | PVC      | 1 |
| 175         | 0.3  | 88  | 75G  | 0.0265 | CF10_04  | 8  | PVC      | 1 |
| 176         | 9.3  | 82  | 76K  | 0.0111 | CF02_02  | 8  | PVC      | 1 |
| 177         | 23.4 | 40  | 76P  | 0.0425 | CF03_01  | 10 | HDPE     | 2 |
| 178         | 24.5 | 72  | 76P  | 0.0117 | CF03_02  | 21 | PVC      | 1 |
| 179         | 11.5 | 264 | 76K  | 0.0061 | CF02_02  | 8  | PVC      | 1 |
| 180         | 13.8 | 481 | 76Q  | 0.0062 | CF02_02  | 8  | PVC      | 1 |
| 181         | 19.5 | 385 | 76P  | 0.0112 | CF03_02  | 8  | VCP      | 3 |
| 182         | 24.5 | 35  | 76T  | 0.0034 | CF03_02  | 21 | PVC      | 1 |
| 183         | 13.8 | 27  | 76T  | 0.0219 | CF03_02  | 10 | DI       | 1 |

| 184 | 33.4 | 280 | 80D        | 0.0464 | VC03_03              | 6           | VCP               | 2   |
|-----|------|-----|------------|--------|----------------------|-------------|-------------------|-----|
| 185 | 65.1 | 186 | 74P        | 0.0097 | CF12_05              | 8           | Concrete          | 3   |
| 186 | 35.7 | 400 | 103G       | 0.0238 | SC09_02              | 8           | VCP               | 2   |
| 187 | 59.1 | 559 | 74J        | 0.0238 | WF04 03              | 8           | PVC               | 2   |
| 188 | 7.1  | 415 | 745<br>71E | 0.0201 | PCF15_02             | 36          | PVC               | 1   |
| 189 | 7.1  | 250 | 71E<br>71E | 0.0021 | PCF15_02<br>PCF15_01 | 36          | PVC               | 1   |
| 190 | 7.5  | 150 |            | 0.0021 | CF14_02              | 36          |                   |     |
| 190 | 30.1 | 130 | 72N<br>73K | 0.0023 | CF14_02<br>CF13_02   | - 30<br>- 8 | Fiberglass<br>VCP | 1 3 |
|     |      |     |            |        |                      |             |                   |     |
| 192 | 12.5 | 101 | 88U        | 0.0462 | CF08_02              | 8           | PVC               | 1   |
| 193 | 82.9 | 170 | 90B        | 0.0082 | CF03_04              | 10          | Concrete          | 2   |
| 194 | 12.1 | 303 | 103E       | 0.0198 | SC09_04              | 8           | PVC               | 1   |
| 195 | 15.5 | 231 | 104A       | 0.0089 | SC09_01              | 24          | DI                | 1   |
| 196 | 38.7 | 380 | 103H       | 0.0292 | SC09_02              | 6           | PVC               | 1   |
| 197 | 38.7 | 192 | 103C       | 0.0059 | SC09_02              | 6           | VCP               | 2   |
| 198 | 38.7 | 295 | 103C       | 0.0059 | SC09_02              | 6           | VCP               | 2   |
| 199 | 59.9 | 127 | 74K        | 0.0638 | CF12_05              | 6           | Concrete          | 2   |
| 200 | 7.1  | 400 | 71F        | 0.0021 | PCF15_01             | 36          | PVC               | 1   |
| 201 | 7.5  | 400 | 71L        | 0.0038 | PCF15_01             | 36          | PVC               | 1   |
| 202 | 52.1 | 108 | 73Z        | 0.0735 | CF12_09              | 6           | Concrete          | 3   |
| 203 | 61.5 | 27  | 64Z        | 0.0148 | SC10_01              | 6           | Concrete          | 2   |
| 204 | 37.5 | 311 | 80H        | 0.0172 | VC03_03              | 8           | VCP               | 2   |
| 205 | 40   | 400 | 103G       | 0.0344 | SC09_03              | 6           | VCP               | 2   |
| 206 | 30.1 | 480 | 103F       | 0.0099 | SC09_04              | 8           | PVC               | 1   |
| 207 | 39.4 | 247 | 76T        | 0.0326 | CF03_01              | 8           | HDPE              | 1   |
| 208 | 43.7 | 347 | 76K        | 0.0021 | CF04_01              | 24          | CI                | 1   |
| 209 | 14   | 168 | 76Y        | 0.0139 | CF03_05              | 8           | DI                | 1   |
| 210 | 82.9 | 28  | 90B        | 0.0071 | CF03_04              | 10          | Concrete          | 2   |
| 211 | 27.6 | 30  | 76V        | 0.1617 | CF02_04              | 8           | PVC               | 2   |
| 212 | 12.1 | 383 | 76L        | 0.0218 | CF02_02              | 8           | DI                | 1   |
| 213 | 16.6 | 77  | 76K        | 0.006  | CF03_01              | 8           | PVC               | 2   |
| 214 | 12.7 | 85  | 106W       | 0.0053 | VC11_06              | 10          | PVC               | 1   |
| 215 | 0.1  | 22  | 62P        | 0.0032 | MC06_02              | 8           | DI                | 1   |
| 216 | 14.8 | 21  | 62K        | 0.0052 | MC06_02              | 15          | PVC               | 1   |
| 217 | 3.5  | 248 | 22B        | 0.004  | DC02_03              | 8           | PVC               | 1   |
| 218 | 46.2 | 915 | 93Q        | 0.0008 | VC09_05              | 34          | Concrete          | 2   |
| 219 | 46.1 | 740 | 93X        | 0.0002 | VC10_01              | 36          | Concrete          | 2   |
| 220 | 87   | 55  | 76Y        | 0      | CF03_05              | 6           | Concrete          | 3   |

| 221 | 20.7 | 161 | 720  | 0.0196 | WE05 02     | 10 | VCD        | 2 |
|-----|------|-----|------|--------|-------------|----|------------|---|
| 221 | 39.7 | 161 | 72D  | 0.0186 | WF05_02     | 18 | VCP        | 2 |
| 222 | 3.4  | 9   | 103P | 0.0322 | CF09_05     | 8  | PVC        | 1 |
| 223 | 0.4  | 483 | 79M  | 0.0242 | VC01_05     | 8  | PVC        | 1 |
| 224 | 12.6 | 32  | 88T  | 0.1681 | CF08_02     | 8  | PVC        | 1 |
| 225 | 12.1 | 237 | 103E | 0.0136 | SC09_04     | 8  | PVC        | 1 |
| 226 | 14.8 | 222 | 103N | 0.0402 | CF09_05     | 8  | PVC        | 1 |
| 227 | 14.8 | 544 | 103K | 0.01   | CF09_05     | 8  | PVC        | 1 |
| 228 | 11.7 | 78  | 92H  | 0.0019 | VC09_02     | 8  | DI         | 2 |
| 229 | 12.9 | 78  | 35U  | 0.036  | BF09_02     | 8  | PVC        | 1 |
| 230 | 12.9 | 208 | 35U  | 0.0289 | BF09_02     | 8  | PVC        | 1 |
| 231 | 3.6  | 25  | 21Y  | 0.0088 | BF08_04     | 8  | PVC        | 1 |
| 232 | 20   | 97  | 49Q  | 0.0112 | BF02_03     | 8  | DI         | 2 |
| 233 | 3.4  | 254 | 21T  | 0.0158 | BF09_03     | 10 | PVC        | 1 |
| 234 | 43.3 | 778 | 120B | 0.0012 | VC11_02     | 36 | VCP        | 4 |
| 235 | 69.1 | 308 | 63E  | 0.0091 | MC02_01     | 6  | Concrete   | 3 |
| 236 | 9.3  | 268 | 76K  | 0.0209 | CF02_02     | 8  | PVC        | 1 |
| 237 | 17.4 | 258 | 76K  | 0.0248 | CF02_02     | 8  | PVC        | 1 |
| 238 | 31.1 | 409 | 76K  | 0.0111 | CF03_01     | 8  | PVC        | 1 |
| 239 | 12.9 | 288 | 72D  | 0.0163 | WF05_02     | 8  | PVC        | 1 |
| 240 | 12.9 | 504 | 72C  | 0.0211 | WF05_02     | 8  | PVC        | 1 |
| 241 | 18.4 | 405 | 66W  | 0.0041 | VC04_04     | 8  | PVC        | 1 |
| 242 | 60.6 | 142 | 79D  | 0.087  | VC04_04     | 6  | Concrete   | 3 |
| 243 | 54.9 | 403 | 81A  | 0.0062 | VC03_03     | 18 | VCP        | 2 |
| 244 | 12.7 | 568 | 106W | 0.0024 | VC11_06     | 10 | PVC        | 1 |
| 245 | 12.7 | 539 | 106W | 0.0028 | VC11_06     | 10 | PVC        | 1 |
| 246 | 13.8 | 222 | 76Q  | 0.0023 | CF02_02     | 8  | PVC        | 3 |
| 247 | 12.2 | 213 | 76Q  | 0.0057 | CF02_02     | 8  | HDPE       | 3 |
| 248 | 20.7 | 82  | 66N  | 0.0063 | VC02_03     | 8  | PVC        | 3 |
| 249 | 85.7 | 300 | 63Y  | 0.0003 | BF04_01     | 15 | Concrete   | 4 |
| 250 | 7.5  | 472 | 72N  | 0.002  | PCF15_01    | 36 | Fiberglass | 1 |
| 251 | 6    | 92  | 74Y  | 0.0051 | CF12_02     | 8  | PVC        | 1 |
| 252 | 61.9 | 43  | 89H  | 0.0091 | CF04_05     | 6  | Concrete   | 4 |
| 253 | 12.8 | 360 | 92G  | 0.0209 | VC09_03     | 8  | HDPE       | 1 |
| 254 | 51.5 | 36  | 89C  | 0.0044 | <br>CF05_02 | 24 | Concrete   | 2 |
| 255 | 46.1 | 38  | 93X  | 0      | <br>VC10_01 | 36 | Concrete   | 2 |
| 256 | 60.8 | 457 | 79X  | 0.0045 | VC07_02     | 10 | CI         | 4 |
| 257 | 7.6  | 155 | 119Z | 0.003  | VC11_03     | 10 | PVC        | 1 |

| 259 | 12.0 | 427 | 020  | 0.011  | NC00 02 | 0  | LIDDE    | 1 |
|-----|------|-----|------|--------|---------|----|----------|---|
| 258 | 13.2 | 437 | 92G  | 0.011  | VC09_03 | 8  | HDPE     | 1 |
| 259 | 14   | 50  | 92L  | 0.0082 | VC09_04 | 8  | DI       | 1 |
| 260 | 12.2 | 408 | 92L  | 0.0116 | VC09_03 | 8  | HDPE     | 1 |
| 261 | 13.2 | 125 | 92L  | 0.0039 | VC09_03 | 8  | PVC      | 1 |
| 262 | 11.7 | 345 | 92M  | 0.0063 | VC09_02 | 8  | HDPE     | 2 |
| 263 | 7.6  | 507 | 92M  | 0.0099 | VC09_02 | 8  | PVC      | 1 |
| 264 | 13.9 | 434 | 73U  | 0.0129 | CF13_01 | 8  | PVC      | 1 |
| 265 | 37.5 | 427 | 73V  | 0.0141 | CF12_09 | 8  | VCP      | 2 |
| 266 | 50.1 | 60  | 62L  | 0.0757 | MC06_01 | 21 | Concrete | 3 |
| 267 | 10.3 | 377 | 21X  | 0.005  | BF09_03 | 8  | PVC      | 1 |
| 268 | 25.3 | 128 | 72B  | 0.0363 | WF05_05 | 8  | PVC      | 1 |
| 269 | 28.6 | 12  | 65G  | 0.0008 | BF01_04 | 54 | Concrete | 2 |
| 270 | 13.5 | 203 | 78X  | 0.0232 | SC11_03 | 8  | PVC      | 1 |
| 271 | 28.2 | 375 | 35S  | 0.0022 | BF05_04 | 36 | Concrete | 1 |
| 272 | 46.4 | 294 | 89N  | 0.0228 | CF07_03 | 18 | Concrete | 2 |
| 273 | 38.8 | 606 | 47J  | 0.004  | MC04_04 | 21 | VCP      | 2 |
| 274 | 10.6 | 381 | 62F  | 0.0084 | MC06_04 | 12 | PVC      | 1 |
| 275 | 30.7 | 204 | 73P  | 0.055  | CF13_02 | 6  | VCP      | 2 |
| 276 | 16.4 | 218 | 103N | 0.0136 | CF09_02 | 8  | PVC      | 1 |
| 277 | 14.8 | 98  | 103P | 0.0244 | CF09_05 | 8  | PVC      | 1 |
| 278 | 9.9  | 37  | 103W | 0.0784 | CF09_03 | 8  | PVC      | 1 |
| 279 | 27.4 | 113 | 66S  | 0.0904 | VC02_03 | 8  | PVC      | 1 |
| 280 | 86.1 | 280 | 78A  | 0.2229 | SC10_01 | 6  | VCP      | 3 |
| 281 | 15.2 | 11  | 90A  | 0.0082 | CF04_03 | 15 | PVC      | 1 |
| 282 | 3.5  | 264 | 21P  | 0.004  | BF09_03 | 8  | PVC      | 1 |
| 283 | 58.4 | 3   | 80B  | 4.9033 | VC04_03 | 6  | Concrete | 3 |
| 284 | 18.9 | 121 | 61D  | 0.004  | MC03_06 | 8  | PVC      | 1 |
| 285 | 8.1  | 297 | 89D  | 0.0057 | CF04_05 | 8  | HDPE     | 1 |
| 286 | 7.8  | 56  | 89D  | 0.0045 | CF04_05 | 8  | HDPE     | 1 |
| 287 | 6.9  | 109 | 74X  | 0.0655 | CF12_02 | 8  | PVC      | 1 |
| 288 | 16.8 | 9   | 74X  | 0.09   | CF12_02 | 16 | DI       | 1 |
| 289 | 22.3 | 712 | 93G  | 0.0005 | VC08_01 | 54 | Concrete | 2 |
| 290 | 58.2 | 145 | 92D  | 0.0052 | VC08_05 | 10 | VCP      | 2 |
| 291 | 53   | 389 | 62M  | 0.0004 | MC02_01 | 69 | Concrete | 3 |
| 292 | 3.4  | 217 | 21T  | 0.006  | BF09_03 | 10 | PVC      | 1 |
| 293 | 46.3 | 291 | 93U  | 0.0007 | VC10_01 | 36 | Concrete | 2 |
| 294 | 46.1 | 119 | 93X  | 0.0004 | VC10_01 | 36 | Concrete | 2 |

