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ABSTRACT 

TESTING ARTIFICIAL INTELLIGENCE-BASED SOFTWARE SYSTEMS 

Jaganmohan Chandrasekaran, PhD 

The University of Texas at Arlington, 2021 

Supervising Professor: Jeff (Yu) Lei 

Artificial Intelligence (AI)-based software systems are increasingly used in high-stake and 

safety-critical domains, including recidivism prediction, medical diagnosis, and autonomous 

driving. There is an urgent need to ensure the reliability and correctness of AI-based systems. At 

the core of AI-based software systems is a machine learning (ML) model that is used to perform 

tasks such as classification and prediction.  

Unlike software programs, where a developer explicitly writes the decision logic, ML 

models learn the decision logic from a large training dataset. Furthermore, many ML models 

encode the decision logic in the form of mathematic functions that can be quite abstract and 

complex. Thus, existing software testing techniques cannot be directly applied to test AI-based 

applications. 

The goal of this dissertation is to develop methodologies for testing AI-based software 

systems. This dissertation makes contributions in the following areas: Test input generation: 1) 

A combinatorial approach for generating test configurations to test five classical machine learning 

algorithms. 2) A combinatorial approach for generating test data (synthetic images) to test Deep 

Neural Network (DNN) models used in autonomous driving cars. Test Cost Reduction: 3) An 

empirical study that analyzes the effect of using sampled datasets to test supervised learning 

algorithms. Explainable AI (XAI): 4) A software fault localization-based explainable AI (XAI) 
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approach that produces counterfactual explanations for decisions made by image classifier models 

(DNN models). 

This dissertation is presented in an article-based format and includes five research papers. 

The first paper reports our work on applying combinatorial testing to test five classical machine 

learning algorithms. The second paper reports an extensive empirical evaluation of testing ML 

algorithms with sampled datasets. The third paper introduces a combinatorial testing-based 

approach to generating test images to test pre-trained DNN models used in autonomous driving 

cars. The fourth paper is an extension of the third paper. This paper presents an initial study that 

evaluates the performance of combinatorial testing in testing DNNs used in autonomous driving 

cars. The fifth paper presents an explainable AI (XAI) approach that adopts BEN, an existing 

software fault localization technique, and produces explanations for decisions made by ML 

models. All five papers have been accepted at peer-reviewed venues. Paper 1, Paper 2, Paper 3, 

and Paper 5 have been published, while Paper 4 is currently in press. 
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CHAPTER 1. INTRODUCTION 

 
Artificial Intelligence (AI) based software systems are increasingly used across application 

domains. The principal component within all AI-based software systems are the machine learning 

(ML) models that perform various prediction and classification tasks. To build an ML model, the 

practitioner typically uses a machine learning framework such as WEKA [2], TensorFlow [1], 

Keras [3], and Pytorch [4]. A machine learning framework implements a collection of machine 

learning algorithms. The practitioner chooses a machine learning algorithm from a framework and 

provides two types of input: a dataset and hyperparameters (a set of configurable parameters used 

to fine-tune the model’s learning process) to the algorithm. The algorithm then examines the data 

to discover insights from hidden patterns (algorithm learns from the dataset) and derives a decision 

logic referred to as a machine learning model. The process of creating an ML model is referred to 

as training or building a model. An AI-based software system consists of one or more ML models.  

1.1. RESEARCH OVERVIEW 

Traditional software applications have their computational logic written explicitly by 

humans. Compared to this, ML models derive their decision logic based on a dataset. As presented 

in Figure 1-1, a combination of the dataset, hyperparameters and model's architecture (ML 

algorithm) impact the behavior of an ML model. Furthermore, many ML models encode the 

decision logic in the form of mathematic functions that can be quite abstract and complex, and 

their correctness is determined using a statistical score. Thus, existing software testing techniques 

cannot be directly applied to test AI-based software systems. With broader adoption of AI-based 

software systems across domains, including safety- critical systems such as medical imaging, 
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autonomous driving, and aviation, there is a need to develop techniques, approaches, and tools to 

systematically test AI-based software systems. 

 

FIGURE 1-1 ML MODEL DEVELOPMENT WORKFLOW 

 

Figure 1-1 presents the ML model development workflow, and they can be broadly 

classified into two groups: 1). Software components (dataset, hyperparameters, and ML algorithm) 

used to create an ML model, and 2). a trained ML model. From a testing perspective, it is 

imperative to test each component (from the ML model development workflow) to guarantee the 

quality of AI-based software systems. In general, a fault can arise from 

• Hyperparameters used to train the ML model, 

• Training dataset (incorrect data, over/under-representation of class labels), 

• Fault in the ML training algorithm, and 

• Fault in the model. 
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This dissertation aims to deconstruct various aspects of ML model development workflow 

into individual components and present solutions to improve the testing procedure for each 

component.  

The first part of the dissertation (Chapter 2 and Chapter 3) is devoted to testing the software 

components (hyperparameters, dataset, ML algorithm) that produce an ML model. In Chapter 2, 

we present an approach that generates test cases based on the hyperparameters to test five classical 

ML algorithms. To speed up the testing process, in Chapter 3, we investigate the effect of sampled 

datasets in testing supervised ML algorithms. The remainder of the dissertation focus on testing 

the pre-trained ML models. The third project (Chapter 4) focuses on generating test inputs to test 

pre-trained Deep Neural Network (DNN) models used in autonomous cars. The fourth project 

(Chapter 5), an extension of the previous project (Chapter 4), reports a preliminary study that 

evaluates the performance of combinatorial testing in testing DNNs used in autonomous cars. 

Finally, the fifth project (Chapter 6) presents an approach to produce explanations for decisions 

made by ML models.  

1.2. SUMMARY OF PUBLICATIONS 

This dissertation is presented in an article-based format and includes five research papers. 

In Chapter 2, we present the paper titled, Applying Combinatorial Testing to Data Mining 

Algorithms, which was published in IEEE 10th International Conference on Software Testing, 

Verification and Validation Workshops (ICSTW), in 2016. This paper is co-authored and includes 

the following authors: Huadong Feng, Yu Lei, Raghu Kacker, and D. Richard Kuhn. As the 

primary author, I was responsible for designing and conducting the experiments, analyzing the 

results for three ML algorithms while Dr. Feng was responsible for the other two ML algorithms. 

Dr. Feng and I equally contributed to the manuscript. Dr. Lei supervised the project by providing 
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feedback on the research directions, reviewing and editing the manuscripts. Dr. Kacker and Dr. 

Kuhn provided feedback in revising and improving the final version of the paper. 

The hyperparameters govern how an ML algorithm learns from a given dataset. These 

hyperparameter values determine which part of a given dataset is reflected more or less in the final 

trained model. Therefore, if there exist certain faults in a trained model due to a lack of 

representation of certain portions of a given data set, then it is imperative that these faults could 

be attributed to the hyperparameter values. This paper presents an approach that applies 

combinatorial testing and generates test inputs based on the hyperparameters (referred to as 

configuration options in WEKA) of ML algorithms implemented in WEKA, an open-source 

machine learning workbench. The result from this study suggests combinatorial testing is effective 

in testing the hyperparameters of ML algorithms.  

Chapter 3 presents a paper titled, Effectiveness of dataset reduction in testing machine 

learning algorithms. The paper was published in IEEE 2nd International Conference on Artificial 

Intelligence Testing (AITest), in 2020. This paper is co-authored and includes the following 

authors: Huadong Feng, Yu Lei, Raghu Kacker, and D. Richard Kuhn. I am the primary author of 

this paper. As the lead on this project, I was responsible for designing and conducting the 

experiments, collecting and analyzing the coverage results. Dr. Feng helped in writing test scripts 

to automate the mutation testing experiments. Dr. Lei supervised the project by formulating the 

research questions and helped significantly to improve the manuscript. Dr. Kacker and Dr. Kuhn 

provided feedback in revising and improving the final version of the paper. 

Unlike traditional software applications, testing ML algorithms can be very expensive and 

time-consuming as they typically take a longer time to execute. It would be very useful in practice 

if the execution time of ML algorithms could be reduced for testing purposes. One of the possible 



 5 

reasons for a longer execution time of ML algorithms can be attributed to the high volume (large) 

input dataset. Therefore, in this paper, we explored the use of sampled datasets via different 

sampling techniques in testing machine learning algorithms. Our experimental results suggest that 

sampled datasets can accelerate the testing phase of ML applications while largely preserving the 

fault detection effectiveness of the original datasets. 

Chapter 4 presents a paper titled, A Combinatorial Approach to Testing Deep Neural 

Network-based Autonomous Driving Systems. The paper was published in IEEE 14th International 

Conference on Software Testing, Verification and Validation Workshops (ICSTW), in 2021. This 

paper is co-authored and includes the following authors: Yu Lei, Raghu Kacker, and D. Richard 

Kuhn. I am the primary author of this paper, and I was responsible for developing the test 

generation approach, designing input parameter models, generating abstract t-way test sets, writing 

automation scripts to generate synthetic images, conducting experiments, and analyzing the 

results. Dr. Lei supervised the project and helped in designing the evaluation metrics, reviewing, 

and editing the manuscript. Dr. Kacker and Dr. Kuhn contributed to improving the final draft of 

the paper. 

Autonomous systems such as self-driving cars use pre-trained ML models to perform 

intelligent tasks like pedestrian detection, steering control, and lane control. Despite its promising 

potential, ML models fail to exhibit expected behavior in real-world scenarios and resulting in 

fatalities in some cases. There is a need to test ML models with realistic driving scenarios before 

deploying them in the real world. This paper presents a combinatorial approach to generate 

synthetic images (test data) to test Deep Neural Network (DNN) models used in self-driving cars. 

The results from this work suggest that the combinatorial testing approach can be very effective 

for testing autonomous driving systems. The proposed approach was able to successfully detect a 



 6 

significant number of inconsistent behaviors in pre-trained DNN models developed to predict the 

steering angle of a car.  

Chapter 5 presents a paper titled, Evaluation of T-Way Testing of DNNs in Autonomous 

Driving Systems. This paper is accepted at the IEEE 3rd International Conference on Artificial 

Intelligence Testing (AITest) in 2021. This paper is co-authored and includes the following 

authors: Ankita Ramjibhai Patel, Yu Lei, Raghu Kacker, and D. Richard Kuhn. As the primary 

author of this paper, I was responsible for designing and conducting the comparison study. Ms. 

Ankita Ramjibhai Patel helped in sorting and analyzing the neuron coverage results. Dr. Lei helped 

in designing the comparison study, and in reviewing and editing the manuscript. 

In this paper, we present a preliminary study that evaluates the performance of a 

combinatorial testing-based approach in testing DNNs used in autonomous cars. In this study, we 

compare the synthetic images generated using the combinatorial approach to DeepTest [5], a state-

of-the-art test generation tool that aims at generating synthetic images that maximize neuron 

coverage, a measure of the proportion of neurons activated in a DNN model. The results from this 

study suggests that the combinatorial approach generates valid synthetic images and can cover 

more neurons than the synthetic images generated by the DeepTest approach. 

Chapter 6 presents a paper titled, A Combinatorial Approach to Explaining Image 

Classifiers which was published in IEEE 14th International Conference on Software Testing, 

Verification and Validation Workshops (ICSTW), in 2021. This paper is co-authored and includes 

the following authors: Yu Lei, Raghu Kacker, and D. Richard Kuhn. I am the primary author of 

this paper. I was responsible for developing the approach, designing, and conducting the 

experiments, and analyzing the results. Dr. Lei supervised the project, and his critical feedback 
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helped significantly strengthened the overall project. Dr. Kacker and Dr. Kuhn reviewed the 

manuscript, and their feedback helped us refine the final version of the paper. 

This paper presents an explainable AI (XAI) approach to produce counterfactual 

explanations for decisions made by image classifier models. ML models, which are black boxes 

by nature, do not provide any explanation behind their decision. The lack of explanation limits the 

oversight on these models and prevents human users from diagnosing and repairing biases or 

undesirable behaviors. This considerably reduces the trustworthiness of AI-based software 

systems and restricts their deployment towards applications in the real world. Hence, in the AI 

research community, a significant amount of effort is being invested on the development of 

methods for deriving explanations behind decisions made by AI systems. We observe that 

generating an explanation for a machine learning model is similar to fault localization, a classical 

problem in software engineering. We propose an XAI approach that adopts BEN, a software fault 

localization-based tool for deriving counterfactual explanations for image classifier models. The 

results suggest the proposed approach can successfully generate counterfactual explanations for 

DNN based image classifiers. 

Chapter 7 presents the concluding remarks and directions for our future work. 

1.3. REFERENCES 

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016). 

Tensorflow: A system for large-scale machine learning. In 12th {USENIX} symposium on 

operating systems design and implementation ({OSDI} 16) (pp. 265-283). 

2. Eibe Frank, Mark A. Hall, and Ian H. Witten (2016). The WEKA Workbench. Online 

Appendix for "Data Mining: Practical Machine Learning Tools and Techniques", Morgan 

Kaufmann, Fourth Edition, 2016. 



 8 
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Accessed: 2020-11-18 

4. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ... & Desmaison, A. 

(2019). Pytorch: An imperative style, high-performance deep learning library. In Advances 

in neural information processing systems (pp. 8026-8037). 

5. Tian, Y., Pei, K., Jana, S., & Ray, B. (2018, May). Deeptest: Automated testing of deep-

neural-network-driven autonomous cars. In Proceedings of the 40th international 

conference on software engineering (pp. 303-314). 
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Chapter 2. Applying Combinatorial Testing to Data Mining Algorithms 

The chapter contains a paper published in the IEEE 10th International Conference on 

Software Testing, Verification and Validation Workshops (ICSTW), in 2017. 
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Applying Combinatorial Testing to Data Mining Algorithms* 

Jaganmohan Chandrasekaran1, Huadong Feng1, Yu Lei1, D. Richard Kuhn2, Raghu Kacker2 

1Department of Computer Science & Engineering, University of Texas at Arlington, 
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Keywords—Combinatorial Testing; Data mining; Machine learning; Input parameter 

modeling; Branch coverage; Mutation testing; 

 
* Copyright © 2017 IEEE. Reprinted, with permission, from Jaganmohan Chandrasekaran, Huadong Feng, Yu Lei, 

Raghu Kacker, D. Richard Kuhn, Applying Combinatorial Testing to Data Mining Algorithms, IEEE International 

Conference on Software Testing, Verification and Validation Workshops (ICSTW), March 2017. 

 



 11 

2.1. INTRODUCTION 

Big data applications are becoming more popular as large amounts of data are generated 

and collected in virtually every domain, e.g., e-commerce, social networking, and scientific 

computing [11,12]. These applications typically employ data mining algorithms to analyze data 

and discover useful information. Data mining algorithms include supervised learning algorithms, 

and un-supervised learning algorithms to perform tasks such as classification, clustering, 

association rule mining [36]. 

In this paper, we present an experiment that applies combinatorial testing (or CT) to 

software that implements data mining algorithms. Testing data mining algorithms has several 

challenges. First, data mining software typically involves complex computation and decision logic. 

This is because data mining algorithms can be quite sophisticated. Second, data mining software 

often deals with datasets that have complex structure. Thus, it can be difficult to model and 

characterize the input space. Third, many data mining algorithms are designed to process large 

amounts of data. However, it is impractical to test large amounts of data at the development stage 

when testing is frequently performed. In the remainder of this paper, we will refer to data mining 

algorithms and software that implements data mining algorithms simply as data mining algorithms, 

unless otherwise specified. 

The goal of our experiment is to evaluate the effectiveness of CT for testing data mining 

algorithms. In our experiment, we apply CT to five data mining algorithms implemented in the 

Waikato Environment for Knowledge Analysis (WEKA) tool. These five algorithms include C4.5, 

K-Means, SVM, Apriori and EM, and they are identified to be the top five most influential data 

mining algorithms by the IEEE International Conference on Data Mining (ICDM) [44]. Each 

algorithm takes two types of input, including a dataset to be analyzed, and configuration options 
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that are used to customize the behavior of the algorithm. In our experiment, the input dataset for 

each algorithm was selected from a collection of 51 public benchmark datasets provided by WEKA 

and UC Irvine [32]. 

To carry out our experiment, we first ran each algorithm with the default configuration on 

the 51 datasets to study the impact different datasets have on the test coverage, and selected one 

dataset that achieved the highest branch coverage. We then created an input parameter model 

(IPM) for the configuration options of each algorithm. An IPM consists of representative values 

of each configuration option as well as constraints that exist between these values. We performed 

both positive and negative testing of each algorithm using the selected dataset and the IPM of the 

configuration options. For positive testing, we created 1-way to 6-way test sets using the valid 

values in the IPM. For negative testing, we created a 1- way test set for the invalid values in the 

IPM. In the 1-way negative test set, each invalid value is covered by one test in which every other 

value is a valid value. Test effectiveness is measured in terms of both branch coverage and 

mutation coverage. 

The major results of our experiment are summarized as follows: 

• Larger datasets do not necessarily achieve higher test coverage than smaller datasets. The 

sizes of the datasets that are applicable to each algorithm range from as few as 14 instances to as 

many as 20,000 instances. However, almost all of these datasets achieved similar branch coverage. 

In some cases, very small datasets achieved higher coverage than very large datasets. For example, 

for algorithm Apriori, the weather .nominal dataset has only 14 instances, but it achieved higher 

coverage than the mushroom dataset, which has 8124 instances. This suggests that the size of a 

dataset is not a dominating factor in deciding test coverage. Other factors, e.g., structure of a 

dataset, and relationship between different instances, might play a more significant role. 
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• Test coverage of CT test set increases progressively slower with respect to increase of 

test strength. In our experiment, test coverage increases more significantly when test strength 

increases from 1-way to 3-way. After 4-way testing, higher strength test sets no longer provide 

significant coverage improvement. This result is consistent with the results of other empirical 

studies that apply CT to general software applications. 

• Branch coverage correlates well with mutation coverage. The results of our experiment 

suggest that in general, branch coverage correlates with mutation coverage. In particular, higher 

branch coverage often implies higher mutation coverage. This suggests that branch coverage could 

be used as a good indicator of fault detection effectiveness for data mining algorithms, since 

mutation coverage is expensive to measure. 

To the best of our knowledge, our work is the first attempt to evaluate the effectiveness of 

CT to data mining algorithms. In general, little work has been reported on testing data mining 

algorithms. We believe that our experiment provides initial insights that can be useful for 

developing more effective testing techniques for data mining algorithms. 

The remainder of this paper is organized as follows. Section 2.2 discusses the major design 

decisions made in our experiment. Section 2.3 presents the major results obtained from our 

experiment. Section 2.4 briefly reviews related work, including existing work on CT and on testing 

data mining algorithms. Section 2.5 provides our conclusion and outlines several directions for 

future work. 

2.2. EXPERIMENTAL DESIGN 

In this section, we present the design of our experiments. We formulate our research 

questions, identify the subject algorithms and datasets, present our approach to Input Parameter 

Modeling (IPM) and test generation, and discuss the metrics used to measure test effectiveness. 
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2.2.1 RESEARCH QUESTION 

The goal of this project is to evaluate effectiveness of CT applied to data mining algorithms. 

We formulate the following research questions: 

1) How do different datasets impact test coverage? 

2) How effective is CT applied to data mining algorithms? 

3) Is branch coverage a good indicator of fault detection effectiveness? 

2.2.2 SUBJECT PROGRAMS 

WEKA is one of the most widely used data mining tools. WEKA is developed by 

University of Waikato, and implements a collection of data mining algorithms as different 

packages. The subject programs include five data mining algorithms implemented in the WEKA 

tool: (1) C4.5, which is a supervised learning algorithm that takes a collection of cases as input, 

and output a classifier that predicts the class to which a new case belongs using decision tree[44]; 

(2) K-Means, which is an unsupervised learning algorithm that performs clustering by partitioning 

a given dataset into k clusters such that the members of each cluster are similar to each other; (3) 

SVM, which is a supervised learning algorithm that uses the vector space to build a SVM 

classification model. The model predicts the class to which a new case belongs; (4) Apriori, which 

is an unsupervised learning algorithm that generates association rules by identifying frequent item 

sets; and (5) EM, which is an unsupervised learning algorithm that uses statistical models to 

perform clustering. These five algorithms are identified to be the top five most influential data 

mining algorithms [44].  

Table 2-1 shows information about the WEKA packages that implement the five 

algorithms.  
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TABLE 2-1 WEKA PACKAGE INFORMATION 
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Apriori weka.associations 5 5 580 1349 12 11 

EM weka.clusterers 6 10 736 1825 14 46 

C4.5 weka.classifiers.trees.J48 17 17 696 1641 17 44 

K-Means weka.clusterers 5 7 699 1721 18 46 

SVM libsvm 6 18 1124 2138 17 44 

 

2.2.3 DATASETS 

We selected our datasets from a collection of 51 public benchmarking datasets provided 

by WEKA and UC Irvine [32]. Table 2-2 shows the statistics of the 51 subject datasets.  

