
DECOUPLING-BASED APPROACH TO CENTRALITY DETECTION IN

HETEROGENEOUS MULTILAYER NETWORKS

by

KIRAN MUKUNDA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2021

Copyright © by Kiran Mukunda 2021

All Rights Reserved

ACKNOWLEDGEMENTS

I am very grateful for all the guidance provided by Dr. Sharma Chakravarthy

during the research work. This work would not have been complete without the

constant motivation provided by him. His passion towards research and sincerity in

work are an inspiration for life. I would like to thank my thesis committee mem-

bers Ramez A Elmasri and David Levine for serving in my committee and providing

valuable suggestions and feedback.

I would also like to extend my sincere gratitude towards Dr. Abhishek Santra

for all the guidance and support throughout the year. I thank all my ITLab team

members for providing the feedback and moral support.

I very thankful for my family and friends for their constant support and encour-

agement throughout my career. Without the guidance and support from all them it

would not have been possible to complete this work. Finally, I am thankful to UTA

for providing me this opportunity to present my work.

July 28, 2021

ii

ABSTRACT

DECOUPLING-BASED APPROACH TO CENTRALITY DETECTION IN

HETEROGENEOUS MULTILAYER NETWORKS

Kiran Mukunda, M.S.

The University of Texas at Arlington, 2021

Supervising Professor: Prof. Sharma Chakravarthy

Graph analysis is one of the techniques widely used for data analysis. It is used

extensively on single graphs. Its ability to capture entities and relationships makes it

an attractive data model. Search on graphs, such as finding triangles, cliques, shortest

paths, etc., and aggregate analysis, such as communities, substructure, or centrality

measures have well-defined algorithms for single graphs. The centrality measure,

which is the focus of this thesis, identifies the most important nodes in a graph or

network. While there are many centrality measures, the most commonly used ones

are degree and betweenness centrality. Algorithms for analyzing these measures are

numerous for single graphs.

In addition to graphs, multilayer networks (MLNs) are being used to model

complex data sets. MLNs consist of several layers, each being a graph. If there are

different types of entities in each layer and inter-layer edges are present, then the net-

work is an example of a Heterogeneous Multilayer Network (HeMLN). Due to the lack

of algorithms for HeMLNs, they are currently analyzed using aggregation of HeMLN

iii

layers including inter-layer edges into a single graph. An alternative projection-based

approach is also used to analyze HeMLNs by transforming it into a single graph.

A decoupling-based framework has been proposed to avoid aggregation or pro-

jection and still obtain accurate results. This approach analyses the layers inde-

pendently and composes the partial results to obtain results for a HeMLN. These

algorithms have been shown to produce accurate results and are also efficient. An-

other advantage of this approach is that the layers can be analyzed in parallel. The

composition algorithm produces the results of the entire HeMLN. To the best of

our knowledge, there are no algorithms that compute centrality measures directly on

HeMLNs. This thesis focuses on developing decoupling-based algorithms for degree

and betweenness centrality measures for HeMLNs.

The challenge is to minimize the amount of information retained from each layer

for use during composition to maximize accuracy. Also, keep the algorithm more

efficient than its single graph counterpart, which is considered as the ground truth.

This thesis proposes different heuristics and compares the results with the ground

truth and naive algorithm. The proposed heuristics consistently improve the

accuracy as compared to the naive algorithm while taking less time than

the single graph approach.

Finally, the algorithms proposed in the thesis are tested against both real-

world and synthetic data sets with different graph characteristics. This is important

to demonstrate the efficacy of heuristics on an arbitrary graph. The results obtained

are analyzed in detail to empirically establish the heuristic performance in terms of

accuracy, time, and space complexity.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

ABSTRACT . iii

LIST OF ILLUSTRATIONS . viii

LIST OF TABLES . xi

Chapter Page

1. INTRODUCTION . 1

1.1 Problem Statement . 7

1.2 Thesis Organization . 8

2. RELATED WORK . 10

2.1 Degree centrality . 10

2.1.1 Other degree centrality formulations 12

2.1.2 Applications of Degree Centrality 14

2.2 Betweenness centrality . 14

2.2.1 Variants of betweenness centrality 14

3. MULTILAYER NETWORK ANALYSIS 18

3.1 Decoupling Approach . 19

3.1.1 Advantages of Decoupling approach 20

3.1.2 Challenges using Decoupling approach 20

3.2 Related work at ITLab . 21

3.2.1 Community detection . 21

3.2.2 Substructure discovery . 21

4. DATASETS . 23

v

4.1 Synthetic graphs . 24

4.1.1 Graph with 100,000 nodes and 1,000,000 edges (100KV1ME): 24

4.1.2 Characteristics of all the synthetic datasets used in this thesis 27

4.2 Real-world datasets: . 30

4.2.1 International Movie Database (IMDB) 30

4.2.2 The DBLP Computer Science Bibliography 31

4.2.3 Webgraph datasets: . 32

5. DEGREE CENTRALITY . 33

5.1 Degree Centrality Heuristic 1 . 35

5.1.1 Design . 35

5.1.2 Sample Data Set Results and Analysis 40

5.2 Degree Centrality Heuristic 2 . 42

5.2.1 Design . 42

5.2.2 Sample Data Set Results and Analysis 42

5.3 Large synthetic and real-world dataset experiments and performance

evaluations . 45

5.4 Extending the heuristics to k layers 49

5.5 Comparing the information retained from each layer and the accuracy 52

6. BETWEENNESS CENTRALITY . 54

6.1 Naive approach . 54

6.2 Ground truth for betweenness centrality computation of HeMLN . . . 54

6.3 Challenges . 55

6.4 Intuition . 55

6.5 Degree-dominant heuristic . 58

6.5.1 Analysis of Degree-dominant heuristic: 60

6.6 Degree-betweenness heuristic . 66

vi

7. CONCLUSIONS AND FUTURE WORK 76

REFERENCES . 78

BIOGRAPHICAL STATEMENT . 85

vii

LIST OF ILLUSTRATIONS

Figure Page

1.1 An example of Heterogeneous Multilayer Network - IMDB dataset. . . 6

2.1 Simple graph for calculating degree centrality 11

2.2 Sample graph where the characteristics of a graph vary based on time 13

2.3 Sample graph for calculating Complex degree centrality. 13

2.4 Sample graph for calculating Betweenness centrality 15

3.1 Decoupling approach . 20

4.1 Layer 1 network characteristics. 26

4.2 Layer 2 network characteristics. 26

4.3 Degree distribution of actor, director and movies layer. 31

5.1 Network Decoupling approach for identifying Degree based hubs for

HeMLNs using Heuristic 1 . 36

5.2 Example of heuristic 1 . 39

5.3 Heuristic 1 Jaccard’s Coefficient (accuracy) results 40

5.4 Precision plot for heuristic 1 . 41

5.5 Recall plot for heuristic 1 . 42

5.6 Accuracy comparison of heuristics 1 and 2 43

5.7 Performance evaluations for different real-world data sets. 44

5.8 Comparison between heuristic 1 and 2 w.r.t amount information re-

tained from each layer. 45

5.9 Accuracy results for large synthetic data sets (100K1ME to 200K10ME) 46

viii

5.10 Performance comparison for large synthetic data sets (100K1ME to

200K10ME) . 47

5.11 Heuristic 2 accuracy for large real-world datasets 48

5.12 Performance comparison for real world datasets using heuristic 2 . . . 48

5.13 Extending the heuristic to 3 layers . 50

5.14 Accuracy of IMDB and DBLP datasets considering 3 layers 50

5.15 Three layer performance improvement for IMDB and DBLP datasets . 51

5.16 Accuracy comparison with respect to the amount of information re-

tained from each layer for different datasets. 53

5.17 Performance comparison with respect to amount of information retained

from each layer for different datasets. 53

6.1 A sample graph to illustrate the intuition behind approximating be-

tweenness centrality measure. 57

6.2 Degree-dominant heuristic decision tree 59

6.3 Jaccard’s coeffecient plot for various small datasets using degree-dominant

heuristic. 63

6.4 Precision plot for various small datasets using degree-dominant heuristic. 64

6.5 Accuracy comparison of degree-dominant heuristic on large datasets . 64

6.6 Precision comparison of degree-dominant heuristic on large datasets . . 65

6.7 Decision tree for degree-betweenness heuristic 66

6.8 Comparing the accuracy of naive approach, degree-dominant heuristic

and degree-betweenness heuristic . 67

6.9 Comparing the accuracy of naive approach, degree-dominant heuristic

and degree-betweenness heuristic . 70

6.10 Betweenness centrality calculations on HPC 72

6.11 Accuracy comparison of degree-betweenness heuristic on larger datasets 73

ix

6.12 Precision comparison of degree-betweenness heuristic on larger datasets 74

6.13 Performance of degree-betweenness heuristic on larger datasets 74

6.14 Betweenness centrality performance comparison based on node distri-

bution . 75

x

LIST OF TABLES

Table Page

2.1 Normalized degree centrality values for the graph in Fig 2.1 11

2.2 Group degree centrality values for the graph in Fig 2.1 12

2.3 Betweenness centrality values of the nodes 15

4.1 Characteristics of 100KV1ME dataset 25

4.2 Smaller synthetic dataset characteristics 28

4.3 Synthetic graph characteristics of larger datasets 29

4.4 Characteristics of IMDB dataset . 30

4.5 Characteristics of IMDB dataset . 30

4.6 Characteristics of DBLP dataset . 31

4.7 Characteristics of DBLP dataset . 31

4.8 Webgraph dataset characteristics . 32

5.1 Ground truth result . 39

6.1 Characteristics of nodes in layer 1 . 57

6.2 Characteristics of nodes in layer 2 . 57

xi

CHAPTER 1

INTRODUCTION

Graph model uses nodes and edges to represent entities and relationships. They

are a type of NoSQL database. This representation helps us in leveraging different

types of analysis based on relationships that exist in the connected data. For example,

the relationship between the individuals as to how they communicate, cities where

they live, etc. This representation overcomes some of the limitations of relational

databases in capturing relationships without resorting to representations that require

joins as in the relational model. This representation is also easier to visualize and un-

derstand. In the real-world, graph databases are becoming larger and more complex.

This representation also facilitates querying and analysis in multiple ways. Central-

ity analysis helps understand the nodes critical in information flow under different

assumptions. Hence, their computation in graphs, as well as multilayer networks is

becoming increasingly important. Analyzing these using traditional methods have

become cumbersome and highly inefficient. We will introduce multilayer networks

after discussing centrality in a graph or a network.

There are several algorithms for analyzing the single graphs including com-

munity detection, substructure identification, centrality, finding cliques, etc. The

distribution of edges within a graph is not always equal with a high concentration

of edges within a special group of vertices and a low concentration of edges between

them. This special group of vertices form a community within a graph [1] it can be

used for example to detect a group of people with similar interest in social networks.

Prominent and interesting substructures can be identified in a large graph [2] which

1

can later be used for other applications such as data compression, etc. So analyz-

ing graphs for various needs is important and can play an important role in solving

problems of the real world.

Centrality nodes are the most influential nodes in any graph. Many people

have proposed different interpretations of centrality measures such as the number of

connections, bridge nodes, belongings, leader of a community, etc. Freeman (1979)

analyzed various published papers and categorized them using communication net-

works as an example. He found three kinds of centrality measures, first one based on

the degree of points and indexes of communication activity, the second one is based on

betweenness which tells us about the control of communication within the network,

last one is based on the closeness of the node to its community. Other centrality

measures, such as Eigenvector, Katz centrality, Percolation centrality, page rank have

also been defined. In this thesis we are focusing on degree and betweenness centrality

measures.

Degree centrality (DC) tells us about the relative importance of a node within

the given network based on the number of edges it has [3]. If the edges had weight, it

would give us the relative strength of the node within the network. In the real-world

data sets, usually, the degree of nodes follows the power law distribution i.e. a small

group of nodes have higher degree compared to others. These usually form the most

influential nodes in a graph also called as hubs.

Degree centrality is being used across networks to calculate the number of con-

nections a node has within the network. For example, in a social network, the degree

of a person indicates the number of connections that the person has in the network.

After sorting the actors in descending order based on their degree values, top-k people

with the most degrees can be identified. These top-k people are the most influential

within that social network.

2

The time complexity of calculating the degree centrality is O(E) where E is total

number of edges in the graph. As this is linear, it is widely used in analyzing very

large graphs. Computing degree centrality is different for undirected and directed

graphs. This thesis focuses on undirected graphs for simplicity.

Though degree centrality tends to give us some insights in the graph it is still

a local measure of importance. For instance, it fails to capture the node that is

present in the center of the graph but with very few edges lying on it. So, to identify

these types of nodes there is a need to consider other characteristics of the nodes

along with the degree.

