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Abstract

Uncertainty Propagation, Control, and Estimation of Stochastic Dynamic Systems

Using Generalized Polynomial Chaos Expansion

Rajnish Bhusal, Ph.D.

The University of Texas at Arlington, 2021

Supervising Professor: Kamesh Subbarao

In recent years, uncertainty propagation has emerged as an important research

area in the field of dynamical systems. The growing interest in this area arises out

of the need to develop computationally efficient approaches to predict the evolution

of a system subject to uncertainties. To this end, this dissertation is focused on

developing computational frameworks for uncertainty propagation, control, and state

estimation of stochastic dynamical systems using the generalized polynomial chaos

(gPC) expansion technique.

In the first part of this dissertation, the construction of gPC expansion is pre-

sented in general. The novelty of this dissertation lies in developing a mixed sparse

grid quadrature technique to carry out computationally efficient uncertainty propaga-

tion in dynamical systems wherein the random variables are governed by different (or

a mixture of) probability distribution types. Additionally, the proposed quadrature

technique in the gPC expansion framework is utilized to study the sensitivity of the

system output to the uncertain input variables. Subsequently, this work integrates

the idea of uncertainty propagation with those of model data-fusion and optimal con-

vi



trol theory for state estimation and robust control, respectively, of stochastic systems

subject to parametric uncertainties.

Furthermore, the stability margin of a group of cooperative unmanned vehicles

is examined in a multi-agent system setting. In this regard, a unified framework is

proposed to study the consensus of multi-agent systems with multiplicative uncertain-

ties in the feedback path of agents. The proposed technique provides performance

indices that measure the robustness of the networked group of agents to gain, phase,

and input delay perturbations. Finally, the dissertation studies the consensus prob-

lems in multi-agent systems wherein the information exchange between the agents is

affected by non-uniform time-varying delays in the network.

The proposed frameworks are applied to various benchmark problems and real-

world applications, including the motion of satellites in low-Earth orbits, aeroelastic

systems, hypersonic reentry of a spacecraft to Earth, synchronization in the states of

short-period dynamics of aircraft, among others.
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Chapter 1

Introduction

Mathematical models that simulate real-world physical processes are playing an

increasingly crucial role in many branches of science and engineering. These mathe-

matical models often comprise a set of differential and/or integral equations and can

be used to understand the evolution of the state of the physical system. Regard-

less of the underlying mathematical formalism, the computational results from these

models always depend on inputs that are uncertain and rely on approximations that

introduce errors. With the advancement in technology and a push towards increased

automation, quantification and propagation of the uncertainties through models of

these dynamical systems have become indispensable to aid the decision-making pro-

cess. Further, to mitigate the risks associated with the uncertainties, the demand

for robust optimization, robust control, and probabilistic estimation has increased.

This dissertation provides a computational black-box to carry out the aforementioned

tasks in a computationally efficient way. Further, this dissertation focuses on the un-

certainty quantification and propagation in the computational models of a group of

systems, namely multi-agent systems. In addition, a framework is provided to charac-

terize the stability margins of the multi-agent systems, which quantifies the measure of

cooperative robustness of the systems to the external perturbations and time-delays.

1.1 Objectives

The key objectives of this research are summarized as follows:
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1. The first objective of this dissertation is to develop a computationally efficient

non-intrusive uncertainty propagation technique for general non-linear stochas-

tic systems with initial condition and parametric uncertainties which are char-

acterized by different probability distribution types. In order to achieve this

objective, we utilize the approach of pseudospectral collocation in generalized

polynomial chaos (gPC) expansion framework. A further goal of this research

is to develop an efficient multidimensional quadrature rule in sparse grid setting

to handle the mixed distribution of uncertainties.

2. The second objective is to carry out a sensitivity analysis of the response dis-

tribution of the stochastic system to the underlying uncertain variables. With

regards to this task, gPC expansion-based Sobol’ indices are derived using Anal-

ysis of Variance (ANOVA) approach.

3. The third objective is to design robust optimal control strategies for stochastic

systems with linear dynamics. In order to fulfill this objective, stochastic lin-

ear quadratic regulator problems involving expectation performance indices are

studied. To that end, a single controller is designed for all possible variations of

the random variables within the domain of their probability density functions.

4. Our next objective is to utilize the efficacy of pseudospectral collocation-based

gPC expansion technique to develop a state estimator/filter for nonlinear sys-

tems. The uncertainties in the system are propagated using gPC expansion

technique for the filter. Further, the measurement update is carried out in en-

semble Kalman filtering framework. In addition to that, the sensitivity of the

posterior density function to the underlying random variables is characterized.

5. Subsequently, this dissertation aims to carry out probabilistic analysis of co-

operative control protocols to study the effect of random inputs in the system
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of multiple agents. Additionally, the objective is to study the sensitivity of

networked multi-agent systems to cyber attacks from malicious intruders.

6. The final objective is to develop a unified framework to characterize the stability

margins (gain margin and phase margin) and uniform input delay margin of a

general linear multi-agent system for consensus. Moreover, the delay margin

of a linear multi-agent system with non-uniform time-varying communication

delays is computed.

1.2 Background and Motivation

In this section, the background and motivation of various components of the

research are summarized.

1.2.1 Uncertainty Propagation Using Generalized Polynomial Chaos Expansion

This research presents the use of generalized polynomial chaos expansion for the

propagation of uncertainties that are inherent in various dynamic system models in

different forms. These stochastic dynamic models are pertinent in various engineer-

ing fields which include space situational awareness (tracking and data association

related to resident space objects, conjunction assessment), relative navigation sce-

narios (target tracking, formation flying among aircraft, and autonomous rendezvous

and docking of spacecraft), among others. In order to make informed decisions in

preventing hazards and to mitigate the risks, it is of utmost importance to accurately

characterize the uncertainties, study their evolution through probabilistic/statistical

approaches, and analyze their impact on model response. To that end, a general

framework that highlights the steps involved in uncertainty study of stochastic dy-

namical systems is illustrated in Figure 1.1.
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Step 3: Uncertainty Propagation

Step 4: Sensitivity Analysis
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Figure 1.1: Framework for uncertainty study in stochastic systems

As shown in Figure 1.1, the first step towards uncertainty study in stochastic

systems involves developing a mathematical model for the system in the form of

differential equations. Additionally, the quantities of interest (QoI) are chosen whose

probabilistic content needs to be determined.

Next step is that of uncertainty quantification, which helps in determining the

sources and distribution of the uncertainties and underlying random variables, re-

spectively. In general, uncertainty quantification can be defined as the process of

quantifying uncertainties associated with model calculations of true, physical quanti-

ties of interest, with the goals of accounting for all relevant sources of uncertainty and

quantifying the contributions of specific sources to overall uncertainty [1]. Common

sources of uncertainty include uncertainties in the model parameters, uncertainties

in the model initial conditions, as well as uncertainties in the mathematical form

of the models. Further, reliable probabilistic models of the input random variables

are also built based on the available information from various sources (e.g., expert
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judgment on the problem, data bases and literature, physical arguments, and existing

measurements/observations).

Moreover, the consideration of uncertainty in the mathematical model makes

the model stochastic and therefore, the governing differential equations with uncer-

tainties are termed as stochastic differential equations (SDEs). Next step towards

uncertainty study involves uncertainty propagation, which is essential to transform

the uncertainty measure associated with the input random variables onto a measure

of uncertainty for the QoI of the model. In this step, the SDEs governing the stochas-

tic system are propagated in time and the probabilistic content of QoI is characterized

in the form of

(i) confidence intervals on the QoI,

(ii) quantile of the QoI,

(iii) probabilities of exceedance of a safety threshold or of an event of interest,

(iv) mean, variance and higher order moments of the QoI,

(v) probability density function of the QoI.

The sensitivity analysis step refers to the computation of so-called sensitivity

or importance indices of the components of the random variable with respect to a

given probabilistic content of the QoI. In other words, the sensitivity analysis studies

the contribution of uncertainty of each model input to the uncertainty of the QoI and

identifies the dominant contributors.

In this dissertation, we focus on uncertainty propagation and sensitivity anal-

ysis aspects for the study of uncertainties and their impacts in stochastic dynamical

systems. The most general approach to study the propagation of uncertainties in

dynamical systems is through the solutions of SDEs. Unlike ordinary differential

equations (ODEs) for deterministic models, which have a unique solution for each

appropriate initial condition, the solution to SDEs are stochastic processes. Prob-
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ability density function (PDF) is generally used to characterize each realization of

these stochastic processes [2]. The most commonly employed approach to simulate

an SDE is the Monte Carlo simulation (MCS) technique, which relies on sampling a

finite number (say, equal to N) of random variables from their PDFs. The Monte

Carlo simulation method, while being highly accurate to estimate statistical moments

as well as PDFs of QoI, has an error convergence rate which is inversely proportional

to the square root of the number of samples drawn (i.e., O(1/
√
N)). Hence, this

method can become intractable for computationally demanding models [3]. Alterna-

tively, Fokker-Planck (FP) equations provide means to accurately capture the time

evolution of the PDF of the SDEs; solution, however FP equations are only applica-

ble to Brownian [4] or Lévy [5] diffusion type of SDEs. Perturbation approach and

weighted integral method are among few other efficient techniques that have been de-

veloped in literature to solve the problem of uncertainty propagation, but are limited

to estimating first two statistical moments of the distribution [6]. Though moment

equations approach can be used to estimate higher order moments, statistical moment

equations suffer from the well-known closure problem and require closure approxima-

tions which may induce huge errors in estimating moments for systems with high

nonlinearities [7].

In this context, meta-modeling is a very relevant approach which involves build-

ing a surrogate of the model that makes it more feasible to create large number of

samples for MCS and improve the accuracy of the solution without incurring a huge

computational burden. In recent years, the polynomial chaos expansion framework

has been extensively used as a meta-modeling technique to carry out uncertainty

quantification and propagation [8–10]. The polynomial chaos expansion technique

was originally developed by Norbert Wiener [11] in 1938. Using Hermite polynomials,

Wiener constructed an orthonormal random basis for expanding nonlinear functionals
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of the Brownian motion (homogeneous chaos), and used it to study problems in sta-

tistical mechanics. Wiener’s homogeneous chaos was further refined by Cameron and

Martin [12] in 1947 by expanding nonlinear functionals in terms of Fourier-Hermite

functionals, and Itô [13] in 1951 by introducing Itô integrals. Moreover, Ghanem and

Spanos [14] in 1991 pioneered the polynomial chaos expansion technique by designing

a new numerical method for solving nonlinear functionals with random coefficients.

Using Karhunen-Loeve expansion, they first expanded the random coefficients as a

series of Gaussian random variables, followed by representing the random solution

as a Hermite expansion of the Gaussian random variables. While the approach of

expanding random coefficients using Hermite polynomials guarantees optimal conver-

gence rate for Gaussian and near Gaussian random fields, representing non-Gaussian

processes with Hermite polynomials cause difficulties with convergence.

As a remedy to this problem, gPC expansion was introduced by Xiu and Kar-

niadakis [15] in 2002. The gPC expansion is based on the principle of projecting the

random solution onto a basis of polynomials which are orthogonal to the PDF of the

input random variables. The orthogonal polynomials for the random variables are se-

lected from the Askey scheme [15] based on the distribution of the random variables.

Therefore, the problem of generating solutions for stochastic differential equations is

reduced to computing the coefficients of the expansion. Ghanem et al. introduced the

concept of Stochastic Galerkin projection-based polynomial chaos expansion which

are suited to various stochastic engineering problems [14]. However, the Galerkin

projection technique always requires specific algebraic developments to formulate the

system of equations for each new class of problems and can not be used as a black box

simulator; hence it is often labeled as “intrusive”. Another approach to compute the

coefficients required for gPC expansion is the sampling-based non-intrusive gPC ex-

pansion. Xiu et al. [16] proposed a class of non-intrusive techniques called stochastic
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collocation method that combines the strengths of Monte Carlo methods and stochas-

tic Galerkin methods. The major challenge in the case of stochastic collocation is the

selection of collocation nodes which in turn requires efficient quadrature techniques to

compute the coefficients of the polynomials for the expansion. Gaussian quadrature

tensor grids which are formed by tensor products of one-dimensional quadrature rules

are inefficient to use as the number of points increases exponentially with number of

dimensions, an issue that is often termed as the curse of dimensionality [17]. The

Sparse grid (SG)-based cubature rules proposed by Smolyak [18] alleviates the issue of

curse of dimensionality and is often used in the literature for computational efficiency.

Congedo et al. [19] have compared the computational cost and accuracy of several

sparse grid-based techniques for evaluating the coefficients of the polynomial chaos ex-

pansion for multi-dimensional stochastic problems. Similarly, Jones et al. introduced

the gPC expansion approach based on Gaussian Hermite tensor grid and sparse grid

collocation nodes in the nonlinear propagation of orbit uncertainty [20]. Propagation

and sensitivity analysis of the uncertainties affecting the lifetime of an object in low

Earth orbit (LEO) using polynomial interpolation-based gPC expansion was carried

out by Dell’Elce and Kerschen [21]. Recently, Adurthi et al. [22] proposed the concept

of conjugate unscented transform (CUT)-based quadrature technique and Madankan

et al. [23] made use of CUT-based quadrature for developing gPC expansion-based

minimum variance estimator.

While the gPC technique provides corresponding basis of expansion for various

known distributions, relevant works in the literature are centered around the problem

where all the random inputs are governed by a single distribution function, either

uniform or normal. In many cases, it is erroneous to assume a single distribution

function type for all the random variables in the SDE under consideration. For in-

stance, in the context of satellite orbit propagation in low Earth orbits where the
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motion of satellites are perturbed by atmospheric drag forces, the frontal area-to-

mass ratio in the drag model varies within a certain range, and thus, it is appropriate

to model this with a uniform distribution function. On the other hand, initial condi-

tion uncertainties can be suitably modeled with normal distribution functions. It is

trivial to incorporate independent random variables governed by different probabil-

ity distributions in gPC expansion framework using the intrusive Galerkin projection

and similar work has been carried out by Fisher in [24]. However, using the state

of the art in existing literature, this can be only carried out non-intrusively by em-

ploying the approach of repetitive simulations with samples generated from random

sampling techniques like Monte Carlo, Latin hypercube, etc. which are computation-

ally expensive. Alternatively, solving the aforementioned problem in gPC expansion

framework non-intrusively would demand an efficient quadrature technique which can

provide quadrature nodes characterizing the joint PDF generated from the mixture

of distributions. This motivates us to develop mixed sparse grid-based multi-variable

quadrature technique, which is one of the key objectives of this research.

Moreover, it is intuitive to understand that different variables influence the re-

sponse PDF of a stochastic system in different ways. Out of all the variables, some

have insignificant influence on the response of the system and these parameters can

be modeled less precisely than the ones which generate significant effects. However,

the relevant variables need to be distinguished and estimated with high accuracy.

Sensitivity analysis is generally carried out using variance-based global methods, also

known as ANOVA (ANalysis Of VAriance) [25]. The analysis aids us to make in-

formed decisions about the sensitivity of the system to the parameters involved [26].

The Sobol’ indices, which are obtained through the use of the Sobol decomposition

by separating out different contributions from the associated variables (both individ-

ual and collective) serve as determinants for sensitivity analysis [27]. To that end,
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polynomial chaos-based Sobol’ indices for sensitivity analysis were introduced by Su-

dret [6]. This further motivates us to carry out sensitivity analysis in the context of

uncertainty propagation problems with mixed distribution types.

1.2.2 Stochastic Optimal Control of Linear SystemsWith Probabilistic Uncertainties

As stated in the previous section, dynamical systems often have to deal with

uncertainties in the environment and even suffer from modeling-based uncertainties.

This motivates us to consider the problem of designing robust feedback controllers

for linear dynamical systems with parametric uncertainties in the stochastic linear

quadratic regulator (LQR) framework. Based on the class of uncertainties, robust

control formulations can be categorized into being either deterministic or stochas-

tic. A vast majority of the robust control literature relies on deterministic set-based

uncertainty descriptions (see [28, 29] and references therein). In this deterministic

approach, the controller is designed and analyzed based on worst-case uncertainties,

which may lead to sluggish/conservative closed-loop performance if the worst-case

realizations have a small probability of occurrence [30, 31]. This has led to a grow-

ing interest in considering stochastic robust control approaches, which exploit the

probability distribution of the uncertain parameters to design control strategies.

In the literature, the most commonly used stochastic control techniques are

suited to deterministic systems with stochastic forcing (or Brownian disturbance)

(see [32, 33]). On the other hand, the problem of stochastic control for systems with

parametric uncertainties is solved using random sampling (for example, MCS)-based

techniques [34, 35]. As stated earlier in the previous section, the computational cost

of the MCS-based random sampling approaches can be prohibitively expensive if the

uncertainty space is high dimensional. This motivates us to develop a stochastic
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control formulation for linear systems using generalized polynomial chaos expansion

framework.

In recent years, gPC expansion has been quite extensively used to develop

control strategies for stochastic systems. In [36, 37], linear quadratic regulators are

designed for stochastic systems with parametric uncertainties using gPC expansion.

Similarly, [38] considers the design of H2 optimal static output feedback control for

linear systems using the gPC expansion framework. Further, the gPC expansion ap-

proach has also been used to design model predictive control strategies for stochastic

systems (see [30,31]). However, all of these works develop the control formalism using

the Galerkin projection method to compute the coefficients of gPC expansion. In [39],

the parameters in the linear-parameter varying systems are assumed to be uncertain,

and parameter-dependent feedback controllers are designed using the gPC expansion

technique. Different from the aforementioned works, [39] considers the computation

of the coefficients of the gPC expansion using the Lagrange interpolation approach

in the framework of stochastic collocation. To the best of our knowledge, stochastic

control of linear systems using the pseudospectral collocation-based gPC expansion

has not been formulated in the existing literature.

1.2.3 Generalized Polynomial Chaos-Based Ensemble Kalman Filtering

Precise estimation of the system states plays a vital role in many engineer-

ing applications, for example, robot navigation [40], spacecraft tracking [41], process

monitoring [42], among others. State estimation involves both estimation and fil-

tering using the governing system of equations and noisy observations of the system

from available sensors [43]. In real world situations, both the dynamical model and

measurement model are significantly nonlinear. Often, the parameters of the sys-
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tem are also not known precisely, and the uncertain parameters have non-Gaussian

distributions.

In the context of linear systems with Gaussian assumptions on noise, the Kalman

filter is the optimal and it provides recursive equations for a finite set of parameters

(e.g., means and covariances) that capture the time evolution of the conditional dis-

tribution of the state given the measurements. The filtering problem for nonlinear

systems is considerably more difficult, and the evolution of the conditional distri-

bution cannot be captured by a finite set of parameters. Further, the solution to

the general nonlinear filtering problem requires solving infinite-dimensional stochas-

tic evolution equations. In literature, one can find various algorithms to generate

solutions to the nonlinear filtering problem using numerical approximations to the

infinite-dimensional problem. Extended Kalman filter (EKF), Unscented Kalman fil-

ter (UKF) [44], and Ensemble Kalman filter (EnKF) [45] are some of the widely used

Kalman-type nonlinear filters in the Gaussian paradigm. In the EKF, the PDF of the

state is approximated by a Gaussian random variable, which is then propagated ana-

lytically through the first-order linearization of the nonlinear system. In the presence

of severe nonlinearities and high noise intensities, the EKF can suffer from divergence

of the state estimates which is a major drawback of the algorithm [46]. In the UKF,

a set of sigma sample points produced by the unscented transformation captures the

Gaussian random variable, which approximates the state distribution. These sigma

points completely capture the true mean and covariance of the random variable, and

when propagated through the true nonlinear system, captures the posterior mean and

covariance accurately upto the third order (Taylor series expansion) for all nonlin-

earities. In EnKF, sets of ensemble realizations are generated using the Monte Carlo

(MC) sampling for the initial state, process noise, and measurement noise. Ensemble

members are then propagated in time by solving the nonlinear model equations to
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obtain the predicted state estimates and are corrected by an approximate Kalman

filter scheme upon arrival of measurements. Though EnKF avoids the linearization

of the model dynamics and observation model, it leads to inaccuracies due to numer-

ical errors from random MC sampling [47]. Note that the aforementioned nonlinear

filters have difficulties dealing with the non-Gaussian probability distributions of the

random variable.

In recent years, stochastic estimation of nonlinear and non-Gaussian dynamical

systems has received considerable attention in the literature. One of the extensively

used nonlinear filters to solve state estimation problems with non-Gaussian uncer-

tainties is the Gaussian sum filter (GSF) [48, 49]. GSF is able to account for large

deviations from Gaussianity and approximates the non-Gaussian conditional density

function as a weighted sum of Gaussian mixture model (GMM) [46]. However, for

highly nonlinear systems, suitable adaptation techniques need to be developed to

update the weights of the Gaussian mixture model to better approximate the pos-

terior density function, which may further incur high computational cost [50, 51].

Another technique for solving the nonlinear filtering problem is that of particle filter

(PF) [52]. Here, a cloud of randomly generated particles is propagated using non-

linear system dynamics, and finally, a weighted sum of the propagated particles are

used to obtain the state estimates. Like EnKF, particle filters are ensemble-based

sequential estimation methods and generally demand a large number of particles be

propagated to produce reasonably accurate estimates [53]. Unlike other Gaussian-

based filters, particle filters can deal with non-Gaussian probabilities but are not

adapted to high-dimensional systems because of particle degeneracy, which leads to

higher computational costs [53,54].

The major challenge with the filters mentioned above lies in the efficient propa-

gation of uncertainties in the filtering process, which can be addressed by developing a

13



nonlinear filter in the gPC expansion framework. Recently, the use of gPC expansion

to develop nonlinear filtering technique has found significant attention. Blanchard et

al. [55] developed an EKF-based gPC filter for a nonlinear system with a linear mea-

surement model to estimate the parameters of mechanical systems, in which the state

uncertainty propagation was carried out using polynomial chaos expansion, and the

Kalman-based update was utilized to obtain the corrected state estimates. Dutta et

al. [56] proposed a gPC expansion-based filter in the Bayesian framework for a general

nonlinear system by approximating the prior PDF using maximum-entropy estima-

tion theory under GMM approximation. Recently, gPC-based nonlinear filter in the

Schmidt-Kalman filter framework has been proposed in [57,58] to solve the state esti-

mation problem under non-Gaussian parametric uncertainties. In literature, various

variants of gPC-based ensemble Kalman filters have also been proposed [47, 59, 60].

Computationally efficient ensemble square root Kalman filter and parallelized ensem-

ble Kalman filter in the gPC expansion framework have been developed to estimate

the states of a nonlinear system in [47] and [59], respectively. However, the formu-

lations developed in [47, 59] are limited to systems with linear measurement models.

In [60], a polynomial chaos-based ensemble Kalman filter has been proposed for non-

linear systems with nonlinear measurement models to estimate the trajectory of a

vehicle entering the Mars atmosphere. However, the filter in [60] uses a random

sampling technique in an MC-based stochastic collocation framework to compute the

coefficients of gPC expansion. This approach demands a large number of random

collocation points be generated to obtain gPC solutions for large dimensional sys-

tems [61] and thus, reduces the efficacy of the filtering technique. This motivates

us to develop ensemble Kalman filter-based state estimator in the pseudospectral

collocation-based gPC expansion framework.
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1.2.4 Probabilistic Analysis of Consensus Protocols for Uncertain Edge Weights in

Multi-Agent Systems

The study of collective behavior of multi-agent systems has drawn significant

attention in recent years and is a major focus of current research. Over the past years,

a variety of distributed control protocols have been proposed to guarantee the desired

coordination among a group of multiple agents. Surveys of most recent advances on

these problems can be found in [62–65]. The distributed control protocols proposed

in the recent years find their applications in formation control [66], flocking [67], ren-

dezvous of unmanned aerial vehicles [68], attitude synchronization among multiple

spacecrafts [69], among others. Moreover, consensus among the group of homoge-

neous agents has been one of the prime objectives in designing network based local

control strategies for the multiple agents. Most of the existing work on distributed

coordination of networks of dynamic agents assume that each agent exchanges exact

information through an ideal communication channel. Thus, the cooperative control

strategies for asymptotic consensus are designed based on deterministic analysis of

the problem.

Realistically though, the group of agents interact with each other in a com-

munication constrained environment, prone to uncertainties, and the analysis of the

collective behavior of the multi-agent systems in such a context needs to be carried

out from the probabilistic point of view. In recent years, there has been some interest

in solving consensus problems for the stochastic variants of the networked dynamical

system. In [70, 71], consensus seeking protocols have been proposed in an uncertain

environment where the agents receive noisy measurements of the states of neighbor-

ing agents. For Langrangian networked systems with parametric uncertainties under

a directed graph, a distributed adaptive control method with sliding-mode estima-

tors for containment is developed in [72]. However, in the aforementioned studies,
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the uncertainty is considered either in the measurement process or in the dynamics

of the agents and the parameters governing information flow among the agents are

considered to be deterministic. In [73], Hatano et al. provide necessary and sufficient

conditions for consensus among stochastic discrete-time linear dynamical systems,

assuming a randomly varying network topology which is modeled through the Erdös-

Rèyi random graph. Kan et al. [74] have studied the multi-agent consensus problem in

a leader-follower architecture where the leaders maintain a constant desired state and

the interactions among the follower agents are dictated by a two-state Markov model..

Similar to [73,74], most of the recent works in multi-agent coordinated control under

uncertain interaction environment have been carried out using randomly switching

network topology [75,76]. In contrast, the analysis of consensus protocols for a fixed

network topology (among the agents) with uncertain interaction parameters is non-

existent to the best of our knowledge. To this end, we provide probabilistic analysis

of the consensus control protocols in the scenario where the interaction parameters

in a system of interconnected cooperative agents are susceptible to uncertainties.

Related to this is the problem of security in networked systems. With advance-

ments in the communication technologies, multi-agent systems, like all distributed

systems, are vulnerable to cyber-attacks. Security of networked systems is a topic

which has attracted considerable interest in recent times [77,78]. In a typical scenario,

the multi-agent system is susceptible to “command injection” attacks that provide

conflicting control commands causing the agents to diverge from desired consensus.

These attacks can be cyber attacks via reference signal generated from malicious in-

truder agents or from any other command generator ground stations. In the presence

of such intruders, a huge threat is imposed on the agents, impacting the physical

operation of all the agents and/or impairing the outcome of any sensitive operation

being carried out by the agents. This motivates us to examine the impact of such
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intelligent intruders on the consensus performance of the agents using the same prob-

abilistic analysis framework.

1.2.5 Stability Margin and Uniform Input Delay Margin of Linear Multi-Agent Sys-

tems

With increasing applications, studies on the stability and robustness aspects

of multi-agent systems are imperative. This dissertation in particular, provides a

framework for calculation of stability margin and input delay margin for a group of

multiple agents in the networked interconnection. For a single-input single-output

(SISO) system, classical input-output stability criteria based on Nyquist, Popov and

circle theorems [79] aid to characterize the allowable gain and phase variation (stabil-

ity margin) in the loop at each frequency and tolerable limits of open-loop modeling

errors. Generalizations of the aforementioned theorems to multi-input multi-output

(MIMO) systems are not straightforward, and several works such as [80–83] suitably

characterize the MIMO stability margins. In the context of multi-agent systems, the

stability margin serves as a robustness measure against gain and phase variations for

a group of agents. A networked multi-agent system is a multiloop feedback system

and with suitable analysis, the aforementioned works to characterize the multiloop

stability margin can be extended to the context of multi-agent systems. On that note,

Kim [84] characterized the stability margin of SISO multi-agent systems based on the

minimum singular value of the loop transfer function matrix and the results of [81].

In [85], the gain margin of SISO multi-agent systems is computed using the Nyquist

stability criterion and small-gain theorem [86] while considering additive uncertainty

on one of the edge weights of the graph structure. Apart from these works, stabil-

ity margin-based design strategies have been formulated in the literature to achieve

robust consensus in the multi-agent systems. Tonetti and Murray [87] have consid-
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ered disturbance rejection-based graph topology-design strategies for continuous-time

linear SISO multi-agent systems by calculating gain and phase margins of the inter-

connected systems upon analyzing the Nyquist curve of the networked sensitivity

function matrix. Partitioning a directed networked dynamical system into smaller

networks to improve the stability margin of the original network is proposed in [88]

for multi-agent systems with SISO agents. Consensus protocols based on dynamic

feedback controllers have been designed in [89] and [90] for discrete-time single-input

linear multi-agent systems considering gain-phase margin optimization problem. The

gain-phase margin optimization problem is solved using an analytic interpolation ap-

proach via conformal mappings [91]. Note that all the aforementioned works stem

from assuming that each agent is either a SISO system or a single-input system.

On the other hand, there have been a limited number of works in the literature to

characterize the stability margins of multi-agent systems where underlying agents are

governed by high-order MIMO dynamics. The disk margin of discrete-time linear

multi-agent systems with MIMO agents has been computed in [92,93]. However, de-

termining the gain and phase margins of the multi-agent systems where each agent

has a general linear dynamics still requires further investigation.

Moreover, multi-agent systems need to exchange information among agents over

a communication network, which is invariably prone to time delays. The presence of

time delay may significantly degrade closed-loop performance, and even cause insta-

bility. As mentioned in [62], two types of time delays, input delay and communication

delay, have been considered in the literature. Input delay is related to processing and

connecting time for the packets arriving at each agent while communication delay

refers to the time for transferring information between agents. As discussed in [94],

for integrator dynamics, when certain connectivity conditions are satisfied by the

topology graph, the consensusability conditions are independent of communication
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delays, but dependent on input delays. Therefore stability criteria for multi-agent

systems with input delays have been attracting attention recently [95,96].

For integrator dynamics of agents, the time delay problem has been discussed

in [97] which provides necessary and sufficient conditions for the maximum delay

such that the multi-agent system reaches consensus from arbitrary initial conditions.

Stability conditions in terms of linear matrix inequalities (LMIs) using Lyapunov-

Krasovskii techniques for single integrator dynamics of agents under consensus proto-

col with input delays are provided in [98]. For first-order multi-agent systems under

undirected graph topology, [99] derives the analytical expression for the input delay

margin by solving a univariate convex optimization problem. In [100], robust consen-

sus conditions for multi-agent system consisting of SISO agents in an undirected net-

work subject to heterogeneous feedback delays are derived from frequency-dependent

and delay-dependent convex sets. Furthermore in [95], the input delay margin for

consensus among agents under undirected graph topology with scalar dynamics and

single input vector dynamics with a single unstable open-loop pole is derived. Re-

cently in [101], static consensus protocols under undirected graph topology have been

derived for multi-agent systems with nonuniform input delays. Although, most of

the works in the literature for high-order multi-agent systems with input delay are

restricted to undirected graphs, some of the recent works for multi-agent systems with

input delay under directed graph topology can be found in [102,103].

To the best of our knowledge, a unified framework to characterize the gain

margin, phase margin and uniform input delay margin of the multi-agent systems has

not been established in the literature and it serves as the motivation of the current

work. This research focuses on characterizing the stability margins as a direct mul-

tivariable generalization of the complex units used in SISO gain and phase analysis.

More specifically, we are concerned with the stability of the collective dynamics of
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the agents subject to complex perturbations. The application of such perturbation

analysis is significant in the areas where any errors such as signal interference intro-

duce significant gain and phase shifts, affecting the collective stability of networked

agents. The overall effect of such errors can be modeled as a complex perturbation

in the feedback loop [84]. On the other hand, it is well-known that frequency-based

representation of the time delay links it with the phase lag in the system with no gain

change. This motivates us to obtain the input delay margin of a multi-agent system

based on the unitary phase perturbation of the system’s loop transfer function in the

feedback path.

1.2.6 Delay Margin for Linear Multi-Agent SystemsWith Non-Uniform Time-Varying

Communication Delays

In addition to the uniform input delay margin computation discussed in the

previous section, this research also addresses the consensus control problems of high-

order linear multi-agent systems with non-uniform time-varying communication de-

lays. In the literature, the consensus problem in first-order (n = 1), second-order

(n = 2), and high-order (n ≥ 2) linear multi-agent systems with delays have been

solved using frequency-domain and time-domain (Lyapunov)-based approaches. For

multi-agent systems of order n = 1 under undirected graph topology, [99] derives an

analytical expression for the delay margin by solving a univariate convex optimization

problem. Similarly, the delay margins for multi-agent systems of order n = 2 under

undirected and directed graph topology are deduced using frequency-domain analysis

in [104] and [105], respectively. Further, in [106], exact delay stability bounds are

computed for linear multi-agent systems of order n ≥ 2 using cluster treatment of

characteristic roots (CTCR) approach. However, all of these works derive the delay

bounds and consensus conditions for the multi-agent systems subject to uniform de-
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lays (same time-delay for each communication link in the graph). Taking a different

route, [107, 108] derive the consensus conditions for linear multi-agent systems with

n ≥ 2 under undirected graph and non-uniform delays.

In the real-time communication processes, time delays are not constant and

usually change over time. However, most of the works carried out in the literature

of multi-agent systems, including the aforementioned ones, do not consider the time-

varying nature of delays. In [109], a consensus condition for linear (n ≥ 2) multi-agent

systems under undirected graph with time-varying delays, which are assumed to be

uniform for all the agents in the network, is derived. The consensus problem in

multi-agent systems of order n = 2 under directed graph topology and non-uniform

time-varying delays has been studied in [110]. For linear (n ≥ 2) multi-agent systems

with time-varying non-uniform delays under directed graph topology, [111] provides a

delay-dependent stability criterion using an adaptive control protocol and Lyapunov-

Krasovskii method. However, the formulation in [111] requires the system matrices to

be in a controllable-canonical form. Also, the setups in [110, 111] assume the delays

between the two neighboring agents (say, i and j) in a bi-directional communication

channel (if it exists) to be symmetrical (τij = τji).

To our concern, most of the works carried out in the literature for linear multi-

agent systems assume the time-delay to be uniform among the agents or constant

in time. Moreover, the assumptions on the system dynamics and underlying graph

topology are restrictive. This motivates us to study the problem of multi-agent sys-

tems with non-uniform time-varying delays for general high-order linear multi-agent

systems. In this dissertation, we utilize the Lyapunov-Krasovskii stability criteria

and develop LMI-based approach to characterize the delay margin for multi-agent

systems.
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1.3 Contributions

This section summarizes the major contributions of this research. The technical

approach and the contribution for each component of the research are highlighted in

the following subsections.

1.3.1 Uncertainty Propagation Using Generalized Polynomial Chaos Expansion

An efficient numerical framework to quantify and propagate uncertainties char-

acterized by different distribution functions in a nonlinear stochastic system is pro-

posed. The uncertainty propagation is carried out using pseudospectral collocation

in gPC expansion framework. A novel quadrature-sampling technique, namely Mixed

Sparse Grid (MSG) quadrature, is proposed to compute the collocation nodes for

stochastic differential equations with underlying joint density function of Gaussian

and uniform distributions. Nested one-dimensional quadrature rules are used for

high-dimensional problems to further improve the efficacy of the proposed technique.

This work also studies the long term degeneracy problem typically observed with gPC

expansions of high order systems as indicated in [10, 112]. It is shown that the pro-

posed numerical framework can mitigate this problem by selecting suitable accuracy

level of MSG quadrature for a given order of gPC expansion. The proposed frame-

work is shown to be computationally more efficient than the existing Conjugated

Unscented Transform [22] and Monte Carlo-based sampling techniques.

1.3.2 Stochastic Optimal Control of Linear Systems with Probabilistic Uncertainties

We present new theoretical results for synthesizing robust optimal state-feedback

controller for systems with probabilistic uncertainties in the gPC expansion frame-

work. The control formalism is developed to minimize two expectation performance

indices: (i) an infinite horizon and (ii) a finite horizon. We first recast these per-
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formance indices in terms of the coefficients of the gPC expansion. Different from

the works in the open literature, we use the pseudospectral collocation method (also

known as discrete projection) proposed in [16] to compute the coefficients of the gPC

expansion. To that end, the coefficients of gPC expansion are expressed in terms

of the solution of the system at suitably selected collocation (quadrature) nodes.

The equivalent performance indices are minimized to obtain a single feedback control

gain matrix which stabilizes the stochastic system for all possible variations of the

uncertain variable within the domain of its probability distribution function.

