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ABSTRACT

DEVELOPMENT OF VIRTUAL SIMULATION FOR EVALUATION OF

ROBOTIC ASSISTIVE ENVIRONMENT

SHUBHAM RAOSAHEB GUNJAL, M.S.

The University of Texas at Arlington, 2021

Supervising Professor: Dr. Panos Shiakolas

Robotics research in virtual simulation has the advantage of reduced testing

time, verification of algorithms on different systems before implementation, and cost-

saving. Today’s simulation softwares are capable of providing the physics of the

simulation such as torque requirements of the joints which aid in the selection of

appropriate hardware.

In this research, Webots, an open-source physics-based simulation, and visual-

ization software is evaluated and then used to study and evaluate the performance of

two robotic systems for a robotic assistive environment for persons with upper limb

disabilities. This includes a wheelchair, a table with objects, and two robotic arms

attached to the wheelchair. The two arms are a custom-developed 4-degrees of free-

dom arm and a UR5e arm from Universal Robotics. This assistive environment also

includes three cameras to identify objects to be manipulated with object geometry

and grasping specific information defined and extracted from a metadata file. The

motion controller code is written in MATLAB using the Robotics Systems Toolbox.
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An algorithm that accepts keyboard input to execute the desired motion has been

developed.

The environment allowed us to successfully study multiple scenarios for inter-

action and object grasping and provided the tools for visualization as well as detailed

information and characteristics of the motion including the occurrence of collisions.

After verifying the performance in simulation, the inverse-kinematics solution was

stored for later analysis. The goal of using these virtual tools is to reduce the testing

and analysis time for robotics projects and fine-tune them before implementation.

The success of this research provides the confidence to implement the environment in

the research lab.
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CHAPTER 1

INTRODUCTION

This chapter contains an introduction and some background of this research

in Human-Robot Interaction (HRI), also known as collaborative robotics. HRI is

introduced with examples of some of its applications. Preceding research and the

need for virtual simulation is explained. This chapter concludes with the outline of

this thesis report.

1.1 Introduction to Human-Robot Interaction

HRI is an engineering field involving the design and implementation of robotic

systems that interact with a human in different ways and are controlled by humans

by various processes such as Electroencephalography (EEG) signals, voice commands,

facial expressions, remotes, etc. The interaction can be classified as remote interaction

and proximate interaction. The remote interaction involves control of robots from

spatial and/or temporal distance such as Mars rovers. The proximate interaction

involves the control of robots which are located in the same environment as the

human. [2]

HRI is an emerging field of robotics with research currently been carried out in

various aspects of it such as artificial intelligence [3] [4], teleoperation of robots [5]

[6], and soft robotics [7] [8]. HRI has found applications in numerous fields such as

healthcare, mining and rescue, and space exploration. An example of HRI in space

is the use of the Canadarm aboard the International Space Station which is remotely

operated from inside the station to move the payload. Industrial robots are widely
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used for mass productions such as cars. However, for a small production volume,

the problem of the high cost of integration and reprogramming arises. These costs

can be reduced by the implementation of a HRI system which would eliminate the

need for reprogramming and the need for highly trained personnel for small-scale

production. In healthcare, HRI can be used to assist a disabled person such as upper

body disabled person.[9] Agriculture is an emerging area for HRI with an application

such as target recognition and spraying tasks.[10]

1.2 Overview of preceding research

Prior research in the MicroManufacturing and Automation and Advanced Robotic

Systems (MARS) Lab included the design and implementation of robotics hardware

and controller for a Human-Robot Interaction (HRI) environment. A HRI system to

command a Biomimetic Artificial Hand (BAH) by cloud-assisted voice command and

a safety vision system was researched. This research concluded that the proposed

interaction modality can be successfully employed to communicate with a robot.[11]

Another HRI system was tested on a Robotic Prosthetic Hand (RPH) as a testbed for

sensor glove-based tele-control using an artificial neural network.[12] Another research

focused on the development of a human thumb tracking device for telemanipulation.

This research was implemented on a developed sensor device and flex-glove and was

successful in the determination of human thumb motion and control of the artifi-

cial robotic thumb.[13] Another HRI research project was a wheelchair assisted by a

robotic arm. This research aimed to assist a human with an upper body disability.

The hardware developed for this research is shown in figure 1.1.
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Figure 1.1: Robotic arm assisted wheelchair

1.3 Need for virtual simulation

Performing HRI research on real hardware and robots provides good research

data and output, it has some drawbacks. Such a research approach requires building

a setup of the hardware before the actual tests could be performed. This generally is a

time-consuming process and involves the cost of hardware. Any changes in the setup,

if required, are difficult to make such as finding the correct power of the motors for

joints. Another requirement of such a research approach is to do the work hands-on

in the lab. Thus, it makes working remotely difficult or impossible.
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A HRI research approach using virtual simulation overcomes all of the draw-

backs mentioned above. A virtual simulation makes it easy to build an environment

and edit it with any changes with significantly less time and less cost. The virtual

simulation can provide the data and the output that is close to real hardware test,

assuming the simulation parameters are well defined and mimic the real world. This

research also provides information about the required hardware such as motor power,

controller parameters, force, etc. Thus, conducting research in virtual space first can

provide accurate requirements of the hardware, which then can be used to build a

real setup for the research. And with virtual simulation, it is possible to perform the

work remotely which proved beneficial during the Covid-19 pandemic.

1.4 Thesis outline

The structure of this thesis is as follows. Chapter 2 introduces the available sim-

ulations environments, and the environment used, Webots. It details the simulation

environment modeled along with the definition of the objects and the matrix transfor-

mation relationships between various coordinate frames. Also discussed is the process

of mapping objects from the Webots simulation environment to the MATLAB inverse

kinematics environment. Chapter 3 consists of all the object manipulation processes

such as pick-up, drop-off, bringing the object to the user, pick of the hidden objects.

It also consists of the inverse kinematics constraints applied on the robotic arm and

the physics of simulation. Chapter 4 gives the results, discussions and experimen-

tal implementation of the simulation using an Arduino setup. Chapter 5 provides

conclusions of the research and recommendations for future research. The appendix

consists of the main controller code and an image of Webots interface.
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CHAPTER 2

SIMULATION ENVIRONMENT

This chapter gives a background of various virtual simulation packages available

with some examples of their use in research and explains in detail the structure of We-

bots simulation, which is used in this research. The assistive wheelchair modeled, its

robotic arm, and the object definition is discussed. The transformation relationships

between the robotic arm, camera, human, and the objects are defined. In addition,

the keyboard interaction modality to control the simulation and the mapping process

is explained.

2.1 Background and literature review of virtual simulations

There are various simulation packages available to build a virtual simulation

environment for robotics. Popular simulation software include Gazebo [14], Webots

[15], and CoppeliaSim [16]. The overall structure of these simulation environments

is similar with a few differences such as the type of physics engine, in-built robots,

importing external robots, etc. Gazebo has multiple physics engines to perform dy-

namics of simulation which include Open Dynamics Engine (ODE), Bullet, Simbody,

and Dynamic Animation and Robotics Toolkit (DART). CoppeliaSim also has mul-

tiple physics engines which include ODE, Bullet, Newton, and Vortex Dynamics.