Betweenness centrality is calculated based on the number of the shortest

paths that pass through the node [4]. These nodes act as bridge nodes in the network.

For example in a telecommunication network, more information passes through a node

which has higher betweenness centrality value. Thus nodes with higher betweenness

centrality value have higher control over the given network and it is important to

identify these in a given network.

The underlying task for computing the betweenness centrality value is to com-

pute all pair shortest path (APSP). It takes exponential time for computation (O(V 3)

where V is the number of vertices in the graph). As the computations are more for

APSP it is quite challenging to calculate Betweenness centrality values for larger

graphs. Hence, significant research is being done in approximating the betweenness

centrality values through various methods using random walks [5], through sam-

pling [6], etc. Unlike the degree centrality, this is a global measure as it is dependent

on the entire network.

Using the above centrality measures we can identify the most influential nodes

(hubs) in a single graph. In this thesis, we use two ways to identify the hubs:

3

1. Top-k nodes - by sorting the centrality values in decreasing order of the cen-

trality metric value and taking the top-k nodes.

2. Hubs - any node with above-average centrality value is considered as a hub in

that network.

All the above-mentioned analysis is for single graphs. However, for multilayer

networks for multiple types of nodes, as per our knowledge there is no algorithm for

centrality computation.

Multilayer networks provide an effective analysis model. It is efficient and

flexible. Multilayer networks consist of multiple single graphs and a set of edges which

connect these single graphs. Multilayer networks provide the flexibility of analyzing

each layer individually and processing further based on the heuristics. Going forward

we will see how the above-mentioned centrality measures can be calculated for a

multilayer network.

Based on the type of entities that each layer consists of, multilayer networks

can be of three types, they are Homogeneous, Heterogeneous, and Hybrid multilayer

networks.

Homogeneous Multilayer Networks (HoMLNs) is where all the layers

have the same entities/nodes. It is used to solve problems where there are multiple

relationships among the same set of nodes, for example, if we take airline networks,

different airline companies have different network for the same set of cities. For

example, if one layer represents American airline network, another layer captures the

Delta airline network for the same set of cities and so on. Analyzing these two layers

would answer questions like which is the best city for an airline to create the next

hub? [7–9].

Heterogeneous Multilayer Networks (HeMLNs) have different entities

in each layer. For example in the IMDB data set, one layer represents the co-actors

4

another layer represents the co-directors and third layer for movies. These layers are

interconnected by inter-layer edges. So HeMLN consists of intra-layer and inter-layer

edges with each layer having different entities [10].

Any synthetic graph can also be separated into multiple layers by simply group-

ing a set of nodes as a layer. This shows that any graph can be analyzed as an HeMLN

once they are separated into layers without losing any data. Graph separation is used

for efficient analysis of these data sets [11].

Hybrid multilayer networks (HyMLNs) is a combination of both HoMLNs

and HeMLNs. For example, in the IMDB data set we have co-actors as a layer, co-

directors as another layer now if we want to include another layer where two co-actors

are connected if they are friends on Facebook we might want to use a combination

of HoMLNs and HeMLNs. In this case, the IMDB co-actors and the Facebook friend

layers act as HoMLNs and co-directors act as HeMLN. Any multilayer network which

consists of both HeMLN and HoMLN form a Hybrid multilayer network (HyMLN)

[12–16].

This thesis mainly focuses only on HeMLNs. Figure 1.1 shows an example

of HeMLNs where layer one consists of co-actors and layer two consists of nodes

representing co-directors and a third layer consisting of movies. Each node within

a layer is connected by its intra-layer edges representing the relationship between

them. In this example, co-actors are connected if they have acted in the same movie.

Directors are connected if they have co-directed a movie together. In movie layer, if

the two movies belong to the same genre they are connected by an edge.

There are also inter-layer edges for example if an actor has acted in a movie then

an inter-layer edge connects the actor and the movie. If an actor has also directed

a movie then there is an inter-layer edge between actor and director layers. As the

5

Figure 1.1: An example of Heterogeneous Multilayer Network - IMDB dataset.

entities are different in each layer and have inter-layer edges this IMDB data set

belongs to Heterogeneous Multilayer networks.

There are many value-added applications of HeMLNs centrality such as to an-

alyze transportation networks [17], Protein-protein interaction networks [18], disease

behavior networks [18], etc. HeMLNs provide opportunities to solve computational

challenges and efficiency issues [19].

There has been a lot of research on analyzing these multilayer networks. One

way is to aggregate all the layers and compute the centrality measures, while this

gets the work done but it is not the most efficient solution in some cases there is data

loss as well. Apart from aggregation, there are solutions that use layer projections,

network simplification approaches to solve multilayer networks. Attribute graphs are

also used widely in these cases to represent additional information in the same single

graph.

6

For HeMLNs one way to analyze centrality measures is to include all the layers

into a single graph. All the nodes and the edges of each layer are included. Also,

the inter-layer edges are retained to form a single large graph. Then single graph

centrality measure algorithms are run on this large graph to get the most influential

nodes. While this is a solution but it does not take advantage of the individual layers

nor it is the most efficient solution.

While there are no well-defined framework to analyze multilayer networks, in

this thesis we explore decoupling-based approach. It is based on a partition-based

paradigm. Decoupling-based frameworks have been used in the past research activities

to analyze the Multilayer networks and it is proven to be effective. Like in the

cases of analyzing substructures in MLNs using decoupling approach [20] or detecting

communities in MLNs using decoupling approaches [12] etc.

The advantages include the parallel computations on the individual layers. The

entire Multilayer network data is not analyzed at once hence it reduces the space com-

plexity as well. This framework provides an opportunity to analyze individual layers

independently later combine the partial results. While these are some of the major

advantages, it is quite challenging to identify the correct heuristic to get accurate

results in this approach. Going forward we introduce and discuss in detail the various

heuristics to identify centrality values in HeMLNs and showcase the corresponding

results. We have also performed experiments to demonstrate the correctness of the

heuristics that have been proposed.

1.1 Problem Statement

For a given Heterogeneous Multilayer Network we need to design and implement

algorithms to detect various centrality-based hubs using the decoupling framework.

Here we need to compute each layer individually and only once. A composition

7

function needs to be defined to make use of the pre-computed individual layer results

and compute the desired centrality measure. A list of hubs needs to be given out as

the output of the computations. We have considered the two most used centrality

measures for this thesis, they are:

1. Degree Centrality

2. Betweenness Centrality

The single graph approach constitutes the ground truth, where all the nodes and edges

of all the layers are combined into a single graph and the hubs are calculated using

existing single graph algorithms. The proposed heuristics have been compared this

baseline. Extensive experimentation of the proposed heuristics has been performed on

variety of data sets including synthetic and real-world data sets considering a diverse

set of graph characteristics.

The added advantage of using the divide and conquer approach is to be explored

in the performance analysis section. The accuracy is calculated using the Jaccard

Similarity index to understand the similarity in results from our heuristics and the

ground truth. Precision, Recall and F1 Scores are also used for analysis.

For simplicity, we are currently considering undirected and unweighted sin-

gle graphs. This is the first thesis to explore the advantages and disadvantages of

decoupling-based framework on HeMLN centrality measures.

1.2 Thesis Organization

Remainder of the thesis paper is organized as follows:

Chapter 2 is about the related work in degree and betweenness centrality

measures.

Chapter 3 gives details of decoupling-based framework for multilayer networks.

Chapter 4 gives details about the data sets that are used in this thesis.

8

Chapter 5 is about the two heuristics for degree centrality and the related

experiments.

Chapter 6 is about the two heuristics on betweenness (stress) centrality and

the related experiments.

Chapter 7 includes conclusion and future work.

9

CHAPTER 2

RELATED WORK

The concept of centrality of a graph was first proposed by Bavelas in 1948 [[21]]

and it is researched extensively thereafter. These concepts have been recently applied

on large data sets and scientists are working on making its computation efficient and

reduce the space complexity of algorithms. Traditionally, these centrality measures

have been implemented as main memory algorithms. With the advent of social media

and web 2.0 the amount of data being used for analysis has exploded in volume thus

becoming challenging to compute these on large data sets. In this thesis, while we

understand how these centrality measures are calculated for simple graphs, our goal

is to develop algorithms for centrality on heterogeneous multilayer networks using the

decoupling-based framework proposed in [12].

While there are multiple graph centrality measures that are defined, this thesis

focuses on two important ones: degree and betweenness centrality.

2.1 Degree centrality

Degree of a node is defined as the total number of edges that are incident on

it. It was used as a centrality measure by Shah in 1954. If the network is directed,

then the total edges that are directed towards the node is called indegree and that

are directed outwards from the node is called outdegree [22, 23].

For a given graph G(V, E) with |V | vertices and |E| edges the degree centrality

of a node v is given by the equation 2.1

CD(v) = Number of 1− hop neighbors (2.1)

10

Figure 2.1: Simple graph for calculating degree centrality

Node IDs Degree
value

Normalized
degree
centrality

a 1 0.2
b 1 0.2
c 4 0.8
d 3 0.6
e 2 0.4
f 1 0.2

Table 2.1: Normalized degree centrality values for the graph in Fig 2.1

To normalize, the degree of a node is divided by the maximum number of nodes

it can have direct edges with, that is |V | − 1 for an undirected graph.

CD(v) =
degree(v)

(|V | − 1)
(2.2)

Figure 2.1 is a simple example of a graph and its normalized degree centrality

values are shown in the table 2.1.

Centrality hubs as mentioned earlier are the most influential nodes in the net-

work. In this thesis we consider the nodes which are above or equal to

average centrality value as a hub in the network. Average degree of a graph

can be calculated in a undirected graph if the number of nodes and total number of

edges are known using the equation 2.3

Average degree =
Total number of edges ∗ 2

Total number of nodes
(2.3)

11

Group nodes Group degree centrality
{c,d}, {c,f} 4

{a,d}, {a,c}, {b,d}, {c,e} 3
{a,e}, {a,f}, {b,c}, {b,e}, {b,f}, {d,f}, {e,f} 2

{a,b}, {d,e} 1

Table 2.2: Group degree centrality values for the graph in Fig 2.1

For the example in figure 2.1 the average degree centrality value is 0.4 so the

hubs are c,d and e.

2.1.1 Other degree centrality formulations

1. Group degree centralization: Given a group of nodes in a graph, it is defined

as the number of non-group nodes that are connected to the group nodes [24].

Multiple edges to the same non-group node is counted only once. For example,

in figure 2.1 the group degree centrality of {c, d} is 4 that is nodes c and d as

a group are connected to nodes a,b,e and f. Complete group degree centrality

is shown in table 2.2

2. Time Scale Degree Centrality (TSDC): To include the presence and duration of

the edges while calculating the degree centrality of a node, Time Scale Degree

Centrality was proposed [25]. As an example, in figure 2.2, the nodes and edges

are added as time progresses (T > t2 > t1 > t0). In the fig 2.2 node d and edge

’cd’ is added at time t1, node e and edge ’be’ is added at time t2 etc. It’s TSDC

is given by the equation 2.4.

tsdci =
∑
j

xij(T − ti) (2.4)

Where T is the total time lapsed, ti is the time where the node i first appeared

and xij is the value in the adjacency matrix connecting nodes i and j. j belongs

to the set of neighbours of node i. In Figure 2.2 the TSDC of node c is T+(T-t1)

12

Figure 2.2: Sample graph where the characteristics of a graph vary based on time

Figure 2.3: Sample graph for calculating Complex degree centrality.

if the weight of edges is assumed to be 1. Similarly for node b TSDC is T + T

= 2T (for 2 edges ’ab’ and ’bc’ which are present throughout the time T)

3. Complex degree centrality (CDC): It is defined as ”the geometric mean of the

number of nodes to which this node is connected and the total weight of the

edges” [26, 27]. Total weight is the sum of the weights of the edges. It is given

by the equation 2.5

CDCx = 2
√
DCx ∗ TRx (2.5)

where DC is degree centrality of node x and TR is the total weight of the edges.

For example in sample graph shown in figure 2.3

CDC(b) =
2
√

2 ∗ 5 = 3.16

13

2.1.2 Applications of Degree Centrality

Some of the applications of degree centrality are as follows:

• Identifying the most influential nodes in a social network based on the number

of connections.

• For predicting essential proteins based on weighted degree centrality [28]

• It is also used in the analysis of brain behavior like that of Parkinson’s disease

[29].

2.2 Betweenness centrality

Freeman (1977) mentions the betweenness centrality measure for social networks

as early as 1977 [23]. He further explains the betweenness centrality as a global

centrality index (unlike degree centrality which is local to a node) which gives us the

most important nodes that are required for the information to flow across the network.

