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ABSTRACT

WI-FI-BASED INDOOR LOCALIZATION USING MODEL-BASED AND

DATA-DRIVEN APPROACHES

AYOUB IDELHAJ, M.S.

The University of Texas at Arlington, 2021

Supervising Professor: Dr. Yan Wan

This thesis investigates model-based and data-driven approaches for indoor local-

ization using the Received Signal Strength Indicator (RSSI) of Wi-Fi signals. We study

multiple model-based indoor localization approaches, including the free space path loss

model, the log-distance path loss model, the International Telecommunication Union (ITU)

model, and a nonlinear regression model. We examine their indoor localization accuracy

using raw RSSI values, and filter RSSI values passed through a Moving Average filter

and a Kalman filter. For data driven approaches, we employ a family of Extreme Learn-

ing Machine (ELM) algorithms including Basic-ELM, Online Sequential-ELM (OS-ELM),

Hierarchical-ELM (H-ELM), and Kernel-ELM (K-ELM), to find the indoor position. We

provide simulation results comparing the performances of both the Machine-learning based

approaches and model-based approaches in terms of localization error to identify the algo-

rithms with the lowest localization error.
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CHAPTER 1

INTRODUCTION

Localization is one of the most fundamental tasks for autonomy and robotic appli-

cations. Global Positioning System (GPS) has been a popular localization system in open

outdoor environments [1]. However, in indoor environments, GPS falls short due to the

unavailability of line-of-sight between the satellite and the receiver. Indoor localization has

attracted broad interests given its wide applications in construction, health, cargo transport

[2, 3, 4]. A variety of indoor localization system technologies have been employed in prac-

tice [5] and are categorized as, inertial-based localization [6], magnetic-based localization

[7], ultrasound-based localization [8], optical-based localization [9], and Radio Frequency

(RF) based localization [10, 11]. RF-based devices are commonly implemented in indoor

localization because of their availability, simplicity, and cost-effectiveness. These stan-

dard devices include WiFi routers, Bluetooth modules, Cellphones, and Ultra-Wide Band

(UWB) modules. We consider using WiFi in this thesis, given its availability in most build-

ings, ease of use, range capability, and that no additional infrastructure is needed. Other

than implementation devices, it is also important to consider the choice of measurement

signals for indoor localization [12, 10]. Choices include Received Signal Strength Indica-

tor (RSSI), Time of Arrival (ToA), Angle of Arrival (AoA), and Time Difference of Arrival

(TDoA). All have been employed to estimate the distance between the target and the Ac-

cess Point (AP) nodes. RSSI measures the signal strength intensity from several APs to a

client device. We consider to use it in this thesis because of its ease in implementation, and

that no time synchronization is needed.
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The analysis of indoor localization problem can be approached using model-based

and data-driven methods. Many studies have investigated model-based indoor localization

are given as follows. Paper [13] proposes an algorithm that integrates the signal measure-

ment from an Inertial Measurement Unit (IMU), UWB, and the velocity and the heights

acquired by the lower body biomechanical model to track the location and the motion of

humans under multiple activities. Paper [9] uses a vision system to estimate the 3-D pose of

a UAV through its motion. Paper [14] introduces an accurate and scalable system to deter-

mine the user location. It uses the probability distribution function to address the noise and

interference in wireless channels and enhances indoor localization accuracy. It also uses a

common clustering technique to reduce the computational requirements. Paper [15] utilizes

the Extended Kalman Filter based on TDoA measurement signals to estimate the location

of the UAV in real-time. In this thesis, the model-based approaches are narrowed down

to WiFi propagation models. The machine learning-based approaches are also considered

in indoor localization due to the complexity of noise and interference. Once the training

phase is completed, these algorithms have the potential to produce a better positioning ac-

curacy. Paper [16] uses the Convolutional Neural Network (CNN) in indoor settings where

a Stacked Auto Encoder is combined with a one-dimensional CNN. Paper [17] proposes a

Gradient Fingerprinting method, which produces a more stable RSSI gradient adaptive to

the time-variant RSSI in indoor environments. To estimate the unknown location in [18],

Artificial Neural Networks (ANN) is applied as a function approximation to map the RSSI

measurements to coordinates on the plane. Paper [19] adopts the Recurrent Neural Net-

works (RNN) for indoor localization, where the RNN aims at finding trajectory positions

by taking into account the correlation among the RSSI samples in a trajectory. Paper [20]

cascades a two-stage machine learning approach for robust indoor localization. In the first

stage, k-Nearest Neighbor (k-NN) is employed to identify the type of indoor environment

based on real data measurements. In the second stage, k-NN is used to distinguish the
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appropriate selection of RF features that produce the highest indoor localization accuracy.

Paper [21] prposes a scalable Deep Neural Network (DNN) for indoor localization based

on Wi-Fi fingerprinting method.

The primary focus of this study, Extreme Learning Machine (ELM) is a single hidden

layer feed-forward network characterized by its good performance and fast learning capa-

bilities that can reduce learning time while achieving accurate results with minimal training

data [22]. ELM employs random mapping from the input to the single hidden layer, and

then a single matrix inversion is calculated to determine the output weights from the hid-

den layer to the output of the network. ELM is considered an effective machine learning

method that can easily fit to learning tasks in mobile devices with limited computational

power, and has been used in many machine learning applications. Paper [23] combines

CNN and ELM in the application of lane detection. [24] applies ELM-based probabilistic

forecasting method for wind power generation. The study in [25] employs ELM to estimate

the energy consumption, where it is applied to building material thicknesses and their ther-

mal insulation capability. Paper [26] uses ELM to examine the relationship between the

sales amount and some factors affecting the demand. Most relevant to our study, paper [27]

employs the Online Sequential-ELM (OS-ELM) in the application of indoor localization,

where the method is shown to shorten the time spent during the offline phase, and adapts

to changes in the environment due to its online sequential stage.