| 207 | 60.0 | -    | ROTI | 0.004  | 11005.00    | 10 | LICD     |   |
|-----|------|------|------|--------|-------------|----|----------|---|
| 295 | 60.8 | 708  | 79X  | 0.004  | VC07_02     | 10 | VCP      | 4 |
| 296 | 5.3  | 248  | 90S  | 0.0351 | SC08_02     | 8  | HDPE     | 3 |
| 297 | 50.4 | 240  | 89G  | 0.006  | CF05_03     | 8  | Concrete | 4 |
| 298 | 61.9 | 84   | 89H  | 0.007  | CF04_05     | 6  | Concrete | 3 |
| 299 | 12.9 | 118  | 92G  | 0.0081 | VC09_04     | 8  | HDPE     | 2 |
| 300 | 12.2 | 341  | 92L  | 0.0072 | VC09_03     | 8  | HDPE     | 1 |
| 301 | 12.5 | 528  | 92F  | 0.006  | VC09_04     | 8  | PVC      | 1 |
| 302 | 10.6 | 226  | 93J  | 0.0121 | VC09_01     | 8  | PVC      | 1 |
| 303 | 28.7 | 456  | 74Z  | 0.0012 | CF12_04     | 21 | Concrete | 2 |
| 304 | 22.3 | 473  | 92N  | 0.0048 | SC05_02     | 8  | PVC      | 1 |
| 305 | 15.9 | 180  | 87D  | 0.0208 | CF12_09     | 8  | PVC      | 1 |
| 306 | 15.9 | 75   | 73Z  | 0.0184 | CF12_09     | 8  | PVC      | 1 |
| 307 | 11.4 | 182  | 75G  | 0.0141 | CF10_04     | 8  | PVC      | 1 |
| 308 | 48.7 | 250  | 62F  | 0.0018 | MC03_02     | 39 | Concrete | 3 |
| 309 | 85.1 | 602  | 62Y  | 0.0012 | WF02_01     | 12 | Concrete | 3 |
| 310 | 58.4 | 600  | 79D  | 0.0445 | VC06_01     | 6  | VCP      | 4 |
| 311 | 53   | 1431 | 63U  | 0.0004 | MC01_01     | 68 | Concrete | 3 |
| 312 | 48.5 | 289  | 80C  | 0.032  | VC04_01     | 6  | Concrete | 1 |
| 313 | 22.8 | 237  | 76Q  | 0.0125 | CF02_02     | 8  | PVC      | 1 |
| 314 | 13.2 | 126  | 92L  | 0.0041 | VC09_03     | 8  | PVC      | 1 |
| 315 | 10.6 | 374  | 93J  | 0.0397 | VC09_01     | 8  | PVC      | 2 |
| 316 | 4.4  | 5    | 63W  | 0.008  | MC01_01     | 8  | PVC      | 1 |
| 317 | 7.1  | 472  | 63W  | 0.0199 | CF01_03     | 12 | DI       | 1 |
| 318 | 32.2 | 172  | 74Y  | 0.182  | CF12_02     | 6  | VCP      | 1 |
| 319 | 22.3 | 334  | 92N  | 0.005  | SC05_02     | 8  | PVC      | 1 |
| 320 | 11.9 | 195  | 92H  | 0.004  | VC09_02     | 8  | PVC      | 2 |
| 321 | 1.6  | 152  | 80N  | 0.0032 | VC01_05     | 24 | DI       | 1 |
| 322 | 1.6  | 191  | 80N  | 0.0033 | VC01_05     | 24 | DI       | 1 |
| 323 | 34.3 | 77   | 89F  | 0.032  | CF05_03     | 6  | VCP      | 2 |
| 324 | 52.4 | 314  | 76N  | 0.006  | CF04_01     | 6  | Concrete | 3 |
| 325 | 10.9 | 320  | 119Z | 0.0084 | VC11_03     | 8  | PVC      | 1 |
| 326 | 35.4 | 133  | 66P  | 0.0309 | VC02_03     | 6  | VCP      | 1 |
| 327 | 59.2 | 309  | 74T  | 0.067  | CF12_02     | 6  | VCP      | 3 |
| 328 | 1.6  | 325  | 76B  | 0.005  | WF02_01     | 8  | PVC      | 1 |
| 329 | 56.4 | 196  | 74X  | 0.0792 | <br>CF12_02 | 6  | VCP      | 3 |
| 330 | 29.1 | 302  | 88W  | 0.0093 | CF08_05     | 10 | PVC      | 1 |
| 331 | 27.5 | 247  | 102M | 0.0463 | <br>CF09_04 | 8  | PVC      | 1 |

|     |      |      |      |        | -        |    | -        |   |
|-----|------|------|------|--------|----------|----|----------|---|
| 332 | 11.2 | 89   | 87Z  | 0.004  | CF08_04  | 8  | DI       | 1 |
| 333 | 35.4 | 217  | 103H | 0.0254 | SC09_02  | 6  | PVC      | 1 |
| 334 | 35.7 | 395  | 103G | 0.0094 | SC09_02  | 8  | VCP      | 2 |
| 335 | 34   | 263  | 103G | 0.0152 | SC09_02  | 6  | VCP      | 1 |
| 336 | 35.7 | 285  | 103G | 0.0161 | SC09_02  | 8  | VCP      | 2 |
| 337 | 38.7 | 503  | 103C | 0.0441 | SC09_02  | 6  | VCP      | 3 |
| 338 | 38.7 | 289  | 103C | 0.0087 | SC09_02  | 6  | VCP      | 2 |
| 339 | 19.6 | 200  | 74L  | 0.011  | CF11_04  | 8  | HDPE     | 2 |
| 340 | 7.5  | 300  | 71L  | 0.0039 | PCF15_01 | 36 | PVC      | 1 |
| 341 | 14.9 | 219  | 67Y  | 0.0049 | VC03_02  | 8  | PVC      | 1 |
| 342 | 52.8 | 587  | 93G  | 0.0005 | VC09_01  | 39 | Concrete | 2 |
| 343 | 5.5  | 270  | 46G  | 0.0075 | MC04_02  | 8  | PVC      | 1 |
| 344 | 44.3 | 993  | 106V | 0.0031 | VC11_01  | 33 | VCP      | 3 |
| 345 | 14.4 | 320  | 119G | 0.0378 | VC11_03  | 8  | PVC      | 1 |
| 346 | 33.3 | 284  | 72C  | 0.0154 | WF05_05  | 8  | VCP      | 1 |
| 347 | 33.3 | 251  | 80D  | 0.0039 | VC03_03  | 8  | VCP      | 3 |
| 348 | 63   | 116  | 74T  | 0.2303 | CF12_02  | 10 | VCP      | 5 |
| 349 | 16.7 | 321  | 74T  | 0.0027 | CF12_02  | 16 | DI       | 1 |
| 350 | 23.8 | 750  | 89Q  | 0.0026 | CF06_02  | 20 | DI       | 1 |
| 351 | 44.1 | 217  | 89S  | 0.0068 | CF07_04  | 18 | Concrete | 2 |
| 352 | 3.2  | 94   | 75W  | 0.0038 | CF11_06  | 8  | PVC      | 1 |
| 353 | 1.6  | 143  | 75H  | 0.075  | CF10_03  | 8  | PVC      | 1 |
| 354 | 2.1  | 287  | 22W  | 0.0109 | BF08_02  | 8  | PVC      | 1 |
| 355 | 3.1  | 528  | 19W  | 0.0039 | PBF10_01 | 8  | PVC      | 1 |
| 356 | 4.2  | 10   | 19Z  | 0.004  | BF05_08  | 8  | PVC      | 1 |
| 357 | 4.2  | 9    | 19Z  | 0.0044 | BF05_08  | 8  | PVC      | 1 |
| 358 | 14.3 | 241  | 76D  | 0.0078 | CF01_04  | 30 | DI       | 1 |
| 359 | 20.5 | 95   | 63W  | 0.0221 | CF01_07  | 10 | HDPE     | 1 |
| 360 | 13.8 | 230  | 76D  | 0.0022 | CF01_04  | 30 | DI       | 1 |
| 361 | 49.6 | 101  | 91C  | 0.003  | SC03_01  | 45 | Concrete | 5 |
| 362 | 43.6 | 1053 | 64C  | 0.0025 | BF02_01  | 35 | Concrete | 3 |
| 363 | 30.6 | 360  | 66D  | 0.0064 | BF01_03  | 8  | PVC      | 1 |
| 364 | 18   | 187  | 78H  | 0.007  | SC10_05  | 8  | HDPE     | 1 |
| 365 | 4    | 182  | 63Z  | 0.0032 | BF04_01  | 8  | PVC      | 1 |
| 366 | 13.8 | 359  | 67Q  | 0.071  | VC02_01  | 8  | PVC      | 1 |
| 367 | 6    | 95   | 74Y  | 0.0011 | CF12_02  | 10 | PVC      | 1 |
| 368 | 8.3  | 104  | 65U  | 0.0032 | VC05_01  | 16 | DI       | 2 |

| 369 | 31.6 | 356 | 102D | 0.0095 | CF07_06 | 6  | VCP      | 2 |
|-----|------|-----|------|--------|---------|----|----------|---|
| 370 | 2.9  | 150 | 90N  | 0.0087 | CF06_07 | 8  | PVC      | 1 |
| 371 | 2.9  | 450 | 90N  | 0.0378 | CF06_07 | 8  | PVC      | 1 |
| 372 | 2.9  | 293 | 90N  | 0.0149 | CF06_07 | 8  | PVC      | 1 |
| 373 | 2.9  | 21  | 90N  | 0.0276 | CF06_07 | 8  | PVC      | 1 |
| 374 | 7.6  | 88  | 21L  | 0.0225 | DC02_04 | 8  | PVC      | 2 |
| 375 | 2.9  | 30  | 90N  | 0.02   | CF06_07 | 8  | PVC      | 1 |
| 376 | 2.9  | 29  | 90N  | 0.0103 | CF06_07 | 8  | PVC      | 1 |
| 377 | 15.7 | 340 | 103S | 0.021  | CF09_02 | 8  | PVC      | 1 |
| 378 | 14.7 | 437 | 103S | 0.0045 | CF09_02 | 8  | PVC      | 1 |
| 379 | 14.8 | 444 | 103N | 0.0179 | CF09_05 | 8  | PVC      | 1 |
| 380 | 10.2 | 291 | 103X | 0.004  | CF09_03 | 8  | PVC      | 1 |
| 381 | 13   | 265 | 103S | 0.011  | CF09_02 | 8  | PVC      | 1 |
| 382 | 2.9  | 155 | 90N  | 0.0054 | CF06_07 | 8  | PVC      | 1 |
| 383 | 2.9  | 108 | 90N  | 0.0546 | CF06_07 | 8  | PVC      | 1 |
| 384 | 54.1 | 428 | 90W  | 0.0072 | SC08_06 | 12 | Concrete | 3 |
| 385 | 15.7 | 347 | 90V  | 0.0071 | SC08_01 | 35 | Concrete | 3 |
| 386 | 2.9  | 56  | 89R  | 0.07   | CF06_07 | 6  | HDPE     | 1 |
| 387 | 3.5  | 237 | 75M  | 0.004  | CF10_05 | 8  | PVC      | 1 |
| 388 | 2.9  | 52  | 90N  | 0.005  | CF06_07 | 8  | PVC      | 1 |
| 389 | 0.8  | 147 | 77T  | 0.0195 | SC03_05 | 8  | PVC      | 1 |
| 390 | 73.2 | 11  | 62G  | 0.1909 | MC03_02 | 10 | PVC      | 5 |
| 391 | 5    | 138 | 63L  | 0.0583 | BF04_02 | 8  | HDPE     | 1 |
| 392 | 12.5 | 28  | 63L  | 0.1436 | BF04_02 | 8  | PVC      | 1 |
| 393 | 32.7 | 77  | 92S  | 0.0807 | VC10_01 | 10 | PVC      | 3 |
| 394 | 6    | 42  | 74Y  | 0.0024 | CF12_02 | 10 | PVC      | 1 |
| 395 | 46.5 | 331 | 76N  | 0.0204 | CF04_01 | 6  | Concrete | 3 |
| 396 | 14.8 | 245 | 32E  | 0.004  | MC05_06 | 24 | DI       | 2 |
| 397 | 12.7 | 60  | 89G  | 0.2803 | CF05_03 | 8  | PVC      | 1 |
| 398 | 33.1 | 501 | 66N  | 0.0322 | VC02_03 | 6  | VCP      | 2 |
| 399 | 35.6 | 269 | 74X  | 0.0137 | CF12_02 | 6  | VCP      | 2 |
| 400 | 66.3 | 224 | 74T  | 0.0037 | CF12_02 | 10 | VCP      | 3 |
| 401 | 31   | 232 | 89N  | 0.0039 | CF07_03 | 8  | PVC      | 2 |
| 402 | 46.2 | 8   | 93X  | 0.0013 | VC10_01 | 36 | Concrete | 1 |
| 403 | 14.8 | 286 | 103P | 0.005  | CF09_05 | 8  | PVC      | 1 |
| 404 | 51.6 | 54  | 79M  | 0.0074 | VC01_05 | 10 | Concrete | 4 |
| 405 | 51.5 | 302 | 79M  | 0.0034 | VC01_05 | 10 | Concrete | 3 |