Betweenness centrality measure as an individual number is of less importance but the

relative measure gives us the relative importance of the node in the network. It helps

in identifying the most centrally placed nodes in the graph [30].

2.2.1 Variants of betweenness centrality

There are different variants of betweenness centrality that are currently used

by the research community. But all these variants are measured based on the all-pair

shortest paths (APSP) in the network.

All-pair shortest paths (APSP) can be computed using Floyd-Warshall algo-

rithm in O(V 3) time. However, this just calculates the total distance between any

two nodes. For betweenness centrality, there is a need to know the total number of

shortest paths that pass through each node. Multiple shortest paths that have the

same distance are also considered.

14

Figure 2.4: Sample graph for calculating Betweenness centrality

Node IDs Betweenness
(Stress) cen-
trality

Shortest paths in which
the corresponding node
is present

a 0
b 0
c 7 {a,b}, {a,d}, {a,e}, {a,f},

{b,d}, {b,e} & {b,f}
d 4 {a,f}, {b,f}, {c,f} & {e,f}
e 0
f 0

Table 2.3: Betweenness centrality values of the nodes

Variant 1: Betweenness centrality can be calculated as the total number of short-

est paths that pass through a node in a given network. This is also called as stress

centrality and these two terms are used interchangeably [31,32]. Mathematically, the

betweenness centrality measure is given by the equation 2.6.

C(v) =
∑

s 6=v∈V

∑
t6=v∈V

σst(v) (2.6)

Where σst(v) is the number of shortest paths from vertex s to t that passes through

vertex v. For a sample graph (figure 2.4), to calculate the betweenness centrality

values first step is to find out the APSP and sum up all the shortest paths that

pass through the node. Table 2.3 shows the details. Node c and d are having higher

betweenness centrality values as they are the bridge nodes. Leaf nodes are not present

in any of the shortest paths so they are 0.

15

Variant 2 (Brandes): While the variant 1 considers the total number of shortest

paths, it does not consider the sum of the fraction of the paths that pass through it

out of all the shortest paths that exists between a pair of nodes. This is important as

it reveals the nodes which are bridge nodes if the fraction is one then removing that

node would remove the shortest path between those two nodes.

Following example differentiates between the two variants and the betweenness

centrality values.

Betweenness centrality measure for variation 2 is given by equation 2.7.

CB(v) =
∑
s∈V

∑
t∈V

σst(v)

σst
(2.7)

Brandes proposed an algorithm which solves the problem inO(nm) andO(nm+

n2 log n) time for unweighted and weighted networks respectively. It uses O(n + m)

space [33]. This is the fastest known algorithm for calculating betweenness centrality

Brandes algorithm calculates betweenness values in two steps:

1. Runs the BFS starting from each node to calculate the All Pair Shortest Path.

2. Computing the dependencies δ(v) by traversing the shortest paths found in BFS

by reverse order of distance.

Dependency of s on node u δ(s|u) is given by equation 2.8

δ(s|u) =
∑

v:u∈Pv

σ(s, u)

σ(s, v)
(Iv∈S + δ(s|v)) (2.8)

Where σ(s, u) is the number of shortest paths from node s to node u, σ(s, v) is

the number of shortest paths from node s to node v. Iv∈S is 1 if v ∈ S. δ(s|v) is the

dependency of node s on v, at the beginning it can be considered as 0 [34].

Endpoints: While calculating the APSP there are two options, to include source

and target nodes (endpoints) in the shortest paths or to exclude them. In some

applications such as that of information networks, the source and target nodes have

the same control over its information as anyone passing through it [35].

16

If the endpoints are included, then the betweenness score of the nodes increases

by the number of other nodes that are connected to it. In a network where every

node can reach every other node betweenness score of all the nodes increases by a

constant value 2n-2 where n is the total number of nodes in the network and by n-1

if it is undirected.

Considering the vital applications of the betweenness centrality measure, it is

extensively researched by the community and multiple variations have been proposed

thereafter.

Applications of betweenness centrality: Some of the applications of Between-

ness centrality are as follows:

1. The urban traffic flow can be analysed by calculating the betweenness centrality

values of the street network, as an example GPS-enabled taxi trajectory data

(graph data) is used in the proposed paper [36] to analyse the traffic in Qingdao,

China.

2. Out liner detection in the network data, betweenness centrality values are cal-

culated repeatedly over a period of time to identify any new out liners, these

out liners can be further analysed to detect anomalous data in the network [37].

Considering the vital applications of the betweenness centrality measure, it is

extensively researched by the community and multiple variants have been proposed

for that.

While these algorithms are focused on a single graph, there is a need to in-

corporate additional layers of information or various characteristics of the nodes and

calculating these centrality measures to bring in the most important nodes of the

whole network. To incorporate these new additions multilayer network was proposed,

and it is being actively researched by the community. Next chapter talks extensively

about multilayer networks and its analysis.

17

CHAPTER 3

MULTILAYER NETWORK ANALYSIS

Multilayer networks (also known as multiplexes) consist of multiple layers of

simple graphs, each layer representing a feature of its entities and their relationships

in the graph. These layers are connected by the relationship between the entities of

different layers and are represented by the inter-layer edges of the network. Analysis of

multilayer networks is being used in solving real world problems such as modeling and

analysis of human brain networks [38], where brain regions are modelled as nodes and

their structure or functional connection patterns as edges are evaluated, in dynamic

social networks for clustering and anomaly detection [39], finding solutions to oil

leakages [40], language analysis [41], etc.

Advantages of modeling data into MLNs: While considering MLNs the main

advantage is that it can produce results based on multiple relationships (using a layer

for each relationships) not just one as in single graphs. For example, in the health

care domain instead of just looking at the ECG graphs/X-rays/MRI and coming to

a conclusion, in MLNs one can include other factors such as health history of the

person, weather and environment data, diet habits, etc. and derive an optimum

conclusion [14].

Disadvantages: For computing the network properties such as centrality there

are no algorithms currently available for MLNs that work without transforming an

MLN into a simple or attribute graph. So the existing algorithms which are available

for single graphs needs to be extended for MLNs and analyzed.

18

Graph representation: These HeMLNs can be represented using the adjacency

matrix or a file with an unordered list of edges containing from and to node ids.

The relationships among the nodes of the same layer form intra-layer edges and

information about how each layer is connected to another layer forms the inter-layer

edges.

Current approaches to solve MLNs use aggregation of all the layers in an MLN

to a single graph or projection-based approaches for converting into a single graph.

But this may result in loss of data. Efficiency of the solution can be an issue as the

resulting graph size is likely to increase. Preserving structure and at the same time

reducing the computation time is important. A decoupling-based framework has been

proposed for solving computations directly on HeMLNs [12].

3.1 Decoupling Approach

A network decoupling-based approach has been used in this thesis for computing

the centrality hubs of HeMLNs. There is been extensive research going on by using

decoupling-based approach for different graph aggregate analysis as referenced in

papers [12, 20]

Figure 3.1 shows the framework of the decoupling approach. It consists of

analysis and composition functions. Each layer is analyzed independently using the

analysis function. Then the partial results from any 2 layers are combined and along

with the inter-layer edges, a composition function is used to output the results for

the two layers. The binary composition can be applied to cover the entire MLN.

Analyzing each layer can be done in parallel as they are independent [12].

With analysis function and composition function, graph processing of MLNs

can be broken down and computed in parallel. This can benefit from parallelism and

improve efficiency [12].

19

Figure 3.1: Decoupling approach

3.1.1 Advantages of Decoupling approach

• Structure preserving, there is no loss of data in this approach. So, the entire

information can be utilized for analysis.

• Since each layer can be analyzed independently it can be run in parallel. Par-

allelism improves efficiency.

• Since small graphs are analyzed at any given time the memory usage can be

reduced by writing the results of each layer into a file. Then utilizing these

results in the composition function.

• Single graph algorithms can be utilized for analyzing graphs in each layer

• This approach is independent of network (or application) being analyzed.

3.1.2 Challenges using Decoupling approach

• Achieving high accuracy when compared to similar single network approaches

is increasingly challenging.

• There is no information about other layers while analyzing one layer which

makes it difficult to retain the most relevant information from that layer.

20

• As this is a new framework, new algorithms need to be developed using this

framework.

3.2 Related work at ITLab

Decoupling based framework for various concepts such as community detection

in HoMLNs and HeMLNs [7–9,12,16,42], substructure discovery in HoMLNs [20] are

being explored at IT Lab. As part of that work, decoupling based approach has been

used and showed to be efficient in analyzing the MLNs.

3.2.1 Community detection

Community is a set of closely connected nodes in a network. It has been clearly

defined and algorithms such as Louvain and Infomap are used. Community detection

for MLNs are proposed using Decoupling approach and are proved to provide good

results.

Community detection in HeMLNs: In the decoupling approach, analyzing func-

tion consists of identifying the communities in each layer, the composition function

consists of bipartite graph matching using the interlayer edges to compute the overall

HeMLNs community results [10, 12].

3.2.2 Substructure discovery

A decoupled based approach has been analyzed for substructure discovery in

HoMLNs. The implementation is using Map/Reduce to utilize the efficiency achieved

by parallelism. For each layer substructures of size k are identified independently.

The identified substructures are expanded by adding one edge at a time. Then the

composition function is applied to it, this process is repeated until the termination

21

condition is set to true. The identified substructures are the substructures of the

entire HeMLNs [20].

22

CHAPTER 4

DATASETS

Both synthetic and real world datasets have been used for validating accuracy

and performance gain. Synthetic datasets are generated using subgen (from the AI

Lab at Washington State University) [43] and Recursive-Matrix (R-MAT) [44]. For

generating very large datasets a parallel version of R-MAT called Parallel R-MAT

(PaRMAT) can be used [45]. This PaRMAT (Parallel R-MAT) PaRMAT divides

the adjacency matrix into squares and executes using multiple threads. This multi

threaded program can create very large graphs (with billions of edges). Synthetic

data sets allow one to generate graphs with specific characteristics. This allows one

to make sure the algorithms work for diverse graphs. Density, connected components,

and distribution of edges in layers as well as the number of interlayer edges can be

controlled. In addition to synthetic data sets, real world datasets have been used.

They are taken from various sources including International Movie Database (IMDB)

[46], The DBLP Computer Science Bibliography (DBLP) [47], Webgraph [48,49], etc.

In general all these datasets are single graphs and these graphs need to be converted

into HeMLNs for our purpose. In this thesis, we are using one of the two methods

discussed below to generate HeMLNs from single graphs.

1. Method 1: Subgen graph generator provides an option to include vertex and

edge labels. If the graph is generated using subgen, then vertices can be cate-

gorized using its vertex labels and edges can be categorized based on its edge

labels. For example, vertex labels can be the layer to which the vertex belongs,

edge labels can be intra layer edges or interlayer edges.

23

2. Method 2:If the graph is generated using RMAT or it is any real world dataset

the graph might not contain any labels. In these scenarios the vertices can be

categorized based on a random number generator. For each vertex, a random

number is generated using which it is categorized into different layers. For ex-

ample, if we are splitting a single graph into two layers, then a random number

generator which generates two numbers based on a probability distribution is

used. Each random number belongs to an individual layer and edges are clas-

sified based on the vertices on which it is incident upon. If both the vertices

are in the same layer then it becomes an intralayer edge else, it is an interlayer

edge.

Using the above methods, two or more layers are generated with intralayer and

interlayer edges. As these methods ensure different nodes/entities in each layer, the

multilayer network that is formed is a HeMLN. These generated HeMLNs are used

in validating the heuristics that are discussed in later chapters.

4.1 Synthetic graphs

Synthetic graphs of different sizes are generated for analysis. Initially for de-

veloping heuristics various smaller datasets of 100, 1000, 5000 nodes and edges up

to 10000 are used. Later, larger graphs up to 200,000 nodes and 10,000,000 edges of

different sizes are created. Characteristics of one of the synthetic graphs with 100,000

nodes and 1,000,000 edges (represented as 100KV1ME)are discussed below.

4.1.1 Graph with 100,000 nodes and 1,000,000 edges (100KV1ME):

This graph is generated using PaRMAT. It is undirected graph with no duplicate

edges or self loops. This is a single graph and has the characteristics shown in table

24

4.1. This dataset is further divided into two layers (layer 1 and layer 2) using method

2. In the table 4.1, each column represents the following:

• Dataset- the short hand representation of the dataset that is considered.

• Layers - represent the layers in the HeMLN

• No. of nodes - total number of nodes in the layer

• No. of edges - total number of edges in the layer

• Node distribution - percentage of nodes that are present in the layer when

compared to the single graph

• Average degree - average degree of the layer

• Maximum degree - maximum degree of a node in the layer

• Minimum degree - minimum degree of a node in the layer

• Dangling nodes - total number of nodes with no edges.