Different algorithms require different types or formats of data. As a result, not every dataset 

is applicable to every algorithm. To determine the applicability of a dataset to a given algorithm, 

we run the dataset with the algorithm. A dataset is considered applicable to an algorithm if 

executing the dataset with the algorithm provides meaningful output without any exception. The 

number of applicable datasets for each algorithm is shown in the last column of Table 2-1. 
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TABLE 2-2 DATASET INFORMATION 
 

# of Attributes # of Instances Size in KB 

Maximum 217 20000 1978.39 

Minimum 2 14 0.483398 

Average 23.92157 1466.902 229.5591 

Standard Deviation 31.73506 3079.593 393.0123 

Median 18 604 44.82715 

 

2.2.4 INPUT PARAMETER MODELING 

Before CT is applied, we must create the input parameter model (IPM) [21]. Each subject 

algorithm takes two types of input, including a dataset to be analyzed, and a set of configuration 

options that are used to customize the behavior of the algorithm. Our experiment focuses on CT 

of configuration options. As mentioned in Section V, CT of datasets is left for future work. Thus 

our modeling process mainly consists of identifying representative values for different 

configuration options.  

In the following, we use the Apriori algorithm as an example to explain our approach. We 

categorize configuration options into two groups.  

• Group 1: This group includes options with a set of predefined choices. For each option 

in this group, every predefined choice is identified as a representative value for this option.  

Figure 2-1 shows some configuration options of the Apriori algorithm. Consider as an 

example option “- T”, which is used to specify the metric type. This option has four predefined 

choices, Confidence, Lift, Conviction, and Leverage, each of which is identified to be a 

representative value for this option.  
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FIGURE 2-1 CONFIGURATION OPTIONS FOR APRIORI 

 

Group 2: This group includes options that do not have a set of predefined choices. Instead, 

the user can input any value that is valid. For each option in this group, equivalence partitioning is 

used to identify representative values.  

We observe that in our subject programs, all the options in this group are of type Integer, 

Float, Double. We first identify boundary values that distinguish valid and invalid values, as shown 

in Figure 2-2. A boundary value itself may or may not be valid. In Figure 2-2, a square bracket 

indicates a valid boundary value, and a parenthesis indicates an invalid boundary value. Next, we 

partition valid and invalid values into different groups as needed, based on domain knowledge. 

-N <required number of rules output> 

  The required number of rules. (default = 10) 

  

-T <0=confidence | 1=lift | 2=leverage | 3=Conviction> 

  The metric type by which to rank rules. (default = confidence) 

  

-C <minimum metric score of a rule> 

  The minimum confidence of a rule. (default = 0.9) 

  

-c <the class index> 

  The class index. (default = last) 
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The set of representative values include one representative value from every partition of valid and 

invalid values.  

 

 

Consider as an example the - C (minimum metric score) option in Figure 2-1. This option 

allows the user to specify a threshold value for the selected metric type. Assume that the user 

chooses Confidence as the metric type, i.e., -T 0 (Figure 2-1). Based on domain knowledge, we 

identify the boundary values for minimum metric score as 0 and 1.  

Next we identify the equivalence classes for valid and invalid values and select a 

representative value from each class. For valid values, we identify three equivalence classes: (1) 

{values that take every possible rule}, (2) {values that only take rules with 100% confidence}, and 

(3) {other values, i.e. values that do not take every possible rule, and do not require 100% 

confidence for each rule}. The first class consists of a single value, i.e., 0. Similarly, the second 

class consists of a single value, i.e., 1. The third class includes every value that is greater than 0 

and less than 1. Thus, we select the following three representative values, including 0, 1, and 0.9. 

Note that “0.9” is the default value of this option as shown in Figure 2-1. In general, the default 

value is selected as the representative value for the equivalence class that contains the default 

value. Doing so helps to reduce number of representative values identified for each parameter.  

 

FIGURE 2-2 EQUIVALENCE PARTITIONING FOR GROUP 2 CONFIGURATION OPTIONS 
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For invalid values that are outside of the boundary values, we identify two equivalence 

classes: (1) {value | value < lower boundary}; and (2) {value | value > higher boundary}. A 

random value can be chosen from each of the two equivalence classes as the representative values.  

In addition to identifying representative values for each configuration option, we have also 

identified constraints between different values. Constraints are used to prevent ACTS [46] from 

generating invalid combinations. For example, in the Apriori algorithm, when option “-A” is true, 

the only allowed metric type “-T” is confidence, i.e., option “- T” must take the value of 0. Table 

2-3 shows the constraints that are identified for algorithm Apriori.  

TABLE 2-3 CONSTRAINTS IDENTIFIED FOR APRIORI 

A = false => c = -1 

A = true => T = 0 

T = 0 => (T = 0.1 || C = 0.9) 

T = 1 && A = false => (M = 0.1 || M = 0.95) 

T = 1 || T = 3 => (T =1.1 || T = 1.5) 

T = 2 => (C = 0.1 || C = 0.5) 

 

2.2.5 TEST GENERATION 

We performed both positive and negative testing in our experiments. For positive testing, 

we created test sets that achieve 1-way to 6-way coverage for valid values using the extend mode 

from ACTS. The extend mode allows a test set to be built by extending an existing test set. By 

using the extend mode, every higher strength test set will be the superset of its lower strength test 

set(s). For negative testing, we generated a test set that achieves 1-way coverage for invalid values. 

That is, each invalid value is covered by one and only one test in which every other value is a valid 
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value. Note that in order to avoid potential mask effects, a negative test should contain at most one 

invalid value. 

TABLE 2-4 SIZES OF TEST SETS 

 Apriori EM J48 SimpleKMeans LibSVM 

1-way 7 3 4 4 5 

2-way 33 11 14 16 21 

3-way 132 37 48 49 76 

4-way 478 91 133 136 232 

5-way 1440 214 349 368 637 

6-way 4055 463 835 911 1546 

Negative 12 18 9 11 15 

 

We used ACTS to generate both positive and negative test sets. Table 2-4 shows the sizes 

of test sets of different strengths. Since the representative values are abstract values, the tests 

generated by ACTS are abstract tests. These abstract tests need to be translated to concrete tests 

prior to execution. For example, consider the option, “-c”, representing Class Index, as shown in 

Figure 1. String “last” is an abstract value of this option that represents the last column (or attribute) 

of the input dataset. This abstract value must be mapped to the actual index of the last column in 

a dataset.  

For each algorithm, we have written a script that performs automatic translation from 

abstract tests to concrete tests. The corresponding concrete value of an abstract value is calculated 

based on the selected input dataset. For example, abstract value “last” for option, -c, the concrete 

value when executing weather.nominal dataset for Apriori will be set to the actual last index, “5”.  



 21 

2.2.6 METRICS 

In our experiments, we used branch coverage and mutation coverage to measure test 

effectiveness. We used JaCoCo to record branch coverage. JaCoCo is a free Eclipse plugin that 

measures statement and branch coverage at the byte code level [22].  

We used an open-source mutation testing tool called PIT to measure mutation coverage 

[14]. We selected all available mutators that are provided by PIT for generating mutants. PIT uses 

JUnit tests to determine whether a mutant is killed. All JUnit tests must pass before PIT can be 

applied. We first ran each test case with the original programs and stored the output as the expected 

output. Then we created JUnit tests that check the actual output against the expected output. 

Whenever a passing JUnit test fails after executing a mutant, the mutant is considered killed.  

PIT uses timeout to kill mutants that may never terminate. That is, if the execution of a 

mutant times out, then the mutant is considered killed. In order to reduce test execution time while 

preventing premature termination, we set the timeout value differently for each test set as follows. 

We first recorded the normal execution time taken by every test in a test set on the original 

program. This allowed us to find the longest execution time of a test set. If the longest execution 

time t is less than or equal to 10 seconds, we set the timeout value of the test set to be t plus 10 

seconds. Otherwise, we set the timeout value to be t plus 100 seconds. 

2.3 EXPERIMENTAL RESULTS 

In this section, we present the results from our experiments. The coverage results for each 

algorithm are collected for the class files in the package that implement the algorithm, i.e., instead 

of every class file in the WEKA package. All the results and related files such as datafiles, scripts 

and experiment logs are publicly available at http://barbie.uta.edu/~hdfeng/.  
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2.3.1 IMPACT OF DATASETS 

We executed each algorithm’s default configuration with the 51 datasets. Some datasets 

are not applicable to a given algorithm, e.g., due to incorrect data type, insufficient number of 

attributes, and missing data of attributes. Table 2-1 (Section 2.2.2) shows the number of datasets 

that are applicable to each algorithm.  

TABLE 2-5 BRANCH COVERAGE STATISTICS OF APPLICABLE DATASETS 

 Apriori EM J48 SimpleKMeans LibSVM 

Maximum 28.79% 37.64% 36.64% 21.89% 34.96% 

Minimum 26.72% 31.11% 8.33% 18.31% 20.46% 

Mean 27.98% 35.34% 30.07% 21.04% 30.35% 

Standard 

Deviation 

0.68% 2.29% 4.8% 1.04% 3.77% 

Median 28.02% 36.41% 29.89% 21.6% 31.23% 

 

Table 2-5 presents some statistics about the branch coverage results of each selected 

algorithm with the applicable data sets. The results indicate that different datasets achieve similar 

coverage results despite significant differences in their sizes in terms of number of attributes and 

instances. Recall that as shown in Table 2-2 (Section 2.2.3), some datasets contain as many as 

20,000 instances while other datasets contain as few as 14 instances. However, the standard 

deviations of the branch coverage results are generally less than 5% as shown in Table 2-5. 
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TABLE 2-6 APPLICABLE DATASETS FOR APRIORI 

Dataseta # of Attributes # of Instances Branch Coverage 

vote 17 435 28.79% 

weather.nominal 5 14 28.79% 

splice 62 3190 28.62% 

contact-lenses 5 24 28.28% 

breast-cancer 10 286 28.28% 

primary-tumor 18 339 27.76% 

soybean 36 683 27.59% 

supermarket 217 4627 27.59% 

kr-vs-kp 37 3196 27.41% 

mushroom 23 8124 26.72% 

a. Only 10 datasets’ branch coverage are available instead of 11 as shown in Table 2-1. Dataset audiology 

did not finish execution within 48 hours. 

 

We point out that even some datasets have a very small number of instances, they can 

achieve higher branch coverage than the datasets with significantly more instances. Table VI 

shows the dataset and branch coverage information of the applicable datasets for the Apriori 

implementation. Consider dataset weather.nominal and mushroom. Dataset weather.nominal has 

only 5 attributes and 14 instances. Dataset mushroom has 23 attributes and 8124 instances. 

However, weather.nominal achieved higher coverage than mushroom. Similar situations exist for 

other algorithms, which are not shown due to space limitation. 

Based on the results of the 51 datasets for each algorithm, we selected one dataset that 

achieved the highest branch coverage for each algorithm for the rest of our experiment. If more 

than one dataset achieves the highest branch coverage, we break the tie by choosing the one with 



 24 

a smaller number of instances. For example, for Apriori, both vote and weather.nominal achieves 

the maximum branch coverage. To break the tie, we choose weather.nominal. The datasets selected 

for each algorithm are shown below 

• Apriori – weather .nominal  

• EM – segment-challenge  

• J48 – credit-a  

• SimpleKMeans – iris.2D  

• LibSVM – primary-tumor  

 

 

2.3.2 BRANCH COVERAGE RESULTS OF T-WAY TESTING 

Table 2-7 shows the branch coverage results of the seven test sets, including the negative 

test set, 1-way to 6-way positive test sets. Table 2-7 also shows the branch coverage results for the 

Finding 1: Larger datasets do not necessarily achieve higher branch coverage. In some cases, 

smaller datasets can achieve higher branch coverage than larger datasets.  

 

Implication 1: The size of a dataset is not a dominating factor for determining test 

effectiveness of a dataset. Instead, other characteristics must be considered, e.g., the dataset 

structure, and the relationship between different data instances. Also, it is possible to create 

small datasets that are effective for testing data mining algorithms.  number of dataset 

instances, when reducing input datasets or generating synthetic input datasets.  
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default configuration as a baseline, and the branch coverage results that combine 6-way test and 

negative test. 

TABLE 2-7 BRANCH COVERAGE RESULTS OF T-WAY TESTING 

Test set Apriori EM J48 SimpleKMeans LibSVM 

Default Configuration 28.79% 37.64% 36.64% 21.89% 34.96% 

Negative 66.03% 50.54% 55.32% 66.24% 28.47% 

1-way 55.52% 52.99% 52.73% 59.51% 24.47% 

2-way 66.55% 53.80% 54.60% 69.53% 43.77% 

3-way 68.62% 53.94% 59.77% 70.39% 54.63% 

4-way 68.62% 53.94% 59.77% 70.39% 54.80% 

5-way 68.62% 54.08% 59.77% 70.39% 54.80% 

6-way 68.62% 54.08% 59.77% 70.39% 54.89% 

6-way 

&Negative 

68.97% 55.30% 59.77% 70.67% 55.34% 

 

We observe that negative test sets achieve relatively high coverage, in comparison with 

positive t-way tests, for all the algorithms except LibSVM. One possible reason is that the validity 

of a configuration option value is not checked until it is used. Thus, in some cases, a significant 

amount of the source code could have been executed before the system detects this invalid value. 

We plan to investigate this further in our future work. 

We also observe that the total coverage achieved by combining the negative test set and 

the 6-way test set ranges from 55.30% to 70.67%. Other empirical studies [4, 5, 26, 29, 43] have 

reported that 6-way test sets could detect all the faults. We plan to investigate this further in our 
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future work. The following factors could have contributed to the fact that our coverage results are 

less than expected: 

• Limited domain knowledge: In our experiments, we performed input parameter modeling 

based on our limited domain knowledge. The input parameter models could be refined to 

achieve higher branch coverage.  

• Testing only configuration options: In our experiments, CT is only applied to configuration 

options. That is, we did not test combinations between configuration options and different 

datasets.  

• Shared class files that contain unreachable code from implementations of other algorithms. 

In WEKA, multiple algorithms are implemented within the same package. For example, 

the weka.clusterers package contains implementations of eight different clustering 

algorithms, e.g., SimpleKMeans, EM, Canopy, etc. Some portions of source code may only 

be reachable when executing its corresponding algorithm. As an example, SimpleKmeans 

algorithm is a variant of EM algorithm with the assumptions that clusters are spherical. In 

WEKA, EM algorithm uses the SimpleKMeans class to complete its first few steps of the 

clustering tasks. But most source code of SimpleKMeans are not semantically reachable 

because EM is only using a static configuration of SimpleKMeans algorithm as specific in 

the EM class file.  
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FIGURE 2-3 GROWTH OF BRANCH COVERAGE 

 

Figure 2-3 shows how branch coverage increases with respect to test strength. The result 

is consistent with previous studies [15, 28]. That is, the coverage grows progressively slower when 

test strength increases. Also, branch coverage stops increasing after 3-way testing for algorithms 

Apriori, J48, SimpleKMeans, and after 5-way testing for algorithms EM. For algorithm LibSVM, 

branch coverage continues to increase until 6-way testing as shown in Table 2-7. 

 

Finding 2: Branch coverage increases progressively slower as test strength increases. The 

coverage increase stops at a test strength that is relatively low.  

 

Implication 2: During CT, data mining algorithms display similar behavior as general software 

applications. CT has the potential to be effective for testing data mining algorithms. 
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2.3.3 MUTATION COVERAGE RESULTS OF T-WAY TESTING 

The mutation coverage results are unavailable for the following algorithms:  

• KMeans – PIT cannot execute for this algorithm, due to a bug that is confirmed by PIT 

developers. Discussion of this bug is publicly available at 

https://github.com/hcoles/pitest/issues/300.  

• EM – Mutation testing for EM was not able to complete within 48 hours due to the 

large number of mutators generated from the source code and the heavy computation 

of EM algorithm itself.  

TABLE 2-8 MUTANTS GENERATED FOR EACH ALGORITHM 

Mutants Apriori J48 LibSVM 

ConditionalsBoundaryMutator 120 4% 113 3.11% 314 6.38% 

ConstructorCallMutator 186 6.2% 137 3.77% 140 2.85% 

experimental 104 3.47% 202 5.56% 204 4.15% 

IncrementsMutator 113 3.77% 91 2.5% 214 4.35% 

InlineConstantMutator 555 18.5% 488 13.43% 876 17.81% 

InvertNegsMutator 0 0% 1 0.03% 46 0.94% 

MathMutator 99 3.3% 213 5.86% 511 10.39% 

NegateConditionalsMutator 282 9.4% 348 9.57% 551 11.2% 

NonVoidMethodCallMutator 778 25.93% 984 27.07% 614 12.48% 

RemoveConditionalMutator 564 18.8% 696 19.15% 1102 22.41% 

ReturnValsMutator 112 3.73% 239 6.57% 131 2.66% 

VoidMethodCallMutator 87 2.9% 123 3.38% 215 4.37% 

Total 3000 100% 3635 100% 4918 100% 
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Table 2-8 shows the number of mutants generated by each mutator. Some mutators are 

generating significantly more mutants than others as shown in Table 2-8 

• NonVoidMethodCallMutator: Incorrect method calls.  

• InLineConstantMutator: Assigning an incorrect constant value to a variable.  

• RemoveConditionalMutator: Incorrect conditional statements. 

“RemoveConditionalMutator” will change the conditions to a constant boolean value.  

 

For NegateConditionalsMutator, RemoveConditional- Mutator and 

ConditionalBoundaryMutator, these three mutators focus on generating mutants at conditional 

statements of the program, and these three mutators together generates over 30% of the total 

mutants for the three algorithms that are shown in Table 2-8.  

 

FIGURE 2-4 GROWTH OF MUTATION COVERAGE 
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Table 2-7 shows that branch coverage stops growing after 3-way testing for Apriori and 

J48. However, mutation coverage continues to grow for these two algorithms after 3- way testing, 

as shown in Table 2-9. This is because executing a line or branch of code does not necessarily 

expose faults that exist in the code or branch, especially when the computation or decision logic is 

more complex. However, the increase in mutation coverage is not significant after 3-way testing.  

TABLE 2-9 MUTATION COVERAGE RESULTS OF T-WAY TESTING   

Test set Apriori J48 LibSVM 

Default Configuration 31.53% 29.66% 26.11% 

Negative 59.90% 40.39% 19.46% 

1-way 45.27% 38.05% 14.99% 

2-way 60.93% 42.56% 32.61% 

3-way 64.10% 49.05% 42.72% 

4-way 64.47% 49.19% 43.19% 

5-way 64.50% 49.35% 43.19% 

6-way 64.53% 49.38% 43.21% 

6-way&Negative 64.63% 49.38% 44.02% 

 

Figure 2-4 plots the growth of mutation coverage with respect to test strength. The result 

is consistent with previous studies [15, 28] on branch coverage. Hence, Finding 2 and Implication 

2 also apply to the coverage growth of mutation testing. The results of our experiment suggest that 

in general, branch coverage correlates well with mutation coverage. Thus, branch coverage could 

be used as a good indicator of fault detection effectiveness for data mining algorithms, since 

mutation coverage is expensive to measure.  
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When we analyzed the results of mutation coverage for the individual files of each 

algorithm, we discovered two special cases where mutation coverage for “apriori.java” for the 

Apriori algorithm decreased by one mutant from 4-way to 5- way and 6-way testing. As discussed 

in the Section II, the CT tests we created using ACTS used the extend mode. This means that every 

higher strength test set is a superset of its predecessor. Consequently, branch coverage and 

mutation coverage should not decrease from a lower strength test set to a higher strength test set. 

We have informed the lead developer of PIT with this issue, but the exact cause has not been 

successfully identified. 

 

 

2.3.4 THREATS TO VALIDITY 

Threats to external validity occur when the experimental results could not be generalized 

to other subjects. Our subject programs implement the top five data mining algorithms identified 

in [44] and are from a widely used data mining tool, i.e., WEKA. The datasets used in our 

experiments have been used in other studies [32]. More experiments using data mining algorithms 

Finding 3: Branch coverage and mutation coverage seem to correlate well for data mining 

algorithms. That is, higher branch coverage seems to imply higher mutation coverage, and 

vice versa. 

 

Implication 3: Branch coverage could be used as a good indicator of fault detection 

effectiveness for data mining algorithms, since mutation coverage is expensive to measure.  
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other than these five algorithms and using different datasets can further reduce threats to external 

validity. 

Threats to internal validity are other factors that may be responsible for the experimental 

results. To prevent mistakes that could happen during the modeling process, two of the authors 

created the IPM independently and cross-checked them against each other. We have automated 

the execution of experiments using scripts, as an effort to minimize human errors. Furthermore, 

consistency of the results (executed by scripts) has been checked by two of the authors using their 

independently written scripts. 

2.4. RELATED WORK 

We first review previous work on applying CT to different types of software. Lei et al. [30] 

developed a t-way testing strategy for testing concurrent programs. Simos et al. [40] and Bozic et 

al. applied CT to perform security testing of web applications [6]. Li et al. applied CT to test three 

real-life industrial software systems that include an embedded system, a graphical operating 

system and a database management system [35]. Dhadyalla et al. applied CT to test automotive 

control software embedded in a hybrid electric vehicle [16]. Li et al. applied CT to ETL 

applications [34]. Note that ETL is a special type of big data applications. However, the work in 

[34] focuses on data transformation and management aspects, whereas our work focuses on 

algorithmic aspects. These existing works show that CT can be effectively applied to different 

domains. However, to our knowledge, our work is the first one that applies CT to data mining 

algorithms. 