The main contributions of the thesis are listed as follows: 1) comparing the model-

based approaches to the ELM based approaches in indoor localization, 2) comprehensively

exploring multiple ELM algorithms (Basic ELM, Online Sequential ELM (OS-ELM), Hi-

erarchical ELM (H-ELM), Kernel ELM (K-ELM) and applying them to the indoor local-

ization problem, 3) investigating the effect of filtering schemes in improving the accuracy

in the model-based approaches, and 4) using the correlation coefficient as a measure to

determine the quality of RSSI samples.
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The rest of this thesis is organized as follows. Section 2 describes the RSSI model-

based indoor localization propagation and regression models. Section 3 defines and an-

alyzes basic ELM, OS-ELM, H-ELM, and K-ELM concepts. Section 4 shows a detailed

experimental design and setup. Section 5 analyzes experimental results, and conducts com-

parative performance evaluation. Finally, the conclusion and additional remarks to consider

are presented in Section 6.
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CHAPTER 2

MODEL-BASED INDOOR LOCALIZATION

In the model-based approach, four commonly used methods are adopted for localiza-

tion, including the path loss model, log-distance path loss model, International Telecommu-

nication Union (ITU) model, and nonlinear regression-based model. To use these methods,

the RSSI measurements from various AP nodes are obtained, and then incorporated as in-

put signals into each of the four models. The models then provide the estimated distances

between the AP nodes and the testing points to be used further to estimate the positions

of testing points in the traveling path of the robot. In this section, we first describe each

of these models and then the techniques to use these estimated distances to approximate

positions.

2.1 Indoor Propagation Models:

Indoor propagation models express transmitted signal strengths as functions of dis-

tances between a pair of transceiver and receiver. We consider an area where AP nodes are

placed and Ri,k is the ith RSSI measurement made for the kth AP at a testing point. The

estimated distance between the kth AP and the testing point is denoted as d̂k. We introduce

four models in this section. In a real indoor environment, these models may not be ideal

due to many factors (e.g. obstacles, signals interference, and multipath effect) that impact

the localization accuracy. The indoor propagation models are closely dependent on several

parameters that capture the dissipation effect of signal energy in amplitude, phase, and time

in a varying environment.
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2.1.1 Free Space Path Loss Model:

Equation (2.1) is the simplified free space model that links an RSSI measurement

with the estimated distance [28]. This propagation model shows the decrease of RSSI as

the distance increases logarithmically [29].

Ri,k[dBm] =−10nklog(d̂k)+Ck, (2.1)

where nk is the path loss exponent and the constant Ck captures RSSI measurements at a

reference distance. Equation (2.1) leads to the estimated distance as

d̂k = 10

(
Ck−Ri,k

10nk

)
. (2.2)

The estimation of nk and Ck can have a great effect on the correctness of this model. Con-

sidering that this model does not capture the shadowing and multi-path effects and their

impact on the transmitted signals, the accuracy of the estimated positions can degrade sig-

nificantly.

2.1.2 Log-Distance Path Loss Model:

Equation (2.3) takes into account the shadowing effects caused by different objects

forcing the traveled signals to be reflected, absorbed, and refracted [29][30]. As a conse-

quence, they generate a reduction in the signals’ transmitted power,

Ri,k[dBm] =−10nklog(d̂k)+Ck +Xk . (2.3)

Rearranging (2.3) gives the estimated distance of

d̂k = 10

(
Ck+Xk−Ri,k

10nk

)
. (2.4)

Here, Xk is the zero mean Gaussian random variable having a standard deviation σk in dBm,

N is the number of RSSI samples, and Rk is the average value of the RSSI measurements,

σk =
1
N

√
N

∑
i=1

(
Ri,k−Rk

)2
, (2.5)
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Rk =
1
N

N

∑
i=1

Ri,k. (2.6)

2.1.3 International Telecommunication Union (ITU) model:

The ITU model was specifically designed to capture the path loss in indoor settings

(e.g., residential, office, and commercial areas), where many components are considered,

including the materials inside the building, the number of floors in a building, etc. This

model uses several parameters such as, the frequency f that the AP nodes operate on, the

distant power loss coefficient N, the floor penetration factor L f , and n number of floors

between the floor and base. The ITU model is captured by the equation below,

Ri,k[dBm] = 20log( f )+Nlog(d̂k)+L f (n)−28 (2.7)

Solving for d̂k yields

d̂k = 10

(
28+Ri,k−20log( f )−L f (n)

N

)
. (2.8)

All the coefficients in (2.7) can be designed based on the recommendation of [31].