1.3.3 Generalized Polynomial Chaos-Based Ensemble Kalman Filtering

We propose a gPC expansion-based nonlinear filter for a system with continuous-

time nonlinear dynamics and discrete-time nonlinear measurement model with uncer-

tain initial states and parameters. The filter is developed in a prediction-correction

form such that the predicted state estimates are computed using the gPC expansion-

based uncertainty propagation. Aslo, upon arrival of the measurements, the predicted

estimates are corrected in an ensemble Kalman filter setting. Using mixed-sparse

grid-based pseudospectral collocation, the proposed filter can carry out state esti-

mation for a nonlinear system with non-Gaussian uncertainties in the parameters

and states. In contrast to [60], we use collocation nodes generated via deterministic

quadrature-based sampling to compute the gPC coefficients. Subsequently, a frame-

work is proposed to carry out sensitivity analysis to compute the sensitivity of the

posterior distribution of the state estimates as a function of underlying uncertain

variables (initial states and model parameters). To the best of our knowledge, this is

the first attempt to carry out gPC expansion-based sensitivity analysis for a filtering

problem.
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1.3.4 Probabilistic Analysis of Consensus Protocols for Uncertain Edge Weights in

Multi-Agent Systems

We provide a probabilistic analysis of the consensus protocols developed for

multi-agent systems with single integrator dynamics in a scenario where the edge

weights governing the interaction among the agents are uncertain with known proba-

bility density functions. In addition to that, this work carries out probabilistic anal-

ysis of the effect of stealth attack from malicious intruders on the consensus value of

coordinating agents. We specifically show that the agents diverge from the desired

location of synchronization in the presence of an intruder in the communication net-

work. The framework of gPC expansion is utilized to obtain numerical solution of

multi-agent systems for the scenario where interaction parameters among the agents

are uncertain. Finally, sensitivity analysis based on gPC expansion is carried out to

study the significance of edge weights on response distribution of the states of agents

to answer the following question: “Who is the weakest link?”

1.3.5 Stability Margin and Uniform Input Delay Margin of Linear Multi-Agent Sys-

tems

We develop a unified framework to compute the gain margin, phase margin,

and input delay margin for multi-agent systems to achieve consensus. The problem

of calculating the stability margins and input delay margin is converted into finding

eigenvalues of multiplicative perturbation in the feedback paths of a set of MIMO loop

transfer functions, which involves solving a constrained minimization problem. We

do not impose any restrictions on the dynamics of agents and on the graph topology,

except that the graph structure should have atleast a directed spanning tree which

is imperative for consensus. The closed loop stability of a general MIMO system

independent of gain and phase perturbations, and input delay can be treated as a
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robust stability problem and suitable small gain conditions can be derived for stability.

To that end, we develop necessary and sufficient conditions for gain-independent,

phase-independent and delay-independent stability of multi-agent systems. These

conditions can be regarded as extended small gain conditions. The gain margin and

phase margin of the multi-agent system obtained from the proposed framework are

less conservative than the conventional disk-based gain margin and disk-based phase

margin [113, 114], respectively . Further, the approach to compute the input delay

margin proposed in this work produces a less conservative delay margin as compared

to the Lyapunov Krasovskii-based approach discussed in [115].

1.3.6 Delay Margin for Linear Multi-Agent SystemsWith Non-Uniform Time-Varying

Communication Delays

We propose a consensus control protocol for the multi-agent systems with time-

varying non-uniform communication delays. In contrast to other works in the lit-

erature, we do not impose any restrictions on the system dynamics of the agents

and the underlying graph topology. The consensus problem in multi-agent systems

is converted to an equivalent MIMO stability problem. A new Lyapunov-Krasovskii

functional for analyzing the delay-dependent stability of multi-agent system with

time-varying nonuniform communication delay is proposed. The cross-product terms

that emerge from the time derivative of the Lyapunov-Krasovskii functional is dealt

with tighter integral inequalities, based on Jensen’s integral inequality [116]. Hence,

the results obtained are less conservative. Finally, a novel delay-dependent stability

criterion is derived in the form of a LMI to obtain the delay margin for the high-order

multi-agent system with non-uniform time-varying input delays.
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1.4 Outline of the Dissertation

The dissertation is divided into 8 chapters. Chapter 2 addresses the problem of

uncertainty propagation using non-intrusive collocation-based generalized polynomial

expansion technique. Stochastic control of linear systems subject to probabilistic

parametric uncertainties is discussed in Chapter 3. The generalized polynomial chaos

expansion-based nonlinear filter is developed in Chapter 4. Subsequently, Chapter 5

carries out probabilistic analysis of cooperative consensus control protocols in multi-

agent systems with single-integrator dynamics. Further, Chapter 6 studies the robust

stability margin and uniform delay margin of multi-agent systems, followed by the

characterization of non-uniform time-varying delay margin in Chapter 7. Finally, the

concluding remarks of this dissertation are presented in Chapter 8.
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Chapter 2

Uncertainty Propagation Using Generalized Polynomial Chaos Expansion ∗

This chapter presents the mathematical details for the generalized polynomial

chaos expansion methodology to solve the problem of uncertainty propagation in

stochastic dynamical systems. We consider a general dynamical system subject to

uncertainties in the model parameters and initial conditions characterized by their

respective probability density functions. Specifically, a sampling-based non-intrusive

approach using pseudospectral stochastic collocation is employed to obtain the coef-

ficients required for the generalized polynomial chaos expansion. Various recently de-

veloped quadrature techniques are employed within the generalized polynomial chaos

expansion framework in order to illustrate their efficacy. In addition to that, we pro-

vide an efficient numerical quadrature technique which can be used in pseudospectral

collocation framework and can handle different distribution types of random variables.

Besides the uncertainty propagation, stochastic sensitivity analysis is performed to

gain insight into the impact of uncertain variables on the evolution of the quantities

of interest.

∗Part of the material reported in this chapter is reprinted with permission from the following: (i)

Rajnish Bhusal and Kamesh Subbarao, “Uncertainty Quantification Using Generalized Polynomial

Chaos Expansion for Nonlinear Dynamical systems with Mixed State and Parameter Uncertain-

ties,” ASME Journal of Computational and Nonlinear Dynamics, Vol. 14, No. 2, 2019, DOI:

10.1115/1.4041473, Copyright © 2019 by ASME (reference [61]) (ii) Rajnish Bhusal and Kamesh

Subbarao, “Generalized Polynomial Chaos Expansion Approach for Uncertainty Quantification in

Small Satellite Orbital Debris Problems,” The Journal of the Astronautical Sciences, Vol. 67, No. 1,

pp. 225-253, 2020, DOI: 10.1007/s40295-019-00176-1, Copyright © 2019 by American Astronautical

Society (reference [117]).
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The chapter is organized as follows. First, we provide fundamentals of proba-

bility theory in Section 2.1. Next, we review the basics of the orthogonal polynomials

and their properties in Section 2.2. Section 2.3 gives an overview of the generalized

polynomial chaos expansion technique for a random process. The methodology of

generalized polynomial chaos expansion for a general stochastic dynamical system

is presented in Section 2.4. Further, Section 2.5 discusses various quadrature tech-

niques and their applicability. Subsequently, numerical examples are presented to

illustrate the application of gPC surrogate modeling to stochastic systems in Section

2.6. Further, we provide a brief discussion on the findings of this chapter in Section

2.7. Finally, Section 2.8 gives the concluding remarks.

2.1 Preliminary Concepts from Probability Theory

This section provides the fundamental concepts from the probability theory

which are essential to understand any stochastic system in general.

2.1.1 Probability Space, Random Variable, and Probability Density Function

Let us consider a random experiment and define Ω as the sample space asso-

ciated with the experiment. The sample space Ω is the set of all possible distinct

outcomes from the experiment. Collections of outcomes from the experiment are

called as events. Therefore, each event is a subset of the sample space. In order to

account for the relationship between the events, we define a field, namely σ-field (also

known as σ-algebra) as follows.

Definition 2.1.1. A σ-field is a field, which is closed with respect to countable unions

and countable intersections of its members [125]. In other word, a set F of subsets

of Ω is called a σ-field or σ-algebra if the following three properties are satisfied:

(i) ∅, Ω ∈ F ,
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(ii) if A ∈ F , then the complement of A, Ā ∈ F ,

(iii) if A1, A2, . . . ∈ F then
⋃∞

i=1 Ai ∈ F and
⋂∞

i=1 Ai ∈ F .

Further, a pair (Ω,F) for which F is a σ-field in Ω is called a measurable space.

Next, we define a probability space within which we can define the random variables

associated with a random experiment.

Definition 2.1.2. Given a measurable space (Ω,F). A function P defined on the

subsets of Ω is called a probability measure and (Ω,F ,P) is called a probability space

if the following axioms (known as Kolmogorov’s axioms) are satisfied [126]:

(i) P [∅] = 0,

(ii) Probabilities are non-negative, i.e., P [A] ≥ 0 for all A ∈ F ,

(iii) The entire sample space Ω is called the sure event, and its probability is one,

i.e., P [Ω] = 1,

(iv) If A1, A2, . . . ,∈ F are mutually exclusive events, i.e., Ai

⋂
Aj = ∅ for i ̸= j,

then

P

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai). (2.1)

Now, we are ready to define the random variable for any random experiment.

The functional relationship, which assigns real numbers z(ω) to each point ω in a

sample space Ω is called a random variable. Therefore, random variables provide

a compact way of referring to events of a random experiment via their numerical

attributes. We will use the notation Z to denote the random variable and z = z(ω)

to denote a particular value of the random variable.

A random variable may be discrete or continuous. A discrete random variable

can take only on a countable number of distinct values. We say Z is a discrete random

variable if there exist distinct real values Zi such that

∑
i

P(Z = Zi) = 1. (2.2)
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On the other hand, a continuous random variable can assume any value within

one or more intervals on the real line. In order to define a continuous random variable,

let us introduce a special function, namely indicator function as follows.

Definition 2.1.3. Given a set Γ ∈ R, the indicator function of Γ, denoted by IΓ(x),

is defined by

IΓ(x) :=


1, x ∈ Γ,

0, x /∈ Γ.

(2.3)

Given some integrable function f(·), we say Z is a continuous random variable

if P(Z ∈ Γ) has the following form

P(Z ∈ Γ) =

∫
Γ

f(s)ds :=

∫ ∞

−∞
IΓ(s)f(s)ds. (2.4)

Note that, since P(Z ∈ R) = 1, the function f(·) must be such that
∫∞
−∞ f(s)ds =

1. Any such nonnegative function that integrates to one is called a probability density

function (PDF). In this dissertation, we limit our work to continuous random vari-

ables. Next, we provide the properties of PDF fZ(z) which characterizes a continuous

random variable Z as follows:

(i) fZ (z) ≥ 0, −∞ < z <∞

(ii)
∫∞
−∞ fZ (z) dz = 1

(iii) P(Z ≤ a) = FZ(a) =
∫ a

−∞ fZ (z) dz

where FZ (z) is called the cumulative distribution function (CDF) of Z such that

dFZ (z)

d (z)
= fZ (z).

2.1.2 Statistical Moments, Expectation, and Covariance

In probability theory, moments are the statistical parameters to measure a dis-

tribution. In order to define the moments, we first introduce the notion of expectation

for a random variable. The definition of a expectation is motivated by the conven-
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tional idea of numerical average. The expectation of a continuous random variable

Z, whose probability density function is described by fZ(z) is given by

E[Z] =
∫ ∞

−∞
ZfZ(z)dz. (2.5)

Similarly, any function g(Z) of the random variable Z has following expectation

E[g(Z)] =
∫ ∞

−∞
g(Z)fZ(z)dz. (2.6)

Now, we can define the moments of a random variable as follows. The nth

moments, n ≥ 1, of a real-valued random variable Z is defined to be E[Zn]. The

first moment of the random variable Z is denoted by E[Z] and is also known as the

mean of the random variable. The mean of the continuous random variable Z can

be computed using (2.5). Similarly, one can compute the higher order moments (raw

moments) E[Z2],E[Z3], . . . using (2.6) with g(Z) = Z2, Z3, . . . , respectively. Further,

one can define the nth central moment of the random variable Z as E[(Z − E[Z])n].

The second order central moment is also known as the variance, and can be defined

as

var(Z) := E[(Z − E[Z])2]. (2.7)

Let us now consider two random variables Y and Z. The random variables Y

and Z are independent if and only if

E[h(Y )g(Z)] = E[h(Y )]E[g(Z)] (2.8)

for all functions h(Y ) and g(Z) [126]. Further, we can define the covariance between

Y and Z as follows

cov(Y, Z) := E [(Y − E[Y ])(Z − E[Z])] . (2.9)

The covariance between two random variables gives a measure of correlation or

dependence between the random variables. Therefore, Y and Z are uncorrelated if

and only if cov(Y, Z) = 0.
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2.1.3 Random Vector

In order to extend the idea of a random variable to the case of probability

spaces with multiple random variables, the notion of random vector is quite useful.

For the d-dimensional probability space with random variables Z1, Z2, . . . , Zd, Z =

[Z1, Z2, . . . , Zd]
T ∈ Rd denotes a random vector. The expected value or mean of the

random vector Z is denoted by E[Z] whose elements are the expected values of the

respected random variables such that

E[Z] = [E[Z1],E[Z2], . . . ,E[Zd]]
T . (2.10)

In the case of random vectors, we define the covariance matrix as the second

order central moment. Mathematically, the covariance matrix PZZ ∈ Rd×d of a

random vector Z ∈ Rd is a matrix whose (i, j)th element is the covariance between

the ith and the jth random variables and is given by

PZZ = E
[
(Z− E[Z])(Z− E[Z])T

]
(2.11)

2.1.4 Random Processes

The notion of random or stochastic process is important while discussing uncer-

tainty in physical or engineering systems. In dynamical systems, randomness varies

continuously over time; therefore, it is essential to study the evolution of the random

variables that describe the randomness as a function of time. A continuous time ran-

dom process or stochastic process is a family of random variables {Zt} where t ranges

over a specified interval of time defined on some space Ω [125, 126]. For example,

{Zt, t ≥ 0}, {Zt, t1 ≤ t ≤ t2} are the continuous time random processes. Brownian

motion or Wiener process is one of the examples of continuous-time random process.

Definition 2.1.4. A family of random variables {Zt} for which each E[Z2
t ] <∞ for

all t is known as a second-order random process.
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Next, we introduce the concept of orthogonal polynomials and present some of

their properties.

2.2 Fundamentals of Orthogonal Polynomials

In this section, we introduce the concept of orthogonal polynomials and present

some of their properties.

Consider a set of polynomials, {Qn(x), n ∈ N} where N = 0, 1, 2, . . . and Qn(x)

is a polynomial in x of degree n of the following form

Qn(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, an ̸= 0. (2.12)

Now the system of polynomials {Qn(x), n ∈ N} is called an orthogonal system

of polynomials with respect to a weight function w(x) on (a, b) if it satisfies following

orthogonality relation∫ b

a

Qn(x)Qm(x)w(x)dx = γnδmn, m, n ∈ N (2.13)

where δmn is the Kronecker delta function (δmn = 0 if m ̸= n and δmn = 1 if m = n)

and γn > 0 are the normalization constants given by

γn =

∫ b

a

Q2
n(x)w(x)dx. (2.14)

One of the most important characteristics of classical orthogonal system of

polynomials {Qn(x)} is that any three consecutive polynomials in the system satisfy

the following recurrence relation, well known as three-term recurrence relation in the

technical literature [127]

Qn+1(x) = (Anx+Bn)Qn(x)− CnQn−1(x), n ≥ 0 (2.15)

where An, Bn, and Cn are arbitrary sequences of real numbers such that An ̸= 0,

Cn ̸= 0, and CnAnAn−1 > 0 for all n ∈ N. Throughout this dissertation, we exten-

sively use two of the most widely used orthogonal polynomials, namely Hermite and
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Legendre polynomials. Some of the important properties of these polynomials have

been highlighted in Appendix B.

2.3 Generalized Polynomial Chaos Expansion of a Random Process

Let (Ω,F ,P) be a probability space, where Ω is the sample space, F is the

σ-algebra of the subsets of Ω, and P is the probability measure. For a random event

ω ∈ Ω, let Z = Z(ω) be a continuous random variable. To that end, we consider

a general second order process ζ(ω) ∈ L2(Ω,F ,P). As demonstrated in [128], we

can express any such second order process as a infinite sum of weighted orthogonal

polynomials, and such an expansion is known as generalized polynomial chaos (gPC)

expansion. The gPC expansion of the random process ζ(ω) can be written as

ζ(ω) =
∞∑
r=0

ζcrΦr(Z) (2.16)

where ζc denotes the coefficients of expansion, and Φ(Z) is the basis of expansion

in terms of random variable Z. The gPC expansion requires polynomial basis to be

orthogonal with respect to the probability density function of the underlying random

variable and satisfy the orthogonality relation in (2.13). The gPC expansion chooses

the basis of expansion from the Askey-scheme of polynomials [129], which forms

a complete basis in the Hilbert space determined by corresponding support [15].

Table 2.1 provides the correspondence of gPC orthogonal polynomials to different

distributions of random variable Z. In this research, the distribution functions of the

random variables are restricted to continuous distributions, which suffices for most

applications.
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Table 2.1: Link between type of gPC basis polynomials and their underlying Random
Variables

Distribution of Z Orthogonal polynomials Support
Gaussian Hermite Z ∈ (−∞, ∞)
Gamma Laguerre Z ∈ [0, ∞)
Beta Jacobi Z ∈ [0,1]

Uniform Legendre Z ∈ [-1,1]

2.4 Stochastic Dynamical System and Generalized Polynomial Chaos Expansion

Let us consider a general stochastic dynamical system which can be modeled

with following stochastic differential equation (SDE)

ẋ(t,Z) = f(t,x,p,Z), x0 = x(0,Zx0) (2.17)

where x ∈ Rn is the state vector, t ∈ [0, T ] is the temporal variable, p ∈ Rp is the

vector of model parameters, and x0 is the initial state vector at time t = 0. Here

Z ∈ Rd, d ≤ n+ np denotes the random vector which represents the uncertainties in

the the system (2.17).

In this chapter, we consider the uncertainties in the initial conditions and pa-

rameters of the system. We consider the random vector Z in the form, Z = [Zx0 ,Zp]

where Zx0 and Zp represent a vector of uncertain initial conditions of the state and

model parameters of the system with known stationary probability density func-

tions, respectively. The problems modeled here correspond to those, when the random

variables pertaining to the uncertain initial conditions and parameters have different

distribution types. Specifically, this research solves SDEs whose random inputs are

modeled such that,

Zx0 ∼ N (µ, σ2)

Zp ∼ U [a, b]
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Here, the initial condition uncertainties are governed by normal distribution

with mean µ and variance σ2. On the other hand, the parametric uncertainties are

governed by uniform distribution with a and b as lower and upper bounds respectively.

For the system in (2.17), assuming the solution x(t,Z) = [x1(t,Z), . . . , xn(t,Z)]
T

to be a second-order process, the gPC expansion of xi(t,Z) for each i = 1, . . . , n can

be written as,

xi (t,Z) =
∞∑

|r|=0

xci,r(t)Φr (Z) , Φr (Z) =
d∏

j=1

Φrj(zj) (2.18)

where xci,r(t) is the coefficient of the multidimensional basis Φr (Z), Φrj(zj), j =

1, . . . , d is the jth univariate basis in random variable zj , and r = (r1, . . . , rd) is the

ordered set of multi-indices with |r| = r1 + · · · + rd. For computational feasibility,

the infinite summation in (2.18) needs to be truncated at the finite term P . The

truncated gPC expansion is given by,

xi (t,Z) =
P∑

|r|=0

xci,r(t)Φr (Z) . (2.19)

The total number of basis functions is given by N + 1 =

d+ P

d

. Now, the

solution in (2.19) with multidimensional index r can be written in terms of a single

index k as follows

xi (t,Z) =
N∑
k=0

xci,k(t)Φk (Z) = Φ(Z)Txc
i(t) (2.20)

where xc
i(t) = [xci,0(t), x

c
i,1(t), . . . , x

c
i,N(t)] ∈ RN+1 is the vector of time-varying gPC

coefficients and Φ(Z) = [Φ0(Z),Φ1(Z), . . . ,ΦN(Z)]
T ∈ RN+1 is the vector of gPC

basis. The coefficients of gPC expansion can be computed using the following relation

xci,k =
1

γk
E [xi(Z)Φk(Z)] (2.21)
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where γk = E [Φ2
k] > 0 is the normalization factor.

Generalized polynomial chaos approach reduces the problem of solving stochas-

tic differential equation to solving for the coefficients of the gPC expansion. There are

two widely used techniques for computing the gPC expansion coefficients: Stochastic

Galerkin Projection and Non-intrusive Stochastic Collocation.

2.4.1 Stochastic Galerkin Projection

In the stochastic Galerkin projection-based gPC expansion technique, the coef-

ficients of the gPC expansion can be computed by performing a Galerkin projection

of the error of the truncation of governing SDE onto polynomial space spanned by

finite dimensional basis Φk. Using the orthogonality of the polynomial basis, the

given stochastic differential equation reduces to a system of coupled d(N + 1) deter-

ministic ordinary differential equations (ODEs) for the coefficients of gPC expansion.

Further details on stochastic Galerkin projection for stochastic dynamical systems,

please refer to [15,128]. Although Galerkin projection ensures that the residue of the

SDE is orthogonal to the linear space spanned by the polynomials corresponding to

the distribution of random variable, the system of equations needs to be re-derived in

terms of polynomial moments for each new system of SDEs. Therefore, the approach

of Galerkin projection is quite intrusive and can not be used as a black-box simu-

lator [61, 128]. Further, with an increasing order of expansion, stochastic Galerkin

projection requires to solve higher order inner products which increases the compu-

tational time required to obtain the coefficients of gPC expansion and in the cases of

highly nonlinear systems, it takes almost the same computational time as the Monte

Carlo simulation [130].
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2.4.2 Non-Intrusive Stochastic Collocation

In order to avoid the difficulties in implementing the intrusive Galerkin projec-

tion approach of gPC expansion, and implement the gPC expansion as a black-box,

non-intrusive approach for computing the coefficients of polynomial basis needs to

be considered. The stochastic collocation is a widely used non-intrusive numerical

technique in gPC framework to compute the coefficients required for the expansion.

It combines the strength of the stochastic Galerkin method resulting from polynomial

approximations in random spaces and the ease of implementation of sampling-based

Monte Carlo technique [16].

The main idea behind the stochastic collocation is to generate ensemble of

solution by solving the system of SDEs for finite number of realizations of the random

vector Z. These realizations can be obtained by randomly drawing independent

samples from the given density function of the random variable or using deterministic

nodes given by a specific quadrature technique. These nodal points are generally

termed as collocation points. At these sampled collocation nodes, the system of

SDEs can be solved deterministically. Polynomial interpolation in multi-dimensional

random space is the natural choice to perform stochastic collocation [128]. Once

the solution ensemble is obtained by solving the deterministic system of equations

at the nodes, a polynomial approximation of the solution based on the ensemble

is constructed. The major difficulty in conducting the interpolation approach of

gPC arises when the stochastic dimension is high. It is quite difficult to construct

an interpolation basis on an arbitrary set of nodes to interpolate any data in high

dimensions.

The pseudospectral approach, also termed as discrete projection, is the approach

of applying numerical quadrature to the notion of the stochastic collocation. The

orthogonal gPC projection is given by (2.19), where the expansion coefficients are
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given by (2.21). It is customary to express the expectation of a random function as

an integral under the PDF of the random variable. Moreover, if ρ(Z) represents the

joint PDF of the random vector Z with support Γ ⊂ Rd, the expansion coefficients

can be written as,

xci,k =
1

γk
E [xi(Z)Φk(Z)] =

1

γk

∫
Γ

xi(Z)Φk(Z)ρ(Z)dZ (2.22)

where γk = E [Φ2
k] > 0 is the normalization factor. The notion behind the pseu-

dospectral technique is to approximate the above integral in (2.22) using the numer-

ical quadrature technique by collocating xi(Z) on pre-determined quadrature nodes.

Based on the numerical quadrature technique, the approximation to an integral of

any function f(Z) in the form of (2.22) can be expressed as,

∫
Γ

f(Z) ρ(Z) dZ ≈
M∑
q=1

f (Zq)wq (2.23)

where, Zq are the quadrature node, wq are the corresponding nodal weights and M

is the number of quadrature nodes used. Further details on quadrature rules and

approaches would be discussed in Section 2.5. Meanwhile, the expansion coefficients

from (2.22) can be written as,

xci,k =
1

γk

∫
Γ

xi(Z) Φk(Z) ρ(Z) dZ ≈ 1

γk

M∑
q=1

xi (Zq)Φk (Zq)wq (2.24)

It is evident that the convergence of the solution obtained from the pseudospec-

tral approach is completely dependent on the convergence behavior of the quadrature-

based integral approximation. The higher the accuracy of the quadrature technique,

the less would be the difference between the discrete projection and the orthogonal

gPC projection, which in turn decides the convergence of the gPC expanded approx-

imation to the true solution [61].
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2.4.3 gPC Expansion-Based Approximate Statistics

Given the estimates of the gPC coefficients, the approximate statistics i.e. mean

and variance of xi(Z) can be computed as,

E [xi(t,Z)] ≈ E

[
N∑
k=0

xci,k(t)Φk (Z)

]
= xci,0(t)

var [xi(t,Z)] ≈ E

( N∑
k=0

xci,k(t)Φk (Z)− E [xi(t,Z)]

)2
 =

N∑
k=1

γk
(
xci,k(t)

)2 (2.25)

where E[·] represents the expectation operator to compute mean and var[·] denotes

the variance operator.

2.4.4 gPC Expansion-Based Sensitivity Analysis

In practice, the response PDF of the stochastic systems are influenced by differ-

ent variables differently. Among all the variables, some of the variables have insignifi-

cant influence on the response of the system and these parameters can be modeled less

precisely than the ones which generate significant effects. The relevant variables need

to be distinguished and estimated with high accuracy while modeling the uncertain-

ties. Sensitivity analysis generally carried out using variance-based global methods,

also known as ANOVA (ANalysis Of VAriance) aids us to make informed decisions

about the sensitivity of the system to the parameters involved [26]. It provides a

measure of the contribution of each uncertain variables in the generation of the un-

certainty of the quantities of interest. In this regard, the Sobol’ indices obtained by

carrying out Sobol decomposition serve as determinants for sensitivity analysis. The

portion of the uncertainty in the QoI (measured through its variance) that can be

attributed to the uncertainty in a random variable is termed as the sensitivity index.

The sensitivity indices are often normalized with the variance of the quantity of in-

terest and the dimensionless coefficients thus obtained are referred to as total-effect
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Sobol’ indices or total sensitivity indices. To that end, the gPC expansion provides

a computationally efficient approach to compute these sensitivity indices for global

sensitivity analysis [26].

For a given gPC expansion, the Sobol’ indices at any order may be obtained by

the combination of the squares of the suitable gPC coefficients. The gPC coefficients

to be selected needs to be determined on the basis of order of sensitivity function

required. For the sensitivity analysis, we use the gPC expansion in the multi-index

form defined in (2.19). More specifically, to compute gPC-based Sobol’ indices to

carry out first order sensitivity analysis, the set of multi-indices r must be reordered

to another set of multi-indices Ii which corresponds to the polynomials depending on

random input Zi only.

Ii = {r | ri > 0 | rj ̸=i = 0} , ∀i = 1, . . . , d (2.26)

where, ri is the one-dimensional polynomial degree and d is the number of random

variables. Now, the gPC-based first order sensitivity function can be obtained as,

Si(t) =

∑
α∈Ii x

c2

i,α(t)E
[
Φ2

α

]
σ2
xi

(2.27)

where σ2
xi

is the variance of xi(t) computed in (2.25). On the other hand, the total

sensitivity function Stot
i (t) of random input Zi is given by,

Stot
i (t) =

∑
α∈Itot

i
xc

2

i,α(t)E
[
Φ2

α

]
σ2
xi

(2.28)

where, Itot
i = {r | ri > 0} corresponds to the polynomials depending on random

input Zi and possibly on other random inputs as well.
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To illustrate the idea, let us consider an example consisting of two random

variables (d = 2) with known distribution functions. The set of multi-indices r to

carry out gPC expansion can be obtained using graded lexicographical ordering. For

the second order (N = 3) gPC expansion,

r = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3)}

The set of indices Ii for first-order sensitivity function can be written as,

I1 = {(1, 0), (2, 0), (3, 0)} , I2 = {(0, 1), (0, 2), (0, 3)}

On the other hand, the set of indices Itot
i for total sensitivity function can be

written as,

Itot
1 = {(1, 0), (2, 0), (3, 0), (1, 1), (2, 1), (1, 2)} ,

Itot
2 = {(0, 1), (1, 1), (0, 2), (2, 1), (1, 2), (0, 3)}

Hereafter, the sensitivity functions can be computed by calculating the coeffi-

cients of gPC expansion using the approach discussed in Section 2.4.2.

2.5 Quadrature Rules for Multi-dimensional Integration

Pseudospectral approach of gPC stochastic collocation requires efficient quadra-

ture rules for approximating expectation integrals. As stated earlier and expressed in

(2.22) and (2.23), expectation of any random function can be expressed as an integral

under the joint PDF ρ(Z) of the random vector Z, which in turn can be approximated

with a quadrature rule. The ultimate aim of any quadrature rule is to provide a set

of points Zq =
[
Z1q , . . . , Zdq

]T ∈ Rd and weights wq ∈ R such that, the d-dimensional

integral Id can be approximated as,

Id =

∫
Γ

f(Z)ρ(Z)dZ ≈
M∑
q=1

f(Zq)wq (2.29)
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under the support Γ ⊂ Rd. While various choices of quadrature rules are available in

the literature, this work focuses on some of the following quadrature techniques.

2.5.1 Gaussian Quadrature Tensor Grid

The natural choice for evaluating univariate integration are the Gaussian Quadra-

ture methods. The Gaussian quadrature rule gives a minimal number of points in

one dimensional space by choosing the set of points that maximizes the degree of

the polynomial function that exactly evaluates the integral. With N as a set of nat-

ural numbers excluding 0, let us consider A = {Aα : α ∈ N} represents a sequence

of univariate quadrature rules. Let each rule Aα provides mα set of nodes Xα and

corresponding weight wα such that each Aα is exact for all univariate polynomials of

order 2mα − 1 or less. The straightforward way to evaluate multivariate integrals is

to perform a tensor product of sequence of univariate integrals. The d-dimensional

tensor product of univariate quadrature rules with different accuracy levels in each

dimension indicated by the multi-index α = [α1, . . . , αd] is defined as,

(Aα1 ⊗ · · · ⊗ Aαd
) (f) =

∑
x1∈Xα1

· · ·
∑

xd∈Xαd

f (x1, . . . , xd)
d∏

i=1

wαi
(2.30)

where, ⊗ represents the tensor product, Xαi
is the point set and wαi

is the weight im-

plied by univariate quadrature rule Aαi
with accuracy level αi [131]. This rule is often

called the full tensor grid formula or the multivariate quadrature rule. If the univari-

ate rule is developed using m number of points, then extending it to d-dimensions

in a tensor product fashion would result in md number of quadrature points i.e. the

number of functional evaluations increases exponentially which demands a huge com-

putational cost. This makes the full tensor grid formulation inefficient and often

infeasible in high dimensions i.e. it suffers from the curse of dimensionality.
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2.5.2 Sparse Grid

The sparse grid quadrature is derived based on the Smolyak approach [18]. It

was originally developed by Smolyak and is widely used to alleviate the curse of

dimensionality of the tensor product rule. Smolyak’s grid makes use of linear com-

bination of lower-dimensional tensor products and the computational cost increases

polynomially unlike the full tensor grid where the cost increases exponentially. If Aα

represents the univariate Gaussian rule with accuracy level α, the difference of the

approximation when increasing the level of accuracy from α− 1 to α is given by,

∆α(f) = Aα(f)− Aα−1(f), ∀α ∈ N, A0(f) = 0 (2.31)

With multi-index α = [α1, . . . , αd] ∈ Nd, for any integer q, the set of accuracy

level sequences can be defined as,

Nd
q =


{
α
∣∣∣∑d

i=1 αi = d+ q
}
, for q ≥ 0

∅, for q < 0

The Smolyak rule for accuracy level γ ∈ N for d-dimensional integration of

function f is given by,

Id,γ(f) =

γ−1∑
q=0

∑
α∈Nd

q

(∆α1 ⊗ · · · ⊗∆αd
) (f) (2.32)

where, the tensor product operation represented with ⊗ is defined in (2.30). As

discussed in [132], (2.32) can be expressed explicitly as,

Id,γ(f) =

γ−1∑
q=γ−d

(−1)γ−1−q

(
d− 1

γ − 1− q

) ∑
α∈Nd

q

(Aα1 ⊗ · · · ⊗ Aαd
) (f) (2.33)
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where,
(

d−1
γ−1−q

)
represents the binomial coefficient. The nodes for the sparse grid

quadrature are given by specific combinations of points of one-dimensional quadrature

rules,

Xd,γ =

γ−1⋃
q=γ−d

⋃
α∈Nd

q

(Xα1 ⊗ · · · ⊗Xαd
) (2.34)

where,
⋃

denotes the union operator of the point sets. The corresponding weights

for these nodes are (−1)γ−1−q
(

d−1
γ−1−q

) d∏
i=1

Wαi
. The algorithm to generate points and

weights from the sparse grid technique can be traced to the work of Jia et al. in [133].

The number of nodes in the case of sparse grid increases polynomially and delays the

curse of dimensionality to a great extent. Note that some of the weights generated by

the sparse grid technique can be negative, which is the feature of various multivariate

quadrature rules.

Further, classical Gaussian quadrature rules use completely different nodes for

each accuracy level, i.e. using Gaussian quadrature rules for developing sparse grid

adds distinct nodes to the sparse grid as Xm ∩ Xn = ∅ if m ̸= n. However, the

use of nested sequences of quadrature rules i.e. the set of nodes used by some rule

is a subset of those used by one with higher accuracy, increases the effectiveness of

the quadrature rules in dimensions greater than 1. Among many others, Kronrod-

Patterson (KP) rule with accuracy level α adds a number of points to the set of the

nodes Xα−1 which increases the polynomial exactness of the approximation [131].

Though this results in more points in 1-D than the Gaussian quadrature rule, this

property of nestedness makes the KP rule more efficient in higher dimensions for

use in sparse grid quadrature as many of the sets share a substantial number of

points. This results in further reduction in the number of points in the case of the

sparse grid. Figure 2.1 illustrates the sparse grid (using nested KP univariate rules)-

based quadrature nodes of accuracy level 5 for the random vector Z with independent
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random variables [Z1, Z2]
T for both uniformly and normally distributed cases. In the

subsequent sections, the notation SG-γ would represent sparse grid of accuracy level

γ. In this work, the concept of sparse grid would be extended to mixed sparse grid in

the Section 2.5.4 to generate cubature points corresponding to the joint PDF, which

is a product of different probability distributions.

2.5.3 Conjugate Unscented Transform

Conjugate Unscented Transform (CUT) is a non-product quadrature rule put

forward by Adurthi et. al [22] which computes multidimensional expectation integrals

involving Gaussian and uniform PDF. CUT is an extension of conventional Unscented

Transform [134] to generate a fully symmetric cubature (sigma) point set, which

satisfies higher order moment constraints. The CUT sigma points are equivalent to

Stroud’s cubature points [135, 136] for symmetric regions. The main idea behind

CUT is to judiciously select appropriate axes called Conjugate Axes and constrain

the sigma points to lie at appropriate locations on those axes such that they satisfy

the moment constraint equations. The set of equations called as moment constraint

equations can be written as,

M∑
q=1

wq

{
Zn1

(q,1)Z
n2

(q,2) · · ·Z
nd

(q,d)

}
= E[Zn1

1 Zn2
2 · · ·Znd

d ] (2.35)

where, n1 + · · ·+ nd = n represents the order of the moment of the density

function [22]. The major objective of the CUT is now to find sigma points that

satisfy (2.35) up to a desired order of moments. The sigma points are constrained

to lie symmetrically on well defined axes, which includes following set of axes [22]

(i) Principal axes (σi): In d-D space, the principal axes are the d-orthogonal axes

centered at the origin.
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(ii) Conjugate axes (cm): mth-conjugate axes are constructed from all the all the

combinations including sign permutations of the set of principal axes taken m

(m < d) at a time

(iii) Scaled conjugate axes(sm): mth-scaled conjugate axes are constructed from

all the combinations including sign permutations of the set of principal axes

such that in every combination exactly one principal axis is scaled by a scaling

parameter h.

Each sigma point is scaled by a variable rq and a weight wq is assigned to each

of those points. Based on the symmetrical property of sigma points, all the odd order

moment constraint equations are automatically satisfied. Thus, one only needs to

satisfy moment constraint equations of even orders. Solving these equations up to a

desired order results in the values of {rq} and {wq}. Different sigma points can be

generated by considering different orders of moment constraint equations. Fourth-

order CUT, sixth-order CUT, and eighth-order CUT exist in the literature which

are labeled as CUT-4, CUT-6 and CUT-8 respectively. The way of constraining the

points on various axes discussed above can be found in works by Adurthi et al. [22].

The weights obtained from the Conjugate Unscented Transform are positive upto

certain dimensions for each CUT-order for each distribution. CUT-6 generates pos-

itive weights upto d < 9 while, CUT-8 generates positive weights only upto d = 6

for expectation integrals involving Gaussian distributions. Also, CUT-6 generates

positive weights upto d ≤ 9 while, CUT-8 generates positive weights only upto d ≤ 5

for expectation integrals involving uniform distributions. Figure 2.2 illustrates the

CUT-8-based sigma points for the random vector Z of independent random vari-

ables [Z1, Z2]
T for both uniformly and normally distributed cases. Unlike sparse grid,

conjugate unscented transform will not be extended in this research to incorporate

random variables governed by different probability distributions. Extension of CUT
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would require the prior calculation of higher order moments of the product of different

probability distributions in order to solve the moment constraint equations, which is

not trivial.