• No. of connected components - total number of connected components in each

layer

• Largest connected component - total number of nodes in the largest connected

component that is present in the layer

• Sparsity - edge density in percentage (given by Total number of edges in the layer ∗ 100
(N∗(N−1)/2)

for an undirected graph where N is the total number of nodes in the graph)

Dataset Layers No. of
nodes

No. of
edges

Node dis-
tribution
(%)

Average
degree

Maximum
degree

Minimum
degree

Dangling
nodes

No. of
con-
nected
compo-
nents

Largest
con-
nected
compo-
nents

Sparsity(%)

100KV1ME 100000 1000000 20 2150 0 8976 9003 90972 0.01
Layer 1 69984 496482 70 14.18 1529 0 8894 8923 61034 0.01
Layer 2 30018 86976 30 5.79 324 0 7567 7658 22268 0.01
Interlayer 416542

Table 4.1: Characteristics of 100KV1ME dataset

Figure 4.1 represent the degree distribution and connected component size dis-

tribution in layer 1. For degree distribution the x axis represent the degree values

25

(a) Layer 1 degree distribution (b) Layer 1 connected component size
distribution

Figure 4.1: Layer 1 network characteristics.

(a) Layer 2 degree distribution (b) Layer 2 connected component size
distribution

Figure 4.2: Layer 2 network characteristics.

of each node and y axis represent the number of nodes having that particular de-

gree. For connected component size plot, x axis represent the component sizes and y

axis represent the frequency of that particular component size. Similarly, figure 4.2

represents the same characteristics for layer 2.

26

4.1.2 Characteristics of all the synthetic datasets used in this thesis

Smaller datasets: These are smaller datasets starting from 100 nodes and 615

edges. These datasets are used initially to test the heuristics. Table 4.2 gives in detail

information about the datasets.

In table 4.2,

• Dataset column represents the dataset name

• Layers column represent the different layers in the dataset. For these datasets,

only two layers has been created and used for analysis.

• Number of nodes represent the total nodes in that layer

• Number of edges represent the total edges in that layer

• Node distribution as a percentage represent the node distribution among the

layers.

Further the larger datasets are created by increasing both the number of nodes

and edges. In this thesis we have used synthetic graphs upto 200,000 nodes and 10

million edges for analysis and experiments.

27

Dataset Layers Number of nodes Number of edges Node distribution (%)
100V615E

Layer 1 63 390 63
Layer 2 37 143 37

Interlayer 82

1KV2KE
Layer 1 485 470 49
Layer 2 515 491 52

Interlayer 1036

1KV6KE
Layer 1 697 3815 70
Layer 2 304 788 30

Interlayer 684

5KV10KE-1
Layer 1 2467 2391 49
Layer 2 2533 2560 51

Interlayer 5069

5KV10KE-2
Layer 1 3525 7436 71
Layer 2 1475 1312 30

Interlayer 1255

Table 4.2: Smaller synthetic dataset characteristics

28

Datasets Layers Nodes Edges Node dis-
tribution
(%)

Average
degree

Max de-
gree

Min de-
gree

Dangling
nodes

No. con-
nected
compo-
nents

Largest
compo-
nent

Sparcity
(%)

25kv100ke 25000 100000 8 465 0 4385 4422 20541 0.02
Layer 1 17572 49588 70 5.643979058 241 0 4065 4124 13388 0.02
Layer 2 7430 8757 30 2.357200538 134 0 3040 3128 4201 0.02
Interlayer

25kv200ke 25000 200000 16 926 0 2309 2320 22671 0.03
Layer 1 17452 97894 70 11.21865689 636 0 2272 2287 15152 0.03
Layer 2 7550 18174 30 4.814304636 201 0 1962 1987 5536 0.03
Interlayer

25kv300ke 25000 300000 24 1307 0 1399 1402 23597 0.05
Layer 1 17604 150466 70 17.09452397 925 0 1428 1434 16166 0.05
Layer 2 7398 25380 30 6.861313869 242 0 1459 1469 5921 0.05
Interlayer

25kv400ke 25000 400000 32 1716 0 996 999 24000 0.06
Layer 1 17469 195675 70 22.40254165 935 0 1060 1063 16405 0.06
Layer 2 7533 36026 30 9.564848002 535 0 1145 1154 6372 0.06
Interlayer

35kv400ke 35000 400000 22.85 1262 0 1966 1970 33028 0.03
Layer 1 24580 194754 70 15.8465419 656 0 2100 2107 22468 0.03
Layer 2 10422 36535 30 7.011130301 378 0 1985 2003 8401 0.03
Interlayer

45kv400ke 45000 400000 17.77 1257 0 4115 4130 40857 0.02
Layer 1 31442 193573 70 12.3130208 664 0 4062 4082 27342 0.02
Layer 2 13560 37333 30 5.506342183 392 0 3419 3459 10059 0.02
Interlayer

55kv400ke 55000 400000 14.5 1237 0 6130 6153 48824 0.01
Layer 1 38697 192727 70 9.960823836 832 0 5972 6017 32637 0.01
Layer 2 16305 37469 30 4.596013493 225 0 4815 4879 11361 0.01
Interlayer

100KV1ME 100000 1000000 20 2150 0 8976 9003 90972 0.01
Layer 1 69984 496482 70 14.18844307 1529 0 8894 8923 61034 0.01
Layer 2 30018 86976 30 5.794923046 324 0 7567 7658 22268 0.01
Interlayer 416542

100KV2ME 100000 2000000 40 4041 0 4260 4265 95732 0.02
Layer 1 79890 1265733 80 31.69 3227 0 4455 4467 75413 0.02
Layer 2 20112 83864 20 8.34 630 0 4004 4038 16041 0.02
Interlayer 650403

100KV3ME 100000 3000000 60 5686 0 2353 2354 97647 0.03
Layer 1 90073 2451052 90 54.42 5160 0 2420 2421 87653 0.03
Layer 2 9929 27996 10 5.64 321 0 2572 2596 7306 0.03
Interlayer 520952

100KV4ME 100000 4000000 80 7349 0 1629 1630 98371 0.04
Layer 1 90108 3241201 90 71.94 6599 0 1722 1723 88386 0.04
Layer 2 9894 39890 10 8.06 409 0 1997 2013 7866 0.04
Interlayer 718909

200KV1ME 200000 1000000 10 1423 0 36881 37097 162684 0.00
Layer 1 160073 643022 80 8.03 1144 0 34761 35017 124794 0.00
Layer 2 39929 39062 20 1.96 209 0 19337 19813 19597 0.00
Interlayer 317916

200KV5ME 200000 5000000 50 6702 0 7373 7375 192625 0.01
Layer 1 119908 1792650 60 29.9 2993 0 7923 7938 111957 0.01
Layer 2 80094 805373 40 20.11 2701 0 8038 8060 72014 0.01
Interlayer 2401977

200KV10ME 200000 10000000 100 12486 0 2842 2844 197156 0.03
Layer 1 80085 1610469 40 40.22 2712 0 3716 3722 76359 0.03
Layer 2 119917 3584044 60 59.78 7566 0 3438 3440 116477 0.02
Interlayer 48055487

Table 4.3: Synthetic graph characteristics of larger datasets

29

4.2 Real-world datasets:

Many real-world datasets have been used including International Movie Database

(IMDB), The DBLP Computer Science Bibliography and datasets from The Labora-

tory for Web Algorithmics. The datasets from the The Laboratory for Web Algorith-

mics are very large real world datasets [48, 49]. Some of the real-world datasets and

its characteristics have been discussed below.

4.2.1 International Movie Database (IMDB)

This is a real world dataset containing information about movies produced

around the world [46]. It has mainly 3 layers Actors, Directors and Movies. It can be

modelled as a HeMLN as all three layers have different entities and they have inter

layer edges connecting between them.

Tables 4.4 and 4.5 give the exact numbers.

Layers No. of
Nodes

No.
of In-
tralayer
Edges

Average
degree

Maximum
degree

Minimum
degree

Dangling
nodes

Number
of con-
nected
compo-
nents

Largest
Con-
nected
compo-
nents

Spasity

Actor 9486 996527 210.1 1161 0 473 651 7918 1.11
Director 4511 250845 111.21 517 0 296 425 3429 1.23
Movie 7952 8777618 2207.65 3167 0 1 10 3168 13.88

Table 4.4: Characteristics of IMDB dataset

Layers Number of Interlayer Edges
Actor Director 32033
Actor Movie 31422

Director Movie 8581

Table 4.5: Characteristics of IMDB dataset

30

(a) Actor layer (b) Director layer (c) Movies layer

Figure 4.3: Degree distribution of actor, director and movies layer.

4.2.2 The DBLP Computer Science Bibliography

DBLP dataset has information about papers published, authors of different pa-

pers, conferences in which the papers were published, published year etc [47]. This

dataset can be modelled as a HeMLN by considering a layer of authors who have

worked on the same paper, papers published in the same domain or papers pub-

lished in a year. Considering these features the main 3 layers used in this thesis are

CoAuthor, Papers and Year. Tables 4.6 and 4.7 give the exact numbers.

Layers Number of Nodes Number of Intralayer Edges
Coauthor 16918 2483

Papers 10326 12044080
Year 18 18

Table 4.6: Characteristics of DBLP dataset

Layers Number of Interlayer Edges
Author Paper 37142
Author year 29984
Paper Year 10326

Table 4.7: Characteristics of DBLP dataset

31

4.2.3 Webgraph datasets:

These datasets are obtained from the The Laboratory for Web Algorithmics.

These datasets are compressed using webgraph to reduce storage space. To use these

datasets initially, the dataset has to be loaded using webgraph object and re-written

into a file in the format used for other datasets. These also produce single large graphs,

they will have to be further partitioned using one of the two methods discussed earlier.

Some of the webgraph dataset characteristics are shown in table 4.8

Datasets Nodes Edges Average
degree

Max de-
gree

Min de-
gree

Dangling
nodes

No. con-
nected
compo-
nents

Largest
compo-
nent

Sparcity Details of the dataset

word
association-
2011

10617 36116 6.8 269 0 2348 2351 8264 0.03 Its a graph describing the
results of an experiment
where the nodes correspond
to words and edges repre-
sent a cue-target pair.

uk-2007-
05@100000

100000 1521854 30 39941 0 3193 3465 95985 0.02 .uk domain graph, where
nodes represent the URLs
and edges connection be-
tween them

cnr-2000 325557 1752766 10.76 10749 0 17577 27779 214167 0.00 Italian CNR domain
amazon-
2008

735323 2610591 7.1 393 0 20526 21028 707532 0.00 Similarity between books in
Amazon store.

in-2004 1382908 8465313 12.24 11219 0 109682 138110 925340 0.00 .in domain

Table 4.8: Webgraph dataset characteristics

32

CHAPTER 5

DEGREE CENTRALITY

Degree of a node in a network (or graph) is the total number of edges that are

incident on it. Degree hubs in a network are the nodes with degree greater than or

equal to the average degree of the network [3, 50]. While degree hubs are defined for

a single graph, to the best of our knowledge there are no algorithms to calculate the

degree hubs for HeMLNs. We extrapolate the definition of a hub from a single graph

to HeMLNs, if the HeMLN is transformed into a single graph by a union operation

and retaining all the inter layer edges. In this thesis we propose different heuristics for

composition function to achieve maximum accuracy and performance. We test our

heuristics for identifying the degree hubs of a multilayer network against the ground

truth.

Ground truth for degree centrality: For degree centrality in HeMLNs the

ground truth is calculated by aggregating all the layers into a single network. It

includes nodes from all the layers, intra-layer edges and inter-layer edges. Degree of

each node is calculated and degree hubs are identified.

The degree hubs obtained from the ground truth are compared with the hubs

obtained from the decoupling-based algorithms for accuracy. As discussed, Jaccard’s

coefficient, precision and recall are used for comparing the results with the ground

truth.

Consider any two layers of a HeMLN with different entities/nodes. Each layer

consists of a set of nodes and intra-layer edges. These two layers are connected by a set

33

of inter-layer edges. As a whole, they form a two layer HeMLN. All the heuristics

proposed use two layer HeMLN for computations1.

As a first step, ground truth is calculated on these two layers separately and

the hubs are identified. All the parameters such as average degree, time taken and

the list of hubs along with the degree values are saved (written to a file).

As discussed in the decoupling approach, each layer is considered independently.

The input to the analysis function are the corresponding layer graphs consisting of

nodes and intra-layer edges. The output of analysis function is the list of node ids

along with the corresponding degree values for each layer. The outputs are written

to a file. For two layers, each analysis function is run independently (can be run in

parallel). The analysis function of all the individual layers needs to be computed

before proceeding to the composition function.