|      |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15.9 | 153                                                                                                                                                                                                                                                                                                                                                                                                           | 76K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CF02_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 83.5 | 420                                                                                                                                                                                                                                                                                                                                                                                                           | 79K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VC06_03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 67.3 | 565                                                                                                                                                                                                                                                                                                                                                                                                           | 79F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VC06_03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16.2 | 170                                                                                                                                                                                                                                                                                                                                                                                                           | 90X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SC08_03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 18.2 | 377                                                                                                                                                                                                                                                                                                                                                                                                           | 76Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CF02_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HDPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 86.1 | 31                                                                                                                                                                                                                                                                                                                                                                                                            | 78A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SC10_01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 17.2 | 208                                                                                                                                                                                                                                                                                                                                                                                                           | 36R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BF06_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12.3 | 350                                                                                                                                                                                                                                                                                                                                                                                                           | 62D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MC02_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.9  | 306                                                                                                                                                                                                                                                                                                                                                                                                           | 90N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CF06_07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HDPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.9  | 121                                                                                                                                                                                                                                                                                                                                                                                                           | 89M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CF06_07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.9  | 244                                                                                                                                                                                                                                                                                                                                                                                                           | 89R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CF06_07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 15.7 | 25                                                                                                                                                                                                                                                                                                                                                                                                            | 90V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SC08_01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 29.1 | 89                                                                                                                                                                                                                                                                                                                                                                                                            | 76K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CF03_01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 23.2 | 228                                                                                                                                                                                                                                                                                                                                                                                                           | 76P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CF03_01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5.8  | 147                                                                                                                                                                                                                                                                                                                                                                                                           | 76P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CF03_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HDPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 76.8 | 107                                                                                                                                                                                                                                                                                                                                                                                                           | 76P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CF03_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 78.6 | 581                                                                                                                                                                                                                                                                                                                                                                                                           | 76S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CF03_01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HDPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 26.8 | 914                                                                                                                                                                                                                                                                                                                                                                                                           | 76K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CF03_01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 28.8 | 61                                                                                                                                                                                                                                                                                                                                                                                                            | 76J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CF04_01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.3  | 306                                                                                                                                                                                                                                                                                                                                                                                                           | 75G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CF10_04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.6  | 287                                                                                                                                                                                                                                                                                                                                                                                                           | 62W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WF02_03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 21.6 | 176                                                                                                                                                                                                                                                                                                                                                                                                           | 72A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WF05_05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 48.6 | 245                                                                                                                                                                                                                                                                                                                                                                                                           | 89K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CF05_03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13.4 | 23                                                                                                                                                                                                                                                                                                                                                                                                            | 80K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VC01_04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13.4 | 98                                                                                                                                                                                                                                                                                                                                                                                                            | 80J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VC01_04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11.3 | 112                                                                                                                                                                                                                                                                                                                                                                                                           | 75K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CF11_07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 34.7 | 381                                                                                                                                                                                                                                                                                                                                                                                                           | 103F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SC09_04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 33.5 | 403                                                                                                                                                                                                                                                                                                                                                                                                           | 103F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SC09_04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6.9  | 437                                                                                                                                                                                                                                                                                                                                                                                                           | 63Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BF04_03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HDPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 52.9 | 547                                                                                                                                                                                                                                                                                                                                                                                                           | 93C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VC08_01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.2  | 75                                                                                                                                                                                                                                                                                                                                                                                                            | 75S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CF11_06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7.5  | 550                                                                                                                                                                                                                                                                                                                                                                                                           | 71R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PCF15_01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6.2  | 466                                                                                                                                                                                                                                                                                                                                                                                                           | 78F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SC10_04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.3  | 142                                                                                                                                                                                                                                                                                                                                                                                                           | 76J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CF10_05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10.7 | 40                                                                                                                                                                                                                                                                                                                                                                                                            | 90J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SC05_05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HDPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 63.7 | 61                                                                                                                                                                                                                                                                                                                                                                                                            | 79D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VC06_01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 18.6 | 65                                                                                                                                                                                                                                                                                                                                                                                                            | 76D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CF01_05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | 83.5         67.3         16.2         18.2         86.1         17.2         12.3         0.9         2.9         15.7         29.1         23.2         5.8         76.8         78.6         26.8         0.3         0.6         21.6         48.6         13.4         11.3         34.7         33.5         6.9         52.9         3.2         7.5         6.2         8.3         10.7         63.7 | 83.5       420         67.3       565         16.2       170         18.2       377         86.1       31         17.2       208         12.3       350         0.9       306         2.9       121         2.9       244         15.7       25         29.1       89         23.2       228         5.8       147         76.8       107         78.6       581         26.8       914         28.8       61         0.3       306         0.6       287         21.6       176         48.6       245         13.4       23         13.4       98         11.3       112         34.7       381         33.5       403         6.9       437         52.9       547         3.2       75         7.5       550         6.2       466         8.3       142         10.7       40         63.7       61 <td>83.5       420       79K         67.3       565       79F         16.2       170       90X         18.2       377       76Q         86.1       31       78A         17.2       208       36R         12.3       350       62D         0.9       306       90N         2.9       121       89M         2.9       244       89R         15.7       25       90V         29.1       89       76K         23.2       228       76P         5.8       147       76P         76.8       107       76P         78.6       581       76S         26.8       914       76K         28.8       61       76J         0.3       306       75G         0.6       287       62W         21.6       176       72A         48.6       245       89K         13.4       98       80J         11.3       112       75K         34.7       381       103F         33.5       403       103F         6.9       437</td> <td>83.5         420         79K         0.0157           67.3         565         79F         0.0046           16.2         170         90X         0.0027           18.2         377         76Q         0.0193           86.1         31         78A         0.321           17.2         208         36R         0.0153           0.9         306         90N         0.0061           2.9         121         89M         0.035           2.9         244         89R         0.0051           15.7         25         90V         0.0088           29.1         89         76K         0.0233           5.8         147         76P         0.0081           76.8         107         76P         0.0051           78.6         581         76S         0.0455           26.8         914         76K         0.0012           28.8         61         76J         0.0043           0.3         306         75G         0.0229           0.6         287         62W         0.0044           13.4         23         80K         0.2444           13.</td> <td>83.5         420         79K         0.0157         VC06_03           67.3         565         79F         0.0046         VC06_03           16.2         170         90X         0.0027         SC08_03           18.2         377         76Q         0.0193         CF02_02           86.1         31         78A         0.321         SC10_01           17.2         208         36R         0.0153         MC02_02           0.9         306         90N         0.0061         CF06_07           2.9         121         89M         0.035         CF06_07           2.9         244         89R         0.0051         CF03_01           2.9.1         25         90V         0.0088         SC08_01           29.1         89         76K         0.0357         CF03_01           23.2         228         76P         0.0233         CF03_01           23.4         76K         0.0361         CF03_02           78.6         581         76S         0.0455         CF03_01           26.8         914         76K         0.0013         CF04_01           0.3         306         75G         0.0229<!--</td--><td>83.5         420         79K         0.0157         VC06_03         6           67.3         565         79F         0.0046         VC06_03         6           16.2         170         90X         0.0027         SC08_03         33           18.2         377         76Q         0.0193         CF02_02         10           86.1         31         78A         0.321         SC10_01         6           17.2         208         36R         0.0153         MC02_02         24           0.9         306         90N         0.0061         CF06_07         8           2.9         121         89M         0.035         CF06_07         8           2.9         244         89R         0.0051         CF03_01         8           2.9         244         89R         0.0023         CF03_01         8           2.9         244         89R         0.0023         CF03_01         8           2.6.4         107         76P         0.0081         CF03_01         8           2.6.8         914         76K         0.0012         CF03_01         30           0.6         287         62W         <td< td=""><td>83.5         420         79K         0.0157         VC06_03         6         VCP           67.3         565         79F         0.0046         VC06_03         6         Concrete           16.2         170         90X         0.0027         SC08_03         33         PVC           18.2         377         76Q         0.0193         CF02_02         10         HDPE           86.1         31         78A         0.321         SC10_01         6         VCP           17.2         208         36R         0.0153         MC02_02         24         PVC           0.9         306         90N         0.0061         CF06_07         8         HDPE           2.9         121         89M         0.035         CF06_07         8         PVC           3.5.7         25         90V         0.0088         SC08_01         35         Concrete           29.1         89         76K         0.0367         CF03_01         8         PVC           3.5.8         147         76P         0.0233         CF03_01         8         HDPE           26.8         914         76K         0.0012         CF03_01         30</td></td<></td></td> | 83.5       420       79K         67.3       565       79F         16.2       170       90X         18.2       377       76Q         86.1       31       78A         17.2       208       36R         12.3       350       62D         0.9       306       90N         2.9       121       89M         2.9       244       89R         15.7       25       90V         29.1       89       76K         23.2       228       76P         5.8       147       76P         76.8       107       76P         78.6       581       76S         26.8       914       76K         28.8       61       76J         0.3       306       75G         0.6       287       62W         21.6       176       72A         48.6       245       89K         13.4       98       80J         11.3       112       75K         34.7       381       103F         33.5       403       103F         6.9       437 | 83.5         420         79K         0.0157           67.3         565         79F         0.0046           16.2         170         90X         0.0027           18.2         377         76Q         0.0193           86.1         31         78A         0.321           17.2         208         36R         0.0153           0.9         306         90N         0.0061           2.9         121         89M         0.035           2.9         244         89R         0.0051           15.7         25         90V         0.0088           29.1         89         76K         0.0233           5.8         147         76P         0.0081           76.8         107         76P         0.0051           78.6         581         76S         0.0455           26.8         914         76K         0.0012           28.8         61         76J         0.0043           0.3         306         75G         0.0229           0.6         287         62W         0.0044           13.4         23         80K         0.2444           13. | 83.5         420         79K         0.0157         VC06_03           67.3         565         79F         0.0046         VC06_03           16.2         170         90X         0.0027         SC08_03           18.2         377         76Q         0.0193         CF02_02           86.1         31         78A         0.321         SC10_01           17.2         208         36R         0.0153         MC02_02           0.9         306         90N         0.0061         CF06_07           2.9         121         89M         0.035         CF06_07           2.9         244         89R         0.0051         CF03_01           2.9.1         25         90V         0.0088         SC08_01           29.1         89         76K         0.0357         CF03_01           23.2         228         76P         0.0233         CF03_01           23.4         76K         0.0361         CF03_02           78.6         581         76S         0.0455         CF03_01           26.8         914         76K         0.0013         CF04_01           0.3         306         75G         0.0229 </td <td>83.5         420         79K         0.0157         VC06_03         6           67.3         565         79F         0.0046         VC06_03         6           16.2         170         90X         0.0027         SC08_03         33           18.2         377         76Q         0.0193         CF02_02         10           86.1         31         78A         0.321         SC10_01         6           17.2         208         36R         0.0153         MC02_02         24           0.9         306         90N         0.0061         CF06_07         8           2.9         121         89M         0.035         CF06_07         8           2.9         244         89R         0.0051         CF03_01         8           2.9         244         89R         0.0023         CF03_01         8           2.9         244         89R         0.0023         CF03_01         8           2.6.4         107         76P         0.0081         CF03_01         8           2.6.8         914         76K         0.0012         CF03_01         30           0.6         287         62W         <td< td=""><td>83.5         420         79K         0.0157         VC06_03         6         VCP           67.3         565         79F         0.0046         VC06_03         6         Concrete           16.2         170         90X         0.0027         SC08_03         33         PVC           18.2         377         76Q         0.0193         CF02_02         10         HDPE           86.1         31         78A         0.321         SC10_01         6         VCP           17.2         208         36R         0.0153         MC02_02         24         PVC           0.9         306         90N         0.0061         CF06_07         8         HDPE           2.9         121         89M         0.035         CF06_07         8         PVC           3.5.7         25         90V         0.0088         SC08_01         35         Concrete           29.1         89         76K         0.0367         CF03_01         8         PVC           3.5.8         147         76P         0.0233         CF03_01         8         HDPE           26.8         914         76K         0.0012         CF03_01         30</td></td<></td> | 83.5         420         79K         0.0157         VC06_03         6           67.3         565         79F         0.0046         VC06_03         6           16.2         170         90X         0.0027         SC08_03         33           18.2         377         76Q         0.0193         CF02_02         10           86.1         31         78A         0.321         SC10_01         6           17.2         208         36R         0.0153         MC02_02         24           0.9         306         90N         0.0061         CF06_07         8           2.9         121         89M         0.035         CF06_07         8           2.9         244         89R         0.0051         CF03_01         8           2.9         244         89R         0.0023         CF03_01         8           2.9         244         89R         0.0023         CF03_01         8           2.6.4         107         76P         0.0081         CF03_01         8           2.6.8         914         76K         0.0012         CF03_01         30           0.6         287         62W <td< td=""><td>83.5         420         79K         0.0157         VC06_03         6         VCP           67.3         565         79F         0.0046         VC06_03         6         Concrete           16.2         170         90X         0.0027         SC08_03         33         PVC           18.2         377         76Q         0.0193         CF02_02         10         HDPE           86.1         31         78A         0.321         SC10_01         6         VCP           17.2         208         36R         0.0153         MC02_02         24         PVC           0.9         306         90N         0.0061         CF06_07         8         HDPE           2.9         121         89M         0.035         CF06_07         8         PVC           3.5.7         25         90V         0.0088         SC08_01         35         Concrete           29.1         89         76K         0.0367         CF03_01         8         PVC           3.5.8         147         76P         0.0233         CF03_01         8         HDPE           26.8         914         76K         0.0012         CF03_01         30</td></td<> | 83.5         420         79K         0.0157         VC06_03         6         VCP           67.3         565         79F         0.0046         VC06_03         6         Concrete           16.2         170         90X         0.0027         SC08_03         33         PVC           18.2         377         76Q         0.0193         CF02_02         10         HDPE           86.1         31         78A         0.321         SC10_01         6         VCP           17.2         208         36R         0.0153         MC02_02         24         PVC           0.9         306         90N         0.0061         CF06_07         8         HDPE           2.9         121         89M         0.035         CF06_07         8         PVC           3.5.7         25         90V         0.0088         SC08_01         35         Concrete           29.1         89         76K         0.0367         CF03_01         8         PVC           3.5.8         147         76P         0.0233         CF03_01         8         HDPE           26.8         914         76K         0.0012         CF03_01         30 |

| 443 | 35.7 | 269  | 91G  | 0.002  | SC04_01 | 27 | VCP        | 2 |
|-----|------|------|------|--------|---------|----|------------|---|
| 444 | 0.6  | 17   | 62W  | 0.0535 | WF02_03 | 15 | PVC        | 1 |
| 445 | 7.8  | 45   | 62X  | 0.0091 | WF02_03 | 24 | DI         | 1 |
| 446 | 42.1 | 3    | 62W  | 0.7567 | WF02_03 | 8  | Concrete   | 2 |
| 447 | 9.6  | 221  | 67U  | 0.0101 | VC03_01 | 8  | PVC        | 1 |
| 448 | 13.8 | 381  | 67V  | 0.0074 | VC02_01 | 8  | PVC        | 1 |
| 449 | 3.9  | 291  | 21N  | 0.0051 | BF09_03 | 8  | PVC        | 1 |
| 450 | 2.9  | 118  | 89M  | 0.0208 | CF06_07 | 8  | PVC        | 1 |
| 451 | 2.9  | 139  | 90N  | 0.0069 | CF06_07 | 8  | PVC        | 1 |
| 452 | 2.9  | 73   | 90N  | 0.0715 | CF06_07 | 8  | PVC        | 1 |
| 453 | 2.9  | 27   | 90N  | 0.0111 | CF06_07 | 8  | PVC        | 1 |
| 454 | 15.7 | 377  | 90V  | 0.005  | SC08_01 | 35 | Concrete   | 2 |
| 455 | 16.2 | 286  | 90X  | 0.0041 | SC08_03 | 27 | PVC        | 2 |
| 456 | 2.9  | 26   | 90N  | 0.0223 | CF06_07 | 8  | PVC        | 1 |
| 457 | 13.5 | 56   | 76L  | 0.0004 | CF02_02 | 6  | PVC        | 1 |
| 458 | 19.5 | 152  | 76T  | 0.023  | CF03_02 | 8  | VCP        | 3 |
| 459 | 24.5 | 161  | 76P  | 0.0037 | CF03_02 | 21 | PVC        | 1 |
| 460 | 13.8 | 51   | 76T  | 0.0165 | CF03_02 | 12 | PVC        | 1 |
| 461 | 12   | 378  | 76Q  | 0.0116 | CF02_02 | 8  | HDPE       | 1 |
| 462 | 20.7 | 79   | 66N  | 0.0062 | VC02_03 | 8  | PVC        | 1 |
| 463 | 85.7 | 234  | 63Y  | 0.0034 | BF04_01 | 15 | Concrete   | 4 |
| 464 | 90.6 | 297  | 63Y  | 0.0019 | BF04_01 | 15 | Concrete   | 3 |
| 465 | 16.5 | 236  | 46H  | 0.0139 | MC04_04 | 8  | PVC        | 1 |
| 466 | 22.3 | 795  | 79Z  | 0.0005 | VC07_01 | 54 | Concrete   | 2 |
| 467 | 3.5  | 133  | 93L  | 0.001  | VC09_05 | 54 | Fiberglass | 2 |
| 468 | 15.2 | 400  | 106S | 0.0032 | VC11_01 | 24 | PVC        | 2 |
| 469 | 54.9 | 329  | 81A  | 0.007  | VC03_03 | 18 | VCP        | 3 |
| 470 | 1.8  | 496  | 73Z  | 0.0106 | CF12_08 | 8  | PVC        | 1 |
| 471 | 7.8  | 17   | 62X  | 0.0035 | WF02_03 | 24 | DI         | 1 |
| 472 | 6.2  | 127  | 62W  | 0.0039 | WF02_03 | 8  | DI         | 2 |
| 473 | 7.5  | 352  | 76B  | 0.0047 | WF02_01 | 12 | PVC        | 1 |
| 474 | 0.8  | 260  | 79H  | 0.0058 | VC01_05 | 8  | PVC        | 1 |
| 475 | 49.8 | 370  | 91G  | 0.0009 | SC03_01 | 45 | Concrete   | 2 |
| 476 | 28.6 | 1200 | 65G  | 0.0008 | BF01_04 | 54 | Concrete   | 3 |
| 477 | 46.1 | 591  | 93X  | 0.0003 | VC10_01 | 36 | Concrete   | 1 |
| 478 | 55.4 | 1023 | 63Z  | 0      | BF04_01 | 72 | Concrete   | 4 |
| 479 | 17.1 | 191  | 32T  | 0.1382 | MC05_02 | 8  | PVC        | 1 |