Webots only offers one physics engine in ODE. All these three simulation environ-

ments can be coded in multiple programming languages such as MATLAB, Python,

Java, and C++.
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These simulation packages have been used widely in academia and industry for

research on robotic systems. They provide an economically efficient and time-saving

way for testing out research. Zhang and Liu used Gazebo and ROS to compare the

robustness of different controllers on 7 degrees of freedom robotic arm with the task of

pick and place an object. [17] They successfully compared the performance of 5 types

of controllers which included active inference controller, model reference adaptive

controller, joint position controller, joint velocity controller, joint effort controller. In

similar research, CoppeliaSim was used to simulate the physics of a 6 DoF robotic arm

in an automation cell for reconditioning fan blades with grinding. [18] They were able

to get the forces exerted on the arm by the griding process from the physics engine

of CoppeliaSim. In an obstacle avoidance research project, the authors Ginesi, Meli,

Roberti, Sansonetto, and Fiorini used CoppeliaSim to simulate obstacle avoidance

in different scenarios such as industrial pick and place tasks, a mobile robot in a

dynamic environment, and a surgical robot to show the scalability of their controller.

[19] An Ocean Engineering research team used Webots to develop an economically

effective virtual training environment for controlling underwater manipulator. [20]

This research simulation was done in kinematics mode and studied various operational

modes of the manipulator. Many similar research studies have been conducted for

the operation and evaluation of robotic systems underwater. [21] [22]

This literature survey on the virtual simulations in robotics research shows

that the desired robotics systems and processes in diverse environments can be tested

and results with reliable accuracy can be obtained. Furthermore, The use of virtual

simulation provides confidence for the implementation of these projects in the real

world. In the MARS lab, CoppeliaSim and Webots were chosen for a project on the

assistive robotic environment and to compare them for future use. This research in

this thesis used Webots.
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2.2 Introduction to Webots

Webots is a robotic simulation software that provides rapid prototyping of the

environment. Users can create a simulation that may contain passive objects such as

tables and active objects such as robots and sensors. An inbuilt library consists of

various objects and robots that can be imported into the simulation directly. Custom-

made objects and robots can be imported as a Virtual Reality Modeling Language

(VRML) file. Available sensors and nodes that can be used to build the robotic envi-

ronment include a camera, motors, distance sensors, hinge joints, GPS, etc. Multiple

robots can be programmed individually in the same simulation.[15]

The controller code for Webots simulation may be written in a coding languages

that include MATLAB, C, C++, Python, and Java. In this research, MATLAB was

used for its inbuilt robotic systems toolbox. [15]

Webots also has an inbuilt physics engine which is based on Open Dynamics

Engine(ODE)[23]. This allows the user to retrieve the results of the physics of the

simulation such as forces and torques. [15] ODE is an open-source, high-performance

library for simulating rigid body dynamics. ODE is used by many software packages

for simulating a virtual environment.

2.3 Assistive wheelchair model

The assistive robotic environment modeled in this research is of the wheelchair

shown in figure 1.1 with a custom-made 4 degrees of freedom (DoF) arm with 4

revolute joint motors. This custom-made arm was created in SOLIDWORKS and ex-

ported as a URDF 1 and later converted and imported into the simulation as a VRML

file. This 4 DoF was created to be a cost-effective arm to attach to the wheelchair.

1URDF: Unified Robot Description Format
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This arm has limitations with approaching objects of non-revolute geometries such

as a square box from its side.

To overcome the limitations of the custom arm, a second robotic arm with

6 degrees of freedom, UR5e [24] was added to the wheelchair in the simulation as

shown in figure 2.1. This arm has 6 revolute joint motors, base, shoulder, elbow, and

3 for wrists. Thus, adding this robotic arm to the assistive wheelchair provided the

capability of approaching the objects of non-revolute geometries from the side of their

edges. This arm has a reach of 850mm and can handle a payload of 5 kg which is

ideal for the intended use of an assistive environment. The UR5e arm was imported

from the inbuilt library of Webots.

All the physical properties of the arms such as mass, inertia are modeled as

defined in the VRML file and the library of Webots. These properties are later used

for retrieving the torque requirements for the joints.

The wheelchair also has 3 cameras attached for detection and location of the

objects and the human face. The Overhead camera is the primary camera used to

detecting and locating the objects on the table. The UR5e camera is used when the

objects are hidden from the overhead camera and moves along with the arm. The

side camera locates the human face for bringing the objects to the user.

2.4 Objects and their definition

Every object defined in Webots simulation has a frame assigned to it which is

by default located at the geometric center of the object. The objects created within

the simulation have by default their y-axis pointing upwards or along the length of

the object for all the objects, indicated by green arrow. This default setting may

be changed if required. Custom-made objects may have their frame at a different

location and with the different axis pointing upwards or along the length of the

8



Figure 2.1: Assistive wheelchair

object. Figure 2.2 shows an object created within the Webots simulation with its

frame. The position and orientation of objects are defined with respect to their frame

and are used for approaching and picking up the object.

2.5 Hierarchy of nodes

The simulation environment of Webots is built on a hierarchical basis. Figure

2.3 shows the relationships of different nodes that form the assistive wheelchair. An

arrow between the two nodes represents an inheritance relationship. A derived node

at the arrowhead inherits all the field properties and functions of a base node at the

arrow tail.[15]
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Figure 2.2: Object definition in simulation

Figure 2.3: Hierarchical relationships

The build of the wheelchair starts with a ROBOT node. A controller code is

written for just the ROBOT node that can control all its children nodes. The base

frame of the PR2 robot is added as the base of the chair with wheels to move. The

UR5e arm, the custom arm, overhead camera, human are made children of the PR2

10



Base. Both the arms have links and motor joints that form their body. UR5e arm

has two more children as the attached camera and the side camera. In the PR2 base,

both the arms are SOLID nodes that can physically interact with the objects in

the environment. The cameras and the human are just SHAPE nodes that do not

physically interact with the environment.

2.6 Transformation relationships

The position and orientation of an object are defined with respect to its frame

by a transformation matrix given by equation 2.1, where R denotes the elements of

the rotation matrix and P denotes the elements of the position vector. [25]

T =



Rxx Ryx Rzx Px

Rxy Ryy Rzy Py

Rxz Ryz Rzz Pz

0 0 0 1


(2.1)

In equation 2.1 for the rotation matrix part, the first subscript denotes the axis to be

projected and the second subscript denotes the axis projected upon. For the position

vector, the subscripts denote the coordinate along the specified axis.