2.2 Nonlinear Regression Model:

We can also use nonlinear regression models to capture indoor propagation. Based

on the RSSI data collected from several AP nodes at various testing locations, the model

relates the transmitted signals to their transmitted distances. As the example shown in

Figure 4.3, with the increase of distances, the RSSI values are dissipated, meaning that the

strength of the signal weakens. Therefore, d̂ and the RSSI values can be related by fitting

the set of data from N AP nodes through a nth degree polynomial as [32]

d̂k =
n

∑
l=0

αlRk
l
, (2.9)
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where αl , l ∈ {1, ...,n} are the coefficients of the nonlinear polynomial. The error ek is

found by taking the difference between the true and estimated distances, which gives,

ek = dk− d̂k = dk−
n

∑
l=0

αlRk
l
. (2.10)

Here dk is the true distance between AP node and a testing point. The goal here is to solve

for the coefficients (αl) by minimizing the sum of the error squares,

E =
N

∑
k=1

e2
k =

N

∑
k=1

(
dk−

n

∑
l=0

αlRk
l

)2

. (2.11)

In order to minimize the error, (2.11) is differentiated with respect to α j, j ∈ {0, ...,n} and

set to zero
∂E
∂α j

=−2
N

∑
k=1

Rk
j

(
dk−

n

∑
l=0

αlRk
l

)
= 0, (2.12)

where,
N

∑
k=1

Rk
jdk =

N

∑
k=1

Rk
j

n

∑
l=0

αlRk
l
. (2.13)

For simplification purposes, j is set to 0 and we obtain

d =



d1

d2

...

dN


=



1 R1 R1
2

. . . R1
n

1 R2 R2
2

. . . R2
n

...
...

... . . .
...

1 RN RN
2

. . . RN
n
.





α0

α1

...

αn


= R



α0

α1

...

αn


. (2.14)

The coefficients αl are determined by using the least square estimation, α = (RT R)−1RT d.

The solution of αl leads to the estimated distances by employing (2.9).

2.3 Position Estimation:

The above methods provide the estimated distances between the AP nodes and the

locations of the testing points. With these distances, linear and nonlinear least squares

estimations can be applied to estimate the position of the testing points.
8



2.3.1 Linear Least Squares Estimation (LLS):

To relate the estimated distances to the estimated positions (x̂, ŷ), the distance for-

mula are utilized [33],

d̂1
2
= (x̂− x1)

2 +(ŷ− y1)
2

d̂2
2
= (x̂− x2)

2 +(ŷ− y2)
2

...

d̂k
2
= (x̂− xk)

2 +(ŷ− yk)
2

, (2.15)

where x and y capture the position of the AP nodes. Subtracting 1st equation from system

of equations in (2.15) yields,

d̂2
2− d̂1

2
= 2x̂x1−2x̂x2 +2ŷy1−2ŷy2 + x2

2− x2
1 + y2

2− y2
1

...

d̂k
2− d̂1

2
= 2x̂x1−2x̂xk +2ŷy1−2ŷyk + x2

k− x2
1 + y2

k− y2
1

. (2.16)

Expressing (2.16) in a matrix form

AX̂ = b, (2.17)

where,

A =



x2− x1 y2− y1

x3− x1 y3− y1

...
...

xk− x1 yk− y1


,and b =

1
2



x2
2− x2

1 + y2
2− y2

1 + d̂2
1− d̂2

2

x2
3− x2

1 + y2
3− y2

1 + d̂2
1− d̂2

3
...

x2
k− x2

1 + y2
k− y2

1 + d̂2
1− d̂2

k


. (2.18)

X̂ =

x̂

ŷ

 . (2.19)

As observed in (2.18), equation (2.17) can be solved in a form of linear least squares esti-

mation

Min||AX̂−b||, (2.20)

9



with the unique solution,

X̂ =

x̂

ŷ

=
(
AT A

)−1
AT b. (2.21)

To optimize the results of (2.21), a constrained equation can be introduced by taking the

average of (2.15),
1
N

N

∑
k=1

(
(x̂− x̂k)

2 +(ŷ− ŷk)
2
)
=

1
N

N

∑
k=1

d̂k
2
. (2.22)

Now matrices A, and b are expressed as follows,

A =


x1− 1

N ∑
N
k=1 x̂k y1−∑

N
k=1 ŷk

...
...

xN− 1
N ∑

N
k=1 x̂k yN−∑

N
k=1 ŷk

 (2.23)

b =
1
2


x2

1−
1
N ∑

N
k=1 x̂k

2 + y2
1−

1
N ∑

N
k=1 ŷk

2 + 1
N ∑

N
k=1 d̂k

2− d̂1
2

...

x2
N− 1

N ∑
N
k=1 x̂k

2 + y2
N− 1

N ∑
N
k=1 ŷk

2 + 1
N ∑

N
k=1 d̂k

2− d̂N
2

 . (2.24)

2.3.2 Non-Linear Least Squares Estimation (NLS):

An alternative to solving the localization problem is to consider the NLS approach,

where the goal is to minimize the cost function J. The sum of the squares of errors in (2.25)

is minimized through an iterative method. In this application, the gradient descent method

is used [33, 34],

J =
1

2N

N

∑
k=1

(√
(xk− x̂)2 +(yk− ŷ)2−dk

)2

. (2.25)

Implementing the gradient descent method requires picking an appropriate learning factor

(0 < α < 1), where a smaller α will slow down the convergence to the global minimum,

and a larger α may lead to the divergence from the global minimum. In addition, picking

different starting points can help to avoid mistaken local minima as the global minimum.

Algorithm 1 summarizes the procedures to implement the gradient descent method.

10



Algorithm 1 To Estimate The Position (x̂, ŷ)
Input:

Define a starting point (x1,x2).

Set a learning factor α and N maximum number of iterations.

Set termination tolerance M and gradient norm G.

Set the counter i.

Output:

1: while (i <= N and G >= M) do

2: for j= 1:2 do

3: Calculate the gradient g j =
∂J
∂x j

.

4: Minimize the error temp j = x j−αg j.

5: Store x j = temp j.