| 480         17         80         32N         0.1088         MC05_02         8         PV           481         86.6         492         76N         0.0012         CF04_01         24         Conc           482         33.4         154         80D         0.0468         VC03_03         6         VC           483         13.2         114         76V         0.0487         CF02_04         8         PV |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 482 33.4 154 80D 0.0468 VC03_03 6 VC                                                                                                                                                                                                                                                                                                                                                                              | rete 5 |
|                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| 483 13.2 114 76V 0.0487 CF02_04 8 PV                                                                                                                                                                                                                                                                                                                                                                              | P 2    |
|                                                                                                                                                                                                                                                                                                                                                                                                                   | C 1    |
| 484 48.5 187 89K 0.03 CF05_03 6 Conc                                                                                                                                                                                                                                                                                                                                                                              | rete 2 |
| 485         13.7         112         80K         0.0222         VC01_03         10         PV                                                                                                                                                                                                                                                                                                                     | C 2    |
| 486 48.7 95 89G 0.0121 CF05_03 6 VC                                                                                                                                                                                                                                                                                                                                                                               | P 2    |
| 487 82.5 695 62B 0.021 MC03_02 6 Conc                                                                                                                                                                                                                                                                                                                                                                             | rete 4 |
| 488         15.9         200         49U         0.0053         BF02_02         8         PV                                                                                                                                                                                                                                                                                                                      | C 1    |
| 489         17.5         121         49U         0.0052         BF02_02         8         PV                                                                                                                                                                                                                                                                                                                      | C 1    |
| 490         90.9         479         62D         0.0129         MC02_02         10         VC                                                                                                                                                                                                                                                                                                                     | P 2    |
| 491 16.2 450 90X 0.0042 SC08_03 27 PV                                                                                                                                                                                                                                                                                                                                                                             | C 2    |
| 492 13.7 251 90N 0.0477 CF06_07 8 PV                                                                                                                                                                                                                                                                                                                                                                              | C 1    |
| 493 1.1 441 75M 0.0126 CF10_02 8 PV                                                                                                                                                                                                                                                                                                                                                                               | C 1    |
| 494 3.6 504 75L 0.0396 CF10_05 8 PV                                                                                                                                                                                                                                                                                                                                                                               | C 1    |
| 495 0.1 181 62X 0.0033 WF02_03 10 D                                                                                                                                                                                                                                                                                                                                                                               | 4      |
| 496 66.2 7 62W 0.0071 WF02_03 6 Conc                                                                                                                                                                                                                                                                                                                                                                              | rete 1 |
| 497 43.2 77 89F 0.0812 CF05_03 6 Conc                                                                                                                                                                                                                                                                                                                                                                             | rete 2 |
| 498 19 223 103D 0.0022 SC09_06 15 PV                                                                                                                                                                                                                                                                                                                                                                              | C 1    |
| 499 35.7 274 103H 0.0289 SC09_02 6 PV                                                                                                                                                                                                                                                                                                                                                                             | C 1    |
| 500 63.2 78 74P 0.0513 CF12_05 6 Conc                                                                                                                                                                                                                                                                                                                                                                             | rete 3 |
| 501         7.5         395         71L         0.0039         PCF15_01         36         PV                                                                                                                                                                                                                                                                                                                     | C 1    |
| 502         7.5         400         71Q         0.0038         PCF15_01         36         PV                                                                                                                                                                                                                                                                                                                     | C 1    |
| 503 45.7 97 89W 0.0078 CF07_05 12 Conc                                                                                                                                                                                                                                                                                                                                                                            | rete 2 |
| 504 2.1 199 22W 0.01 BF08_02 8 PV                                                                                                                                                                                                                                                                                                                                                                                 | C 1    |
| 505 3.5 178 22B 0.0039 DC02_03 8 PV                                                                                                                                                                                                                                                                                                                                                                               | C 1    |
| 506 34.4 257 31H 0.0023 MC05_04 12 VC                                                                                                                                                                                                                                                                                                                                                                             | P 1    |
| 507 26.6 130 62N 0.01 MC06_02 6 VC                                                                                                                                                                                                                                                                                                                                                                                | P 1    |
| 508 13.6 242 93U 0.0003 VC10_01 48 Conc                                                                                                                                                                                                                                                                                                                                                                           | rete 1 |
| 509 6 233 76D 0.0028 CF01_04 10 PV                                                                                                                                                                                                                                                                                                                                                                                | C 2    |
| 510 13.8 128 76D 0.0345 CF01_05 24 D                                                                                                                                                                                                                                                                                                                                                                              | 2      |
| 511 18.5 354 76D 0.0635 CF01_04 10 HD                                                                                                                                                                                                                                                                                                                                                                             | PE 1   |
| 512 44.1 406 64C 0.0027 BF02_01 33 Conc                                                                                                                                                                                                                                                                                                                                                                           | rete 2 |
| 513 28.7 746 65B 0.0008 BF01_04 54 Conc                                                                                                                                                                                                                                                                                                                                                                           | rete 2 |
| 514 26.3 98 74Y 0.0028 CF12_02 10 D                                                                                                                                                                                                                                                                                                                                                                               | 1      |
| 515 41 504 79X 0.003 VC07_02 18 Conc                                                                                                                                                                                                                                                                                                                                                                              | rete 3 |
| 516 41 385 79T 0.003 VC07_02 18 Conc                                                                                                                                                                                                                                                                                                                                                                              | rete 3 |

| 517 | 15.9 | 74   | 88C  | 0.0015 | CF12_01     | 12 | PVC        | 1 |
|-----|------|------|------|--------|-------------|----|------------|---|
| 518 | 10.9 | 84   | 119Z | 0.0013 | VC11_03     | 8  | PVC<br>PVC | 1 |
|     |      |      |      |        |             |    |            | 3 |
| 519 | 46.2 | 18   | 90A  | 0.0567 | CF04_03     | 15 | Concrete   |   |
| 520 | 96.5 | 127  | 76D  | 0.01   | CF01_07     | 6  | VCP        | 2 |
| 521 | 0.3  | 184  | 75G  | 0.0051 | CF10_04     | 8  | PVC        | 1 |
| 522 | 0.8  | 279  | 79H  | 0.0157 | VC01_05     | 8  | PVC        | 1 |
| 523 | 13.8 | 161  | 76Q  | 0.0086 | CF02_02     | 8  | PVC        | 3 |
| 524 | 20.7 | 292  | 66N  | 0.0199 | VC02_03     | 8  | PVC        | 1 |
| 525 | 19.1 | 211  | 62B  | 0.015  | MC03_02     | 8  | PVC        | 2 |
| 526 | 86.5 | 118  | 62D  | 0.0403 | MC02_02     | 10 | VCP        | 4 |
| 527 | 0.9  | 168  | 90N  | 0.0136 | CF06_07     | 8  | HDPE       | 1 |
| 528 | 12.9 | 22   | 35U  | 0.1277 | BF09_02     | 8  | PVC        | 1 |
| 529 | 12.9 | 63   | 35U  | 0.0656 | BF09_02     | 8  | PVC        | 1 |
| 530 | 3.6  | 16   | 21Y  | 0.5338 | BF09_03     | 8  | PVC        | 1 |
| 531 | 28.4 | 70   | 76C  | 0.0007 | CF10_01     | 54 | Concrete   | 4 |
| 532 | 65.8 | 147  | 77A  | 0.0495 | CF01_07     | 8  | VCP        | 2 |
| 533 | 14.6 | 150  | 32B  | 0.0073 | MC05_08     | 24 | DI         | 2 |
| 534 | 3.2  | 57   | 75W  | 0.004  | CF11_06     | 8  | PVC        | 1 |
| 535 | 3.2  | 349  | 75W  | 0.0029 | CF11_06     | 10 | PVC        | 1 |
| 536 | 34.7 | 162  | 36W  | 0.004  | BF05_01     | 8  | VCP        | 1 |
| 537 | 2.1  | 502  | 22W  | 0.005  | BF08_02     | 8  | PVC        | 1 |
| 538 | 2.1  | 146  | 22W  | 0.0199 | BF08_02     | 8  | PVC        | 1 |
| 539 | 28.7 | 501  | 65G  | 0.0008 | BF01_04     | 54 | Concrete   | 3 |
| 540 | 87.9 | 176  | 62F  | 0.0035 | MC06_04     | 18 | Concrete   | 2 |
| 541 | 22.2 | 239  | 93L  | 0.0008 | VC09_05     | 54 | Concrete   | 1 |
| 542 | 43.6 | 525  | 64D  | 0.0018 | BF02_01     | 35 | Concrete   | 2 |
| 543 | 44.1 | 679  | 64C  | 0.0027 | BF02_01     | 33 | Concrete   | 3 |
| 544 | 4    | 459  | 92C  | 0.0465 | VC08_04     | 8  | PVC        | 4 |
| 545 | 45   | 383  | 63Y  | 0.004  | BF04_01     | 8  | VCP        | 2 |
| 546 | 13.5 | 200  | 78X  | 0.0191 | SC11_03     | 8  | PVC        | 1 |
| 547 | 13.4 | 274  | 80K  | 0.0025 | VC01_04     | 16 | DI         | 1 |
| 548 | 48.5 | 9    | 66Y  | 0.0233 | VC04_01     | 6  | Concrete   | 2 |
| 549 | 27.6 | 82   | 65V  | 0.039  | <br>VC02_04 | 6  | VCP        | 3 |
| 550 | 19.8 | 71   | 78J  | 0.0051 | SC11_01     | 27 | PVC        | 1 |
| 551 | 22.3 | 1384 | 93C  | 0.0005 | <br>VC08_01 | 54 | Concrete   | 3 |
| 552 | 0.2  | 418  | 75H  | 0.0058 | <br>CF10_03 | 8  | DI         | 2 |
| 553 | 2.1  | 414  | 22W  | 0.01   | BF08_02     | 8  | PVC        | 1 |