Figure 2.4 shows the use of the overhead camera for locating the objects on the

table. The transformation of the overhead camera frame with respect to the robotic

arm frame, Arm
OCamT indicated with a blue vector, is known and fixed. The camera

finds and outputs the location of objects on the table, thus providing the transforma-

tion of the object frame with respect to the camera frame, OCam
Obj T 2 indicated with

another blue vector. With these two transformations known, the relation given by

equation 2.2, can be used for solving the position and orientation of the object, i.e.

the transformation of the object frame with respect to the frame of the arm, Arm
Obj T

2OCam: Overhead camera, Obj: Object
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indicated with a red vector. This equation is used to locate objects visible to the

overhead camera and later used to find inverse kinematics solutions.

Arm
Obj T = Arm

OCamT
OCam
Obj T (2.2)

Figure 2.4: Transformation relationships of overhead camera

Figure 2.5 shows the use of the side camera and UR5e camera. The UR5e

camera is primarily used for locating the objects which are hidden from the view

of the overhead camera with respect to the robotic arm frame. In this figure, the

transformation of the UR5e camera frame with respect to the robotic arm frame,

Arm
UCamT indicated with a blue vector, is dynamic and changes as the arm move through

12



the environment. This camera outputs the position and orientation of the object, i.e.

the transformation of the object frame with respect to the camera frame, UCam
Obj T

indicated by a blue vector. With Arm
UCamT and UCam

Obj T known, equation 2.3 can be used

for solving the transformation of the object frame with respect to the robotic arm

frame, Arm
Obj T indicated with a red vector. The use of the UR5e camera for locating

the hidden objects is explained in greater detail in chapter 3.

Arm
Obj T = Arm

UCamT
UCam
Obj T (2.3)

The side camera3 is used for locating the human face with respect to the robotic

arm frame. The transformation of the side camera frame with respect to the robotic

arm frame, Arm
SCamT indicated with a blue vector is known and fixed. The side camera

outputs the transformation of the human face frame with respect to its frame, SCam
Face T

indicated with a blue vector. With Arm
SCamT and SCam

Face T known, equation 2.4 can be

used for finding the transformation of the face frame with respect to the robotic arm

frame, Arm
FaceT indicated with the red vector.

Arm
FaceT = Arm

SCamT
SCam
Face T (2.4)

2.7 Interaction modality

An interaction modality is a method of communicating and controlling the

simulation as desired. Various modalities can control a simulation such as electroen-

cephalogram (EEG) signals, voice commands, and manual control with hands-on

instruments. As the first phase of virtual simulation research, this research used a

computer keyboard to command the simulation. However, the simulation is coded in

such a way that other interaction modalities can be easily implemented in the next

phase of research.

3SCam: Side camera
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Figure 2.5: Transformation relationships of side and UR5e camera

A computer keyboard is used to command the robotic arm by mapping the

ASCII code of the keys to specific commands. The acronym ASCII stands for Amer-

ican Standard Code for Information Interchange.

Figure 2.6 shows the overview of the process. A while loop runs every 64

milliseconds. Thus, the minimum time between any two commands or physics engine

values returned is 64 milliseconds. This time step can be varied. A smaller time

step increases the accuracy but decreases the speed of the simulation. A larger time

step reduces the accuracy but increases the speed of the simulation. As long as the

simulation is running, the while loop keep running and accepting commands from the

keyboard to perform the mapped function. The simulation functions of the assistive

14



wheelchair and the robotic arm are mapped to different keyboard keys as given in

table 2.1

Figure 2.6: Keyboard modality flowchart

2.8 Object Mapping

This chapter explains the mapping process which replicates the objects from

the Webots space to the MATLAB space. In this process, a Metadata file containing
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Table 2.1: Keyboard command keys

Keyboard Key Function
Arrows Move the wheelchair
Page up Pick-up an object

Page down Place down an object

Home Bring an object to user

Number pad Select an object

the object information is used. This process is essential for obtaining information

about the collisions from the MATLAB inverse kinematics space.

2.8.1 Metadata file

In this research, the simulation of the assistive environment is based upon two

software, Webots, and MATLAB. Webots contains the information about the envi-

ronment and MATLAB contains the controller code for running the simulation. It is

essential to map the objects from the Webots environment into MATLAB for finding

the collision between the arm and the objects and between the links of the arm itself,

and trajectory points of the inverse kinematics solution in a collision. To facilitate

this process of mapping objects, a Metadata file is used, which contains information

about the geometry of the objects in the environment.

A Metadata file contains predefined information about all the objects in the

environment. Table 2.2 shows the fields of the Metadata file with some example

objects. The object field contains the name of the objects in the environment. The

Height and Width fields are defined in meters and contain the dimensions of objects.

These two fields are used for mapping the objects to MATLAB inverse kinematics

space with their appropriate dimensions. 4 The class field informs about the geometry

type of the object and is utilized in defining the approach path for the gripper. The

4The Width field for a Circle is its diameter
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cylindrical objects can be approached by the gripper from any angle but for square

cross-sectional objects, an approach along one of its sides is preferred for a better

quality of grasping. The Grasping Height field defined in meters is used to determine

the grasping point on the object with respect to its frame origin along its vertical axis.

The grasping height is explained in greater detail in section 3.1.1. This Metadata file

can be written in any format readable by MATLAB.

Table 2.2: Metadata file example

Object Height(m) Width(m) Class Grasping Height(m)
Blue can 0.1 0.05 Circle 0.025

Green can 0.09 0.06 Circle 0.0225

Magenta box 0.15 0.04 Square 0.0375

2.8.2 Mapping process

The object mapping process is used to map the objects from the Webots sim-

ulation space to the MATLAB inverse kinematics space. This allows the MATLAB

inverse kinematics solution to determine if any collisions are occurring between the

arm and objects or between links of the arm. The solution also outputs the trajectory

points during which the collisions are occurring.

2.8.2.1 Mapping process flowchart

Figure 2.7 illustrates the steps of mapping. In the first step, object names and

the object transformation matrices with respect to the overhead camera are retrieved

from the Webots simulation space. This step provides the location and orientation

of the objects with respect to the frame of the camera, i.e. OCam
Obj T . In the next step,

these transformation matrices are converted into transformation matrices that are
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defined with respect to the robotic arm frame, i.e. Arm
Obj T with the help of equation

2.2. After this step, the location and orientation of the frame of objects are known

with respect to the frame of the robotic arm. The next step provides the dimensions

to the objects that are defined with respect to their frames. The dimensions of the

objects are obtained from the Metadata file. In the next step, object meshes are

created of the dimensions obtained in the previous step, at the location specified

by the transformation matrices, Arm
Obj T . This completes the process of mapping the

objects from Webots space to MATLAB space.

Figure 2.7: Mapping process flowchart
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Figure 2.8 shows an example of the objects from the Webots simulation space

mapped to the MATLAB inverse kinematics space. All the objects are mapped as

rectangular cross-sections due to the limitations of the MATLAB 2019a version.