Second, we review existing work related to evaluating the effectiveness of CT. Khun et al. 

[31] investigated the fault detection effectiveness of t-way testing. Kuhn et al. [27] report a study 

that applies CT and random testing to detect deadlocks in a network simulator. Bell and Vouk 
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discussed the effectiveness of pairwise testing and random testing to a network-centric software 

[2]. A number of studies have been reported that compares the effectiveness of CT and random 

testing [1, 5, 7, 17, 25, 41, 42]. There are also studies that investigate the code coverage 

effectiveness of t-way testing [13, 15]. Our work presented in this paper is the first effort to 

evaluate the effectiveness of CT to data mining algorithms. 

Third, we review previous work related to testing data mining applications. Jeske et al. [24] 

developed a platform to generate realistic, synthetic data to test data mining tools. Data mining 

tools were evaluated in terms of their false positive and false negative error rates when executed 

with the synthetic data. Murphy et al. discussed how to identify metamorphic properties for 

performing metamorphic testing of data mining algorithms [38]. Metamorphic testing is one 

approach to addressing the test oracle problem. Murphy et al. [37] discussed approaches to test 

machine-learning applications that implement ranking algorithms. Our work is different in that we 

apply CT to test data mining algorithms. 

Finally, we note that a significant amount of work has been reported on testing database 

centric applications [3, 8, 9, 10, 18, 33, 45]. Similar to work presented in [34], these work focuses 

on testing data management aspects. In contrast, our work focuses on the algorithmic aspects of 

data mining software. 

2.5. CONCLUSION AND FUTURE WORK 

In this paper, we reported an experiment that applied CT to five data mining algorithms 

implemented in the WEKA tool. This is part of a larger effort that is aimed to develop effective 

CT-based methods for testing big data applications. The experiment allows us to obtain some 

initial understandings about the effectiveness of CT on data mining algorithms. In particular, the 

results of our experiment indicate that data mining algorithms behave in a way that is similar to 
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general software. This suggests that CT has the potential to be effectively applied to data mining 

algorithms. 

We plan to continue our work in the following three directions. First, we will perform 

detailed code analysis to better understand the results of our experiment. In particular, we want to 

investigate why some branches were executed by none of our test sets, and whether these branches 

could be executed by using different configuration options and/or datasets. Second, in our 

experiment, we only applied CT to configuration options. We plan to investigate how to apply CT 

to create representative datasets. The key challenge is to identify the characteristics of a dataset 

that could significantly impact the execution of the underlying algorithm. We can model these 

characteristics as abstract parameters, and then apply CT to these parameters to create 

representative datasets. Third, negative testing alone has shown great importance in achieving 

good coverage, we will perform further investigation and experiments on how we can better use 

negative testing to improve the coverage of CT [20]. 
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Chapter 3. Effectiveness of dataset reduction in testing machine learning 

algorithms 

The chapter contains a paper published in the IEEE 2nd International Conference on 

Artificial Intelligence Testing (AITest), in 2020. 
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Abstract— Many machine learning algorithms examine large amounts of data to discover 

insights from hidden patterns. Testing these algorithms can be expensive and time- consuming. 

There is a need to speed up the testing process, especially in an agile development process, where 

testing is frequently performed. One approach is to replace big datasets with smaller datasets 

produced by random sampling. In this paper, we report a set of experiments that are designed to 

evaluate the effectiveness of using reduced datasets produced by random sampling for testing 

machine learning algorithms. In our experiments, we use as subject programs four supervised 

learning algorithms from the Waikato Environment for Knowledge Analysis (WEKA). We 

identify five datasets from Kaggle.com to run with the four learning algorithms. For each dataset, 

we generate reduced datasets of different sizes using two random sampling strategies, i.e., pure 

random and stratified random sampling. We execute our subject programs with the original and 

the reduced datasets, and measure test effectiveness using branch and mutation coverage. Our 

results indicate that in most cases, reduced datasets of even very small sizes can achieve the same 

or similar coverage achieved by the original dataset. Furthermore, our results indicate that reduced 
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datasets produced by the two sample strategies do not differ significantly, and branch coverage 

correlates with mutation coverage.  

Keywords— Testing classifiers, Random sampling, Reduced datasets, Testing machine 

learning, Branch coverage, Software testing.  

3.1 INTRODUCTION 

Many machine learning algorithms examine large amounts of data to discover insights 

from hidden patterns. Given the nature of machine learning algorithms, testing can be expensive 

and time-consuming as each test case may have longer execution time compared to the testing of 

traditional applications. There is a need to speed up the testing process, especially in an agile 

development process, where testing is frequently performed. One approach is to replace high 

volume test datasets with smaller datasets produced by random sampling. One natural question to 

ask about this approach is the following: How does a reduced dataset compare to the original 

dataset in terms of effectiveness from a testing perspective?  

In this paper, we investigate the effectiveness of using reduced datasets for testing machine 

learning algorithms. We measure test effectiveness using both branch coverage and mutation 

coverage. In our study, we use four supervised learning algorithms from the Waikato Environment 

for Knowledge Analysis (WEKA), which is a widely used machine learning workbench written in 

Java [1], as our subject programs. We identify five datasets, each of which represents a different 

application domain, from Kaggle.com to run with these algorithms. Kaggle.com is an online data 

science community that maintains a repository of public datasets.  

After we identify subject programs and datasets, we first execute each subject program 

with each of the five datasets and measure test effectiveness in terms of branch coverage and 

mutation coverage. Second, we create two groups of reduced datasets. The first group is generated 
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using pure random sampling, i.e., in a purely random manner. The second group is generated using 

stratified random sampling, i.e., in a random manner that maintains the class distribution. In 

another word, a reduced dataset produced by stratified random sampling has the same class 

distribution as the original dataset. In the rest of the paper, we will refer to pure random sampling 

as random sampling and stratified random sampling as stratified sampling. Third, we execute the 

reduced datasets with subject programs and measure branch and mutation coverage. Finally, we 

compare the coverage results achieved by the reduced datasets to the coverage results achieved by 

the original datasets.  

The major findings from our experiments are summarized as follows:  

• In most cases, reduced datasets of even very small sizes achieve coverage identical 

or similar to the original datasets. In our experiments, the original datasets have the 

number of instances ranging from 142,193 to 999,999. The reduced datasets are of 

four sizes, i.e., 100, 200, 400, and 800, which are a fraction of the original dataset 

size. However, 522 out of 800 reduced datasets achieved the same coverage as the 

original datasets. Also, 112 out of 800 reduced datasets achieved more than 90% of 

the coverage achieved by the original datasets.  

• One might expect that stratified sampling can be more effective than random 

sampling. However, in our experiments, the coverage results of the reduced datasets 

produced by the two sampling strategies are very similar. In particular, 628 out of 

800 reduced datasets produced by the two sampling strategies achieved the same 

coverage. It is interesting to note that in several cases, random sampling achieved 

higher coverage than stratified sampling. The reason is that when the sample size 

is small, and when the dataset is skewed in terms of class distribution, stratified 
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sampling may produce no instances for a particular class, which could significantly 

reduce coverage. 

• In most cases, branch coverage correlates with mutation coverage. Since mutation 

testing is quite expensive to perform, this suggests that branch coverage could be 

used as a practical alternative in place of mutation coverage for testing machine 

learning algorithms. 

The rest of the paper is organized as follows. In Section 3.2 we present the design of our 

experiments, including the research questions, subject programs, datasets and metrics used in our 

experiments, and discussion about the generation of reduced datasets. Section 3.3 presents the 

results of our experiments, including branch and mutation coverage results for original and reduced 

datasets as well as implications of these results. Section 3.4 discusses potential threats to validity, 

including both internal and external threats. Section 3.5 reviews existing work that is related to 

ours. Section 3.6 provides conclusion remarks and a few directions for the future work.  

3.2 EXPERIMENTAL DESIGN 

In this section, we present how we design our experiment, including the research questions, 

the selection of subject programs and datasets, the sampling approaches used to generate reduced 

datasets, and the metrics used to measure the effectiveness of the dataset executions.  

3.2.1 RESEARCH QUESTIONS 

Our main objective is to investigate the effectiveness of using a reduced dataset (in terms 

of volume, i.e., number of instances in a dataset) to test machine learning algorithms. We formulate 

the following research questions:  
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• How effective is it to test machine learning algorithms using reduced datasets, in 

comparison with the original datasets?  

• How do the two sampling strategies, i.e., random sampling and stratified sampling, 

compare to each other?  

• In testing machine learning algorithms, can branch coverage be used as a substitute for 

mutation coverage?  

3.2.2 SUBJECT PROGRAMS 

Waikato Environment for Knowledge Analysis (WEKA) is a machine learning workbench 

developed by University of Waikato. WEKA has a collection of supervised and unsupervised 

algorithms implemented in Java. Using WEKA, a user can perform tasks such as classification, 

regression, clustering and association rule mining. Four supervised algorithms from WEKA are 

used as our subject programs. 

In WEKA, classification algorithms are categorized into seven different groups. We select 

one algorithm from each of the following four groups, bayes, meta, rules and trees. When we 

choose one algorithm from a group, we only consider algorithms that satisfy two conditions: (1) 

they support datasets with nominal class labels and (2) they generate a model at the end of its 

training phase. When there are multiple algorithms that satisfy the two conditions, we randomly 

choose one from these algorithms. The reason for condition (1) is that we use WEKA`s built-in 

filter to generate smaller datasets for stratified sampling. This filter is applicable only to datasets 

with nominal class labels. The reason for condition (2) is that during mutation testing, we need 

expected output to determine if a mutant is killed by comparing against the actual output. If an 

algorithm generates a model, then the model can be used as expected output during mutation 

testing. 
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For example, WEKA lists eight algorithms under the trees category. However, one of the 

eight algorithms, M5p, does not work on a nominal class label. Hence, we exclude M5P. Similarly, 

of the remaining seven algorithms, random forest works on a nominal class label dataset, but at 

the end of its training phase, the model is not accessible to the user with default configuration 

options. Hence, we exclude random forest. From the remaining six algorithms, we randomly select 

j48 as one of our subject algorithms. 

Among different categories of classifiers listed in WEKA, we selected four algorithms 

namely NaiveBayes classifier [27], AdaBoost1 classifier [28], OneR classifier [29] and J48 

classifier [30]. Table 3-1 lists our subject algorithms and some information about these algorithms, 

including package/class information, and number of branches and mutants. Each algorithm is 

executed with its default configuration values (as provided in WEKA) using command line 

interface (CLI). 

Table 3-1 also lists information about an algorithm called DecisionStump. Classification 

accuracy of simple learning algorithms (weak learners), e.g., decision trees, naïve bayes, can be 

affected by potential bias in the training dataset. Thus, ensemble classifiers are used to improve 

their classification accuracy. AdaBoost1 belongs to a class of ensemble classifiers (boosting) that 

help to improve the classification accuracy of weak learners by training them iteratively, with 

different sets of weights assigned to class labels in each iteration. WEKA’s default configuration 

of AdaBoost1 implements a meta classifier that improves the accuracy of the model built using 

DecisionStump, a tree-based classifier (weak learner). 

  



 48 

 

TABLE 3-1 INFORMATION ABOUT SUBJECT PROGRAMS 

ALGORITHM SUBJECT PROGRAMS 
NUMBER OF 

BRANCHES 

NUMBER 

OF 

MUTANTS 

j48 weka.classifiers.trees.j48* 750 3796 

NaiveBayes weka.classifiers.bayes.NaiveBayes.java 203 1075 

AdaBoost1 weka.classifiers.meta.AdaBoost1.java 90 491 

DecisionStump weka.classifiers.trees.DecisionStump.java 128 921 

OneR weka.classifiers.rules.OneR.java 88 510 

 

3.2.3 DATASETS 

We identify suitable datasets from Kaggle.com, which provides access to public databases. 

By default, dataset search results on Kaggle.com are sorted by hotness, a measure indicative of the 

amount of interests and recency of datasets on their platform [9]. Other methods of sorting include 

New, Recently Active, Most Votes, Updated and Relevance. As Kaggle.com does not release the 

hotness calculation formula to the public [10], we are not completely clear of how the hotness of 

datasets is computed. Hence, we sort the search results by Most Votes, which sorts datasets based 

on the most popular datasets of all time. Then, the results are further filtered with the following 

two criteria: (a) size – 10 MB to 1GB and (b) File types – CSV. Next, we inspect each dataset in 

the order sorted by Kaggle.com and select datasets that require no cleaning and can be executed in 

WEKA. 
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We identified five datasets from different application domains, including 

AustralianWeather [23], ForestCover [24, 25], Crime [26], SupplyChain [21] and VideoGames 

[22]. The ForestCover dataset is a multi-label classification dataset with seven different class 

labels. The remaining four datasets consist of binary class labels. Table II lists the datasets and 

their information.  

We selected datasets such that data preprocessing is minimal. No modification was 

required for AustralianWeather and SupplyChain as their respective class labels were nominal by 

default. The class labels of the remaining three datasets, i.e. ForestCover, Crime and VideoGames 

were converted from numeric to nominal using WEKA’s built-in filter.  

 

TABLE 3-2 DATASET INFORMATION 

DATASET # OF CLASS LABELS # OF INSTANCES # OF ATTRIBUTES 

ForestCover 7 581,012 55 

AustralianWeather 2 142,193 23 

Crime 2 284,807 31 

SupplyChain 2 580,251 5 

VideoGames 2 999,999 56 

 

 3.2.4 GENERATION OF REDUCED DATASETS 

For each original dataset in Table 3-2, two groups of smaller datasets are generated. Group 

1 consists of reduced datasets generated using pure random sampling, whereas in Group 2, reduced 

datasets are generated using stratified sampling. Recall that stratified sampling maintains the 
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overall class distribution of the original datasets. For each group, we generate samples of four 

different sizes, i.e., 100, 200, 400, 800. Also, in order to reduce variations in random sampling, we 

generate five samples for each sample size by using different random seeds. Thus, each dataset 

has 20 samples per group and a total of 40 samples in the two groups.  

WEKA provides a set of pre-processing filters that allow users to modify datasets. Reduced 

datasets in Group 1 (random sampling) are generated using WEKA’s pre- processing filter 

weka.filters.unsupervised.instances. Resample. Reduced datasets in Group 2 (stratified sampling) 

are generated using pre-processing filter weka.filters.supervised.instances.Resample. These filters 

allow the user to select the sample size, usually specified as a percentage of the original dataset. 

Note that both filters perform a volumetric reduction, i.e. the number of instances in the dataset is 

reduced whereas the number of attributes will remain unchanged.  

For example, consider a dataset of 100,000 data instances with four class labels, A, B, C 

and D. Assume that their class distribution is as follows: 30% instances belong to Class A, 40% 

instances belong to Class B, 10% instances belong to Class C and the remaining 20% belongs to 

Class D. Generating a smaller dataset with 100 instances using stratified sampling (Group II) will 

consists of 30 instances belonging to Class A, 40 instances belonging to Class B, 10 instances 

belonging to Class C and 20 instances belonging to Class D. In contrast, samples generated using 

random sampling (Group I) does not necessarily maintain the class label distribution. 

The Crime dataset (284,807 instances) has the following class distribution: 99.82% 

instances belong to Class 0 (284,315 instances), and 0.18% instances belong to Class 1 (492 

instances). When generating a reduced dataset with 800 instances using WEKA’s pre-processing 

filter, it is highly likely that random sampling fails to produce a reduced dataset that include 

instances in both Class 0 and Class 1. Instead, it is likely that all of the 800 instances belong to 
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Class 0. A developer might face the above said scenario when s/he generates a reduced dataset 

using random sampling from a class-imbalanced (or skewed) dataset. As a workaround, a 

developer can create a reduced dataset while preserving the original class distribution. This is our 

motivation to use two different groups of samples and to investigate their impact in testing 

supervised learning algorithms. The original datasets and their reduced versions are made publicly 

available at [32].  

3.2.5 METRICS 

We use both branch coverage and mutation coverage to measure test effectiveness. Branch 

coverage is recorded using JaCoCo [18]. We choose branch coverage over statement coverage 

because the former subsumes the latter. We note that logic coverage is stronger than branch 

coverage. Unfortunately, JaCoCo does not report logic coverage.  

Mutation coverage is obtained using PITest (PIT), which is a widely used mutation testing 

framework [19]. PIT can automatically seed one fault at a time into SUT and execute the mutated 

code against the unit test(s) specified. We executed each dataset with WEKA's default 

configuration options and the output (model) is saved in a .txt file (expected output). Then, we 

used jUnit tests to compare the expected output against the output of each mutated version. If the 

jUnit tests fail on execution, the mutant is considered killed. In our experiments, we have thirteen 

mutation operators including all the default mutators (seven), three experimental mutators and 

three optional mutators [20, 31].  

The machine we used for our experiments is a workstation with two Xeon E5- 2630V3 8 

core CPUs @ 2.40GHz, 64GB DDR4 2133 MT/s memory, and a Samsung 850 EVO 500GB SSD.  
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3.3 EXPERIMENTAL RESULTS 

In this section, we present our experimental results and discussion about our results. In 

Section 3.3.1, we present the branch coverage results achieved by the original datasets. These 

results are considered to be the baseline results. In Section 3.3.2, we present the branch coverage 

results achieved by the reduced datasets. These results are compared to the baseline results. In 

Section 3.3.3, we present the mutation coverage results achieved by both of the original and 

reduced datasets.  

3.3.1 BRANCH COVERAGE OF THE ORIGINAL DATASETS 

Table 3-3 presents the branch coverage achieved by algorithms with original datasets. 

Among the datasets, SupplyChain consistently achieve higher coverage for all the algorithms. We 

observe that across algorithms, a considerable number of methods, and their branches were not 

executed, and thus the overall branch coverage appears to be considerably lower (<= 50%). This, 

however, can be explained as follows. Consider the branch coverage results of the OneR algorithm. 

The SupplyChain dataset achieves the highest branch coverage (57%), i.e., 51 out of 88 total 

branches. Among the missing 37 branches, 18 branches missed due to default configuration 

options. Seven branches are related to error handling, such as missing attribute values, and the 

remaining 12 branches cannot be covered as cross-validation is not performed while building 

models using the command-line interface (CLI).  

To our surprise, AustralianWeather covers a significantly smaller number of branches (17) 

compared to the rest. This can be explained as follows: Among the five datasets, all the attributes 

of AustralianWeather belong to the nominal data type. All the attributes of ForestCover, 

VideoGames, and Crime belong to the numeric data type. In the case of SupplyChain, 3 out of 4 

attributes belong to the numeric data type, and the remaining attribute belongs to the nominal data 
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type. When executing the OneR algorithm with AustralianWeather, a method, newNumericRule(), 

was missed that has 36 branches and handles numeric attributes. Hence, AustralianWeather 

achieves a significantly lower branch coverage, whereas SupplyChain achieves the highest branch 

coverage, as it covers branches related to both numeric and nominal data types.  

In our experiments, we executed the algorithms using WEKA’s default configuration 

options only. This could cause branching conditions that are specific for other configuration 

options to be missed. As shown in [2], executing different configuration options could significantly 

increase branch coverage. Also, the branches related to error handling and GUI are not covered as 

we run our tests with clean datasets using the CLI.  