| 334         0.1         71         6.2P         0.0852         MC0_02         8         PVC         1           555         0.5         57         62N         0.079         MC06_02         8         PVC         1           556         13.8         65         76D         0.1142         CF01_04         30         DI         1           557         14.2         533         63W         0.0049         CF01_07         24         PVC         1           558         4.6         35         76D         0.0046         CF01_07         8         Concrete         2           560         15.2         101         76D         0.0045         CF01_05         8         DI         1           561         10.5         329         75R         0.0123         CF04_01         32         DI         1           564         3.4         272         21T         0.0091         BF09_03         10         PVC         1           564         3.4         272         21T         0.0087         BF09_03         10         PVC         1           565         3.4         278         21T         0.0087         BF09_03 <th>551</th> <th>0.1</th> <th>71</th> <th>62D</th> <th>0.0652</th> <th>MC06 02</th> <th>0</th> <th>DVC</th> <th>1</th> | 551 | 0.1  | 71   | 62D  | 0.0652 | MC06 02 | 0  | DVC      | 1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|------|------|--------|---------|----|----------|---|
| $556$ $13.8$ $65$ $76D$ $0.1142$ $CF01_04$ $30$ $DI$ $1$ $557$ $14.2$ $533$ $63W$ $0.0049$ $CF01_07$ $24$ $PVC$ $1$ $558$ $4.6$ $35$ $76D$ $0.0046$ $CF01_07$ $8$ $DI$ $1$ $559$ $18.3$ $338$ $77A$ $0.0002$ $CF01_07$ $8$ $Concrete$ $2$ $560$ $15.2$ $101$ $76D$ $0.0045$ $CF01_05$ $8$ $DI$ $1$ $561$ $10.5$ $329$ $75R$ $0.0123$ $CF04_01$ $32$ $DI$ $1$ $562$ $0.9$ $891$ $62B$ $0.0196$ $MC03_02$ $8$ $PVC$ $2$ $563$ $3.5$ $105$ $21P$ $0.0592$ $BF09_03$ $8$ $PVC$ $1$ $564$ $3.4$ $272$ $21T$ $0.0091$ $BF09_03$ $10$ $PVC$ $1$ $565$ $3.4$ $278$ $21T$ $0.0087$ $BF09_03$ $10$ $PVC$ $1$ $566$ $7.5$ $35$ $72N$ $0.0046$ $CF1_2_02$ $10$ $PVC$ $1$ $566$ $6$ $52$ $74Y$ $0.0013$ $CF1_2_02$ $10$ $PVC$ $1$ $568$ $6$ $52$ $74Y$ $0.004$ $SC09_04$ $8$ $VCP$ $1$ $569$ $33.2$ $165$ $65U$ $0.004$ $SC09_04$ $8$ $VCP$ $1$ $570$ $34.6$ $271$ $103F$ $0.004$ $SC09_04$                                                                                                                                                                                                                                                                                                                                                                               | 554 | 0.1  |      | 62P  | 0.0652 | MC06_02 | 8  | PVC      | 1 |
| $557$ $14.2$ $533$ $63W$ $0.0049$ $CF01_07$ $24$ $PVC$ $1$ $558$ $4.6$ $35$ $76D$ $0.0046$ $CF01_05$ $8$ $DI$ $1$ $559$ $18.3$ $338$ $77A$ $0.0002$ $CF01_07$ $8$ $Concrete$ $2$ $560$ $15.2$ $101$ $76D$ $0.0045$ $CF01_05$ $8$ $DI$ $1$ $561$ $10.5$ $329$ $75R$ $0.0123$ $CF04_01$ $32$ $DI$ $1$ $562$ $0.9$ $891$ $62B$ $0.0196$ $MC03_02$ $8$ $PVC$ $2$ $563$ $3.5$ $105$ $21P$ $0.0592$ $BF09_03$ $8$ $PVC$ $1$ $564$ $3.4$ $272$ $21T$ $0.0087$ $BF09_03$ $10$ $PVC$ $1$ $565$ $3.4$ $278$ $21T$ $0.0087$ $BF09_03$ $10$ $PVC$ $1$ $566$ $7.5$ $35$ $72N$ $0.0046$ $CF14_02$ $36$ $PVC$ $2$ $567$ $6$ $80$ $74Y$ $0.0013$ $CF12_02$ $10$ $PVC$ $1$ $568$ $6$ $52$ $74Y$ $0.0019$ $CF12_02$ $10$ $PVC$ $1$ $569$ $33.2$ $165$ $65U$ $0.004$ $SC09_04$ $8$ $VCP$ $1$ $570$ $34.6$ $271$ $103F$ $0.004$ $SC09_04$ $8$ $VCP$ $2$ $573$ $39.9$ $322$ $103C$ $0.0334$ $SC09_06$ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                            |     |      |      |      |        |         |    |          |   |
| $558$ $4.6$ $35$ $76D$ $0.0046$ $CF01_05$ $8$ $DI$ $1$ $559$ $18.3$ $338$ $77A$ $0.0002$ $CF01_07$ $8$ $Concrete$ $2$ $560$ $15.2$ $101$ $76D$ $0.0045$ $CF01_05$ $8$ $DI$ $1$ $561$ $10.5$ $329$ $75R$ $0.0123$ $CF04_01$ $32$ $DI$ $1$ $562$ $0.9$ $891$ $62B$ $0.0196$ $MC03_02$ $8$ $PVC$ $2$ $563$ $3.5$ $105$ $21P$ $0.0592$ $BF09_03$ $8$ $PVC$ $1$ $564$ $3.4$ $272$ $21T$ $0.0087$ $BF09_03$ $10$ $PVC$ $1$ $565$ $3.4$ $278$ $21T$ $0.0087$ $BF09_03$ $10$ $PVC$ $1$ $566$ $7.5$ $35$ $72N$ $0.0046$ $CF14_02$ $36$ $PVC$ $2$ $567$ $6$ $80$ $74Y$ $0.0013$ $CF12_02$ $10$ $PVC$ $1$ $568$ $6$ $52$ $74Y$ $0.0019$ $CF12_02$ $10$ $PVC$ $1$ $569$ $33.2$ $165$ $65U$ $0.004$ $SC09_04$ $8$ $VCP$ $1$ $571$ $34.6$ $245$ $103F$ $0.0042$ $SC09_04$ $8$ $VCP$ $1$ $572$ $38.2$ $413$ $103F$ $0.0042$ $SC09_04$ $8$ $VCP$ $2$ $573$ $39.9$ $322$ $103C$ $0.0334$ $SC09_06$ <                                                                                                                                                                                                                                                                                                                                                                          |     |      |      |      |        |         |    |          |   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |      |      |      |        |         |    |          |   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |      |      |      |        |         |    |          |   |
| $561$ $10.5$ $329$ $75R$ $0.0123$ $CF04_01$ $32$ $DI$ $1$ $562$ $0.9$ $891$ $62B$ $0.0196$ $MC03_02$ $8$ $PVC$ $2$ $563$ $3.5$ $105$ $21P$ $0.0592$ $BF09_03$ $8$ $PVC$ $1$ $564$ $3.4$ $272$ $21T$ $0.0091$ $BF09_03$ $10$ $PVC$ $1$ $565$ $3.4$ $278$ $21T$ $0.0087$ $BF09_03$ $10$ $PVC$ $1$ $566$ $7.5$ $35$ $72N$ $0.0046$ $CF14_02$ $36$ $PVC$ $2$ $567$ $6$ $80$ $74Y$ $0.0013$ $CF12_02$ $10$ $PVC$ $1$ $568$ $6$ $52$ $74Y$ $0.0019$ $CF12_02$ $10$ $PVC$ $1$ $569$ $33.2$ $165$ $65U$ $0.0061$ $VC02_05$ $6$ $VCP$ $3$ $570$ $34.6$ $271$ $103F$ $0.004$ $SC09_04$ $8$ $VCP$ $1$ $571$ $34.6$ $245$ $103F$ $0.0042$ $SC09_04$ $8$ $VCP$ $2$ $573$ $39.9$ $322$ $103C$ $0.0334$ $SC09_06$ $6$ $VCP$ $2$ $574$ $30.7$ $14$ $65G$ $0.0021$ $BF01_04$ $54$ $Concrete$ $4$ $575$ $6.3$ $60$ $78M$ $0.0165$ $SC10_06$ $8$ $HDPE$ $1$ $577$ $35.5$ $108$ $67U$ $0.0235$ $VC03_01$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                               |     |      |      |      |        |         |    |          |   |
| 562         0.9         891         62B         0.0196         MC03_02         8         PVC         2           563         3.5         105         21P         0.0592         BF09_03         8         PVC         1           564         3.4         272         21T         0.0091         BF09_03         10         PVC         1           565         3.4         278         21T         0.0087         BF09_03         10         PVC         1           566         7.5         35         72N         0.0046         CF14_02         36         PVC         2           567         6         80         74Y         0.0013         CF12_02         10         PVC         1           568         6         52         74Y         0.0019         CF12_02         10         PVC         1           569         33.2         165         65U         0.0041         VC02_05         6         VCP         3           570         34.6         271         103F         0.004         SC09_04         8         VCP         1           571         34.6         245         103F         0.0042         SC09_04                                                                                                                            |     |      |      |      |        |         |    |          |   |
| $563$ $3.5$ $105$ $21P$ $0.0592$ $BF09_03$ $8$ $PVC$ $1$ $564$ $3.4$ $272$ $21T$ $0.0091$ $BF09_03$ $10$ $PVC$ $1$ $565$ $3.4$ $278$ $21T$ $0.0087$ $BF09_03$ $10$ $PVC$ $1$ $565$ $3.4$ $278$ $21T$ $0.0087$ $BF09_03$ $10$ $PVC$ $1$ $566$ $7.5$ $35$ $72N$ $0.0046$ $CF14_02$ $36$ $PVC$ $2$ $567$ $6$ $80$ $74Y$ $0.0013$ $CF12_02$ $10$ $PVC$ $1$ $568$ $6$ $52$ $74Y$ $0.0019$ $CF12_02$ $10$ $PVC$ $1$ $569$ $33.2$ $165$ $65U$ $0.0061$ $VC02_05$ $6$ $VCP$ $3$ $570$ $34.6$ $271$ $103F$ $0.004$ $SC09_04$ $8$ $VCP$ $1$ $571$ $34.6$ $245$ $103F$ $0.004$ $SC09_04$ $8$ $VCP$ $1$ $572$ $38.2$ $413$ $103F$ $0.0042$ $SC09_04$ $8$ $VCP$ $2$ $573$ $39.9$ $322$ $103C$ $0.0334$ $SC09_06$ $6$ $VCP$ $2$ $574$ $30.7$ $14$ $65G$ $0.0021$ $BF01_04$ $54$ $Concrete$ $4$ $575$ $6.3$ $60$ $78M$ $0.0165$ $SC10_06$ $8$ $HDPE$ $1$ $576$ $13.8$ $95$ $67U$ $0.0235$ $VC03_01$ <td>561</td> <td></td> <td></td> <td></td> <td>0.0123</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                      | 561 |      |      |      | 0.0123 |         |    |          |   |
| 564         3.4         272         21T         0.0091         BF09_03         10         PVC         1           565         3.4         278         21T         0.0087         BF09_03         10         PVC         1           566         7.5         35         72N         0.0046         CF14_02         36         PVC         2           567         6         80         74Y         0.0013         CF12_02         10         PVC         1           568         6         52         74Y         0.0019         CF12_02         10         PVC         1           569         33.2         165         65U         0.0061         VC02_05         6         VCP         3           570         34.6         271         103F         0.004         SC09_04         8         VCP         1           571         34.6         245         103F         0.0042         SC09_04         8         VCP         2           573         39.9         322         103C         0.0334         SC09_06         6         VCP         2           574         30.7         14         65G         0.0021         BF01_04                                                                                                                          | 562 | 0.9  | 891  | 62B  | 0.0196 | MC03_02 | 8  | PVC      | 2 |
| 565         3.4         278         21T         0.0087         BF09_03         10         PVC         1           566         7.5         35         72N         0.0046         CF14_02         36         PVC         2           567         6         80         74Y         0.0013         CF12_02         10         PVC         1           568         6         52         74Y         0.0019         CF12_02         10         PVC         1           569         33.2         165         65U         0.0061         VC02_05         6         VCP         3           570         34.6         271         103F         0.004         SC09_04         8         VCP         1           571         34.6         245         103F         0.004         SC09_04         8         VCP         1           572         38.2         413         103F         0.0042         SC09_04         8         VCP         2           573         39.9         322         103C         0.0334         SC09_06         6         VCP         2           574         30.7         14         65G         0.0021         BF01_04                                                                                                                          | 563 | 3.5  | 105  | 21P  | 0.0592 | BF09_03 | 8  | PVC      | 1 |
| 566         7.5         35         72N         0.0046         CF14_02         36         PVC         2           567         6         80         74Y         0.0013         CF12_02         10         PVC         1           568         6         52         74Y         0.0019         CF12_02         10         PVC         1           569         33.2         165         65U         0.0061         VC02_05         6         VCP         3           570         34.6         271         103F         0.004         SC09_04         8         VCP         1           571         34.6         245         103F         0.004         SC09_04         8         VCP         1           572         38.2         413         103F         0.0042         SC09_04         8         VCP         2           573         39.9         322         103C         0.0334         SC09_06         6         VCP         2           574         30.7         14         65G         0.0021         BF01_04         54         Concrete         4           575         6.3         60         78M         0.0165         SC10_06<                                                                                                                     | 564 | 3.4  | 272  | 21T  | 0.0091 | BF09_03 | 10 | PVC      | 1 |
| 567         6         80         74Y         0.0013         CF12_02         10         PVC         1           568         6         52         74Y         0.0019         CF12_02         10         PVC         1           569         33.2         165         65U         0.0061         VC02_05         6         VCP         3           570         34.6         271         103F         0.004         SC09_04         8         VCP         1           571         34.6         245         103F         0.004         SC09_04         8         VCP         1           572         38.2         413         103F         0.0042         SC09_04         8         VCP         2           573         39.9         322         103C         0.0334         SC09_06         6         VCP         2           574         30.7         14         65G         0.0021         BF01_04         54         Concrete         4           575         6.3         60         78M         0.0165         SC10_06         8         HDPE         1           576         13.8         95         67U         0.0235         VC03_01                                                                                                                     | 565 | 3.4  | 278  | 21T  | 0.0087 | BF09_03 | 10 | PVC      | 1 |
| 568         6         52         74Y         0.0019         CF12_02         10         PVC         1           569         33.2         165         65U         0.0061         VC02_05         6         VCP         3           570         34.6         271         103F         0.004         SC09_04         8         VCP         1           571         34.6         245         103F         0.004         SC09_04         8         VCP         1           572         38.2         413         103F         0.0042         SC09_04         8         VCP         2           573         39.9         322         103C         0.0334         SC09_06         6         VCP         2           574         30.7         14         65G         0.0021         BF01_04         54         Concrete         4           575         6.3         60         78M         0.0165         SC10_06         8         HDPE         1           576         13.8         95         67U         0.0235         VC03_01         6         VCP         1           577         35.5         108         67U         0.0235         VC03                                                                                                                     | 566 | 7.5  | 35   | 72N  | 0.0046 | CF14_02 | 36 | PVC      | 2 |
| 569         33.2         165         65U         0.0061         VC02_05         6         VCP         3           570         34.6         271         103F         0.004         SC09_04         8         VCP         1           571         34.6         245         103F         0.004         SC09_04         8         VCP         1           572         38.2         413         103F         0.0042         SC09_04         8         VCP         2           573         39.9         322         103C         0.0334         SC09_06         6         VCP         2           574         30.7         14         65G         0.0021         BF01_04         54         Concrete         4           575         6.3         60         78M         0.0165         SC10_06         8         HDPE         1           576         13.8         95         67U         0.0235         VC03_01         6         VCP         1           577         35.5         108         67U         0.0235         VC03_01         6         VCP         1           578         9.6         275         21S         0.0137         CF                                                                                                                     | 567 | 6    | 80   | 74Y  | 0.0013 | CF12_02 | 10 | PVC      | 1 |
| 570         34.6         271         103F         0.004         SC09_04         8         VCP         1           571         34.6         245         103F         0.004         SC09_04         8         VCP         1           571         34.6         245         103F         0.004         SC09_04         8         VCP         1           572         38.2         413         103F         0.0042         SC09_04         8         VCP         2           573         39.9         322         103C         0.0334         SC09_06         6         VCP         2           574         30.7         14         65G         0.0021         BF01_04         54         Concrete         4           575         6.3         60         78M         0.0165         SC10_06         8         HDPE         1           576         13.8         95         67U         0.0235         VC03_01         6         VCP         1           577         35.5         108         67U         0.0235         VC03_01         6         VCP         1           578         9.6         275         21S         0.0137         CF                                                                                                                     | 568 | 6    | 52   | 74Y  | 0.0019 | CF12_02 | 10 | PVC      | 1 |
| 571         34.6         245         103F         0.004         SC09_04         8         VCP         1           572         38.2         413         103F         0.0042         SC09_04         8         VCP         2           573         39.9         322         103C         0.0334         SC09_06         6         VCP         2           574         30.7         14         65G         0.0021         BF01_04         54         Concrete         4           575         6.3         60         78M         0.0165         SC10_06         8         HDPE         1           576         13.8         95         67U         0.036         VC02_01         8         PVC         1           577         35.5         108         67U         0.0235         VC03_01         6         VCP         1           578         9.6         275         21S         0.0185         BF09_03         8         PVC         1           579         61.7         133         77A         0.0137         CF01_07         8         VCP         3                                                                                                                                                                                                   | 569 | 33.2 | 165  | 65U  | 0.0061 | VC02_05 | 6  | VCP      | 3 |
| 572         38.2         413         103F         0.0042         SC09_04         8         VCP         2           573         39.9         322         103C         0.0334         SC09_06         6         VCP         2           574         30.7         14         65G         0.0021         BF01_04         54         Concrete         4           575         6.3         60         78M         0.0165         SC10_06         8         HDPE         1           576         13.8         95         67U         0.036         VC02_01         8         PVC         1           577         35.5         108         67U         0.0235         VC03_01         6         VCP         1           578         9.6         275         21S         0.0185         BF09_03         8         PVC         1           579         61.7         133         77A         0.0137         CF01_07         8         VCP         3                                                                                                                                                                                                                                                                                                                     | 570 | 34.6 | 271  | 103F | 0.004  | SC09_04 | 8  | VCP      | 1 |
| 573         39.9         322         103C         0.0334         SC09_06         6         VCP         2           574         30.7         14         65G         0.0021         BF01_04         54         Concrete         4           575         6.3         60         78M         0.0165         SC10_06         8         HDPE         1           576         13.8         95         67U         0.036         VC02_01         8         PVC         1           577         35.5         108         67U         0.0235         VC03_01         6         VCP         1           578         9.6         275         21S         0.0185         BF09_03         8         PVC         1           579         61.7         133         77A         0.0137         CF01_07         8         VCP         3                                                                                                                                                                                                                                                                                                                                                                                                                                        | 571 | 34.6 | 245  | 103F | 0.004  | SC09_04 | 8  | VCP      | 1 |
| 574         30.7         14         65G         0.0021         BF01_04         54         Concrete         4           575         6.3         60         78M         0.0165         SC10_06         8         HDPE         1           576         13.8         95         67U         0.036         VC02_01         8         PVC         1           577         35.5         108         67U         0.0235         VC03_01         6         VCP         1           578         9.6         275         21S         0.0185         BF09_03         8         PVC         1           579         61.7         133         77A         0.0137         CF01_07         8         VCP         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 572 | 38.2 | 413  | 103F | 0.0042 | SC09_04 | 8  | VCP      | 2 |
| 575         6.3         60         78M         0.0165         SC10_06         8         HDPE         1           576         13.8         95         67U         0.036         VC02_01         8         PVC         1           577         35.5         108         67U         0.0235         VC03_01         6         VCP         1           578         9.6         275         21S         0.0185         BF09_03         8         PVC         1           579         61.7         133         77A         0.0137         CF01_07         8         VCP         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 573 | 39.9 | 322  | 103C | 0.0334 | SC09_06 | 6  | VCP      | 2 |
| 576         13.8         95         67U         0.036         VC02_01         8         PVC         1           577         35.5         108         67U         0.0235         VC03_01         6         VCP         1           578         9.6         275         21S         0.0185         BF09_03         8         PVC         1           579         61.7         133         77A         0.0137         CF01_07         8         VCP         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 574 | 30.7 | 14   | 65G  | 0.0021 | BF01_04 | 54 | Concrete | 4 |
| 577         35.5         108         67U         0.0235         VC03_01         6         VCP         1           578         9.6         275         21S         0.0185         BF09_03         8         PVC         1           579         61.7         133         77A         0.0137         CF01_07         8         VCP         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 575 | 6.3  | 60   | 78M  | 0.0165 | SC10_06 | 8  | HDPE     | 1 |
| 578         9.6         275         21S         0.0185         BF09_03         8         PVC         1           579         61.7         133         77A         0.0137         CF01_07         8         VCP         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 576 | 13.8 | 95   | 67U  | 0.036  | VC02_01 | 8  | PVC      | 1 |
| 579         61.7         133         77A         0.0137         CF01_07         8         VCP         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 577 | 35.5 | 108  | 67U  | 0.0235 | VC03_01 | 6  | VCP      | 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 578 | 9.6  | 275  | 21S  | 0.0185 | BF09_03 | 8  | PVC      | 1 |
| 580         31.9         1303         66G         0.0008         BF01_03         78         Concrete         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 579 | 61.7 | 133  | 77A  | 0.0137 | CF01_07 | 8  | VCP      | 3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 580 | 31.9 | 1303 | 66G  | 0.0008 | BF01_03 | 78 | Concrete | 3 |
| 581 45.3 1301 66G 0.0007 BF01_03 96 Concrete 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 581 | 45.3 | 1301 | 66G  | 0.0007 | BF01_03 | 96 | Concrete | 3 |
| 582         22.3         232         93G         0.0005         VC08_01         54         Concrete         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 582 | 22.3 | 232  | 93G  | 0.0005 | VC08_01 | 54 | Concrete | 2 |
| 583 100.4 792 62Y 0.0005 CF01_04 48 Concrete 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 583 |      | 792  | 62Y  | 0.0005 |         | 48 |          |   |
| 584 47.7 291 80D 0.008 VC04_01 6 Concrete 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 584 | 47.7 | 291  | 80D  | 0.008  | VC04_01 | 6  | Concrete | 2 |
| 585 57.3 373 80A 0.0327 VC04_04 6 Concrete 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 585 | 57.3 | 373  | 80A  | 0.0327 | VC04_04 | 6  | Concrete | 3 |
| 586 73.2 280 62G 0.0018 MC03_02 10 PVC 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |      |      |      |        |         |    |          |   |
| 587 13 35 76L 0.1686 CF02_02 8 PVC 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |      |      |        |         |    | PVC      |   |
| 588 8.8 95 35Y 0.0098 BF05_02 8 PVC 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | 8.8  | 95   |      |        | BF05_02 |    | PVC      | 2 |
| 589 66.8 182 78M 0.0125 SC10_05 6 VCP 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      | 182  |      |        |         |    | VCP      |   |
| 590 11.4 39 75R 0.0018 CF04_01 48 PVC 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |      |      |        |         | 48 |          |   |