(a) Objects in Webots (b) Objects in MATLAB

Figure 2.8: Object mapping from Webots to MATLAB

This chapter provided a literature survey on the use of virtual simulations in

robotic systems research with an introduction to Webots simulation. It explained

the assistive wheelchair model used and the various components used in it. Further-

more, the simulation environment setup, object definitions, and the transformation

relationships between various components of the environment are defined. The use

of Metadata file was explained in the process of mapping objects from Webots space

to MATLAB space.
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CHAPTER 3

OBJECT MANIPULATION PROCESSES AND SIMULATION PHYSICS

This chapter describes the different processes for manipulating the objects such

as pick-up, drop-off, bringing the objects to the user. The two types of gripper

approaches are explained and the grasping height is defined with respect to the object

frame. The inverse kinematics constraints applied to the robotic arm while performing

these operations are described. Moreover, the performance of the two arms, UR5e,

and the custom arm is compared. And the physics of the Webots simulation for

torque requirements and collisions in Webots and MATLAB space are explained.

3.1 Gripper approach and grasping

3.1.1 Object grasping height

It is desirable to have the ability to grasp different objects at different heights

to accommodate for varying cross-sections along the length of the object and the

maximum gripper width. The gripper attached to both arms in this simulation has

a maximum width of 0.09 m. Thus, it will be unable to grasp objects that are

wider than 0.09 m. Figure 3.1 shows an object with varying cross-section along its

length with wider sections of diameter 0.10 m and the middle cross-section of 0.05

m diameter. Thus, the gripper would only be able to grasp this object at its middle

section as shown in figure 3.2.

The grasping height of the object is defined in a Metadata file as shown in

table 2.2. This height is specified from the origin of the frame of the object along the

vertical axis as shown in figure 3.3a. The gripper’s outward axis, indicated by red
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Figure 3.1: An object with varying cross-section along its length

Figure 3.2: Grasping an object with varying cross-section along its length

color in figure 3.3b performs grasping at this height. In this example of figure 3.2, the

grasping height is kept zero as the ideal grasping point is at the center of the object.
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(a) Object frame (b) Gripper frame

Figure 3.3: Object grasping height

3.1.2 Gripper approach towards an object

The ability to approach an object from different angles is important for a robotic

arm as the objects of the different cross-sections can be handled better. For an object

of circular cross-section, the approach from any angle is the same as far as the quality

of grasping is concerned as shown in figure 3.4. However, for non-circular cross-

sections like a box, the quality of grasping depends on the angle that the gripper

approaches the vertical surface of the object. In such a case, it is desired to approach

the object perpendicular to its side rather than at an inclined angle or along the edge

as shown on figure 3.5.

From the above discussion, the approach of the gripper is defined in two different

ways; The axis approach and the displacement approach. It has been shown that the

axis approach is used to approach an object along a specified axis of the object frame.

This is preferred to approach an object of non-circular cross-section like a box. And

the displacement approach is used to approach an object along a straight line joining

an object origin to the robotic arm origin. This approach is preferred to approach an

object of circular cross-section like a cylinder.
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(a) Axis approach (b) Displacement approach

Figure 3.4: Approaching circular cross-sectional object

(a) Axis approach (b) Displacement approach

Figure 3.5: Approaching non-circular cross-sectional object

3.1.3 The gripper axis approach

The gripper axis approach is specifically used for approaching the objects of

non-circular cross-sections such as square boxes along a specified axis. Figure 3.6

illustrates this approach. This figure shows the UR5e arm with objects in the MAT-

LAB space.
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Figure 3.6: Gripper axis approach

The object frame is defined with respect to the robotic arm frame in the form

of transformation given by equation 3.1.

Arm
Obj T =



Txx Tyx Tzx Px

Txy Tyy Tzy Py

Txz Tyz Tzz Pz

0 0 0 1


(3.1)

For the axis approach, an auxiliary frame is defined with respect to the object frame

in the form of transformation given by equation 3.2. In other words, the auxiliary

frame could be created by simply displacing the object frame along any one of its

axes. Equation 3.2 is applicable for the axis approach along the Z-axis only as the

displacement D is defined at Z coordinate position in the transformation matrix. For
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approach along the X-axis and Y-axis, the displacement D needs to be defined in the

X and Y coordinate position of the matrix respectively. The displacement D is any

value greater than zero.

Obj
AuxT =



1 0 0 0

0 1 0 0

0 0 1 D

0 0 0 1


(3.2)

The auxiliary frame is created for the reason of implementing a certain con-

straint on the gripper frame of the robotic arm for its approach. For approaching

along an axis, the gripper frame’s outward axis, which is the Z-axis indicated with

blue color, in this case, is under a constraint to point to the origins of the object

frame and the auxiliary frame as shown in figure 3.7. Thus with this constraint, the

gripper frame’s outward axis is aligned to the line joining the object frame origin

and the auxiliary frame origin. The gripper frame stays in this constraint from the

approach point up to the grasping point.

3.1.4 The gripper displacement approach

The displacement approach of the gripper is useful for approaching the objects

with circular cross-sections such as cylinders along the line joining the robotic arm

frame origin and the object origin. Figure 3.8 illustrates this approach. This figure

shows the UR5e arm with objects in the MATLAB space.

For this type of approach, the auxiliary frame is defined with respect to the

robotic arm frame by the transformation given by equation 3.3. The coordinates D1

and D2 lie on a projected vector on the XY plane joining the robotic arm origin and

the object origin. These coordinates need to be greater than the corresponding coor-
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Figure 3.7: Gripper aligned along the object’s z-axis

dinates of the object frame with respect to the robotic arm frame. The Z coordinate

is maintained the same as the object frame, P .

Arm
Aux T =



1 0 0 D1

0 1 0 D2

0 0 1 P

0 0 0 1


(3.3)

For approaching along a displacement line, the gripper frame’s outward axis is under

a constraint to point to the origins of the object frame and the auxiliary frame. Thus,

the gripper’s outward axis is aligned to the line joining the origins of the object frame

and the auxiliary frame.
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Figure 3.8: Gripper displacement approach

3.2 Pick-up of visible objects

The objects in the simulation environment which are visible to the overhead

camera are referred to as visible objects. And the objects which are not visible to the

overhead camera are referred to as hidden objects. For the detection and pick-up of

the hidden objects, the UR5e attached camera is used which is described in detail in

section 3.3.

Figure 3.9 shows the flowchart for the pick-up of visible objects as seen through

the overhead camera. In the first step, objects are detected by the overhead camera

and displayed as an array with their serial numbers and names. Next, user input is

given as a serial number to pick up an object. Then the geometry of the selected

object is identified with the input of the Metadata file. The grasping point of the

object is also defined along its vertical axis as given by the grasping height given in

the Metadata file. In the following step, the transformation matrix of the object with
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respect to the robotic arm frame Arm
Obj T , given by equation 2.2, is fed as an input to the

inverse kinematics solver to solve for the required trajectory to grasp the object. Then

the solved trajectory is checked for collisions. The result of the collision detection is

displayed and an option to carry or abort the arm motion is provided.