2.5.4 Mixed Sparse Grid Cubature Rule for Mixed Distribution Problems

The cubature rules discussed above in Sections 2.5.2 and 2.5.3 can provide the

nodes for the expectation integral problems with random variables governed by a

single distribution function (either uniform or normal). However, in practice, the

random variables of a stochastic system can be governed by different distribution

functions. This indeed demands for a cubature rule that can provide nodes and

weights for the expectation integral problems governed by a mixture of distribution

functions.

The concept of sparse grid discussed in Section 2.5.2 will be extended to gen-

erate nodes for the multi-dimensional expectation integral approximations where the

underlying joint probability distribution is a product of different marginal distribution

functions. The mixed sparse grid (MSG) can be generated by using a mixture of 1-D

quadrature rules in different dimensions depending on the distribution of the random

variables. To illustrate this idea consider the case of approximating a 2-dimensional

expectation integral.

∫
Γ

f(Z)ρ(Z) dZ ≈
M∑
q=1

wq f(Z1q , Z2q) (2.36)

where, Z = [Z1, Z2]
T is the random vector and ρ(Z) is the joint probability distribu-

tion function with support Γ ⊂ R2. Also, wq and Ziq with i ∈ {1, 2} are the weights

and nodes of the mixed sparse grid cubature rule respectively. Let Z1 and Z2 be inde-

pendent random variables and governed by uniform and normal distribution functions

50



respectively. In this case, the MSG nodes can be generated by performing a sparse

tensor product (linear combination of lower-dimension tensor product) of univariate

rules such that, Aα1 are 1-D Gaussian Legendre quadrature rules to integrate uni-

variate Legendre polynomials and Aα2 are 1-D Gaussian Hermite quadrature rules to

integrate univariate Hermite polynomials. Hence, MSG nodes can be generated using

the sparse grid quadrature given in (2.34) using the selective combination of various

univariate rules depending on the distribution characterizing the random variables.

Figure 2.3 illustrates the quadrature nodes generated using the MSG of accuracy

level 5 for a 2-dimensional random variable vector Z = [Z1, Z2]
T , where the random

variables are independent and distributed such that, Z1 is uniformly distributed on

U [−1, 1] and Z2 is normally distributed on N (0, 12).

The main focus of this work is to provide an approximate solution to the SDE

with random variables governed by different probability distribution functions. Hence,

it is required to construct a polynomial basis which is orthogonal with respect to the

joint probability distribution.

Consider a random vector Z of m independent random variables Z1, Z2, up

to Zm which are governed by marginal probability distributions ρz1 , ρz2 , up to ρzm

respectively, such that Z = [Z1, Z2, . . . , Zm]
T . Since the random variables are inde-

pendent, the joint probability distribution is given by,

ρZ = ρZ1 × ρZ2 × . . .× ρZm

where, ρZ is the joint probability distribution of the random vector Z. It can be easily

shown that, such a joint probability distribution of different distribution functions

exists by verifying the area under the joint distribution function (continuous) over

the domain is unity. The basis orthogonal to the joint probability distribution (ρZ)

can be constructed in the similar fashion as that for the multi-variable case in gPC
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Figure 2.1: SG nodes for uniform and normal distribution random variable Z =
[Z1, Z2]

expansion using reverse graded lexicographic technique of multi-indexing [128] ; the

only difference being the selection of different polynomial basis for different indexes.

For instance, if Z1 and Z2 are uniformly distributed standard random variables and Z3

is a normally distributed standard random variable then, the polynomials governing

the univariate basis for Z1 and Z2 would be Legendre polynomials and for Z3 would

be Hermite polynomials.
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2.6 Numerical Results

In this section, several test problems are considered to make comparisons be-

tween various quadrature techniques discussed in the Section 2.5. Numerical prob-

lems involving evaluation of an expectation integral and propagation of uncertainties

in a damped oscillator using gPC expansion are considered to demonstrate the con-

vergence criteria of sparse grid and conjugate unscented transform-based cubature

techniques. Further, the validation of MSG-based gPC expansion is carried out in

the context of orbital uncertainty propagation. All the simulations are performed in

MATLAB environment on a computer with Intel Core i7 CPU 3.20 GHz.

2.6.1 Expectation Integral Evaluations

The problem of evaluating an expectation integral of a polynomial of different

degrees in 6-dimensional space (d = 6) is considered. A similar problem was in-

troduced in [22], where the eighth-degree polynomial function was considered. The

results obtained from the case of expectation integral at various degrees would give

a general idea about the efficacy of the quadrature rule at different degrees. The

problem of expectation integral is,

I =

∫
0.1

d∑
i=1

xαi N (x : 0, I) dx (2.37)

where, α represents the degree of the polynomial. Results obtained from Gaussian

Hermite (GH) quadrature-based full tensor grid is considered to be exact. It has been

found that, GH tensor grid requires atleast 6 points along each dimension to exactly

evaluate the integral for polynomial degree upto 10. The notation GH-6 refers for

Gaussian Hermite tensor grid rule with a total of 6d points. Sparse grid (produced

using KP univariate rules) and CUT sampling techniques are employed for various

values of α and the results are compared with the reference truth obtained from GH-

54



Table 2.2: Comparison of expectation integrals between SG and CUT-based cubature
rule

Rule (# points) α = 2 α = 4 α = 6 α = 8 α = 10
SG-2 (13) 0.6 (0%) 1.8 (0%) 5.4 (40%) 16.2 (74.2 %) 48.6 (91.4 %)
SG-3 (73) 0.6 (0%) 1.8 (0%) 5.4 (40%) 16.2 (74.2 %) 48.6 (91.4 %)
SG-4 (257) 0.6 (0%) 1.8 (0%) 9 (0%) 92.0 (46 %) 141.6 (75.0 %)
SG-5 (749) 0.6 (0%) 1.8 (0%) 9 (0%) 63 (0 %) 567 (0 %)
CUT-4 (76) 0.6 (0%) 1.8 (0%) 6 (33.3%) 21.6 (65.7 %) 81.6 (85.6 %)
CUT-6 (137) 0.6 (0%) 1.8 (0%) 9 (0%) 60.5 (3.8 %) 464.0 (18.1 %)
CUT-8 (745) 0.6 (0%) 1.8 (0%) 9 (0%) 63 (0 %) 545.18 (3.8 %)

* GH-6 (46656) 0.6 1.8 9 63 567
* signifies the reference rule used to evaluate exact value of integral

6. Table 2.2 provides the numerical value of the integral approximated by various

accuracy levels and orders of SG and CUT respectively, along with the number of

cubature points used by each rule for approximation.

In Table 2.2, the % value inside the brackets represents % of relative error in

the corresponding approach w.r.to Gaussian Hermite quadrature (GH-6). It can be

observed from Table 2.2 that SG requires fewer points to exactly evaluate the integral

than CUT upto the polynomial degree of 4. For polynomial of degree 6, CUT-6

converges with fewer points than corresponding SG rule (SG-4). Subsequently, for

the polynomial with degree 8, only SG-5 and CUT-8 can exactly evaluate the integral.

Both of the techniques require similar number of points; SG-5 requires 4 points more

than CUT-8. The % of relative error in the case of α = 8 is much smaller in the case

of CUT than SG of corresponding orders and accuracy levels respectively. However,

when the order of polynomial is further increased above 8, CUT-8 fails to converge.

Contrarily, the sparse grid of corresponding accuracy level (SG-5) can still exactly

evaluate the integral. On further increasing the polynomial degree (not shown in

Table 2.2, it is observed that SG-5 can exactly evaluate this integral problem to a
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degree of 12 with just 749 points. However, CUT-8 with almost similar number of

points fails to converge after the polynomial degree of 8.

For this example, we also note that the integral value in this problem should

always be positive as the integrand is always positive. In [22] it was shown that,

HCKF-5 i.e. High-degree Cubature Kalman Filter of order 5 proposed in [137] gives

negative integral value when the value of α = 8 with 73 nodes. It was also concluded

in [22] that the negative integral value possibly occurs due to the presence of negative

weights. However, the case of negative integral evaluation is not observed for any

accuracy level of sparse grid with negative weights generated from nested Kronrod

Patterson univariate rules. Hence, negative weights would not necessarily be an issue

if the suitable number of sample points are used to capture the moments of the

distribution.

2.6.2 Rosenbrock Function

As a second example, the Rosenbrock function is used in this work to demon-

strate pseudospectral approach-based gPC expansion using the cubature rules dis-

cussed in Section 2.5. The Rosenbrock function, also referred to as the Valley function

is a benchmark test function often encountered in numerical optimization [138] and

to evaluate nonintrusive gPC approaches [139]. The multi-dimensional Rosenbrock

function is given by

f(x) =
d−1∑
i=1

100
(
xi+1 − x2i

)2
+ (1− xi)

2 (2.38)

where, x is a d-dimensional vector.

For the analysis, fifth-dimensional (d = 5) Rosenbrock function is considered.

In this study, the cumulative distribution function (CDF) probability levels are com-
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Table 2.3: Distribution of random variables with corresponding gPC basis

Random variable Distribution gPC basis
x1 U [−2, 2] Legendre
x2 U [−2, 2] Legendre
x3 U [−2, 2] Legendre
x4 U [−2, 2] Legendre
x5 U [−2, 2] Legendre

puted at different specified response levels (r = 1, 50, 100, 500, 1000, 2500) of the f(x)

using pseudospectral approach of gPC expansion.

2.6.2.1 Case I: All random variables are uniformly distributed

Let us consider a case where, xi for all i = 1, . . . , 5 are distributed uniformly.

The bounds of uncertainty for the random variables are presented in the Table 2.3.

The CDF obtained from repetitive simulations using 104 Latin hypercube samples is

considered to be the reference solution. As the random variables have same distri-

bution function, samples generated using sparse grid (SG) and conjugated unscented

transform (CUT) are used as the collocation nodes to compute the coefficients of gPC

expansion using pseudospectral approach. The gPC solution ensemble generated by

evaluating the gPC expansion at 104 random grid points is analyzed to obtain the

Nth order gPC-approximated response CDF.

Figure 2.4 depicts the computational results obtained from SG-based gPC ex-

pansion. The CDF probabilities are mapped at various response levels of f(x) for

increasing levels of accuracy of SG (for fourth order of gPC expansion) and increasing

orders of gPC expansion (for fifth accuracy level of SG). Clearly, fourth order gPC

expansion with fifth accuracy level of SG is exact and pseudospectral collocation car-

ried out using samples from lower accuracy levels of SG produce highly inaccurate

solution statistics. Also, with fixed accuracy level of SG, the convergence of gPC ex-
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Figure 2.4: Computational results obtained from SG-based gPC expansion

pansion to the reference CDF statistics improves with increasing order of expansion

and the gPC expanded solution is exact at fourth order of gPC expansion along with

collocation points generated from SG approach of accuracy level 5.

Figure 2.5 depicts the computational results obtained from CUT-based gPC

expansion. The CDF probabilities are mapped at various response levels of f(x) for

increasing CUT-orders (for fourth order of gPC expansion) and increasing orders of

gPC expansion (for CUT-8). The convergence of gPC expansion to the reference CDF

statistics improves with increasing CUT orders at fixed order of expansion and also

with increasing order of expansion at fixed CUT-order. As in the case of sparse grid,

fourth order gPC expansion with collocation nodes obtained from CUT-8 is exact

along with collocation points generated from CUT approach as a result of satisfying

eighth order moment constraint equation (CUT-8).
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Figure 2.5: Computational results obtained from CUT-based gPC expansion

In order to compare the efficacy of SG and CUT, sum of squared residuals

(SSR), which is the sum of squares of residual errors is considered as the comparison

metric. SSR in approximated CDF probability levels with SG and CUT-based gPC

expansion are computed and plotted on a log-linear graph against the number of

collocation samples, as shown in Fig. 2.6. In the case of SG-based gPC expansion,

the SSR decreases with increasing number of collocation samples. However, CUT-

based gPC expansion shows inconsistencies in convergence with increasing number

of collocation samples. Further, it can be inferred that SG-based gPC expansion

requires fewer nodes for obtaining higher accuracy as compared to CUT-based gPC

expansion.
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Figure 2.6: Convergence behavior of SG and CUT-based gPC expansion with increas-
ing number of samples in log-linear scale

2.6.2.2 Case II: Random variables are governed by different distribution functions

The governing distribution functions with corresponding supports for the ran-

dom variables are presented in the Table 2.4. Collocation nodes generated using MSG

sampling technique are used to carry out the gPC expansion.

The computational results corresponding to the MSG-based gPC expansion is

shown in Fig. 2.7 for increasing levels of accuracy of MSG (for fourth order of gPC ex-

Table 2.4: Distribution of random variables with corresponding gPC basis

Random variable Distribution gPC basis
x1 U [−2, 2] Legendre
x2 U [−2, 2] Legendre
x3 U [−2, 2] Legendre
x4 N (0, 0.52) Hermite
x5 N (0, 0.52) Hermite
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Figure 2.7: Computational results obtained from MSG-based gPC expansion

pansion) and increasing orders of gPC expansion (for fourth accuracy level of MSG).

For fourth order of expansion, number of samples generated using MSG of accuracy

level lower than 4 is not sufficient to exhibit convergence. Further, with increasing

order of gPC expansion, the gPC-approximated CDF statistics shows higher resem-

blance to the reference statistics as obtained from LHS-based sampling and is exact

at fourth order of expansion for collocation nodes generated from fourth accuracy

level of MSG. The number of sample points required for MSG-based gPC expansion

to converge to reference truth is 881 points which is much fewer than 10,000 samples

of LHS-based sampling.
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2.6.3 Uncertainty Propagation in a Simple Harmonic Oscillator

Next, we consider the problem of uncertainty propagation in an unforced os-

cillator system subject to initial condition and parametric uncertainties exhibiting a

simple harmonic motion (SHM). The governing equations of motion of the oscillator

system is considered to be as follows

ẍ(t,Z) = −ω2x (2.39)

where x = [x1, x2]
T is the state vector and ω represents the angular frequency for

the SHM. For the stochastic process x(t,Z), which varies randomly as a function of

random vector Z and time t, the SDE in (2.39) can be rewritten in terms of state (x1

as position and x2 as velocity) equations as follows

dx1
dt

(t,Z) = x2

dx2
dt

(t,Z) = −ω2x1.

The angular frequency for SHM is assumed to be uncertain which is governed

by uniform probability distribution function. On the other hand, the uncertainties in

both the initial states of the oscillator are assumed to be normally distributed. The

bounds of uncertainty are presented in the Table 2.5 along with corresponding gPC

basis.

Table 2.5: Uncertainty bounds of the random variables

Random Variable Distribution gPC basis
x1(0) N (10, 0.12) Hermite
x2(0) N (0, 0.12) Hermite
ω U [0.4, 0.8] Legendre

The governing SDE has a quadratic term in one of the random input, ω and

can treated as the product of two random variables, both having same bounds of
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(c) Response PDF of x1 at t = 25 s

Figure 2.8: Probability density estimate of position of the system at various time
instants

uncertainty. Thus, the dimension of the uncertainty is four in the stochastic problem

under consideration.

As the random variables in the SDE have different probability distribution func-

tions, MSG collocation nodes are generated in order to perform stochastic collocation

in gPC expansion framework. Fourth level of accuracy (γ = 4) is selected to produce

MSG collocation nodes. Variable time step Runge-Kutta (4,5) method is employed

as the numerical integrator for this problem.
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Figure 2.9: Probability density estimate of velocity of the system at various time
instants

The response distribution obtained from 10, 000 random samples of Monte Carlo

simulation is considered to be the reference truth. In order to obtain response PDF

from gPC expansion, the coefficients of expansion need to be computed using MSG-

based collocation nodes in pseudospectral framework. Once the coefficients are ob-

tained, the solution ensemble is generated by performing eighth order gPC expansion

evaluated at 10, 000 random grid points. Once the solution ensemble is generated,

the response PDF are obtained using the kernel smoothing density estimate [140] at

various time instants.
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Figures 2.8 and 2.9 demonstrate the response PDF of position and velocity of

the system under SHM at various time instants. A good match with Monte Carlo

Simulation (MCS) is seen for MSG-based pseudospectral approach of gPC expansion

of eighth order. Table 2.6 depicts the comparison between Monte Carlo simulation

(MCS) and MSG-based gPC expansion. To obtain the response PDFs, the number of

realizations of solutions along with the total simulation time required to carry out the

integration are shown in Table 2.6. It can be inferred that, the number of realizations

and hence the simulation time can be reduced by using gPC expansion with MSG

collocation nodes.

Table 2.6: Comparison of MSG-based gPC expansion with MCS

Approach Number of realizations Simulation Time
MCS 10,000 3217 s

MSG-gPC 1209 254 s

2.6.4 CubeSat Uncertainty Propagation

In recent years, the increased population of resident space objects (RSOs) is

a huge challenge for space situational awareness (SSA) [141]. This problem worsens

with the presence of uncertainties in the complex dynamics which describe the motion

of RSOs. This section presents the use of MSG-based gPC collocation approach to

approximate the probability density function of the states of a defunct satellite.

A dynamical model containing perturbations acting on a defunct 2U CubeSat

orbiting in low Earth orbit (LEO) as space debris is considered. Aerodynamic drag is

considered as the major non-gravitational perturbation and other non-gravitational

perturbations are assumed to be negligible. Gravity perturbations due to irregularities
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Table 2.7: Uncertainty bounds of the drag parameters influencing the CubeSat

Random variable Distribution gPC basis
Aref

m
(Area to mass ratio) U [0.005, 0.014] m2/kg Legendre

CD (Coefficient of Drag) U [2, 4] Legendre

in the Earth’s geometry and its mass distribution are also considered. In Earth-

centered inertial (ECI) frame, the dynamics of the satellite can be written as,

r̈ = − µ

r3
r+ aD + ag (2.40)

where aD = −1
2
ρṙrel

(
CDAref

m

)
ṙrel. Here, r, µ, CD, Aref, m, and ρ represent the

inertial position vector of the CubeSat, drag coefficient, the reference frontal area

of the CubeSat, the mass of the CubeSat, and the air density at LEO, respectively.

Further, ṙrel = ṙ−ωE × r denotes the velocity of the CubeSat relative to the Earth’s

atmosphere with ωE as the angular velocity of the rotation of the Earth and ṙrel is

the magnitude of ṙrel. In (2.40), ag represent the acceleration of the CubeSat due to

gravity perturbations. The expression for the acceleration due to gravity perturbation

can be computed by taking the gradient of the aspherical potential function provided

in [142].

The Earth is assumed to have an equatorial radius of 6378.137 Km and the

gravitational parameter (µ) of the Earth is considered to be 398600.441 Km3/s2.

The atmosphere around the Earth is considered to be rotating about the rotational

axis of the Earth at an angular speed of 7.2921159 × 10−5 rad/s. The U.S. Stan-

dard Atmosphere Model 1976 along with the exponential interpolation is employed to

model the density of the atmosphere in LEO. Earth’s gravity perturbation incorpo-

rates a 200 × 200 spherical harmonics model as given by GRACE GGM02C gravity

model [143].
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Table 2.8: Initial orbital elements for the CubeSat in LEO

a e i Ω ω θ
6955 km 0.052 65.1 deg 339.94 deg 58 deg 332 deg

Table 2.9: Standard deviation in the initial position uncertainty

Random variable Distribution Standard Deviation gPC basis
X0 (Initial Position along ECI-x) Normal 10 m Hermite
Y0 (Initial Position along ECI-y) Normal 10 m Hermite
Z0 (Initial Position along ECI-z) Normal 10 m Hermite

The uncertainties are considered in the parameters of the drag model and the

three initial position states of the CubeSat. The ODE in (2.40) becomes SDE in the

presence of the uncertain variables. The parameters of drag model are assumed to be

uniformly distributed and the bounds of uncertainty are presented in Table 2.7.

The uncertainty in the position of the satellite are considered to be normally

distributed. The mean of the initial positions and the deterministic initial velocities

for the 2U-CubeSat can be calculated from the six orbital elements given in the Table

2.8 which are taken from [144]. In this context, six orbital elements: a, e, i, Ω, ω,

and θ represent semi-major axis, eccentricity, inclination, right ascension of the node,

argument of perigee, and true anomaly respectively. The standard deviation in the

position uncertainty of the CubeSat along with corresponding gPC basis is given in

the Table 2.9.

The states of the CubeSat are propagated for 10 days using a Runge-Kutta-

Fehlberg 7(8) method of integration with a tolerance of 10−12. The response distribu-

tion of quantities of interest (QoI) obtained from 100,000 random samples of Monte

Carlo simulation is considered to be the reference truth. The response PDFs are

also approximated using pseudospectral collocation-based gPC expansion technique.

To that end, collocation nodes are generated using MSG sampling technique with
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accuracy level of 4 such that, samples on two of the stochastic dimensions (for coeffi-

cient of drag and frontal area to mass ratio uncertainties) are generated using Gaus-

sian Legendre-based univariate quadrature rule and the samples on remaining three

stochastic dimension (for initial position uncertainties) are generated using Gaussian

Hermite-based univariate quadrature rule. Once the coefficients are obtained using

MSG-based psuedospectral approach, the solution ensemble of QoI is generated by

performing a fifth order gPC expansion evaluated at 100,000 random grid points.

2.6.4.1 Probability density estimate

Figures 2.10, 2.11 and 2.12 depict the posterior distribution of position of the

CubeSat after 2.5, 7.5 and 10 days of propagation. The PDF estimates are obtained

by applying the kernel density estimation (KDE) technique [140] using the solution

ensembles generated from Monte Carlo simulation and gPC expansion. For PDF

estimation and plotting, normalized system of units called as canonical units are

utilized; where, the units of distance are normalized with respect to mean radius of

the Earth resulting in Distance unit (DU).

As can be observed from the Figs. 2.10, 2.11 and 2.12, the PDF estimate

produced using fourth level MSG-based pseudospectral approach of gPC expansion

shows a close resemblance with that produced from Monte Carlo simulation. Further,

it can be observed that, a bimodal behavior in the PDF of the position of CubeSat

is just seen to be emerging, despite the fact that the distribution of position was

assumed to be Gaussian at an initial epoch. It is well known that, a Gaussian PDF

remains Gaussian if the dynamics of the system are linear, the proof of which is

trivial (please refer to [145]). This property no longer holds true when the dynamics

are non-linear. The bimodal behavior in the PDF can be clearly observed after 10

days of propagation in the ECI-Y position and is evident in ECI-X position of the
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Figure 2.10: Distribution of Monte Carlo and gPC solutions for the position of the
CubeSat after 2.5 days
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Figure 2.11: Distribution of Monte Carlo and gPC solutions for the position of the
CubeSat after 7.5 days

CubeSat. The MSG-based collocation in gPC expansion framework can accurately

approximate this bimodality in the PDF.

Table 2.10 illustrates the convergence behavior of the MSG-based gPC expan-

sion as compared to that of Monte Carlo simulation. As mentioned earlier, response
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Figure 2.12: Distribution of Monte Carlo and gPC solutions for the position of the
CubeSat after 10 days

Table 2.10: Convergence of MSG-based gPC expansion as compared to that of MCS

Candidate approach Number of samples Computational time D

MCS

1000 196 s 0.0920
2500 492 s 0.0612
10000 1967 s 0.0291
50000 9878 s 0.0030
100000 26264 s - (Reference)

MSG-based gPC
635 125 s 0.0028
2702 532 s 0.0001

PDF obtained from 105 MCS is considered to be the reference truth. Kullback-Leibler

(KL) distance is considered as the measure that can be used to gauge the similar-

ity between the reference solution and the candidate solution. KL-distance is the

most frequently used statistical distance measure between two probability distribution

functions [146]. If p0 and p1 are the two probability densities, the Kullback-Leibler

distance is defined as,

D (p1 || p0) =
∫
p1(x) ln

(
p1(x)

p0(x)

)
dx (2.41)
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where, ln(·) denotes natural logarithm. As can be observed from Table 2.10, the

KL-distance for third level MSG-based gPC expansion (fifth order) with 635 samples

is smaller than 50000 Monte Carlo (MC) samples. However, the computational time

required for 50000 MC samples is almost 80 folds greater than that required for

third level MSG-based gPC expansion. The KL-distance is much higher for MC

samples fewer than 50000. In order to estimate the response PDF with KL-distance of

order 10−4 when compared with 100000 MC realizations, MSG-based gPC expansion

requires a nominal 2702 realizations. The number of realizations required for MSG

with same order of accuracy can be further reduced by selecting nested univariate

rules such as, Kronrod-Patterson and Clenshaw-Curtis based rules [147].

2.6.4.2 Sensitivity analysis

SSA requires estimation of the space object’s state and uncertainties to be

known accurately. Hence, sensitivity analysis to characterize the influence of the

uncertain inputs on the propagated state of the object is very essential. Once the

gPC coefficients are obtained, variance-based sensitivity functions for the five random

parameters are computed according to (2.28). Figure 2.13 represent the temporal

variation of gPC expansion-based total sensitivity on radial position variability of the

CubeSat with respect to the five random variables whose distribution attributes are

provided in Tables 2.7, 2.8 and 2.9.

As can be observed from Fig. 2.13, for the first few epochs, the most influen-

tial random variables on the radial position variability of the CubeSat are the initial

conditions of the states of the CubeSat (X0, Y0 and Z0) and the effect of drag param-

eters (frontal area to mass ratio

(
Aref

m

)
and coefficient of drag (CD)) is negligible.

However, as time progresses, the states of the CubeSat in LEO are quite sensitive to

the drag parameters and the effect of initial position uncertainties eventually becomes
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Figure 2.13: Temporal variation of gPC-based total sensitivity of random inputs on
radial position of the CubeSat

negligible. Further, it can be clearly observed that, frontal area to mass ratio of the

CubeSat is the most significant parameter affecting the radial position of the CubeSat

for the time of propagation considered in the simulation.

The high sensitivity index values for the drag parameters agree with the intu-

ition that, effects of atmospheric drag and gravitational perturbations are significant

in LEO. As discussed by Eelco [148], smaller satellites and space debris fragments

are more sensitive to drag accelerations than large satellites that are otherwise sim-

ilarly constructed beacuse of larger area to mass ratio. This is in accordance with

the results depicted in Fig. 2.13, where the frontal area to mass ratio is by far the

most important contributor to the radial position of the CubeSat. As the CubeSat
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is propagated further in time, the significance of the coefficient of drag is observed to

be increased, while that of frontal area to mass ratio is observed to be decreased.

This result also suggests that more information about object’s geometry (in-

stantaneous projected area) and drag coefficient is essential to evaluate and improve

the thermospheric models for the objects in LEO and thus to accurately estimate

the object’s orbital motion. The results presented are also in accordance with the

discussion presented in literature [21,148,149] regarding effect of drag parameters on

orbital determination and orbital lifetime study of objects in LEO.

2.6.5 Nonlinear Coupled Two-Degree-of-Freedom Aeroelastic System

A coupled two-degree-of-freedom aeroelastic system with a cubic stiffness non-

linearity in both degrees of freedom is considered. Few parameters and the initial

conditions of the system are considered to be uncertain, hence, the dynamic model of

the system is governed by a stochastic differential equation. Pseudospectral approach

in gPC collocation framework with MSG nodes is applied to obtain the response

distribution of the SDE at various time instants.

Figure 2.14 provides a schematic representation of an airfoil oscillating in pitch

and plunge. Fung derived the aeroelastic equations of motion for linear springs [150].

The governing equations of motion for a coupled two-degree-of-freedom system with

a cubic stiffness nonlinearity in both pitch and plunge was derived by Lee et al. [151].

The equations of motion involving such nonlinear restoring forces can be written as:

ξ′′ + xαα
′′ + 2ζξ

ωr

Vr
ξ′ +

(
ωr

Vr

)2 (
ξ + βξξ

3
)

= p(τ) (2.42)

xα
r2α
ξ′′ + α′′ + 2

ζα
Vr
α′ +

1

V 2
r

(
α + βαα

3
)

= r(τ) (2.43)

where ξ =
plunge (h)

midchord (b)
is the non-dimensional displacement of the hinge point or

elastic axis point, α is the pitch angle which is positive nose up about the elastic axis
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Figure 2.14: Schematic representation of two-degree-of-freedom airfoil

and c is the chord of the airfoil. The elastic axis is located at a distance ahb from

the midchord , while the mass centre is located at a distance xab from the elastic

axis . Both distances are positive when measured towards the trailing edge of the

airfoil. ωξ, ζξ, ωα, and ζα are the natural frequencies and damping ratios in uncoupled

plunging and pitching modes, respectively. Here, βα and βξ are the nonlinear spring

constants which control the amount of structural nonlinearity. Further, rα is the

radius of gyration about the elastic axis, xα is the non-dimensional distance from the

hinge point to the center of mass of airfoil and

p(τ) = − 1

πµ
CL(τ) +

P (τ)b

mV 2
∞

(2.44)

r(τ) =
2

πµr2α
CM(τ) +

Q(τ)

mV 2
∞r

2
α

(2.45)
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where P (τ) and Q(τ) are the external applied force and moment. Various non-

dimensional parameters involved in above mathematical expressions are defined as

follows:

ωr =
ωξ

ωα

, Vr =
V∞
bωα

, τ =
V∞t

b
, µ =

m

πρ∞b2

where ωr, Vr, τ and µ are the frequency ratio, reduced velocity, non-dimensional time

and airfoil air mass ratio respectively. Here, m is the airfoil mass per unit length, V∞

is the free-stream velocity and ρ∞ is the free-stream density. The expressions for lift

and pitching moment coefficients, CL(τ) and CM(τ) are provided in [151] based on

an incompressible flow model given in [150], and are as follows

CL(τ) =π (ξ
′′ − ahα

′′ + α′) + 2π

{
α(0) + ξ′(0) +

(
1

2
− ah

)
α′(0)

}
ϕ(τ)

+ 2π

∫ τ

0

ϕ(τ − σ)

[
α′(σ) + ξ′′(σ) +

(
1

2
− ah

)
α′′(σ)

]
dσ

CM(τ) =π

(
1

2
+ ah

){
α(0) + ξ′(0) +

(
1

2
− ah

)
α′(0)

}
ϕ(τ)

+ π

(
1

2
+ ah

)∫ τ

0

ϕ(τ − σ)

{
α′(σ) + ξ′′(σ) +

(
1

2
− ah

)
α′′(σ)

}
dσ

+
π

2
ah (ξ

′′ − ahα
′′)−

(
1

2
− ah

)
π

2
α′ − π

16
α′′,

(2.46)

where the Wagner function ϕ(τ) is given by

ϕ(τ) = 1−Ψ1e
−ε1τ −Ψ2e

−ε2τ (2.47)

and Ψ1 = 0.165,Ψ2 = 0.335, ε1 = 0.0455 and ε2 = 0.3 are the constants [152].

The expressions for CL(τ) and CM(τ) contain indicial integral forms in terms of

Wagner’s functions. To that end, Lee et al. transformed equations of motion given in

Eqns. (2.42) and (2.43) into a set of eight first-order ordinary differential equations

by introducing a set of new variables w1, w2, w3, w4 which are given by

w1 =

∫ τ

0

e−ε1(τ−σ)α(σ)dσ, w2 =

∫ τ

0

e−ε2(τ−σ)α(σ)dσ

w3 =

∫ τ

0

e−ε1(τ−σ)ξ(σ)dσ, w4 =

∫ τ

0

e−ε2(τ−σ)ξ(σ)dσ

(2.48)
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Now, the equations (2.42) and (2.43) can be written in terms of Wagner’s func-

tions as follows

c0ξ
′′ + c1α

′′ + c2ξ
′ + c3α

′ + c4ξ + c5ξ
3 + c6α + c7w1 + c8w2 + c9w3 + c10w4 = f(τ)

d0ξ
′′ + d1α

′′ + d2α
′ + d3α + d4α

3 + d3ξ
′ + d6ξ + d7w1 + d8w2 + d9w3 + d10w4 = g(τ)

(2.49)

where the coefficients ci and di, i = 0, 1, . . . , 10, and the forcing functions f(τ) and

g(τ) are provided in the Appendix D. Finally, the equations of motion of the nonlinear

aeroelastic system in (2.49) are rewritten in terms of state variables x1 = α, x2 = α̇,

x3 = ξ, x4 = ξ̇, x5 = w1, x6 = w2, x7 = w3 and x8 = w4 as follows

ẋ1 = x2

ẋ2 = (c0H − d0P ) / (d0c1 − c0d1)

ẋ3 = x4

ẋ4 = (−c1H + d1P ) / (d0c1 − c0d)

ẋ5 = x1 − ε1x5

ẋ6 = x1 − ε2x6

ẋ7 = x3 − ε1x7

ẋ8 = x3 − ε2x8

(2.50)

where

P = c2x4 + c3x2 + c4x3 + c5x
3
3 + c6x1 + c7x5 + c8x6 + c9x7 + c10x8 − f(τ)

H = d2x2 + d3x1 + d4x
3
1 + d5x4 + d6x3 + d7x5 + d8x6 + d9x7 + d10x8 − g(τ).

(2.51)

The aeroelastic system as discussed above involves fluid-structure interaction

governed by the coupling of inertial, elastic, and aerodynamic forces. This coupling

results in the onset of a flutter phenomena in the aeroelastic system. To that end, a

linear aeroelastic system undergoes a change from stable stationary motion to diver-

gent unbounded motion at some critical reduced velocity. The critical point at which
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this transformation occurs is called flutter point or Hopf bifurcation point. However,

a nonlinear aeroelastic system may enter into a periodic motion called as limit cycle

oscillation (LCO) beyond the flutter point. Flutter point is determined numerically

by setting the cubic spring constant βα to be zero. Millman et al. [153] has reported

the Hopf bifurcation point to be located at Vr = 6.279.

Depending on the value of βα, the aeroelastic system shows two different types

of dynamic responses namely, supercritical and subcritical. For the hard spring with

positive βα, the aeroelastic system demonstrates a supercritical response with a stable

periodic solution for reduced velocity greater than the flutter point. On the other

hand, subcritical response has a dynamically unstable response at reduced velocities

above the flutter point. Lee et al. [154] demonstrated that dynamically unstable

subcritical response is generally observed for soft spring where the value of cubic

spring constant (βα) is negative.

Table 2.11: Values of parameters used for simulation

Variable Values
µ 100
ah -0.5
ωr 0.2
xα 0.25
βz 0
rα 0.5
ζα 0
ζξ 0

2.6.5.1 Uncertainty Propagation in Supercritical Regime of the Aeroelastic System

Aeroelastic system operating in supercritical regime demonstrates periodic so-

lution above the flutter point. Hence, the accuracy of MSG-based gPC expansion
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Figure 2.15: Pitch response of the aeroelastic system with deterministic initial con-
ditions and parameters

is studied in supercritical regime of airfoil above the flutter point. The pitch angle

response of the aeroelastic system at different values of reduced velocity around the

supercritical Hopf bifurcation point can be observed in Figs.2.15 for the values of the

parameters listed in Table 2.11 which are taken from [154]. The initial pitch angle,

α(0) is considered to be 1 degree and initial conditions of all the other states are

assumed to be zero. The values of the constants in Wagner function, ψ1 = 0.165,

ψ2 = 0.335, ϵ1 = 0.0455 and ϵ2 = 0.3 are taken from Jones [152].
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The initial pitch angle (α(0)) and cubic spring constant (βα) show significant

effects on the dynamic behavior of the aeroelastic system as discussed in [153] and

[154] and therefore, are considered to be the two stochastic inputs in this work.

The initial pitch angle is considered to be normally distributed and the cubic spring

constant of the model is considered to be uniformly distributed. The domain of the

distribution of random variables along with their corresponding gPC basis for gPC

expansion are given in Table 2.12.

Table 2.12: Uncertainty bounds of the random variables

Variable Distribution gPC basis

α(0) α(0) ∼ N
(
1× π

180
rad, (0.2rad)2

)
Hermite

βα βα ∼ U [1.5, 4.5] Legendre

The simulation is carried out for a reduced velocity of 6.5. Fourth-order fixed

step Runge Kutta integrator is used to carry out the numerical integration. The time

step (∆τ) used for the integration is 0.1.

The response distribution obtained from 10, 000 random samples of Monte Carlo

simulation (MCS) is considered to be the reference truth. In order to obtain response

PDF from gPC expansion, the coefficients of expansion need to be computed using

MSG-based collocation nodes in pseudospectral framework. The collocation nodes

are generated using MSG sampling technique (with accuracy level, γ = 6) such that,

samples on one of the two stochastic dimensions are generated using Gaussian Legen-

dre univariate quadrature nodes and the samples on the second stochastic dimension

are generated using Gaussian Hermite univariate quadrature nodes. The weights

corresponding to the sparse grid nodes are obtained for each nodal set in multidi-

mension. Once the coefficients are obtained, the solution ensemble is generated by
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Figure 2.16: Probability density estimate of pitch angle α at various non-dimensional
time (supercritical regime)

performing eighth order gPC expansion evaluated at 10, 000 random grid points. The

probability density estimate based on normal kernel function of pitch angle (α) and

non-dimensional plunge (ξ) are obtained using solution ensemble generated from gPC

expansion at various non-dimensional time.