We propose two heuristics for calculating degree centrality in HeMLNs. The

goal of these heuristics is to keep minimal information from each layers, use the

information from each layer and the inter-layer edges to compute the degree hubs of

the entire HeMLN. These heuristics are analysed based on accuracy and time when

compared to that of ground truth. These heuristics and its results are discussed in

the below sections.

Naive algorithm: A naive algorithm would be to take the hubs from each

layer, union them and consider them as the hubs for the two layer HeMLN. This does

not use any additional information from the layers. This would give a result that is

not likely to match the ground truth (except in some unique cases.)

1Thus, heuristics for binary operator have been proposed, which can be easily extended to k

layers through iterative application on the partial results.

34

This naive accuracy can be taken as the minimum accuracy which needs to be

further improved using additional information from each layer along with inter layer

edge information for composition. These become the heuristics.

The use of additional information from each layer can be seen as a spectrum

with no information (only hubs) on one side (näıve) and as much information (entire

layers) as needed to get the same accuracy as ground truth. The challenge is to

maximize accuracy with minimum information use from each layer. This approach

is used in refining the heuristic to improve accuracy. Of course, the cost of the

decoupling approach (time taken) also changes and increases with more information

used. This is a trade off to make sure the cost does not exceed the cost of

the ground truth and preferable maximize accuracy while keeping the cost

significantly lower as compared to the ground truth. Parallel computation of

layers will also help in this.

5.1 Degree Centrality Heuristic 1

5.1.1 Design

As discussed, the decoupling approach includes two functions: analysis and

composition functions. These two functions are discussed below.

Analysis function: Input to the analysis function is the nodes in the layer and

the intra-layer edges. The output from this layer in heuristic 1 is the degree hubs of

that layer and its corresponding degree values. So, from each layer we are keeping the

degree hubs as the output along with the total number of nodes and edge information.

Composition function: In the composition function, the outputs from each layer

along with the inter-layer edges are analyzed. The degree values obtained from each

35

layer are loaded to the main memory. In this heuristic for each inter-layer edge, the

degree of both the nodes on which the edge is incident upon are incremented by 1.

Degree average can be computed using the equation 2.3. Where total nodes is

the sum of nodes from layer 1 and 2. Total edges is the sum of layer 1 intra-layer

edges, layer 2 intra-layer edges and inter-layer edges. Figure 5.1 shows details of

proposed heuristic 1. The complexity of composition is linear with respect to the

number of edges and does not depend on the number of nodes and edges in layers.

For each inter layer edge, a hash lookup is performed on both the nodes to increment

the degree.

Figure 5.1: Network Decoupling approach for identifying Degree based hubs for
HeMLNs using Heuristic 1

36

The composition function of the proposed heuristics is shown in algorithm 1.

Where Layeri and Layerj are the two lists of layer hub nodes with the corresponding

degrees obtained from the analysis function. Vi1....Vin represent node IDs starting

from 1 to n for layer i, Hubs represents the list of hubs along with the degree values

as the output of the composition function. IE corresponds to the set of inter-layer

edges between the two nodes (NodeID1 and NodeID2)

Algorithm 1 Composition algorithm for degree centrality heuristic 1
INPUT:

Layeri = {Vi1 : DC1, Vi2 : DC2, ..., Vin1 : DCn1}

Layerj = {Vj1 : DC1, Vj2 : DC2, ..., Vjn2 : DCn2}

IE = {(Vi1, Vj1), (Vi2, Vj2), ...}

ALGORITHM:

1: for e{NodeID1, NodeID2} ∈ IE do

2: Layeri[NodeID1] = Layeri[NodeID1] + 1

3: Layerj[NodeID2] = Layerj[NodeID2] + 1

4: end for

5: Average degree= Total number of edges in HeMLN ∗ 2
Total number of nodes in the entire HeMLN

6: for NodeID, DegreeValue ∈ Layeri ∪ Layerj do

7: if DegreeValue ≥ Average degree then

8: Hubs.append(NodeID)

9: end if

10: end for

OUTPUT:

Hubs = {Vi1 : DCi1, Vi2 : DCi2, ..., Vj4 : DCj4....}

37

As an illustrative example, consider the following two layers as shown in figure

5.2. In this example, actor and director layers are analyzed individually and the list

of degree hubs are identified. In this example, nodes C and E are the hubs from actors

and Q is the hub from layer director. Node E has degree 4 and C,Q have degree 3.

Further in the composition function, the degree of nodes are incremented by one for

every interlayer edge. Edges FP and FQ are the interlayer edges. So, we increment

the degrees of nodes P,F and Q by 1. In the composition function the degree of F is

initially 0 as it is not a degree hub in the layer and we would not have saved the actual

degree information of that node. The new degree hubs for HeMLN using heuristic

1 can be identified as C, E and Q as these nodes have greater than or equal to the

average degree (≥2.4).

38

Figure 5.2: Example of heuristic 1

Node Degree
A 1
B 2
C 3
D 2
E 3
F 3
P 2
Q 4
R 2
S 2

Table 5.1: Ground truth result

39

The average degree from ground truth is 2.4 and the hubs are C, E, F and Q

as per the table 5.1.

We compare ground truth and heuristic 1 results using Jaccard co-efficient. So

the union of the hubs include C,E,F and Q. Intersection of the results are C,E and

Q. So the Jaccard co-efficient would be 3
4
=0.75.

5.1.2 Sample Data Set Results and Analysis

The results of this heuristics for sample data sets are shown in figure 5.3. The

heuristics have been tested on both synthetic and real-world data sets. For sample

data, Heuristic 1 accuracy is always higher than that of naive approach. We

will have to test if it holds good for all the larger data sets. In heuristics 1 we were

able to achieve a good accuracy of around 90% for actor-director layers, however, the

accuracy is not the same for Director-Movie or Actor-Movie layers.

Figure 5.3: Heuristic 1 Jaccard’s Coefficient (accuracy) results

40

Figure 5.4 shows precision and figure 5.5 recall plots for heuristics 1. It can be

seen that the precision is 100% and always better than that of naive approach.

This gives a lot of confidence in the heuristic that is proposed however, further

improvements that can be done to improve recall.

Figure 5.4: Precision plot for heuristic 1

By observing these plots we can say that the heuristic is giving 100% precision

but because of false negatives recall is not 100%. We try to improve this in our

heuristic 2, where we increase the amount of information retained from each layer to

improve the accuracy.

41

Figure 5.5: Recall plot for heuristic 1

5.2 Degree Centrality Heuristic 2

5.2.1 Design

Previous heuristics gave us 100% precision results however the recall was in-

consistent and it tends to follow the naive accuracy for some data sets. Recall

reduces if the false negatives are more. To improve recall in heuristic 2 we propose

to keep the information of all the nodes from both the layers. So in heuristics 2,

along with the hub degree information the degree values of the remaining nodes is also

retained as an output of the layer-wise analysis step. The composition step remains

the same as Heuristic 1, where degree of a node is updated if there is an incident

inter-layer edge.

5.2.2 Sample Data Set Results and Analysis

Figure 5.6 compares the accuracy results of heuristics 1 and 2 for the same set

of data sets. Heuristic 2 is giving 100% accuracy for all the data sets.

42

Figure 5.6: Accuracy comparison of heuristics 1 and 2

Figure 5.7 shows the performance evaluations of the various data sets using the

heuristic 2 for identifying degree centrality. The time taken for heuristic 2 is calculated

based on the sum of maximum time taken by the layers and the composition time.

The results show us that with lesser time we are able to get 100% accuracy. The

maximum time savings that was achieved for these data sets is 33.76%.

It means that heuristic 2 was able to produce the same results as that of

ground truth with 33.76% less time.

Figure 5.8 compares the amount of information retained from each layer by

heuristics 1 and 2. It can be observed that the increase in accuracy in heuristic

2 comes at a cost of increase in amount of information retained from each layer.

The amount of additional information retained depends on the number of nodes in

the layers. Also, heuristic 2 always retains more information than that heuristic 1.

43

Figure 5.7: Performance evaluations for different real-world data sets.

This also proves that there is a trade off between amount of information used for

computation and the accuracy of the results.

44

Figure 5.8: Comparison between heuristic 1 and 2 w.r.t amount information
retained from each layer.

5.3 Large synthetic and real-world dataset experiments and performance evaluations

All the experiments are performed using heuristic 2 and the results are compared

to that ground truth for accuracy. In this section we perform experiments using large

synthetic data sets and real-world data sets, by varying the graph characteristics in

order to validate the performance of the heuristic under different conditions.

Figure 5.9 shows the accuracy for synthetic data sets. This experiment varies

sparsity for a data set, by fixing the number of nodes (100KV or 200KV), and varying

the number of edges (1ME, 2ME, 3ME, 5ME, ..., 10ME). Upto 200,000 vertices and

10 million edge data sets are used for this experiment. In each case, accuracy for the

heuristic is 100%.

45

Figure 5.9: Accuracy results for large synthetic data sets (100K1ME to 200K10ME)

Figure 5.10 shows the performance comparison for synthetic data sets. We were

able to achieve minimum of 15% to maximum of 60% time savings in these

data sets compared to ground truth.

Similarly, the same heuristic was run on large real-world data sets. Figure 5.11

shows that accuracy for real-world data sets was also 100%.

Figure 5.12 shows the performance of heuristic 2 when compared to ground

truth for large real-world data sets. The minimum time savings is 2.6% and the

maximum is 67%.

46

Figure 5.10: Performance comparison for large synthetic data sets (100K1ME to
200K10ME)

47

Figure 5.11: Heuristic 2 accuracy for large real-world datasets

Figure 5.12: Performance comparison for real world datasets using heuristic 2

48

5.4 Extending the heuristics to k layers

As mentioned earlier, the decoupling-based approach can be extended beyond

two layers, figure 5.13 shows the block diagram of the approach using IMDB dataset

(Actor, Director and Movies are the 3 layers). To extend beyond two layers, the

output format from the composition function should be the same as the input (partial

results from layers). In this heuristic the output from each layer consists of nodes and

its corresponding degrees, and the total number of nodes and edges. While considering

k layers we need to consider the k*(k-1)/2 interlayer edge sets. Each interlayer edge set

is considered one at a time. In figure 5.13 for 3 layers there are 3 interlayer edge sets:

Actor-Director, Actor-Movie and Director-Movie. Actor-Director interlayer edges are

considered while computing Actor-Director layers, and the remaining two interlayer

edge sets involving movie layer is considered in the subsequent composition function.

Like Actor or Director layers, Movie layer is analyzed individually, and partial results

are saved. The results from the Actor-Director layer and partial results from Movie

layer are used in the second composition function. In the second composition function

two interlayer edge sets - Actor-Movie and Director-Movie are used. The composition

algorithm remains the same that it to increment the degree value of the nodes having

interlayer edge by 1. This heuristic proposed to save all the nodes and its degree

information, so the accuracy is 100% even for three layers. Further, as the results

are 100% both commutative and associative properties hold good for degree

centrality heuristic 2 when used on k-layers.

Figure 5.14 shows the accuracy comparison of IMDB and DBLP datasets for

three layers using heuristic 2. The accuracy of IMDB and DBLP is increased to

100% by using heuristic 2. The performance improvement for IMDB and DBLP

datasets considering three layers are 14% and 3% respectively. Figure 5.15 shows the

performance improvement for these two datasets.

49

Figure 5.13: Extending the heuristic to 3 layers

Figure 5.14: Accuracy of IMDB and DBLP datasets considering 3 layers

50

Figure 5.15: Three layer performance improvement for IMDB and DBLP datasets

51

5.5 Comparing the information retained from each layer and the accuracy

While analyzing the two heuristics we could see that the heuristic 2 retains the

maximum information (all the nodes and its degree values), while heuristics 1 keeps

only the hub information and this impacts the accuracy. In figure 5.16 we compare

the accuracies of the heuristics based on the percentage of information retained. We

compare the four different percentages starting from naive (minimum information)

then we retain the top 25% of the nodes (sorted by the decreasing order of degree

values) along with the hubs from each layer. Then increase the amount of information

retained to 50%, 75% and 100% to compare the accuracy. We observed that the

accuracy increases as we increase the amount of information retained from each layer.

Figure 5.17 shows the performance comparison of different datasets with respect

to the amount of information retained. We can see that as we increase the percentage

of information retained the composition time is slightly increased. This increase is

because of the additional data that needs to be loaded on to the hash table in the

composition function. There is no additional computation involved with increase in

the amount of information retained.

52

Figure 5.16: Accuracy comparison with respect to the amount of information
retained from each layer for different datasets.

Figure 5.17: Performance comparison with respect to amount of information
retained from each layer for different datasets.

