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Abstract 
 

LIUTEX AND STATISTICAL ANALYSIS FOR FLUID TRANSITION 

 
 

Charles Matthew Nehemiah Nottage        

The University of Texas at Arlington, 2021 

 
 
Supervising Professor(s): Chaoqun Liu 

 
 
A vortex can be intuitively recognized as the rotational swirling motion of the fluids. The 

fascination of this phenomenon brought about many years of research to define, classify, and 

identify the vortical structure. Throughout the decades, many vortex identification methods 

were developed and can be characterized into three generations. The generational methods are 

vorticity-based, eigenvalue-based such as Q, 𝜆𝜆𝑐𝑐𝑐𝑐, and 𝜆𝜆2, and Liutex-based. Before the 

development of Liutex, there was no mathematical definition for vortex. 

Is Liutex superior to vorticity and the eigenvalue-based methods? Is the vorticity vector the local 

rotational axis? Should vorticity be considered vortex? In this dissertation,  I answer these 

questions by utilizing dimensional analysis to examine and compare the eigenvalue-based 

methods with Liutex. Then, an analysis of vector candidates for the local rotational axis is 

conducted to identify which candidates satisfy the definition of the local rotational axis. Lastly, 

a statistical analysis of vorticity, Liutex, and shear is performed to show their behavior and 

relationship in the boundary layer from laminar flow to turbulent flow.  

The results of these three procedures show that: Out of the four eigenvalue-based methods 

analyzed, 𝜆𝜆𝑐𝑐𝑐𝑐 was the only one that was dimensionally consistent with Liutex. The Liutex 

directional vector was the only candidate that satisfied the definition of the local rotational axis, 

and vorticity should not be considered vortex as shear highly contaminates it. 
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Chapter 1  

Introduction 
 
A vortex is recognized as the rotational motion of fluids. Many vortex identification methods have 

been developed within the last several decades to track the vortical structure in a fluid flow; 

however, we still lacked unambiguous and universally accepted vortex identification criteria. This 

obstacle caused a lot of confusion and misunderstandings in turbulence research (Liu et al. 2014). 

In most research papers and textbooks, the vorticity tube/filament is regarded as vortex and the 

magnitude of the vorticity as the local rotational strength. Many researchers widely acknowledged 

the concept of vortex defined as the vorticity concentration and other vorticity-based methods 

(Helmholtz 1858, Saffman 1992) as the vorticity vector was believed to offer a mathematical 

definition of fluid rotational motion. The physics behind a vortex reveals that there exists a local 

fluid rotation axis. Many researchers and textbooks accept that the vorticity vector is the local fluid 

rotation axis. Zhou and Antonia utilized the spatially phased correlated vorticity to characterize 

large-scale and organized structures in the cylinder wake (Zhou & Antonia 1993). However, 

problems arose while applying in viscous flows, particularly in turbulent flows. The rigid rotation 

strength is smaller than the surrounding areas in turbulent viscous flows near the wall, where shear 

stress is dominant.  

Many researchers in the literature have supported this claim, indicating the inadequacies of 

vorticity-based methods. Epps observed that vorticity could not distinguish a vortical region with 

rotational motions from a strong shear layer (Epps 2017). Robinson also uncovered that the regions 

of strong vorticity and actual vortices are weakly related (Robinson 1991). These vorticity-based 

methods are the first generation of vortex identification methods (Liu et al. 2019). To remedy the 

problems of vorticity-based methods, the second-generation vortex identification methods, which 
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are eigenvalue-based methods such as 𝛥𝛥 (Perry 1987, Chong 1990), 𝑄𝑄 (Hunt et al. 1988), 𝜆𝜆2 (Jeong 

et al. 1995), 𝜆𝜆𝑐𝑐𝑐𝑐 (Zhou et al. 1999), Ω (Liu et al. 2016, Dong et al. 2018), etc., have been introduced 

and extensively applied in visualizing vortex structures over the past four decades. Although these 

schemes can judge the presence of the local rotational motion to some extent, these methods require 

a threshold adjustment to visualize the iso-surface plot accurately.  

This poses a problem because it is difficult to adjust to a proper threshold that will define the 

boundary of the vortical structures in a particular case (Liu et al. 2016, Zhang et al. 2018). 

Moreover, the 𝑄𝑄 and 𝜆𝜆2 methods are only workable for incompressible flows due to their 

incompressibility assumption. The issues of the first generation and second-generation vortex 

identification methods prompted the development of a new vortex identification method, the Liutex 

method (Liu et al. 2018, Gao et al. 2018), and the third-generation of vortex identification methods. 

Unlike the second-generation methods, the Liutex method is a novel eigenvector-based method that 

is local, accurate, unique, and systematic. Furthermore, the systematical definition of Liutex is 

given as a vector that has its corresponding scalar and tensor forms (Gao et al. 2018). The vector 

form of Liutex gives the direction of the local fluid rotation, while the magnitude of Liutex 

represents the rotational strength of a fluid rotation. Also, the Liutex vector is Galilean invariant 

(Haller 2005, Wang 2018, Liu et al. 2019). Correlation analysis between Liutex and the other 

vortex identification methods revealed that vorticity had the worst performance as its correlation 

was always weaker than the other methods (Yu et al. 2020, Yu et al. 2021). 