| 591 | 5.4   | 62  | 62F  | 0.0182 | MC03_02 | 8  | DI       | 1 |
|-----|-------|-----|------|--------|---------|----|----------|---|
| 592 | 15.9  | 199 | 49U  | 0.005  | BF02_02 | 8  | PVC      | 1 |
| 593 | 17.2  | 507 | 36R  | 0.0125 | BF06_02 | 10 | PVC      | 1 |
| 594 | 67.3  | 137 | 62X  | 0.0058 | WF02_03 | 6  | VCP      | 2 |
| 595 | 14.7  | 175 | 62J  | 0.059  | MC06_02 | 8  | PVC      | 1 |
| 596 | 13.4  | 787 | 93Y  | 0.0003 | VC10_01 | 42 | Concrete | 3 |
| 597 | 3     | 174 | 62E  | 0.0101 | MC06_04 | 8  | DI       | 1 |
| 598 | 108.7 | 312 | 62L  | 0.0058 | MC06_01 | 6  | VCP      | 2 |
| 599 | 7.2   | 377 | 63N  | 0.0039 | MC01_01 | 12 | PVC      | 1 |
| 600 | 25.3  | 39  | 75Y  | 0.0015 | CF05_01 | 30 | Concrete | 2 |
| 601 | 4.1   | 205 | 35S  | 0.0512 | BF05_03 | 8  | PVC      | 1 |
| 602 | 87.1  | 91  | 90A  | 0.0033 | CF04_03 | 10 | Concrete | 2 |
| 603 | 16.8  | 152 | 74X  | 0.0077 | CF12_02 | 16 | DI       | 1 |
| 604 | 29.1  | 66  | 89S  | 0.0117 | CF07_04 | 18 | Concrete | 2 |
| 605 | 31    | 462 | 89E  | 0.0089 | CF05_03 | 6  | PVC      | 1 |
| 606 | 9.7   | 144 | 78H  | 0.0106 | SC10_05 | 8  | HDPE     | 1 |
| 607 | 66.8  | 109 | 78M  | 0.0275 | SC10_05 | 6  | VCP      | 3 |
| 608 | 8.8   | 74  | 35Y  | 0.0105 | BF05_02 | 8  | PVC      | 2 |
| 609 | 7.9   | 137 | 76H  | 0.0073 | CF01_05 | 8  | PVC      | 1 |
| 610 | 10.9  | 274 | 76L  | 0.0107 | CF02_02 | 8  | PVC      | 1 |
| 611 | 31.1  | 33  | 76K  | 0.0482 | CF03_01 | 8  | PVC      | 1 |
| 612 | 23.2  | 168 | 76P  | 0.022  | CF03_01 | 8  | PVC      | 2 |
| 613 | 13.8  | 203 | 76Q  | 0.0217 | CF02_02 | 8  | PVC      | 3 |
| 614 | 2     | 107 | 76P  | 0.0067 | CF03_02 | 8  | PVC      | 1 |
| 615 | 23.2  | 173 | 76P  | 0.0291 | CF03_01 | 8  | PVC      | 1 |
| 616 | 7.7   | 130 | 76T  | 0.0153 | CF03_02 | 8  | PVC      | 1 |
| 617 | 76.5  | 138 | 76N  | 0.0609 | CF03_01 | 6  | VCP      | 3 |
| 618 | 3.1   | 353 | 92D  | 0.0059 | VC08_05 | 8  | DI       | 1 |
| 619 | 13.5  | 41  | 78X  | 0.0181 | SC11_03 | 8  | DI       | 2 |
| 620 | 102.8 | 48  | 62Y  | 0.0042 | CF01_04 | 21 | Concrete | 2 |
| 621 | 59.1  | 304 | 90N  | 0.0201 | CF06_07 | 8  | PVC      | 1 |
| 622 | 43.3  | 950 | 120C | 0.0013 | VC11_02 | 36 | VCP      | 4 |
| 623 | 3     | 298 | 79R  | 0.0064 | VC01_06 | 15 | PVC      | 1 |
| 624 | 11    | 37  | 22C  | 0.0049 | DC02_03 | 8  | PVC      | 1 |
| 625 | 34.4  | 423 | 31H  | 0.0473 | MC05_04 | 6  | VCP      | 2 |
| 626 | 34.4  | 166 | 31H  | 0.0023 | MC05_04 | 12 | VCP      | 1 |
| 627 | 22.2  | 657 | 93Q  | 0.0009 | VC09_05 | 54 | Concrete | 2 |

|     |      |      | I    | 1      | 1        | I  | 1        |   |
|-----|------|------|------|--------|----------|----|----------|---|
| 628 | 13.4 | 746  | 93U  | 0.0004 | VC10_01  | 42 | Concrete | 1 |
| 629 | 35.4 | 374  | 103H | 0.0059 | SC09_02  | 6  | PVC      | 1 |
| 630 | 38.7 | 126  | 103C | 0.0319 | SC09_02  | 6  | VCP      | 2 |
| 631 | 14.4 | 443  | 74K  | 0.0089 | CF11_04  | 8  | HDPE     | 2 |
| 632 | 7.5  | 400  | 71L  | 0.0038 | PCF15_01 | 36 | PVC      | 1 |
| 633 | 6    | 107  | 74Y  | 0.0037 | CF12_02  | 10 | PVC      | 1 |
| 634 | 60.3 | 205  | 63D  | 0.0132 | BF03_04  | 6  | Concrete | 3 |
| 635 | 41.9 | 1025 | 61Q  | 0.0013 | WF01_05  | 36 | Concrete | 2 |
| 636 | 3.2  | 425  | 75S  | 0.0148 | CF11_06  | 10 | DI       | 1 |
| 637 | 2.1  | 103  | 22W  | 0.0145 | BF08_02  | 8  | PVC      | 1 |
| 638 | 4.4  | 431  | 19Y  | 0.0035 | BF05_08  | 18 | PVC      | 1 |
| 639 | 0.1  | 66   | 62P  | 0.0379 | MC06_02  | 8  | PVC      | 1 |
| 640 | 3.5  | 160  | 22B  | 0.0039 | DC02_03  | 8  | PVC      | 1 |
| 641 | 0    | 275  | 62F  | 0.032  | MC06_01  | 8  | PVC      | 1 |
| 642 | 22.3 | 319  | 93D  | 0.0005 | VC08_01  | 54 | Concrete | 1 |
| 643 | 52.6 | 710  | 93D  | 0.0004 | VC08_01  | 39 | Concrete | 2 |
| 644 | 32.2 | 17   | 93C  | 0.0153 | VC08_01  | 8  | DI       | 2 |
| 645 | 41.9 | 1146 | 61Q  | 0.0013 | WF01_05  | 36 | Concrete | 2 |
| 646 | 3.2  | 182  | 75S  | 0.0181 | CF11_06  | 8  | PVC      | 1 |
| 647 | 2.1  | 206  | 22W  | 0.005  | BF08_02  | 8  | PVC      | 1 |
| 648 | 4.6  | 177  | 62P  | 0.004  | MC06_02  | 8  | PVC      | 1 |
| 649 | 5.2  | 54   | 62N  | 0.0326 | MC06_02  | 8  | PVC      | 1 |
| 650 | 13.4 | 37   | 19Z  | 0.0995 | BF05_08  | 8  | PVC      | 1 |
| 651 | 14.4 | 478  | 17Y  | 0.0092 | MC05_07  | 8  | PVC      | 1 |
| 652 | 17.9 | 261  | 35X  | 0.0038 | BF05_02  | 10 | PVC      | 2 |
| 653 | 8.9  | 77   | 49W  | 0.0033 | MC02_03  | 8  | DI       | 1 |
| 654 | 12   | 290  | 49D  | 0.0045 | BF05_02  | 8  | PVC      | 1 |
| 655 | 13.8 | 193  | 67Q  | 0.0099 | VC02_01  | 8  | PVC      | 1 |
| 656 | 35.6 | 308  | 67U  | 0.0101 | VC03_01  | 6  | VCP      | 3 |
| 657 | 14   | 11   | 49C  | 0.0191 | BF02_02  | 8  | PVC      | 2 |
| 658 | 19.5 | 207  | 80N  | 0.0291 | VC01_05  | 8  | PVC      | 1 |
| 659 | 26.3 | 282  | 74Y  | 0.0021 | CF12_02  | 10 | PVC      | 1 |
| 660 | 62.8 | 201  | 77J  | 0.0164 | CF01_02  | 6  | VCP      | 3 |
| 661 | 64.9 | 409  | 88B  | 0.0022 | CF12_01  | 12 | Concrete | 3 |
| 662 | 46.7 | 27   | 88H  | 0.0263 | CF07_02  | 24 | Concrete | 3 |
| 663 | 4    | 22   | 88H  | 0.0086 | CF07_02  | 24 | DI       | 1 |
| 664 | 31.2 | 189  | 88H  | 0.0064 | CF07_02  | 8  | VCP      | 2 |

| 665 | 39.6 | 179 | 67V | 0.0182 | VC02_01 | 6  | VCP      | 2 |
|-----|------|-----|-----|--------|---------|----|----------|---|
| 666 | 9.6  | 274 | 21T | 0.0066 | BF09_03 | 10 | PVC      | 1 |
| 667 | 4.6  | 295 | 76D | 0.0105 | CF01_05 | 8  | DI       | 1 |
| 668 | 7.9  | 106 | 76H | 0.0381 | CF01_05 | 8  | PVC      | 1 |
| 669 | 21.6 | 365 | 76K | 0.0203 | CF02_02 | 10 | PVC      | 1 |
| 670 | 15.9 | 192 | 76K | 0.0072 | CF02_02 | 8  | PVC      | 3 |
| 671 | 15.9 | 169 | 76K | 0.0071 | CF02_02 | 8  | PVC      | 1 |
| 672 | 12   | 57  | 76Q | 0.0074 | CF02_02 | 8  | HDPE     | 1 |
| 673 | 24.5 | 25  | 76P | 0.004  | CF03_02 | 21 | PVC      | 1 |
| 674 | 25.3 | 331 | 76T | 0.009  | CF03_01 | 6  | VCP      | 3 |
| 675 | 87.8 | 72  | 62G | 0.0043 | MC06_04 | 18 | VCP      | 2 |
| 676 | 24.5 | 150 | 72B | 0.0099 | WF05_05 | 10 | PVC      | 1 |
| 677 | 6.7  | 135 | 90Q | 0.0104 | SC05_03 | 8  | PVC      | 1 |
| 678 | 13.8 | 144 | 67U | 0.0398 | VC02_01 | 8  | PVC      | 1 |
| 679 | 13.8 | 156 | 67U | 0.0299 | VC02_01 | 8  | PVC      | 1 |
| 680 | 9.6  | 175 | 21T | 0.0049 | BF09_03 | 10 | PVC      | 1 |
| 681 | 9.6  | 271 | 21N | 0.0039 | BF09_03 | 8  | PVC      | 1 |
| 682 | 52.9 | 591 | 93D | 0.0004 | VC08_01 | 39 | Concrete | 1 |
| 683 | 3.2  | 351 | 75S | 0.0029 | CF11_06 | 10 | PVC      | 1 |
| 684 | 1.6  | 3   | 75H | 3.7233 | CF10_03 | 8  | PVC      | 1 |
| 685 | 35.9 | 133 | 67V | 0.0088 | VC03_01 | 6  | VCP      | 1 |
| 686 | 9.6  | 277 | 21T | 0.0158 | BF09_03 | 8  | PVC      | 1 |
| 687 | 3.9  | 344 | 21N | 0.005  | BF09_03 | 8  | PVC      | 1 |
| 688 | 3.9  | 265 | 21N | 0.005  | BF09_03 | 8  | PVC      | 1 |
| 689 | 21.6 | 183 | 76K | 0.0028 | CF02_02 | 10 | PVC      | 1 |
| 690 | 23.2 | 471 | 76P | 0.001  | CF03_01 | 30 | Concrete | 1 |
| 691 | 19.1 | 314 | 76P | 0.0055 | CF03_01 | 8  | PVC      | 2 |
| 692 | 24.5 | 518 | 76P | 0.0039 | CF03_02 | 21 | PVC      | 1 |
| 693 | 13.8 | 196 | 76T | 0.0039 | CF03_02 | 8  | PVC      | 1 |
| 694 | 13.8 | 144 | 67U | 0.0313 | VC02_01 | 8  | PVC      | 1 |
| 695 | 35.5 | 506 | 67U | 0.0317 | VC03_01 | 10 | VCP      | 1 |
| 696 | 35.6 | 538 | 67U | 0.0393 | VC03_01 | 6  | VCP      | 3 |
| 697 | 9.6  | 273 | 21S | 0.0277 | BF09_03 | 8  | PVC      | 1 |
| 698 | 10.5 | 331 | 21S | 0.0204 | BF09_03 | 8  | PVC      | 1 |
| 699 | 10.5 | 475 | 21S | 0.0316 | BF09_03 | 8  | PVC      | 1 |
| 700 | 13.4 | 291 | 20W | 0.0093 | BF05_08 | 8  | PVC      | 1 |
| 701 | 11.4 | 36  | 35X | 0.0042 | BF05_03 | 8  | PVC      | 1 |

|     |      |     |      | 1      |          |    |            |   |
|-----|------|-----|------|--------|----------|----|------------|---|
| 702 | 4.2  | 1   | 35Z  | 0.42   | BF05_02  | 8  | PVC        | 1 |
| 703 | 15.7 | 216 | 91W  | 0.0173 | SC06_01  | 8  | PVC        | 1 |
| 704 | 26.8 | 21  | 76K  | 0.0005 | CF04_01  | 24 | DI         | 1 |
| 705 | 10.6 | 425 | 76X  | 0.0151 | CF03_04  | 12 | PVC        | 2 |
| 706 | 51.6 | 511 | 89C  | 0.004  | CF05_02  | 24 | Concrete   | 2 |
| 707 | 8.8  | 40  | 81J  | 0.0015 | VC01_02  | 54 | DI         | 1 |
| 708 | 28.8 | 526 | 81J  | 0.0014 | VC01_02  | 54 | Concrete   | 1 |
| 709 | 76.5 | 154 | 76W  | 0.0188 | CF03_03  | 8  | PVC        | 2 |
| 710 | 62.8 | 115 | 77J  | 0.0244 | SC01_03  | 6  | VCP        | 3 |
| 711 | 7.7  | 44  | 93C  | 0.0034 | VC08_01  | 24 | Concrete   | 2 |
| 712 | 16.6 | 187 | 88C  | 0.0026 | CF12_01  | 21 | PVC        | 1 |
| 713 | 6.9  | 351 | 75P  | 0.0356 | CF11_02  | 8  | PVC        | 1 |
| 714 | 6    | 45  | 74Y  | 0.0098 | CF12_02  | 10 | PVC        | 1 |
| 715 | 6    | 103 | 74Y  | 0.0101 | CF12_02  | 10 | PVC        | 1 |
| 716 | 8.8  | 136 | 89X  | 0.0147 | CF05_05  | 8  | PVC        | 1 |
| 717 | 51.2 | 580 | 63B  | 0.0043 | MC02_05  | 8  | VCP        | 3 |
| 718 | 62.5 | 60  | 74N  | 0.05   | CF12_03  | 6  | VCP        | 2 |
| 719 | 25.5 | 364 | 93N  | 0.0231 | VC10_01  | 6  | PVC        | 1 |
| 720 | 4.4  | 346 | 63P  | 0.0015 | MC01_01  | 18 | PVC        | 1 |
| 721 | 15.7 | 66  | 77A  | 0.0174 | CF01_03  | 16 | DI         | 1 |
| 722 | 8.8  | 239 | 35Y  | 0.0091 | BF05_02  | 8  | PVC        | 2 |
| 723 | 17.4 | 199 | 78M  | 0.0309 | SC10_05  | 8  | HDPE       | 3 |
| 724 | 27.8 | 172 | 63Z  | 0.0034 | BF04_01  | 8  | VCP        | 2 |
| 725 | 14.5 | 214 | 88H  | 0.0074 | CF07_02  | 24 | DI         | 2 |
| 726 | 38.9 | 526 | 31H  | 0.003  | MC05_04  | 12 | VCP        | 2 |
| 727 | 22.2 | 832 | 93Q  | 0.0006 | VC09_05  | 54 | Concrete   | 2 |
| 728 | 0.1  | 405 | 78R  | 0.0654 | SC11_04  | 8  | HDPE       | 2 |
| 729 | 35.7 | 520 | 103H | 0.0173 | SC09_02  | 6  | PVC        | 1 |
| 730 | 35.8 | 329 | 103C | 0.0273 | SC09_02  | 6  | VCP        | 1 |
| 731 | 7.1  | 492 | 71F  | 0.002  | PCF15_01 | 36 | PVC        | 2 |
| 732 | 7.1  | 477 | 71F  | 0.0021 | PCF15_01 | 36 | PVC        | 1 |
| 733 | 7.5  | 198 | 72N  | 0.0163 | CF14_02  | 36 | Fiberglass | 1 |
| 734 | 50.4 | 13  | 89G  | 0.1308 | CF05_03  | 8  | Concrete   | 3 |
| 735 | 16.3 | 482 | 90X  | 0.0205 | SC08_03  | 8  | PVC        | 1 |
| 736 | 16.8 | 258 | 74X  | 0.0014 | CF12_02  | 16 | DI         | 1 |
| 737 | 59.2 | 13  | 74T  | 0.1023 | CF12_02  | 6  | VCP        | 3 |
| 738 | 18.9 | 131 | 76Q  | 0.0295 | CF02_02  | 8  | PVC        | 1 |