6: end for

7: Calculate the norm G = norm(g).

8: Update the counter i = i+1.

9: end while

where,

∂J
∂ x̂ = 1

N ∑
N
k=1

(√
(xk− x̂)2 +(yk− ŷ)2−dk

)2 (xk−x̂)√
(xk−x̂)2+(yk−ŷ)2

.

∂J
∂ ŷ = 1

N ∑
N
k=1

(√
(xk− x̂)2 +(yk− ŷ)2−dk

)2 (yk−ŷ)√
(xk−x̂)2+(yk−ŷ)2

.
(2.26)

The model-based methods have their limitations in solving the localization problem. The

models include multiple environment-related parameters that are sensitive to the changes in

the experimental setup, which affect the accuracy of final estimated testing point locations.

It is worth noting that the testing points are equivalent to training points when processed

11



using these methods. Figure 2.1 below gives detailed procedures for the implementation of

the model based approaches.

Figure 2.1. The overall block diagram of the model based approaches.

12



CHAPTER 3

MACHINE LEARNING-BASED INDOOR LOCALIZATION

In this section, we study machine learning-based methods to solve the localization

problem. Unlike the model-based methods, machine learning algorithms can easily learn

and adapt to a changing environment. Generally, machine learning methods are imple-

mented in two steps. First, the model is trained by processing the data to solve the opti-

mization problem. Second, the model is tested by evaluating the performance of the trained

model. There are varieties of machine learning algorithms adopted in the the literature.

Deep learning algorithms (e.g., Deep Neural Network and Convolutional Neural Network),

when trained, require multiple hidden layers, adding complexity to the computation. In

addition, deep learning algorithms suffer from two major issues; over-fitting and the long

computation time. As an alternative, this section focuses on analyzing four algorithms that

belong to the ELM family, which are characterized by their fast learning capabilities, mak-

ing them suitable for mobile edge computing on low-computing power platforms such as

robots and UAVs. The Basic-ELM is introduced first, which is an integral component of

all types of ELM algorithms. Then the OS-ELM is studied, where it examines the data

differently using a two-phase approach. The K-ELM is next analyzed, offering a single

step kernel version of the ELM, making it simpler to implement than other kernel methods.

Finally, The H-ELM is considered for multi-layer perceptron, which is effective in deep

learning applications. H-ELM is divided into two main components, the unsupervised

feature learning phase, which integrates the sparse ELM autoencoder, and the supervised

feature learning phase that uses the original

13



3.1 Basic-ELM

ELM is a type of a single hidden layer feed-forward neural network (SLFN) with

L numbers of hidden nodes (see figure 3.1). It is easier to implement than most gradient

descent algorithms for feedforward neural networks. The main feature of the ELM algo-

rithm is that it generally provides a good performance at a fast learning speed. The ELM

network is trained by only estimating its output weights, while leaving the parameters in

other layers random, thus guaranteeing a shorter learning time [22]. The randomness in the

ELM was observed and supported in biological studies [35]. In contrary to the traditional

learning algorithms, ELM learns without adjusting the parameter of the hidden neurons,

thus making it effective across number of applications [22][36].

Figure 3.1. ELM network with a single hidden layer and L number of hidden nodes.
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Let (x j, t j) denote the jth training samples, where j = {1, ...,N}. Here the input x j =

[x j1, . . . ,x jn]
T and the training targets y j = [y j1, . . . ,y jm]

T . The output of a SLFN is defined

as

L

∑
i=1

βig(Wi · x j +bi) = y j j = 1, . . . ,N (3.1)

where i is the i-th hidden node i ∈ {1, ...,L}, the output weight vector βi = [βi1, . . . ,βim]
T

connects the i-th hidden node to the output nodes, and g(.) is an infinitely differentiable

nonlinear activation function whose arguments include Wi and bi. Wi = [W1i, . . . ,Wni]
T

expresses an input weight vector connecting the n input nodes to the i-th hidden node,

and bi represents a bias vector. Primarily, the core of the ELM algorithm is centered on

estimating the output weights that minimize the error function. In order to estimate β ,

(3.1) can be written in a matrix form as follows:

Hβ = Y, (3.2)

where,

H =



h(x1)

h(x2)

...

h(xN)


=



h1(x1) h2(x1) . . . hL(x1)

h1(x2) h2(x2) . . . hL(x2)

...
... . . .

...

h1(xN) h2(xN) . . . hL(xN)


= (3.3)



g(W1 · x1 +b1) g(W2 · x1 +b2) . . . g(WL · x1 +bL)

g(W1 · x2 +b1) g(W2 · x2 +b2) . . . g(WL · x2 +bL)

...
... . . .

...

g(W1 · xN +b1) g(W2 · xN +b2) . . . g(WL · xN +bL).


(3.4)
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The elements in the first column of H equivalent to the samples of the first hidden layer

h1(x j) are expanded as

h1(x j) =


h1(x1)

...

h1(xN)

=


g(W1 · x1 +b1)

...

g(W1 · xN +b1)

=


g(W11x11 +W21x12 + . . .+Wn1x1n +b1)

...

g(W11xN1 +W21xN2 + . . .+Wn1xNn +b1)

 .
(3.5)

In addition,

β =


β T

1
...

β T
L

 and Y =


yT

1
...

yT
N

 (3.6)

The least squares solution solves equation (3.2) by providing the best estimation in the

sense that the sum of squares of the difference Hβ −Y is minimized, giving the unique

solution,

β̂ =
(
HT H

)−1
HTY. (3.7)

As shown in the equations above, H is the hidden layer output matrix of the network which

contains the output of each hidden node for each training sample, and Y is the target matrix.