The response PDF for pitch and non-dimensional plunge at three different non-

dimensional time (τ) are shown in Fig.2.16 and Fig.2.17. The PDF plotted using a

MSG-based gPC expansion shows a close resemblance with that of the MCS. Eighth-

80



0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

1

2

3

4

5

6

Monte Carlo

Mixed Sparse Grid

(a) Probability density estimate of ξ at τ =
2000

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
0

1

2

3

4

5

6

7

Monte Carlo

Mixed Sparse Grid

(b) Probability density estimate of ξ at τ =
5000

-0.65 -0.6 -0.55 -0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2
0

1

2

3

4

5

6

7

8
Monte Carlo

Mixed Sparse Grid
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Figure 2.17: Probability density estimate of non-dimensional plunge ξ at various non-
dimensional time (supercritical regime)

order gPC expansion is sufficient enough to capture the response PDF with MSG-

based collocation nodes. Moreover, the MSG-based gPC expansion uses much fewer

nodes as compared to the MCS which can be observed in Table 2.13. The comparison

based on simulation time is also tabulated in Table 2.13 which clearly illustrates that,

MSG-based gPC expansion requires less computational time as compared to MCS.
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Table 2.13: Comparison of MSG-based gPC with MCS

Approach Number of realizations Simulation Time
MCS 10,000 5951 s

MSG-gPC 341 151 s

2.6.5.2 Uncertainty Propagation in Subcritical Regime of Aeroelastic System

In the case when a negative value of cubic spring constant is used, the airfoil

exhibits a divergent flutter for any initial pitch angle except α(0) = 0 at reduced

velocities above the flutter point [153] and the airfoil is said to be operating under

subcritical regime. However, if the reduced velocity is less than the flutter point,

the airfoil may stabilize after certain duration. In order to illustrate the accuracy

of the proposed approach, the uncertainty propagation is also carried out in stable

subcritical regime of the aeroelastic system.

The simulation is carried out for a reduced velocity of 6.2 in order to obtain a

stable solution. The stability region for subcritical response of aeroelastic system can

be obtained from the bifurcation diagram provided by Millman et al. [153]. Distri-

butions of random variables along with their corresponding gPC basis are provided

in Table 2.14. Note the domain of the distribution βα in the negative range which

causes the airfoil to operate in subcritical regime.

Table 2.14: Uncertainty bounds of the random variables

Variable Distribution gPC basis

α(0) N
(
1× π

180
rad, (0.2rad)2

)
Hermite

βα U [−4.5, −1.5] Legendre
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Figure 2.18: Probability density estimate of α at τ = 1000 (subcritical regime)

The response PDF for pitch using 10,000 MCS and MSG (γ = 5)-based gPC

expansion at τ = 1000 is illustrated in Fig. 2.18. Alike in the supercritical regime,

the proposed technique is equally accurate in the subcritical regime. The range of the

PDF in the order of 10−4 suggests that, the initial pitch angle of 1 radians is found

to be decaying to zero with time. Further, the estimated distribution of the pitch

angle in the subcritical regime is observed to be approximately Gaussian, which is

the behavior of the systems which stabilize to a steady state value.

2.6.6 Issue of Long Term Degeneracy With gPC Expansions

The issue of increased nonlinearity of the response surface with increasing in-

tegration times for the pitch response of the aeroelastic system has been discussed

in [112] and [155]. It was concluded that Gaussian tensor grid-based pseudospectral

approach of gPC expansion fails to converge for stochastic models which demonstrate
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oscillatory response when integrated for a large period of time, even with very high

order of expansion. This issue has been termed as the long term degeneracy problem.

However, the response PDFs for pitch response of airfoil operating in supercritical

regime obtained in Fig. 2.16 using MSG-based gPC expansion do not exhibit this

long term degeneracy upon integrating to τ = 8000. Investigation has been carried

out in this section to enumerate the possible reasons behind the issue of long term

degeneracy in [112] and [155] for the same nonlinear aeroelastic system.

Gaussian tensor grid uses full tensor product of 1D Gaussian rules as been

discussed in Section 2.5. The number of nodes increases exponentially in the case

of Gaussian tensor grid with increase in number of dimensions. Hence, the use of

Gaussian tensor grid in the pseudospectral approach demands huge number of sam-

ple points for convergence. If less number of sample nodes are used, higher order

moments of the PDF cannot be captured effectively by the sample nodes and results

in degeneracy issue. Further, one dimensional quadrature rules are efficient to exactly

integrate the polynomials only upto a degree of 2m − 1, where m is the number of

nodes as discussed in Section 2.5. Hence, the tensor grid obtained from the tensor

product of these rules are also efficient to integrate polynomials only up to a certain

order with the given number of nodes. Thus, it is quite evident that the issue of

degeneracy would worsen if fewer samples are used as collocation nodes in the pseu-

dospectral approach of gPC expansion to integrate expectation integrals involving

high degree of polynomials.

The response PDF in Fig.2.16 has been obtained using MSG-based sample nodes

produced using an accuracy level (γ) of 6 in the sparse grid algorithm. However, the

same convergence cannot be obtained if MSG nodes with lower accuracy level are

used. The accuracy level of sparse grid algorithm has a proportionate relationship

with the number of sparse grid nodes. Table 2.15 gives the number of MSG samples
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Figure 2.19: Estimated response PDF of pitch angle when different accuracy levels
of sparse grid are used with different orders of gPC expansion

for stochastic dimension of 2 such that, one of the two random variables is governed

by uniform distribution and the other random variable is governed by normal distri-

bution. Hence, the number of MSG points would be fewer when the accuracy level

of sparse grid algorithm is reduced below 6, which reduces the convergence behavior

of gPC approximated solution if the number of samples are not sufficient enough to

capture all the higher order moments of the distribution.

Table 2.15: Number of MSG nodes for stochastic dimension of 2

Accuracy level (γ) Number of sample nodes
3 54
4 113
5 206
6 341

Figure 2.19 illustrates the response PDF estimate at non-dimensional time, τ =

8000 when MSG nodes of lower accuracy levels (γ < 6) are used with different orders

of gPC expansion. It can be observed from Fig.2.19a that, MSG nodes generated
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from sparse grid algorithm with accuracy level of 3 cannot capture the response PDF

of the solution accurately with a gPC expansion upto fifth-order. Further increase

in gPC expansion order to level 10 further deteriorates the convergence behavior.

On increasing the accuracy level of MSG algorithm to 5 improves the convergence

of response PDF estimate. The tenth order gPC expansion approximated solution

matches quite closely to the reference Monte Carlo simulated solution PDF. However,

on further increasing the order of gPC expansion to 18 induces nonlinearity in the

response PDF surface.

It is to be noted that, the convergence of the solution obtained from pseudospec-

tral approach is entirely dependent on the convergence behaviour of the quadrature-

based integral approximation. Higher the accuracy of the quadrature technique, less

would be the difference between the discrete pseudospectral projection and the or-

thogonal gPC projection, which in turn decides the convergence of the gPC expanded

approximation to the true solution. Hence, special care must be taken to select proper

type and order of quadrature rule for approximating the expectation integrals. The

increased nonlinearity in the response surface can be possibly observed when the

number of collocation nodes are not sufficient enough to capture all the higher or-

der moments of the probability distribution function. However, the increase in the

number of sample points also increases computational burden. MSG-based stochas-

tic collocation uses fewer samples as compared to Gaussian quadrature with increase

in number of stochastic dimensions as discussed in Section 2.5. Hence, the issue of

long term degeneracy can be efficiently mitigated by using the proposed algorithm of

MSG-based gPC expansion.
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2.7 Discussion

As discussed in earlier sections, the major contribution of the research lies in

developing MSG-based gPC expansion which can be specifically used in solving SDEs

where random variables are characterized by different distribution functions. The only

approach available in the literature is the Monte Carlo-based repetitive simulation

which can solve such SDEs and hence, MCS is used as the reference method to

evaluate the efficiency of MSG-based gPC expansion.

Moreover, the order of the gPC expansion greatly affects the overall accuracy

and convergence of the approximation. As discussed in Section 2.6.6, convergence

cannot be achieved only by increasing the order of gPC expansion or the number

of collocation nodes. For a given number of collocation nodes, the accuracy of the

gPC expansion can be improved only by increasing the gPC order to a certain limit,

after which the error keeps accumulating and results in the issue of degeneracy in

oscillatory systems as shown in Fig. 2.19. Higher order of gPC expansion demands

higher number of collocation nodes for improved accuracy. Thus, better convergence

can be guaranteed by considering the synchronized increment in both.

2.8 Chapter Summary

This chapter demonstrated the use of the generalized polynomial chaos surro-

gate modeling technique to approximate the solution of stochastic differential equation

and also discussed the efficacy of sparse grid (SG) and conjugate unscented transform

(CUT) in solving the problem of uncertainty quantification and propagation. The

numerical examples of expectation integral evaluation and uncertainty quantification

of Rosenbrock test function illustrated the applicability of the conjugate unscented

transform and regular sparse grid techniques which are computationally less burden-
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some than Gaussian tensor grids. It can be inferred that, both SG and CUT provide

excellent and computationally efficient set of nodes to perform stochastic collocation

in gPC framework; however, the accuracy of the latter is limited by the order of CUT

to which it can be increased. Higher accuracy in approximation requires more num-

ber of quadrature nodes used in collocation; but the number of nodes are limited in

CUT of order 8 (CUT-8). On the contrary, the number of collocation nodes can be

increased to much higher accuracy level in the context of sparse grid to obtain higher

accuracy, but at the cost of computational power.

Further, a numerical non-intrusive approach for solving stochastic differential

equations where the underlying random variables are governed by different probabil-

ity distribution functions was also proposed. The numerical results obtained in all

the numerical examples demonstrated the accuracy of proposed mixed sparse grid

technique in gPC framework. The results also demonstrated that the mixed sparse

grid-based gPC expansion is much more computationally efficient than the random

sampling techniques (LHS and MCS). In the problem of orbital uncertainty prop-

agation, sensitivity analysis revealed that the drag parameters i.e. frontal area to

mass ratio and coefficient of drag are the most influential parameters to the object’s

position in the low Earth orbits. Moreover, in the case of uncertain oscillatory sys-

tems, the issue of long term degeneracy can be observed with the application of gPC

expansion. The mixed sparse grid-based stochastic collocation in gPC expansion

framework can mitigate this issue by suitably selecting the number of collocation

samples and order of gPC expansion. Although the numerical examples presented

in this work consider stochastic problems with random variables governed only by

normal and uniform distribution functions, this approach can be easily applied to

stochastic problems governed by any form of distribution functions.
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Chapter 3

Stochastic Optimal Control of Linear Systems With Probabilistic Uncertainties

This chapter considers the synthesis of minimum expectation optimal trajecto-

ries of continuous-time linear systems subject to parametric uncertainties. We present

a new theoretical framework for designing the state feedback controller for stochastic

systems in the gPC expansion framework. Quadrature-based pseudospectral colloca-

tion formulated in Chapter 2 is used to obtain the coefficients required for the gPC

expansion. Moreover, the stochastic performance index for optimization involving

expectation is converted to a deterministic cost function using the pseudospectral

collocation technique. The optimization problem is solved to obtain theoretical con-

trol laws for both finite and infinite horizon control problems. A numerical example

is presented to demonstrate the accuracy of the proposed approach.

The chapter is organized as follows. We first formulate the problem under

consideration in Section 3.1. The gPC expansion of the stochastic linear system is

provided in Section 3.2. The theoretical developments to solve minimum expecta-

tion optimal control problems for stochastic linear systems using gPC expansion are

shown next in Section 3.3. Simulation results are illustrated in Section 3.4, and the

concluding remarks are presented in Section 3.5.

3.1 Problem Formulation

Consider a stochastic linear dynamical system of the form

ẋ(t, z) = A(z)x(t, z) +B(z)u(t, z) (3.1)
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where x ∈ Rn is the state vector, u ∈ Rm is the control input, and A ∈ Rn×n and

B ∈ Rn×m are the system matrices. The random vector z = [z1, z2, · · · , zd]T ∈ Rd

represents uncertainties in system parameters. We assume the probability distribution

function of the random variables zi, i = 1, . . . , d are stationary and known.

In this work, we consider the design of an optimal state feedback controller that

minimizes a finite horizon performance index given by

J1 = E
[
1

2
xT(tf , z) P(tf ) x(tf , z) +

1

2

∫ tf

0

(
xT(t, z)Q x(t, z) + uT(t, z)Ru(t, z)

)
dt

]
,

(3.2)

and an infinite horizon performance index given by

J2 = E
[
1

2

∫ ∞

0

(
xT(t, z) Q x(t, z) + uT(t, z)Ru(t, z)

)
dt

]
(3.3)

where Q = QT ∈ Rn×n > 0 and R = RT ∈ Rm×m > 0 are the standard LQR

weighting matrices for both the performance indices in (3.2) and (3.3). For the

performance index in (3.2), tf is the final time and P(tf ) = PT(tf ) ∈ Rn×n ≥ 0 is the

terminal cost.

3.2 Generalized Polynomial Chaos Expansion of Stochastic Linear System

For the system in (3.1), assuming the solution x(t, z) = [x1(t, z), . . . , xn(t, z)]
T

to be a second-order process [128], the gPC expansion of xi(t, z) for each i = 1, . . . , n

can be written as,

xi (t, z) =
P∑

|r|=0

xci,r(t)Φr (z) (3.4)

where xci,r(t) is the coefficient of the multidimensional basis Φr (z) , and r = (r1, . . . , rd)

is the ordered set of multi-indices with |r| = r1 + · · ·+ rd. As discussed in Chapter 2,

the total number of basis functions is given by N +1 =

d+ P

d

. Now, the solution
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in (3.4) with multidimensional index r can be written in terms of a single index k as

follows

xi (t, z) =
N∑
k=0

xci,k(t)Φk (z) = Φ(z)Txc
i(t) (3.5)

where xc
i(t) = [xci,0(t), x

c
i,1(t), . . . , x

c
i,N(t)] ∈ RN+1 is the vector of time-varying gPC

coefficients and Φ(z) = [Φ0(z),Φ1(z), . . . ,ΦN(z)]
T ∈ RN+1 is the vector of gPC basis.

Moreover, the expansion coefficients can be written as,

xci,k =
1

γk
E [xi(z)Φk(z)] =

1

γk

∫
Γ

xi(z)Φk(z)ρ(z)dz (3.6)

where ρ(z) represents the joint PDF of the random variable vector z with support

Γ ⊂ Rd, and γk = E [Φ2
k] > 0 is the normalization factor.

3.3 Control Design

In this section, we illustrate the methodology of designing a state feedback con-

troller for the stochastic system described in (3.1) using the gPC expansion framework

presented in Section 3.2. In this work, we wish to design a single controller for all

the possible variations of the random parameter within the domain of its probability

density function. We present the methodology of designing the controller for mini-

mizing the finite horizon performance index provided in (3.2), which can be readily

extended to the case of infinite horizon performance index provided in (3.3).

We first rewrite the expectation performance index in terms of gPC coefficients

using the gPC solution of the stochastic differential equation in (3.1).

3.3.1 Expectation Performance Index in Terms of Deterministic gPC Coefficients

The control input is designed to be of the following form

u(t, z) = K(t)x(t, z) (3.7)
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where K(t) ∈ Rm×n is the time-varying state feedback controller. With the control

action in (3.7), the performance index in (3.2) can be written as

J1 = E
[
1

2
xT(tf , z) P(tf ) x(tf , z) +

1

2

∫ tf

0

xT(t, z)
(
Q+KT(t)RK(t)

)
x(t, z) dt

]
.

(3.8)

Given (3.5), we can write the gPC expanded solution of (3.1) as

x(t, z) =
[
In ⊗Φ(z)T

]
xc(t) (3.9)

where xc = col(xc1, x
c
2, . . . , x

c
n) ∈ R(N+1)n. To that end, we can write the following

E[x(t)Tx(t)] = E
[
xc(t)T

(
In ⊗Φ(z)Φ(z)T

)
xc(t)

]
= xc(t)T

(
In ⊗ E

[
Φ(z)Φ(z)T

])
xc(t).

(3.10)

As the gPC polynomials are orthogonal such that E[Φi(z)Φj(z)] = 0 for all

i ̸= j and E[Φ2
i (z)] = γi, we can rewrite (3.10) as

E[x(t)Tx(t)] = xc(t)T (In ⊗ Γ)xc(t). (3.11)

where Γ = diag (γ0, γ1, . . . , γN) > 0 ∈ R(N+1)×(N+1) is the diagonal matrix of normal-

ization factors. Using (3.11), we obtain

E[xT(tf , z)P(tf )x(tf , z)] = xc(tf )
T[P(tf )⊗ Γ]xc(tf ) (3.12)

and

E[xT(t, z)(Q+KTRK)x(t, z)] = xc(t)T[(Q+KTRK)⊗ Γ]xc(t). (3.13)

Using (3.12) and (3.13), we can recast the performance index in (3.8) in terms

of gPC coefficients as follows

J1 =
1

2
xc(tf )

T[P(tf )⊗ Γ] xc(tf ) +
1

2

∫ tf

0

xc(t)T
[
(Q+KT(t)RK(t))⊗ Γ

]
xc(t) dt.

(3.14)
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Similarly, with the control input u = Kx where K is a constant gain matrix, we

can recast the infinite horizon performance index in (3.3) in terms of gPC coefficients

as follows

J2 =
1

2

∫ ∞

0

xc(t)T
[
(Q+KTRK)⊗ Γ

]
xc(t) dt. (3.15)

Using the gPC expansion approach, we have transformed the expectation per-

formance index in terms of coefficients of the gPC expansion. In order to design the

feedback controller, we first need to compute these coefficients. We consider the syn-

thesis of optimal state feedback controller using gPC-based pseudospectral collocation

approach discussed in Chapter 2.

3.3.2 gPC Expansion-Based Pseudospectral Collocation

As discussed in Chapter 2, the expansion coefficients from (3.6) can be rewritten

in the following form using the quadrature approximation,

xci,k(t) =
1

γk

Nq∑
q=1

xi(t, zq)Φk(zq)wq (3.16)

where zq are the quadrature nodes, wq are the corresponding nodal weights, xi(t, zq)

is the ith state variable at the quadrature node, and Nq is the number of quadrature

nodes used. Let us define x̄i(t) = [xi(t, z1), xi(t, z2), · · · , xi(t, zNq)]
T ∈ RNq and x̄(t) =

col(x̄1(t), x̄2(t), . . . , x̄n(t)) ∈ RnNq . Using (3.16), we can obtain the gPC coefficient

xc(t) in (3.14) as follows

xc(t) =
[
In ⊗ Γ−1

]
[In ⊗ Φ̄][In ⊗W]x̄(t) (3.17)
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where W = diag(w1, · · · , wNq) ∈ RNq×Nq and

Φ̄ =



Φ0(z1) Φ0(z2) · · · Φ0(zNq)

Φ1(z1) Φ1(z2) · · · Φ1(zNq)

...
... · · · ...

ΦN(z1) ΦN(z2) · · · ΦN(zNq)


∈ R(N+1)×Nq . (3.18)

Using the Kronecker identities, we can express (3.17) as

xc(t) =
[
In ⊗ Γ−1Φ̄W

]
x̄(t). (3.19)

3.3.3 Feedback Solution

In order to compute x̄(t, z) at each time instant, the stochastic system in (3.1) is

solved at the collocation nodes. The stochastic system (3.1) at the collocation nodes

can be rewritten as

˙̄x(t) = Āx̄(t) + B̄ū(t) (3.20)

where Ā and B̄ are defined as follows

Ā =



A11(z1) 0 · · · 0 · · · A1n(z1) 0 · · · 0

0 A11(z2) · · · 0 · · · 0 A1n(z2) · · · 0

...
...

. . .
... · · · ...

...
. . .

...

0 0 · · · A11(zNq) · · · 0 0 · · · A1n(zNq)

...
...

...
...

...
...

...
...

...

An1(z1) 0 · · · 0 · · · Ann(z1) 0 · · · 0

0 An1(z2) · · · 0 · · · 0 Ann(z2) · · · 0

...
...

. . .
... · · · ...

...
. . .

...

0 0 · · · An1(zNq) · · · 0 0 · · · Ann(zNq),


(3.21)
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B̄ =



B11(z1) 0 · · · 0 · · · B1m(z1) 0 · · · 0

0 B11(z2) · · · 0 · · · 0 B1m(z2) · · · 0

...
...

. . .
... · · · ...

...
. . .

...

0 0 · · · B11(zNq) · · · 0 0 · · · B1m(zNq)

...
...

...
...

...
...

...
...

...

Bn1(z1) 0 · · · 0 · · · Bnm(z1) 0 · · · 0

0 Bn1(z2) · · · 0 · · · 0 Bnm(z2) · · · 0

...
...

. . .
... · · · ...

...
. . .

...

0 0 · · · Bn1(zNq) · · · 0 0 · · · Bnm(zNq).


(3.22)

Moreover, the control input in (3.7) at each collocation nodes can be computed

as

ū(t) =
[
K(t)⊗ INq

]
x̄(t). (3.23)

Substituting (3.23) in (3.20), we obtain the following

˙̄x(t) =
[
Ā+ B̄

(
K(t)⊗ INq

)]
x̄(t). (3.24)

Using the solution of the gPC coefficients in (3.19) and Kronecker identities, we

can write

xc(tf )
T[P(tf )⊗ Γ] xc(tf ) = x̄T(tf )

[
P(tf )⊗ F

]
x̄(tf ) (3.25)

and

xc(t)T
[
(Q+KT(t)RK(t))⊗ Γ

]
xc(t) = x̄T(t)

[
(Q+KT(t)RK(t))⊗ F

]
x̄(t)

(3.26)

where F = WΦ̄TΓ−1Φ̄W ∈ RNq×Nq .

Remark 3.3.1. In order to obtain a stabilizing feedback solution, we require F to be

a positive definite matrix. Note that, WΦ̄T is a Nq × (N + 1) matrix, and Γ is a
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(N +1)× (N +1) positive-definite matrix. To that end, F is a positive definite matrix

if rank(WΦ̄T) = Nq [156]. By restricting Nq ≤ (N + 1), we obtain F > 0. Further,

using the properties of Kronecker product, we also obtain P(t)⊗ F > 0, Q⊗ F > 0,

and R⊗ F > 0.

Next, we provide a Lemma to derive a stabilizing state feedback controller for

the system (3.1) or equivalently the system (3.20).

Lemma 3.3.2. With the state feedback control law in (3.7), the control gain matrix

K stabilizes the stochastic system (3.1) asymptotically for all the variations of the

random variable z within the domain of its probability density function if the following

matrix inequality holds

[
Ā+ B̄(K⊗ I)

]T
(X⊗ F) + (X⊗ F)

[
Ā+ B̄(K⊗ I)

]
< 0 (3.27)

where X = XT ∈ Rn×n > 0.

Based on the gPC-based pseudospectral collocation approach, the closed-loop

stochastic system is devised in (3.24). Let us consider V = x̄T(t) (X⊗ F) x̄(t) as the

Lyapunov function. Computing the derivative of the Lyapunov function along the

state trajectory of system (3.24), one can obtain the matrix inequality in (3.27).

Moreover, substituting (3.25) and (3.26) in (3.14), the modified finite horizon

performance index (cost function) can be written as

J1 =
1

2
x̄(tf )

TP̄(tf )x̄(tf )+
1

2

∫ tf

0

x̄(t)T
[
(Q+KT(t)RK(t))⊗ F

]
x̄(t) dt. (3.28)

where P̄(tf ) = P̄(tf )⊗ F ∈ RnNq×nNq .

Similarly, the modified infinite horizon performance index can be written as

J2 =
1

2

∫ tf

0

x̄(t)T
[
(Q+KTRK)⊗ F

]
x̄(t) dt. (3.29)

Note that, Lemma 3.3.2 only provides a stabilizing feedback solution, but

doesn’t necessarily optimize the performance index in (3.28) and (3.29). To that
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end, we present the following Theorems to compute the optimal stabilizing controller.

Also, it should be noted that, the expressions in (3.5) and (3.16) are not exact, but

approximations required for computational feasibility; thus, the designed controllers

are sub-optimal.

Theorem 3.3.3. The performance index J1 in (3.28) subject to the closed-loop system

in (3.24) is minimized for a matrix K(t) solving the following continuous-time Riccati

differential equation

− ˙̄P(t) =
[
Ā+ B̄(K(t)⊗ I)

]T
P̄(t)+ P̄(t)

[
Ā+ B̄(K(t)⊗ I)

]
+
[
Q+K̄T(t)RK(t)

]
⊗F.

(3.30)

where P̄(t) = P̄(t) > 0 for a given P̄(tf ) is the solution of (3.30). The gain matrix

K(t) for all t ∈ [0, tf ] can be obtained from the following matrix inequality[
Ā+ B̄(K(t)⊗ I)

]T
P̄(t) + P̄(t)

[
Ā+ B̄(K(t)⊗ I)

]
< 0. (3.31)

Proof. The Hamiltonian of the optimal control problem can be written as

H =
1

2
x̄T(t)

[
(Q+KT(t)RK(t))⊗ F

]
x̄(t) + λT

[
Ā+ B̄(K(t)⊗ I)

]
x̄(t) (3.32)

where λ ∈ RnNq are the vector of costates. The necessary and transversality condi-

tions for optimality are

λ̇(t) = −
[
(Q+KT(t)RK(t))⊗ F

]
x̄(t)−

[
Ā+ B̄(K(t)⊗ I)

]T
λ(t),

λ(tf ) = P̄(tf )x̄(tf ),

(3.33)

respectively; where P̄ = P⊗ F. Let us assume the solution of the system of costate

in (3.33) is given by

λ(t) = P̄(t)x̄(t). (3.34)

Upon differentiating (3.34) and using (3.33), the continuous-time Riccati dif-

ferential equation in (3.30) can be obtained. Given Q̄ + K̄T(t)R̄K̄(t) > 0, and with

Lyapunov analysis the matrix inequality in (3.31) can be obtained.

97



Theorem 3.3.4. The performance index J2 in (3.29) subject to the closed-loop system

in (3.24) is minimized for a constant matrix K solving the following algebraic Riccati

equation

0 =
[
Ā+ B̄(K⊗ I)

]T
P̄+ P̄

[
Ā+ B̄(K⊗ I)

]
+
[
Q+ K̄TRK

]
⊗ F. (3.35)

where P̄ = P̄T = P⊗ F > 0. The gain matrix K can be obtained from the following

matrix inequality [
Ā+ B̄(K⊗ I)

]T
P̄+ P̄

[
Ā+ B̄(K⊗ I)

]
< 0. (3.36)

The proof of Therorem 3.3.4 follows from that of Theorem 3.3.3. As tf → ∞,

the solution to the Riccati equation in (3.30) converges to a unique positive definite

solution P̄(∞) and ˙̄P → 0.

Note that, for the finite-horizon case, the terminal P̄(t), i.e. P̄(tf ) is known.

Therefore, the matrix inequality (3.31) and the Riccati differential equation can be

solved simultaneously to obtain K(t) and P̄(t) for all t = [0, tf ]. However, this is

not the case with that of infinite-horizon performance index, and further, matrix

inequality in (3.36) is a bilinear matrix inequality (BMI), which is not trivial to solve.

To that end, we present the following corollary to obtain an equivalent linear matrix

inequality (LMI).

Corollary 3.3.5. Under the conditions of Theorem 3.3.4, the performance index

J2 in (3.29) is minimized for a constant matrix K = LS−1 where L ∈ Rm×n and

S = P−1 ∈ Rn×n satisfy following conditions:(
S⊗ F−1

)
ĀT + Ā

(
S⊗ F−1

)
+
(
LT ⊗ F−1

)
B̄T + B̄

(
L⊗ F−1

)
+
(
SQS+ LTRL

)
⊗ F−1 = 0

(3.37)

and

(
S⊗ F−1

)
ĀT+Ā

(
S⊗ F−1

)
+
(
LT ⊗ F−1

)
B̄T + B̄

(
L⊗ F−1

)
< 0. (3.38)
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Proof. From Theorem 3.3.4, we can rewrite (3.35) as

ĀT(P⊗ F) + (P⊗ F)Ā+ (KT ⊗ I)B̄T(P⊗ F) + (P⊗ F)B̄(K⊗ I)

+
(
Q+KTRK

)
⊗ F = 0.

(3.39)

Pre and post-multiplying (3.39) by (P⊗F)−1, and using the Kronecker product

identities, we obtain

(P−1 ⊗ F−1)ĀT + Ā(P−1 ⊗ F−1) + (P−1KT ⊗ F−1)B̄T + B̄(KP−1 ⊗ F)

+
(
P−1

(
Q+KTRK

)
P−1

)
⊗ F−1 = 0.

(3.40)

Using P−1 = S, we obtain

(S⊗ F−1)ĀT + Ā(S⊗ F−1) + (SKT ⊗ F−1)B̄T + B̄(KS⊗ F)(
SQS+ SKTRKS

)
⊗ F−1 = 0.

(3.41)

Further, with L = KS, one can obtain the equality (3.37). Following the similar

procedure for (3.36), one can obtain the LMI in (3.38).

3.3.4 Implementation

The schematic of the design of the feedback controller and its implementation

is depicted in Fig. 3.1 for the case of the infinite horizon performance index. Note

that the control gain matrix is designed offline, only once. The designed controller

is also implemented to stabilize the plant for all variations of the random variable z

within the domain of its probability density function. Also, the offline computation

of the controller only requires the structure of the system matrices as a function of

the random variable z and not the value of the random variable explicitly.

In order to compute the collocation nodes, one can use the quadrature rules

available in the literature based upon the distribution of the random variable. For

example, for normal and uniform random variables, one can use Gaussian Hermite

99



and Gaussian Legendre-based tensor grid rules, respectively. However, it should be

noted that Gaussian tensor grids are computationally expensive for high-dimensional

problems [117]. To reduce the cost of computation, we employ sparse grid-based

quadrature nodes discussed in Chapter 2. Although the formulation in this chapter

is carried out for linear systems with parametric uncertainties, the theoretical de-

velopments can also be used for systems with both parametric and initial condition

uncertainties. Moreover, we can also use the results developed in this chapter to

develop feedback solutions for systems with different probability distribution func-

tions. For example, for systems with parametric uncertainties modeled as uniform

distribution and initial condition uncertainties as normal distribution, we can employ

mixed-sparse grid quadrature rules developed in Chapter 2.

𝐱(𝑡)
ሶ𝐱 𝑡 = 𝐀 𝐱 𝑡 + 𝐁 𝐮(𝑡)

with uncertain model parameters
𝐊

Online

Offline

𝐮 𝑡 = 𝐊 𝐱(𝑡)

ሶ𝐱 𝑡, 𝐳 = 𝐀 𝐳 𝐱 𝑡, 𝐳 + 𝐁 𝐳 𝐮 𝑡, 𝐳𝐊

Compute ഥ𝐀, ഥ𝐁 and 
𝐅

Solve LMIs stated 

in the Corollary

𝐮 𝑡, 𝐳 = 𝐊𝐱 𝑡, 𝐳

Figure 3.1: Offline computation of the controller and its implementation
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3.4 Simulation Results

We consider an example used in [36] with following system matrices

A =

2 + z 2

−3 −4

 , B =

1
1

 (3.42)

where z is a uniformly distributed random parameter within the range [-1, 1]. The

results obtained in [36] uses the control formulation, which is derived based on the

Galerkin projection method for computing the gPC coefficients. Note that the open-

loop system is stable only for z < −0.5.

For the case of infinite horizon performance index-based control design using

gPC-based pseudospectral collocation technique, we use the following weighting ma-

trices Q = I2 and R = 1. Using Corollary 3.3.5, we obtain the state feedback

controller to be K =

[
−2.3362 −0.6276

]
that minimizes the infinite horizon expec-

tation performance index. To carry out similar analysis as in [36], we design two other

LQR controllers: (i)Knom with z = 0 (for the nominal system without any parametric

uncertainty), and (ii) Kwc with z = 1 (for the worst-case uncertainty). We obtain the

control gain matrices to be: Knom = [−2.3289−0.7823] andKwc = [−3.8570−1.1250].

To compare the performance of the three controllers for different values of un-

certainty, z is varied from -1 to 1 in an interval of 0.05. Figure 3.2 depicts the plot of

closed-loop eigenvalues for various values of z when the state feedback control strategy

is applied with K, Knom and Kwc. As pointed out by [36], implementation of Knom

results in substantial variation in the closed-loop damping and natural frequency with

variation in z. It should be noted that, although the closed-loop eigenvalues are all

in the left half of the complex-plane upon implementing Knom for the example under

consideration, this is not always the case (since the nominal controller is not guar-

anteed to stabilize the system with parametric uncertainties). Similar to the results
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obtained from the Galerkin projection-based formulation in [36], there is consider-

ably smaller variation in the nature of closed-loop eigenvalues upon implementing

the controller (K) derived from the pseudospectral collocation-based formulation. As

observed, the closed-loop eigenvalues obtained from implementing the controller de-

signed for worst-case uncertainty (Kwc) are located on the far left of the complex

plane. This depicts the conservative closed-loop performance of Kwc.

Further, we compare the cost-to-go for different values of z with initial condition

of x(0) = [1, 0.1]T as illustrated in Fig. 3.3. We also compute the area under the

three curves obtained in Fig. 3.3. The results are summarized as follows:

(i) As expected, the nominal controller Knom achieves the lowest cost at z = 0. The

area under the curve for the nominal controller is obtained to be Anom = 32.83.

(ii) As expected, the controller designed for worst-case uncertainty Kwc achieves

the lowest cost at z = 1. The area under the curve for the worst-case controller

is obtained to be Awc = 36.19.

(ii) The area under the curve from the implementation of gPC controller K is

obtained to be AgPC = 31.40. Since the gPC controller is designed to minimize

the expectation (average) performance, we observe AgPC < Anom < Awc.

In order to compare the performance of the designed controller, we compute the

disk-based gain and phase margin [113] of the system for different values of z ∈ [−1 1].

The variation of the disk-based gain and phase margins with variation in z is plotted

in Fig. 3.4. We observe that, the bounds of gain and phase margin decrease constantly

as the value of z changes from -1 to 1.
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Figure 3.2: Eigenvalues of the closed-loop system with minimum expectation control,
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3.5 Chapter Summary

In this chapter, we have proposed a new method for designing of robust state

feedback controllers for linear systems with time-invariant probabilistic parametric

uncertainties. The controllers have been designed to minimize finite horizon and infi-

nite horizon expectation performance indices. The theoretical results were developed

by employing the pseudospectral collocation method in the generalized polynomial

chaos expansion framework. Numerical results verify that a single robust controller

can be derived from the proposed technique to regulate the stochastic system for all

the variations of the random variable within its domain of PDF. Also, the proposed
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gPC controller was found to be less conservative and optimal than the controller

designed for worst-case uncertainty.
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Chapter 4

Generalized Polynomial Chaos Expansion-Based Ensemble Filtering ∗

In this chapter, we use the gPC expansion technique to carry out state esti-

mation in a nonlinear stochastic system subject to initial condition and parametric

uncertainties. The filter is developed in a prediction-correction fashion. The un-

certainties in the initial states and parameters are propagated using the generalized

polynomial chaos expansion technique to compute the predicted estimates of states.

Once the measurements are available, a nonlinear estimator is developed to update

the predicted estimates in the ensemble Kalman filtering framework. The methodol-

ogy is then applied to estimate the states of a hypersonic vehicle entering the Earth’s

atmosphere. The performance of the proposed filter is compared with those of the

unscented Kalman filter and particle filter in terms of accuracy and computational

efficiency.

The chapter is organized as follows. Section 4.1 provides the problem statement.

The necessary preliminaries for the ensemble Kalman filter are provided in Section

4.2. Then, generalized polynomial chaos expansion-based ensemble Kalman filter is

developed in Section 4.3 for the nonlinear system discussed in the problem statement.

The developed filter is then applied to the navigation of a hypersonic vehicle during

its atmospheric reentry to Earth in Section 4.4. Finally, the conclusions of the chapter

are reported in Section 4.5.