Figure 3.9: Visible Object pick-up flowchart
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This is a brief overview of the pick-up process for the visible objects. The

following subsection details the inverse kinematics constraints applied for this arm

motion.

3.2.1 The inverse kinematics constraints applied

The inverse kinematics solver used in this simulation is the generalized inverse

kinematics solver provided by the MATLAB robotic systems toolbox. This inverse

kinematics solver satisfies multiple constraints to achieve the required motion. These

constraints define the trajectory of the robotic arm such as approach distance, gripper

alignment, and position tolerance, and work-space boundary of the arm to avoid

collisions. Following are the constraints applied on UR5e and the custom arm for

various object manipulation processes.

A Cartesian Bounds Constraint [1] requires the specified frames of the robotic

arm to remain within the specified Cartesian coordinates defined with respect to the

base frame of the arm. Equation 3.4 shows the format of this constraint. Each row

of this constraint specifies the minimum and the maximum distance along each axis

that the specified frames are allowed to move in.

Cartesian Bounds =


Xmin Xmax

Ymin Ymax

Zmin Zmax

 (3.4)

Figure 3.10 shows the application of this constraint on the UR5e arm. The gripper

frame and the forearm frame of UR5e are constrained the Z direction and have no

constraint in the X and Y direction as given by equation 3.5. This constraint is
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applied to both the robotic arm to prevent collision with the table. The surface of

the table is assumed to be at 0.05 m along the Z-axis of the base frame of the arm.

Cartesian Bounds on gripper and forearm frame =


−∞ ∞

−∞ ∞

0.05 ∞

 (3.5)

Figure 3.10: Cartesian Bounds Constraint

A Joint Bounds Constraint [1] applied limits the maximum change in the joint

configuration along a trajectory. This provides a smooth trajectory for the arm

motion by equally spacing the trajectory way-points.

An Aiming constraint [1] requires the Z-axis of any body to aim at a target

point on another body. This constraint is applied on the gripper frame to align the

gripper’s Z-axis, the axis pointing outward indicated by blue color, to point to the
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center of object frame and auxiliary frame. Figure 3.11 shows this application. The

detailed use of this constraint is explained in section 3.1 for approaching an object in

two ways, the axis approach and the displacement approach.

Figure 3.11: Aiming Constraint

An Orientation Target Constraint [1] keeps the gripper frame orientation con-

stant from the approach point to the grasping point of the object. This constraint

also allows to specify the tolerance for the orientation angle. The format is given by

equations 3.6 and 3.7.

fixOrientation = robotics.OrientationTarget(gripper) (3.6)

fixOrientation.OrientationTolerance = deg2rad(2) (3.7)

The approach point is a point near an object at which the gripper must first

reach before beginning its approach towards the grasping point. A Position Target
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constraint [1] is used to define the approach point by setting the position of the

object frame in the gripper frame as given by equation 3.8. This constraint specifies

the distance at which the gripper must begin its approach towards the object and the

distance from the object to stop at. Figure 3.12 illustrates the concept.

Target Position in gripper frame =


X

Y

Z

 =


0

0

Approach Distance

 (3.8)

The approach distance is calculated by equation 3.9. The object width is taken from

the metadata file. The gripper’s length is taken into consideration to avoid collision

with the object while reaching the approach point.

Approach Distance = Object Width + (1.5 Gripper Length) (3.9)

All the above constraints are applied to the robotic arm for solving the required

trajectory for object pick-up.

3.3 Pick-up of hidden objects

Sometimes an object may be hidden from the overhead camera. This can hap-

pen when a bigger object is covering up a smaller object from the view of the overhead

camera. In such a case, the UR5e attached camera is used.

Figure 3.15 shows the pick-up process flowchart of the objects that are hidden

from the overhead camera. In the first step, all the objects that are visible to the

overhead camera are displayed in an array consisting of object serial numbers and

names. Then the user inputs the serial number of the object that is closest to the

hidden object. In most cases, this is the object that is covering up the hidden object

from the field of view of the overhead camera. Once the closest object is selected, the

transformation matrix of that object is fed into the inverse kinematics solver to solve
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Figure 3.12: Approach Distance

for the trajectory and to reach at a certain height above the object. At the end of

this trajectory, UR5e camera view is oriented downward towards the object.

(a) Reaching over the object (b) View of UR5e camera

Figure 3.13: Use of UR5e camera
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Figure 3.13 shows an example of this. The green cylindrical object is hidden

from the view of overhead camera by a bigger box in front of it. UR5e arm reaches

over the box with UR5e camera pointing downward and detects the hidden object.

Then an array of objects which are visible to UR5e camera is displayed with their

serial number and names. The user selects the serial number of the hidden object.

The object geometry is identified with the use of Metadata file. The transformation

matrix of the hidden object with respect to the base frame of the robotic arm, i.e.

Arm
Obj T , is calculated as given in equation 2.3, and fed to the inverse kinematics solver

to solve for the required trajectory. A collision check is performed for the solved

trajectory and an option to carry or abort the motion is provided to the user. Figure

3.14 shows a hidden object reached by UR5e arm.

Figure 3.14: Hidden object reached

During the entire process of hidden object pick-up, the constraints specified in

section 3.2.1 are applied to the robotic arm.
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Figure 3.15: Hidden object pick-up flowchart

3.4 Bringing objects to user

After the object is picked up, the arm reaches an intermediate holding position.

From this position, the object can be brought to the face of the person sitting on

the wheelchair. Figure 2.5 shows the relationship of arm base frame to face frame of

the person, i.e. Arm
FaceT . For detecting the location and orientation of face frame, side
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camera is used. Furthermore, by displacing face frame along its Z-axis, an auxiliary

frame as shown in figure 3.16 is generated.

Figure 3.16: Face frame displacement

The process for bringing the object to the user is shown as a flowchart in figure

3.17. A picked up object is held by the robotic arm at an intermediate holding

position until the next command is issued. As a first step, an array of objects visible

to the side camera is displayed with serial number and names. Then, the object

number associated with the human face is selected. Then the transformation matrix

of face frame with respect to base frame of the arm is calculated and fed into the

inverse kinematics solver. An auxiliary frame is created by displacing face frame

by some arbitrary distance along its z-axis. This auxiliary frame is later used for

the axis approach for approaching face frame along its Z-axis as described in section

3.1.3. After obtaining the inverse kinematics solution trajectory for the arm, collision
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detection check is performed in MATLAB and options to execute or abort the motion

are provided. If the motion is executed, the object is brought to user and held their

for a predefined amount of time. After that, the arm brings the object back to

intermediate holding position. Now the object is ready to be placed back down on

the table. This process is illustrated in section 3.5.

Figure 3.17: Bringing object to user process
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3.5 Drop-off of objects

After the object is picked up or brought to the user, it is held at an intermediate

position until a next command is issued. This intermediate position is shown in figure

3.18, where both the arms are holding objects. The picked up object can be placed

on other objects called pads in the environment. Pads are the objects of very low

thickness in the order of 0.001 m. Figure 3.18 shows a white colored pad in the

bottom left hand corner.