Since the input weights and the bias are generated randomly, the parameters to learn are β̂ .

When implementing the ELM, the number of hidden nodes and the types of the activation

function need to be carefully designed. The ELM algorithm below, summarizes the steps

taken to estimate β̂ .
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Algorithm 2 ELM Algorithm
Input:

Set Wi, and bi randomly.

Load input data x j.

Set L.

Output:

1: Define non-linear activation function g(.).

2: Calculate H = g(Wi · x j +bi).

3: Calculate β̂ =
(
HT H

)−1 HTY .

3.2 OS-ELM

Building on the basis of ELM, Online Sequential-ELM (OS-ELM) operates in two

phases: the initialization phase for offline training, and the online sequential learning phase

for online localization. OS-ELM has features that help address two crucial problems for

indoor localization. First, it reduces the lengthy process needed in building the offline

database each time the experiment is executed differently. Second, it provides a solution

that can adapt to changes in the environment through its online sequential learning phase.

It is worth noting that online learning models are trained incrementally with data fed to

the system either one by one or block by block [27]. Before examining the two phases of

the OS-ELM, we introduce the following parameters. D is the training data in sequential

order, D = [(xi, ti)|xiεRn, tiεRm, i = 1, ...,N]. The hidden output matrix for the initialization

phase is denoted as H0, where Rank(H0) = L. N0 is the initial training data as a subset of

D, where the length of N0 ≥ L. A special case of batch-ELM is when the length of N0 is N.

The steps and the processes in the initialization phase are similar to the ones described in
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the basic ELM algorithm. In order to initialize the learning, a small initial training set N0

is used.

1. Initialization Phase (offline training):

Step 1: Randomly assign input parameters Wi and bi to each hidden node i.

Step 2: Calculate the initial hidden layer output matrix H0. Refer to (3.3), where N

is replaced by N0.

Step 3: Estimate the initial output weights β 0. Again, the objective is to minimize

||H0β 0−Y0|| given that, Y0 are the target values for N0

β
0 = (HT

0 H0)
−1HT

0 Y0. (3.8)

Step 4: Set k = 0 as the index of data blocks passed to the network.

2. Online Sequential Learning Phase (online training):

During the online sequential learning phase, newly additional RSSI samples are col-

lected and processed block by block. Each time a new block of data arrives, the

OS-ELM is updated. The implementation of this phase is summarized in these steps.

Step 1: Construct the partial hidden layer output matrix. Denote G(x jWi,bi) = g(Wi ·

x j + bi), (k + 1) as the index of the block of new RSSI samples, and Nk+1 as the

number of samples in the (k+1)-th block

Hk+1 =


G(x(k+1)

1 ,W1,b1) . . . G(x(k+1)
1 ,WL,bL)

... . . .
...

G(x(k+1)
N ,W1,b1) . . . G(x(k+1)

N ,WL,bL)

 . (3.9)

Step 2: Compute the output weight β (k+1) given the target values of

Yk+1 =
[
y(k+1)

1 , . . . ,y(k+1)
N

]T

β
(k+1) = β

(k)+Pk+1HY
k+1(Yk+1−Hk+1β

k), (3.10)
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where Pk+1 = K−1
k+1. The term K−1

k+1 is introduced to avoid inverting the matrices. It

is derived using the Woodbury formula,

Pk+1 = Pk−PkHT
k+1
(
I +Hk+1PkHT

k+1
)

Hk+1Pk (3.11)

Step 3: Update to next available block of data k = k + 1 and repeat Step 1 in the

online learning phase.

3.3 H-ELM

The Hierarchical based ELM (H-ELM) utilizes multiple layers for deep learning

applications. The structure of the H-ELM training is divided into two subsystems, un-

supervised training where the ELM sparse autoencoder is implemented, and supervised

training where the original ELM is performed [37]. The main feature of the H-ELM is

the unsupervised training phase that adopts the ELM sparse autoencoder. In general, the

autoencoder is a neural network trained to learn a representation for a set of data [38]. The

ELM-autoencoder consists of two parts, an encoder and a decoder. The encoder provides a

compressed representation of the original input using the encoder activation function g(1),

y(1) = g(1)
(

W (1) · x+b(1)
)
, (3.12)

where W (1) and b(1) are the encode weight matrix and encoder bias, respectively. A decoder

produces a reconstructed input by mapping the encoded representation y(1) using a decoder

activation function g(2),

z(2) = g(2)(W (2) · y(1)+b(2)), (3.13)

where W (2) and b(2) are the decoding weight matrix and decoder bias, respectively. The

objective of the ELM-autoencoder is to learn a function such that h(x)≈ x to approximate

the original input. Because that the ELM-autoencoder is trained following the ELM theory,

once it is initialized, there is no need to fine-tune the network. In this specific application,
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the H-ELM uses the sparse ELM autoencoder to generate a reconstructed input. Sparse

autoencoder acts as a feature selection mechanism that imposes constraints on the hidden

neurons. In general, sparsity in the context of autoencoder reveals that many features in the

input are redundant and do not need to be used [38]. Sparse ELM autoencoder performs an

l1 optimization to generate sparse and compact features of the input, resulting in a reduction

of the number of the neural nodes. Due to the sparsity of l1 optimization, an ELM sparse

autoencoder learns the representation better, and its activation is more sparse, giving better

performance and further improving the testing time of H-ELM [37]. The optimization

model of the ELM sparse autoencoder is represented as,

E = ||Hβ −X ||2 + ||β ||l1, (3.14)

where X denotes the input data, H represents random mapping output, β is hidden layer

weights, and β ||l1 is the l1 penalty term of the training model. In this case, that the optimiza-

tion process is reduced to the optimization of l1 using the FISTA (Fast Iterative Shrinkage-