∗Part of the material reported in this chapter is reprinted with permission, from Rajnish Bhusal

and Kamesh Subbarao, “Generalized Polynomial Chaos-based Ensemble Kalman Filtering for Orbit

Estimation,” 2021 American Control Conference (ACC), IEEE, pp. 4280-1285, New Orleans, LA,

May 2021, DOI: 10.23919/ACC50511.2021.9482961, Copyright © 2021, IEEE (reference [124]).
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4.1 Problem Formulation

Consider a general continuous-time dynamic system with uncertain initial con-

ditions and parameters and a discrete-time measurement model. The measurement

model is such that the observations are taken at discrete time instants 0 = t0 < t1 <

· · · < tN ≤ T . The system and measurement model are given as

ẋ(t) = f (x(t), t) + η(t), 0 ≤ t ≤ T

ỹk = h (x(tk)) + νk, k = 0, 1, . . . , N

(4.1)

where x(t) ∈ Rn is the state vector, ỹk ∈ Rp is the measured output vector, η(t) ∈ Rn

is the process noise, and νk ∈ Rp is the measurement noise. In (4.1), f : Rn×[0, T ] →

Rn is the nonlinear state function and h : Rn → Rp is the nonlinear output function.

The noise vectors η and ν are assumed to be zero mean Gaussian white noise vectors,

which are uncorrelated with each other and satisfy following properties

E
[
η(t)ηT(τ)

]
= Qδ(t− τ)

E
[
νkν

T
j

]
= Rδ(k − j)

(4.2)

where Q > 0 ∈ Rn×n and R > 0 ∈ Rp×p are the covariance matrices associated with

process noise and measurement noise vectors, respectively.

We consider uncertainties in the initial conditions of the states and parameters

of the system. Further, the uncertain parameters are assumed to be time-invariant.

To that end, the uncertain initial states and parameters are considered to be a function

of a random vector z = [z1, z2, . . . , zd]
T with a joint probability density function ρ(z)

on support Γ. Note that the uncertain parameters and initial conditions can have

different marginal probability densities described by different probability distribution

functions. Similar to the assumptions made in Chapter 2, the initial conditions of the

states and parameters are considered to be characterized by Gaussian and uniform

density functions, respectively.
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In this work, the state estimation problem is to compute the estimates x̂(t)

of state x(t) governed by the system model in (4.1) subjected to initial condition

and parametric uncertainties, such that the calculated measurements obtained as

ŷk = h (x̂(tk)) for all k = 0, 1, . . . , N agrees with the actual measurements ỹk in some

probabilistic sense.

In order to generate state estimates given noisy measurements and different

probability distributions of uncertain initial conditions and parameters, this research

develops a nonlinear filtering technique by combining the generalized polynomial

chaos (gPC) expansion technique with the ensemble Kalman filtering (EnKF) ap-

proach.

4.2 Preliminaries of Ensemble Kalman Filter

In this section, we provide a brief overview of the Ensemble Kalman filter tech-

nique to carry out state estimation of the nonlinear system in (4.1). Consider an

ensemble of state estimates such that each x̂(i)(t), i = 1, 2, . . . ,M denotes the ensem-

ble member. The ensemble of initial state estimates x̂(i)(0) can be computed using

MC-based random sampling technique with initial estimate x̂(0) as the mean and

P(0) as the initial covariance. The EnKF filter in the predictor-corrector form for

the system in (4.1) can be written as [157]

˙̂x(i)(t) = f
(
x̂(i)(t), t

)
(4.3)

x̂(i)(tk) = x̂(i)(t−k ) +Kk

(
ỹ
(i)
k − ŷ

−(i)
k )

)
(4.4)
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where x̂(i)(t−k ) and x̂(i)(tk) are the propagated and corrected state ensembles, respec-

tively at time step tk at which the measurement arrives. The ensembles of the true

measurement ỹ
(i)
k and estimated measurement ŷ

−(i)
k are given by

ỹ
(i)
k = ỹk + ν

(i)
k

ŷ
−(i)
k = h

(
x̂(i)(t−k )

) (4.5)

where ν(i) is the ensemble obtained from the MC sampling of measurement noise with

mean 0p and covariance R. The Kalman gain matrix K at time instant tk can be

computed using

Kk = Pexey(t−k )
[
Peyey(t−k )

]−1
. (4.6)

The predicted state error covariance Pexex(t−k ), measurement error covariance

Peyey(t−k ) and cross-correlation matrices Pexey(t−k ) can be written as

Pexex(t−k ) =
1

M

M∑
i=1

[
x̂(i)(t−k )− x̂(t−k )

] [
x̂(i)(t−k )− x̂(t−k )

]T
Peyey(t−k ) =

1

M

M∑
i=1

[
ŷ
−(i)
k − ŷ−

k

] [
ŷ
−(i)
k − ŷ−

k

]T
Pexey(t−k ) =

1

M

M∑
i=1

[
x̂(i)(t−k )− x̂(t−k )

] [
ŷ
−(i)
k − ŷ−

k

]T
,

(4.7)

where

x̂(t−k ) =
1

M

M∑
i=1

x̂(i)(t−k ), ŷ−
k =

1

M

N∑
i=1

ŷ
−(i)
k (4.8)

are the predicted mean state vector and predicted measurement vector, respectively.

The corrected state estimate and state error covariance matrix can be similarly com-

puted from the corrected state ensemble x̂(i)(tk).

4.3 Generalized Polynomial Chaos Expansion-Based Ensemble Kalman Filter

This section provides an approach to combine the gPC expansion and EnKF to

develop a filtering technique, namely gPC-EnKF for the system in (4.1).
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Note that, the dynamic system in (4.1) is subject to parametric uncertainties.

To handle these uncertainties, we consider an augmented state vector of the system

by augmenting the uncertain parameters with the nominal state vector. It should be

noted that the uncertain parameters are assumed to be time-invariant. For notational

simplicity and ease of analysis, we retain the notation x ∈ Rn for the augmented state

vector. The initial state x(0) for the system in (4.1) with augmented parameter is

assumed to be a function of a random vector z ∈ Rd where d is the size of the

augmented state vector.

The nonlinear filtering problem is solved in a prediction-correction fashion. In

the prediction step, the stochastic system in (4.1) is propagated in time using the

gPC expansion framework (see Chapter 2) to compute the predicted state estimates

of the system. The prediction step is carried out until the measurements of the system

are available. Upon arrival of the measurements, the predicted state estimates are

corrected using the EnKF approach to compute the corrected state estimates.

4.3.1 Prediction Step

The filtering problem at the prediction step is to obtain an estimate of the

state of the actual system at any time instant without taking measurements of the

system into consideration. This resembles to the problem of uncertainty propagation

in nonlinear stochastic system discussed in Chapter 2. To that end, we employ pseu-

dospectral collocation-based gPC expansion framework to obtain the predicted state

estimate x̂(t−).
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4.3.1.1 Continuous-time Propagation Using gPC Expansion

We consider following continuous-time propagation of the state estimate x̂(t)

for the gPC-EnKF between the two consecutive discrete-time instants at which mea-

surements arrive:

˙̂x(t−, z) = f
(
x̂(t−, z), t−

)
(4.9)

for all t ∈ [tk, tk+1) and for all k = 0, 1, . . . , N . For the system in (4.9), assuming the

solution x̂(t−, z) = [x̂1(t
−, z), . . . , x̂n(t

−, z)]T to be a second-order process, the gPC

expansion of x̂i(t
−, z) for each i = 1, . . . , n can be written as,

x̂i
(
t−, z

)
=

P∑
|r|=0

x̂ci,r(t
−)Φr (z) (4.10)

where x̂ci,r(t
−) is the coefficient of the multidimensional basis Φr (z) , and r = (r1, . . . , rd)

is the ordered set of multi-indices with |r| = r1 + · · ·+ rd. As discussed in Chapter 2,

the total number of basis functions is given by S +1 =

d+ P

d

. Now, the solution

in (4.10) with multidimensional index r can be written in terms of a single index l as

follows

x̂i
(
t−, z

)
=

S∑
l=0

x̂ci,l(t
−)Φl (z) = Φ(z)Tx̂c

i(t
−) (4.11)

where x̂c
i(t

−) = [x̂ci,0(t
−), x̂ci,1(t

−), . . . , x̂ci,S(t
−)] ∈ RS+1 is the vector of time-varying

gPC coefficients and Φ(z) = [Φ0(z),Φ1(z), . . . ,ΦS(z)]
T ∈ RS+1 is the vector of gPC

basis. We know that, the expansion coefficients can be written as,

x̂ci,l =
1

γl
E [x̂i(z)Φk(z)] =

1

γl

∫
Γ

x̂i(z)Φl(z)ρ(z)dz (4.12)

where γl = E [Φ2
l ] > 0 is the normalization factor.

Given (4.11), we can write the gPC expanded solution of predicted state esti-

mate vector as

x̂(t−, z) =
[
In ⊗Φ(z)T

]
x̂c(t−) (4.13)
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where x̂c = col(x̂c
1, x̂

c
2, . . . , x̂

c
n) ∈ R(S+1)n. Moreover, using the pseudospectral collo-

cation technique, we can approximate (4.12) as

x̂ci,l(t
−) =

1

γl

Nq∑
q=1

x̂i(t
−, zq)Φl(zq)wq (4.14)

where zq are the quadrature nodes, wq are the corresponding nodal weights, x̂i(t
−, zq)

is the predicted estimate of the ith state variable at the quadrature node, and Nq is

the number of quadrature nodes used. Further, using (4.14), we can obtain the lth

gPC coefficient of the predicted state estimate x̂c
l (t

−) for l = 0, 1, . . . , S as follows

x̂c
l (t

−) =
1

γl
[In ⊗ Φ̄T

l ][In ⊗W]¯̂x(t−) =
1

γl

[
In ⊗ Φ̄T

l W
]
¯̂x(t−) (4.15)

where ¯̂x(t−) = col
(
¯̂x1(t

−), ¯̂x2(t
−), . . . , ¯̂xn(t

−)
)
∈ RnNq such that for all i = 1, 2, . . . , n,

¯̂xi(t
−) =

[
x̂i(t

−, z1), x̂i(t
−, z2), · · · , x̂i(t−, zNq)

]T ∈ RNq .

In (4.15), W = diag(w1, · · · , wNq) ∈ RNq×Nq is the diagonal matrix of colloca-

tion weights and Φ̄l =
[
Φl(z1),Φl(z2), . . . ,Φl(zNq)

]T ∈ RNq×1.

4.3.1.2 Computation of Predicted State Estimates and Predicted State Error Co-

variance

Once the stochastic system in (4.9) is propagated using pseudospectral collocation-

based gPC expansion, we approximate the mean x̂(t−) of the predicted state estimate

and covariance matrix Pxx(t−) of the predicted state, for all t ∈ [tk, tk+1) using the

coefficients of gPC expansion as follows

x̂(t−) ≈ x̂c
0(t

−)

Pxx(t−) ≈
S∑
l=1

[
γl x̂

c
l (t

−)
(
x̂c
l (t

−)
)T]

.
(4.16)
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Similarly, one can compute the state error covariance matrix for the predicted

estimate using the predicted state covariance matrix Pxx(t−) and the process noise

covariance matrix Q as

Pexex(t−) = Pxx(t−) +Q, ∀t ∈ [tk, tk+1). (4.17)

4.3.2 Correction Step

Once the predicted state estimates are computed using the gPC expansion

technique, we utilize the EnKF procedure to correct the predicted estimates upon

arrival of the measurements. Before carrying out the correction step, the predicted

measurement outputs, predicted state ensembles, and measurement error covariance

matrices need to be computed. In this regard, the gPC solution of the predicted

output ∀t ∈ [tk, tk+1) can be calculated based upon the following output equation

ŷ(t−, z) = h
(
x̂(t−, z)

)
. (4.18)

At each time instant tk when the measurement arrives, let ŷ−
k (z) be the gPC

expansion of the predicted output ŷ−
k (z) = [ŷ−1k(z), . . . , ŷ

−
pk
(z)]T. Using the results

obtained for the predicted state estimate in (4.13), the gPC expansion of the predicted

output can be be written as

ŷ−
k (z) =

[
In ⊗Φ(z)T

]
ŷc−

k (4.19)

where ŷc−

k is the vector of gPC coefficients of the predicted output. Similar to the

gPC coefficient for the predicted state estimate in (4.15), we can obtain the lth gPC

coefficient of the predicted output ŷc−

k for l = 0, 1, . . . , S as follows

ŷc−

lk
=

1

γl

[
Ip ⊗ Φ̄T

l W
]
¯̂y−
k (4.20)
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where ¯̂y−
k = col

(
¯̂y−
1k
, ¯̂y−

2k
, . . . , ¯̂y−

pk

)
∈ RpNq such that for all i = 1, 2, . . . , p, ¯̂y−

ik
=[

ŷ−ik(z1), ŷ
−
ik
(z2), · · · , ŷ−ik(zNq)

]T ∈ RNq . Further, the mean and covariance of the pre-

dicted output at tk can be computed as follows

ŷ−
k ≈ ŷc

0k

Pyy(t−k ) ≈
S∑
l=1

[
γl ŷ

c−

lk

(
ŷc−

lk

)T]
.

(4.21)

Moreover, the cross-correlation matrix between the predicted state and the

predicted measurement output can be computed as

Pxy(t−k ) ≈
S∑
l=1

[
γl x̂

c
l (t

−
k )
(
ŷc−

lk

)T]
. (4.22)

Next, we follow the EnKF procedure to correct the predicted state estimate. To

that end, one can generate an ensemble of solution realizations by randomly sampling

the random vector z in (4.13). Let

x̂(t−k , z
(i)) =

[
In ⊗Φ(z(i))T

]
x̂c(t−k ) i = 1, . . . ,M (4.23)

be an ensemble of the M solution realizations of x̂
(
t−k , z

)
, where z(i) are the MC

samples of the random vector z sampled from a Gaussian PDF with mean 0 and

covariance matrix I. Note that (4.23) involves only algebraic evaluations of the gPC

solution at the sample points and does not incur additional computational burden to

the filter.

Once the solution ensemble of the predicted state estimate is generated, the

Kalman gain matrix is computed using (4.6) as

Kk = Pexey(t−k )
[
Peyey(t−k )

]−1
(4.24)
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Procedure 1 gPC-EnKF Algorithm

1: (Initialization) Given the initial PDF of state estimate: N (x̂(0),P(0)). Set tk =

0 such that the initial PDF of the state estimate is N (x̂(t−k ),P(t−k )). Choose

mixed sparse grid-based quadrature rule of suitable accuracy level with nodes

and weights {zq, wq}Nq

q=1. Select order P of the gPC-expansion.

2: gPC-EnKF Measurement Update :

• Compute ŷ−
k (zq) at the collocation nodes using (4.19).

• Calculate ŷc−

lk
using (4.20) for l = 0, 1, . . . , S. Evaluate ŷ−

k and Pyy(t−k )

using (4.21).

• Compute covariances Peyey(t−k ) and Pexey(t−k ) using (4.25).

• Evaluate the Kalman gain matrix Kk using (4.24).

• Generate z(i), i = 1, . . . ,M MC samples of z with mean 0 and covariance I.

• Generate x̂(i)(t−k ) using (4.23).

• Generate ỹ
(i)
k and ŷ

−(i)
k using (4.5).

• Compute x̂(i)(tk) using (4.4).

• Evaluate the gPC coefficients of the updated state using (4.27).

• Construct the gPC expansion for the updated state using (4.26).

• Evaluate the expanded updated states in (4.26) at the quadrature nodes zq

to obtain {x̂ (tk, zq)}Nq

q=1.

3: Prediction of state estimate and state error covariance:

• Propagate the estimates at the collocation nodes {x̂ (tk, zq)}Nq

q=1 to obtain

{x̂
(
t−k+1, zq

)
}Nq

q=1 using (4.9).

• Calculate x̂c
l (t

−
k+1) using (4.15) for l = 0, 1, . . . , S. Evaluate x̂(t−k+1) using

(4.16).

4: Set tk = tk+1 and go to Step 2.
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where Pexey(t−k ) and Peyey(t−k ) are the cross-correlation matrix between the state

error estimate and the measurement error, and the measurement error covariance

matrix, respectively. These matrices can be computed as follows

Peyey(t−k ) = Pyy(t−k ) +R

Pexey(t−k ) = Pxy(t−k ).

(4.25)

where R is the measurement noise covariance matrix. Now, the predicted state es-

timate obtained from the gPC approach can be updated using the correction step

of the EnKF using (4.4) and (4.5). Next, the gPC expansion for the updated state

estimate is computed as

x̂ (tk, z) =
[
In ⊗Φ(z)T

]
x̂c(tk) (4.26)

where x̂c(tk) is the vector of gPC coefficients of the updated state estimate. In this

work, we compute the gPC coefficient vector of the updated state estimate using the

method of averaging as follows

x̂c
r(tk) ≈

1

M

M∑
i=1

x̂(i)(tk)Φr

(
z(i)
)
. (4.27)

In order to carry out the next step of prediction, the gPC expanded solution

of the updated state estimates in (4.26) are evaluated at the quadrature nodes zq,

∀q = 1, . . . , Nq to obtain the updated state estimates. This completes one filtering

step of the gPC-EnKF. The step-by-step procedure for gPC-EnKF are summarized

in Procedure 1.

Note that the correction step of the proposed gPC-based EnKF filter only in-

volves algebraic manipulations and does not incur additional computational burden.

Besides, the computational complexity of the proposed filter depends upon the num-

ber of the collocation nodes used to compute the coefficients of gPC expansion. Thus,

for a given order of gPC expansion, higher the efficacy of the quadrature rule, lower

would be the computational cost of the proposed filtering algorithm.
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4.4 Application to Atmospheric Reentry Problem

In this section, we consider a simulation example to study the accuracy and

computational efficiency of the proposed filter. The proposed filter is applied to

estimate the states of the vehicle entering the Earth’s atmosphere.

4.4.1 Equations of Motion and Measurement Model

We assume that the planet is non-rotating and its atmosphere is stationary. The

dynamics of the vehicle entering the atmosphere in the planet-centered planet-fixed

𝜙
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𝜃 𝛾
𝜓

𝐗

𝐘

𝐙

𝐗𝐛
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𝐙𝐛

𝒓

𝒗

Figure 4.1: State variables in planet-fixed (X̂, Ŷ , Ẑ) and vehicle-fixed (X̂b, Ŷb, Ẑb)
systems
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coordinate system are represented by Vinh’s equation [158] with six states: altitude

h, velocity v, flight-path angle γ, geocentric longitude θ, geocentric latitude ϕ, and

heading angle ψ, as illustrated in Fig. 4.1. The equations of motion of the vehicle

can be written as

ḣ = v sin(γ)

v̇ = − ρv2

2β
− g sin(γ)

γ̇ =
1

v

[
ρv2

2β

(
L

D

)
cos(σ)−

(
g − v2

r

)
cos(γ)

]
θ̇ =

v cos(γ) cos(ψ)

r cos(ϕ)

ϕ̇ =
v cos(γ) sin(ψ)

r

ψ̇ =
1

v

[
ρv2

2β

(
L

D

)
sin(σ)

cos(γ)
− v2

r
cos(γ) cos(ψ) tan(ϕ)

]

(4.28)

where σ is the bank angle of the vehicle, ρ is the atmospheric density of the planet, β is

the ballistic coefficient of the vehicle, and

(
L

D

)
is the lift-to-drag ratio of the vehicle.

Besides, r = h + R is the radial distance from the center of the planet to the center

of mass of the vehicle, R is the radius of the planet, g =
µ

r2
is the acceleration due to

gravity, and µ is the standard gravitational parameter of the planet. The density of

the atmosphere is assumed to follow an exponential model given by ρ = ρ0e
(h2−h)/h1

where ρ0 is the nominal reference density at the planet’s surface, and h1 and h2 are

the constant scale heights for the density computation.

To compute the filter estimates, we consider an integrated navigation scenario.

Accelerometer measurements from the on-board inertial measurement unit (IMU)
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and ground-based tracking data (range, azimuth and elevation) from the radar are

considered. The measurements from the accelerometer are modeled as follows:

ỹa = ya + νa, ya =


−ρv

2

2β

−ρv
2

2β

(
L

D

)
sin(σ)

ρv2

2β

(
L

D

)
cos(σ)

 (4.29)

where ya is the noise-free accelerometer reading and νa is the noise associated with

the accelerometer measurements. The radar-based range, azimuth, and elevation

measurements are modeled as follows:

ỹR =

√
(xr − x)2 + (yr − y)2 + (zr − z)2 + νR

ỹaz = tan−1

(
y − yr
x− xr

)
+ νaz

ỹel = tan−1

 z − zr√
(xr − x)2 + (yr − y)2

+ νel

(4.30)

where (x, y, z) and (xr, yr, zr) are the Earth centered Cartesian coordinates of the

vehicle and the radar position, respectively; νR, νaz, and νel are the measurement

noises associated with range, azimuth angle, and elevation angle measurements.

4.4.2 Simulation Results

The constant parameters used to simulate the vehicle’s reentry to Earth’s at-

mosphere are summarized in Table 4.1.

The true initial condition for the vehicle is considered to be as follows

x(0) = [125× 103 m, 5900 m/s, −15.2◦, 0.1◦, 0.1◦, 0.1◦]T.

Here, the initial state uncertainty with Gaussian distribution is considered.

The initial state estimate is generated randomly such that x̂(0) ∼ N (x0, σ
2
0) with

σ0 = diag(103 m, 20 m/s, 1◦, 0.01◦, 0.01◦, 0.01◦). The system parameters: ballistic
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Table 4.1: Simulation Parameters

Parameters Values
Standard gravitational parameter of Earth µ = 3.986× 1014 m3/s2

Radius of Earth R = 6378.1363 Km

Reference Density ρ0 = 1.752 Kg/m3

Scale height 1 h1 = 6.7 Km
Scale height 2 h2 = 0 Km
Bank angle σ = 0◦

coefficient and lift-to-drag are considered to be uniformly distributed such that β ∼

U [60, 64] Kg/m2 and

(
L

D

)
∼ U [0.20, 0.24].

For the simulation, the radar positioned at NASA Dryden Flight Research Cen-

ter (FRC) in Edwards, California is considered to generate range, azimuth and el-

evation measurements. The location of the radar at FRC in spherical coordinates

are r = 6378.889 Km, θ = 242.0885◦, ϕ = 34.9607◦, which in Earth centered Carte-

sian coordinates can be written as xr = −2447.163 Km, yr = −4619.644 Km and

zr = 3655.203 Km. The 3-σ magnitudes of the measurement noise are as follows:

δa = 0.1 ya m/s2, δR = 3
√
50 m, δaz = 0.03◦, δel = 0.03◦ (4.31)

where ya is the true accelerometer reading and δa, δR, δaz, and δel are the 3-σ mag-

nitudes of the noises associated with accelerometer, range, azimuth, and elevation

measurements, respectively.

All the simulations are performed in MATLAB environment on a computer with

Intel Core i7 CPU 3.20 GHz. For numerical integrations, ‘ode45’ integration routine

in MATLAB is utilized. Figure 4.2 illustrates the estimation error in h, v, and γ and

Fig. 4.3 illustrates the estimation error in θ, ϕ, and ψ using the gPC-based EnKF

approach with third order of expansion and 2193 mixed sparse grid-based collocation

nodes. Clearly, the estimation error in the corrected states are observed to be close

to zero and well within the 3-σ bounds.
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Figure 4.2: Estimation error and 3-σ outliners of states using gPC-based EnkF with
P = 3 (with zoomed plots on the right).

The estimation results obtained from gPC-based EnKF (with third order of

expansion and 2193 collocation nodes) are compared with those obtained from the

UKF and bootstrap particle filter (PF) with 40000 particles. For UKF, the uncertain

parameters for the estimation model are considered to be normally distributed with

reasonable mean and variance in the domain of uniform uncertainty bounds. The

root mean square error (RMSE) over time is considered as the comparison metric.

Let x(tj) = [x1(tj), . . . , xn(tj)]
T be the true state vector at time instant tj and x̂(tj) =
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Figure 4.3: Estimation error and 3-σ outliners of states using gPC-based EnkF with
P = 3 (with zoomed plots on the right).

[x̂1(tj), . . . , x̂n(tj)]
T be the state estimate vector at time instant tj, RMSE over time

can be computed using

RMSEi =

√∑nt

j=1 [xi(tj)− x̂i(tj)]
2

nt

(4.32)

where i = 1, . . . , n is the index of the state, nt is the total number of time samples.

Table 4.2 illustrates the comparison between the RMSE in the state estimates ob-

tained from gPC-based EnKF (with third order of expansion and 2193 collocation

nodes), UKF and PF (with 40000 particles). Note that UKF can produce reason-

ably good estimates for state estimation problem with Gaussian uncertainties in both

model parameters and initial states. However, for the problem under consideration,
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the uncertainties in the model parameters are uniformly distributed, which accounts

for large state estimation errors (especially in the estimation of r, v, and γ) for the

UKF-based approach. From Table 4.2, the RMSE in the state estimates from gPC-

based EnKF and PF are approximately of the same order. Besides, for gPC-based

EnKF with 2193 nodes, the computational time taken for one filtering step is about

3.6 seconds and that for PF with 40000 samples is 69.4 seconds. To that end, gPC-

based EnKF produces state estimates of higher accuracy with lower computational

burden as compared to the bootstrap particle filter.

Table 4.2: RMSE in estimation of states

Filter h (m) v (m/s) γ (deg) θ (×10−4 deg) ϕ (×10−5 deg) ψ (×10−5 deg)

UKF 106.6905 19.8445 0.0156 1.4001 2.406 1.396

PF 54.2843 5.8622 0.0040 0.203 1.210 2.913

gPC-EnKF 12.2634 6.0945 0.0031 0.316 1.730 0.580

In addition to the RMSE comparison, the approximate posterior density of the

state estimates obtained from gPC-EnKF with third order of expansion and 2193

nodes is compared with that obtained from PF with 40000 particles. The bivariate

marginal PDFs among various states of the reentry vehicle at t = 80 s obtained from

gPC-EnKF and PF are illustrated in Figs. 4.4 and 4.5. In Figs. 4.4 and 4.5, darker

regions represent lower PDF value and lighter regions represent higher PDF value.

It can be observed that the proposed gPC-EnKF estimator with fewer collocation

nodes is able to reduce variance and capture localization of uncertainty better than

the particle filter with larger number of particles.
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Figure 4.4: Final posterior bivariate marginal PDFs (h− v, v− γ) obtained from PF
with 40000 particles and gPC-EnKF filter of order 3 with 2193 nodes.

4.4.3 Sensitivity Analysis of the Posterior Density Function of the Corrected State

Estimates

As discussed in Chapter 2, global sensitivity analysis provides a measure of the

contribution of each uncertain variables in the generation of the uncertainty of the

quantities of interest. In the filtering problem, the sensitivity of the variance of the

corrected state estimates to the state uncertainty (before the prediction step) and

parametric uncertainties can be computed by calculating the total sensitivity indices.
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Figure 4.5: Final posterior bivariate marginal PDFs (θ−ϕ, h−ψ) obtained from PF
with 40000 particles and gPC-EnKF filter of order 3 with 2193 nodes.

These total sensitivity indices provide a quantitative measure of the significance of a

uncertain variable in the variability of the corrected state estimate.

Figure 4.6 illustrates the total sensitivity indices (S(t)) of the corrected esti-

mates (after measurement update) of h, v, γ, θ, ϕ, and ψ to the uncertainties in

the states (before the prediction step) and parameters. As expected, the variances

of the state estimates are observed to be most sensitive to the uncertainties in their

corresponding initial conditions at the initial epoch. Moreover, the variability of the

estimates of the vehicle’s altitude and longitude are significantly influenced by the
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Figure 4.6: Total sensitivity indices of the state estimates to the uncertainties in the
states and parameters
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uncertainties in the ballistic coefficient, lift-to-drag ratio, and heading angle of the

vehicle compared to the uncertainties in other states. In the early descent stage, the

uncertainties in the velocity and flight-path angle are observed to affect the corrected

estimates of each other significantly. However, with further propagation and decrease

in the vehicle’s altitude, the estimates of velocity and flight-path angle are highly

sensitive to the uncertainties in the lift-to-drag ratio of the vehicle. Moreover, after

around 60 seconds of descent (when the vehicle is close to the Earth’s surface), the

sensitivity of the corrected estimates of the flight-path angle to uncertainties in the

ballistic coefficient and the heading angle is observed to be increasing and substan-

tial. Throughout the descent phase, the uncertainty in the estimate of the latitude

is observed to be significantly affected by the uncertainty in the ballistic coefficient

followed by uncertainties in the heading angle and lift-to-drag ratio. The heading

angle estimate is observed to be most sensitive to uncertainties in the heading angle

(before the prediction step) itself. Moreover, with the decreasing altitude of the vehi-

cle, the sensitivity of the heading angle estimate to the vehicle’s latitude, lift-to-drag

ratio, and flight-path angle is observed to be increasing. Clearly, for the problem

under consideration, the uncertainty in the vehicle’s lift-to-drag ratio is found to be

the most significant in determining the variability of the state estimates during the

atmospheric reentry to Earth.

4.5 Chapter Summary

In this chapter, a nonlinear filtering algorithm based on the generalized poly-

nomial chaos expansion in the ensemble filter framework for the state estimation of

a general nonlinear system has been developed. The proposed filter has been applied

to the problem of atmospheric reentry of a vehicle to Earth. The estimation results

obtained from gPC- based EnKF were compared with the unscented Kalman filter
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and particle filter. It has been observed that gPC-based EnKF outperforms UKF in

terms of state estimation accuracy for the reentry problem with uniformly distributed

parametric uncertainty in the drag parameters. Moreover, gPC-based EnKF is found

to be computationally more efficient than the bootstrap particle filter to obtain es-

timation accuracy of the same order. Besides, the global sensitivity of the posterior

density function of the state estimates to the uncertainties in the system has been

characterized.
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Chapter 5

Probabilistic Analysis of Consensus Protocols for Uncertain Edge Weights in

Multi-Agent Systems

This chapter provides probabilistic analysis of cooperative control protocols to

study the effect of uncertainties in the system of multiple agents. In addition, we

consider the presence of an intelligent intruder in the communication network that

provides a conflicting control command. The effect of such an intruder is modeled,

and its impact on the propagation of the states of the agents is analyzed. Numeri-

cal simulations based on uncertainty propagation are provided by employing sparse

grid-based pseudospectral collocation in a generalized polynomial chaos expansion

framework to verify the theoretical analysis. Further, variance-based sensitivity in-

dices are computed to understand the significance of random edge weights of the

graph on the response distribution of the states of the agents.

The chapter is organized as follows. In Section 5.1, we briefly review principal

concepts of graph theory and formulate the problem under consideration. Section

5.2 carries out probabilistic analysis of consensus protocols for multi-agent systems.

Numerical examples are presented to study the effect of uncertainties in consensus of

multi-agent systems in Section 5.3. The time propagation of the states of the agents

in the presence of uncertain edge weights is discussed, and a sensitivity analysis is

carried out to study the influence of the edge weights on the distribution of states of

the agents. Finally Section 5.4 provides concluding remarks.
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5.1 Preliminaries and Problem Formulation

5.1.1 Notations

Given a matrix T ∈ Rn×n, the operator ∥T∥ represents the induced norm of T

such that ∥T∥ := {sup∥x∥=1 ∥Tx∥ : x ∈ Rn}. Further, σ(T) represents the spectrum

of T and rank(T) denotes the rank of T. Also, ∥x∥ represents the standard Euclidean

norm of the vector x. We denote the n–dimensional identity matrix by In and 1n

represents the n-dimensional column vector of ones.

5.1.2 Preliminaries of Algebraic Graph Theory

The interconnection among a group of N agents is encoded through communi-

cation graphs G = (V , E) where V = {1, 2, . . . , N} is a non-empty set of nodes, and

E ⊆ V ×V is an edge set of ordered pairs of nodes, called edges. Each of the edges of

a graph (i, k) is associated with a non-negative weight aik. Node k is the neighbor of

i if (k, i) ∈ E and the set of neighbors of node i can be represented as Ni. Directed

path from node i to node k is defined as a sequence of successive edges in the form

{(i, l), (l,m), . . . , (n, k)}. The graph is connected if there is a path from every node

to every other node. A root r is a node such that for each node i different from r,

there is a directed path from r to i. A directed tree is a directed graph in which there

is exactly one root, and every node except for this root itself has exactly one parent.

A directed spanning tree is a directed tree consisting of all the nodes and some edges

in G. A graph is said to be balanced if aij = aji for all (i, j) ∈ Eij. In the case of

balanced graph, we refer the edges to be undirected.

The adjacency matrix A = [aik] ∈ RN×N of a directed graph is defined such

that aik = 1 if (k, i) ∈ E and aik = 0, otherwise. The in-degree of node vi is defined

as di =
∑N

k=1 aik. The diagonal matrix obtained from di as diagonal entries is called

130



diagonal in-degree matrix (D). Finally, the graph Laplacian matrix is obtained as

L = D −A ∈ RN×N .

Lemma 5.1.1. [63] Let G be a connected graph with atleast one directed spanning

tree. Let λi, i = 1, 2, . . . , N be the eigenvalues of the Laplacian matrix. Then, λ1 = 0

is always a simple and the smallest eigenvalue of the Laplacian matrix, and Re(λk) >

0, for all k = 2, . . . , N .

Remark 5.1.2. For a strongly connected and balanced graph, the graph Laplacian

matrix is always symmetric. Also, rank(L) = N − 1 and the second smallest eigen-

value of the graph Laplacian matrix (Fiedler eigenvalue) is the algebraic connectivity

of the graph [97].

5.1.3 Problem Formulation

In this chapter, the agents are modeled with single integrator dynamics over a

strongly connected and balanced graph G as

ẋi = ui, i = 1, . . . , N (5.1)

where xi ∈ R and ui ∈ R are the state and control input of the agent i. The

communication among the agents is modeled using a connected and balanced graph

topology. It is assumed that the edge weights associated with the edges in the graph

are uncertain. Although the weights aij, for all i = 1, . . . , N and j ∈ Ni are uncertain,

the probability density of the edge weights are assumed to be known.

5.2 Probabilistic Analysis of Consensus Control Protocols

In this section, control protocols that solve consensus problems in a group of N

autonomous agents in a fixed network topology represented by a graph G with edge

weight uncertainties are discussed.
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5.2.1 Control Protocol for Consensus

The consensus problem for a completely deterministic case can be solved con-

sidering the local control protocol for each agent i as [97]

ui = −
∑
j∈Ni

aij (xi − xj) . (5.2)

With the control protocol in (5.2), the dynamics of each agent becomes stochas-

tic in the presence of uncertainties in the edge weights and can now be written as

following SDE

ẋi(ω) = −
∑
j∈Ni

aij(ω) (xi − xj) . (5.3)

Moreover, the states of the closed loop multi-agent system can be written in

terms of the graph Laplacian matrix L(ω) as

ẋ(ω) = −L(ω) x(ω) (5.4)

where x = [x1, x2, . . . , xN ]
T ∈ RN is the global state vector of states of the agents. In

the work, we shall assume that L(ω) is an N ×N matrix whose elements are measur-

able functions that are sample bounded on [0,∞) with probability 1 and further, L(ω)

is essentially bounded i.e. there exist ψ > 0 such that P(Ω) = 1, and ∥L(ω)∥ ≤ ψ for

all ω ∈ Ω. The structure of the graph Laplacian matrix is preserved by restricting

the uncertainties in the edge weights aij to be modeled using density functions with

support D ⊂ R+. Note that, such assumption on aij preserves the property of graph

Laplacian matrix, i.e. L(ω) 1 = 0 and thus, 0 is a simple eigenvalue of L(ω).

Here, we shall be concerned with the stochastic process

x(t, ω;x0, t0), t ∈ [t0,∞) (5.5)

which is the solution of the linear SDE (5.4). Clearly, in accordance to the bound-

edness assumption on L(ω), the stochastic process x defined on [t0,∞) × Ω by
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x(t, ω) = e−L(ω)(t−t0)x0(ω) is a solution to (5.4) almost everywhere corresponding

to the initial conditions, t0 ∈ R+ and x0 ∈ L2(Ω).

Under a strongly connected and balanced graph, if there exists a consensus value

c among the states of the agents with the control protocol in (5.2), δ = x−1Nc repre-

sents the global consensus disagreement vector. Meanwhile, the group disagreement

between the states of the agents can be written as xi − xj = δi − δj. In reference to

(5.4), it is easy to see that the dynamics of the global disagreement vector is obtained

to be

δ̇(ω) = −L(ω) δ(ω). (5.6)

Definition 5.2.1. The stationary solution δ = 0 of the system (5.6) is said to be

asymptotically stable in probability sense (almost surely) in the large if it is stable in

probability and moreover, for all δ0 ∈ RN , every solution of the system (5.6) satisfies

the condition

P
{
lim
t→∞

∥δ(t; δ0, t0)∥ = 0
}
= 1. (5.7)

This is equivalent to almost sure Lyapunov global asymptotic stability for the

homogeneous linear systems [159].

Theorem 5.2.1. For a strongly connected and balanced graph with any finite x(0),

the states of the closed loop multi-agent system in (5.4) almost surely reach to an

average consensus value asymptotically.