We emphasize that, although branch coverage achieved by original datasets is not high, 

this does not affect the purpose of our experiments, which is to determine whether reduced datasets 

could achieve the same or similar coverage as the original dataset.  
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TABLE 3-3 BRANCH COVERAGE FOR ORIGINAL DATASETS 

DATASETS ALGORITHMS 

# OF 

BRANCHES 

COVERED 

TOTAL 

NUMBER OF 

BRANCHES 

BRANCH 

COVERAGE 

AustralianWeather 

j48 

180 

750 

24% 

ForestCover 202 26% 

SupplyChain 201 26% 

VideoGames 202 26% 

Crime 195 26% 

AustralianWeather 

Naïve Bayes 

73 
 

203 

 

 

35% 

ForestCover 77 37% 

SupplyChain 99 48% 

VideoGames 79 38% 

Crime 78 38% 

AustralianWeather 

AdaBoost1 

28  

 

90 

 

 

31% 

ForestCover 17 18% 

SupplyChain 28 31% 

VideoGames 28 31% 

Crime 28 31% 

AustralianWeather 

DecisionStump 

50 

 

128 

 

39% 

ForestCover 47 36% 

SupplyChain 71 55% 

VideoGames 48 37% 

Crime 48 37% 

AustralianWeather 

OneR 

17 

88 

19% 

ForestCover 44 50% 

SupplyChain 51 57% 

VideoGames 45 51% 

Crime 45 51% 
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TABLE 3-4 RELATIVE BRANCH COVERAGE OF REDUCED DATASETS (RANDOM SAMPLING) 

DATASETS ALGORITHMS 
SIZE OF THE REDUCED DATASET 

100 200 400 800 

AustralianWeather 

j48 

0.75 0.75 0.71 0.71 

ForestCover 1.00 1.00 1.00 1.00 

SupplyChain 0.81 0.73 0.92 1.00 

VideoGames 0.96 0.96 0.96 1.00 

Crime 0.12 0.35 0.12 0.35 

AustralianWeather 

Naïve Bayes 

1.00 1.00 1.00 1.00 

ForestCover 1.03 1.03 1.03 1.03 

SupplyChain 1.00 1.00 1.00 1.00 

VideoGames 1.00 1.00 1.00 1.00 

Crime 1.00 1.00 1.00 1.00 

AustralianWeather 

AdaBoost1 

1.00 1.00 1.00 1.00 

ForestCover 1.78 1.67 1.00 1.00 

SupplyChain 1.00 1.00 1.00 1.00 

VideoGames 1.00 1.00 1.00 1.00 

Crime 0.65 0.65 0.65 0.65 

AustralianWeather 

DecisionStump 

0.95 0.95 0.95 0.95 

ForestCover 1.00 1.00 1.00 1.00 

SupplyChain 1.00 1.00 1.00 1.00 

VideoGames 1.00 1.00 1.00 1.00 

Crime 0.97 1.00 0.97 1.00 

AustralianWeather 

OneR 

0.95 0.95 0.95 0.95 

ForestCover 1.00 1.00 1.00 1.00 

SupplyChain 0.96 0.96 0.96 0.96 

VideoGames 1.00 1.00 1.00 1.00 

Crime 0.76 0.92 0.76 1.00 
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TABLE 3-5 RELATIVE BRANCH COVERAGE OF REDUCED DATASETS (STRATIFIED SAMPLING) 

DATASETS ALGORITHMS 
SIZE OF THE REDUCED DATASET 

100 200 400 800 

AustralianWeather 

j48 

0.75 0.75 0.71 0.71 

ForestCover 1.00 1.00 1.00 1.00 

SupplyChain 0.81 0.92 0.96 1.00 

VideoGames 0.92 0.96 1.00 1.00 

Crime 0.12 0.12 0.12 0.35 

AustralianWeather 

Naïve Bayes 

1.00 1.00 1.00 1.00 

ForestCover 1.03 1.03 1.03 1.03 

SupplyChain 1.00 1.00 1.00 1.00 

VideoGames 1.00 1.00 1.00 1.00 

Crime 1.00 1.00 1.00 1.00 

AustralianWeather 

AdaBoost1 

1.00 1.00 1.00 1.00 

ForestCover 1.78 1.67 1.78 1.67 

SupplyChain 1.00 1.00 1.00 1.00 

VideoGames 1.00 1.00 1.00 1.00 

Crime 0.65 0.65 0.65 1.00 

AustralianWeather 

DecisionStump 

1.00 1.00 1.00 1.00 

ForestCover 1.00 1.00 1.00 1.00 

SupplyChain 1.00 1.00 1.00 1.00 

VideoGames 1.00 1.00 1.00 1.00 

Crime 0.97 0.97 0.97 1.00 

AustralianWeather 

OneR 

0.95 0.95 0.95 0.95 

ForestCover 1.00 1.00 1.00 1.00 

SupplyChain 0.96 0.96 1.00 1.00 

VideoGames 1.00 1.00 1.00 1.00 

Crime 0.76 0.76 0.76 0.92 
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3.3.2 BRANCH COVERAGE OF REDUCED DATASETS 

In this section, we present the branch coverage results achieved by reduced datasets. For 

each dataset, we generate reduced datasets using two different approaches: random sampling and 

stratified sampling; we generate reduced datasets in four different sizes: 100 instances, 200 

instances, 400 instances, and 800 instances, as discussed in Section 3.2.4. Due to limited space, 

we present the median branch coverage achieved by each size relative to their baseline coverage.  

Tables 3-4 and 3-5 present the branch coverage results of reduced datasets generated using 

random sampling and stratified sampling, respectively. All the coverage results presented here are 

relative to their corresponding baseline. i.e., a relative branch coverage of 1.0 suggests that a 

reduced dataset achieves a branch coverage identical to the original dataset. Note that, in Tables 

3-4 and 3-5, 39 out of 50 reduced datasets of size 800 produced by both random and stratified 

sampling, achieved branch coverages identical to the baseline; for the remainder of the cases, we 

notice the coverages do not significantly vary among different sample sizes. Therefore, in our 

experiments we did not consider sample size larger than 800 instances.  

The results indicate that, for the j48 algorithm, reduced datasets of size 800 instances 

produced by both random and stratified sampling of ForestCover, SupplyChain, and VideoGames 

can retain their baseline branch coverage. For the NaiveBayes algorithm, the reduced versions of 

all five datasets can retain their branch coverage achieved by their respective original datasets and 

in some cases, reduced datasets achieving even higher branch coverage. Similarly, for the 

remaining three algorithms namely AdaBoost1, DecisionStump, and OneR, the reduced versions 

of all datasets except Crime, in most cases either retain their respective baseline branch coverage 

(1.0) or in some cases achieve a branch coverage closer to its baseline (0.9<=branch 

coverage<1.0).  



 58 

For the reduced datasets of Crime, we observe that three out of five algorithms (j48, 

AdaBoost1, One-R) suffer from a loss in branch coverage. In particular, consider the case of j48 

(Row 5 in Tables 3-4 and 3-5), which suffers from a significant loss in branch coverage. This is 

attributed to the class imbalance problem. The Crime dataset consists of 284,807 instances with 

two class labels: (0, 1); 99.82% instances belonging to Class 0 and remaining 0.18% belonging to 

Class 1. Due to class imbalance, chances of drawing all hundred samples (at random) that belong 

to Class 0 is higher.  

In our experiments, for the reduced datasets of size 100 produced by random sampling, 

four out of five samples have all their instances belonging to Class 0, and they achieve a relative 

median branch coverage of 0.12. On the contrary, three out of five reduced datasets of size 200 

produced by random sampling have representation from both of the class labels, and they achieve 

a higher branch coverage comparatively (0.35). We notice that, in the case of j48, if a reduced 

dataset consists of a single label, there is a significant loss in branch coverage. 

Next, we compare the coverage results of random sampling and stratified sampling. Our 

results indicate that, in most cases, the datasets reduced using both random and stratified sampling 

can achieve the same branch coverage. 

In the cases of AustralianWeather, SupplyChain and VideoGames, the datasets reduced 

using both random and stratified sampling achieves identical branch coverage. This can be 

explained by the fact that all reduced datasets have a good class label representation. For example, 

all five sample datasets of AustralianWeather of size 100 that are reduced using stratified sampling 

have the following class label distribution: 78 instances belong to No, and 22 instances belong to 

Yes. In the case of random sampling, amongst five samples, sample 5 consists of 86 instances 
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belong to No and 14 instances belongs to Yes whereas, Sample 3 consists of 74 instances belong 

to No and 26 instances belongs to Yes.  

Our results indicate that the reduced datasets of ForestCover generated using both random 

and stratified sampling achieve the same branch coverage as the original datasets across all 

algorithms. In comparison, the reduced datasets generated from AustralianWeather, SupplyChain, 

VideoGames, and Crime suffer from a minimal to moderate coverage loss in at least one of the 

five algorithms. This may be attributed to the fact, ForestCover is a multilabel dataset (7 class 

labels), whereas the rest of the four datasets are binary label dataset. More experimental data is 

required to obtain a better understanding. Also, our results indicate that in the case of the 

AdaBoost1 algorithm, the reduced datasets achieve a better branch coverage compared to the 

baseline, i.e., the original datasets. To some extent, this result is surprising, given the significant 

increase in branch coverage. This is possible because the reduced datasets may trigger execution 

scenarios that are different than the original datasets.  

In the case of the Crime dataset, three algorithms suffer from a coverage loss. In particular, 

consider the coverage achieved by the reduced datasets of Crime produced by both random and 

stratified sampling. Row 5 in Tables 3-4 and 3-5 indicates that the reduced dataset of size 200 

produced by random sampling achieves a higher branch coverage (0.35) compared to the reduced 

dataset produced by stratified sampling of the same size (0.12). This can be attributed to the 

representativeness of the class label. On examination of reduced datasets, we observe that three 

out of five samples generated using random sampling have instances belonging to two class labels 

(Class 0 and Class 1). However, in the case of datasets reduced using stratified sampling, all 

instances belong to a single class (Class 0). Hence, subject programs achieve lower coverage while 

executing with stratified samples as they fail to trigger the execution of certain branches. The 
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branch coverage results of the OneR algorithm suggest a similar pattern, i.e., the reduced dataset 

of size 200 produced by random sampling achieves a higher coverage (0.92) compared dataset 

reduced using stratified sampling of the same size (0.76).  

This behavior of stratified sampling, i.e., all the instances of a reduced dataset belonging 

to a single class, is expected as it draws samples in a way that maintains the class distribution of 

the original dataset. Recall that the Crime dataset consists of 284,807 instances with two class 

labels: (0, 1); 99.82% instances belonging to Class 0 and remaining 0.18% belonging to Class 1. 

To generate a reduced dataset of size 200 instances using stratified sampling, instances are drawn 

in the following way (99.82% * 200) > 199 (instances) belonging to Class 0 and (0.18% * 200) < 

1 (instances) belonging to Class 1. Hence, all the instances belong to Class 0 and thus, the reduced 

dataset suffers from lack of class representativeness. 

For the Crime dataset, a minimum of 556 instances is required to guarantee that a reduced 

dataset (stratified sampling) consists of instances belonging to both classes (0 and 1). Among four 

different sizes (100, 200, 400, and 800) of reduced datasets generated using stratified sampling, in 

three groups (100,200 and 400), all instances belong to class 0 and thus achieve a low branch 

coverage (0.12). In the case of reduced datasets of 800 instances, all five samples consist of 

instances of both classes and thus achieve a relatively higher branch coverage (0.35). 

Our results indicate that approximately 80% of the reduced datasets achieve coverage 

identical or similar to the original datasets. In another word, the volume of a dataset does not 

directly attribute to branch coverage. Instead, factors such as lack of representativeness of class 

labels in a reduced dataset could impact branch coverage. The results suggest that in most cases, 

reduced datasets do not suffer from branch coverage loss. In this respect, they can be used in place 

of the original datasets to speed up the testing process. 
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Among the two sampling approaches, the results indicate that in most cases (around 75%) 

reduced datasets generated using both random and stratified sampling exhibit identical behavior. 

However, when a tester decides to use stratified sampling, he/she should choose the size of the 

reduced dataset (minimum number of samples) based on the original class distribution such that 

each class label is represented in the reduced dataset. 

3.3.3 MUTATION COVERAGE OF REDUCED DATASETS 

In this section, we present the mutation coverage results achieved by algorithms while 

executing with reduced datasets.  

Given the size of the datasets and the number of mutants generated for SUT, the overall 

execution time can be between a few hours to several days. Due to time constraints, our 

experiments have an execution time limit of 48 hours (chosen arbitrarily). If a dataset takes more 

than 48 hours to complete, then we kill the test execution and use a relatively smaller dataset 

(10000 instances) as our baseline. Out of 20 baseline test executions, one baseline execution, j48 

algorithm with the VideoGames dataset executed for more than 2 days. Hence, we generated five 

smaller samples of VideoGames dataset with 10000 instances each and used their median coverage 

as a baseline.  

Tables 3-6 and 3-7 present the mutation coverage results of the reduced datasets. All the 

coverage results presented here are relative to their corresponding baseline. The results from 

Tables 3-6 and 3-7 suggest that the j48 algorithm performs poorly with the reduced datasets of 

AustralianWeather and SupplyChain. Similarly, the reduced datasets of Crime result in a mutation 

coverage decrease for all the algorithms except Naive Bayes. The rest of the reduced datasets 

generated using both random and stratified sampling can retain their baseline mutation coverage.  
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TABLE 3-6  RELATIVE MUTATION COVERAGE OF REDUCED DATASETS (RANDOM SAMPLING) 

DATASETS ALGORITHMS 
SIZE OF THE REDUCED DATASET 

100 200 400 800 

AustralianWeather 

j48 

0.50 0.50 0.44 0.50 

ForestCover 0.96 0.96 0.96 1.00 

SupplyChain 0.64 0.57 0.71 0.79 

VideoGames 0.88 0.88 0.92 0.96 

Crime 0.14 0.24 0.14 0.24 

AustralianWeather 

Naïve Bayes 

0.94 0.94 0.94 0.94 

ForestCover 1.00 1.00 1.00 1.00 

SupplyChain 1.00 1.00 1.00 1.00 

VideoGames 1.00 1.00 1.00 1.00 

Crime 1.00 1.00 1.00 1.00 

AustralianWeather 

AdaBoost1 

1.00 1.00 1.00 1.00 

ForestCover 1.92 1.38 1.00 1.00 

SupplyChain 1.00 1.00 1.00 1.00 

VideoGames 1.04 1.00 1.00 1.00 

Crime 0.50 0.54 0.50 0.54 

AustralianWeather 

DecisionStump 

1.00 1.00 1.00 1.00 

ForestCover 1.03 1.00 1.00 1.00 

SupplyChain 1.00 1.00 1.00 1.00 

VideoGames 1.00 1.00 1.00 1.00 

Crime 0.85 0.94 0.85 0.94 

AustralianWeather 

OneR 

0.93 0.93 0.93 0.93 

ForestCover 0.97 1.00 1.00 1.00 

SupplyChain 1.07 1.07 1.07 1.07 

VideoGames 0.97 0.97 1.00 1.00 

Crime 0.66 0.77 0.66 0.89 
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TABLE 3-7  RELATIVE MUTATION COVERAGE OF REDUCED DATASETS (STRATIFIED SAMPLING) 

DATASETS ALGORITHMS 
SIZE OF THE REDUCED DATASET 

100 200 400 800 

AustralianWeather 

j48 

0.50 0.50 0.50 0.50 

ForestCover 0.92 0.96 1.00 0.96 

SupplyChain 0.64 0.71 0.79 0.79 

VideoGames 0.54 0.88 0.96 0.96 

Crime 0.14 0.14 0.14 0.24 

AustralianWeather 

Naïve Bayes 

0.94 0.94 0.94 0.94 

ForestCover 1.00 1.00 1.00 1.00 

SupplyChain 1.00 1.00 1.00 1.00 

VideoGames 1.00 1.00 1.00 1.00 

Crime 1.00 1.00 1.00 1.00 

AustralianWeather 

AdaBoost1 

1.00 1.00 1.00 1.00 

ForestCover 2.00 1.38 2.00 1.38 

SupplyChain 1.00 1.00 1.00 1.00 

VideoGames 1.00 1.00 1.00 1.00 

Crime 0.50 0.50 0.50 1.00 

AustralianWeather 

DecisionStump 

1.00 1.00 1.00 1.00 

ForestCover 1.03 1.00 1.03 1.00 

SupplyChain 1.00 1.00 1.00 1.00 

VideoGames 1.00 1.00 1.00 1.00 

Crime 0.85 0.85 0.85 0.97 

AustralianWeather 

OneR 

0.93 0.93 0.93 0.93 

ForestCover 1.00 1.00 1.00 1.00 

SupplyChain 1.07 1.07 1.13 1.07 

VideoGames 0.97 1.00 0.97 1.00 

Crime 0.66 0.66 0.66 0.77 
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We report that the majority of the mutation coverage results (except reduced datasets of 

SupplyChain on j48) mirrors with their respective branch coverage results (Table 3-4 & 3-5; Table 

3-6 & 3-7). Figures 3-1 and 3-2 present a correlation graph of branch coverage vs. mutation 

coverage for random sampling and stratified sampling, respectively. In Figures 3-1 and 3-2, x-axis 

indicates branch coverage, and the y-axis indicates mutation coverage. For the datasets reduced 

via random sampling, branch vs. mutation coverage has a Pearson correlation coefficient of 

0.944148, whereas the datasets reduced via stratified sampling has a fractionally lower Pearson 

correlation coefficient of 0.939506. The result suggests that in most cases, mutation coverage has 

a strong positive correlation with the branch coverage. To our surprise, the mutation results of j48 

using the SupplyChain dataset reduced using stratified sampling does not appear to correlate well 

with branch coverage, and we plan to investigate this further as part of our future work. 

 

 

FIGURE 3-1 CORRELATION GRAPH – RANDOM SAMPLING 
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FIGURE 3-2 CORRELATION GRAPH – STRATIFIED SAMPLING 

 

3.4. THREATS TO VALIDITY 

Threats to internal validity are factors that may be responsible for experimental results, 

without our knowledge. To reduce human errors in the experimental procedure, we tried to 

automate our experiments as much as possible. In particular, we wrote scripts to automatically 

execute tests, measure code and mutation coverage, and generate coverage reports. Further, the 

results generated from samples of each dataset were verified manually, whenever possible.  

Threats to external validity occur when the experimental results could not be generalized 

to other subjects. Using a single dataset for our experiments might impact the validity of our results 

due to lack of representativeness. To mitigate this threat, we used four supervised learning 

algorithms from WEKA that belong to different groups and five datasets from different application 
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domains. More experiments using other learning algorithms, including both supervised and 

unsupervised algorithms, and other datasets, can further reduce the threats to external validity.  

3.5. RELATED WORK 

First, we review existing work reported on testing machine learning algorithms. One 

challenge in testing machine learning algorithms is how to deal with the test oracle problem. 

Murphy et al. [4,5] proposed a metamorphic testing technique to test machine learning algorithms. 

They developed metamorphic properties for three machine learning algorithms, including 

MartiRank, SVMLight, and PAYL. Similarly, Nakajima et al. [7] proposed a systematic approach 

to derive metamorphic properties and translation functions for testing a special class of classifiers 

known as Support Vector Machines (SVM). Xie et al. [11] proposed a metamorphic testing 

approach to test supervised learning algorithms, namely Naïve Bayes classifier and k-nearest 

neighbor classifier. Our work differs from these works in that we focus on evaluating the 

effectiveness of using smaller datasets in testing supervised learning algorithms.  

Next, we review existing work on dataset reduction for big data applications [3, 6, 8, 13, 

14, 15, 16, 17]. Such work is relevant because many machine learning algorithms are big data 

applications in that they are designed to learn from large amounts of data. Ur Rehman et al. [13] 

reviewed existing data reduction techniques such as compression- based data reduction method, 

dimension reduction techniques for big data applications. Czarnowski et al. [14] proposed an 

agent-based population learning algorithm for data reduction. Their algorithm aims at finding a 

subset of the original dataset that can be used to build a classifier that is similar to the classifier 

built using the original dataset. In contrast, our work focuses on volume reduction and its impact 

on test effectiveness.  
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Rojas et al. [38] investigate how different sampling strategies could impact data exploration 

on big datasets by comparing the performance of smaller datasets generated using random 

sampling and three non-random sampling techniques namely Query by committee, Density, and 

Uncertainty sampling. These works try to discover the same amount of information with a reduced 

dataset, which is different from our work, which tries to find a subset of the original dataset that 

preserves test effectiveness. To the best of our knowledge, our work is the first to investigate the 

effectiveness of dataset reduction in testing machine learning algorithms.  

Finally, we mention that there are studies in the literature that investigate the effect of test 

suite minimization on fault detection effectiveness [33, 34, 35, 36, 37]. A test suite is different than 

a dataset, as the former is a set of test cases each of which represents an independent test input, 

whereas the latter is a set of instances that are together used as one single test input.  

3.6. CONCLUSION AND FUTURE WORK 

In this paper, we report a study that investigates the use of reduced datasets in testing 

machine learning algorithms. We used four supervised learning algorithms from WEKA as our 

subject programs. Five publicly available datasets from Kaggle.com were chosen as subject 

datasets. For each dataset, we generated reduced datasets in four different sizes using random and 

stratified sampling. Then, we executed the algorithms with the original and the reduced datasets 

and measured test effectiveness in terms of branch and mutation coverage. Our results indicate, in 

most cases, reduced datasets of very small sizes (e.g. 800 instances) can retain branch and mutation 

coverage of the original, big datasets (e.g., >100,000 instances). This suggests that reduced datasets 

can be used to effectively test machine learning algorithms. Our results also indicate a high 

correlation between branch coverage and mutation coverage. Thus, branch coverage can be used 

when mutation testing is prohibitively expensive.  
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This is the first step in our larger effort to speed up testing machine learning algorithms. 

We plan to continue our work in the following directions. First, we plan to investigate the reduction 

of even bigger multi-label datasets (> 1 GB) and its effect on testing machine learning algorithms. 

Second, we plan to expand our study to include unsupervised learning algorithms. Compared to 

supervised learning algorithms, unsupervised learning algorithms learn from unlabeled datasets 

and thus could be harder to validate its output. Third, our experiments show that there exists a high 

correlation between branch and mutation coverage. However, some recent work reports that 

traditional code coverage measures such as branch coverage may not be adequate for testing deep 

learning algorithms. We believe that this has to do with the nature of the algorithms and also the 

types of fault that may exist in the algorithms. We plan to study this further by conducting 

experiments on deep learning algorithms. Finally, we plan to develop new methods, i.e., methods 

other than random sampling, for dataset reduction. For example, how to perform equivalence 

partitioning among instances in a big dataset, and then choose one or more representatives from 

each equivalence group. 
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Chapter 4. A Combinatorial Approach to Testing Deep Neural Network-based 

Autonomous Driving Systems 

The chapter contains a paper published in IEEE 14th International Conference on Software 

Testing, Verification and Validation Workshops (ICSTW), in 2021. 
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Abstract—Recent advancements in the field of deep learning have enabled its application 

in Autonomous Driving Systems (ADS). A Deep Neural Network (DNN) model is often used to 

perform tasks such as pedestrian detection, object detection, and steering control in ADS. 