Figure 3.18: Intermediate position of the two arms

The detailed process of object drop off is explained as a flowchart in figure 3.19.

The object drop off process starts from the intermediate position of the arm shown

in figure 3.18. As a first step, an array of objects visible to the overhead camera

including the pads are displayed with their serial number and names. Next, the user

selects the number associated with the desired drop off pad. The final transformation
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matrix of the object (pad) with respect to the base frame of the arm is obtained,

i.e. Arm
Obj T . In the Pz co-ordinate of this transformation matrix, a user defined

Figure 3.19: Object drop off process

positive distance of 5 cm is added as a drop off height. The object is brought to this

height first before release of the gripper as illustrated in figure 3.20. This modified
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transformation matrix is fed into the inverse kinematics solver to get the required

trajectory of the arm. Collision check is performed and options to execute and abort

are provided. After dropping off the object, the arm returns to its home position.

For drop off, only the displacement approach of the gripper is used.

(a) Reaching over the pad (b) Release of the object

Figure 3.20: Object drop off

3.6 Performance comparison of the two arms

This section provides a comparison of the performance of the UR5e arm and

the custom arm. UR5e is 6 degrees of freedom arm, whereas the custom-made arm is

of 4 degrees of freedom. Thus, the UR5e arm is capable of performing more complex

tasks than the custom arm as described in the following paragraphs.

With two additional degrees of freedom over the custom-made arm, UR5e is

capable of approaching an object along its axis within its work space. The custom

arm is not capable of axis approach and can only perform displacement approach.
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Figures 3.21 and 3.22 show the results of how the two arms perform when tasked

to approach along the Z-axis of the object which is indicated with blue color. As

observed, the UR5e arm performs the task properly, while the custom arm fails to

align its gripper along the Z-axis of the object.

(a) UR5e gripper top view (b) UR5e total view

Figure 3.21: UR5e approaching an object along z-axis

(a) Custom arm gripper top view (b) Custom arm total view

Figure 3.22: Custom arm approaching an object along z-axis
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The same limitation of the custom arm is also seen when it brings the object

to the user and cannot approach the human face from the front or along the Z-axis

of the face which is indicated with blue color, whereas UR5e successfully approaches

the face from the front as shown in figure 3.23.

(a) UR5e bringing an object to user (b) Custom arm bringing an object to user

Figure 3.23: UR5e and the custom arm bringing an object to user

3.7 Simulation physics

This chapter describes the method that is used in the Webots simulation space

for detecting the collisions and retrieving the torque requirement of the robotic joint

motors. Also discussed is collision detection in the MATLAB space.
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3.7.1 Physics of Webots space

Webots simulation space is built with a hierarchy of various nodes creating

objects in the environment. Different nodes serve different purposes. In what follows,

the nodes essential for simulation of physics are discussed.

3.7.1.1 Collision in Webots and essential nodes

A solid node is the base node for detecting objects in a collision. Hence, the

objects which are created using this node in the simulation have active collision de-

tection such as the robotic arms and objects on the table. Within the solid node,

a bounding object field exists which specifies the geometrical primitives used for col-

lision detection. If the bounding object field is null, no collisions can be detected.

Each bounding object field can be defined with one or more primitives. The primi-

tive shapes are defined in such a way as to approximate the physical bounds of the

object. The various primitives that can be used are box, capsule, cylinder, sphere,

IndexFaceSet, etc. Figure 3.24 shows the UR5e arm with its bounding object. [15]

(a) UR5e Arm (b) UR5e bounding object

Figure 3.24: UR5e and its bounding object
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A physics node is used to specify the parameters for the Open Dynamics Engine

such as mass, the center of gravity, inertia matrix, density, damping, etc. The physics

node is a child of the solid node. If the physics node is defined, the solid will

have physics behavior. If the physics is not defined, the solid will have a kinematic

behavior. The bounding object field with the physics node is used to compute the

inertia matrix of the objects by assuming a uniform distribution of the mass in the

primitives of the bounding object. [15]

The bounding object primitives help the objects in Webots to interact physically

with each other. Thus, when two solids having a defined bounding object touch

each other, a collision occurs and the objects exert equal and opposite forces on one

another.

3.7.2 Simulation torque of motors

Both the robotic arms simulated, UR5e and the custom arm, were exported

as an URDF1 file and imported into the simulation space as a VRML2 file. These

files contained the physical information about the arms such as their mass, center of

gravity, inertia, etc. which is preserved into the simulation and used to calculate the

motor torque requirements for each joint. With the use of the appropriate inbuilt

command functions in Webots, the torques were obtained.

Figure 3.25 shows the torque requirement for the motors of the custom arm in

a simulation scene where the arm is reaching an object for pickup. The time for this

motion was defined to be 9 seconds in the inverse kinematics solver. Similarly, the

torques for the UR5e arm can be obtained as shown in figure 3.26, which is for a

motion of reaching an object for pick up. In both these figures, the arms reach the

1URDF: Unified Robot Description Format
2VRML: Virtual Reality Modeling Language
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approach point at 1 second and then the arm moves from the approach point to the

grasping point over the next 8 seconds. As a result, the torques change less after the

first second. These times are user defined and can be varied.

Figure 3.25: Torques returned by Webots for the custom arm

Obtaining these simulation torque results guides the selection of motors with

appropriate torque output, which can be used for building a real robotic arm. These

physics results provided by the Webots were verified by a simple experiment as follows.

The custom arm was held steady in the configuration shown in figure 3.27, with joint

4 bent at 90 degrees and all other joints at 0 degrees. The gripper had a can grasped

whose mass was varied. The torque exerted on the joint 4 by the can mass and the

mass of the link itself was calculated manually and compared to the torques returned
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Figure 3.26: Torques returned by Webots for UR5e arm

by Webots as shown in table 3.1. The torques were calculated by using the center

of gravity of the link 4 and the can, and their distance to the joint axis as shown

by equation 3.10. In this equation, F is the force exerted by the link 4 and the can

due to gravity and n is equal to 2 for the two elements, link 4 and can, and d is the

distance from the center of gravity to the joint axis. The calculated results strongly

agreed with the Webots returned results as seen from low percentage errors. This

validation provided confidence in the physics simulation of Webots.

Predicted Torque =
n∑

i=1

Fidi (3.10)
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Figure 3.27: Torque verification using the custom arm

Table 3.1: Torque verification

Can mass(kg) Predicted torque joint 4 (Nm) Webots torque joint 4 (Nm) % Error
1 -2.3500 -2.3701 0.8553
2 -4.5290 -4.5156 -0.2958

3 -6.7067 -6.6191 -1.3061

3.7.3 Collision in MATLAB Space

Collisions occurring in the Webots simulation space help understand how the

physics of the robotic arm and objects would be affected. However, it does not specify

the specific points in the trajectory of the arm where the collision is happening, nor

the links of the robotic arm which are in collision. To find out these trajectory points

in the collision and the links of the robotic arm in the collision, MATLAB space is

used.