Proof. Let λi ∈ σ (L(ω)) for all i = 1, . . . , N be the eigenvalues of graph Laplacian

matrix. Let J(ω) = [jml], for m, l = 1, . . . , N , be the Jordan matrix corresponding

to matrix L(ω) with jmm = λm. Using the modal decomposition, we can write
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L(ω) = P(ω)J(ω)P−1(ω), where P is an N × N matrix of eigenvectors. Then, we

have

x(ω, t) = e−L(ω)tx(0) =P(ω)e−J(ω)tP(ω)−1(ω)x(0) =
N∑
i=1

vi(ω)e
−λi(ω)twT

i (ω)x(0).

(5.8)

Without loss of generality, assume that λ1 < λ2 < · · · < λN . We know that,

λ1 = 0 and λm is on the open right half plane for all m = 2, . . . , N . For a strongly

connected and balanced graph with symmetric graph Laplacian matrix, v1(ω) = 1N

and w1(ω) = (1/N)1N are the right and left normalized eigenvectors respectively

associated to λ1 = 0 with probability 1 [97].

As t → ∞, x(ω, t) → (1/N)1N1
T
Nx(0). Thus, limt→∞ xi(t, ω) = c, where

c = (1/N)
∑N

i=1 xi(0), i.e. limt→∞ δi(t, ω) = 0. This in turn satisfies (5.7). Here,

P {limt→∞{xi(ω, t) = c} = 1 and hence, the average consensus is achieved almost

surely asymptotically. This completes the proof.

Remark 5.2.2. As the average consensus is achieved asymptotically, the probability

density function of the states of the agents approaches a function δ̄(xi− c), where δ̄(·)

is the unit delta function in (·) and c is the consensus value.

5.2.2 Control Protocol for Constant Reference Tracking

In some applications, it is desirable that each state xi(t) approaches a reference

state xR(t). If the reference state xR is assumed to be constant, the control protocol

for each agent i with deterministic edge weights is given as [160]

ui = −
∑
j∈Ni

aij (xi − xj) − aiR
(
xi − xR

)
(5.9)

where the pinning gains aiR > 0 if agent i has access to the reference state and 0

otherwise, for all i = 1, . . . , N .
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With the control protocol in (5.9), the dynamics of each agent in the presence

of uncertainties in the edge weights and pinning gains can be written as following

SDE

ẋi(ω) = −
∑
j∈Ni

aij(ω) (xi − xj)− aiR(ω)
(
xi − xR

)
. (5.10)

If Γ(ω) = diag(a1R(ω), . . . , anR(ω)) is the diagonal matrix of the pinning gains,

the global state dynamics of the agents can be expressed in terms of the graph Lapla-

cian matrix as,

ẋ = − (L(ω) + Γ(ω))x+ Γ(ω)xR (5.11)

where xR = [xR, . . . , xR]T ∈ RN .

Definition 5.2.2. Any matrix A(ω) is said to be stable in probability if there exists

µ > 0 such that

P

(
sup

λ∈σ(A(ω))

Re(λ) < −µ

)
= 1. (5.12)

Remark 5.2.3. The matrix A(ω) = −(L(ω) + Γ(ω)) is stable in probability, the

proof of which is straightforward from the fact that λ (L(ω)) ≥ 0 and the pinning

gains aiR ≥ 0, for all i = 1, 2, . . . , N .

Theorem 5.2.4. For a strongly connected and balanced graph with any finite x(0),

the states of the closed loop multi-agent system in (5.10) attain the reference state

exponentially in mean-square sense.

Proof. Let δ(ω) = x(ω) − xR be the global disagreement vector which is the vector

of relative separation between the state of agents and the constant reference state.

Hence, the local separation between the states of any two agents in the graph G can

be written as xi − xj = δi − δj. The dynamics of the global disagreement for any

agent i, for i = 1, . . . , N with control protocol in (5.9) can be written as
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δ̇i(ω) = −
∑
j∈Ni

aij(ω) (δi − δj) − aiR(ω)δi. (5.13)

Now, the dynamics of the disagreement vector after simplification can be ex-

pressed as

δ̇(ω) = − (L(ω) + Γ(ω)) δ(ω) = A(ω)δ(ω). (5.14)

The stochastic process δ(ω, t) = eA(ω)tδ0 is the solution to the above SDE.

From Remark 5.2.3, A(ω) = − (L(ω) + Γ(ω)) is stable in probability, hence there

exists µ > 0 such that (5.12) holds. Moreover, from [161], there exists a Υ > 0 such

that ∥eA(ω)t∥ ≤ Υe−µt for all ω ∈ Ω. Thus, the mean square value (second moment)

of the stochastic process δ(ω, t) can be obtained as

E[δ2(ω, t)] =
∫
Ω

∥eA(ω)tδ0∥2P(dω) ≤ Υ2e−2µt∥δ0∥2
∫
Ω

P(dω) = Υ2e−2µt∥δ0∥2 (5.15)

where the last equality is obtained from the fact that integration under the proba-

bility density function (PDF) over the entire sample space Ω is unity. Clearly, the

disagreement vector is mean square asymptotically stable. Hence, the states of the

closed loop multi-agent system in (5.10) attain the reference state exponentially in

mean-square sense. This completes the proof.

5.2.3 Agent Dynamics in the Presence of Intelligent Intruder

Consider now, the presence of an intelligent intruder embedded in the network

that provides a spurious reference signal to remain stealthy and carries out a slow

“command injection” attack. While the rest of the agents in the group communicate

with each other in the constrained environment subject to uncertainties in the edge

weights as mentioned previously, the intruder communicates with the other agents

with relatively weak strength (a significantly lower value of the edge weight) as com-

pared to the other edge weights. Such a connection of the intruder agent with the
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rest can be modeled using pinning weights associated with the edge that connects the

intruder to some of the other agents. Further, more generally speaking, the pinning

weights are also uncertain.

Assumption 5.2.1. All the agents receive same strength of information from the

reference node. In other words, aiR(ω) = ajR(ω) = γ(ω) for all, i, j = 1, . . . , N .

Theorem 5.2.5. The expected value of the state of the agents in a strongly connected

and balanced graph reach the ϵ-average consensus in finite time and approach the

reference state asymptotically if γ(ω) < λ2 where λ2 is the algebraic connectivity of

the graph.

Proof. From the assumptions on the pinning gains, we have a1R(ω) = a2R(ω) = · · · =

anR(ω) = γ(ω), which leads to Γ(ω) = γ(ω)IN . As L(ω) and Γ(ω) are commutative

under multiplication and from (5.14) one can write

δ(ω, t) = e−L(ω)te−Γ(ω)tδ(0) = e−L(ω)te−γ(ω)tδ(0).

With zero as the simple eigenvalue of the symmetric Laplacian matrix with 1N

as the normalized right eigenvector and (1/N)1T
N as the normalized left eigenvector,

the modal decomposition of e−L(ω)t can be written as

e−L(ω)t = e−λ1(ω)tv1(ω)w
T
1 (ω) + · · ·+ e−λN (ω)tvN(ω)w

T
N(ω)

= v1(ω)w
T
1 (ω) + e−λ2(ω)t

[
v2(ω)w

T
2 (ω) + e−(λ3(ω)−λ2(ω))tv3(ω)w

T
3 (ω) + . . .

+ e−(λN (ω)−λ2(ω))tvN(ω)w
T
N(ω)

]
.

At t = t∗ = κ/λ2(ω) for sufficiently large κ > N , we can write ∥e−L(ω)t∗ −

v1(ω)w
T
1 (ω)∥ ≤ ϵ∗.

From the properties of normalized eigenvectors and using Cauchy-Schwarz in-

equality, one can write ∥vi(ω)wT
i (ω)∥ ≤ 1 for all i = 2, . . . , N , which leads to

ϵ∗ < (N − 1)e−κ. Hence, the approximate statistics E[e−L(ω)t∗ ] ≈ E[v1(ω)wT
1 (ω)] =
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(1/N)1N1
T
N can be readily obtained. Meanwhile, for γ(ω) relatively much smaller

than the algebraic connectivity of the graph i.e. λ2(ω), we have e−γ(ω)t∗ ≈ 1. Thus,

the approximate statistics of the stochastic process δ(ω, t) at t = t∗ can be writ-

ten as E [δ(ω, t∗)] ≈ (1/N)1N1
T
Nδ(0) = (1/N)

∑N
i=1 δi(0). In other words, the ex-

pected values of the states of the agents approach the average consensus in finite

time t = t∗. For, t > t∗, the dynamics of the global disagreement for any agent

i in (5.13) reduces to δ̇i(ω) = −aiR(ω)δi(ω) = −γ(ω)δi(ω). Hence, for t > t∗,

δi(ω, t) = (1/N)e−γ(ω)(t−t∗)
∑N

i=1 δi(0) and it can be concluded that the expected

value of the disagreement vector δ(ω) approaches 0 asymptotically. Moreover, from

Theorem 5.2.4, it is known that the states of the agents reach the reference state

exponentially in mean square sense. This concludes the proof.

With Theorem 5.2.5 and the discussion pertinent to the intelligent intruder, it

is evident that the agents approach the average consensus in finite time. However

the agents are eventually driven to the reference state provided by the intruder while

being in synchronization thereafter. Thus, control strategies for the agents to follow

such reference signals needs to be monitored in applications.

5.3 Numerical Results

In this section, simulation examples are provided to support the analysis carried

out in Section 5.2. Numerical simulation involves application of gPC expansion tech-

nique discussed in Chapter 2 in order to obtain the cumulative distribution function

(CDF) probability levels of the states at various time instants. The gPC expansion

also allows a framework to carry out sensitivity analysis of the response distribution

with respect to the random variables, which may be exploited for the design and anal-

ysis of the network topology in multi-agent systems. In order to carry out gPC-based
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sensitivity analysis accurately, the solution statistics obtained from gPC expansion

are compared against Monte-Carlo [3] simulation-based approach.

5.3.1 Average Consensus in a Multi-Agent system With Edge Weight Uncertainties

1

2

3

4

Figure 5.1: Network topology among agents

Figure 5.1 is the connected graph with N = 4 cooperative agents. The states

of the agents are represented by xi ∈ R, ∀i = 1, . . . , 4. The edge weights among

the communicating agents are assumed to be uniformly distributed in the range as

provided in the Table 5.1.

Table 5.1: Bounds of uncertainty

Random Variable Distribution
a12 = a21 U [0, 1]
a23 = a32 U [0, 1]
a34 = a43 U [0, 1]
a14 = a41 U [0, 1]
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The simulation is carried out with x10 = 1, x20 = 3, x30 = 5 and x40 = 6

as initial conditions for the states of the agents. The CDF obtained from repetitive

simulations using 105 Monte Carlo samples is considered to be the reference solution.

In order to obtain response CDF from gPC expansion, the coefficients of expansion

are computed using sparse grid-based collocation nodes in pseudospectral framework.

As all random variables are uniformly distributed, Legendre polynomial basis is used

for fifth order gPC expansion.
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Figure 5.2: Cumulative density function of states after 5 seconds

The response CDFs for the states at three different time instants approximated

using Monte Carlo simulations (MCS) and gPC expansion are shown in Figs. 5.2-5.4.

The response CDFs obtained using sparse grid-based gPC expansion (SG-gPC) show

a close resemblance with that obtained from the MCS. Further, this is achieved with
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Figure 5.3: Cumulative density function of states after 10 seconds

relatively fewer nodes (105 MCS samples and 1217 Sg-gPC samples) which also shows

the efficacy of gPC expansion as compared to MCS. It can be clearly observed that

after 35 seconds, the CDF of the states of the agents becomes approximately equal to

unity at xi = c = 3.75, ∀i = 1, . . . , 4 which is the average consensus value. Further,

P {xi(t, ω) ̸= c} = 0 as proved in Theorem 5.2.1.

5.3.2 Consensus Study in the Presence of an Intelligent Intruder

A group of agents with the network topology represented by graph G in the

presence of an intelligent intruder as shown in Fig. 5.5 is considered. As discussed in

Section 5.2.3, along with the edge weights among the agents, the edge weights (known

as pinning gains) linking intruder to the agents is also uncertain. The probability

distribution of the edge weights and the pinning weights are known a priori and are
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Figure 5.4: Cumulative density function of states after 35 seconds

1

2

R

3

Figure 5.5: Network topology among agents with an intelligent intruder

provided in Table 5.2 which is in accordance with the assumptions made in Section

5.2.3.
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Figure 5.6: CDF of states after 2 seconds
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Figure 5.7: CDF of states after 200 seconds
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Table 5.2: Bounds of uncertainty

Random Variable Distribution
a12 = a21 U [0, 4]
a13 = a31 U [0, 4]
a23 = a32 U [0, 4]
a1R U [0, 0.01]
a2R U [0, 0.01]
a3R U [0, 0.01]
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Figure 5.8: CDF of states after 2000 seconds

The initial conditions of the states of the agents are assumed as, x10 = 0.5,

x20 = 1 and x30 = 2 with the constant intruder reference state as xR = 10. The gPC-

approximated CDFs of states of agents after 2, 200, and 2000 seconds of propagation

are compared with that obtained from 105 MCS in Figs. 5.6, 5.7 and 5.8. Clearly,

fifth order-gPC expansion is able to capture the response distribution of the states

quite accurately with fewer nodes as compared to MCS (105 MCS samples and 1889

SG-gPC samples). Further, it can be observed that after 2 s, the CDF of the states
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of the agents at around the average consensus value of c = 1.1667 is approximately

1. Thus, the agents reach the average consensus in finite time. However, because of

the presence of the intruder which provides weak reference signal to the agents, the

agents are observed to deviate from the average consensus to the constant reference

state provided by the intruder after 2000 s. Though the agents stay in consensus,

the intruder is able to cause the consensus value for the agents to diverge. This is in

accordance with the discussion pertinent to Theorem 5.2.5.

As can be observed from Fig. 5.9, up until the time instant the agents reach

the average consensus, the response distribution function of the states of the agents

is significantly influenced by the edge weight associated with the edge connecting

agents 1 and 3. This is in accordance with the fact that, the initial state of agent 1

is farthest from the average consensus value (c = 1.1667). Thus, in order to achieve

the consensus, agent 1 needs to move towards agent 3 at a rate faster than it moves

towards agent 2. Hence, the edge connecting agents 1 and 3 is the most significant

to drive all the agents to the consensus. Further, agent 2 needs to move towards

agent 3 and the edge connecting agents 2 and 3 have a significant contribution for

agent 2 to reach to the consensus with other agents. Further, the undirected edges

E23 and E12 have very less significance on the movement of the agents 1 and 3 for

the consensus; which is in agreement with what is clearly observed in Fig. 5.9. More

interestingly, it is evident that the edges connecting the intruder and the agents have

reduced significance on the response distribution of the states of the agents up until

they reach the average consensus. Just after the agents reach the consensus, the total

sensitivity functions of the edges connecting the intruder and the agents increase

drastically and that of all other edges decay to zero. Further, it can be observed that

the states of the agents are most sensitive to the pinning weights associated with the

edges between the intruder and the corresponding agents just after they reach the
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Figure 5.9: Total sensitivity of random edge weights on states of agents
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consensus. After further propagation through time, it can be observed that the states

of the agents are completely driven by the edges between the intruder and the agents

and are insensitive to the edge connectivity amongst each other.

5.4 Chapter Summary

In this chapter, the consensus protocols are analyzed in the context of multi-

agent systems where the interaction parameters (edge weights) are uncertain, however

their probability density can be characterized. Sparse grid-based gPC expansion is

carried out to approximate the response distribution of the states of the agents.

Moreover, gPC-based sensitivity analysis is carried out to study the sensitivity of the

states of the agents to the edge weights. The effect of the presence of an intelligent

intruder on the consensus behavior of the multi-agent systems is analyzed from a

probabilistic point of view. This work can be extended to intruder detection and

network robustification for networked dynamical systems with uncertain edge weights

which would aid in preventing hazardous effects from intelligent attacks.
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Chapter 6

Stability Margin and Uniform Input Delay Margin of Linear Multi-Agent Systems∗

This chapter provides a framework to characterize the gain and phase mar-

gins of a linear time-invariant multi-agent system where the interaction topology is

described by a graph with a directed spanning tree. The stability analysis of the

multi-agent system, which is based on the generalized Nyquist theorem, is converted

to finding a minimum gain positive definite Hermitian perturbation and a minimum

phase unitary perturbation in the feedback path of the loop transfer function. Fur-

ther, we provide a framework to compute the input delay margin of the multi-agent

system based on the phase perturbation of the loop transfer function. Specifically,

two constrained minimization problems are solved to calculate the gain, phase, and

input delay margins of the multi-agent system. We also state necessary and sufficient

conditions concerning the stability of the multi-agent system independent of gain and

phase perturbations and input delay.

The chapter is organized as follows. In Section 6.1, we formulate the problem

under consideration. Section 6.2 discusses the stability of multi-agent systems with

or without input delay in general. The main results of the chapter are presented in

Section 6.3. Numerical examples are presented in Section 6.4 and the conclusions of

the chapter are reported in Section 6.5.

∗Part of the material reported in this chapter is reprinted with permission, from Rajnish Bhusal,

Baris Taner, and Kamesh Subbarao, “On the Phase Margin of Networked Dynamical Systems and

Fabricated Attacks of an Intruder,” 2020 American Control Conference (ACC), IEEE, pp. 3279-

3284, Denver, CO, July 2020, DOI: 10.23919/ACC45564.2020.9147500, Copyright © 2021, IEEE

(reference [122]).
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6.1 Problem Formulation

6.1.1 Multi-Agent System Without delay

Consider a group of N identical agents. The dynamics of the ith agent is

described by the following linear time-invariant (LTI) system

ẋi(t) = Axi(t) +Bui(t), i = 1, . . . , N (6.1)

where A ∈ Rn×n, B ∈ Rn×m are the system matrices with xi ∈ Rn as the state and

ui ∈ Rm as the input of the ith agent. The LTI continuous dynamics of each agent

can also be represented by the loop transfer function in frequency domain as

P(s) = (sIn −A)−1B (6.2)

which is the linear mapping of Laplace transform from the input ui(t) to the state

xi(t).

Assumption 6.1.1. (A,B) is stabilizable.

It is assumed that the agents share the state information among each other

in a predefined graph topology. The graph theoretical framework-based multi-agent

system’s modeling is such that, each node in the graph represents the agents and the

edge connecting the two neighboring nodes represent the communication between the

agents. Further details on the algebraic graph theory can be found in Chapter 5. In

this work, we make following assumption on the underlying graph topology.

Assumption 6.1.2. Throughout the chapter, the graph is assumed to be connected

with at least one directed spanning tree.

Definition 6.1.1. The group of agents are said to reach consensus under any control

protocol ui if for any set of initial conditions {xi(0)} there exists xc ∈ Rn such that

limt→∞ xi(t) = xc for all i = 1, 2, . . . , N .

With assumption 6.1.1, let each of the agents i = 1, 2, . . . , N have identical

feedback controllerK ∈ Rm×n such thatA−BK is stable. For the ith agent with plant
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transfer function P(s) and a state feedback controller K(s), we define H(s) ∈ Rn×n

to be the loop transfer function as seen when breaking the loop at the output of the

plant. Thus, for each agent i = 1, 2, . . . , N , we have

H(s) = P(s)K(s). (6.3)

We consider following static distributed control protocol based on the relative

states between neighboring agents as discussed in [162,163]:

ui(t) = cK
∑
k∈Ni

aik(xk(t)− xi(t)), i = 1, 2, . . . , N. (6.4)

where c is the coupling gain and K is the feedback gain matrix. The approach to

calculate c would be discussed later in Section 6.2. With control protocol in (6.4),

the overall global closed-loop dynamics can be written as

ẋ(t) = (IN ⊗A)x(t)− c(L⊗BK)x(t) (6.5)

where x = [xT
1 , . . . ,x

T
N ]

T ∈ RNn is the global state of multi-agent system. Now,

the overall loop transfer function of multi-agent system is G(s) = Ĥ(s)L̂, where

Ĥ(s) = IN ⊗H(s) and L̂ = c (L⊗ In).

In this chapter, we intend to characterize the gain and phase margin of the

closed-loop system in (6.5) with the state feedback controller K to achieve consensus.

6.1.2 Multi-Agent System With Input Delay

Let us now consider a problem of multi-agent system with N agents subjected to

input delay. We assume the input delays to be uniform for all agents. The dynamics

of ith agent in the presence of input delay can be written as

xi(t) = Axi(t) +Bui(t− τ), i = 1, 2, . . . , N (6.6)
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e−sτ P(s)
ui(t) ui(t− τ) xi(t)

Figure 6.1: Schematic representation of input delay for ith agent

where τ is the delay in the input of the agents. Figure 6.1 illustrates the schematics

of input delay for ith agent.

The presence of input delay governs the multi-agent system such that each

agent i, for all i = 1, 2, . . . , N receives the state information of its neighbor and its

own state information with a delay of τ . Let Assumption 6.1.1 holds for (6.6). With

the distributed control protocol in (6.4), the closed loop dynamics of ith agent can

be written as

xi(t) = Axi(t) + cBK

(∑
k∈Ni

aik (xk(t− τ)− xi(t− τ))

)
(6.7)

With x = [xT
1 , . . . ,x

T
N ]

T ∈ RNn as the global state of multi-agent system, the

overall global closed-loop dynamics for input delay multi-agent system can be written

as,

ẋ(t) = (IN ⊗A)x(t)− c(L⊗BK)x(t− τ). (6.8)

Here, we are interested in finding the input delay margin τ ∗ such that the

multi-agent system in (6.8) achieves state consensus for any τ ∈ [0, τ ∗].

6.2 Stability in Multi-Agent Systems for Consensus

In this section, we discuss the stability conditions required for multi-agent sys-

tems to reach the consensus.
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6.2.1 Consensus in Multi-Agent Systems Without Delay

Lemma 6.2.1. If Ĥ(s)L̂ has pu unstable poles, the closed loop system in (6.5) is

stable, iff any of the following two statements hold:

(1) The Nyquist plot of det[InN + Ĥ(s)L̂] makes pu anti-clockwise encirclements of

the origin.

(2) The Nyquist plot of
∏N

p=2 det[In+cλpH(s)] makes pu anti-clockwise encirclements

of the origin; where {λp}Np=1 are the eigenvalues of L.

Proof. The statement (1) is the direct consequence of generalized Nyquist Theorem

for the closed loop stability of a multi-agent system. Now, the equivalence of the above

two statements can be shown with the help of Schur decomposition of Laplacian ma-

trix L as L = STS∗, where S is a unitary matrix and T is an upper triangular matrix.

Since T is an upper triangular matrix with same spectrum as L, the eigenvalues of L

are the diagonal entries of T. Moreover, T can be decomposed as,

T = Λ+ Γ. (6.9)

where Λ is a diagonal matrix consisting of eigenvalues {λp}Np=1 of L and Γ is a strictly

upper triangular matrix. Since, L̂ = c (L⊗ In), one can write

det
[
InN + Ĥ(s)L̂

]
= det

[
InN + cĤ(s) (S⊗ In) T̂ (S∗ ⊗ In)

]
= det

[
(S⊗ In) (InN + cĤ(s)T̂) (S∗ ⊗ In)

]
= det[InN + cĤ(s)T̂].
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where T̂ = T ⊗ In. As Ĥ(s) is block diagonal and T̂ is block upper triangular, one

can write

det[InN + cĤ(s)T̂] = det[InN + cĤ(s) (Λ⊗ In)]

=
N∏
p=1

det[In + cλpH(s)]

=
N∏
p=2

det[In + cλpH(s)]

The last equality comes from the fact that λ1 = 0.

Remark 6.2.2. Lemma 6.2.1 implies that the stability of multi-agent system is equiv-

alent to the stability of following p transformed systems

ξ̇p(t) = Aξp(t) +Bup(t), ∀ p = 2, 3, . . . , N (6.10)

where, ξp is the state vector and up(t) is the input of the pth system which is given by

up(t) = −K̄pξp(t) with K̄p = cλpBK. The essence of Lemma 6.2.1 is similar to the

discussion carried out for formation control of multi-agent systems in [63] where the

authors conclude that if the controller K stabilizes the transformed system for all λp

other than the zero eigenvalue, it stabilizes the relative dynamics of formation. Alike

in (6.3), we define the loop transfer functions of the transformed systems as

Gp(s) = P(s)K̄p(s) = (sIn −A)−1BcλpK(s), ∀p = 2, 3, . . . , N. (6.11)

6.2.1.1 Selection of K and c

As stated earlier, K is selected such that the dynamics of the individual agent

is stable before the interconnection, i.e., A − BK is Hurwitz. Now, the value of c

is selected such that the consensus among the agents is achieved, i.e. A − BK̄p =

A−cλpBK for p = 2, 3, . . . , N are Hurwitz, where λp are the eigenvalues of Laplacian

matrix. We select c based on the consensus region approach discussed in [162]. The
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consensus region of a multi-agent system can be defined as S(σ) = {σ ∈ C | A −

σBK is Hurwitz}. From [162], for the agents to reach consensus, the coupling gain c

is to be selected such that cλp ∈ S(σ).

We make following assumption throughout the chapter for further analysis.

Assumption 6.2.1. A−BK̄p is stable, for all p = 2, 3, . . . , N

6.2.2 Consensus in Multi-Agent Systems With Input Delay

The loop transfer function of the multi-agent system in (6.8) can be written

as Ĥ(s)L̂e−sτ . Now, Lemma 6.2.1 can be extended for the multi-agent system with

delay and the stability of multi-agent system with input delay in (6.8) is equivalent

to the stability of following p transformed systems

ξ̇p(t) = Aξp(t) +Bup(t− τ), ∀ p = 2, 3, . . . , N (6.12)

where ξp is the state vector and up(t − τ) = −K̄pξp(t − τ) with K̄p = cλpBK, is

the delayed input of the pth system. Moreover, the loop transfer function of the

transformed system in (6.12) becomes (sIn −A)−1BcλpK(s)e−sτ .

6.3 Main Results

The stability margin serves as a robustness measure against gain and phase

variations in the feedback path of the group of agents. Moreover, time delays in multi-

agent systems are practically unavoidable. In this section, we provide a computational

framework to characterize the stability margins, namely gain and phase margins of

the delay-free system in (6.5), and input delay margin of multi-agent system with

input delay in (6.8).
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Definition 6.3.1. [164] The polar decomposition of a matrix T ∈ Cr×t with r ≥ t

can be written as T = RU where R ∈ Cr×t is a positive semi-definite Hermitian

matrix and U ∈ Ct×t is a unitary matrix.

In this work, we calculate the stability margins and the input delay margin of

the multi-agent system by assessing the characteristics of the perturbed loop transfer

function Gp(jωp)∆p. Here, ∆p ∈ Cn×n is the multiplicative complex perturbation in

the feedback path of the loop transfer function Gp(s). We consider different mathe-

matical structures of ∆p depending upon the type of margin that is being computed,

i.e., for computation of gain margin, phase margin and input delay margin, ∆p would

be complex gain, phase and delay perturbations, respectively.

The polar decomposition is a generalization to complex matrices of the familiar

polar representation z = rejϕ, r ≥ 0 of a complex number z ∈ C. From Definition 6.3.1

we can polar-decompose ∆p as, ∆p = RU. The unitary factor ejϕ of z corresponds

to unitary matrix U = eΣp of ∆p, where Σp is a skew Hermitian matrix with phase

information of ∆p and r = |z| of z corresponds to the Hermitian factor R of ∆p [165].

We assume that the complex perturbation ∆p is nonsingular and thus, the polar

decomposition is unique and R is positive definite Hermitian.

Definition 6.3.2. The complex perturbation ∆p for any p = 2, 3, . . . , N in the loop

transfer function Gp(s) is said to be destabilizing at frequency ωp ∈ R if

det(I+Gp(jωp)∆p) = 0 (6.13)

Lemma 6.3.1. If there exists a destabilizing ∆p in the feedback path of Gp(jωp) for

any p = 2, 3, . . . , N , the original loop transfer function G(s) = ĤL̂ becomes unstable.

Proof. From Lemma 6.2.1 and Remark 6.2.2, the stability of original loop transfer

function is equivalent to the stability of p transformed loop transfer functions Gp(s)

simultaneously. Thus, if there exists a unitary ∆p that satisfies (6.13) for any p =
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2, 3, . . . , N , it destabilizes the pth transformed system and equivalently, the original

loop transfer function G(s) = ĤL̂.

As stated earlier, input delay margin can be associated with stabilizing ranges

of phase in the system, which motivates us to compute the input delay margin by

considering the phase perturbations in the system. Thus, we first provide a framework

to characterize phase and input delay margins consecutively and provide a framework

to compute gain margin separately.

6.3.1 Phase Margin and Input Delay Margin

In order to characterize the phase margin and input delay margin, it is assumed

that R is lumped into the loop transfer function or assumed to be an identity matrix.

Thus the analysis presented in this work for characterizing phase margin and delay

margin considers ∆p = U = eΣp . Hereafter, we use ∆p, U, eΣp would be used

interchangeably for characterizing phase and input delay margins. The following

Lemma is an extension to the work carried out by Wang et al. in [83], wherein ∆p was

assumed to be structured diagonal perturbation; however in this work, we consider

phase perturbations to be in the entire set of unitary matrices and not necessarily to

be diagonal.

Lemma 6.3.2. The stabilizing boundary of phase is symmetric with respect to the

origin.

Proof. Let us start by saying (ϕ1, ϕ2, . . . , ϕn) is the point on the stabilizing boundary,

then there exists some critical frequency ωcp for all p = 2, 3, . . . , N such that

det[I+Gp(jωcp)∆p] = det[I+Gp(jωcp)e
Σp ] = 0

As stated before, Σp is a skew Hermitian matrix with Σp = −Σ∗
p. The eigen-

value decomposition of Σp can be written as Σp = PΛ∆P
∗, where P is a unitary
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matrix of eigenvectors and Λ∆ is a diagonal matrix of eigenvalues of Σp. As the

phase information of ∆p is contained in the unitary matrix U of the polar decom-

position, the eigenvalues of U all lie on the unit circle such that, λk(U) = ejϕk

for all k = 1, 2, . . . , n. Moreover, Im{λk(Σp)} = arg{λk(U)} = ϕk which implies

Λ∆ = diag(jϕ1, jϕ2, . . . , jϕn). Clearly, one can write

det[I+Gp(jωcp)Pe
{diag(jϕ1,jϕ2,...,jϕn)}P∗] = 0 (6.14)

On taking conjugate on the both sides of (6.14), we get

det[I+Gp(−jωcp)P
∗e{diag(−jϕ1,−jϕ2,...,−jϕn)}P] = 0

Thus, it can be asserted that for the point (−ϕ1,−ϕ2, . . . ,−ϕn), there exists

an −ωcp such that the closed-loop system is marginally stable. This implies that

(−ϕ1,−ϕ2, . . . ,−ϕn) is also the point on the stabilizing boundary.

Remark 6.3.3. By Lemma 6.3.2, the stabilizing borders of loop phases are symmetric

with respect to the origin, the values of ωcp are also symmetric with respect to the

origin. This property hints that one only needs to examine the frequency response for

nonnegative frequencies, while the analysis for the other half of the frequency range

follows that of nonnegative frequency range due to symmetry. This simplification is

analogous to the analysis of half-sectorial systems in the work of Chen et al. [166].

Further, ejϕk is a periodic function in ϕk with a period of 2ϕk and thus, one only needs

to consider ϕk ∈ (−π, π] and for discussing stability, it can be further narrowed to

ϕk ∈ [0, π], for all k = 1, 2, . . . , n. Moreover, phases of ∆p = U for all p = 2, . . . , N

can be calculated as ϕk = |Im{λk(U)}| for all k = 1, 2, . . . , n and in turn phase of ∆p

can be defined as max(|Im(λk(U)|)) in [0, π].
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6.3.1.1 Stability of Multi-Agent System Independent of Unitary Phase Perturbations

We provide following necessary and sufficient conditions such that the multi-

agent system is stable for any unitary phase perturbation in the feedback path. These

conditions can be considered to be an extended small gain conditions in robust sta-

bility analysis.

Lemma 6.3.4. Subject to Assumptions 6.1.2 and 6.2.1, the multi-agent system in

(6.5) is stable independent of unitary phase perturbations ∆p in the feedback path if

and only if

σ̄(Gp(jωp)) < 1, ∀ωp > 0, ∀p = 2, . . . , N (6.15)

where σi(Gp) are the singular values of the transfer function matrix Gp, σ̄(Gp) =

maxσi(Gp) and σ(Gp) = min σi(Gp) .

Proof. Let us assume the condition in (6.15) holds. Now, we can write

σ̄
(
(jωpI−A)−1cλpBK

)
< 1, ∀ωp > 0. (6.16)

For unitary phase perturbation eΣp in the feedback path, we have

σ̄
(
(jωpI−A)−1cBKλpe

Σp
)
< 1 (6.17)

which also can be expressed as

σ̄
(
(jωpI−A)−1cλpBK∆p

)
< 1 (6.18)

where, ∆p = eΣp is unitary. It is straightforward to see that if the condition in (6.18)

holds, then

det
(
I+ (jωpI−A)−1cλpBK∆p

)
̸= 0, ∀ωp > 0

or equivalently,

det (I+Gp(jωp)∆p) ̸= 0, ∀ωp > 0
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i.e. the characteristic polynomial of the system in (6.10) does not intersect the imagi-

nary axis and the system is stable independent of unitary phase perturbation. More-

over, from Lemma 6.2.1 and Remark 6.2.2, the multi-agent system in (6.5) is stable

independent of unitary phase perturbations in the feedback path. The proof for the

sufficiency part is completed.

To establish the necessity, assume that σ̄
(
Gp(jωcp)

)
= σ̄ ((jωpI−A)−1cλpBK) =

1, for some ωcp > 0, for any p = 2, . . . , N . This implies that there exists some unitary

∆p = eΣp such that det
(
I+ (jωcpI−A)−1cλpBK∆p

)
= det (I+Gp(jωp)∆p) = 0

and from Lemma 6.3.1 the multi-agent system in (6.5) becomes unstable. Let us now

consider a case when, σ̄(Gp(jωp)) = σ̄ ((jωpI−A)−1cλpBK) > 1, for some ωp > 0.

Since, σ̄ (Gp(jωp)) is a continuous function of ωp, there exists some ωcp ∈ (ωp,∞),

such that σ̄
(
Gp(jωcp)

)
= 1 and the multi-agent system in (6.5) is unstable.

Remark 6.3.5. Note that, if σ̄ (Gp(jωp)) = 1, there exists a unit vector zp such that

∥Gp(jωp)zp∥ = 1. The proof of which is trivial and well known.

Now let us define a set Ωp = {ωp| σ(Gp(jωp)) ≤ 1 ≤ σ̄(Gp(jωp))} for all

p = 2, . . . , N . The cardinality of set Ωp is denoted as nΩp .

6.3.1.2 Stability of Multi-Agent System Dependent on Unitary Phase Perturbations

If the conditions highlighted by Lemma 6.3.4 are not satisfied, then there exists

a unitary perturbation which destabilizes the multi-agent system. In this section, we

provide the approach to find such perturbation and a computational framework to

characterize the phase margin of the system.

Lemma 6.3.6. There exists a destabilizing unitary ∆p which is a mapping between

two unit vectors, if and only if for any p = 2, . . . , N the set Ωp ̸= ∅.
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Proof. If the set Ωp ̸= ∅ for any p = 2, . . . , N , there exists a ωp and a unit vector

zp such that ∥Gp(jωp)zp∥ = 1 (see the proof of Lemma 6.3.4 and Remark 6.3.5).

Let vp = −Gp(jωp)zp and consider a unitary matrix ∆p which maps vp into zp

such that ∆pvp = zp. Since, Gp(jωp)∆pvp = Gp(jωp)zp = −vp, one can write

(I+Gp(jωp)∆p)vp = 0 which implies det(I+Gp(jωp)∆p) = 0 and the systemGp(jωp)

is unstable. This concludes the necessity.

Now, consider a destabilizing unitary ∆p such that, det(I + Gp(jωp)∆p) = 0

and a unit vector vp such that (I+Gp(jωp)∆p)vp = 0 and thus Gp(jωp)∆pvp = −vp.

Now let us assume ∆p maps vp into zp such that zp = ∆pvp. As ∆p is unitary and

vp is a unit vector, we have ∥zp∥ = 1. So, we can write, σ(Gp) = inf
∥zp∥=1

∥Gpzp∥ ≤ 1.

Similarly, 1 ≤ sup
∥zp∥=1

∥Gpzp∥ = σ̄(Gp). Thus, the set Ωp ̸= ϕ. Hence, we have

established sufficiency and necessity to the statement.

Theorem 6.3.7. Suppose the Assumptions 6.1.2 and 6.2.1 hold. Let P be the set of

all p ⊂ {2, . . . , N} where Ωp ̸= ∅. Then, the loop transfer function Gp(s) in (6.11) is

stable if the eigenvalues {λk(∆p)}nk=1 of unitary perturbation ∆p ∈ Cn in the feedback

path of Gp(s) for all p ∈ P satisfies max(|Im(λk(∆p))|) < ϕp where

ϕp = min
i=1,2,...,nΩp

{ϕi} (6.19)

and ϕi = min{cos−1{⟨vp, zp⟩}} with unit vectors vp and zp satisfying vp = −Gp(jωp)zp,

for all ωp ∈ Ωp. Moreover, the loop transfer function Gp(s) in (6.11) is stable inde-

pendent of unitary perturbation ∆p if Ωp = ∅ for all p = 2, . . . , N .