Unfortunately, DNN models could exhibit incorrect or unexpected behavior in real-world 

scenarios. There is a need to rigorously test these models with real-world driving scenarios so that 

safety-critical bugs can be detected before their deployment in the real world.  

In this paper, we propose a combinatorial approach to testing DNN models. Our approach 

generates test images by applying a set of combinations of some basic image transformation 

operations to a seed image. First, we identify a set of valid transformation operations or simply 

transformations. Next, we design an input parameter model based on the valid transformations and 

generate a t-way (t=2) combinatorial test set. Each test represents a combination of 

transformations, and can be used to produce a test image. We execute the test images on a DNN 

model and distinguish between consistent and inconsistent behavior using a relation. We 

conducted an experimental evaluation of our approach on three DNN models that are used in the 
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Udacity challenge. Our results suggest that test images generated by our approach can effectively 

identify inconsistent behaviors and can significantly increase neuron coverage. To the best of our 

knowledge, our work is the first effort to use a combinatorial testing approach to generating test 

images based on image transformations for testing DNNs used in ADS.  

Keywords—Testing DNN models, Combinatorial Testing, Deep Learning Testing, Neural 

Network Testing, Testing Self- driving cars, Testing autonomous vehicles 

4.1. INTRODUCTION 

Recent years have seen significant advancements in the field of deep learning. For 

traditional software applications, a developer explicitly writes the programming logic based on a 

specific set of requirements. In contrast, deep learning software applications use a deep neural 

network (DNN) to derive its decision logic from a training dataset, which typically includes a large 

number of data instances. Deep learning applications have exhibited an extraordinary ability to 

discover valuable insights and derive complex decision logic from the training dataset. They have 

been used to perform tasks, such as image recognition, object detection, and language translation, 

with a high degree of precision. 

Deep learning has been applied in many application domains that are considered to require 

human intelligence. In particular, deep learning plays a significant role in the operation of 

autonomous driving systems, where DNN models are used to perform tasks such as obstacle 

detection, pedestrian detection, steering control, perception and localization, and route planning. 

However, since DNN models are trained and evaluated using a training dataset, they may suffer 

from the generalizability problem. For example, an investigation into Uber's accident suggests that 

their driving software system failed to consider the scenario of jaywalking pedestrians [38]. Tesla's 

autopilot failed to distinguish between a bright sky and a white trailer crossing an intersection; the 
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autopilot attempted to drive under the trailer resulting in a loss of life [34]. Accidents reported in 

[34, 38] suggest a critical need to rigorously test DNN models, especially using tests that imitate 

the real-world conditions and include corner-case scenarios.  

Recent work suggests that synthetic images generated using image transformation 

techniques can effectively identify the inconsistent behavior of DNN models [36, 44, 46]. Zhang 

et al. proposed a framework that uses a Generative Adversarial Network (GAN) based 

unsupervised technique to generate synthetic images that mimic the two extreme weather 

conditions (snow and rain) [46]. The findings from their study suggest that the DNN models used 

in the Udacity driving challenge exhibit several inconsistencies when executed with test inputs 

generated using their approach. Tian et al. demonstrated that testing the DNN model with synthetic 

images generated with basic image transformations can produce inconsistent behavior [36]. Their 

results suggest that synthetic images generated by combining different image transformations 

increase neuron coverage, a measure of proportion of neurons activated in a DNN model.  

This paper presents a combinatorial testing-based approach to generating test images to 

test DNN models. In our approach, we first identify a set of basic image transformations that do 

not change the ground truth of the image being transformed. That is, in principle, the prediction 

result for a transformed image produced by such a transformation is the same as the original image. 

(In practice, the prediction result of the transformed image may be different from that of the 

original image by a small amount that is less than a certain threshold.) We then use Combinatorial 

Testing (CT) to generate a t-way test set that covers every t-way combination of these 

transformations. Each test is a combination of transformations and can be used to create a test 

image.  
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To address the test oracle problem, we consider how to identify inconsistent behaviors in 

two cases. In the first case, the ground truth of a test image remains the same as that of the original 

image. Thus, we consider that an inconsistent behavior is detected if the prediction result of a test 

image differs from that of the original image by an amount that is more than a threshold. In the 

second case, the ground truth of a test image may be different from that of the original image. 

Thus, the prediction result of a test image may be expected to be very different from that of the 

original image. In this case, we compare the prediction results of the same test image from different 

DNNs that perform the same prediction. An inconsistent behavior is detected if the prediction 

results of a test image from different models do not agree with each other.  

Our approach's novelty lies in the fact that we generate test images using CT. The key 

insight behind CT is that while the behavior of a system could be affected by many factors, 

individual failures are typically caused by a very small number of factors [21].  We hypothesize 

that this insight also applies to testing DNNs. That is, inconsistent behaviors of a DNN model 

could be triggered by a combination of a small number of basic image transformations. In another 

word, a t-way test set that covers every t-way combination of image transformation can be effective 

to detect inconsistent behaviors. 

We report an experimental evaluation of our approach using three of the top five models, 

namely Autumn [4], Chauffeur [7], and Rambo [29], from the Udacity self-driving challenge. We 

generate tests by applying t-way transformations to the seed images selected from the Udacity test 

dataset. Our results show that t-way tests can identify a number of inconsistent behaviors in these 

DNN models. For example, out of 121 t-way tests generated for a seed image, 29 tests and 95 tests 

resulted in an inconsistent behavior for the Autumn model and Chauffeur model, respectively. Our 

results suggest that a small number of tests (121 tests) can significantly increase the cumulative 
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neuron coverage compared to its baseline. In some cases, t-way tests covered more than ten times 

of additional neurons compared to their respective baseline. Overall, the results provide initial 

support for our hypothesis. The results indicate that t-way tests can help the practitioners to 

effectively test DNN models in terms of both detecting inconsistent behavior and increasing 

neuron coverage. 

Combinatorial testing is applied to test DNN models, as reported in [9, 23]. However, they 

follow a white box testing approach by testing the neurons' interactions within each layer in the 

DNN [23] and the effect of variable strength-based CT tests on interactions between pre-layer and 

post-layer neurons of the DNN [9]. To the best of our knowledge, we believe the work reported in 

this paper is the first effort to apply the combinatorial testing approach to generate test images by 

combining different types of image transformations to test DNN models used in autonomous 

driving systems. 

The remainder of this paper is organized as follows. In Section 4.2, we provide a brief 

introduction to DNN based software systems and combinatorial testing. In Section 4.3, we present 

our approach, in terms of the major steps performed in the testing process. In Section 4.4, we report 

an experimental evaluation, where we first report the design of the evaluation and then discuss the 

experimental results. Section 4.5 discusses the existing work that is related to ours. Section 4.6 

provides concluding remarks and directions for our future work.  

4.2. BACKGROUND 

4.2.1. DNN BASED SOFTWARE SYSTEMS 

Deep learning is a machine learning technique that uses DNN to perform tasks such as 

classification and regression. In traditional software systems, a developer derives rules from the 
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requirements and implements the rules in the form of program logic. In contrast, DNN based 

software systems derive their decision logic from an input dataset; the decision logic is referred to 

as a trained DNN model. The DNN model takes an input (either image or text depending on the 

domain) and produces an output in the form of a prediction.  

In recent years, DNN models are widely adopted across different domains such as medical 

imaging, language translation, and autonomous driving systems. They are increasingly deployed 

in safety-critical fields to perform tasks such as speech recognition, image classification, natural 

language processing. In particular, autonomous driving systems (ADS) use DNN models to 

perform tasks such as lane control, object identification, and pedestrian detection. For example, a 

DNN model used in the autonomous driving system takes an image from the camera as its input 

and predicts the steering angle. 

Based on the application domain, the practitioners use different types of DNN architectures 

to build a DNN model. Convolutional Neural Network (CNN), a type of neural network 

architecture, is widely used in the autonomous driving system as they exhibit a higher success rate 

(better accuracy) in image recognition. Recurrent Neural Network (RNN), a type of neural network 

architecture that uses temporal information to make predictions, is used in the autonomous driving 

system to predict steering angles based on a sequence of input data (temporal information). The 

subject models used in our experiments use a CNN to extract features from the input images that 

are passed to either an RNN or a fully connected network (FC-network) to predict the steering 

angle. 
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4.2.2. COMBINATORIAL TESTING 

Combinatorial Testing is a black-box test generation technique. For a given system under 

test (SUT), combinatorial testing focuses on systematically testing the interactions among the 

system's different parameters with a smaller number of tests.  

Consider a program P with four parameters and each parameter having three values. To 

test program P, we will require 81 tests (3*3*3*3=81) to test all possible combinations (exhaustive 

test set). Compared to this, using a t-way combinatorial test set (t=2), it is possible to test all 

possible interactions between any two parameters (at least once) with nine tests. In general, 

combinatorial testing approach can significantly reduce the number of tests [10].   

ACTS, a combinatorial test generation tool, uses the IPOG algorithm to generate t-way 

tests. Consider a program P modeled with an input parameter model (IPM) with k parameters. For 

any t parameters (out of k) of P, IPOG algorithm generates a t-way test set to cover the first t 

parameters and then it generates additional tests (i.e., extending the test set) to cover the first t+1 

parameters in an iterative manner until all the parameters are covered by the test set [43]. ACTS 

can generate t-way tests of strength t=2 through t=6. 

4.3. APPROACH 

In this section, we present a combinatorial approach to test DNNs. Figure 4-1 presents an 

overview of our approach. The proposed approach is applicable for DNNs that take an image as 

an input and outputs a prediction. The goal of our approach is to generate synthetic images to test 

the pre-trained DNN model.  

In the first step, we identify basic image transformations that can be used to create synthetic 

test images. Geometric image transformation techniques such as linear transformations and affine 

transformations can be used to generate synthetic images. Applying a linear transformation to an 
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image does not change the size or shape of the input image. In contrast, applying the affine 

transformation, the origins of the transformed image and the original image do not necessarily 

match with each other. In other words, applying the affine transformation shall result in a change 

of orientation and size of the original image. We represent a transformation in a two-tuple form 

(transformation name, transformation value). For example, (Brightness, 10) increases an image's 

brightness by a value of 10. 

 

FIGURE 4-1 APPROACH OVERVIEW 

 

In the second step, given the nature of the domain, the test input space for a DNN model 

can be too large (nearly infinite). Hence, we apply equivalence partitioning, and randomly select 

a seed image from each partition. For example, a test dataset (used in Autonomous Driving 

Systems domain) contains image frames recorded all around the year. In this case, we partition the 

test dataset based on the weather conditions such as sunny, rainy, fog, snow, overcast, and normal 

weather. We then randomly select an image (seed image) from each group.  

Our approach is aimed to generate valid test images (synthetic images). In the first step, 

we identified a set of transformations that could be applied to generate synthetic images. However, 

every transformation might not be uniformly applicable to seed images. In other words, given the 

type and nature of the seed image, applying certain transformations (identified from Step 1) might 

generate a synthetic image that is either unrealistic or invalid. For example, consider two seed 
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images: image #1 captured during the middle of the day (brighter, sunny day) and image #2 

captured around the time of sunset during winter. We generate a synthetic image by applying a 

transformation -- decrease the brightness by 80% to both seed images. The resulting synthetic 

image for image #1 could be valid in terms that the image is viewable to human eyes. In contrast, 

the synthetic image for image # 2 might be invalid, since it could be a completely dark image. As 

this example illustrates, some image transformations when applied to a seed image might generate 

invalid test inputs. Note that, in this case, we consider image #2 as invalid. However, in real world, 

it is still important to test such scenarios using other approaches that deal with images that are 

completely dark. 

To alleviate this problem, in the third step, for each seed image, we identify a set of valid 

transformations (a subset of all possible transformations). We determine the validity by comparing 

the prediction results of the original image (Po) and the transformed image (Ps). For DNN models 

that outputs a continuous value (for example, a steering angle), the transformed image's prediction 

result may be different, within a degree of tolerance, from that of the original image.  Therefore, a 

transformation is considered valid if the difference between Po and Ps is less than a certain 

threshold |Po – Ps| ≤ threshold. 

Consider the following example. We are testing a pre-trained DNN model that predicts the 

steering angle. Contrast and Rotation are two possible image transformations, with five different 

values per transformation: (Contrast,1), (Contrast,2), (Contrast, 3), (Contrast, 4), (Contrast, 5), and 

(Rotation, 2°), (Rotation, 4°), (Rotation, 6°), (Rotation, 8°), (Rotation, 10°). Thus, there exists a 

total of ten possible transformations. We apply these transformations to the seed image and 

generate ten synthetic images. Then, the predicted value of a synthetic image is compared with the 

predicted value of the original image. Three transformations – (Contrast, 5) and (Rotation, 8°), 
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(Rotation, 10°) exceed the threshold. The remaining seven transformations are identified as valid 

transformations for the seed image. It is often the case that different seed images can have different 

sets of valid transformations. The motivation behind this step is to generate valid tests, thus 

minimizing false positives.  

In the fourth step, we generate t-way tests. For each seed image, we design an Input 

Parameter Model (IPM), where each transformation is identified as a parameter, and the 

transformation values that make a transformation valid are identified as parameter values. In our 

earlier example, Contrast: {1,2,3,4} and Rotation: {2°, 4°, 6°} are identified as parameters and 

values. In the final step, based on the IPM, we generate abstract t-way test set.  Then, we derive 

concrete tests (synthetic images) by applying t-way image transformations to the seed images using 

the OpenCV framework [49]. The synthetic images are used to test the DNN models.  

One challenge in testing ML models is lack of a test oracle. In practice, data labeling is 

considered to be an expensive and challenging task. Thus, a tester might not be able to determine 

the ground truth of a synthetic image. In this case, the practitioners can compare the prediction 

value across different model implementations and identify the inconsistent behavior.  Doing so 

can help practitioners assess a model's performance in the absence of ground truth. In our approach, 

we evaluate the t-way test results in the following two cases: 

 Case 1: The original seed image and t-way synthetic image share the same ground-truth 

value. In this case, for each model, if a test fails to satisfy the relation: |Po – Ps| ≤ threshold, the 

test is considered to exhibit inconsistent behavior. 

Case 2: The original seed image and t-way synthetic image do not share the ground-truth 

value, i.e., they might have a different ground-truth value. In this case, we evaluate a test by 

comparing its prediction results across multiple models (Pm). It can be challenging to derive the 
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ground truth for each test (synthetic image). Therefore, we define an inconsistent behavior as 

follows: A test exhibits an inconsistent behavior if the maximum difference in prediction change 

across multiple models exceeds a threshold value i.e., if a test fails to satisfy the following relation 

|max(Pm) − min(Pm)| ≤ threshold   (1) 

4.4. EXPERIMENTS 

In this section, we present an experimental evaluation of our approach. The source code, 

data and/or artifacts have been made available at [31, 35]. 

4.4.1. RESEARCH QUESTIONS 

Our experiments are designed to answer the following two research questions: 

• Can our combinatorial testing-based approach successfully identify inconsistencies 

among DNN model implementations? 

• How does the combinatorial testing-based approach impact the neuron coverage? 

4.4.2. MODELS 

We use open-source DNN models from the Udacity self-driving car challenge. Teams 

participating in the Udacity self-driving car challenge developed DNN models that predict the 

steering angle (output) based on an image frame (input).  Submitted models were evaluated with 

the Udacity test dataset [30] and ranked based on their prediction accuracy (performance). Models 

from the Udacity self-driving car challenge are among the widely used subject models to evaluate 

test generation techniques for testing autonomous vehicle software systems [36][44][46][15]. 

Among the top five ranking models from the challenge that are publicly available at [40], 

we select three models, namely Chauffeur [7], Rambo [29], and Autumn [4] as our subject models. 

We did not use the other two models, namely, komanda [40] and rwightman [40]. For komanda, 
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the pre-trained model weight file is not accessible [20]. For rwightman, the publicly available 

script failed to execute [30]. 

• The Autumn model consists of three 5x5 convolution layers with stride 2, followed by 

two 3x3 convolution layers and five fully connected layers with a dropout [4]. The 

Autumn model is implemented using Tensorflow(v0.11) and Keras(v1.1.0) [1, 18]. 

• The Chauffeur model uses a Convolutional Neural Network (CNN) to extract features 

from the input image and use a Long Short-Term Memory (LSTM) network, a type of 

Recurrent Neural Network (RNN), to predict the steering angles. Chauffeur model is 

implemented using Tensorflow (v1.12) and Keras (v1.2.2) [1, 18].  

• The Rambo models consist of three CNNs to extract features, and their output is merged 

in the final layer to predict the steering angle.  The Rambo model is implemented using 

Tensorflow (v1.12) and Theano (v0.9) [1, 33]. 

For each subject model, the sequence of image frames that has been processed before the 

current frame impacts the prediction of the current frame. In Autumn, the prediction is based on 

five consecutive frames (input + four previous frames). Chauffeur's prediction is determined by 

100 consecutive frames (input + ninety-nine previous frames). Rambo considers three consecutive 

frames to make the prediction (input + two previous frames).  

We present the model details in Table 4-1. The first and second column list the model 

name, and its network architecture. The third column presents the Root Mean Square Error 

(RMSE) value. RMSE is one of the widely used metric to measure the prediction errors of a 

machine learning model that outputs a continuous value. A lower RMSE value indicates better 

performance (prediction). All submitted models in the Udacity challenge were evaluated and 
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ranked per RMSE value. In the last column, we present information about the number of sequence 

images that influence the current frame's prediction. 

TABLE 4-1 MODEL INFORMATION 

MODEL NAME 
ARCHITECTURE 

INFORMATION 

RMSE 
PREDICTION 

LOGIC 
REPORTED 

RMSE 

OUR 

RMSE 

Autumn CNN  0.04 0.04 

Previous 4 frames + 

current frame 

Chauffeur CNN + RNN 0.06 0.06 

Previous 99 frames 

+ current frame 

Rambo CNN 0.06 0.06 

Previous 2 frames + 

current frame 

4.4.3. SEED IMAGES 

We select the seed images from the Udacity test dataset. The test dataset consists of 5614 

test images and their respective steering angles [39]. The steering angle is in the range -25° to +25° 

and normalized to ±1° [36]. An image with a positive steering value indicates the vehicle is turning 

right. A negative steering value indicates turning left, while a steering angle of 0° or closer to 0° 

indicates the vehicle is traveling in a straight direction (i.e., no turns). 

The steering angle is in the range of -1 to +1. Based on the steering angle, we divide the 

test images into different groups with an interval of 0.1 per group. We have a total of 20 groups 

starting from (-1.0 < steering angle ≤ -0.9) through (0.9 < steering angle ≤ 1.0). We refer to these 

groups by Group 1 through Group 20, respectively.  

The test dataset does not contain images in the range (-1.0, -0.9). Thus, there is no 

representative image from Group 1 in our experiments.  For the remaining nineteen groups, we 
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randomly select one image from each group as our seed image. In total, we have nineteen seed 

images in our experiments. 

4.4.4. TEST ORACLE 

In the autonomous driving domain, it is hard to determine an exact steering angle for 

transformed images. Zhang et al. used a method to identify the DNN model's consistent behavior, 

and it is defined as follows: Given a transformed image as input, if the DNN model predicts 

(steering angle) within a certain error bound, the model is considered to exhibit a consistent 

behavior [46].  Similar to their work, we use a relation to identify a model’s inconsistent behavior 

in two cases.  

 In the first case, we assume the t-way synthetic image and the original image shares 

the ground truth. Thus, a t-way synthetic image that violates the relation |Po – Ps| ≤ threshold 

exhibits an inconsistent behavior. Po denotes the steering angle of the original image and Ps 

denotes the steering angle of the transformed image. 

 In the second case, we assume the synthetic image and the original image does not 

share the ground truth. In this case, we compare the prediction results of the same synthetic image 

from three DNNs that perform the same prediction. A t-way synthetic image exhibits an 

inconsistent behavior if it violates the relation (1).  

 The threshold value is a configurable parameter, and we use the following three 

threshold values: 0.1, 0.2 and 0.3 in our experiments. 
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4.4.5. METRICS 

We measure our approach's effectiveness by computing the number of inconsistent 

behaviors identified by a t-way test set. The more inconsistent behaviors the t-way test detects, the 

more effective the t-way test is considered.   

We also use neuron coverage to measure the effectiveness of our approach. The notion of 

neuron coverage is defined as the ratio of unique neurons that is activated for a given input to the 

total number of neurons in a DNN [27]. A neuron is considered activated if its output is greater 

than a certain threshold (defined by the user). Tian et al. used neuron coverage in their experiments 

and made their artifacts publicly accessible [3, 36]. We use their neuron coverage framework and 

threshold (0.2) in our experiments. To measure the cumulative neuron coverage, we first load the 

seed image to the DNN and measure its neuron coverage. This coverage information is used as the 

baseline in our experiment.  Then, we execute the t-way images and calculate cumulative coverage 

relative to the baseline. 