The robotic arms in Webots are represented as meshes defined by the URDF file

in MATLAB. And the objects are defined as primitive of the box. The dimensions of
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these primitive boxes are obtained from the metadata file. The details of this mapping

of robotic arms and objects from Webots space to MATLAB space are discussed in

section 2.8.2. MATLAB provides an inbuilt function, checkCollision to check for

collisions at every point of the inverse kinematics solution. In MATLAB, the robotic

arm is moved through all the trajectory points and the minimum distance between

the arm mesh and the objects meshes is found. Figure 3.28 shows how the minimum

distance is defined for two convex shapes. If this minimum distance becomes negative,

a collision is detected.

This function is limited to detecting collisions between objects of convex ge-

ometries only and is not reliable for a minimum distance below 10µm between two

meshes.

Figure 3.28: Objects in MATLAB space [1]
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Figure 3.29 shows an example of collision in both Webots space and MATLAB

space. In this example, UR5e is reaching for the green object but collides with the

orange object in its trajectory. MATLAB space highlights the links of the arm in a

collision and two trajectory points in a collision. In future steps of this research, this

information may be used to avoid collision by solving for a better trajectory to reach

an object without collision.

(a) Webots space (b) MATLAB space

Figure 3.29: Collisions in Webots and MATLAB

In this chapter, the various object manipulation processes were discussed. This

included approaching and picking up an object, bringing the object to the user, plac-

ing the object down on the table. The two types of gripper approaches, i.e. axis

approach and displacement approach were also described for grasping objects of cir-

cular and non-circular cross-sections. The importance of grasping height with respect

to the variable vertical cross-section of an object was explained. Finally, the perfor-

mance of the two robotic arms was compared. This chapter also discussed how Webots
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can provide reliable physics results from the simulation. The information necessary

for physics simulation was explained in detail which included essential nodes, and the

physics information about a robotic arm in a URDF file. An example scenario of

object pickup was described and torques returned for the custom arm and UR5e were

presented. A validation experiment was performed that provided confidence in the

obtained results. Lastly, the collision detection process in MATLAB was explained.
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CHAPTER 4

RESULTS, DISCUSSIONS, AND EXPERIMENTAL IMPLEMENTATION

This chapter provides a summary of results obtained from this research. Fur-

thermore, the mapping of the virtual simulation of a robotic arm onto a hardware

setup is shown experimentally. The simulation is run on the custom arm and the

result is mapped to four servo motors that run on an Arduino interface with MAT-

LAB. Similar mapping can be done with the UR5e arm with six servo motors. This

hardware implementation aims to show that the simulation results can be given to a

real set of hardware.

4.1 Results and discussion

The simulation environment of Webots provided a reliable platform to simulate

and visualize the assistive wheelchair with robotic arms and its environment with

various objects. The assistive wheelchair was built with the base of the PR2 robot

and chair, which were available in the inbuilt library of Webots. The robotic arms,

UR5e and custom arm, were imported externally. This versatile nature of Webots

allowed the building of a custom simulation environment that was needed for this

research. Webots interfaced with MATLAB, which enabled the use of MATLAB’s

robotic systems toolbox and all its features. Details of this are discussed in chapter

2. Thus, Webots can be used to further research more into HRI.

Two different types of gripper approaches were implemented based on the ge-

ometry of objects, i.e. the displacement approach and the axis approach. It was

observed that the displacement approach was sufficient for grasping objects with cir-
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cular cross-sections only, while the axis approach was good for grasping objects with

circular as well as non-circular cross-sections. The detailed information about this

can be found in section 3.1.

The objects in the environment were broadly classified as visible and hidden

based on if they were in the view of the overhead camera. Depending on this classi-

fication, two different processes were implemented for the pick-up of an object. For

picking up a visible object, only the information from the overhead camera was used.

And for picking up an object that was hidden from the overhead camera, an addi-

tional camera attached to UR5e was used. The UR5e camera was thus primarily used

for finding the location and orientation of hidden objects. The details of these two

pick-up processes are discussed in sections 3.2 and 3.3. For the process of bringing

objects to the user, another camera was used, called the side camera, which provided

information about the location and orientation of the user’s face. The details of this

process are discussed in section 3.4. Thus, in total, 3 cameras were used for the assis-

tive wheelchair, which provided the capability to grasp a visible as well as a hidden

object and bring it to the user.

The performance of the two robotic arms used, i.e. the UR5e and the custom-

designed, was compared. The custom arm had 4 degrees of freedom, which limited its

capability. In particular, the custom arm was ineffective for approaching an object

along one of its axes and was only successful for executing the displacement approach.

This limitation of the custom arm was overcome by the UR5e arm which had 6 degrees

of freedom. With two additional degrees of freedom over the custom arm, the UR5e

was successful in executing both kinds of approaches towards an object, i.e. the axis

approach and the displacement approach. The details of this comparison can be found

in section 3.6.
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The physics of the simulation was obtained from Webots physics engine and

verified with manual calculations. These physics torques obtained from the Webots

guide selection of hardware motor. In addition to detecting collisions in Webots, col-

lisions were also detected in the MATLAB space with the help of the inbuilt function

of the robotic systems toolbox. This provided the trajectory points and links in the

collision for the motion of robotic arms. The details of this can be found in section 3.7.

In future research steps, this information may be used to perform collision avoidance

and thus verifying the motion of the arm before passing it to the hardware.

In the following section, a simple Arduino experiment is designed and performed

on the hardware of 4 servo motors to show that the results of the simulation can easily

be transferred to the hardware environment.

4.2 Experimental implementation of the simulation

The robotic arm simulated is the custom arm which has four revolute joints. The

task of this arm is to reach and grab an object on the table within its workspace. The

simulation is run on Webots and the inverse kinematics solution is saved into a text

file for hardware implementation later. Figure 4.1 shows the initial and final position

of the custom arm while performing the pick-up task. Table 4.1 shows the initial

and final joint angles as returned by the inverse kinematics solver from MATLAB.

These are the angles that are exported to the servo motors via an Arduino interface.

Table 4.1: Solution of inverse kinematics solver

Joint Number Initial angle (rad) Final angle (rad) Servo input command
Joint 1 0 2.49 0.7930
Joint 2 0 1.62 0.5159

Joint 3 0 1.10 0.3503

Joint 4 0 -1.12 0.3567
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(a) Initial position (b) Final position

Figure 4.1: Simulation of custom arm for object pick up

An Arduino interface with MATLAB is used to run the simulation results on

a set of 4 servo motors, each representing a revolute joint of the custom arm. The

rotation of a servo is represented on a scale from 0 to 1, which is provided as a

command for a servo to rotate as shown in table 4.1, called servo input command.