53

CHAPTER 6

BETWEENNESS CENTRALITY

Betweenness centrality, a global measure of graph, is defined as the total number

of shortest paths that pass through a node. In this thesis we propose two heuristics to

approximate the betweenness centrality measure for HeMLNs. While there are many

approximation algorithms for betweenness centrality computation on single graphs,

such as using random walk [51] or using sampling [6], we believe this is the first

attempt to explore decoupling-based approximation algorithm for a HeMLNs.

6.1 Naive approach

For approximating the betweenness measure using decoupling-based framework,

the naive approach uses the union of the betweenness hubs obtained for each layer

without any additional computation. The naive approach uses the minimum amount

of information from each layer and the composition time is negligible. Hence, it gives

maximum improvement in efficiency when compared to the ground truth.

6.2 Ground truth for betweenness centrality computation of HeMLN

Ground truth calculation is similar to that of degree centrality, and is done, by

aggregating all the nodes and edges of a HeMLN into a single graph and applying the

single graph algorithms to calculate the betweenness centrality hubs for the HeMLNs.

The hubs obtained from ground truth are compared with the algorithms that use

heuristics during decomposition for accuracy. The time taken by heuristics is expected

54

to be less than that of ground truth time as composition uses partial results and

ground truth uses an aggregated large graph.

6.3 Challenges

There are three main challenges for developing heuristic-based decoupling algo-

rithms:

1. To identify the information to be computed and retained from each layer during

its processing. Naive approach retains the minimal information. For others, this

needs to be decided based on the heuristic applied.

2. To develop a composition algorithm to approximate the number of shortest

paths based on the partial results of each layer and using the interlayer edges

3. To verify the accuracy and performance of developed betweenness algorithms

on very large datasets with diverse characteristics. As layer and ground truth

algorithms use single graphs and BFS for calculating all shortest paths between

nodes, the complexity is high(O(V 3))

6.4 Intuition

For these algorithms, since we need to estimate or approximate the number of

shortest paths through each node of the HeMLN, it seems appropriate to retain some

additional information (e.g., the number of shortest paths for each node) for each layer

while computing betweenness. Using this information from both layers, our heuristics

approximate the number of shortest path through a node of the HeMLN using the

inter layer edge information to calculate the betweenness hubs for the HeMLN. This

requires analysis of nodes with and without inter layer edges to compute the HeMLN

centrality hubs. While developing the heuristics, we realized that in addition to the

55

between hubs for each layer, the degree of a node is likely to play a role as the number

of paths going through a node is dependent on its degree.

Consider figure 6.1, layer 1 consists of nodes a through i and layer 2 consists of

nodes p,q and r. Table 6.1 gives the calculated values of number of shortest paths that

pass through each node, whether it is a betweenness hub or not and the degree values

of the node as well. Similarly table 6.2 gives the values for layer 2. With these inputs

the intuition is that if a node is a degree hub then the node has more neighbors than

the rest of the nodes. More neighbours means more shortest paths passing through

the node. This can also be seen in the sample graph figure 6.1b nodes d,f and p are

degree hubs as well as betweenness hubs in the HeMLN.

The second intuition is that if a node is not a degree hubs, what is the effect

of an interlayer edge on that node? Usually, the nodes that have interlayer edges

tend to become the bridge nodes between layers. These bridge nodes have higher

number of shortest paths. Also, it is sometimes not enough to just look at the nodes

with interlayer edges as in the case of node i and q in figure 6.1b where there is an

interlayer edge between them but still they do not come out as hubs in the HeMLNs.

So in addition to this, our next promising node characteristic that we can consider is

the layer betweenness hubs.

Layer betweenness hubs have high betweenness values in their respective layers.

So it is be safe to assume that the layer hubs have higher chance of becoming hubs

in entire HeMLN. This is also true in case of sample graph where all the hubs from

layer 1 - d,e,f and layer 2 - p are the hubs in the HeMLN. So considering all the

above mentioned intuitions this thesis proposes two heuristics to approximate the

betweenness measure of the entire HeMLN.

As per the example in figure 6.1, the probability of nodes with high degree

value tend to become betweenness hubs as well because of the high connectivity.

56

Nodes Number of SP Layer hubs Degree Values
a 0 No 3
b 0 No 3
c 0 No 3
d 15 Yes 4
e 16 Yes 2
f 15 Yes 4
g 0 No 3
h 0 No 3
i 0 No 3

Table 6.1: Characteristics of nodes in layer 1

Nodes Number of SP Layer hubs Degree Values
p 1 Yes 2
q 0 No 1
r 0 No 1

Table 6.2: Characteristics of nodes in layer 2

(a) Sample graph layers (b) Complete HeMLN

Figure 6.1: A sample graph to illustrate the intuition behind approximating
betweenness centrality measure.

57

Similarly, the nodes with interlayer edges act as bridge nodes between layers (bridge

nodes means high betweenness measure) so there is high probability that even these

nodes might be the betweenness centrality hubs in the HeMLNs. Along with these if

the node is already a betweenness hub in the layer then the node is centrally placed

in the layer (these nodes already have high betweenness values) so there is a high

probability that these might become the hubs of the entire HeMLNs. Based on this

intuition, we propose two heuristics in this thesis and compare the results with the

ground truth.

6.5 Degree-dominant heuristic

As discussed in the earlier section, the parameters that can be considered while

approximating betweenness centrality measure are the degree values, betweenness

measure in the layer, and the nodes with interlayer edges. When each layer is analyzed

individually, the degree and its betweenness measure are calculated. Based on the

average betweenness measure in each layer the layer hubs are identified. The entire

output is saved for further computation in the composition function.

Using the partial results from the layers, along with the interlayer edges based

on the intuition the following composition algorithm is proposed and its decision tree

is shown in figure 6.2. This decision tree is applied for each node in the HeMLN.

As discussed in the intuition the nodes with ≥ average degree value have more

edges than the rest of the nodes so their betweenness measure tends to be high.

With this assumption, for each node, we first check if the node has a degree value

higher than that of the average if so, then the maximum number of shortest paths

(of all the nodes having interlayer edges in the other layer) is added to this node for

approximation.

58

Secondly, the nodes are checked for interlayer edges, these nodes have a high

probability of becoming bridge nodes between layers. Further if the node is already

a hub in the layer the probability of that node becoming a hub in HeMLN is also

high so this heuristic proposes to add an average number of shortest paths (average

shortest path of the nodes in another layer that have interlayer edges) to these nodes.

For the rest of the nodes we add the minimum number of shortest paths. As per the

decision tree there are three values that are used in this heuristic that is maximum,

average and the minimum number of shortest paths.

Figure 6.2: Degree-dominant heuristic decision tree

Composition algorithm for the Degree-dominant heuristic is shown in Algorithm

2 where the inputs, ni nodes and nj nodes consists of nodes of their respective layers.

59

The interlayer edges represents the interlayer edge set. The shortest path represent

the number of shortest paths that pass through each node. NodeWithIE consists of

list of nodes that have interlayer edges (this can be obtained through the interlayer

edge set). The algorithm follows the decision tree that is discussed earlier.

The above heuristic is initially tested on smaller datasets starting from 100

nodes to up to 10,000 nodes. Also, this heuristic is tested on word association dataset.

Figure 6.3 shows the accuracy of degree-dominant heuristic on various datasets. Naive

accuracy is also plotted in blue color for comparison.

It can be noted from the figure 6.3 that the degree-dominant heuristic has

performed better in majority of the datasets that were tested. There was a maximum

of 35% increase in accuracy. However in the last three datasets the accuracy has

dropped below the naive approach.

Figure 6.4 shows the precision plot for the same datasets. Even here the preci-

sion has increased for first five datasets and later drops significantly.

Further the same heuristic was tested on large datasets. Figure 6.5 shows the

accuracy comparison on large datasets. It can be seen that the accuracy results are

further below the naive approach for all these datasets as well. Figure 6.6 shows the

precision comparison on large datasets, even the precision is lower compared to naive

approach. As precision is low we can infer that there are more false positives in the

list of hubs identified by the heuristic. False positives need to be reduced to improve

the accuracy.

6.5.1 Analysis of Degree-dominant heuristic:

Degree-dominant heuristic provided good precision in some datasets where there

was an increase of 20% and reached up to 90% precision. This is promising as there

was a good increase in precision when compared to naive approach. However the same

60

Algorithm 2 Composition algorithm for betweenness centrality degree-dominant

heuristic
INPUT:

ni nodes = {Vi1, Vi2, ..., Vin1}

nj nodes = {Vj1, Vj2..., Vjn2}

interlayer edges = {(Vi1, Vj1), (Vi2, Vj2), ...}

shortest path = {Vi1 : BCi1, Vi2 : BCi2...Vin : BCin, Vj1 : BCj1, Vj2 : BCj2...Vjn :

BCjn, }

ALGORITHM:

1: for nodei, nodej ∈ interlayer edges do

2: if MinShortestPathLayeri > shortest path[nodei] then

3: MinShortestPathLayeri = shortest path[nodei]

4: end if

5: if MinShortestPathLayerj > shortest path[nodej] then

6: MinShortestPathLayerj = shortest path[nodej]

7: end if

8: if MaxShortestPathLayeri < shortest path[nodei] then

9: MaxShortestPathLayeri = shortest path[nodei]

10: end if

11: if MaxShortestPathLayerj < shortest path[nodej] then

12: MaxShortestPathLayeri = shortest path[nodej]

13: end if

14: end for

15: NodesWithIE = {Vi1, Vi2, ...Vj1, Vj2, ...}

16: find the average number of SP of the nodes ∈ NodesWithIE in each layer

(AvgShortestPathLayeri, AvgShortestPathLayerj)

61

17: let BetweennessHeMLN consists of all the betweenness values obtained from layers

18: for NodeID ∈ Layeri ∪ Layerj do

19: if NodeID in ni nodes then

20: if DegreeValue of NodeID> Average degree then

21: add MaxShortestPathLayerj to BetweennessHeMLN [NodeID]

22: else

23: if NodeID ∈ NodesWithIE and NodeID ∈ layer betweenness hub then

24: add AvgShortestPathLayerj to BetweennessHeMLN [NodeID]

25: else

26: add MinShortestPathLayerj to BetweennessHeMLN [NodeID]

27: end if

28: end if

29: else

30: if DegreeValue > Average degree then

31: add MaxShortestPathLayeri to BetweennessHeMLN [NodeID]

32: else

33: if NodeID ∈ NodesWithIE and NodeID ∈ layer betweenness hub then

34: add AvgShortestPathLayeri to BetweennessHeMLN [NodeID]

35: else

36: add MinShortestPathLayeri to BetweennessHeMLN [NodeID]

37: end if

38: end if

39: end if

40: end for

62

41: calculate the new average number of shortest paths and assign it to AverageNoSP

42: for NodeID ∈ ni nodes ∪ nj nodes do

43: if BetweennessHeMLN [NodeID] ≥ AverageNoSP then

44: add NodeID to BetweennessHubs list

45: end if

46: end for

OUTPUT:

BetweennessHubs = {V1, V5....}

Figure 6.3: Jaccard’s coeffecient plot for various small datasets using
degree-dominant heuristic.

heuristic gave precision lesser than that of naive approach for the last four datasets

and for the larger datasets. It can be noted that this heuristic is not consistent for

all datasets with respect to accuracy. Also, for word association dataset the accuracy

63

Figure 6.4: Precision plot for various small datasets using degree-dominant heuristic.

Figure 6.5: Accuracy comparison of degree-dominant heuristic on large datasets

64

Figure 6.6: Precision comparison of degree-dominant heuristic on large datasets

dropped to almost 19% when the naive was 86% accurate. In the next heuristic we

try to improve the accuracy by improving the precision.

65

6.6 Degree-betweenness heuristic

In degree-betweenness heuristic the same parameters are analysed in each layer,

however with the change in composition algorithm this heuristic proposes to reduce

the inconsistency with the accuracy. In degree-betweenness heuristic we propose to

include an if condition where the node should be a degree hub also a hub in the layer

and should have an interlayer edge. If all these three conditions are satisfied the

node can have a very high chance of becoming a hub in the entire HeMLN. satisfying

all three conditions means the node has more edges than rest of the nodes, it has

an interlayer edge so it might be a bridge node also if it is hub in the layer then

its betweenness measure is also high. Figure 6.7 shows the decision tree of degree-

betweenness heuristic.

Figure 6.7: Decision tree for degree-betweenness heuristic

Algorithm 3 explains in detail the composition algorithm for the degree-betweenness

heuristic. As mentioned earlier the inputs, ni nodes and nj nodes consists of nodes

of their respective layers. The interlayer edges represents the interlayer edge set.

The shortest path represent the number of shortest paths that pass through each

66

node. NodeWithIE consists of list of nodes that have interlayer edges (this can be

obtained through the interlayer edge set). The algorithm follows the decision tree

that is discussed earlier.