4.4.6. TEST GENERATION 

We begin the test generation step by identifying the possible image transformations 

applicable to the Udacity test dataset. Tian et al. applied a set of seven different types of simple 

image transformations to the Udacity test dataset and studied their impact on neuron coverage [36]. 

We use these seven image transformations. Table 4-2 presents the list of transformations and their 

values used in our experiments.  Overall, we have seventy image transformations (7 different types 

of transformations * 10 values per transformation). 

Recall that, as discussed in section 4-3, every possible transformation might not be 

uniformly applicable to all the seed images. Therefore, in the next step, we identify the set of valid 

transformations for each seed image. 
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 4.4.6.1. IDENTIFICATION OF VALID TRANSFORMATIONS 

We apply the seven types of transformations with ten different values per transformation 

and generate 70 synthetic images per seed image. Next, the seed image is loaded to three subject 

models, and their respective predicted steering angle is recorded (Po).  

Then, for each model, the synthetic images are loaded as input. Their predicted steering 

angle (Ps) is compared with the steering angle of the original seed image (Po). A transformation 

is considered to be valid if |Po – Ps| ≤ 0.1. At the end of this step, we identify the set of valid 

transformations per seed image. 

TABLE 4-2  TRANSFORMATIONS AND VALUES 

 

TRANSFORMATIONS VALUES 

Blur 

Averaging 3x3, 4x4, 5x5, 6x6 

Gaussian 3x3, 5x5, 7x7 

Median 3, 5 

Bilateral (9, 75, 75) 

Brightness 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

Contrast 1.2, 1.4, 1.6, 1.8, 2.0, 2.2., 2.4, 2.6, 2.8, 3.0 

Rotation 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 

Scale 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0 

Shear (Horizontal) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 

Translation 

(10,10), (20,20), (30,30), (40,40), (50,50), (60,60), 

(70,70), (80,80), (90,90), (100,100) 
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 4.4.6.2. GENERATION OF T-WAY TESTS 

To create t-way tests, first, we create an input parameter model (IPM). The seven 

transformations from Table II are identified as parameters. Based on the valid transformations, we 

identify the set of possible values for each parameter. Next, based on the IPM, we generate abstract 

t-way tests using the ACTS tool [2]. In our experiments, we generate a 2-way combinatorial test 

set. Each test represents a combination of transformations that could be applied to the seed image. 

In the final step, we convert the abstract t-way tests to concrete tests, i.e., generate synthetic images 

based on t-way tests. Recall that each abstract test represents a combination of transformations. 

When we generate synthetic images, we apply image transformations in the following order – Blur, 

Brightness, Contrast, Rotation, Scale, Shear and Translation using the OpenCV framework [49]. 

(We tried to apply the transformations in different orders, and found that the order has minimal 

impact on the prediction outcomes.) We execute the subject DNN models with t-way concrete tests 

(i.e., synthetic images) and compare their output with the original image's predicted steering angle. 

4.4.7. EXAMPLE 

We illustrate our approach with an example. For the seed image from group 2 

(1479425660620933516.jpg), the three models, namely Chauffeur, Rambo, and Autumn, predict 

a steering angle -0.760681748390198, -0.62006545, and -0.83253384, respectively (Po).  

In Step 1, we generate 70 synthetic images for 1479425660620933516.jpg based on the 

transformations listed in Table 4-2. Then, we execute the 70 synthetic images on three models and 

compare their predicted steering values (Ps) with their respective steering angle prediction of the 

original image (Po). 

In the case of the Chauffeur model, a transformation (synthetic image) is considered valid 

if |Po – Ps| ≤ 0.1; 48 out of 70 transformations satisfy the criteria and thus considered valid 
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transformations for the chauffeur model. For the Rambo model, a transformation (synthetic image) 

is considered valid if |Po – Ps| ≤ 0.1; 57 out of 70 transformations satisfy the criteria. Likewise, for 

the Autumn model, a transformation is considered valid if the absolute value of |Po – Ps| ≤ 0.1, 

and 33 transformations satisfy the criteria. Among the 70 transformations, 28 transformations are 

valid across all three models, and hence these 28 transformations are used to generate t-way tests. 

In step 2, using the ACTS tool, we create the input parameter model with valid parameters 

and values identified from the previous step. Then, we generate 121 abstract tests from a 2-way 

test set. Next, we use the Open-CV framework [49] to generate concrete tests (2-way synthetic 

images). Finally, we test the subject models using concrete tests. 

4.4.8. RESULTS AND DISCUSSION 

First, we present the results of synthetic images generated using the transformations and 

values from Table 4-2. These results are used to identify valid transformations that are later used 

in the generation of t-way tests. Next, we present the inconsistent behavior detection results of the 

t-way tests. Finally, we discuss the neuron coverage achieved by the t-way tests. 

 4.4.8.1. IDENTIFICATION OF VALID TRANSFORMATIONS 

Figure 4-2 presents the details of valid transformations identified for each group. The x-

axis presents the group details, and the y-axis presents the number of possible transformations. In 

our experiments, we have 70 possible transformations (7 transformations * 10 values per 

transformations). Due to limited space, we present the number of valid transformations per group. 

Our results suggest that Group 10 has the maximum number of valid transformations, i.e., 50 out 

of 70 transformations are valid. Group 20 has the minimum number of valid transformations, i.e., 

only 16 out of 70 transformations are valid. We observe that all transformations Blur are valid 
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across 18 groups. On the contrary, five transformations, namely Rotation_24, Rotation_27, 

Shear_0.4, Shear_0.5, and Shear_0.6 were invalid across all groups as they failed to meet our 

criterion (Po-Ps<=0.1 for all three models). 

 4.4.8.2. INCONSISTENT BEHAVIOR DETECTION RESULTS OF T-WAY TESTS 

In this section, we present the results of t-way synthetic images. We generate 2-way tests 

based on the set of valid transformations identified from the previous step for each group. Each 

test represents a combination of transformations that could be used to generate synthetic image. 

Then, we execute the 2-way tests in three subject models to identify the number of consistent and 

inconsistent behaviors among three DNN models. 

 

FIGURE 4-2 NUMBER OF VALID TRANSFORMATIONS FOR EACH GROUP 

 

Results for Case 1: In this case, we assume that the original seed image and t-way synthetic 

image share the ground-truth value. Figures 4-3, 4-4, and 4-5 present the t-way test results for 

threshold values of 0.1, 0.2, and 0.3, respectively. Recall that we generate t-way tests per group, 

and the total number of t-way tests varies among the groups. Therefore, we present our results as 

a percentage of t-way tests that exhibit consistent behavior. The x-axis represents the group 
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number. The y-axis represents the percentage of t-way tests that exhibit consistent behavior. The 

last column in Table 4-3 presents the total number of t-way tests generated for each group. 

For a threshold value of 0.1, our results indicate that Rambo is less prone to inconsistent 

behavior among the three subject models. As Figure 4-3 suggests, for eight groups (3, 7, 9, 12, 13, 

15, 16, and 20), t-way tests executed with the Rambo model do not display any inconsistent 

behavior (all tests result in a passing state). In addition to this, in groups 5, 6, 14, and 18, more 

than 90% of the t-way tests executed with the Rambo model result in a consistent behavior. Apart 

from Group 10, the Rambo model exhibits a better prediction performance than the other two 

models. In the case of Chauffeur, more than 50% of t-way tests generated for seven groups (2, 7, 

8, 9, 12, 14, 18) results in an inconsistent behavior; the lowest being Group 12 with a meager 16% 

of tests resulting in a consistent behavior. On the contrary, for the same group (Group 12), 96% of 

the t-way tests result in a consistent behavior for the Rambo model. Our results suggest that the 

Autumn model exhibits a mixed performance. In a few cases (Groups 6 and 10), more than 90% 

of t-way tests result in a consistent behavior state. On the contrary, for six groups (Group 2, 3, 8, 

17, 18, 20), the Autumn model produces an inconsistent behavior for more than 50% of the t-way 

tests. 

Figures 4-4 and 4-5 suggest an increase in the threshold value results in better performance, 

i.e., a higher number of consistent behaviors across three models. In the case of Rambo, with a 

threshold of 0.2, in most cases, all t-way tests generated exhibit a consistent behavior (16 out of 

19 groups). However, for the rest of the two models, we observe that more than 25% of t-way tests 

still result in inconsistent behavior for some groups.  For example, group 14, 17, 18, and 20 for 

Autumn, group 2, 8, 9, 12, 16, and 18 for Chauffeur (threshold 0.2).  We observe a similar pattern 
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for threshold 0.3. Overall, the results suggest that the Rambo model exhibits better performance 

than the other two models. 

 

FIGURE 4-3 T-WAY RESULTS FOR THRESHOLD 0.1 (CASE  #1) 

 

 

FIGURE 4-4 T-WAY RESULTS FOR THRESHOLD 0.2 (CASE  #1) 

 

 

FIGURE 4-5 T-WAY RESULTS FOR THRESHOLD 0.3 (CASE  #1) 
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Results for Case 2: Recall that in this case, the original and t-way synthetic images might 

have a different ground-truth value. We evaluate the t-way test results with three threshold values: 

0.1 (2.5°), 0.2(5°), and 0.3 (7.5°). Table 4-3 presents the results. The first column lists the group 

number. The next three columns present the number of t-way tests exhibiting inconsistent behavior 

for thresholds of 0.1, 0.2, and 0.3, respectively. The last column presents the total number of t-way 

tests for each group. 

The result suggests that t-way tests can detect a significant number of inconsistent 

behaviors across different thresholds. For a threshold of 0.1, in 18 (out of 19) groups, 50% or more 

tests result in inconsistent behavior. In 12 (out of 19) groups more than 90% of tests results in 

inconsistent behavior.  

Our results indicate that an increase in the threshold value results in a decrease in the 

number of inconsistent behaviors. This is as expected. With a threshold of 0.3 (7.5°), for four 

groups (Group 5, Group 12, Group 13, and Group 15), less than 3% of tests resulted in inconsistent 

behavior. This indicates that a further increase in threshold might result in a large number of false 

negatives. Therefore, we did not consider a threshold value that is larger than 0.3. 

Overall, the results suggest that t-way test set are effective in identifying model 

inconsistencies. We acknowledge that both Case 1 and Case 2 have limitations. In Case 1, in some 

scenarios, determining the ground truth for a synthetic image generated from a t-way test set can 

be a challenging task (lack of test oracle). In Case 2, given the nature of differential testing, a 

model inconsistency can be detected only if (1) there exist at least two or more models 

implementing the same functionality, and (2) at least one model producing a different result. A 

practitioner shall choose between Case 1 and Case 2 based on their domain knowledge. 
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TABLE 4-3  NUMBER OF INCONSISTENT BEHAVIOR IDENTIFIED BY T-WAY TESTS (CASE #2) 

 

GROUP NUMBER 

# OF INCONSISTENT BEHAVIORS PER 

THRESHOLD TOTAL # OF 

TESTS 0.1 0.2 0.3 

2 119 102 69 121 

3 107 89 53 110 

4 100 45 13 110 

5 86 29 0 121 

6 102 65 27 102 

7 120 86 23 122 

8 114 95 55 121 

9 109 95 75 121 

10 96 54 27 121 

11 66 39 27 122 

12 91 15 3 126 

13 95 30 4 121 

14 102 85 36 122 

15 44 7 0 121 

16 121 118 85 121 

17 121 110 78 121 

18 54 47 35 55 

19 55 52 34 55 

20 30 23 18 33 
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 4.4.8.3. T-WAY TESTS AND THEIR IMPACT ON NEURON COVERAGE 

In this section, we present the neuron coverage achieved by t-way tests for the Rambo 

model. The Rambo model consists of 3 CNN sub-models referred to as S1, S2, and S3, and they 

consist of a total of 1625, 3801, and 13473 neurons, respectively [36]. Overall, the Rambo model 

consists of 18899 neurons.  

Table 4-4 presents the neuron coverage for the seed images (baseline). The results indicate 

that most of the seed images (17 out of 19) cover approximately 10% of the total neurons, while 

Group 10 and Group 11 cover 73.29% and 71.78% of the total neurons, respectively. 

Next, we present the neuron coverage achieved by the t-way tests in Figures 4-6, 4-7, 4-8, 

and 4-9. The x-axis represents the group number. The y-axis represents the percentage of additional 

neurons covered by the t-way tests compared to their respective baseline. Results suggest that t-

way tests result in a significant increase in neuron coverage. In the case of S1, we notice a moderate 

increase in the additional number of neurons covered compared to the baseline. The result 

presented in Table 4-4 indicates, amongst the nineteen groups, the seed image representing Group 

17 achieves the least coverage for S1 with 460 neurons. The t-way tests generated for group 17 

cover an additional 25% of neurons (113 neurons) compared to its baseline. Similarly, in sub-

model S2, across groups, we notice a substantial number of additional neurons covered by the t-

way tests; seven groups covering more than 50% of additional neurons compared to their 

respective baseline. 

We observe that t-way tests achieve a significant increase in neuron coverage for sub-

model S3. Out of 19 groups, t-way tests generated for eleven groups achieve more than one 

hundred percent increase in cumulative neuron coverage; six groups (Group 2, 7, 8, 9 12, 13) 

achieve more than ten times increase in cumulative neuron coverage. On the contrary, t-way tests 
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for two groups - Group 10 and Group 11 cover a significantly lesser number of additional neurons. 

This can be explained as follows: for sub-model S3, the seed images representing Group 10 and 

11 cover 95.91% and 94.01% neurons. Hence, their respective t-way tests result in a marginal 

increase in neuron coverage. 

TABLE 4-4  NEURON COVERAGE OF SEED IMAGES (RAMBO) 

 

GROUP 

NUMBER 

NUMBER OF COVERED NEURONS  

S1 S2 S3 TOTAL 

2 500 449 802 1751 

3 501 452 1113 2066 

4 497 416 722 1635 

5 501 428 827 1756 

6 496 445 718 1659 

7 492 433 1153 2078 

8 485 461 778 1724 

9 483 438 795 1716 

10 468 461 12923 13852 

11 475 424 12667 13566 

12 463 442 960 1865 

13 465 422 808 1695 

14 471 430 904 1805 

15 467 459 806 1732 

16 466 433 1224 2123 

17 460 466 822 1748 

18 480 456 1176 2112 

19 486 422 3801 2118 

20 469 447 1189 2105 
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FIGURE 4-6 S1 

 

 

 

FIGURE 4-7 S2 
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FIGURE 4-8 S3 

 

 

FIGURE 4- 9 RAMBO MODEL 
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Overall, the result suggests that t-way tests increase the neuron coverage significantly. In 

some cases, the results suggest a smaller number of t-way tests (120 tests) can cover more than ten 

times of additional set of neurons. 

We acknowledge that the neuron coverage results are unavailable for the remaining two 

models due to time limitations.  On executing the Chauffeur model with a batch of 100 images, 

the current version of the framework, on average takes 18 minutes to measure the neuron coverage. 

So, t-way tests for a group (with 121 tests) takes around [ (121*18)/60 = 36 hours]. It will take 

weeks to complete the coverage measurement for all nineteen groups. We plan to study the impact 

of t-way tests on neuron coverage of Autumn and Chauffer model as a part of future work. Also, 

we plan to investigate the correlation between neuron coverage and fault detection as a part of 

future work. 

4.4.9. THREATS TO VALIDITY 

Threats to external validity occur when the results from our experiments could not be 

generalized to other subjects. The DNN models used in our study have been used in other studies 

[36, 44, 46, 15]. All three DNN models used in our experiments have different architectures, thus 

alleviating the risk of lack of DNN architectures (representativeness) used in our study. 

Threats to internal validity are factors that may be responsible for the experimental results, 

without our knowledge. To mitigate the risk of human errors, we tried to automate as many tasks 

as possible, from generating synthetic images to executing the tests. Also, we have manually 

checked some of the results whenever any inconsistent or surprising results occur. For example, 

out of 121 tests generated for a seed image (group 8), 72.73% percentage of tests results in a 

consistent behavior for Rambo model. In contrast, the other two models had less than 50% of the 
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tests resulting in a consistent behavior. In such scenario, we manually verified the results by 

analyzing the log file. 

4.5. RELATED WORK 

We first discuss the existing work related to testing DNN based software systems. 

Traditional testing techniques such as coverage-guided testing [26, 36, 42], concolic testing [32], 

mutation testing [24], differential testing [27], combinatorial testing [9, 23] have been applied to 

test DNN models. We focus on the existing work reported in applying combinatorial testing (CT) 

to test machine learning systems as they are most relevant to our work.  

Ma et al. proposed DeepCT, a combinatorial testing coverage guided test generation 

technique to test the robustness of the DNN model [23]. DeepCT follows a white box testing 

approach by testing the interactions of the neurons within each layer in the DNN. Similarly, Chen 

et al. apply variable strength combinatorial testing to test DNN models. They propose three 

different methods to construct variable strength-based CT tests and study their effect on 

interactions between pre-layer and post-layer neurons [9]. In contrast, we apply CT as a black-box 

approach to generate test images and detect potential predictions errors of DNN models used in 

autonomous vehicle software systems.  

Li et al. proposed an ontology-based test generation framework for testing autonomous 

driving systems [22]. In Step 1, they construct an ontology based on the autonomous driving 

domain. In Step 2, they convert an ontology to a combinatorial test input model using conversion 

algorithms. Next, based on the test input model, they generate abstract tests that are used to create 

concrete tests. In Step 3, they execute the concrete tests and evaluate their results.  Gladisch et al. 

proposed a combinatorial testing approach to generate a test dataset for testing perception functions 

[14].  They use SCODE [12] to convert a domain model to an input test model for PICT, a pair-
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wise test generation tool [17]. Using PICT, they generate abstract test cases that are later converted 

to concrete tests (test images).  

Similar to [14, 22], we also develop an input parameter model (IPM), generate abstract t-

way tests (based on the IPM), generate, execute and evaluate the concrete tests. Our work differs 

in the following way: Li et al. develop an input test model based on the road parameters such as 

slop, surface, and lane type. Gladisch et al. generate input test model based on the traffic scenarios 

such as daytime, sky conditions, rain, reflection on road etc.  In contrast, we develop an IPM based 

on the seven image transformations techniques namely blur, brightness, contrast, rotation, scaling, 

shearing and translation. 

Next, we discuss the existing literature on testing autonomous vehicle software systems. A 

significant amount of work has been reported on testing autonomous vehicle software systems [11, 

13, 15, 19, 25, 27, 36, 37, 46, 47, 48].   Pei et al. proposed a technique to generate synthetic test 

inputs using a joint optimization problem to test DNN models used in autonomous vehicle systems 

[27]. Tian et al. proposed an approach to generate test inputs (synthetic images) by simple image 

transformations [36]. Yan et al. presented an approach that generates tests by Adaptive Random 

Testing (ART) technique and uses an Adaptive Random Testing for Deep Learning Systems 

(ARTDL) algorithm that selects test input using a distance metric known as Feature-based 

Euclidean Distance (FED) to test the model under test [44]. Zhang et al. proposed an unsupervised 

image-to-image transformations framework based on Generative Adversarial Network (GAN) that 

generates synthesized test inputs that mimics two weather conditions, namely snow, and rain, to 

test the DNN model [46]. Haq et al. presented an empirical comparison of offline testing (testing 

the DNN model as an individual component) and online testing (testing the DNN model as a part 

of a software system) of DNN models used in autonomous driving systems [15].  
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Similar to our work, existing work reported in [15, 27, 36, 44, 46] have used the Udacity 

driving challenge-2 datasets to evaluate their respective approaches. Also, our work is similar to 

[36, 44, 46], in terms of generating test inputs by image transformations and testing and evaluating 

the DNN models using metamorphic relations. However, our work differs in the following way.  

Tian et al. [36] primarily study the impact of synthesized images (generated by combining different 

transformations) on the neuron coverage. In contrast, our work focusses on evaluating the impact 

of synthesized images on the model's prediction. The work presented in [15] compared the offline 

and online testing of DNN systems. It investigated the possibility of testing DNN's by replacing 

the original dataset with simulator-generated datasets. In contrast, our work explores the possibility 

of generating test inputs using a combinatorial testing approach to detect prediction errors in DNN 

models. Zhang et al. use an unsupervised network that uses GAN to generate synthesized test 

inputs that mimic different weather conditions [46]. Compared to [44, 46], our work is focused on 

generating tests using a combinatorial testing approach, i.e., generating synthesized images by 

combining different images transformations. To the best of our knowledge, ours is the first work 

that applies combinatorial testing techniques to generate t-way synthetic images for testing DNN 

models used in autonomous driving software systems. We also note that there is a significant 

number of existing studies in literature, and we refer the reader to [45] for a comprehensive report 

on existing work on testing machine learning systems. 

4.6. CONCLUSION AND FUTURE WORK 

In this paper, we present a combinatorial testing-based approach to systematically generate 

test images to test DNN models used in the autonomous driving systems. We begin our approach, 

by applying basic image transformations on the seed image (original) and identifying a set of 

transformations that do not change the ground truth of the image being transformed as valid 
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transformations. Then, based on the valid transformations, we develop the IPM and generate t-way 

tests each of which is applied to the seed image to generate an synthetic image. We identify 

inconsistent behaviors of DNN models in two scenarios: (1) the original and synthetic image share 

the ground truth and (2) the original and synthetic image does not share the ground truth.  