For the servos used in this experiment, a 0 rotation command represented a 0-radian

angle and a 1 rotation command represented a π radian angle. Thus the joint angles

are mapped in such a way that 0 radians represent a servo position of 0, and π

radians represent a servo position of 1. Equation 4.1 shows how the servo input angle

is calculated from the final joint angle that is provided by the simulation. As seen

from the equation, modulus of the final angle is taken, which makes the servo input

command a positive value. This modulus is taken because servo input can only be

positive values between 0 and 1. Thus, negative joint angles are mapped as positive

servo rotation. In a joint motor which can rotate in both the positive and negative
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directions, this conversion to positive input would not be required. Thus, both the

positive and the negative rotation commands can be given to the joint.

Servo input command =
|Final angle|

π
(4.1)

Figure 4.2 shows the setup of 4 servo motors that are connected to an Arduino

board. A servo motor only provides position control and no velocity control. Thus,

this experiment can only verify that the final rotation angle of a servo is representing

the final angle given by the inverse kinematics solution.

Figure 4.2: Servo motors setup with Arduino

Figure 4.3a shows the 0(minimum) and 1(maximum) positions that a servo can

achieve and the direction of rotation indicated by the curved arrows. The 0 positions
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is indicated with orange arrows and the 1 position is indicated as a red arrow. Figure

4.3b shows the final position of the servo motors. As seen in the figure, the servo

achieves the expected amount of rotation as servo input shown in table 4.1. Motor

1 rotates 0.7930 fractions out of the maximum rotation of 1. Similarly, motors 2, 3,

and 4 rotate 0.5159, 0.3503, 0.3567 fractions of the maximum rotation. Thus, it has

been shown that the simulation results can be transferred to a hardware setup.

(a) Zero and Max position of servos (b) Final position of servos

Figure 4.3: Servo positions
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In this chapter, a summary of experimental results was given. And it was shown

how the simulation results are transferable to a setup of real hardware. This simple

experiment provides confidence for the hardware implementation of this simulation

environment.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The objective of this research was to develop a virtual robotic simulation for

an assistive wheelchair and evaluate various object manipulation processes before

implementation in an actual hardware environment. To perform this task, Webots was

chosen as the simulation platform and an environment with an assistive wheelchair

with two attached robotic arms was modeled. The two robotic arms were UR5e and a

custom-designed arm with four degrees of freedom. The modeled assistive wheelchair

also included three cameras for detecting objects in the environment.

Various object manipulation processes were evaluated. These included pick up,

drop off, and bringing of an object to the user. With the help of the built simulation

environment, all these processes were successfully tested. The process of picking up

visible and hidden objects was implemented. For the process of picking up the visible

objects, only the overhead camera was used. While for the process of picking up

objects which were hidden from the primary overhead camera, the UR5e attached

camera was used and was observed to work for successful pick up of such hidden

objects. Furthermore, two types of gripper approaches towards an object were tested

in the algorithms, i.e. an axis approach and a displacement approach. It was observed

that the axis approach was preferred for picking up objects with non-circular cross-

sections and the displacement approach was preferred for picking up objects with

circular cross-sections.
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A Metadata file consisting of predefined information about the objects in the

environment was created. This file was used for determining the grasping height

for objects with varying cross-sections along their vertical axis, and mapping objects

from the Webots simulation space to MATLAB space. The collisions were detected

in both the Webots space and MATLAB space.

The physics of the simulation, i.e. the torque requirements for all joints of the

robotic arms were collected for various processes. This physics collection aimed to

properly select the motors of appropriate torque for the real hardware implementation.

5.2 Recommendations for future work

The interaction modality implemented in this research was a keyboard for con-

trolling the HRI simulation of an assistive wheelchair. However, there are various

modalities that are studied for the field of human-robot interaction [26] [27] [28] [11].

Some of these include electroencephalogram (EEG) signals from the brain, voice com-

mands, and haptic commands. The algorithm implemented in this research is capable

of implementing and testing these different modalities in place of the keyboard with

slight modification to the controller code.

The virtual simulation built allows for quick testing of algorithms on the robotic

arms of the wheelchair. This research implemented a part of an algorithm that

could detect collisions happening between a robotic arm and objects and between the

links of a robotic arm itself and outputs the trajectory points that were in collision.

This environment and algorithm developed can further be modified to include the

capability to avoid collisions in addition to detecting them. There are various research

studies performed which study the implementation of collision avoidance algorithms

and controllers for robotic systems [29] [30] [31]. Since the controller code for the
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built environment can be written in multiple programming languages, such studies

can be tested and be further developed in this environment.

The algorithm developed and implemented in this research can easily be applied

to a different robotic arm with slight modification. Thus, the capabilities of various

robotic arms can be evaluated for the specific application of assistive wheelchairs

before implementation in hardware.

The trajectory generated by the inverse kinematics solver in this research was

carried out in the simulation environment by a proportional controller. The Webots

simulation provides the feature of testing the generated trajectory on controllers such

as PI, PD, and PID. These controllers can be developed and implemented for obtain-

ing smooth trajectory, desired damping or overshoot, and time constant for the arm

motion.
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APPENDIX A

Main Controller Code
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1 % uncomment the next two l i n e s i f you want to use

2 % MATLAB’ s desktop to i n t e r a c t with the c o n t r o l l e r :

3 desktop ;

4 keyboard ;

5

6 SetPaths ; % g e t t i n g addre s s e s o f nece s sa ry f i l e s ( motion f i l e s

)

7

8 TIME STEP = 64 ; % speed o f the whi l e loop in m i l l i s e c o n d

9

10 wb keyboard enable (TIME STEP) % Enable use o f keyboard in

s imu la t i on

11

12 GetDevices ( ) ; % get the wheels o f cha i r a c t i va t ed f o r

s imu la t i on

13

14 CallMotors ( ) ; % get the motors o f the arm ac t i va t ed f o r

s imu la t i on

15

16 CallCamera ( ) ; % get the camera ac t i va t ed f o r s imu la t i on

17

18 % main loop :

19 % perform s imu la t i on s t ep s o f TIME STEP m i l l i s e c o n d s

20 % and l eave the loop when Webots s i g n a l s the te rminat ion

21 whi l e wb robot step (TIME STEP) ˜= −1
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22

23 n = input ( ’ Keyboard modal ity=1 \nEmotiv modal ity=2 \

nVoice modal ity=3 \ nSe l e c t the modal ity : ’ ) ;

24

25 switch n

26 case 1

27 KeyboardModality ( ) ; % Enter Keyboard modal ity

28 case 2

29 EmotivModality ( ) ; % Empty 06/07/2021

30 case 3

31 VoiceModality ( ) ; % Empty 06/07/2021

32 otherwi s e

33 d i sp ( ’ P lease s e l e c t c o r r e c t modal ity ’ )

34 end

35

36 % i f your code p l o t s some graphics , i t needs to f l u shed

l i k e t h i s :

37 drawnow ;

38

39 end

40

41 % cleanup code goes here : wr i t e data to f i l e s , e t c .
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APPENDIX B

Webots Interface
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Figure B.1: Webots Interface
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