Threshold Algorithm) [39]:

Step 1: Calculate Lipschitz constant γ of the gradient of the first term ||Hβ −X ||2 in

Equation 3.14

Step 2: Initialize y1 = β0 and t1 = 1. Then start the iteration for k ≥ 1,

βk = argmin{γ

2
||β − (βk−1−

1
γ

∇(||Hβk−1−X ||2))||2 + ||β ||l1} (3.15)

tk+1 =
1+
√

1+4t2
k

2
(3.16)

yk+1 = βk +(
tk−1

tk+1
)(βk−βk−1). (3.17)
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By completing the iterative steps, we achieve a compact representation of the original input.

Then, the hierarchically encoded output from the unsupervised learning phase is randomly

projected using the advantage of the ELM random features, where, the original ELM-based

regression is performed for the supervised learning phase.

3.4 K-ELM

The Kernel based ELM (K-ELM) substitutes the inner product with a nonlinear ker-

nel function, for processing in a high dimension space [40] [41]. The kernel computes the

inner product in the feature space directly from the input data,

ΩELMi, j = h(xi) ·h(x j) = K(xi,x j), (3.18)

where h(.) is the hidden layer feature mapping, and (xi,x j) are the i-th and j-th input data

point. In (3.18), there is no need to implement the transformation, since h(.) does not need

to be known. It is sufficient to only evaluate the nonlinear kernel function. The K-ELM

algorithm is expressed in a single learning step as [42] [34],

f (x) = K(x)T
(

I
λ
+ΩELM

)−1

Y, (3.19)

where λ is a tunable regularization parameter which helps stabilize the kernel matrix, K(x)

is a n vector of components K(x) = K(xi,x j), and ΩELM is a n by n kernel matrix of

ΩELM = HHT =


h(x1)

T h(x1) . . .h(x1)
T h(xn)

...

h(xn)
T h(x1) . . .h(xn)

T h(xn)

 . (3.20)

The derivation of (3.19) involves the minimization of the regularized sum of squares error

function

J(w) =
1
2

N

∑
n=1

(
W T h(xn)−Yn

)2
+

λ

2
W TW. (3.21)
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Taking the partial derivative with respect to the learning weights W , and setting it to zero

yields:

W =− 1
λ

N

∑
n=1

(
W T h(xn)−Yn

)
h(xn) =

N

∑
n=1

anh(xn) = HT a. (3.22)

For simplification, an is defined as

an =−
1
λ

N

∑
n=1

(
W T h(xn)−Yn

)
. (3.23)

Substituting W = HT a into J(w) yields

J(a) = Y TY −Y T HHT a−aT HHTY +aT HHT HHT a+
λ

2
aT HHT a, (3.24)

where J(w) is

J(w) = Y TY −Y T HW −W T HTY +W T HT HW +
λ

2
W TW. (3.25)

Under the Mercer’s theorem, the kernel matrix is symmetric (ΩELM = ΩT
ELM) and positive

semi definite, where αT ΩELMα ≥ 0 for any α vector. We obtain

J(a) = Y TY −Y T
ΩELMa−aT

ΩELMY +aT
Ω

2
ELMa+

λ

2
aT

ΩELMa. (3.26)

. Minimizing the cost function J(a) gives the optimal a as

a =

(
ΩELM +

I
λ

)−1

Y. (3.27)

Now, the following output function of the K-ELM is

f (x) =W T h(x) = aT Hh(x) = K(x)T
(

I
λ
+ΩELM

)−1

Y. (3.28)

By (3.28), we avoid using the feature vector h(x) which requires us to use feature space

of high dimensions. Again, when performing the K-ELM, the number of L and the hidden

layer features mapping h(.) does not need to be known.

22



CHAPTER 4

EXPERIMENTAL DESIGN AND SETUP

4.1 Experiment Setup

We conduct experimental studies in the Dynamical Networks and Control labora-

tory to evaluate the performance of the model-based approach and data-driven approach

for indoor localization. Figure 4.1 shows a visual layout of the lab that serves as the ex-

perimental environment. As seen in Figure 4.1, the experiment setup involves designing a

system of five different AP node locations (router locations) and multiple testing/training

points. Initially, the RSSI signals get transmitted from various AP node (routers) loca-

tions to the mobile robot via multiple propagation paths. Each path interacts with different

objects and surfaces in an indoor environment through the propagation effects (reflection,

diffraction, scattering, and absorption). These effects dissipate the energy of the transmit-

ted signals [43]. The locations of the AP nodes and the testing/training points are placed

with reference to the corner closest to the lab door, and it is set as the origin in a standard

X-Y plane. The RSSI fingerprints are collected at each data point (testing/training points),

where the mobile robot scan the transmitted signals 100 times at five seconds intervals to

build the database that will be used to provide an estimate for the testing locations. MAT-

LAB R2017b is employed to carry out the simulation that will examine the performance

of the suggested methods. The system characteristics where the simulations are completed

are as follows: Intel(R) Core(TM) i7-9750H @ 2.60GHZ, with 16 GB RAM. The per-

formance of the adapted localization techniques is measured by taking the distance error

Derror. Equation 4.1 is calculated by taking the distance between the true locations (x,y)
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and the estimated ones (x0,y0). Table 4.1 gives the exact locations of the AP nodes inside

the DNC lab.