 We performed an experimental evaluation of our approach with three publicly 

available pre-trained DNN models and datasets from the Udacity self-driving challenge. Our 

results indicate, for scenario 1, Rambo model exhibits a better performance, i.e., less prone to 

inconsistent behavior, compared to the other two models. For scenario 2, synthetic images 

generated by combining a set of image transformations (t-way tests) can successfully identify 

inconsistent behavior among models. With a threshold of 0.1, more than 90% of test cases from 

12 groups result in an inconsistent behavior.  

 Result suggests t-way tests significantly increases the neuron coverage for the 

Rambo model.  Out of the 19 groups, synthetic images generated for 17 groups, result in a moderate 

to significant increase in cumulative neuron coverage; nine groups (Group 2, 6, 7, 8, 9, 12, 13, 14, 

17) achieves more than one hundred percent increase in cumulative neuron coverage. Given the 

time-intensive nature of the measurement process, we are unable to measure the neuron coverage 

for the remaining two models. We plan to complete the measurement as a part of future work.  

 This is part of our larger effort in applying combinatorial testing to test DNN based 

systems. We plan to include additional weather-based transformations such as rain, fog, smog, and 

shadows to generate test images.  We hope to leverage the insights gained from this study to refine 

our input parameter model, develop realistic and meaningful constraints and thus generating more 

effective t-way tests to test DNN based systems. Also, we plan to extend this work by investigating 
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how the combinatorial testing-based approach can be adopted in testing different versions of the 

DNN models in regression testing. 
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Abstract— A Deep Neural Network (DNN) model is used to perform intelligent, safety-

critical tasks in Autonomous Driving Systems (ADS). In our prior work, we proposed a 

combinatorial testing approach to test DNN models used to predict a car's steering angle. We 

generate test images by applying a set of combinations of basic image transformations. In this 

paper, we report a preliminary study that compares the performance of synthetic images generated 

using a combinatorial approach to DeepTest, a state-of-the-art tool that aims at generating test 

inputs that maximize neuron coverage. We present an experimental evaluation by measuring and 

comparing the neuron coverage achieved using the two approaches. Two pre-trained DNN models 

from the Udacity driving challenge are used as the subject DNNs. The results suggest that the 

combinatorial approach performs better than the DeepTest approach in generating valid synthetic 

images and covering an additional number of neurons. 
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5.1. INTRODUCTION 

Deep Neural Network (DNN) models are used in autonomous driving systems to perform 

tasks such as pedestrian detection, steering control, object detection. Despite its promising 

potential, when applied in real-world conditions, the DNN models exhibit erroneous behavior 

resulting in life-threatening consequences [2]. It is vital to rigorously test these models before their 

deployment in the real world. 

Our earlier work presented a combinatorial approach to generate synthetic images to test 

the pre-trained DNN models used in self-driving cars [1]. This paper reports two significant 

extensions of our earlier work. First, in addition to the neuron coverage results reported in [1], we 

report the neuron coverage for the Chauffeur model. Second, we present a comparative evaluation 

where we compare the neuron coverage results achieved by our approach to those achieved by 

DeepTest, a test generation approach that aims at generating test inputs that maximize the neuron 

coverage [4]. Neuron coverage is a measure of the proportion of neurons activated in a DNN 

model. Experimental results suggest that in most cases, t-way synthetic images cover an additional 

number of neurons compared to the DeepTest approach. The remainder of the paper is organized 

as follows. Section 5-2 presents a brief introduction to the t-way testing of DNNs. Section 5-3 

presents the experimental design, results, and discussion. In Section 5-4, we present the concluding 

remarks and directions for future work. 

5.2. T-WAY TESTING OF DNNS 

We presented a combinatorial approach to generate t-way synthetic images to test DNN 

models [1]. In this approach, First, we identify a set of valid image transformations applicable to 

the seed image. Next, we design an input parameter model (IPM) based on the valid 

transformations; each valid transformation is mapped as a parameter in the IPM. Then, based on 
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the IPM, we generate an abstract t-way (t=2) test set. Each t-way test represents a combination of 

image transformations. Finally, using an image processing library, we generate synthetic images 

by applying the t-way image transformations to the seed image. The t-way synthetic images are 

used to test the DNN models. 

5.3. EXPERIMENTS 

5.3.1. EXPERIMENTAL DESIGN 

Tian et al. evaluated the impact of synthetic images generated by combining different 

image transformations on the neuron coverage using three open-source DNN models, namely 

Rambo, Chauffeur, and Epoch [4]. In the case of Epoch, a pre-trained model is not publicly 

available for download. Therefore, we used the remaining two models, namely Rambo and 

Chauffeur, in this comparison study. 

In their evaluation, they generated synthetic images using two approaches, namely 

Cumulative transformations and Guided transformation. Similar to our earlier work [1], the guided 

transformation approach generates synthetic images by combining a set of image transformations. 

However, this approach aims to generate tests that maximize the neuron coverage and does not 

guarantee to generate valid synthetic images. That is, while the synthetic images generated using 

the guided transformation approach can cover an additional set of neurons, they may not be used 

to determine the correctness of a DNN model because invalid images may never exist in reality. 

Therefore, we compare the cumulative neuron coverage achieved by t-way synthetic 

images to those synthetic images generated using the cumulative transformation approach. We will 

refer to the cumulative transformation approach as the DeepTest approach unless otherwise 

specified. 
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To generate synthetic images using the DeepTest approach, we apply a set of valid image 

transformations identified for the respective seed image. We observed that in most cases, the 

number of synthetic images generated using a t-way test set is substantially higher compared to 

that of the DeepTest approach. Therefore, to facilitate a fair comparison, for each group, using a 

random sampling approach, we select a subset from the t-way test set (synthetic images) such that 

the number of the t-way tests in the subset is equal to the total number of synthetic images 

generated using the DeepTest approach. 

Then, we execute the DNN model with the seed image (baseline), followed by t-way 

synthetic images from the subset, and measure the cumulative neuron coverage. We compare the 

cumulative neuron coverage achieved by the t-way subset with the synthetic images generated 

using the DeepTest approach. To reduce variations in random sampling, we generated five samples 

for each group by using different seeds (selected at random). 

We refer the reader to our earlier work [1] for additional information about the 

measurement of cumulative neuron coverage, the number of seed images, the number of valid 

transformations, and the number of t-way test cases generated for each seed image. 

5.3.2. RESULTS AND DISCUSSION 

First, we present the cumulative neuron coverage achieved by t-way tests for Chauffeur. 

The Chauffeur model consists of 1 CNN sub-model with 1427 neurons and 1 LSTM sub-model 

with 513 neurons. Tian et al. did not include the LSTM sub-model in their evaluation. Hence, for 

Chauffeur, we limit our comparison to the CNN sub-model. 

For the Chauffeur model, 14 out of 19 seed images cover less than 15% of the total neurons 

(1427 neurons); Among the seed images, Group 7 covers the least, covering 6% of total neurons 
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(90 neurons), while the seed image from Group 16 covers the most with 22% of total neurons (318 

neurons).  

Figure 5-1 presents the cumulative neuron coverage achieved by t-way tests for Chauffeur. 

The x-axis represents the group number. The y-axis represents the percentage of additional neurons 

covered by the t-way tests compared to their respective baseline. Our results suggest that t-way 

tests result in a significant increase in neuron coverage. Out of nineteen groups, t-way tests 

generated for sixteen groups achieve more than one hundred percent increase in cumulative neuron 

coverage. 

 

FIGURE 5-1 CUMULATIVE COVERAGE – CHAUFFEUR 

 

Next, we present the comparison results. For Rambo, the coverage results obtained from 

our earlier work are re-used in our comparison experiments. Figure 5-2 and Figure 5-3 present the 

comparison results for Rambo and Chauffeur, respectively. The x-axis represents the group 

number. The y-axis represents the number of neurons. Due to space limitations, we present the 

average cumulative neuron coverage achieved by the five t-way subsets for each group. A 
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horizontal blue bar in the bar chart indicates the cumulative neuron coverage achieved using the 

DeepTest approach. Our results indicate that for Rambo, in most cases (18 out of 19 groups), 

subsets of the t-way test set achieve a higher cumulative coverage compared to the DeepTest 

approach. For five groups (Group 2, 7, 8, 9, 13), the subset (of the t-way test) covers a significant 

number of additional neurons compared to the DeepTest approach. 
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FIGURE 5-2 COMPARISON – DEEPTEST VS REDUCED T-WAY (RAMBO) 

 

 

FIGURE 5- 3 COMPARISON – DEEPTEST VS REDUCED T-WAY (CHAUFFEUR) 

 

In the case of Chauffeur, for 16 groups, all five samples of the t-way subset cover a 

significant additional number of neurons compared to the DeepTest approach. For the remaining 

three groups (Group 4, 5, 20), the t-way subset covers a marginally higher number of neurons than 

the DeepTest approach. 
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Overall, the results from this initial study indicate that synthetic images generated using 

the combinatorial approach can achieve higher neuron coverage than the DeepTest approach. The 

source code, results, data and/or artifacts have been made available at [3]. 

5.4. CONCLUSION AND FUTURE WORK 

In this paper, we present the cumulative neuron coverage for the Chauffeur model and an 

initial study that compares the synthetic images generated using a combinatorial approach to that 

of DeepTest in terms of cumulative neuron coverage. In most cases, the results suggest that the 

synthetic images generated using the combinatorial approach cover an additional number of 

neurons compared to the DeepTest approach.  

As part of future work, we plan to conduct a comprehensive empirical study that compares 

the effectiveness of combinatorial testing to that of random testing in testing pre-trained DNN 

models. 
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Abstract—Machine Learning (ML) models, a core component to artificial intelligence 

systems, often come as a black box to the user, leading to the problem of interpretability. 

Explainable Artificial Intelligence (XAI) is key to providing confidence and trustworthiness for 

machine learning-based software systems. We observe a fundamental connection between XAI 

and software fault localization. In this paper, we present an approach that uses BEN, a 

combinatorial testing-based software fault localization approach, to produce explanations for 

decisions made by ML models. 
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6.1. INTRODUCTION 

Artificial Intelligence (AI) based software systems are increasingly adopted in safety-

critical domains, e.g. medical imaging and autonomous driving. At the core of AI-based software 

systems is a machine learning (ML) model that is used to perform tasks such as classification and 
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prediction. The ML models used in such tasks are black box in nature, i.e., the reasoning behind 

their decision is typically not known to the user. Using a black box model in AI software systems 

could compromise trustworthiness and create problems such as racial and gender bias. There is an 

urgent need to provide explanations for the decisions made by AI-based software systems. 

Explainable Artificial Intelligence (XAI) focuses on creating approaches and tools that can 

automatically provide explanations for the decisions made by ML models [3]. In particular, XAI 

tries to answer the following two questions: Why does the model make a particular decision? What 

are the major factors that contribute to the decision? XAI has attracted a lot of interest from both 

academia and industry in the past few years. Providing explanations allows a model to be 

interpreted, which is key to acceptance of AI technologies. Furthermore, information gathered 

from an interpretable model can help engineers determine the cause of incorrect decisions. 

There are two types of explanations for AI decisions. Local explanations are created to 

explain a specific decision, whereas global explanations are created to explain an entire model. In 

this paper we present an approach that creates local explanations using the counterfactual 

approach, which human factor studies have shown to be highly effective for explanation [11]. A 

counterfactual approach tries to identify a minimum set of features that, if removed, would cause 

a different decision to be made [9]. 

The key insight is that from an abstract perspective, producing a counterfactual explanation 

for a local decision made by an ML model is similar to the fault localization problem [15][16]. In 

fault localization, given a failing scenario, a software developer identifies which part of the input 

that causes the failure. Similarly, in XAI, given a decision made by an ML model, we identify 

features that causes the decision, in the sense that if these features are removed, then the decision 

would be different.  
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Specifically, we explore the use of a combinatorial testing-based fault localization 

approach called BEN to produce counterfactual explanations for image classifiers. Given a t-way 

test set, BEN identifies a failure-inducing (or inducing) combination that causes every test (for a 

deterministic system) containing the combination to fail and that is as small as possible [8]. We 

apply BEN to quickly identify a minimal subset of features in an image that, if removed, would 

result in a different classification. 

Assume that a model M produces a classification X for an input image I. To produce a 

counterfactual explanation for this classification result, we first perform segmentation on image I. 

In image segmentation, various algorithms are used to assign a class to each pixel of an image. For 

example, in a street scene, boundary detection and other algorithms may identify classes “sign”, 

“human”, “car”, etc., and each pixel of the image is associated with one of the classes. The 

segmentation process may be applied at a more granular level to identify parts of objects. Each 

segment is modeled as a Boolean parameter. We build a 2-way test set for these parameters. Each 

test can be used to derive a test image from the original image, i.e. image I. A segment is masked 

in the test image if the corresponding parameter is true in the test; otherwise, a segment is retained 

without modification.  

The notion of test execution is mapped to image classification in the following sense. If a 

test image is classified by model M differently than the original image, the corresponding test 

execution is considered to be failing. Otherwise, the corresponding test execution is considered to 

be passing. The 2-way test set with execution statuses is then fed to BEN to identify inducing 

combinations. In the identification process, BEN could generate additional tests, which can be 

executed in the same manner. That is, for each additional test, a test image is first derived and then 

classified using model M to determine its execution status.  
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Finally, each inducing combination identified by BEN is used to derive an image that 

produces a different classification. This image serves as a counterfactual explanation for the 

original classification X.    

We report an experimental evaluation of our approach. We use the VGG16 model [25], a 

popular image classifier as our subject model and fifty randomly selected seed images from the 

ImageNet test dataset [23]. Our results suggest for 44 (out of 50) images, our approach can generate 

counterfactual explanations. Furthermore, in most cases, our approach can generate a 

counterfactual explanation by removing no more than two segments from the input image.  

 The remainder this paper is organized as follows. Section 6-2 provides an 

introduction to Deep Neural Network-based image classifiers, counterfactual explanations, and 

BEN. In Section 6-3, we present our approach and give an example to illustrate the approach. 

Section 6-4 reports the experimental evaluation of our approach, where we present our 

experimental design, results and discussion. Section 6-5 discusses the existing work on XAI. 

Section 6-6 provides concluding remarks and directions for our future work. 

6.2. BACKGROUND 

6.2.1. DEEP NEURAL NETWORKS 

Deep learning is used across domains such as autonomous driving, speech recognition, 

speech translation, and medical imaging. At the core of deep learning is a Deep Neural Network 

(DNN) that is used to perform tasks such as image classification, object detection, and others. A 

DNN follows a neural network architecture and consists of an input layer, several hidden layers 

and an output layer. A trained DNN model takes an input (e.g., an image) and produces a prediction 

as output.  
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Compared to traditional software development, where the programming logic is 

implemented based on rules derived from the requirements, DNN based applications derive their 

decision logic (learning) from a training dataset. The decision logic is referred to as the trained 

DNN model.  

In recent years, deep learning-based image recognition software systems have improved 

significantly and could be more efficient than humans in some domains. A practitioner can build 

a DNN model using different types of neural network architecture. One of the popular neural 

network architectures used for image recognition tasks is convolutional neural networks (CNN). 

Given an input, CNN architecture is known for its ability to detect important features without any 

human supervision. The subject models used in our experiments use a CNN based architecture and 

perform image classification. 

6.2.2. AI EXPLANATIONS 

The explanations generated by XAI tools can be categorized into two types, feature-

importance based explanations and counterfactual explanations. Assume a model M that produces 

a classification X for an input image I. A feature-importance based explanation identifies a set of 

important features of I that contribute to decision X. In addition, it assigns weights to the features 

that quantify their contribution. In contrast, a counterfactual explanation identifies a minimum set 

of features of I that if removed, shall change the prediction. In other words, counterfactual 

explanations are contrastive in nature. 

6.2.3. BEN 

Ghandehari et al. developed a combinatorial testing-based approach called BEN to 

software fault localization [5, 6]. Localizing a fault using BEN consists of two major phases: 
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inducing combination identification (Phase I) and faulty statement localization (Phase II). BEN 

assumes that a combinatorial t-way test set is available and has been executed on the system under 

test (SUT). In the first phase, BEN takes the t-way test set and its results as input and tries to 

identify one or more inducing combinations in an iterative manner. BEN analyses the test file and 

identifies a set of t-way suspicious combinations. Based on the t-way suspicious combination(s), 

BEN generates a new t-way test set. For the new t-way test set, the user generates concrete tests, 

executes the tests, and records their execution status (either pass or fail). Then, the user provides 

the execution status back to BEN. This process is repeated until BEN identifies an inducing 

combination. Note that BEN expects the initial test set to contain at least one passing and one 

failing test. If there is no passing test in the initial t-way test set, BEN identifies an inducing 

combination based on the initial t-way test set. In our approach, the inducing combination 

identified by BEN is used to generate counterfactual explanations. Phase II of BEN is not utilized 

in our approach. 

6.3. APPROACH 

This section presents a combinatorial approach to generate counterfactual explanations for 

machine learning models that take an image as input and output a prediction. Our approach consists 

of four phases: Image segmentation, t-way testing, identifying inducing segments, and 

constructing explanations. 

Image Segmentation: Image segmentation is a widely used image processing technique 

that partitions a digital image into different segments based on the characteristics of the image 

pixels. In our approach we first perform image segmentation on the input image. As discussed 

later, each segment is modeled as a parameter during combinatorial testing. Working with 
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segments instead of pixels allows us to reduce the number of parameters in our input parameter 

model (IPM). 

We point out that the number of segments could potentially affect the quality of the 

counterfactual explanation. The more segments, the finer grained the resulting explanation could 

be. However, the more segments, the more parameters, the more expensive to produce the 

explanation. Many segmentation algorithms allow the user to define a maximum number of 

segments. The exact number of segments produced by the segmentation process is typically close 

to the maximum number. A trade-off decision often needs to be made when choosing the maximum 

number of segments. 

Recall that BEN assumes that there exists an input parameter model (IPM) of the SUT, a 

test oracle to determine the status of the test execution, and a t-way combinatorial test set with 

execution results. In the following we discuss how to provide these components in the context of 

XAI. 

T-Way Testing: We begin this phase by deriving an input parameter model for the SUT 

(input image). For an input image, every segment is considered as a parameter.  

Our approach aims to identify a minimum number of segments that, if removed, would 

change the prediction. To remove a segment, we perform a masking operation on the particular 

segment. In our approach, a segment can either be masked or not masked. Therefore, in the IPM, 

for each parameter, we identify the following two values – true (masked) and false (not masked).  

Then, we generate an abstract t-way test set using ACTS, a combinatorial test generation 

tool [2]. We derive the concrete tests by applying masking to specific image segments (as per the 

test case) using image-processing python libraries [1, 18, 24, 30]. We execute the concrete tests 

(images) and determine their execution statuses. 
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Given an image, the DNN model produces a class label (prediction) as output. To 

determine the execution status of a test, we define the test oracle as follows: On executing the 

model with a test image, if the output (class label) matches that of the original image, we consider 

it to be a passing test. If the output does not match the output of the original image, we consider it 

to be a failing test.  

Identifying Inducing Combinations: We begin this phase by providing an initial test file 

(as input) to BEN. The initial test file includes parameters and values, the test strength, the initial 

t-way test set, and the execution status of each test. In each iteration, analyzing the test file, BEN 

either generates an additional set of tests or terminates by identifying inducing combination(s). For 

additional tests generated by BEN, we derive concrete tests (t-way images), execute the model 

with the test images and update their execution statuses. Then, we provide the updated test results 

to BEN.  

This process continues until one of the stopping conditions is satisfied: (1) an inducing 

combination is identified by BEN, or (2) the user decides to stop the process. In the latter case, the 

top-ranked suspicious combination is considered to be the inducing combination, and we proceed 

to the next phase. 

Constructing Explanations: In this phase, we derive explanations based on the inducing 

combinations in an iterative manner.  

Given the nature of the XAI problem, an inducing combination identified by BEN may not 

be directly used to produce a counterfactual explanation. Consider a scenario where an input image 

has 20 segments (i.e., 20 parameters, and each parameter has two values - TRUE, FALSE). BEN 

identifies the following two inducing combinations: (segment_1 = FALSE, segment_4 = FALSE), 

(segment_2 = TRUE, segment_4 = FALSE).  
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The first inducing combination suggests a test retaining segment_1 and segment_4 shall 

fail (change the prediction). Even though all the test images that contain these two segments have 

a different classification, this inducing combination cannot be used to produce a counterfactual 

explanation, since it does not suggest any segments to be removed.  

The second inducing combination suggests to remove segment_2 (masked) while retaining 

segment_4 in order to produce a different classification. This combination can be used to produce 

a counterfactual explanation as discussed next.  

In general, an inducing combination that suggests the removal of one or more segments 

can be used to produce counterfactual explanations.  

We begin to construct a counterfactual explanation by selecting the top-ranked inducing 

combination, generating an image based on the inducing combination (modified image), executing 

the model with the image, and recording its execution status. Suppose the prediction of the 

modified image differs from the prediction of the original image (fail). In that case, the approach 

stops, and the modified image is shown as an explanation to the user.  