Proof. From Lemma 6.3.6, if for any p = 2, . . . , N the set Ωp ̸= ∅, then there exists

an ωp ∈ Ωp where the system destabilizes and a set of unit vectors vp and zp can be

calculated that satisfies vp = −Gp(jωp)zp. Moreover, there also exists a destabilizing

unitary perturbation (say ∆c
p) that maps vp to zp.
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For Gp(s) to be stable, phase of unitary ∆p in the feedback path should be

less than the smallest phase of destabilizing unitary perturbation ∆c
p that maps unit

vector vp to zp for all ωp ∈ Ωp. Further, the angle between subspaces of Cn in which

two unit vectors vp and zp lie is given by cos−1{⟨vp, zp⟩} [167]. Also, as ∆c
p is unitary,

we can write ⟨vp, zp⟩ =
〈
∆c

pvp, ∆
c
pzp
〉
. To that end, the phase of destabilizing

∆c
p which maps the two unitary vectors vp and zp such that zp = ∆c

pvp is also

cos−1{⟨vp, zp⟩}. Henceforth, the smallest phase of destabilizing unitary perturbation

for all p ∈ P can be obtained by minimizing cos−1{⟨vp, zp⟩} for all ωp ∈ Ωp and is

given by

ϕp = min
i=1,2,...,nΩp

{ϕi}, ϕi = min{cos−1{⟨vp, zp⟩}}. (6.20)

From Lemma 6.3.2 and Remark 6.3.3, one can write phase of any unitary ∆p

as max(|Im(λk(∆p))|). Therefore, for Gp(s) to be stable the eigenvalues of unitary

perturbation ∆p in the feedback path of Gp(s) should satisfy max(|Im(λk(∆p))|) <

ϕp. Further, if the set Ωp = ∅ for all p = 2, 3, . . . , N , the multi-agent system remains

stable independent of phase perturbation from Lemma 6.3.4. This completes the

proof.

Remark 6.3.8. Based on Theorem 6.3.7 and Remark 6.2.2, the phase margin of the

multi-agent system can be calculated to be

ϕ∗ = inf
p∈P

{
min
ωp∈Ωp

{
min{cos−1{⟨vp, zp⟩}

}}
. (6.21)

Moreover, as cosine is a monotonically decreasing function in [0, π], mini-

mizing cos−1{⟨vp, zp⟩} is same as maximizing the inner product ⟨vp, zp⟩ satisfying

vp = −Gp(jωp)zp, for all ωp ∈ Ωp.
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6.3.1.3 Delay Independent Stability of Multi-Agent Systems

Lemma 6.3.9. Subject to Assumptions 6.1.2 and 6.2.1, the input delay multi-agent

system in (6.8) is stable independent of delay if and only if

(i) A is stable and

(ii) σ̄(Gp(jωp)) < 1, ∀ωp > 0, ∀p = 2, . . . , N .

Proof. For the system to be stable independent of delay, it is necessary that it be

stable for τ = ∞, which requires condition (i) to hold (see [168]). Condition (ii) is

neccessary and sufficient condition for the multi-agent system to be stable independent

of unitary phase perturbations as discussed in Lemma 6.3.4. As input delay links to

a phase change with no gain change, condition (ii) is also necessary and sufficient for

the system in (6.8) to be stable independent of delay.

6.3.1.4 Delay Dependent Stability of Multi-Agent Systems

The approach of characterizing the input delay margin of multi-agent delay

system in this work bears some similarity to that of “frequency sweeping method” in

the literature (see e.g., [168,169]).

Theorem 6.3.10. Suppose the Assumptions 6.1.2 and 6.2.1 hold. Let P be the set

of all p ⊂ {2, . . . , N} where Ωp ̸= ∅. Then, the multi-agent system with input delay

in (6.8) is stable for any τ ∈ [0, τ ∗) where

τ ∗ =


min
p∈P

min
1≤i≤nΩp

ϕi

ωi

, if P ̸= ∅

∞, if P = ∅
(6.22)

and ϕi = min{cos−1{⟨vp, zp⟩}}, ωi = argmin{cos−1{⟨vp, zp⟩}} with unit vectors vp

and zp satisfying vp = −Gp(jωp)zp, for all ωp ∈ Ωp.
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The proof follows from the proof of Theorem 6.3.7 and has been omitted for

brevity. The sketch of the proof is as follows: since input delay can be linked to a

unitary phase perturbation, once the phases ϕi are calculated, a set of delays can be

calculated for each ωp ∈ Ωp as τi =
ϕi

ωi

. Infimum of this set over all ωp ∈ Ωp provides

the upper limit of delay for the loop transfer function of pth input delayed system to

remain stable, i.e. τ ∗p = min
1≤i≤nΩp

ϕi

ωi

[170]. Moreover, from 6.1.2, one can establish

τ ∗ = min
p∈P

τ ∗p such that the multi-agent system with input delay in (6.8) is stable if

τ ∈ [0, τ ∗). Further, if the set Ωp = ∅ for all p = 2, 3, . . . , N , the system remains

stable independent of delay from Lemma 6.3.9.

6.3.1.5 Computational Framework for Phase margin and Input delay margin

This section provides the computational framework to characterize the phase

margin and input delay margin for multi-agent systems in (6.5) and (6.8), respectively.

In order to calculate the phase margin and input delay margin, one needs to find the

set Ωp, for which it is necessary to find all ωp > 0 such that σ̄(Gp(jωp)) ≥ 1 and

σ(Gp(jωp)) ≤ 1, ∀p = 2, . . . , N . The procedure to compute the set Ωp is discussed in

Procedure 2. As stated earlier, once the set Ωp is calculated, the problem of calculating

phase margin and input delay margin is equivalent to maximizing < vp, zp > for

all ωp ∈ Ωp (see Remark 6.3.8) which is same as maximizing ⟨vp, zp⟩ + ⟨zp,vp⟩ =

v∗
pzp + z∗pvp. As Gp(jωp)zp = −vp, we can have

v∗
pzp + z∗pvp = − z∗pGp(jωp)

∗zp − z∗pGp(jωp)zp

= − z∗p(Gp(jωp)
∗ +Gp(jωp))zp.

(6.23)

From (6.23), it is evident that maximizing v∗
pzp + z∗pvp is equivalent to mini-

mizing z∗p(Gp(jωp)
∗ +Gp(jωp))zp. Thus the problem of calculating phase margin is
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converted to a constrained minimization problem: minimize z∗p(Gp(jωp)
∗+Gp(jωp))zp

such that |vp| = |zp| = 1, −Gp(jωp)zp = vp which can be further expressed as

minimize [z∗p(Gp(jωp) +Gp(jωp)
∗)zp]

subject to z∗pzp = 1, z∗p Gp(jωp)
∗ Gp(jωp) zp = 1.

(6.24)

With U = Gp(jωp) +Gp(jωp)
∗, V = Gp(jωp)

∗ Gp(jωp) and w = zp, optimiza-

tion problem in (6.24) can be rewritten as

minimize [w∗Uw]

subject to w∗w = 1

w∗Vw = 1

(6.25)

It is straightforward to show that the complex optimization problem in (6.25) is

equivalent to the following optimization problem from the work carried out in [171]:

minimize

(aT,bT)

 Re(U) Im(U)

−Im(U) Re(U)


a

b




subject to a2
i + b2

i = 1 i = 1, 2, . . . , n

(aT,bT)

 Re(V) Im(V)

−Im(V) Re(V)


a

b

 = 1

a,b ∈ Rn

(6.26)

Let Q =

 Re(U) Im(U)

−Im(U) Re(U)

, R =

 Re(V) Im(V)

−Im(V) Re(V)

, y =

a

b

 in (6.26).

Now, the transformed optimization problem becomes
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minimize yTQy

subject to yTy = 1

yTRy = 1

y ∈ R2n

(6.27)

The constrained optimization problem in (6.27) is a set of quadratic optimiza-

tion problems with nonlinear equality constraints which can be solved by solving the

Karush-Kuhn-Tucker (KKT) optimality conditions [172]. Moreover, the optimization

problem in (6.27) can be equivalently written as unconstrained minimization problem

by defining the Lagrangian as

L(y, µ1, µ2) = yTQy + µ1

(
yTy − 1

)
+ µ2

(
yTRy − 1

)
(6.28)

where, µ1 and µ2 are the scalar Lagrange multipliers associated with the equality

constraints [173]. Let (yo, µo
1, µ

o
2) be the optimal solution to the optimization problem.

Since y∗ minimizes L(y, µo
1, µ

o
2) over y, its gradient must vanish at yo. Hence, the

KKT conditions which are necessary for the optimality can be written as follows:

yoTyo − 1 = 0

yoTRyo − 1 = 0

Qyo + µo
1y

o + µo
2Ryo = 0

(6.29)

The KKT optimality conditions are a set of 2n + 2 equations with 2n + 2

unknown variables. The optimal solution obtained from solving (6.29) system of

equations is the global minima to the original problem in (6.27) if following KKT

sufficient optimality condition holds:

Q+ µo
1I2n + µo

2R ≥ 0 (6.30)
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Procedure 2 Computation of ϕ∗ and τ ∗

1: Calculation of set Ωp for all p = 2, . . . , N :

(i) Solve det(I−Gp(jωp)
∗Gp(jωp)) = 0 for all real roots of ωp and calculate

the eigenvalues of Gp(jωp)
∗Gp(jωp) at each root ωp. Let ωkp , k ⊂ {1, 2, . . . }

denote all the real roots ωp.

(ii) Knowing the eigenvalues ofGp(jωp)
∗Gp(jωp) at each ωk and at 0 will enable

one to determine if there exists a σ(Gp(jωp)) ≤ 1 and a σ(Gp(jωp)) ≥ 1 in

the region (ω(k−1)p , ωkp ] with ω0p = 0.

(iii) The set Ωp can be obtained as Ωp = ∪(ω(k−1)p , ωkp).

(iv) If for any p = 2, 3, . . . , N , σ(Gp(jωp)) does not span across 1, then Ωp = ∅.

2: If for any p = 2, 3, . . . , N , Ωp ̸= ∅, solve optimization problem in (6.27) and

compute zp and vp using (6.31).

3: Compute ϕ∗ and τ ∗ using (6.21) and (6.22), respectively.

Thus, any numerical routine that can generate the local optimum (yo, µo
1, µ

o
2)

by solving (6.29) and eventually satisfies (6.30) gives the global optimum y. Further

discussion on global optimization of the similar problem (quadratic objective function

with quadratic equality constraints) can be found in [174, 175]. Once vector y is

obtained by solving the optimization problem in (6.27), the vectors a ∈ Rn and

b ∈ Rn can be calculated and, the vector w ∈ Cn or equivalently zp ∈ Cn and

vp ∈ Cn can be obtained as

zp = a+ jb

vp = −Gp(jωp)zp

(6.31)

The complete procedure to compute the phase margin and input delay margin

of the multi-agent system is discussed in Procedure 2.
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6.3.2 Gain Margin

For the gain margin calculation, the gain information of ∆p is assumed to be

contained in the positive definite Hermitian part R of the polar decomposition of

∆p. The unitary part U is assumed to be lumped into the loop transfer function or

assumed to be an identity matrix.

6.3.2.1 Computation of Positive Definite Hermitian Matrix Mapping Two Complex

Vectors

This section discusses a way to finding a positive-definite Hermitian matrix R

mapping v ∈ Cn into z ∈ Cn, i.e.

z = Rv (6.32)

Let the set of vectors {v, z,u1,u2, . . . ,un−2} be a basis in Cn. Given, a sym-

metric positive definite bilinear form ⟨·, ·⟩ on finite-dimensional vector space, one can

use the Gram-Schmidt orthogonalization process to find a orthonormal basis. Since

⟨v, z⟩ = v∗z > 0, we can construct an orthonormal basis {q1,q2, . . . ,qn} as

q1 =
v√
⟨v,v⟩

q2 =
q̂2√

⟨q̂2, q̂2⟩
, q̂2 = z− (q∗

1z)q1;

qk =
q̂k√

⟨q̂k, q̂k⟩
, q̂k = uk−2 −

k−1∑
i=1

(q∗
iuk−2)qi, k = 3, . . . , n

(6.33)

Here the matrix Q = [q1 q2 . . . qn] is such that QQ∗ = I. Pre-multiplying

(6.32) with Q∗, we obtain

Q∗z = Q∗RQQ∗v (6.34)

Let Q∗ maps v into e1 and Q∗ maps z into a linear combination of e1 and e2,

such that v = Q(γe1) and z = Q(αe1 + βe2), where γ =
√

⟨v,v⟩, α = (q∗
1z) and
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β =
√

⟨q̂2, q̂2⟩. Substituting for z and v in (6.34), we obtain: Q∗Q(αe1 + βe2) =

(Q∗RQ)Q∗Q(γe1). With v̂ = γe1 and ẑ = αe1 + βe2 , one can write

ẑ = Pv̂ (6.35)

where P = Q∗RQ. As Q is orthonormal matrix, eigenvalues of both matrices R and

P are same. Since, only the upper 2 × 2 block of Q is needed to map v̂ into ẑ, let

us decompose P as P =

P̂ 0

0 I

, where P̂ ∈ C2×2. Now the problem of finding a

positive-definite Hermitian matrix R mapping v into z is reduced to the problem of

finding P̂. Moreover, for R to be positive definite, P̂ must be positive definite and

must be of the form

P̂ =


α

γ

β

γ

β

γ
p22

 (6.36)

where p22 should be such that

p22 >
β2

γα
(6.37)

Finally, R can be computed as R = QPQ∗. It should be noted that, such a

positive definite Hermitian matrix R is not unique.

Lemma 6.3.11. There exists a destabilizing positive definite Hermitian ∆p if and

only if there exists an ωp and a complex vector zp such that

⟨Gp(jωp)zp, zp⟩ < 0 (6.38)

for any p = 2, . . . , N .

Proof. Let vp = −Gp(jωp)zp. Now, if for any p = 2, . . . , N , ⟨Gp(jωp)zp, zp⟩ < 0

implies z∗pGp(jωp)
∗zp < 0, i.e.

v∗
p zp > 0 (6.39)
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Further if (6.39) holds, one can always find a positive definite Hermitian matrix

∆p such that zp = ∆pvp, as discussed in Section 6.3.2.1. Substituting zp in (6.39), we

get

v∗
p ∆pvp > 0 (6.40)

Moreover, since Gp(jωp)∆pvp = Gp(jωp)zp = −vp, one can write

(I+Gp(jωp)∆p)vp = 0 (6.41)

which implies det(I + Gp(jωp)∆p) = 0 and the system Gp(jωp) is unstable. This

concludes the necessity.

Now, consider a destabilizing positive definite Hermitian matrix ∆p such that,

det(I+Gp(jωp)∆p) = 0 and a unit vector vp such that (I+Gp(jωp)∆p)vp = 0; thus,

Gp(jωp)∆pvp = −vp. Let us assume ∆p maps vp into zp such that zp = ∆pvp, then

vp = −Gp(jωp)zp. As ∆p > 0, one can write

0 < v∗
p∆pvp = v∗

pzp = −z∗pGp(jωp)
∗zp (6.42)

which leads to

⟨Gp(jωp)zp, zp⟩ < 0. (6.43)

Hence, we have established sufficiency and necessity to the statement.

Remark 6.3.12. For positive definite Hermitian ∆p, v∗
p ∆pvp is always real and

positive, i.e. v∗
pzp is also real and positive. Also, if Gp(jωp)zp = −vp, z

∗
pGp(jωp)

∗zp is

real, and thus z∗pGp(jωp)
∗zp = z∗pGp(jωp)zp. Further, any positive definite Hermitian

matrix ∆p can be written as eS. As λk(∆p) = eλk(S), for all k = 1, 2, . . . , n, we define

gain of ∆p as max |λ(S)| = max | ln(λk(∆p))|. Note that unlike in the calculation of

the phase margin, vp and zp need not be unit vectors.
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Now, let us define a set Ω̃p = {ωp| ⟨Gp(jωp)zp, zp⟩ < 0} for all p = 2, . . . , N .

The cardinality of set Ω̃p is denoted as nΩ̃p
.

Corollary 6.3.13. (Stability of multi-agent system independent of gain perturbations)

If Assumptions 6.1.2 and 6.2.1 hold and the set Ω̃p = ∅ for all p = 2, 3, . . . , N , the

multi-agent system in (6.5) remains stable independent of gain perturbation in the

feedback path of each agents.

Theorem 6.3.14. Suppose the Assumptions 6.1.2 and 6.2.1 hold. Let P be the set of

all p ⊂ {2, . . . , N} where Ω̃p ̸= ∅. Then, the loop transfer function Gp(s) in (6.11)

is stable if any one of the following is satisfied:

(i) Conditions of Corollary 6.3.13 hold, i.e., Ω̃p = ∅ for all p = 2, . . . , N .

(ii) if the eigenvalues {λk(∆p)}nk=1 of the positive definite Hermitian perturbation

∆p ∈ Cn in the feedback path of loop transfer function Gp(s) for all p ∈ P

satisfy max | ln(λk(∆p))| < gp where

gp ≤ min
1≤i≤nΩ̃p

gi (6.44)

and gi = min

{
cosh−1

[
v∗
pvp + z∗pzp

2v∗
pzp

]}
, with unit vectors vp and zp satisfying

vp = −Gp(jωp)zp for all ωp ∈ Ω̃p.

Proof. Statement (i) follows from Corollary 6.3.13. On the other hand, if for any

p = 2, . . . , N the set Ω̃p ̸= ∅, then there exists a ωp ∈ Ω̃p where the system destabilizes

and a set of unit vectors vp and zp can be calculated that satisfies vp = −Gp(jωp)zp.

Moreover, from Lemma 6.3.11, there also exists a destabilizing positive definite Her-

mitian perturbation (say ∆c
p) that maps vp to zp.

For Gp(s) to be stable, gain of positive definite Hermitian ∆p in the feedback

path should be less than the smallest gain of destabilizing positive definite Hermitian

perturbation ∆c
p that maps unit vector vp to zp for all ωp ∈ Ω̃p. Further, from [176],
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the gain between two complex vectors zp and vp is given by

∣∣∣∣cosh−1

[
v∗
pvp + z∗pzp

2v∗
pzp

]∣∣∣∣.
Moreover, gain between zp and vp is also the gain of the positive definite matrix that

maps vectors zp and vp. Note that v∗
pvp and z∗pzp are positive and real, and from

Remark 6.3.12, v∗
pzp is also real and positive. Thus, cosh−1

[
v∗
pvp + z∗pzp

2v∗
pzp

]
is real and

positive. Henceforth, the smallest gain of destabilizing positive definite Hermitian

perturbation for all p ∈ P can be obtained by minimizing cosh−1

[
v∗
pvp + z∗pzp

2v∗
pzp

]
and

is given by

gp = min
i=1,2,...,nΩ̃p

{gi} (6.45)

where

gi = min

{
cosh−1

[
v∗
pvp + z∗pzp

2v∗
pzp

]}
. (6.46)

From Remark 6.3.12, gain of∆p is max | ln(λk(∆p))|. Therefore, forGp(s) to be

stable the eigenvalues of positive definite Hermitian perturbation ∆p in the feedback

path of Gp(s) should satisfy max | ln(λk(∆p))| < gp. This completes the proof.

Remark 6.3.15. Based on Theorem 6.3.14 and Remark 6.2.2, the gain margin of

the multi-agent system which is the gain of the positive definite Hermitian matrix in

the feedback path of each agents can be calculated to be

g∗ =


inf
p∈P

{
min
ωp∈Ω̃p

{
cosh−1

[
v∗
pvp + z∗pzp

2v∗
pzp

]}}
, if P ̸= ∅

∞, if P = ∅.
(6.47)

Further, if Ω̃p = ∅, it is straightforward to see that the multi-agent system is

stable if the eigenvalues {λk}nk=1 of positive definite Hermitian matrix in the feedback

path of all agents satisfy λk ∈
[
e−g∗ , eg

∗]
. Since, eigenvalues {λk}nk=1 and singular

values {σk}nk=1 of a positive definite Hermitian matrices are equivalent, we have σk ∈[
e−g∗ , eg

∗]
.
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6.3.2.2 Computational Framework to Calculate Gain Margin

In order to calculate the gain margin, it is necessary to calculate the set Ω̃p.

As stated in Lemma 6.3.11 and Remark 6.3.12, for a destabilizing positive definite

Hermitian matrix in the feedback path of Gp(jωp) to exist for any p = 2, . . . , N , v∗
p zp

must be real and positive such that vp = −Gp(jωp)zp. This leads to

Re(v∗
p zp) =

1

2
(v∗

p zp + z∗p vp)

= z∗p

[
−1

2
(Gp(jωp)

∗ +Gp(jωp))

]
zp

= z∗pXp(jωp)zp > 0.

(6.48)

and

Im(v∗
p zp) = − 1

2
j(v∗

p zp − z∗p vp)

=z∗p

[
−1

2
j (Gp(jωp)−Gp(jωp)

∗)

]
zp

= z∗pYp(jωp)zp = 0.

(6.49)

Note that, both Xp(jωp) and Yp(jωp) in (6.48) and (6.49) are Hermitian ma-

trices which can be obtained by decomposing Gp(jωp) as Gp(jωp) = X + jY such

that

X =
1

2
(Gp(jωp) +Gp(jωp)

∗) , and

Y = − 1

2
j (Gp(jωp)−Gp(jωp)

∗) .

(6.50)

Now, for ωp ∈ Ω̃p, Xp(jωp) needs to be positive definite and Yp(jωp) needs to

be have an eigenvalue equal to zero simultaneously at ωp. The detailed procedure to

calculate the set Ω̃p is discussed in Procedure 3.

Once the set Ω̃p is computed, we need to minimize
v∗
pvp + z∗pzp

v∗
pzp

at each ωp ∈ Ω̃p.

It is known that cosh is a monotonically increasing function on [0,∞); therefore,

minimizing cosh−1

[
v∗
pvp + z∗pzp

v∗
pzp

]
is same as minimizing

v∗
pvp + z∗pzp

v∗
pzp

. Let us choose

a normalization constant γ2 = v∗
pzp such that ṽp =

1

γ
vp and z̃p =

1

γ
zp. Note that
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ṽ∗
pz̃p = 1. With necessary simplifications, the minimization problem to calculate

minimum gain destabilizing ∆i can be written as

minimize ṽ∗
pṽp + z̃∗pz̃p

subject to ṽ∗
pz̃p = 1

ṽp = −Gp(jωi)z̃i.

(6.51)

As Gp(jωp)zp = −vp also implies Gp(jωp)z̃p = −ṽp, we have

ṽ∗
pṽp + z̃∗pz̃p = z̃∗pGp(jωp)

∗Gp(jωp)z̃p + z̃∗pzp

= z̃∗p(Gp(jωp)
∗Gp(jωp) + In)z̃p

(6.52)

and

ṽ∗
pz̃p = z∗pGp(jωp)

∗z̃p = z̃∗pGp(jωp)z̃p. (6.53)

The last equality follows from Lemma 6.3.12. Now the problem of calculating

gain margin is converted to a constrained minimization problem:

minimize [z̃∗p(Gp(jωp)
∗Gp(jωp) + In)z̃p]

subject to Re[z̃∗pGp(jωp)z̃p] = 1

Im[z̃∗pGp(jωp)z̃p] = 0.

(6.54)

With U = Gp(jωp), V = Gp(jωp)
∗ Gp(jωp) and w = z̃p, optimization problem

in (6.54) can be rewritten as

minimize [w∗Vw]

subject to w∗Uw = 1

w∗(jI)Uw = 0.

(6.55)

It is straightforward to show that the complex optimization problem in (6.55)

is equivalent to the following optimization problem.
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minimize

(aT,bT)


 Re(V) Im(V)

−Im(V) Re(V)

+ I2n


a

b




subject to

(aT,bT)

 Re(U) Im(U)

−Im(U) Re(U)


a

b

 = 1

(aT,bT)

 Re(jI) Im(jI)

−Im(jI) Re(jI)


 Re(U) Im(U)

−Im(U) Re(U)


a

b

 = 0

a,b ∈ Rn .

(6.56)

Now, to further simplify (6.56), let us define the following

Q =

 Re(U) Im(U)

−Im(U) Re(U)

 , R =

 Re(V) Im(V)

−Im(V) Re(V)


y =

a

b

 , J =

 Re(jI) Im(jI)

−Im(jI) Re(jI)

 .

(6.57)

To that end, the optimization problem in (6.56) becomes

minimize yT (R+ I2n)y

subject to yTQy = 1

yTJQy = 0

y ∈ R2n .

(6.58)

The optimization problem in (6.58) can be equivalently written as unconstrained

minimization problem by defining the Lagrangian as in (6.28) and similar KKT con-

ditions as in (6.29) and (6.30) can be derived. Once vector y is obtained by solving
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Procedure 3 Computation of g∗

1: Calculation of set Ω̃p for all p = 2, . . . , N :

(i) Find X(jωp) and Y(jωp) from (6.50) Solve det(Y(jωp)) = 0 for all real

roots of ωp. Let ωk, k ⊂ {1, 2, . . . } denote all real roots ωp.

(ii) Calculate the eigenvalues of Y(jωp) at each ωk and at 0.

(iii) If for any ω ∈ (ω(k−1)p , ωkp ] with ω0p = 0, λmax(Y(jω))λmin(Y(jω)) ≤ 0 and

Xp(jω) is positive semidefinite, then (ω(k−1)p , ωkp ] ⊂ Ω̃p.

(iii) The set Ω̃p can be obtained as Ω̃p = ∪(ω(k−1)p , ωk).

(iv) If for any p = 2, 3, . . . , N , condition (iii) does not hold, then Ω̃p = ∅.

2: If for any p = 2, 3, . . . , N , Ω̃p ̸= ∅, solve optimization problem in (6.58) and

compute z̃p and ṽp using (6.59).

3: Compute g∗ using (6.47).

the optimization problem in (6.58), the vectors a ∈ Rn and b ∈ Rn can be calculated.

Finally, the vector w ∈ Cn or equivalently z̃p ∈ Cn and ṽp ∈ Cn can be obtained as

z̃p = a+ jb

ṽp = −Gp(jωp)z̃p.

(6.59)

The procedure to compute the gain margin of the multi-agent system is dis-

cussed in Procedure 3.
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6.4 Simulation Results

6.4.1 Example 1

To demonstrate the preceeding analysis, we consider a multi-agent system with

following system matrices [177]:

A =

−2 2

−1 1

 , B =

1
0

 . (6.60)

The choice of A and B satisfies Assumption 6.1.1. Let us now choose a stabi-

lizing feedback gain, K =

[
−2 −0.5

]
such that A−BK is Hurwitz. We consider a

network of 3 agents with following graph Laplacian matrix,

L =


0 0 0

−1 2 −1

0 −1 1

 . (6.61)

In order to calculate the value of coupling gain c we follow the procedure de-

scribed in 6.1.1 which is taken from [162, 177]. The characteristic polynomial of

A − σBK is calculated to be p(s) = s2 + (1 − 2x − j2y)s + (5/2)x + j(5/2)y with

σ = x + jy. From Lemma 4 of [177], A − σBK is stable if and only if 1 − 2x > 0

and (25/2)(1 − 2x)2x2 − 5y2(1 − 2x) − (25/4)y2 > 0; which describes the consensus

region S(x, y) = {x+ jy | x < 0.5; (25/2)(1− 2x)2x2 − 5y2(1− 2x)− (25/4)y2 > 0}.

From [162], for the agents to reach consensus, the coupling gain c is to be selected

such that cλp, p = 2, 3, . . . , N belong to the consensus region S(x, y) where λp are

eigenvalues of Laplacian matrix. The non-zero eigenvalues of the Laplacian matrix

are calculated to be: λ2 = 0.3820 and λ3 = 2.6180. Thus, c < 0.1910 guarantees the

consensus. For the simulation, we consider c to be 0.15.

Based on the framework provided in Sections 6.3.1 and 6.3.2, the phase and

gain margins are calculated to be ϕ∗ = 0.1820 radians and g∗ = 0.4025, respectively.
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In other words, any unitary matrix whose phase is less than 0.1820 radians in the

feedback path will not destabilize the system. From Lemma 6.3.2 the stabilizing

boundary of phase is symmetric about the origin; thus the overall phase margin

of the multi-agent system is calculated to be [−0.1820, 0.1820] radians. Moreover,

as stated in Remark 6.3.15, any positive definite Hermitian matrix in the feedback

path of loop transfer function of each agents whose singular values lie within σ∗ =[
e−g∗ , eg

∗]
= [0.6686, 1.4956] would guarantee the stability of multi-agent system.

Further, we compare our results with the conventional disk-based gain and disk-

based phase margins that have been widely utilized in the literature as robustness

measure of a general MIMO system and can be obtained from the sensitivity and

complimentary sensitivity functions of the system [113, 114, 178]. To compare the

conservativeness and accuracy, the obtained gain and phase margins from the pro-

posed approach are compared with the disk-based gain and disk-based phase margins

obtained from sensitivity and complimentary sensitivity functions of the multi-agent

system. The disk-based gain margin in terms of singular values of perturbation matrix

is calculated to be σ̃∗ = [0.5143, 1.0820] and the disk-based phase margin is calculated

to be [−0.0788, 0.0788] radians.

To verify the accuracy of the proposed framework, we construct a matrix ∆ ∈

C2 which can be polar decomposed as follows

∆ = RU (6.62)

where R is the positive definite Hermitian and U is a unitary matrix. As discussed

in Lemma 6.3.2, we can construct U as

U = Pe{diag(jϕ1, jϕ2)}P∗ (6.63)
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where P is any unitary matrix. To construct U, we choose the following unitary P

matrix

P =

cos(0.2) − sin(0.2)

sin(0.2) cos(0.2)

 (6.64)

and the phases of the unitary matrix are chosen to be ϕ1 = 0.18 radians and ϕ2 = 0.16

radians.

On the other hand the positive definite Hermitian matrix R is chosen to be

R =

 1 −0.15

−0.15 1

 (6.65)

whose singular values are σ = [0.85, 1.15]. This yields

∆ =

 0.9841 + j0.1777 −0.1487− j0.0202

−0.1483− j0.0229 0.9872 + j0.1595

 . (6.66)

Note that σ∗ ∋ σ /∈ σ̃∗, and ϕ∗ > ϕ1 > ϕ̃∗ and ϕ∗ > ϕ2 > ϕ̃∗. Figure 6.3

shows the states of agents with ∆ from (6.66) whose gain and phase are within the

margins provided by the proposed approach but not within the margins provided by

the disk-based margin.

Moreover, for the multi-agent system with input delay and with same system

matrices as in (6.60) and graph Laplacian as in (6.61), the time delay margin is

calculated to be τ ∗ = 0.1978 seconds. Figure 6.3 shows the states of agents with a

delay of τ = 0.18 seconds in the inputs of three agents.

To illustrate the effectiveness of the proposed approach, we use different graph

structures for the agents with the same system matrices as in (6.60) and with feedback
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Figure 6.2: State trajectories of agents with feedback perturbation ∆ from (6.66)

gain matrix K =

[
−2 −0.5

]
. For a directed cycle among 4 agents with the graph

Laplacian matrix as

L =



1 0 0 −1

−1 1 0 0

0 −1 1 0

0 0 −1 1


(6.67)

, the distributed consensus protocol achieves consensus for any c < 0.5. With c =

0.15, we compute gain margin and phase margin from the proposed approach to be

[0.3355, 2.9805] and [−0.7995, 0.7995] radians, respectively. On the other hand, the

disk-based gain and disk-based phase margins are computed to be [0.676, 1.4792] and
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Figure 6.3: State trajectories of agents with τ = 0.18 seconds

[−0.3819, 0.3819] radians, respectively. Moreover, the input delay margin from the

proposed approach is computed to be 2.05091 seconds.

Further, for an undirected cycle among 5 agents with the graph Laplacian ma-

trix

L =



2 −1 0 0 −1

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

−1 0 0 −1 2


, (6.68)
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the distributed consensus protocol achieves consensus for any c < 0.1382. With

c = 0.12, the gain margin and phase margin from the proposed approach is calculated

to be [0.6673, 1.4986] and [−0.1066, 0.1066] radians, respectively. On the other hand,

the disk-based gain and disk-based phase margins are computed to be [0.6980, 1.0472]

and [−0.0461, 0.0461] radians, respectively. Moreover, the input delay margin from

the proposed approach is computed to be 0.1066 seconds. To that end, the proposed

approach provides less conservative and accurate gain and phase margins within which

the multi-agent system remains stable and achieves consensus, compared to disk-based

gain and phase margins.

6.4.2 Example 2

In order to test the methodology for the delay margin, we consider the example

presented in [106,115]. Consider a multi-agent system with following system matrices

A =


0.2 0 0

0 0 1

1 −1 0

 , B =


1 0

0 1

1 0

 , (6.69)

and the state feedback controller given by

K = −

−0.2694 0.0402 −0.0899

0.0386 −0.2857 −0.1238

 . (6.70)

A group of five agents is considered with following graph Laplacian matrix

L =



2 −1 0 0 −1

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

−1 0 0 −1 2


. (6.71)
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Figure 6.4: State (x1) trajectories of agents with τ = 0.61 seconds

The results are summarized as follows:

(i) By applying Theorem 6.3.10, we obtain the delay margin to be τ ∗ = 0.62

seconds. This is almost 1.7 times the value of 0.35 seconds reported in [115].

To verify the accuracy of the obtained delay margin, we present simulation

results with τ = 0.61 seconds in Figs. 6.4 and 6.5. The framework provided

in [115] uses Lyapunov-Krasovskii approach and the delay margin is obtained as

the solution of a linear matrix inequality which results in a conservative delay

margin.

(ii) For the multi-agent system in consideration, the delay margin of 0.901 seconds

is reported in [106]. The framework presented in [106] uses cluster treatment
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Figure 6.5: State (x2 and x3) trajectories of agents with τ = 0.61 seconds

of characteristic roots which provides exact delay margin. Although the result

obtained from the proposed methodology in this work is more conservative

than that presented in [106], it should be noted that, the approach in [106]

is only suitable for the multi-agent systems in an undirected graph topology

(with symmetric graph Laplacian matrix). On the other hand, the framework

to compute delay margin proposed in this work is applicable to multi-agent

systems in both directed (see Example 1) and undirected graph topology. In

addition to that, we provide a unified framework to compute gain margin, phase

margin and input delay margin of multi-agent systems.
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6.5 Chapter Summary

In this chapter, we have studied the stability of the multi-agent system under

gain, phase, and input delay perturbations where each agent in the graph-based inter-

connection network is a linear time-invariant multi-input multi-output system. Based

on the consensus protocol under a static graph communication topology, we provide a

computational strategy to compute the gain, phase and input delay margins for multi-

agent systems using the approach of multiplicative perturbation. Conditions for the

gain, phase and delay independent stability of multi-agent system are discussed. To

illustrate the effectiveness of the proposed framework, a numerical example with var-

ious graph structures was presented which depicted the lower conservativeness of the

proposed approach as compared to disk-based gain and phase margins.
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Chapter 7

Delay Margin for Linear Multi-Agent Systems With Non-Uniform Time-Varying

Communication Delays

In this chapter we study the consensus problem of high-order linear multi-agent

systems subject to non-uniform time-varying delays. We first design a distributed

control protocol for the agents in directed graph topology and provide an equivalent

stability problem to be solved that guarantees the state consensus in the group of

agents. Next, a delay-dependent consensus criterion is provided in the form of a

matrix inequality by exploiting the Lyapunov-Krasovskii approach. The solution to

the matrix inequality provides the upper bound of the multiple delays that ensure the

consensus in the multi-agent system. The obtained theoretical result is then applied

to achieve synchronization in the angle of attack and pitch rate of multiple F-16

VISTA aircraft subject to time-varying non-uniform delays.