Derror =
√
(x− x0)2 +(y− y0)2. (4.1)

Figure 4.1. The layout of the DNC lab (light blue areas represent furniture and other phys-
ical objects).

Table 4.1. List and location of signal sources used inside the DNC lab

AP Nodes Signal Sources Sources Location (m)
AP1 Linksys098683 (1.85, 0.05)
AP2 Huawei (5.18, 6.43)
AP3 Linksys29213 (6.96, 11.55)
AP4 DNC Lab (8.74, 0)
AP5 TP Link (2.44, 10.26)
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4.2 Data Collection

We build a database to store the RSSI values. The RSSI fingerprinting technique is

used since the RSSI samples can be measured from a mobile device. RSSI fingerprinting

consists of two phases: offline training and online training. During the offline training

phase, the RSSI measurements of each AP node are stored in a database along with the

known coordinates of the mobile robot. During the online phase, the current RSSI location

will be compared by an ELM matching algorithm to those stored in the database, and the

closest match is returned as the estimated location. The RSSI fingerprinting approach is not

robust to changes in the environment. Every time there is a change in the experimental setup

(e.g., moving furniture, relocating the AP nodes,...etc.), a new database must be built to

account for those changes. The figure 4.2 below illustrates the RSSI fingerprinting method.

Figure 4.2. RSSI fingerprinting method.
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4.3 Data Quality and Filtering

After the data collection process is complete, the correlation coefficient ρ(X ,Y ) will

be calculated to examine the quality of the collected data before the estimation procedures

described in Section 2 and Section 3. ρ(X ,Y ) quantifies the relationship between two random

variables X and Y [44]. X is the actual distance between the AP nodes and the testing points.

Y is the average RSSI value. To determine ρ(X ,Y ), the RSSI measurements across all the

AP nodes from all the testing points are considered, and the strength between X and Y is

expressed with the best linear prediction.

ρX ,Y =
Cov[X ,Y ]

σX σY
=

∑((X− X̄)(Y − Ȳ ))√
∑((X− X̄)2(Y − Ȳ )2)

, −1≤ ρX ,Y ≤ 1, (4.2)

where, Cov[X ,Y ] is the covariance of X and Y , σx and σy are the standard deviation of X

and Y , and X̄ , Ȳ are the average values of X and Y . A ρ close to ±1 represents a strong

correlation between X and Y . A ρ close to 0 indicates a weak correlation between X and

Y . As an example, the experiment below shows a correlation coefficient of -0.755. The

ρ here is negative, indicating that the distance of transmission increases with a decrease

in the strength of the transmitted signal as shown in Figure 4.3. ρ is relatively close to

-1, indicating a good correlation between the distance and RSSI samples, and that the data

quality of this experiment is acceptable for further analysis.

The RSSI signals can be very unstable and noisy due to the influence of the propaga-

tion effects. To control data quality, filtering techniques such as the Moving Average filter

(MA) and Kalman Filter (KF) are applied to the raw data. This step is crucial to improve

the performance of localization using model-based methods. The MA filter is an optimal

solution to reduce the random white noise from the RSSI signals. The MA filter is simple
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Figure 4.3. Plot of the RSSI Vs distance with a correlation coefficient of ρ(X ,Y ) =−0.755.

to use; it operates by averaging the number of points from the RSSI signal to produce a

filtered signal. Equation (4.3) summarizes the MA filter

y(i) =
1
M

M−1

∑
j=0

R(i+ j), (4.3)

where, y is the filtered output, M is the number of points used in moving average (moving

window), and R(i) is the i-th measurement of the RSSI input signal. The Kalman Filter

(KF) is an optimal estimator to estimate the current state xk of a system. It is implemented

in two recursive steps, prediction and correction, to reduce the magnitude of the error co-

variance Pk. The prediction phase finds the state and error covariance in the next step. In

the correction phase, we the state prediction is modified based on the current measurement

Zk [45]. To reduce the noise from the RSSI measurements, we choose to implement a lin-

ear scalar KF. The process noise covariance Q is set to a small value (Q = 0.001). The

measurement noise covariance R is set to R = 1.
27



To start the KF estimation, we initialize the state and covariance xk−1 and Pk−1. k is

the counter, and each time k is increment by 1. xk and Pk denote the values after including

measurement Zk (posteriori). x−k and P−k denote the values before including measurement

Zk (priori). At the kth iteration, KF estimation is found as follows,

Prediction Phase:

x−k = xk−1

P−k = Pk−1 +Q

Correction Phase:

Kk = P−k
(
P−k +R

)−1

xk = x−k +Kk(Zk− x−k )

Pk = (1−Kk)P−k

Kk is the Kalman gain, and the measurements Zk are the actual RSSI values to be filtered

out. The control input is omitted since it is zero in our system. Figure 4.4 displays the

unstable nature of the RSSI measurements versus the smooth filtered RSSI samples.