Otherwise, if the prediction of the modified image is the same as the prediction of the 

original image state (pass), we select the next ranked inducing combination and repeat the process, 

i.e., generate an image based on the inducing combination, and execute and compare its prediction 

with the original prediction.  

This process is continued until either of the two conditions is satisfied: (1) the prediction 

of a modified image generated based on inducing combination(s) differs from the prediction of the 

original image; or (2) all the modified images generated based on the inducing combination(s) 

match the original prediction. In the first case, the modified image is shown as an explanation to 

the user. In the second case, we derive an explanation as follows.  
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First, we analyze the test suite and identify a test that (1) contains the inducing combination, 

and (2) the prediction differs from the original prediction (i.e., a failing test). If there is more than 

one test that satisfies the two criteria, we select a test with the least number of masked segments. 

Recall that our objective is to identify a minimal number of segments that, if removed, shall change 

the prediction. 

Next, in addition to the inducing combination, we mask the additional segments whose 

values are true in the test in an incremental manner (one segment at a time), starting with the 

segments closer to the segments in the inducing combination. This process is repeated until the 

prediction of the modified image differs from the original prediction. The modified image is shown 

as an explanation to the user. Note that masking additional segments from a failing test is likely to 

produce a counterfactual explanation, since its prediction differs from the original prediction. 

Example: We illustrate our approach using an example. Consider the image in Figure 6-1. 

It is assumed that the DNN model is executed with the image and the prediction result (P) is 

available.  

To derive a counterfactual explanation, we begin with image segmentation, which 

identified the possible number of segments for the subject image as 20 (Figure 6-2).  

Next, we build an IPM with 20 parameters; each parameter has two values: {TRUE and 

FALSE}. Then, we generate a 2-way test set (12 tests) using ACTS [2]. We derive the concrete 

tests (test images), execute the model with concrete tests, record and compare their execution 

statuses (P`) with the original prediction (P). Based on the execution statuses, we have four passing 

tests (P = P`) and eight failing tests (P != P`). A test file is generated, and it contains the IPM, the 

strength of the t-way test set, the t-way test set, and its execution status. 
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Next we provide the test file as input to BEN. After a couple of iterations, BEN identifies 

an inducing combination - segment_10=TRUE,segment_12=TRUE,segment_17=false. Note that 

at each iteration, we repeat the process of deriving, executing, and updating the status of the 

additional tests.  

To derive a counterfactual explanation, we generate a modified image based on the 

inducing combination - segment_10=TRUE,segment_12=TRUE,segment_17=FALSE. 

Although the inducing combination consists of three segments, the modified image will 

have two (out of three) segments, namely S_10, S_12 masked, while no changes being made to 

S_17, as its value is  FALSE, i.e., not to mask the segment. Then, we execute the model with the 

modified image, and its output (prediction) is compared to the output of the original image. The 

prediction of the modified image differs from the original prediction. 

At this point, the approach terminates, and the modified image (Figure 6-3) is shown as a 

counterfactual explanation to the user. 
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FIGURE 6-1 ORIGINAL IMAGE 

 

 
FIGURE 6-2 SEGMENTATION OF INPUT IMAGE 

 

 
FIGURE 6-3 COUNTERFACTUAL EXPLANATION 
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6.4. EXPERIMENTS 

In this section, first, we present the design of our experiments including the research 

question, the subject model and selection of seed images, segmentation and masking techniques, 

and the metrics used to measure the effectiveness of our approach. Second, we present and discuss 

our results. Third, we compare the results of our approach with SHAP, a popular state-of-the art 

XAI tool. Finally, the threats to validity are discussed. The source code, data and/or artifacts have 

been made available at [28, 29] 

6.4.1. RESEARCH QUESTIONS 

The major research question of our evaluation is the following: 

• How effective is BEN in generating counterfactual explanations for DNN-based 

image classifiers? 

6.4.2. MODEL 

We evaluate our approach using an open-source, pre-trained model – VGG16 [25]. The 

model uses a convolutional neural network architecture consisting of 13 convolution layers and 

three dense layers. VGG16 is used in evaluating similar explainable AI tools [26]. 

6.4.3. SEED IMAGES 

The ImageNet dataset is an extensive collection of visual images. The ImageNet Large 

Scale Visual Recognition Challenge (ILSVRC) is an annual competition for evaluating algorithms 

for object detection and image classification [23]. The VGG16 model, a runner-up at the ILSVRC 

2014 challenge, is trained using the ImageNet dataset with over 14 million images with 1000 

classes.   
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In our experiments, we use the ILSVRC2017 test dataset, the latest test dataset from 

ImageNet (ILSVRC2017). The test dataset consists of 5500 images [13, 23]. We randomly 

selected fifty seed images. 

6.4.4. SEGMENTATION 

The Simple Linear Iterative Clustering (SLIC) algorithm is used to perform image 

segmentation [1]. Based on the maximum number of desired segments provided by the user, the 

SLIC algorithm clusters pixels based on their color similarity and proximity in the image plane 

and create segments. In our experiments, we set the maximum number of segments to 25. 

However, the exact number of possible segments varies for each seed image. This is because the 

SLIC algorithm generates segments based on certain properties of an image. 

6.4.5. MASKING OF SEGMENTS 

An image consists of an array of dots referred to as pixels. Pixels of a color image can have 

a value in the range of 0 to 255. The value of 0 represents a black pixel, and the value of 255 

denotes a white pixel. In our experiments, we mask a segment by setting all its pixels to the value 

of 0. 

6.4.6. METRICS 

The effectiveness of our approach is measured in terms of the quality of the counterfactual 

explanations it produces. The quality of a counterfactual explanation could be measured in 

different ways [3][19]. Ultimately, a counterfactual explanation should make sense to a human 

subject. This is however subjective.  

In our experiments, the quality of a counterfactual explanation is measured in the following 

two aspects: (1) the number of segments that need to be removed from the original image to 
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produce the explanation. The fewer segments to be removed, the easier to be understood, the higher 

quality. (2) the explanation must produce a different prediction than the original prediction. 

6.4.7. RESULTS AND DISCUSSION 

Our approach effectively derived counterfactual explanations for 44 (out of 50) seed 

images. In the following, we present the details of our results. Due to space limitations, we only 

show some example results in this section. The complete results are available at [28, 29]. 

 6.4.7.1. COUNTERFACTUAL EXPLANATIONS 

First, we present the results of counterfactual explanations generated from an inducing 

combination alone i.e., no additional segments need to be removed. For 24 out of 50 respective 

inducing combination (identified by BEN) effectively change the original prediction.  

Our results show that for 6 out of 24 images, our approach removes one segment to produce 

the counterfactual explanation. For 16 out of 24 images, our approach only removes 2 segments. 

For the remaining 2 out of 24 images, our approach removes three segments. 

Figure 6-4 shows some example results of these images. In each row, the first image is the 

original seed image; the second image shows the segmentation applied to the seed image. The third 

image is the counterfactual explanation. For the image in Row 1, removing one segment (segment 

4) modifies the prediction from white_stork to black_stork. For the images in Row 2 (original 

prediction: dragonfly) and Row 3 (original prediction: stage), removing two segments changes the 

prediction to lycaenid and feather_boa, respectively. For the image in Row 4 removing 3 segments 

changes the prediction from sea lion to promontory. 
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FIGURE 6-4 COUNTERFACTUAL EXPLANATIONS DERIVED FROM INDUCING COMBINATIONS 
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Next, we discuss the counterfactual explanations that cannot be derived from the inducing 

combination alone. Instead, some additional segments need to be removed to produce a 

counterfactual explanation. For 20 images in our experiments, the modified images generated from 

their respective inducing combinations alone do not change the predicted class labels. Therefore, 

additional segments must be removed for these images in order to produce a counterfactual 

explanation. 

Our results indicate that for 8 out of 20 images, masking one additional segment along with 

the inducing combination was sufficient to change the classification. For 7 out of the remaining 15 

images, two additional segments needed to be masked. For the remaining 5 images, in addition to 

the inducing combinations, we masked three to five additional segments to generate a 

counterfactual explanation.  

Figure 6-5 presents some of the counterfactual explanations generated from the inducting 

combination and one or more additional segments. In each row, the first image is the original seed 

image, followed by the segmentation applied to the seed image and the modified image produced 

based on their respective inducing combination. The fourth image is the counterfactual explanation 

produced from the inducing combination and one or more additional segments.  

For the image in Row 1 - image #2737 with an original prediction - mountain_bike, 

masking one segment (segment_4=true), in addition to the inducing combination (segment_5=true, 

segment_13=true), changes the original prediction from mountain_bike to moped. Similarly, for 

image #4148 (Row 2) with an original prediction of Arabian_camel, masking one additional 

segment changes the original prediction from Arabian_camel to a sarong. 
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FIGURE 6-5 COUNTERFACTUAL EXPLANATIONS DERIVED FROM INDUCING COMBINATIONS AND 

ADDITIONAL SEGMENTS 
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Consider the image in Row 3 (image #3793, original prediction – tiger), in addition to the 

inducing combination (segment_7=true, segment_19=true), masking four more segments 

(segment 2, 4, 17, 20) is necessary to change the original prediction from tiger to an Egyptian_cat. 

The results suggest that in most cases, our approach can efficiently generate a high-quality 

counterfactual for image classifiers.  In other words, our approach can effectively identify a 

minimal (2 or 3 segments) yet important set of segments that if removed, would modify the original 

prediction.  

We note that BEN was unable to identify inducing combinations for six seed images. For 

one of the seed images (image # 4541), BEN terminated with an error message. There is no 

suspicious combination whose length is 2. For the remaining five seed images, in spite of multiple 

iterations, BEN failed to identify an inducing combination. We observe that all the additional tests 

generated by BEN resulted in a passing status for each of these images. Therefore, we suspect 

BEN is unable to find an inducing combination as it expects at least one failing test to identify an 

inducing combination. We plan to investigate this as part of future work. 

 6.4.7.2. COMPARISON WITH SHAP 

We compare the counter-factual explanations (derived by our approach) with SHAP, a 

widely used feature-importance approach tool [17]. Given an input and a pre-trained model, SHAP 

produces explanations for a model's decision by ranking the input features that contributed to the 

model's decision (feature-importance-based explanation). This comparison allows us to see the 

importance of the segments removed by our approach to produce a counterfactual explanation. 

  Figure 6-6 presents some of the comparison results. The first image in each row presents 

the counterfactual explanation identified by our approach. The second image represents the output 

produced by the SHAP tool. SHAP output consists of four images: the original image (provided 
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as input to the SHAP algorithm), followed by the top three predictions from the model with the 

features (segments) contributing to that corresponding predictions. Features (segments) that 

positively contribute to the outcome are highlighted in green, and features (segments) that 

negatively contribute to the outcome are highlighted in red [14]. 

Among the five images, the output from SHAP suggests, the set of segments that are 

removed to generate a counterfactual explanation in our approach positively contributes to the 

original decision (highlighted in green color).  In other words, our approach identifies a minimal 

yet significant set of segments that if removed, shall modify the prediction. One of the interesting 

examples is the image from row 3 in Figure 6-6. The image consists of two performers, a 

microphone and a guitar. The predicted class label for the original seed image is a stage. Our 

approach suggests a part of a performer's body (segment #7) be removed to generate a 

counterfactual explanation, which is an unexpected segment (intuitively). However, the results 

from SHAP confirm that segment #7 contributes significantly to the predicted class label. 

A counterfactual explanation does not determine the correctness of the original prediction. 

Consider the image from the image from row 5 in Figure 6-6. The image consists of a person on a 

motorcycle. The predicted class label for the original seed image (mountain_bike) might not match 

the user’s expectation (motorcycle). In such scenarios, i.e., in case of a model’s misprediction, 

deriving a counterfactual explanation can identify a set of features (segments) that if removed 

would modify the prediction. In other words, a counterfactual explanation could help identify a set 

of features that contribute to the misprediction. Likewise, SHAP also indicates the set of segments 

that contribute to the original prediction - mountain_bike. As part of future work, we plan to 

investigate the possibility of using the feedback from the counterfactual explanations to debug a 

model’s misprediction.  
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FIGURE 6-6 COMPARISON WITH SHAP 
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This is an initial comparison study. The overall results indicate that BEN can be effectively 

adopted to derive a counterfactual explanation that indicates significant segments, i.e., segments 

that make a significant contribution to a model’s decision. SHAP performs 1000 iterations to 

generate explanations. That is, SHAP executes the VGG16 model 1000 times to identify the 

important features that contribute to a model’s decision. In contrast, our approach derives 

explanations with an average of 20 - 25 test cases (image perturbations). In other words, we derive 

a counterfactual explanation by executing the VGG16 model for an average of 25 times. We plan 

to perform a detailed, comprehensive comparison with other state-of-the-art explainable AI tools 

as part of future work. 

6.4.8. THREATS TO VALIDITY 

Threats to internal validity are factors that may be responsible for the experimental results, 

without our knowledge. To mitigate the risk of human errors, we tried to automate as many tasks 

as possible, from generating synthetic images to executing the tests. Also, we have manually 

checked some of the results whenever any inconsistent or surprising results occur. For example, 

for image 3456 and 3462 all the initial tests resulted in a failure. In contrast, image 3703 and 3793 

had a mix of passing and failing test. In such scenarios, we manually verified test results by 

inspecting the images and the prediction results. 

 Threats to external validity occur when the results from our experiments could not 

be generalized to other subjects. The DNN model architecture used in our study have been used in 

other studies [26, 27]. We randomly selected fifty seed images from ImageNet, a large, diverse 

dataset with more than 5000 images. This helps to alleviate the risk of lack of diverse images used 

in our study. 



 146 

6.5. RELATED WORK 

In this section, we discuss existing work that is closely related to our work. First, we discuss 

existing work on counterfactual explanations. Dhurandhar et al. proposed a method that produces 

contrastive explanations. Their method identifies two sets of pixels: (1) A minimal set of features 

that are sufficient to obtain the current classification (pertinent positive); and (2) A minimal set of 

features that should be absent to obtain the current classification (pertinent negative) [4]. In 

contrast, we identify a minimal number of features (segments) that if removed (absent), will 

change the current classification.   

Goyal et al. proposed a technique that generates counterfactual visual explanations [7]. 

Assume that for an input image I, model M predicts class A. Their approach generates a visual 

explanation that tries to answer the following question: How should the image I be different for 

the model to predict Class B instead of Class A? Our work is similar to theirs in terms of altering 

the input image and showing a modified image as a counterfactual explanation. However, in our 

approach, the modification is limited to removal of one or more segments from the original image, 

whereas they generate counterfactual explanation by identifying and replacing regions of the 

original image with regions from the image belonging to the counterfactual class.  

Vermeire et al. proposed a model-agnostic approach to generate counterfactual 

explanations for image classifiers [27]. Our work is similar to theirs in terms of identifying 

segments that, if removed, shall change the classification. Our work is different from theirs in the 

following way: They propose two methods, i.e., Search for Evidence Counterfactuals (SEDC) and 

Search for Evidence Counterfactuals with Target Counterfactual Class (SEDC-T). SEDC uses a 

best-first search approach to generate a counterfactual explanation. In SEDC-T, a counterfactual 

explanation is generated by removing segments (iteratively) to reach a predefined target class. In 
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contrast, we use a combinatorial testing-based approach to generate counterfactual explanations, 

and our approach does not generate an explanation for a predefined target class.  

Hendricks et al. propose a method that produces a descriptive counterfactual text as an 

explanation to the end user [10]. Compared to this, our approach displays a modified image (with 

removed segments) to the end user.  

Existing work reported in [8, 20] generates counterfactual explanations for tabular data. In 

contrast, our work generates counterfactual explanations for an image data.  

Riberio et al. proposed LIME that generates local explanations based on input perturbations 

that probe a ML model and derive explanations [21, 22]. Lundberg et al. proposed SHAP that 

generates explanations using game theoretic framework [17]. Similar to our work, LIME and 

SHAP create image perturbations by segmentation to derive an explanation. However, our work 

focuses on generating a counterfactual explanation, whereas their work focuses on identifying 

important features that contribute to the original decision.  

Sun et al. proposed a statistical fault localization-based approach called DeepCover to 

generate explanations for image classifiers [26]. In their approach every pixel from the image is 

assigned a score in terms of their likelihood to contribute to the original decision. An explanation 

is derived by adding sufficient pixels (a subset of the original pixels) that shall produce the original 

decision. Our work is similar to their work in terms of using a software fault localization-based 

approach to derive explanations. However, our work differs in the following two ways: 1) we 

generate t-way test inputs (image perturbations) whereas their approach randomly selects and 

masks a set of pixels; and 2) we generate a counterfactual explanation whereas their explanation 

focuses on the pixels that contribute to the original decision.  
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Similar to our work, Kuhn et al. adopted a combinatorial fault location process and reported 

an approach that identifies a unique t-way combination that contributes to a model’s decision 

[15][16].  Their approach is designed for tabular data. In contrast, our approach focuses on image-

based classifiers and produces counterfactual explanations. 

6.6. CONCLUSION AND FUTURE WORK 

In this paper, we present a combinatorial testing-based approach to explaining image 

classifiers.  Our approach is model-agnostic, as it treats the underlying model as a black box. We 

evaluated our approach using the VGG16 model [25] and seed images from the ImageNet dataset 

[23]. Our results suggest that for 44 (out of 50) images, our approach can effectively generate a 

counterfactual explanation. For 28 images, the counterfactual explanation is generated by 

removing no more than 2 segments. Overall, the results indicate BEN, a combinatorial testing-

based fault localization approach, has the potential to be effectively applied and derive 

explanations for ML models.  

In some cases (6 out 50 images), we are unable to derive counterfactual explanations using 

our approach. Based on the initial analysis, we suspect that BEN is unable to find an inducing 

combination as it expects at least one failing test. Therefore, as part of future work, we plan to 

investigate this by increasing the initial test strength or increasing the segment size or both.  

In addition, we plan to continue our work in the following directions. In our current 

approach, a counterfactual explanation cannot be derived from the inducing combination alone for 

some images. Also, some inducing combinations suggest no changes to be made, i.e., not to mask 

any segment. First, we plan to investigate how to generate effective inducing combinations. 

Second, in the case of a model’s misclassification, a counterfactual explanation could help identify 

a set of features that contribute to the misclassification.  We plan to investigate how to use the 
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feedback from the counterfactual explanations for model debugging.  Third, we plan to extend this 

work to generate a counterfactual explanation for ML models trained with tabular data. Finally, 

we plan to include additional subject models and perform a detailed, comprehensive comparison 

with similar XAI tools. 
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Chapter 7. Conclusion 

In this dissertation, our goal is to address the challenges in testing AI-based software 

systems. First, we presented a test generation approach that applies combinatorial testing to 

hyperparameters of an ML algorithm and generates test cases.  The results from this experiment 

helped us to obtain initial understandings about the effectiveness of combinatorial testing on 

testing hyperparameters of ML algorithms. Second, we presented an empirical study that analyzes 

the effect of using sampled datasets to speed up the testing of supervised ML algorithms. To the 

best of our knowledge, this is the first effort to empirically confirm the belief that the size of a test 

dataset does not significantly impact the coverage metrics (branch and mutation coverage). The 

result from this empirical study suggests, in most cases, the practitioners can use sampled datasets 

to accelerate the testing of ML algorithms. 

Third, we proposed an approach to generate synthetic images (test data) by systematically 

combining image transformations to test DNN models used in autonomous driving systems. The 

results indicate that the synthetic images generated using our approach could detect a significant 

number of inconsistent behaviors in DNN models.  Generating data to test AI systems, particularly 

for image-based AI systems such as autonomous driving systems, is an expensive and time-

consuming process. Also, exhaustive testing is rarely feasible. Therefore, practitioners can adopt 

the combinatorial testing-based approach to generate test data to test DNNs effectively. Lastly, we 

presented an XAI approach to produce explanations for decisions made by ML models. The 

proposed approach showcases that software fault localization techniques can be successfully 

adopted to derive counterfactual explanations for ML models. As most pre-trained ML models 

(especially DNNs) are black-box in nature, in the case of misclassification by an ML model, 

counterfactual explanations (derived using our approach) can help practitioners reason the ML 
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model's output. In other words, counterfactual explanations can assist the practitioners in model 

debugging activities.  

The work presented in this dissertation could be extended along in several directions. 

Testing DNN models using Combinatorial Testing: 1). A natural progression of this work is to 

generate synthetic images by systematically combining a). several inclement weather conditions, 

and b). object segmentation of input images. 2). In addition to this, further studies are required to 

understand better the impact of synthetic images (generated using t-way testing) on various DNN 

coverage metrics.  3). Another possible area of future research would be to investigate how to 

adopt combinatorial testing in the ML model maintenance phase, 4). More broadly, it would be 

interesting to investigate the possibility of extending the proposed test generation approach to test 

DNN models used in other domains such as Natural Language Processing and Medical Imaging. 

Explainable AI (XAI): 5). Future studies should extend the XAI approach (presented in this 

dissertation) to generate explanations for ML models trained with tabular datasets. 6). 

Furthermore, it would be interesting to investigate how to use the counterfactual explanations to 

identify the root causes of bugs in DNN models. 
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