| 739 | 23.8 | 298 | 89Q  | 0.002  | CF06_02  | 20 | DI       | 1 |
|-----|------|-----|------|--------|----------|----|----------|---|
| 740 | 29.1 | 11  | 89S  | 0.0427 | CF07_04  | 18 | Concrete | 2 |
| 741 | 26   | 79  | 89S  | 0.0029 | CF07_04  | 15 | PVC      | 1 |
| 742 | 13.4 | 450 | 74P  | 0.0834 | CF12_05  | 8  | PVC      | 1 |
| 743 | 29.7 | 285 | 88T  | 0.0218 | CF08_02  | 8  | PVC      | 1 |
| 744 | 27.5 | 305 | 102M | 0.0279 | CF09_04  | 8  | PVC      | 1 |
| 745 | 16.2 | 900 | 90X  | 0.0025 | SC08_03  | 33 | Concrete | 1 |
| 746 | 12.7 | 192 | 119D | 0.0189 | VC11_06  | 10 | PVC      | 1 |
| 747 | 13.5 | 4   | 20W  | 0.005  | BF05_08  | 8  | PVC      | 1 |
| 748 | 3.9  | 123 | 21N  | 0.005  | BF09_03  | 8  | PVC      | 1 |
| 749 | 5    | 68  | 63L  | 0.0382 | BF04_02  | 8  | HDPE     | 1 |
| 750 | 12.5 | 322 | 92K  | 0.008  | VC09_04  | 8  | HDPE     | 1 |
| 751 | 14.6 | 358 | 76J  | 0.0132 | CF10_05  | 8  | PVC      | 1 |
| 752 | 17.3 | 173 | 90D  | 0.0189 | SC04_04  | 8  | PVC      | 1 |
| 753 | 16.9 | 21  | 79K  | 0.0095 | VC06_03  | 8  | PVC      | 1 |
| 754 | 1.2  | 54  | 64T  | 0.0054 | BF03_01  | 8  | PVC      | 1 |
| 755 | 55.4 | 239 | 90T  | 0.005  | SC08_02  | 10 | Concrete | 2 |
| 756 | 1.5  | 74  | 90T  | 0.0151 | SC08_02  | 8  | PVC      | 1 |
| 757 | 40   | 354 | 103G | 0.0136 | SC09_03  | 6  | VCP      | 2 |
| 758 | 35.4 | 93  | 103H | 0.1139 | SC09_02  | 6  | PVC      | 2 |
| 759 | 35.7 | 197 | 103G | 0.0112 | SC09_02  | 8  | VCP      | 3 |
| 760 | 7.5  | 350 | 71L  | 0.0038 | PCF15_01 | 36 | PVC      | 1 |
| 761 | 11.4 | 198 | 77S  | 0.0482 | SC02_05  | 8  | PVC      | 1 |
| 762 | 6    | 70  | 74Y  | 0.0014 | CF12_02  | 10 | PVC      | 1 |
| 763 | 6.2  | 411 | 76T  | 0.0056 | CF03_01  | 8  | HDPE     | 1 |
| 764 | 12.5 | 431 | 76S  | 0.0488 | CF04_01  | 8  | HDPE     | 1 |
| 765 | 14.2 | 302 | 76X  | 0.0048 | CF03_03  | 18 | PVC      | 2 |
| 766 | 15.1 | 34  | 76W  | 0.0024 | CF04_03  | 8  | PVC      | 1 |
| 767 | 6.9  | 168 | 90B  | 0.0004 | CF03_04  | 8  | PVC      | 1 |
| 768 | 61.2 | 101 | 74N  | 0.0268 | CF12_03  | 8  | VCP      | 2 |
| 769 | 27.5 | 190 | 103J | 0.0295 | CF09_04  | 8  | PVC      | 1 |
| 770 | 24.7 | 608 | 91T  | 0.0107 | SC05_03  | 8  | DI       | 2 |
| 771 | 25   | 128 | 93P  | 0.0791 | VC09_05  | 6  | PVC      | 1 |
| 772 | 52.9 | 679 | 93C  | 0.0004 | VC08_01  | 39 | Concrete | 1 |
| 773 | 55.5 | 111 | 61Q  | 0.0045 | WF01_05  | 12 | Concrete | 3 |
| 774 | 0.6  | 88  | 75D  | 0.0256 | CF10_02  | 8  | HDPE     | 1 |
| 775 | 38   | 65  | 76K  | 0.1663 | CF03_01  | 6  | VCP      | 2 |

| · · · · · · |      |      |      | 1      | 1        | 1  | 1        |   |
|-------------|------|------|------|--------|----------|----|----------|---|
| 776         | 33.6 | 140  | 76K  | 0.01   | CF02_01  | 6  | CI       | 1 |
| 777         | 2.7  | 123  | 64N  | 0.005  | BF03_02  | 8  | PVC      | 1 |
| 778         | 5.6  | 59   | 75H  | 0.0324 | CF10_03  | 8  | PVC      | 4 |
| 779         | 3.1  | 523  | 19W  | 0.004  | PBF10_01 | 8  | PVC      | 1 |
| 780         | 14.7 | 165  | 62K  | 0.0052 | MC06_02  | 15 | PVC      | 1 |
| 781         | 14.8 | 229  | 62J  | 0.0228 | MC06_02  | 15 | PVC      | 1 |
| 782         | 11.1 | 132  | 22B  | 0.0049 | DC02_03  | 8  | PVC      | 1 |
| 783         | 0.6  | 135  | 62P  | 0.0028 | MC06_02  | 8  | PVC      | 1 |
| 784         | 0.5  | 198  | 62P  | 0.0034 | MC06_02  | 8  | PVC      | 1 |
| 785         | 15.8 | 220  | 62J  | 0.005  | MC06_03  | 15 | PVC      | 1 |
| 786         | 13.1 | 450  | 93Q  | 0.0003 | VC09_05  | 48 | Concrete | 1 |
| 787         | 46.2 | 734  | 93U  | 0.0004 | VC10_01  | 36 | Concrete | 1 |
| 788         | 46.2 | 795  | 93U  | 0.0004 | VC10_01  | 36 | Concrete | 2 |
| 789         | 16   | 275  | 19Z  | 0.0054 | BF05_08  | 27 | PVC      | 1 |
| 790         | 32.5 | 1398 | 67R  | 0.0005 | BF01_01  | 96 | Concrete | 2 |
| 791         | 82.3 | 95   | 76B  | 0.033  | WF02_01  | 6  | Concrete | 4 |
| 792         | 12.9 | 67   | 92B  | 0.0179 | SC03_04  | 8  | PVC      | 2 |
| 793         | 6.7  | 96   | 90Q  | 0.0442 | SC05_03  | 6  | PVC      | 4 |
| 794         | 52.1 | 15   | 73Z  | 0.0727 | CF12_09  | 6  | Concrete | 1 |
| 795         | 59.5 | 86   | 74V  | 0.1138 | CF11_06  | 6  | Concrete | 3 |
| 796         | 46.2 | 392  | 107B | 0.0003 | VC10_02  | 36 | Concrete | 2 |
| 797         | 26.9 | 592  | 106R | 0.0082 | VC11_01  | 21 | PVC      | 2 |
| 798         | 22.7 | 943  | 80N  | 0.0005 | VC01_04  | 54 | Concrete | 5 |
| 799         | 10.2 | 175  | 21X  | 0.034  | BF09_03  | 8  | PVC      | 1 |
| 800         | 11.2 | 220  | 76H  | 0.0085 | CF01_05  | 8  | PVC      | 1 |
| 801         | 34.4 | 31   | 103F | 0.0394 | SC09_04  | 8  | VCP      | 2 |
| 802         | 15.9 | 78   | 76H  | 0.0076 | CF01_06  | 8  | PVC      | 1 |
| 803         | 3    | 90   | 62E  | 0.0073 | MC06_04  | 8  | PVC      | 2 |
| 804         | 15.2 | 336  | 103S | 0.0206 | CF09_02  | 15 | PVC      | 1 |
| 805         | 15.7 | 91   | 88Q  | 0.004  | CF07_03  | 8  | PVC      | 2 |
| 806         | 12.5 | 396  | 88U  | 0.0444 | CF08_02  | 8  | PVC      | 1 |
| 807         | 12.1 | 337  | 103E | 0.0178 | SC09_04  | 8  | PVC      | 1 |
| 808         | 16.4 | 317  | 103N | 0.0602 | CF09_02  | 8  | PVC      | 1 |
| 809         | 14.8 | 324  | 103N | 0.0151 | CF09_05  | 8  | PVC      | 1 |
| 810         | 14.8 | 408  | 103N | 0.0253 | CF09_05  | 8  | PVC      | 1 |
| 811         | 16.8 | 265  | 103K | 0.0101 | CF09_05  | 8  | PVC      | 2 |
| 812         | 12.3 | 191  | 103J | 0.0318 | SC09_04  | 8  | PVC      | 1 |

| 813 | 10.6 | 25  | 72D           | 0.0252 | WF05_02     | 18 | PVC      | 2 |
|-----|------|-----|---------------|--------|-------------|----|----------|---|
| 814 | 36.4 | 492 | 67U           | 0.0252 | VC03_01     | 6  | VCP      | 1 |
| 815 | 13.8 | 287 | 67U           | 0.0264 | VC02_01     | 8  | PVC      | 1 |
| 816 | 13.0 | 175 | 49D           | 0.0204 | BF05_02     | 8  | PVC      | 2 |
| 817 | 11.4 | 573 | 75F           | 0.0327 | CF10_04     | 8  | PVC      | 1 |
| 818 | 78.7 | 219 | 76B           | 0.0082 | WF02_01     | 6  | Concrete | 3 |
| 819 | 89.9 | 99  | 76G           | 0.0002 | CF02_01     | 30 | Concrete | 2 |
| 820 | 52.8 | 21  | 79D           | 0.4586 | VC06_01     | 6  | VCP      | 3 |
| 821 | 26.5 | 269 | 63W           | 0.0126 | CF01_07     | 12 | DI       | 1 |
| 822 | 3.8  | 78  | 91W           | 0.0041 | SC06_01     | 8  | PVC      | 1 |
| 823 | 55.1 | 141 | 91 Y          | 0.0186 | SC05_07     | 6  | VCP      | 2 |
| 824 | 10.3 | 509 | 21X           | 0.005  | BF09_03     | 8  | PVC      | 2 |
| 825 | 15.7 | 214 | 103N          | 0.032  | CF09_02     | 8  | PVC      | 1 |
| 826 | 9.8  | 238 | 73J           | 0.0127 | CF13_03     | 12 | PVC      | 1 |
| 827 | 9.9  | 144 | 73J           | 0.0097 | CF13_03     | 12 | PVC      | 1 |
| 828 | 14.8 | 123 | 103J          | 0.0252 | CF09_05     | 8  | PVC      | 1 |
| 829 | 13   | 90  | 103 <b>J</b>  | 0.0103 | CF09_02     | 8  | PVC      | 1 |
| 830 | 12.3 | 205 | 103I(<br>103E | 0.0173 | SC09_04     | 8  | PVC      | 1 |
| 831 | 13   | 243 | 103E          | 0.0538 | CF09_02     | 8  | PVC      | 1 |
| 832 | 31   | 98  | 73N           | 0.0304 | CF13_03     | 6  | VCP      | 1 |
| 833 | 17.6 | 154 | 87D           | 0.0248 | CF12_08     | 8  | PVC      | 1 |
| 834 | 16.3 | 417 | 103R          | 0.004  | SC07_02     | 8  | PVC      | 1 |
| 835 | 0.4  | 166 | 79H           | 0.018  | VC01_05     | 8  | DI       | 1 |
| 836 | 10   | 312 | 76K           | 0.0121 | <br>CF02_02 | 8  | HDPE     | 1 |
| 837 | 2.1  | 338 | 22W           | 0.005  | <br>BF08_02 | 8  | PVC      | 1 |
| 838 | 5.9  | 292 | 76E           | 0.0143 | <br>CF10_02 | 20 | DI       | 1 |
| 839 | 16.5 | 476 | 90T           | 0.0025 | SC08_02     | 8  | PVC      | 1 |
| 840 | 55.4 | 255 | 90T           | 0.004  | SC08_02     | 10 | Concrete | 1 |
| 841 | 6.3  | 249 | 75D           | 0.0102 | CF10_02     | 8  | PVC      | 1 |
| 842 | 3.2  | 298 | 75S           | 0.004  | CF11_06     | 8  | PVC      | 1 |
| 843 | 2.1  | 422 | 22W           | 0.005  | BF08_02     | 8  | PVC      | 1 |
| 844 | 4.2  | 277 | 19Z           | 0.0122 | BF05_08     | 18 | PVC      | 2 |
| 845 | 0.6  | 212 | 62P           | 0.0492 | MC06_02     | 8  | PVC      | 1 |
| 846 | 3.5  | 172 | 22B           | 0.004  | DC02_03     | 8  | PVC      | 1 |
| 847 | 16.1 | 17  | 19Z           | 0.0018 | BF05_08     | 18 | PVC      | 1 |
| 848 | 10.1 | 25  | 67U           | 0.0104 | VC03_01     | 8  | PVC      | 1 |
| 849 | 24.4 | 149 | 104G          | 0.078  | SC06_05     | 8  | PVC      | 1 |