Figure 4.4. The filtered RSSI measurements from AP1.
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CHAPTER 5

RESULTS

5.1 Results of the model based indoor localization

The localization errors between the actual and estimated positions using all the pro-

posed model-based approaches are summarized in Table 5.1. A 5th-degree polynomial is

used in the implementation of the nonlinear regression model. The localization errors re-

ported include the raw RSSI, the filtered (KF) RSSI, and the filtered (MA) RSSI data that

are integrated using LLS and NLLS estimation techniques. We find that the NLLS estima-

tion technique contributes to an increase in the overall performance in terms of localization

error in all four models, especially in the free space models. Comparing the NLLS with

the LLS method, the path loss and log-path loss models demonstrate a 29% increase in

their localization performance, and the ITU model produces a 35.40% increase in its per-

formance. When it comes to the nonlinear regression model, the NLLS shows a 12.80%

improvement over the LLS method. Also, It is concluded that using the raw RSSI data

in indoor propagation models results in a poor performance, as demonstrated by the large

localization errors in the range of (2.94m, 3.69m). It is evident from the results shown in

Table 5.1 that the filtering schemes (MA and KF) can improve the overall localization ac-

curacy of the indoor propagation models. Also, we noticed an improvement of localization

error when comparing the raw RSSI results of the log path loss model with the path loss

model. We observed an improvement of 1.15m using the LLS method and 0.75m using

the NLLS. This performance improvement is due to the variable added in Equation 2.3

that accounts for the multipath effect. On the other hand, the filtered results (KF and MA)

show negligible differences in the range of (0.06m, 0.26m) when the path loss and log path
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loss models are compared. In summary, the nonlinear regression model produces the best

performance with a localization error of 1.55m using the NLLS method. Among the indoor

propagation models, the ITU model performs the best with a localization error of 2.00m

(NLLS). Figure 5.3 shows the visual presentation of the estimated locations of the mobile

robot to their corresponding true locations using the models of the overall best results.

Table 5.1. Localization error of the model based approaches in meters

LLS NLLS

Proposed Method Raw(m) MA(m) KF(m) Raw(m) MA(m) KF(m)

Path Loss 5.37 4.26 4.75 3.69 2.92 3.62

Log Path Loss 4.22 4.18 4.60 2.94 2.86 3.36

ITU (N=30) 6.45 3.00 2.91 3.59 2.00 2.08

Nonlinear Regression 2.06 2.06 1.70 1.81 1.80 1.55
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Figure 5.1. ITU-NLLS.

Figure 5.2. Regression-NLLS.

Figure 5.3. Plots of the estimated locations using ITU-NLLS and Nonlinear Regression-
NLLS methods. 31



5.2 Results of the Machine Learning-based Indoor Localization:

As demonstrated in Table 5.2, the mean localization errors generated by Basic-ELM,

OS-ELM, and H-ELM are 2.629m, 2.139m, and 2.568m, respectively. Generally, ELM

algorithms can learn extremely fast, and this is apparent from the training time it takes

to learn the network. The K-ELM provides the best localization accuracy of 1.498m. It

shows an improvement in performance by 43.02%, 30%, and 41.67% when compared to

the Basic-ELM, OS-ELM, and H-ELM. The four ELM algorithms are also compared in

terms of he Cumulative Density Functions (CDFs) of the distance errors, as shown in Figure

5.4. In the CDF plots, K-ELM again shows the best performance, as it reaches probability

of 1 at a smaller distance error value. Figures (5.5, 5.6, 5.7, 5.8) give a graphical display

of the estimated locations using the four ELM algorithms. The Basic-ELM, OS-ELM,

and H-ELM show higher variations giving the scattered nature of their estimated locations.

K-ELM produces fewer variances and high certainty in estimating the testing points.

In this thesis, the indoor localization error of the data-driven approaches using mul-

tiple ELM algorithms and the model-based approaches are relatively similar, given the lo-

calization error between the nonlinear regression model (KF) using NLLS and the K-ELM

where it shows a slight difference of 0.05m. In addition, the filtered ITU indoor localiza-

tion error results using NLLS are approximately equal to the OS-ELM result with a small

difference of 0.06m (KF).

Table 5.2. Performance comparison between the proposed ELM algorithms

Proposed Method Training Time(s) Testing Time(s) Accuracy (m)
Basic-ELM 0.260 0.0036 2.629
OS-ELM 1.389 0.017 2.139
H-ELM 0.382 0.018 2.568
K-ELM 0.330 0.0072 1.498
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Figure 5.4. Localization accuracy CDFs across multiple ELM algorithms.
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Figure 5.5. Estimated locations using ELM.

Figure 5.6. Estimated locations using OS-ELM.

34



Figure 5.7. Estimated locations using H-ELM.

Figure 5.8. Estimated locations using K-ELM.

35



CHAPTER 6

CONCLUSION AND FUTURE WORK

This paper analyzed the indoor localization problem using both model-based and

machine-learning methods including multiple ELM algorithms. For the model-based ap-

proaches, multiple steps are involved, including filtering, parameters estimation, distance

calculation, and position estimation. On the other hand, the main focus of ELM algorithms

is toward the processing of data. The model-based approaches are closely dependent on the

estimation of parameters, which must be updated each time the environment changes. ELM

algorithms remove the need of using filtering schemes, where are important steps in indoor

propagation models-based location to improve the localization accuracy. The data collec-

tion and the quality of data must be examined first before analyzing the performance of the

proposed methods. As concluded in this paper, the two approaches produce approximately

similar results when we closely compared their indoor localization accuracies.

There are several directions of the future work. First, the geometric layout and height

to place the AP nodes and the number of AP nodes used for signal coverage area inside the

lab can be optimized. Second, with the understanding of WiFi localization performance,

the fusion of data from multiple sensor sources can be used to improve the indoor local-

ization accuracy [10], Furthermore, the performance of localization can be improved by

investigating other adaptive filtering and estimation techniques in the model-based meth-

ods and expanding the number of training and testing samples in data-driven approaches.
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