Figure 6.8 compares the accuracy of naive approach, degree-dominant and

degree-betweenness heuristics on the same set of datasets. The accuracy improve-

ments need to be understood with respect to the naive approach. In the datasets

that were tested, degree-betweenness heuristic accuracy is consistently bet-

ter than that of naive approach as compared to . In the datasets that were

tested the accuracy increase was in the range of 1% to 22% over the naive

approach. This validates our intuition and our estimation is better than degree-

dominant heuristic across datasets.

Figure 6.8: Comparing the accuracy of naive approach, degree-dominant heuristic
and degree-betweenness heuristic

67

Algorithm 3 Composition algorithm for betweenness centrality degree-betweenness

heuristic
INPUT:

ni nodes = {Vi1, Vi2, ..., Vin1}

nj nodes = {Vj1, Vj2..., Vjn2}

interlayer edges = {(Vi1, Vj1), (Vi2, Vj2), ...}

shortest path = {Vi1 : BCi1, Vi2 : BCi2...Vin : BCin, Vj1 : BCj1, Vj2 : BCj2...Vjn :

BCjn, }

ALGORITHM:

1: for nodei, nodej ∈ interlayer edges do

2: if MinShortestPathLayeri > shortest path[nodei] then

3: MinShortestPathLayeri = shortest path[nodei]

4: end if

5: if MinShortestPathLayerj > shortest path[nodej] then

6: MinShortestPathLayerj = shortest path[nodej]

7: end if

8: if MaxShortestPathLayeri < shortest path[nodei] then

9: MaxShortestPathLayeri = shortest path[nodei]

10: end if

11: if MaxShortestPathLayerj < shortest path[nodej] then

12: MaxShortestPathLayeri = shortest path[nodej]

13: end if

14: end for

15: let NodesWithIE = {Vi1, Vi2, ...Vj1, Vj2, ...}

16: find the average number of SP of the nodes ∈ NodesWithIE in each layer

(AvgShortestPathLayeri, AvgShortestPathLayerj)

68

17: let BetweennessHeMLN consists of all the betweenness values obtained from layers

18: for NodeID ∈ ni nodes do

19: if (DegreeValue> Average degree) and (NodeID ∈ NodesWithIE) and (NodeID

∈ layer betweenness hub) then

20: add MaxShortestPathLayerj to BetweennessHeMLN [NodeID]

21: else

22: add MinShortestPathLayerj to BetweennessHeMLN [NodeID]

23: end if

24: end for

25: for NodeID ∈ nj nodes do

26: if (DegreeValue> Average degree) and (NodeID ∈ NodesWithIE) and (NodeID

∈ layer betweenness hub) then

27: add MaxShortestPathLayeri to BetweennessHeMLN [NodeID]

28: else

29: add MinShortestPathLayeri to BetweennessHeMLN [NodeID]

30: end if

31: end for

32: calculate the new average number of shortest paths and assign it to AverageNoSP

33: for NodeID ∈ ni nodes ∪ nj nodes do

34: if BetweennessHeMLN [NodeID] ≥ AverageNoSP then

35: add NodeID to BetweennessHubs list

36: end if

37: end for

OUTPUT:

BetweennessHubs = V1, V5....

69

Figure 6.9 compares the precision of naive approach, degree-dominant and

degree-betweenness heuristics. Degree-betweenness heuristic precision is consistently

better than that of naive approach. For these datasets precision increase was in

the range of 6% to 18%. More improtantly degree-betweenness heuristic is giv-

ing good results for the datasets where degree-dominant heuristic performed poorly.

Degree-betweenness heuristic is promising and will be further tested on very large

datasets as part of experiments.

Figure 6.9: Comparing the accuracy of naive approach, degree-dominant heuristic
and degree-betweenness heuristic

70

As discussed, betweenness centrality is computationally expensive. The maxi-

mum amount of time taken for calculating betweenness centrality is mainly consumed

by the all pair shortest path(APSP) computation. Being a main memory algorithm,

to analyze larger datasets, we will have to reduce the APSP time by parallelizing the

APSP computation. This is possible as APSP can be parallelized. In this thesis we

use High performance computing (HPC) for computing the betweenness mea-

sure on larger datasets. Since BFS is used to compute APSP, with multiprocessing

we can compute it in parallel. Figure 6.10 shows the overall algorithm to compute

APSP in parallel using 100 processes at a time. In this algorithm each process com-

putes the BFS keeping one node as the root, similarly we can initiate 100 processes

at a time. This can be increased to the total number of nodes based on the system

capabilities. For each process the input is a graph (adjacency matrix) and the output

is the number of shortest paths that pass through each node. The output from each

process is stored in a stack. While each process produces an output, at the end of all

the processes the output is combined and the process is repeated until all the shortest

paths are computed. This algorithm is used in analysis function and ground truth

for calculating the betweenness centrality values for large datasets.

Degree-betweenness heuristic was run on larger datasets up to 4 million edges.

Additional information about the dataset characteristics is discussed in chapter 4.

Figure 6.11 shows the results of degree-betweenness heuristic on larger datasets start-

ing from 25,000 nodes and 100,000 edges to 100,000 nodes and 4 million edges. Degree-

betweenness heuristic is consistent with the results and it is always better than the

naive approach.

Figure 6.12 shows the performance of degree-betweenness heuristic on larger

datasets. The precision tends to follow the naive accuracy. For all the datasets

71

Figure 6.10: Betweenness centrality calculations on HPC

the degree-betweenness heuristic precision is more than that of naive ap-

proach.

Figure 6.13 compares the time taken by ground truth, naive and degree-betweenness

heuristic. degree-betweenness heuristic with decoupling-based composition performs

significantly better than the ground truth but takes more time than naive approach.

For the datasets that were tested the % time savings is in the range of 29% to

69%.

72

Figure 6.11: Accuracy comparison of degree-betweenness heuristic on larger datasets

The performance improvement mainly depends on the node distribution among

the layers. Figure 6.14 shows the time savings among various node distributions.

Layers with 50:50 node distribution (50% nodes in each layer) have the highest %

time savings in this heuristic is around 90% while the HeMLN with 90:10 (90%

nodes in one layer and 10% nodes in another layer) has the least % time savings. The

% time savings reduces as the difference in the node distribution increases.

This is because the heuristic time depends on the maximum time taken by the layers.

If the node distribution is equally distributed across layers then both the layers take

almost equal amount of time and we would achieve maximum parallelization. If all

the nodes are present in one layer then the maximum time is equal to the time taken

by the larger layer which is almost equal to the ground truth.

73

Figure 6.12: Precision comparison of degree-betweenness heuristic on larger datasets

Figure 6.13: Performance of degree-betweenness heuristic on larger datasets

74

Figure 6.14: Betweenness centrality performance comparison based on node
distribution

75

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This thesis proposes decoupling based algorithms for degree and betweenness

centrality computation on HeMLNs. For each several heuristics were develop and the

most promising two of them are presented. For degree centrality, with the increase

in the amount of partial results retained from each layer we were able to increase

accuracy reaching 100% when compared to ground truth. The performance im-

provement is in the range of 2- 67% for the datasets that were tested. This

depends on graph characteristics as well as edge distribution between layers and the

number of interlayer edges. This is significant as we are able to achieve 100% accuracy

and reduce the time taken as compared to ground truth.

For betweenness centrality, again two heuristics have been presented. Accuracy

of degree-dominant heuristic is not consistent across data sets with different graph

characteristics. Hence, it was improved to develop a heuristic that is consistent across

graph characteristics. Our algorithm based on degree-betweenness heuristic provides

consistent improvement in accuracy across datasets and graph characteristics. The

accuracy obtained from degree-betweenness heuristic is better than naive algorithm

for all the datasets that were tested. With degree-betweenness heuristic a maximum

of 94% precision was achieved which is significant when compared to the percentage

of time saved. For betweenness centrality we were also able to conclude that the

percentage time saved depends on the node distribution among the layers in the

HeMLN. For 50% node distribution around 90% time was saved with degree-

betweenness heuristic.

76

All the heuristics proposed have provided good results and we believe that it

can be further improved. Decoupling-based approach is a new framework for HeMLNs

and based on the results obtained, we believe it can be extended to other centrality

measures, such as Eigenvector, Pagerank, etc.

77

REFERENCES

[1] S. Fortunato, “Community detection in graphs,” Physics reports, vol. 486, no.

3-5, pp. 75–174, 2010.

[2] D. J. Cook and L. B. Holder, “Substructure discovery using minimum description

length and background knowledge,” Journal of Artificial Intelligence Research,

vol. 1, pp. 231–255, 1993.

[3] P. Bródka, K. Skibicki, P. Kazienko, and K. Musia l, “A degree centrality in

multi-layered social network,” in 2011 International Conference on Computa-

tional Aspects of Social Networks (CASoN), 2011, pp. 237–242.

[4] A. McLaughlin and D. A. Bader, “Scalable and high performance betweenness

centrality on the gpu,” in SC’14: Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis. IEEE, 2014,

pp. 572–583.

[5] K. Nakajima and K. Shudo, “Estimating high betweenness centrality nodes via

random walk in social networks,” Journal of Information Processing, vol. 28, pp.

436–444, 2020.

[6] M. Riondato and E. M. Kornaropoulos, “Fast approximation of betweenness

centrality through sampling,” Data Mining and Knowledge Discovery, vol. 30,

no. 2, pp. 438–475, 2016.

[7] A. Santra, S. Bhowmick, and S. Chakravarthy, “Efficient community re-creation

in multilayer networks using boolean operations,” in International Conference on

Computational Science, ICCS 2017, 12-14 June 2017, Zurich, Switzerland, ser.

Procedia Computer Science, P. Koumoutsakos, M. Lees, V. V. Krzhizhanovskaya,

78

J. J. Dongarra, and P. M. A. Sloot, Eds., vol. 108. Elsevier, 2017, pp. 58–67.

[Online]. Available: https://doi.org/10.1016/j.procs.2017.05.246

[8] ——, “Hubify: Efficient estimation of central entities across multiplex layer

compositions,” in 2017 IEEE International Conference on Data Mining

Workshops, ICDM Workshops 2017, New Orleans, LA, USA, November 18-21,

2017, R. Gottumukkala, X. Ning, G. Dong, V. Raghavan, S. Aluru, G. Karypis,

L. Miele, and X. Wu, Eds. IEEE Computer Society, 2017, pp. 142–149.

[Online]. Available: https://doi.org/10.1109/ICDMW.2017.24

[9] K. Samant, E. Memeti, A. Santra, E. Karim, and S. Chakravarthy, “Cowiz:

Interactive covid-19 visualization based on multilayer network analysis,”

in 37th IEEE International Conference on Data Engineering, ICDE 2021,

Chania, Greece, April 19-22, 2021, 2021, pp. 2665–2668. [Online]. Available:

https://doi.org/10.1109/ICDE51399.2021.00299

[10] A. Santra, K. S. Komar, S. Bhowmick, and S. Chakravarthy, “A new community

definition for multilayer networks and A novel approach for its efficient compu-

tation,” CoRR, vol. abs/2004.09625, 2020, https://arxiv.org/abs/2004.09625.

[11] H. N. Djidjev, “Linear algorithms for graph separation problems,” in Scandina-

vian Workshop on Algorithm Theory. Springer, 1988, pp. 216–222.

[12] A. Santra, “Analysis of complex data sets using multilayer networks: A

decoupling-based framework,” Ph.D. dissertation, The University of Texas at

Arlington, July 2020, https://itlab.uta.edu/students/alumni/PhD/Abhishek

Santra/ASantra PhD2020.pdf.

[13] A. Santra and S. Bhowmick, “Holistic analysis of multi-source, multi-feature

data: Modeling and computation challenges,” in Big Data Analytics - 5th

International Conference, BDA 2017, Hyderabad, India, December 12-15, 2017,

Proceedings, ser. Lecture Notes in Computer Science, P. K. Reddy, A. Sureka,

79

https://doi.org/10.1016/j.procs.2017.05.246
https://doi.org/10.1109/ICDMW.2017.24
https://doi.org/10.1109/ICDE51399.2021.00299
https://arxiv.org/abs/2004.09625
https://itlab.uta.edu/students/alumni/PhD/Abhishek_Santra/ASantra_PhD2020.pdf
https://itlab.uta.edu/students/alumni/PhD/Abhishek_Santra/ASantra_PhD2020.pdf

S. Chakravarthy, and S. Bhalla, Eds., vol. 10721. Springer, 2017, pp. 59–68.

[Online]. Available: https://doi.org/10.1007/978-3-319-72413-3 4

[14] S. Chakravarthy, A. Santra, and K. S. Komar, “Why multilayer networks

instead of simple graphs? modeling effectiveness and analysis flexibility and

efficiency!” in Big Data Analytics - 7th International Conference, BDA 2019,

Ahmedabad, India, December 17-20, 2019, Proceedings, ser. Lecture Notes in

Computer Science, S. Madria, P. Fournier-Viger, S. Chaudhary, and P. K.