The chapter is organized as follows. Section 7.1 describes the preliminaries and

formulates the problem in consideration. Section 7.2 discusses the control protocol

for multi-agent systems with non-uniform time-varying delays. The main results

concerning the delay-margin characterization for the multi-agent system are presented

in Section 7.3. A numerical example is presented in Section 7.4 and Section 7.5

provides the concluding remarks.
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7.1 Preliminaries and Problem Formulation

7.1.1 Preliminaries

Lemma 7.1.1. [179] For any constant matrix X ∈ Rn×n, X = XT > 0, a scalar

γ > 0, and a vector function ż : [−γ, 0] → Rn, following integral inequality holds

−γ
∫ t

t−γ

ż(t+ θ)TXż(t+ θ)dθ ≤

 z(t)

z(t− γ)


T −X X

∗ −X


 z(t)

z(t− γ)

 . (7.1)

Lemma 7.1.2. [180] For any constant matrix Y ∈ Rn×n, Y = YT > 0, scalars h1 ≤

τ(t) ≤ h2 and a vector function ż : [−h2,−h1] → Rn, following integral inequality

holds

−
(
h2 − h1

) ∫ t−h1

t−h2

żT(s) Y ż(s) ds ≤


z (t− h1)

z(t− τ(t))

z (t− h2)


T 

−Y Y 0

∗ −2Y Y

∗ ∗ Y



z (t− h1)

z(t− τ(t))

z (t− h2)

 .
(7.2)

Lemma 7.1.3. (Lyapunov-Krasovskii Stability Theorem) [168] Consider the follow-

ing time-delay system

ẋ(t) = f (t, x(t)) , ∀t ≥ t0

x(t0 + θ) = ϕ(θ), θ ∈ [−h, 0]
(7.3)

where f : R ∈ C([−h, 0],Rn) → Rn is continuous and is bounded for all bounded

values of its arguments, h > 0 is the delay, and ϕ ∈ C([−h, 0],Rn) is the functional of

initial conditions. Assume f(t, 0) = 0 such that (7.3) has a trivial solution x(t) = 0.

Let u, v, and w : R+ → R+ be continuous and increasing functions such that u(θ)

and v(θ) are strictly positive for all θ > 0, and u(0) = v(0) = 0. If there exists a

continuous and differentiable functional V : R× C([−h, 0],Rn) → R+ such that :

a) u(∥ϕ(0)∥) ≤ V (t, ϕ) ≤ v(∥ϕ∥c),
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b) V̇ (t, ϕ) ≤ −w(∥ϕ(0)∥).

Then the trivial solution x(t) = 0 is uniformly stable. If w(θ) > 0 for θ > 0, the

the trivial solution is uniformly asymptotically stable. In addition, if limθ→∞ u(θ) =

∞, then the trivial solution is globally uniformly asymptotically stable.

7.1.2 Problem Formulation

Let us consider a multi-agent system comprising of N agents with identical

dynamics. The dynamics of the ith agent is considered to be as follows:

ẋi(t) = Axi(t) +Bui(t), i = 1, . . . , N (7.4)

where A ∈ Rn×n and B ∈ Rn×m are the system matrices with xi ∈ Rn as the state

and ui ∈ Rm as the input of the ith agent.

Assumption 7.1.1. (A,B) is stabilizable.

It is assumed that the agents share the state information among each other

in a predefined graph topology. The graph theoretical framework-based multi-agent

system’s modeling is such that, each node in the graph represents the agents and

the edge connecting the two neighboring nodes represent the communication between

the agents. In this work, we make following assumption on the underlying graph

topology.

Assumption 7.1.2. Throughout the chapter, the graph is assumed to be connected

with at least one directed spanning tree.

The objective of this chapter is to design a distributed consensus control pro-

tocol for the multi-agent system in (7.4) subject to non-uniform time-varying delays.

For clarity, we define non-uniform delays in the context of multi-agent systems as

follows.

Definition 7.1.1. (Non-uniform delays)
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i j k

Figure 7.1: Communication graph

Consider a multi-agent system of three agents (i, j and k) with a graph topology

as shown in Fig. 7.1. Let τij, τji and τjk be the delays in sharing the state information

from agent i to j, j to i and j to k, respectively. The delays in sharing the state

information among the agents with the underlying graph topology in Fig. 7.1 are said

to be non-uniform if τij ̸= τji ̸= τjk.

7.2 Distributed Control Protocol

With Assumption 7.1.1, let each of the agents i = 1, . . . , N have identical

feedback controller K ∈ Rm×n such that A−BK is Hurwitz. We consider following

distributed control protocol based on the relative states between neighboring agents:

ui(t) = cK

[∑
j∈Ni

aij(xj(t− τij(t))− xi(t− τij(t))

]
(7.5)

where τij(t) is the time-delay in the communication between agents i and j and c > 0

is the coupling gain. Let L ∈ RN×N be the Laplacian matrix associated with the

underlying graph topology between the agents. In (7.5), the value of c is chosen such

that the consensus among the agents is achieved for delay-free multi-agent system,

i.e. A− cλpBK for p = 2, 3, . . . , N are Hurwitz, where λp are the eigenvalues of the

Laplacian matrix. In this chapter, we select c based on the consensus region approach

discussed in [162].

We assume the time delay τij(t) and the delay derivatives τ̇ij(t) to be bounded

for all i, j = 1, . . . , N and for all t > 0 such that τij(t) ≤ τ̄ij, and τ̇ij(t) ≤ µij < 1.

Moreover, in reference to the Definition 7.1.1, the time delay is dependent on the
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direction of the information flow, i.e, τij ̸= τji. Therefore, a unique time-delay is

associated with each edge in the graph. Let r ≤ N(N − 1) be the total number of

edges in the graph and τk(t), k = 1, . . . r be the delay associated with the kth edge.

Let Lk ∈ RN be the Laplacian matrix of the subgraph associated with the time delay

τk such that L =
∑r

k=1 Lk. In order to compute the single index k for time-delay τij

with double indices, Procedure 4 is used.

Procedure 4 Computation of k

1: Initialize: k = 0

2: for i = {1, 2, . . . , N} do

3: for j ∈ Ni do

4: k = k + 1

5: τk = τij

6: end for

7: end for

Now, with the distributed control protocol in (7.5), the closed-loop dynamics

of agent i, for all i = 1, . . . , N can be written as

ẋi(t) = Axi(t) + cBK

[∑
j∈Ni

aij(xj(t− τij(t))− xi(t− τij(t))

]
(7.6)

Denote x = col(x1,x2, . . . ,xN) ∈ RNn as the global state vector. Now the

global state dynamics can be written as

ẋ(t) = (IN ⊗A)x(t)−
r∑

k=1

(Lk ⊗BK)x(t− τk(t)). (7.7)
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7.3 Main Results

This section provides the delay-dependent stability conditions for the consen-

sus in the multi-agent system in (7.7). In order to derive the stability conditions,

the consensus problem is transformed to an equivalent stability problem using the

following Lemma.

Lemma 7.3.1. Suppose the graph topology of N agents satisfy Assumption 7.1.2.

Then, the multi-agent system in (7.7) reaches consensus asymptotically if the following

equivalent system is asymptotically stable

ż(t) = (IN−1 ⊗A) z(t)−
r∑

k=1

(
L̄k ⊗BK

)
z (t− τk(t)) (7.8)

where z = col(z1, z2, . . . , zN−1) ∈ R(N−1)n is the global consensus error such that

zi = x1 − xi+1 ∈ Rn, (i = 1, · · · , N − 1). Moreover, L̄k = cULkW ∈ R(N−1)×(N−1)

with U =

[
1N−1 −IN−1

]
∈ R(N−1)×N , and W =

 0T
N−1

−IN−1

 ∈ RN×(N−1).

Proof. Since zi = x1 − xi+1, (i = 1, · · · , N − 1). z = col(z1, z2, . . . , zN), and U =[
1N−1 −IN−1

]
, one can write

z(t) = (U⊗ In)x(t). (7.9)

Also with W =

 0T
N−1

−IN−1

, we have UW = IN−1; therefore, the global state

vector of the multi-agent system in (7.7) can be written as x(t) = (W ⊗ In) z(t).

Differentiating (7.9) with respect to time, we obtain

ż(t) = (U⊗ In)

[
(IN ⊗A) (W ⊗ In) z(t)−

r∑
k=1

c (Lk ⊗BK) (W ⊗ In) z(t− τk)

]
(7.10)

Using the Kronecker identities, (7.10) can be rewritten as

ż(t) = (UW ⊗A) z(t)−
r∑

k=1

[c (ULkW)⊗BK] z(t− τk) (7.11)
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With UW = IN−1 and L̄k = cULkW, we obtain (7.8). Note that, as z(t) → 0,

xi → x1, i = 2, . . . , N .

In order to derive the delay-dependent stability conditions of the consensus

error system in (7.8), we introduce Theorem 7.3.2 using the Lyapunov-Krasovskii

approach. For notational simplicity, we denote identity matrix IN−1 with I.

Theorem 7.3.2. Suppose the graph topology of N agents satisfy Assumption 7.1.2.

Then, the multi-agent system in (7.7) reaches consensus asymptotically for any τk(t)

satisfying τk(t) ≤ τ̄k, and τ̇k(t) ≤ µk < 1 (k = 1, . . . , r) if there exists P = PT >

0 ∈ Rn×n, Qk = QT
k > 0 ∈ Rn×n, Rk = RT

k > 0 ∈ Rn×n, k = 1, . . . , r and

Skj = ST
kj > 0 ∈ Rn×n, k = 1, . . . , r− 1, j = k+1, k+2, . . . , r such that the following

matrix inequality holds

Π+ ξTΓξ < 0 (7.12)

where Π ∈ R(N−1)n(1+2r)×(N−1)n(1+2r) is defined as

Π =



Π1,1 Π1,2 0 Π1,4 0 · · · Π1,2r 0

∗ Π2,2 I⊗R1 I⊗ S12 0 · · · I⊗ S1r 0

∗ ∗ −I⊗R1 0 0 · · · 0 0

∗ ∗ ∗ Π4,4 I⊗R2 · · · I⊗ S2r 0

∗ ∗ ∗ ∗ −I⊗R2 · · · 0 0

...
...

...
...

...
...

...
...

∗ ∗ ∗ ∗ ∗ · · · Π2k,2k I⊗Rr

∗ ∗ ∗ ∗ ∗ · · · ∗ −I⊗Rr



. (7.13)

such that
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Π1,1 = I⊗

[
ATP+PA+

r∑
k=1

(Qk −Rk)

]
,

Π1,2k = (I⊗Rk)−
(
L̄k ⊗PBK

)
,

Π2k,2k = − I⊗
[
αkQk + 2Rk +

k−1∑
j=1

Sjk +
r∑

j=k+1

Skj

]
αk = 1− µk.

(7.14)

Moreover, the matrices Γ ∈ Rn(N−1)×n(N−1) and ξ ∈ Rn(N−1)×(N−1)n(1+2r) are

defined as follows

Γ = I⊗

[
r∑

k=1

τ̄ 2kRk +
r−1∑
k=1

r∑
j=k+1

(τ̄k − τ̄j)
2 Skj

]

ξ =

[
(I⊗A) −(L̄1 ⊗BK) 0 · · · −(L̄r ⊗BK) 0

]
.

(7.15)

Proof. Let us consider the following Lyapunov-Krasovskii functional

V (zt, t) = V1 (zt, t) + V2 (zt, t) + V3 (zt, t) + V4 (zt, t) (7.16)

such that

V1 (zt, t) = zT(t) (I⊗P) z(t),

V2 (zt, t) =
r∑

k=1

[∫ t

t−τk(t)

zT(s) (I⊗Qk) z(s)ds

]
,

V3 (zt, t) =
r∑

k=1

[
τ̄k

∫ 0

−τ̄k

∫ t

t+θ

żT(s) (I⊗Rk) ż(s)dsdθ

]
,

V4 (zt, t) =
r−1∑
k=1

r∑
j=k+1

[
(τ̄k − τ̄j)

∫ −τ̄j

−τ̄k

∫ t

t+θ

żT(s) (I⊗ Skj) ż(s)dsdθ

]
(7.17)

where zt = z(t), P = PT > 0 ∈ Rn×n, Qk = QT
k > 0 ∈ Rn×n, Rk = RT

k > 0 ∈ Rn×n,

k = 1, . . . , r and Skj = ST
kj > 0 ∈ Rn×n, k = 1, . . . , r−1, j = k+1, k+2, . . . , r. It can

be easily verified that, the given Lyapunov-Krasovskii functional satisfies condition (a)

in Lemma 7.1.3. The time-derivative of the components of the Lyapunov-Krasovskii

functional along the trajectory of (7.8) can be written as
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V̇1 (zt, t) = 2zT(t) (I⊗P)

[
(I⊗A) z(t)−

r∑
k=1

(
L̄k ⊗BK

)
z (t− τk(t))

]

V̇2 (zt, t) =
r∑

k=1

[
zT(t) (I⊗Qk) z(t)− (1− τ̇k(t)) z

T (t− τk(t)) (I⊗Qk) z (t− τk(t))
]

V̇3 (zt, t) =
r∑

k=1

[
τ̄k

∫ t

t−τ̄k

żT(t) (I⊗Rk) ż(t)dθ

]
−

r∑
k=1

[
τ̄k

∫ t

t−τ̄k

żT(t+ θ) (I⊗Rk) ż(t+ θ)dθ

]

= żT(t)

[
r∑

k=1

τ̄ 2k (I⊗Rk)

]
ż(t)−

r∑
k=1

[
τ̄k

∫ t

t−τ̄k

żT(t+ θ) (I⊗Rk) ż(t+ θ)dθ

]

V̇4 (zt, t) =
r−1∑
k=1

r∑
j=k+1

[
(τ̄k − τ̄j)

∫ t−τ̄j

t−τ̄k

żT(t) (I⊗ Skj) ż(t)dθ

]

−
r−1∑
k=1

r∑
j=k+1

[
(τ̄k − τ̄j)

∫ t−τ̄j

t−τ̄k

żT(t+ θ) (I⊗ Skj) ż(t+ θ)dθ

]

= żT(t)
r−1∑
k=1

r∑
j=k+1

[
(τ̄k − τ̄j)

2 (I⊗ Skj)
]
ż(t)

−
r−1∑
k=1

r∑
j=k+1

[
(τ̄k − τ̄j)

∫ t−τ̄j

t−τ̄k

żT(t+ θ) (I⊗ Skj) ż(t+ θ)dθ

]
(7.18)

With Γ as defined in (7.15), the derivative of the Lyapunov-Krasovskii func-

tional can be written as

V̇ (zt, t) = 2zT(t) (I⊗P)

[
(I⊗A) z(t)−

r∑
k=1

(
L̄k ⊗BK

)
z (t− τk(t))

]

+
r∑

k=1

[
zT(t) (I⊗Qk) z(t)− (1− τ̇k(t)) z

T (t− τk(t)) (I⊗Qk) z (t− τk(t))
]

+ żT(t)Γż(t)−
r∑

k=1

[
τ̄k

∫ t

t−τ̄k

żT(t+ θ) (I⊗Rk) ż(t+ θ)dθ

]

−
r−1∑
k=1

r∑
j=k+1

[
(τ̄k − τ̄j)

∫ t−τ̄j

t−τ̄k

żT(t+ θ) (I⊗ Skj) ż(t+ θ)dθ

]
.

(7.19)
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Since the delays and the delay derivatives are assumed to be bounded such that

τk(t) ≤ τ̄k for all t and k, τ̇k(t) ≤ µk < 1, for all k, the derivative of the Lyapunov-

Krasovskii functional in (7.19) can be recast as following inequality

V̇ (zt, t) ≤ 2zT(t) (I⊗P)

[
(I⊗A) z(t)−

r∑
k=1

(
L̄k ⊗BK

)
z (t− τk(t))

]
+

r∑
k=1

[
zT(t) (I⊗Qk) z(t)− αkz

T (t− τk(t)) (I⊗Qk) z (t− τk(t))

]
+ żT(t)Γż(t)−

r∑
k=1

[
τ̄k

∫ t

t−τ̄k

żT(t+ θ) (I⊗Rk) ż(t+ θ)dθ

]

−
r−1∑
k=1

r∑
j=k+1

[(
τk(t)− τj(t)

) ∫ t−τj(t)

t−τk(t)

żT(t+ θ) (I⊗ Skj) ż(t+ θ)dθ

]
.

(7.20)

Further, using Kronecker identities, we can express the derivative of the Lyapunov-

Krasovskii functional as

V̇ (zt, t) ≤ zT(t)

[
I⊗

(
PA+ATP+

r∑
k=1

Qk

)]
z(t)− 2zT(t)

[ r∑
k=1

(
L̄k ⊗PBK

)
z (t− τk(t))

]
−

r∑
k=1

[
zT (t− τk(t)) (I⊗ αkQk) z (t− τk(t))

]
+ żT(t)Γż(t)

−
r∑

k=1

[
τ̄k

∫ t

t−τ̄k

żT(t+ θ) (I⊗Rk) ż(t+ θ)dθ

]

−
r−1∑
k=1

r∑
j=k+1

[(
τk(t)− τj(t)

) ∫ t−τj(t)

t−τk(t)

żT(t+ θ) (I⊗ Skj) ż(t+ θ)dθ

]
.

(7.21)

Using (7.8), żT(t)Γż(t) in (7.21) can be written as

żT(t)Γż(t) = zT(t)(I⊗A)TΓ(I⊗A)z(t)− zT(t)(I⊗A)T
r∑

k=1

[ (
L̄k ⊗BK

)
z (t− τk(t))

]
−

r∑
k=1

[
zT(t− τk)

(
L̄k ⊗BK

)T ]
Γ (I⊗A)z(t)

+
r∑

k=1

[
zT(t− τk)

(
L̄k ⊗BK

)T ]
Γ

r∑
k=1

[ (
L̄k ⊗BK

)
z(t− τk)

] (7.22)
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Now, using Lemma 7.1.1 with X=I⊗Skj, one can obtain the following integral

inequality

− (τk(t)− τj(t))

∫ t−τj(t)

t−τk(t)

żT(t+ θ) (I⊗ Skj) ż(t+ θ)dθ

≤

z (t− τj(t))

z (t− τk(t))


T − (I⊗ Skj) (I⊗ Skj)

∗ − (I⊗ Skj)


z (t− τj(t))

z (t− τk(t))

 .
(7.23)

Further, using Lemma 7.1.2 with Y = I⊗Rk, following integral inequality can

be obtained

−τ̄k
∫ t

t−τ̄k

żT(t+ θ) (I⊗Rk) ż(t+ θ)dθ

≤


z(t)

z (t− τk(t))

z (t− τ̄k)


T 

− (I⊗Rk) (I⊗Rk) 0

∗ −2 (I⊗Rk) (I⊗Rk)

∗ ∗ − (I⊗Rk)




z(t)

z (t− τk(t))

z (t− τ̄k)

 .
(7.24)

By defining the following augmented error vector,

Σ(t) = col
(
z(t), z (t− τ1(t)) , z (t− τ̄1) , · · · , z (t− τr(t)) , z (t− τ̄r)

)
, (7.25)

and substituting (7.23), (7.24) and (7.22) in (7.21), one can express the derivative of

the Lyapunov-Krasovskii functional in a compact form as follows

V̇ (zt, t) ≤ ΣT (t)
[
Π+ ξTΓξ

]
Σ(t) (7.26)

where ξ and Π are as defined in (7.15) and (7.13), respectively. Using the Lyapunov-

Krasovskii stability theorem (Lemma 7.1.3), we can conclude that the system in

(7.8) achieves asymptotic stability for τk ≤ τ̄k, for all k = 1, . . . , r if the inequality[
Π+ ξTΓξ

]
< 0 holds. Moreover, using Lemma 7.3.1, the multi-agent system in

(7.7) achieves consensus asymptotically. This concludes the proof.
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Remark 7.3.3. The bilinear matrix inequality (BMI) in (7.12) does not have any

analytical solution and must be solved numerically to obtain the delay bounds τk,

k = 1, . . . , r and the weighting matrices. The BMI can be solved using local BMI

solvers such as PENBMI [181] from PENOPT.

7.4 Simulation Results

To demonstrate the preceeding analysis, we consider a group of multiple F-16

VISTA aircraft with short-period dynamics. The states of the vehicles are represented

by x = [α q]T, where α is the angle of attack and q is the pitch rate. The control,

u = δe is the elevator deflection. The standard short period equations of motion of

the plant can be modeled as [182],

α̇
q̇

 =

Zα 1

Mα Mq


α
q

+

Zδe

Mδe

 δe =⇒ ẋ = Ax+Bu (7.27)

where Zα, Mα, and Mq are the dimensional stability derivatives; Zδe and Mδe are

the dimensional control derivatives for the longitudinal motion of the aircraft. It is

assumed that α is a surrogate for the flight speed, and minor adjustments to the

speed at trim can be made using the elevator input.

The aircraft are assumed to be operating at an altitude of 25000 ft. with Mach

number of 0.45. At this flight condition, the dimensional derivatives of the aircraft

are obtained to be Zα = −0.3809, Mα = −0.0195, Mq = −0.4587, Zδe = −0.0624,

and Mδe = −3.5020 [182].

The choice ofA and B satisfies Assumption 7.1.1. The standard LQR controller

is designed for each vehicle using weighting matrices Q = I2 and R = 1 such that

A−BK is Hurwitz. We consider a network of 4 agents in a directed path topology
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4 3

21

Figure 7.2: Communication graph among the agents

as depicted in Fig. 7.2. The graph Laplacian matrix of the communication graph can

be written as follows

L =



0 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1


. (7.28)

The distributed control protocol is designed as discussed in Section 7.2. In

order to calculate the value of coupling gain c, we follow the procedure described

in [162,177]. For the simulation, we consider c = 0.1 which guarantees the consensus

in the delay-free multi-agent system.

For the graph topology in Fig. 7.2, the total number of edges r = 3 and the

three Laplacian matrices of the subgraph associated with the time delay τk, k = 1, 2, 3

are computed as

L1 =



0 0 0 0

−1 1 0 0

0 0 0 0

0 0 0 0


, L2 =



0 0 0 0

0 0 0 0

0 −1 1 0

0 0 0 0


, and L3 =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 −1 1


. (7.29)
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Figure 7.3: State trajectories of agents with τ1 = 1.09 s, τ2 = 0.76 s, and τ3 = 0.76 s.

For the simulation, the maximum bounds on the delay derivatives are assumed

to be: µ1 = 0.7, µ2 = 0.8, and µ3 = 0.9. Upon solving the matrix inequality in

(7.12), we obtain maximum delay bounds to be τ̄1 = 1.0935 s, τ̄2 = 0.7682 s, and

τ̄3 = 0.7677 s for the angle of attack and pitch rate consensus among the four F-16

VISTA aircraft.

To demonstrate the accuracy of the proposed approach, we simulate the trajec-

tories of the four agents with proposed control protocol and delay values of τ1 = 1.09

s, τ2 = 0.76 s, and τ3 = 0.76 s. Figure 7.3 depicts the angle of attack and pitch

rate trajectories of the four F-16 VISTA agents. Clearly, the agents have achieved
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Table 7.1: Delay margin associated with each edge of various graph topologies

Type r τ̄21 τ̄31 τ̄12 τ̄32 τ̄13 τ̄23
Directed path 2 - - 0.9972 - - 1.0122
Directed Cycle 3 - 0.5022 0.5864 - - 0.5264
Undirected Path 4 0.2760 - 0.2928 0.2825 - 0.2829
Undirected Cycle 6 0.1008 0.1008 0.1012 0.1012 0.1012 0.1012

consensus in the angle of attack and pitch rate with proposed control protocol and

with delay values lower than the delay bounds.

Further, we also compute the maximum consensuable delay bounds for the

multi-agent system with 3 agents communicating in various graph topologies (directed

path, directed cycle, undirected path, and undirected cycle). The maximum bounds

on the delay derivatives are assumed to be µi = 0.6, for all i = 1, . . . , r. The delay

bounds (for consensus) associated with each edge of various graph topologies are

reported in the Table 7.1 (the delay bounds are presented in double indexed notation

to maintain notational uniformity among all the graph structures) . It can be inferred

that the edges in the directed path have higher delay robustness as compared to the

edges in directed cycle, undirected path, and directed cycle. The undirected cycle is

observed to have edges with smallest delay robustness as compared to other graph

structures listed in Table 7.1.

7.5 Chapter Summary

In this chapter, we have studied the consensus condition for high-order linear

multi-agent system with non-uniform, time-varying delays among the agents. First,

a distributed control protocol was designed for the multi-agent system with delay

and subsequently, the problem of state consensus among the agents was transformed

to an equivalent problem of stability of the consensus error. Then, using Lyapunov-
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Krasovskii approach, we derive delay dependent stability criteria to characterize the

delay margin for multi-agent system with non-uniform time-varying delays. Numer-

ical results demonstrated that, the edges in the directed path have higher delay ro-

bustness as compared to the edges in directed cycle, undirected path, and directed

cycle.

200



Chapter 8

Summary, Future Work, and Closing Remarks

In this dissertation, we have studied the uncertainty propagation in dynamical

systems subject to initial condition and parametric uncertainties governed by different

distribution types. The uncertainty propagation was carried out in the framework

of generalized polynomial chaos expansion in Chapter 2. We proposed the mixed

sparse grid sampling technique in the pseudospectral collocation scheme to employ

generalized polynomial chaos expansion for stochastic dynamical systems. Further,

we compared the computational efficacy of the proposed technique to various other

sampling techniques in the existing literature by studying the uncertainty propaga-

tion in various benchmark problems. In addition to that, sensitivity of the system

output to the input uncertainties was studied using the generalized polynomial chaos

expansion framework.

In Chapter 3, novel robust control algorithms were developed for stochastic lin-

ear systems subject to parametric uncertainties. The controllers have been designed

to minimize finite horizon and infinite horizon expectation performance indices. In

particular, feedback control laws were developed using generalized polynomial expan-

sion technique to stabilize the stochastic plant for all variations of the random variable

within the domain of its probability density function. Subsequently, in Chapter 4, a

filtering algorithm based on the generalized polynomial chaos expansion in the en-

semble filter framework was developed for the state estimation of a general nonlinear

system. The proposed filter can carry out state estimation for a nonlinear system

with non-Gaussian uncertainties in the parameters and was applied to the problem
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of atmospheric reentry of a vehicle to Earth. Besides, the global sensitivity of the

posterior density function of the state estimates to the uncertainties in the system

was characterized.

Further, this dissertation conducted probabilistic analysis of the consensus con-

trol protocols in the scenario where the interaction parameters in a system of in-

terconnected cooperative agents are susceptible to uncertainties in Chapter 5. The

framework of generalized polynomial chaos expansion was utilized to obtain numerical

solution of the stochastic multi-agent system. Finally, sensitivity analysis based on

gPC expansion was carried out to study the significance of edge weights on response

distribution of the states of agents to answer the following question: “Who is the

weakest link?” In addition to that, we examined the impact of cyber attacks from

malicious intruders on the consensus performance of the agents using the probabilistic

analysis framework.

In Chapter 6, the robust stability margin (gain and phase margins) of the

multi-agent systems subject to multiplicative uncertainties in the feedback path was

characterized. Moreover, the consensuability criterion for multi-agent systems with

uniform input delays was computed. The problem of calculating the stability mar-

gins and input delay margin was converted into finding eigenvalues of multiplicative

perturbation in the feedback paths of a set of MIMO loop transfer functions and it

involved solving a constrained minimization problem. Additionally, necessary and

sufficient conditions for gain-independent, phase-independent and delay-independent

stability of multi-agent systems were developed.

Finally, the consensus criterion for multi-agent systems subject to non-uniform

time-varying communication delays was developed in Chapter 7. The problem of

consensus in multi-agent systems with non-uniform time-varying delays was converted
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to an equivalent MIMO stability problem. Using the Lyapunov-Krasovskii theorem,

novel delay-dependent stability criterion is derived in the form of an LMI.

In essence, this dissertation dealt with the development of computationally ef-

ficient solutions to problems of uncertainty propagation, optimal control, and state

estimation of stochastic systems with probabilistic uncertainties. In addition, compu-

tational approaches were designed to characterize robust stability margins and delay

margins in the coordinated group of agents with multiplicative uncertainties and de-

lays. Though the proposed approaches in this dissertation address a wide range of

issues in analysis and control of dynamical systems, we suggest following extensions

to the techniques developed.

In general, the gPC expansion technique can be used to carry out uncertainty

propagation in stochastic systems with both discrete and continuous distribution func-

tions. In this dissertation, the efficacy of the mixed sparse grid quadrature technique

has been studied for stochastic systems subject to uncertainties governed only by nor-

mal and uniform probability distributions (both of which are continuous). To that

end, the accuracy and computational efficiency of the proposed quadrature rule can

be studied for various other benchmark problems with distribution functions other

than normal and uniform.

Further, the work related to stochastic control carried out in this dissertation

assumes the system dynamics to be linear. The methodology can be extended to de-

velop robust control strategies for stochastic nonlinear systems. Further, one can in-

vestigate the gPC expansion-based distributed model predictive control for unmanned

cooperative systems subject to stochastic uncertainties in the parameters.

Additionally, the framework of gPC expansion can be used to analyze the region

of attraction of stochastic nonlinear systems with uncertainty dependent equilibrium

points. To that end, the stochastic nonlinear system can be converted to a deter-
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ministic system in terms of coefficients of gPC expansion and a set of uncertainty-

dependent equilibrium points of the stochastic system can be computed. Afterwards,

the region of attraction of the gPC expanded deterministic system can be used to

extract information about the attractive behavior of the original stochastic system.

In this dissertation, we have studied the consensus problems in multi-agent

systems, wherein the information exchange among the agents is governed by a fixed

graph topology. In the future, the proposed framework to compute the stability

margins can be extended to the case where the multi-agent systems are modeled

using switching network topologies.
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APPENDIX A

Examples of Probability Density Functions: Gaussian and Uniform Density

Functions
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Here we provide a brief overview of Gaussian and Uniform density functions,

which are prevalent throughout this dissertation.

A.1 Gaussian Probability Density Function

The Gaussian or normal PDF is one of the most widely used PDFs in the

probability theory to characterize a real-valued random variable. The Gaussian PDF

characterizing a random variable Z has the following form:

fZ (z) =
1√
2πσ

exp

(
−(z − µ)2

2σ2

)
, −∞ < z <∞ (A.1)

where µ and σ are the two parameters that completely characterize the Gaussian

PDF fZ (z), and are called as the mean and the standard deviation of the random

variable z, respectively. Consequently, the Gaussian PDF of Z is usually represented

by

Z ∼ N (µ, σ2) (A.2)

where σ2 is known as the variance of Z. The Gaussian distribution with a mean of 0

and variance of 1, i.e. N (0, 12) is known as standard Gaussian distribution.

Geometrically, the Gaussian or normal PDF is a bell-shaped curve that is sym-

metric about the mean µ and attains its maximum value of
1√
2πσ

at x = µ. Figure

A.1 represents a Gaussian PDF for a random variable z with µ = 1 and σ = 2.
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Figure A.1: Gaussian PDF N (1, 22) of the random variable Z.

A.2 Uniform Probability Density Function

The uniform probability distribution is another commonly used distribution in

probability theory and it describes an experiment where there is an arbitrary outcome

that lies between certain bounds. The uniform PDF characterizing a random variable

z has the following form:

fZ (z) =
1

b− a
, a ≤ z ≤ b (A.3)

where the two constants a and b completely characterize the uniform PDF fZ (z), and

are the minimum and maximum values of the random variable z, respectively. The

uniform PDF is often abbreviated as

Z ∼ U [a, b]. (A.4)

207



-3 -2 -1 0 1 2 3

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure A.2: Uniform PDF U [−2, 2] of the random variable Z.

The standard uniform distribution is where a = −1 and b = 1 and is commonly

used for random number generation. Geometrically, the uniform PDF is a rectangular

curve with a base of (b− a) and a height of
1

b− a
. Figure A.1 represents a Uniform

PDF for a random variable z with a = −2 and b = 2.
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APPENDIX B

Hermite and Legendre Polynomials
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Here we present two of the widely used orthogonal polynomials, namely Hermite

and Legendre polynomials. These two polynomials have been extensively used in this

dissertation.

B.1 Hermite Polynomials

The Hermite polynomials Hn(x) are set of orthogonal polynomials over the

domain (−∞,∞) and are defined by following orthogonality relation∫ ∞

−∞
Hm(x)Hn(x)w(x)dx = n!δmn (B.1)

where the weighting function w(x) is defined as

w(x) =
1√
2π
e−x2/2. (B.2)

Table B.1 lists first few Hermite polynomials. The Rodrigues formula for the

Hermite polynomial is,

Hn(x) = (−1)ne−x2/2 d
n

dxn

(
e−x2/2

)
(B.3)

The system of Hermite Polynomials {Hn(x), n ∈ N} satisfy the following three-

term recurrence relation

Hn+1(x) = xHn(x)− nHn−1(x). (B.4)
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Table B.1: One-dimensional Hermite Polynomials

Order (n) Hn(x)
0 1
1 x
2 x2 − 1
3 x3 − 3x
4 x4 − 6x2 + 3
5 x5 − 10x3 + 15x
6 x6 − 15x4 + 45x2 − 15

B.2 Legendre Polynomials

The Legendre polynomials Pn(x) are set of orthogonal polynomials over the

domain (−1, 1) and are defined by following orthogonality relation∫ 1

−1

Pm(x)Pn(x)w(x)dx =
2

2n+ 1
δmn (B.5)

where the weighting function w(x) = 1. Table B.2 lists first few Legendre polynomials.

The Rodrigues formula for the Legendre polynomial is,

Pn(x) =
1

2nn!

dn

dxn
(
(x2 − 1)n

)
. (B.6)

The system of Legendre Polynomials {Pn(x), n ∈ N} satisfy the following three-

term recurrence relation

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)−

n

n+ 1
Pn−1(x). (B.7)
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Table B.2: One-dimensional Legendre Polynomials

Order (n) Pn(x)

0 1

1 x

2
3

2
x2 − 1

2

3
5

2
x3 − 3

2
x

4
35

8
x4 − 30

8
x2 +

3

8

5
63

8
x5 − 70

8
x3 +

15

8
x

6
231

16
x6 − 315

16
x4 +

105

16
x2 − 5

16
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APPENDIX C

Kronecker Product and Related Identities
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C.1 Kronecker Product

The Kronecker product denoted as A ⊗ B of a matrix A = [Aij] ∈ Rm×n,

i = 1, 2, . . . ,m, j = 1, 2, . . . , n with a matrix B == [Bkl] ∈ Rp×q, k = 1, 2, . . . , p,

l = 1, 2, . . . , q is defined as

A⊗B =



A11B A12B · · · A1nB

A21B A22B · · · A2nB

...
...

...
...

Am1B Am2B · · · AmnB


(C.1)

C.2 Some Important Kronecker Product Identities

Following is the list of some identities related to Kronecker product of matrices,

which has been used throughout this dissertation. In the following list, A, B, C, and

D are matrices of suitable dimensions.

(i) A⊗ (B+C) = A⊗B+A⊗C

(ii) (A⊗B)⊗C = A⊗ (B⊗C)

(iii) (A⊗B)⊗ (C⊗D) = (AC)⊗ (BD)

(iv) (A⊗B)T = AT ⊗BT

(v) (A⊗B)−1 = A−1 ⊗B−1
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APPENDIX D

Expressions of Coefficients and Forcing Functions in Modified Equations of Motion

of Nonlinear Aeroelastic System in (2.49)
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D.1 Coefficients ci, i = 0, 1, . . . , 10

c0 = 1 +
1

µ

c1 = xα − ah
µ

c2 = 2ζξ
ωr

Vr
+

2

µ
(1− ψ1 − ψ2)

c3 =
1 + 2 (1/2− ah) (1− ψ1 − ψ2)

µ

c4 =

(
ωr

Vr

)2

+
2

µ
(ψ1ϵ1 + ψ2ϵ2)

c5 =

(
ωr

Vr

)2

βξ

c6 =
2

µ

{
(1− ψ1 − ψ2) +

(
1

2
− ah

)
(ψ1ϵ1 + ψ2ϵ2)

}
c7 =

2

µ
ψ1ϵ1

{(
1−

(
1

2
− ah

)
ϵ1

)}
c8 =

2

µ
ψ2ϵ2

{(
1−

(
1

2
− ah

)
ϵ2

)}
c9 = − 2

µ
ψ1ϵ

2
1

c10 = − 2

µ
ψ2ϵ

2
2

D.2 Coefficients di, i = 0, 1, . . . , 10

d0 =
xα
r2α

− ah
µr2α

d1 = 1 +
1 + 8a2h
8µr2α

d2 = 2
ζα
Vr

+
1− 2ah
2µr2α

− (1 + 2ah) (1− 2ah) (1− ψ1 − ψ2)

2µr2α

d3 =
1

V 2
r

− 1 + 2ah
2µr2α

− (1 + 2ah) (1− 2ah) (ψ1ϵ1 + ψ2ϵ2)

2µr2α

d4 =
βα
V 2
r
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d5 = − (1 + 2ah) (1− ψ1 − ψ2)

µr2α

d6 = − (1 + 2ah) (ψ1ϵ1 + ψ2ϵ2)

µr2α

d7 = − (1 + 2ah)ψ1ϵ1 [1− (1/2− ah) ϵ1]

µr2α

d8 = − (1 + 2ah)ψ2ϵ2 [1− (1/2− ah) ϵ2]

µr2α

d9 =
(1 + 2ah)ψ1ϵ

2
1

µr2α

d10 =
(1 + 2ah)ψ2ϵ

2
2

µr2α

D.3 Forcing Functions f(τ) and g(τ)

f(τ) =
2

µ

[(
1

2
− ah

)
α(0) + ξ(0)

] (
Ψ1ε1e

−ε1τ +Ψ2ε2e
−ε2τ

)
g(τ) = − (1 + 2ah) f(τ)

2r2α
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