|     |      |     |      |        |         | -  |          | - |
|-----|------|-----|------|--------|---------|----|----------|---|
| 850 | 9.6  | 265 | 21S  | 0.0286 | BF09_03 | 8  | PVC      | 1 |
| 851 | 10.5 | 188 | 21N  | 0.0141 | BF09_03 | 8  | PVC      | 1 |
| 852 | 18   | 406 | 47Y  | 0.0059 | MC03_06 | 8  | PVC      | 2 |
| 853 | 7.8  | 374 | 89D  | 0.0088 | CF04_05 | 8  | HDPE     | 3 |
| 854 | 7.8  | 123 | 89D  | 0.0051 | CF04_05 | 8  | HDPE     | 1 |
| 855 | 7.7  | 123 | 89H  | 0.007  | CF04_05 | 8  | HDPE     | 1 |
| 856 | 61.8 | 44  | 90E  | 0.0068 | CF04_05 | 6  | Concrete | 3 |
| 857 | 12.9 | 92  | 92G  | 0.0159 | VC09_04 | 8  | HDPE     | 1 |
| 858 | 42.4 | 299 | 67U  | 0.022  | VC03_01 | 6  | VCP      | 2 |
| 859 | 14   | 220 | 49C  | 0.0202 | BF05_02 | 8  | PVC      | 2 |
| 860 | 18   | 259 | 66D  | 0.0017 | BF01_03 | 18 | PVC      | 1 |
| 861 | 9.6  | 206 | 21S  | 0.0134 | BF09_03 | 8  | PVC      | 1 |
| 862 | 3.9  | 275 | 21N  | 0.0041 | BF09_03 | 8  | PVC      | 1 |
| 863 | 61   | 195 | 74N  | 0.0039 | CF12_03 | 8  | VCP      | 1 |
| 864 | 53.4 | 17  | 74T  | 0.0477 | CF12_05 | 6  | VCP      | 3 |
| 865 | 61.2 | 412 | 74N  | 0.0214 | CF12_03 | 8  | VCP      | 2 |
| 866 | 27.5 | 141 | 103J | 0.0043 | CF09_04 | 8  | PVC      | 1 |
| 867 | 18.6 | 45  | 90S  | 0.0067 | SC08_02 | 8  | HDPE     | 2 |
| 868 | 58.2 | 141 | 76J  | 0.0064 | CF04_01 | 8  | Concrete | 2 |
| 869 | 6    | 173 | 76P  | 0.0254 | CF03_02 | 8  | HDPE     | 1 |
| 870 | 6    | 168 | 76P  | 0.021  | CF03_02 | 8  | HDPE     | 1 |
| 871 | 14   | 477 | 76T  | 0.0016 | CF03_03 | 18 | PVC      | 1 |
| 872 | 23.2 | 98  | 76P  | 0.0022 | CF03_01 | 15 | PVC      | 1 |
| 873 | 33   | 111 | 72C  | 0.0103 | WF05_05 | 6  | VCP      | 1 |
| 874 | 17.6 | 45  | 74Y  | 0.0093 | CF12_02 | 18 | PVC      | 1 |
| 875 | 12.5 | 172 | 92H  | 0.0026 | VC09_02 | 18 | PVC      | 1 |
| 876 | 43.2 | 118 | 89K  | 0.1057 | CF05_03 | 6  | Concrete | 2 |
| 877 | 1.1  | 344 | 92D  | 0.0082 | VC08_05 | 8  | DI       | 4 |
| 878 | 33.2 | 874 | 47J  | 0.0023 | MC04_04 | 30 | VCP      | 2 |
| 879 | 56.7 | 31  | 73Z  | 0.0065 | CF12_09 | 6  | Concrete | 2 |
| 880 | 48.4 | 222 | 80C  | 0.056  | VC04_01 | 6  | Concrete | 2 |
| 881 | 25.4 | 358 | 72B  | 0.003  | WF05_05 | 10 | PVC      | 1 |
| 882 | 28.3 | 187 | 76C  | 0.0064 | CF10_01 | 36 | DI       | 1 |
| 883 | 11.4 | 25  | 76C  | 0.3732 | CF02_01 | 6  | DI       | 2 |
| 884 | 62.7 | 534 | 79D  | 0.0305 | VC06_01 | 6  | VCP      | 3 |
| 885 | 14   | 40  | 62Z  | 0.009  | CF01_07 | 8  | DI       | 1 |
| 886 | 13.8 | 268 | 90D  | 0.0034 | SC04_04 | 10 | PVC      | 1 |

|     |      |      |      |        |         | -  |          |   |
|-----|------|------|------|--------|---------|----|----------|---|
| 887 | 1.2  | 70   | 64T  | 0.004  | BF03_01 | 8  | PVC      | 1 |
| 888 | 55.4 | 214  | 90T  | 0.0053 | SC08_02 | 10 | Concrete | 1 |
| 889 | 6.5  | 57   | 22T  | 0.0797 | BF08_02 | 8  | PVC      | 1 |
| 890 | 15.3 | 396  | 63Z  | 0.0041 | BF04_01 | 8  | PVC      | 1 |
| 891 | 22.7 | 284  | 77J  | 0.017  | SC01_03 | 8  | PVC      | 1 |
| 892 | 46.7 | 250  | 88H  | 0.0091 | CF07_02 | 24 | Concrete | 2 |
| 893 | 9.7  | 307  | 90C  | 0.0235 | CF03_04 | 8  | HDPE     | 1 |
| 894 | 35.9 | 282  | 67V  | 0.0147 | VC03_01 | 6  | VCP      | 1 |
| 895 | 32.7 | 158  | 67U  | 0.0863 | VC03_01 | 6  | VCP      | 3 |
| 896 | 14.3 | 65   | 62Y  | 0.0045 | CF01_04 | 30 | DI       | 1 |
| 897 | 6.2  | 50   | 63W  | 0.032  | CF01_07 | 4  | PVC      | 1 |
| 898 | 4.6  | 81   | 76D  | 0.0496 | CF01_05 | 8  | DI       | 1 |
| 899 | 16.3 | 53   | 77A  | 0.0085 | CF01_07 | 8  | DI       | 1 |
| 900 | 14.8 | 278  | 103P | 0.015  | CF09_05 | 8  | PVC      | 2 |
| 901 | 14.8 | 149  | 103P | 0.0101 | CF09_05 | 8  | PVC      | 1 |
| 902 | 0.4  | 494  | 79M  | 0.0216 | VC01_05 | 8  | PVC      | 1 |
| 903 | 19.4 | 40   | 91B  | 0.0155 | SC04_01 | 10 | PVC      | 1 |
| 904 | 17.2 | 512  | 90D  | 0.006  | SC04_04 | 8  | PVC      | 1 |
| 905 | 12.1 | 470  | 76K  | 0.008  | CF02_02 | 8  | HDPE     | 3 |
| 906 | 0.6  | 108  | 76E  | 0.0357 | CF10_02 | 8  | PVC      | 1 |
| 907 | 8.5  | 289  | 20V  | 0.004  | BF05_05 | 8  | PVC      | 1 |
| 908 | 61.8 | 643  | 76G  | 0.0232 | CF02_01 | 6  | Concrete | 3 |
| 909 | 35.9 | 429  | 67V  | 0.0062 | VC03_01 | 6  | VCP      | 2 |
| 910 | 68.1 | 234  | 74P  | 0.0681 | CF12_05 | 6  | Concrete | 2 |
| 911 | 27.5 | 153  | 103J | 0.0046 | CF09_04 | 8  | PVC      | 1 |
| 912 | 15.7 | 324  | 103N | 0.0146 | CF09_02 | 8  | PVC      | 1 |
| 913 | 16.4 | 170  | 102R | 0.0555 | CF09_02 | 8  | PVC      | 1 |
| 914 | 63   | 217  | 76C  | 0.0369 | CF01_04 | 6  | Concrete | 1 |
| 915 | 46.9 | 1152 | 67R  | 0.0005 | BF01_01 | 96 | Concrete | 3 |
| 916 | 17   | 24   | 72D  | 0.0021 | WF05_02 | 15 | PVC      | 1 |
| 917 | 71.5 | 163  | 75M  | 0.0061 | CF10_05 | 6  | VCP      | 3 |
| 918 | 2.9  | 180  | 90N  | 0.0237 | CF06_07 | 8  | PVC      | 1 |
| 919 | 22.9 | 72   | 36L  | 0.0051 | BF06_05 | 10 | PVC      | 1 |
| 920 | 7.5  | 226  | 47L  | 0.0109 | MC07_01 | 8  | PVC      | 1 |
| 921 | 15.3 | 381  | 90U  | 0.0071 | SC08_01 | 33 | PVC      | 1 |
| 922 | 16.2 | 302  | 90X  | 0.0093 | SC08_03 | 27 | PVC      | 2 |
| 923 | 13.7 | 181  | 89R  | 0.0504 | CF06_07 | 8  | PVC      | 1 |

| 924 | 5.5  | 183 | 75G  | 0.0197 | CF10_04 | 8  | PVC      | 1 |
|-----|------|-----|------|--------|---------|----|----------|---|
| 925 | 0.3  | 187 | 75G  | 0.0166 | CF10_04 | 8  | PVC      | 1 |
| 926 | 1    | 278 | 80G  | 0.0342 | VC04_02 | 8  | PVC      | 1 |
| 927 | 0.8  | 314 | 79H  | 0.0162 | VC01_05 | 8  | PVC      | 1 |
| 928 | 5.1  | 271 | 79H  | 0.0156 | VC06_01 | 8  | PVC      | 2 |
| 929 | 12.5 | 366 | 92F  | 0.0061 | VC09_04 | 8  | HDPE     | 1 |
| 930 | 51.6 | 229 | 79M  | 0.0128 | VC01_05 | 10 | Concrete | 3 |
| 931 | 17.2 | 495 | 90D  | 0.006  | SC04_04 | 8  | PVC      | 1 |
| 932 | 1.2  | 208 | 64T  | 0.004  | BF03_01 | 8  | PVC      | 1 |
| 933 | 34.3 | 3   | 91X  | 0.42   | SC06_01 | 10 | CI       | 3 |
| 934 | 28.2 | 364 | 93N  | 0.0576 | VC10_01 | 6  | PVC      | 1 |
| 935 | 5.5  | 83  | 49M  | 0.0052 | BF02_02 | 10 | PVC      | 1 |
| 936 | 14   | 64  | 92K  | 0.0066 | VC09_04 | 16 | DI       | 1 |
| 937 | 39.7 | 430 | 72D  | 0.0096 | WF05_02 | 18 | VCP      | 2 |
| 938 | 32.7 | 287 | 91V  | 0.0051 | VC10_01 | 10 | PVC      | 3 |
| 939 | 0.4  | 261 | 78U  | 0.0417 | SC11_05 | 8  | PVC      | 1 |
| 940 | 6    | 329 | 20V  | 0.004  | BF05_05 | 8  | PVC      | 2 |
| 941 | 1.5  | 322 | 22T  | 0.0449 | BF08_02 | 8  | PVC      | 1 |
| 942 | 10.6 | 95  | 92L  | 0.0688 | VC09_03 | 8  | DI       | 1 |
| 943 | 52.9 | 355 | 92H  | 0.006  | VC09_02 | 18 | Concrete | 3 |
| 944 | 17   | 238 | 73Z  | 0.0114 | CF12_09 | 12 | DI       | 1 |
| 945 | 26.1 | 112 | 74Y  | 0.0021 | CF12_02 | 12 | PVC      | 1 |
| 946 | 12.8 | 45  | 75M  | 0.11   | CF10_02 | 12 | PVC      | 1 |
| 947 | 15.9 | 94  | 76H  | 0.0072 | CF01_06 | 15 | PVC      | 1 |
| 948 | 3    | 181 | 48Y  | 0.0113 | MC03_01 | 12 | PVC      | 1 |
| 949 | 82.6 | 225 | 90A  | 0.0079 | CF04_03 | 8  | Concrete | 4 |
| 950 | 23.2 | 75  | 76P  | 0.0029 | CF03_01 | 15 | PVC      | 1 |
| 951 | 3.4  | 83  | 76T  | 0.0039 | CF03_02 | 8  | PVC      | 1 |
| 952 | 12.9 | 128 | 76W  | 0.0032 | CF04_03 | 8  | PVC      | 1 |
| 953 | 11.3 | 33  | 76A  | 0.0112 | WF02_02 | 6  | PVC      | 1 |
| 954 | 62.7 | 460 | 79D  | 0.0529 | VC06_01 | 6  | VCP      | 1 |
| 955 | 14.4 | 67  | 76D  | 0.0091 | CF01_05 | 24 | DI       | 2 |
| 956 | 13   | 153 | 103N | 0.0249 | CF09_02 | 8  | PVC      | 1 |
| 957 | 11.2 | 412 | 103T | 0.0175 | CF09_03 | 8  | PVC      | 1 |
| 958 | 11.2 | 403 | 103T | 0.0051 | CF09_03 | 8  | PVC      | 1 |
| 959 | 13.7 | 446 | 103N | 0.011  | CF09_05 | 8  | PVC      | 1 |
| 960 | 27.5 | 160 | 103J | 0.0263 | CF09_04 | 8  | PVC      | 1 |

| 961 | 16.6 | 126 | 87Z  | 0.0049 | CF08_05 | 8  | PVC      | 1 |
|-----|------|-----|------|--------|---------|----|----------|---|
| 962 | 27   | 185 | 103N | 0.0213 | CF09_04 | 8  | PVC      | 1 |
| 963 | 15.7 | 276 | 103P | 0.0059 | CF09_02 | 8  | PVC      | 1 |
| 964 | 16.4 | 463 | 102R | 0.0324 | CF09_02 | 8  | PVC      | 1 |
| 965 | 9.8  | 164 | 73J  | 0.0093 | CF13_03 | 12 | PVC      | 1 |
| 966 | 14.8 | 475 | 103P | 0.009  | CF09_05 | 8  | PVC      | 1 |
| 967 | 13   | 359 | 103N | 0.0598 | CF09_02 | 8  | PVC      | 1 |
| 968 | 34.1 | 131 | 73J  | 0.0061 | CF13_03 | 6  | VCP      | 2 |
| 969 | 15.8 | 190 | 76D  | 0.0077 | CF01_05 | 24 | DI       | 1 |
| 970 | 17.9 | 103 | 61D  | 0.0097 | MC03_06 | 8  | PVC      | 1 |
| 971 | 8.1  | 125 | 89D  | 0.0049 | CF04_05 | 8  | HDPE     | 1 |
| 972 | 16.3 | 296 | 74Y  | 0.0029 | CF12_02 | 10 | CI       | 1 |
| 973 | 13.2 | 120 | 92G  | 0.025  | VC09_03 | 8  | HDPE     | 1 |
| 974 | 12.4 | 530 | 92L  | 0.0063 | VC09_03 | 8  | PVC      | 1 |
| 975 | 13.2 | 127 | 92L  | 0.004  | VC09_03 | 8  | PVC      | 1 |
| 976 | 10.4 | 265 | 92H  | 0.0229 | VC09_01 | 8  | HDPE     | 1 |
| 977 | 46   | 303 | 73U  | 0.0492 | CF12_09 | 6  | VCP      | 2 |
| 978 | 33   | 28  | 67U  | 0.0064 | VC03_01 | 6  | VCP      | 1 |
| 979 | 13.8 | 143 | 67R  | 0.049  | VC02_01 | 8  | PVC      | 1 |
| 980 | 14   | 305 | 49C  | 0.0114 | BF05_02 | 8  | PVC      | 2 |
| 981 | 3.9  | 344 | 21N  | 0.0322 | BF09_03 | 8  | PVC      | 1 |
| 982 | 9.6  | 264 | 21N  | 0.0041 | BF09_03 | 8  | PVC      | 1 |
| 983 | 27.6 | 164 | 103N | 0.0123 | CF09_04 | 8  | PVC      | 1 |
| 984 | 27.5 | 96  | 103J | 0.0309 | CF09_04 | 8  | PVC      | 2 |
| 985 | 45.2 | 179 | 62L  | 0.0112 | MC06_01 | 21 | Concrete | 1 |
| 986 | 42.2 | 27  | 65U  | 0.0074 | VC05_01 | 6  | VCP      | 2 |
| 987 | 25.3 | 92  | 75Y  | 0.0019 | CF05_01 | 30 | Concrete | 1 |
| 988 | 4.1  | 244 | 35S  | 0.0059 | BF05_03 | 8  | PVC      | 1 |
| 989 | 12   | 48  | 78D  | 0.2383 | SC10_01 | 8  | HDPE     | 1 |
| 990 | 9.9  | 27  | 73N  | 0.0044 | CF13_03 | 8  | PVC      | 2 |
| 991 | 16.5 | 312 | 103T | 0.0382 | SC07_06 | 8  | PVC      | 1 |
| 992 | 12.3 | 308 | 103J | 0.0098 | SC09_04 | 8  | PVC      | 1 |
| 993 | 10.6 | 102 | 103T | 0.0051 | CF09_03 | 8  | PVC      | 1 |
| 994 | 11.2 | 337 | 103T | 0.005  | CF09_03 | 8  | PVC      | 1 |
| 995 | 9.9  | 298 | 103W | 0.0049 | CF09_03 | 8  | PVC      | 1 |
| 996 | 16.3 | 248 | 103R | 0.004  | SC07_02 | 8  | PVC      | 1 |
| 997 | 11.8 | 301 | 103T | 0.0162 | CF09_03 | 8  | PVC      | 1 |

| 998  | 7.7  | 101 | 93C | 0.0033 | VC08_01 | 24 | Concrete | 1 |
|------|------|-----|-----|--------|---------|----|----------|---|
| 999  | 31.3 | 473 | 80S | 0.0024 | VC07_01 | 6  | VCP      | 4 |
| 1000 | 46.2 | 327 | 93X | 0.0004 | VC10_01 | 36 | Concrete | 2 |