Reddy, Eds., vol. 11932. Springer, 2019, pp. 227–244. [Online]. Available:

https://doi.org/10.1007/978-3-030-37188-3 14

[15] ——, “Humble data management to big data analytics/science: A retrospective

stroll,” in Big Data Analytics - 6th International Conference, BDA 2018,

Warangal, India, December 18-21, 2018, Proceedings, ser. Lecture Notes in

Computer Science, A. Mondal, H. Gupta, J. Srivastava, P. K. Reddy, and

D. V. L. N. Somayajulu, Eds., vol. 11297. Springer, 2018, pp. 33–54. [Online].

Available: https://doi.org/10.1007/978-3-030-04780-1 3

[16] K. S. Komar, A. Santra, S. Bhowmick, and S. Chakravarthy, “EER →

MLN: EER approach for modeling, mapping, and analyzing complex data

using multilayer networks (mlns),” in Conceptual Modeling - 39th International

Conference, ER 2020, Vienna, Austria, November 3-6, 2020, Proceedings, ser.

Lecture Notes in Computer Science, G. Dobbie, U. Frank, G. Kappel, S. W.

Liddle, and H. C. Mayr, Eds., vol. 12400. Springer, 2020, pp. 555–572.

[Online]. Available: https://doi.org/10.1007/978-3-030-62522-1 41

[17] J. D. Wilson, J. Palowitch, S. Bhamidi, and A. B. Nobel, “Community extrac-

tion in multilayer networks with heterogeneous community structure,” J. Mach.

Learn. Res., vol. 18, no. 1, p. 5458–5506, Jan. 2017.

80

https://doi.org/10.1007/978-3-319-72413-3_4
https://doi.org/10.1007/978-3-030-37188-3_14
https://doi.org/10.1007/978-3-030-04780-1_3
https://doi.org/10.1007/978-3-030-62522-1_41

[18] Z. Hammoud and F. Kramer, “Multilayer networks: aspects, implementations,

and application in biomedicine,” Big Data Analytics, vol. 5, 07 2020.

[19] B. Lee, S. Zhang, A. Poleksic, and L. Xie, “Heterogeneous multi-layered

network model for omics data integration and analysis,” Frontiers in Genetics,

vol. 10, p. 1381, 2020. [Online]. Available: https://www.frontiersin.org/article/

10.3389/fgene.2019.01381

[20] A. Rai, “MLN-SUBDUE: Decoupling Approach-based Substructure Discovery

In Multilayer Networks (MLNs),” Master’s thesis, The University of Texas

at Arlington, May 2020, https://itlab.uta.edu/students/alumni/MS/Anish Rai/

ARai MS2020.pdf.

[21] E. Cohen, D. Delling, T. Pajor, and R. F. Werneck, “Computing classic

closeness centrality, at scale,” in Proceedings of the Second ACM Conference

on Online Social Networks, ser. COSN ’14. New York, NY, USA:

Association for Computing Machinery, 2014, p. 37–50. [Online]. Available:

https://doi.org/10.1145/2660460.2660465

[22] D. Sharma and A. Surolia, Degree Centrality. New York, NY: Springer

New York, 2013, pp. 558–558. [Online]. Available: https://doi.org/10.1007/

978-1-4419-9863-7 935

[23] L. C. Freeman, “Centrality in social networks conceptual clarification,” Social

networks, vol. 1, no. 3, pp. 215–239, 1978.

[24] M. G. Everett and S. P. Borgatti, “The centrality of groups and classes,” The

Journal of mathematical sociology, vol. 23, no. 3, pp. 181–201, 1999.

[25] S. Uddin and L. Hossain, “Time scale degree centrality: A time-variant approach

to degree centrality measures,” in 2011 International Conference on Advances in

Social Networks Analysis and Mining. IEEE, 2011, pp. 520–524.

81

https://www.frontiersin.org/article/10.3389/fgene.2019.01381
https://www.frontiersin.org/article/10.3389/fgene.2019.01381
https://itlab.uta.edu/students/alumni/MS/Anish_Rai/ARai_MS2020.pdf
https://itlab.uta.edu/students/alumni/MS/Anish_Rai/ARai_MS2020.pdf
https://doi.org/10.1145/2660460.2660465
https://doi.org/10.1007/978-1-4419-9863-7_935
https://doi.org/10.1007/978-1-4419-9863-7_935

[26] H. Kretschmer and T. Kretschmer, “A new centrality measure for social network

analysis applicable to bibliometric and webometric data,” Collnet Journal of

Scientometrics and Information Management, vol. 1, no. 1, pp. 1–7, 2007.

[27] W. Maharani, A. A. Gozali, et al., “Degree centrality and eigenvector centrality

in twitter,” in 2014 8th international conference on telecommunication systems

services and applications (TSSA). IEEE, 2014, pp. 1–5.

[28] X. Tang, J. Wang, J. Zhong, and Y. Pan, “Predicting essential proteins based on

weighted degree centrality,” IEEE/ACM Transactions on Computational Biology

and Bioinformatics, vol. 11, no. 2, pp. 407–418, 2013.

[29] M. Zhong, W. Yang, B. Huang, W. Jiang, X. Zhang, X. Liu, L. Wang, J. Wang,

L. Zhao, Y. Zhang, et al., “Effects of levodopa therapy on voxel-based degree

centrality in parkinson’s disease,” Brain imaging and behavior, vol. 13, no. 5, pp.

1202–1219, 2019.

[30] N. Kourtellis, T. Alahakoon, R. Simha, A. Iamnitchi, and R. Tripathi, “Identify-

ing high betweenness centrality nodes in large social networks,” Social Network

Analysis and Mining, vol. 3, no. 4, pp. 899–914, 2013.

[31] A. McLaughlin and D. A. Bader, “Accelerating gpu betweenness centrality,”

Communications of the ACM, vol. 61, no. 8, pp. 85–92, 2018.

[32] D. Koschützki, K. A. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl, and

O. Zlotowski, “Centrality indices,” in Network analysis. Springer, 2005, pp.

16–61.

[33] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of mathe-

matical sociology, vol. 25, no. 2, pp. 163–177, 2001.

[34] D. Erdős, V. Ishakian, A. Bestavros, and E. Terzi, “A divide-and-conquer algo-

rithm for betweenness centrality,” in Proceedings of the 2015 SIAM International

Conference on Data Mining. SIAM, 2015, pp. 433–441.

82

[35] U. Brandes, “On variants of shortest-path betweenness centrality and their

generic computation,” Social Networks, vol. 30, no. 2, pp. 136–145, 2008.

[36] S. Gao, Y. Wang, Y. Gao, and Y. Liu, “Understanding urban traffic-flow char-

acteristics: a rethinking of betweenness centrality,” Environment and Planning

B: Planning and Design, vol. 40, no. 1, pp. 135–153, 2013.

[37] H. M. Shashikala, R. George, and K. A. Shujaee, “Outlier detection in network

data using the betweenness centrality,” in SoutheastCon 2015. IEEE, 2015, pp.

1–5.

[38] M. De Domenico, “Multilayer modeling and analysis of human brain networks,”

Giga Science, vol. 6, no. 5, p. gix004, 2017.

[39] B. Oselio, A. Kulesza, and A. O. Hero, “Multi-layer graph analysis for dynamic

social networks,” IEEE Journal of Selected Topics in Signal Processing, vol. 8,

no. 4, pp. 514–523, 2014.

[40] R. Casarin, M. Iacopini, G. Molina, E. Ter Horst, R. Espinasa, C. Sucre, and

R. Rigobon, “Multilayer network analysis of oil linkages,” The Econometrics

Journal, vol. 23, no. 2, pp. 269–296, 2020.

[41] S. Martinčić-Ipšić, D. Margan, and A. Meštrović, “Multilayer network of lan-

guage: A unified framework for structural analysis of linguistic subsystems,”

Physica A: Statistical Mechanics and its Applications, vol. 457, pp. 117–128,

2016.

[42] K. Komar, “Data-Driven Modeling of Heterogeneous Multilayer Networks And

Their Community-Based Analysis Using Bipartite Graphs,” Master’s thesis, The

University of Texas at Arlington, August 2019, http://itlab.uta.edu/students/

alumni/MS/Kanthi Sannappa Komar/KanthiK MS2019.pdf.

[43] “AI@WSU,” http://ailab.wsu.edu/subdue/download.htm, 2011, [Online].

83

http://itlab.uta.edu/students/alumni/MS/Kanthi_Sannappa_Komar/KanthiK_MS2019.pdf
http://itlab.uta.edu/students/alumni/MS/Kanthi_Sannappa_Komar/KanthiK_MS2019.pdf
http://ailab.wsu.edu/subdue/download.htm

[44] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model for

graph mining,” in Proceedings of the 2004 SIAM International Conference on

Data Mining. SIAM, 2004, pp. 442–446.

[45] F. Khorasani, R. Gupta, and L. N. Bhuyan, “Scalable simd-efficient graph pro-

cessing on gpus,” in Proceedings of the 24th International Conference on Parallel

Architectures and Compilation Techniques, ser. PACT ’15, 2015, pp. 39–50.

[46] OpenSourceData, “The internet movie database,” ftp://ftp.fu-berlin.de/pub/

misc/movies/database/, 2018, [Online].

[47] “Dblp dataset,” http://dblp.uni-trier.de/xml/, 2018, [Online].

[48] P. Boldi and S. Vigna, “The WebGraph framework I: Compression techniques,”

in Proc. of the Thirteenth International World Wide Web Conference (WWW

2004). Manhattan, USA: ACM Press, 2004, pp. 595–601.

[49] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propagation: A

multiresolution coordinate-free ordering for compressing social networks,” in Pro-

ceedings of the 20th international conference on World Wide Web, S. Srinivasan,

K. Ramamritham, A. Kumar, M. P. Ravindra, E. Bertino, and R. Kumar, Eds.

ACM Press, 2011, pp. 587–596.

[50] J. Golbeck, “Chapter 3 - network structure and measures,” in Analyzing

the Social Web, J. Golbeck, Ed. Boston: Morgan Kaufmann, 2013, pp.

25 – 44. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

B9780124055315000031

[51] M. E. Newman, “A measure of betweenness centrality based on random walks,”

Social networks, vol. 27, no. 1, pp. 39–54, 2005.

84

ftp://ftp.fu-berlin.de/pub/misc/movies/database/
ftp://ftp.fu-berlin.de/pub/misc/movies/database/
http://dblp.uni-trier.de/xml/
http://www.sciencedirect.com/science/article/pii/B9780124055315000031
http://www.sciencedirect.com/science/article/pii/B9780124055315000031

BIOGRAPHICAL STATEMENT

Kiran Mukunda was born in Bengaluru, Karnataka, India. He received his

Bachelors degree in Electronics and Communication Engineering from R.V. College

of Engineering, Bengaluru, India in May 2015. After graduation he worked for Oracle

India Private Limited, Bengaluru as a Senior Application Engineer from June 2015 to

August 2019. He studied his masters degree in computer science at The University of

Texas at Arlington from August 2019 to July 2021. He likes working in data mining,

databases and software engineering domains.

85

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	INTRODUCTION
	Problem Statement
	Thesis Organization

	RELATED WORK
	Degree centrality
	Other degree centrality formulations
	Applications of Degree Centrality

	Betweenness centrality
	Variants of betweenness centrality

	MULTILAYER NETWORK ANALYSIS
	Decoupling Approach
	Advantages of Decoupling approach
	Challenges using Decoupling approach

	Related work at ITLab
	Community detection
	Substructure discovery

	DATASETS
	Synthetic graphs
	Graph with 100,000 nodes and 1,000,000 edges (100KV1ME):
	Characteristics of all the synthetic datasets used in this thesis

	Real-world datasets:
	International Movie Database (IMDB)
	The DBLP Computer Science Bibliography
	Webgraph datasets:

	DEGREE CENTRALITY
	Degree Centrality Heuristic 1
	Design
	Sample Data Set Results and Analysis

	Degree Centrality Heuristic 2
	Design
	Sample Data Set Results and Analysis

	Large synthetic and real-world dataset experiments and performance evaluations
	Extending the heuristics to k layers
	Comparing the information retained from each layer and the accuracy

	BETWEENNESS CENTRALITY
	Naive approach
	Ground truth for betweenness centrality computation of HeMLN
	Challenges
	Intuition
	Degree-dominant heuristic
	Analysis of Degree-dominant heuristic:

	Degree-betweenness heuristic

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	BIOGRAPHICAL STATEMENT