This dissertation thesis proposes three questions: Is Liutex superior to vorticity and the eigenvalue-

based methods? Is the vorticity vector the local rotational axis? Should vorticity be considered 

vortex? I answer these questions by utilizing dimensional analysis to examine and compare the 

eigenvalue-based methods with Liutex. Then, an analysis of vector candidates for the local 

rotational axis is conducted to identify which candidates satisfy the definition of the local rotational 
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axis. Lastly, a statistical analysis of vorticity, Liutex, and shear is performed to show their 

behavior and relationship in the boundary layer from laminar flow to turbulent flow. 

The organization of this dissertation thesis is as follows: Chapter 2 introduces the Numerical data 

structure of the direct numerical simulation (DNS) used throughout the thesis. Chapter 3 gives a 

brief introduction to the vortex identification methods used in this dissertation. Chapter 4 introduces 

the principal coordinate system and principal decomposition utilized in chapters 5, 6, and 7. 

Chapter 5 covers the dimensional analysis of the second generational methods. Chapter 6 introduces 

the concept of the local fluid rotation axis and the possible candidates for it. Chapter 7 tackles the 

misunderstanding of vorticity being vortex. 
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Chapter 2  

Numerical Data Structure 
 
The research and results in this dissertation are computed using the direct numerical simulation 

(DNS) data of fluid flow in the flat plate boundary layer transition received from the Texas 

Advanced Computing Center (TACC) and are used to model and simulate the fluid flow. The 

Fortran code DNSUTA was developed by the Center for Numerical Simulation and Modeling 

(CNSM) at UTA under the leadership of Dr. Chaoqun Liu in 2009. The DNS code was also 

validated by NASA Langley. The results were compared to experiments and other DNS results 

(Wu et al. 2009, Yan et al. 2014). It was found to be consistent and accurate. The motion of a fluid 

can be described by the conservation of mass, momentum, and energy for an arbitrary control 

volume.  

 

2.1 Governing Equations 

2.1.1 Conservation of Mass (Continuity Equation) 

Let S be a closed surface with volume V. S also has a fixed position with respect to the x, y, and z 

coordinates. Define 𝜌𝜌 as the density of the fluid at a position (x, y, z) and at time 𝑡𝑡. Then, the mass 

of the fluid enclosed by the surface at any instance in time t is ∫ 𝜌𝜌dV, and the net rate at which the 

mass flows outward across the surface is ∫ 𝜌𝜌𝑢𝑢�⃑ ∙ 𝑛𝑛� dS, where 𝑢𝑢�⃑  is the velocity vector of mass 

flowing outwards across the surface, 𝑛𝑛� is the unit normal vector directed outward from the surface 

S, dV is the infinitesimal volume, and dS is the closed surface area. 

Note: volume = area × distance = dS × 𝑢𝑢�⃑ 𝑡𝑡. 

According to the conservation of mass of the fluid, the net rate of fluid mass flowing is equal to the 
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net rate of fluid mass flowing outwards across the surface, i.e., 𝜕𝜕
𝜕𝜕𝜕𝜕 ∫ 𝜌𝜌 dV = −∫𝜌𝜌𝑢𝑢�⃑ ∙ 𝑛𝑛� dS. Since the 

volume V is fixed in space; the differentiation under the integral sign and the transformation of the 

surface integral (by the Gaussian divergence theorem) gives: 

∫ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

dV + ∫∇ ∙ (𝜌𝜌𝑢𝑢�⃑ )dV = 0 or, ∫ �𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 + ∇ ∙ (𝜌𝜌𝑢𝑢�⃑ )�dV = 0.     (2.1)  

This relation is valid for all V that lies entirely in the fluid, and therefore, it is continuous in x, y, 

and z. So, it must be identically zero everywhere in the fluid.  Hence, the continuity equation is 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝜌𝜌𝑢𝑢�⃑ ) = 0.          (2.2) 

Note: The Divergence theorem states that flux across the surface S is equal to the total divergence 

of 𝑢𝑢�⃑  over the region that covers volume V, i.e., ∬𝜌𝜌𝑢𝑢�⃑ ∙ 𝑛𝑛� dS =  ∭∇ ∙  𝑢𝑢�⃑  dV. 

 

2.1.2 Conservation of Momentum (Equation of Motion) 

The conservation of momentum in a control volume V requires that the changes of momentum in 

this volume must be equal to what is gained/lost through the surface that encloses this volume and 

what is created/consumed by sources and sinks inside the control volume. 

Similar to the continuity equation, consider a volume of fluid V enclosed by a surface S, fixed with 

respect to the coordinate axes.  For this body of fluid, the momentum is given by the equation 

∫𝜌𝜌𝑢𝑢�⃑  dV, and rate of change of momentum is given by, 

 𝜕𝜕
𝜕𝜕𝜕𝜕 ∫ 𝜌𝜌𝑢𝑢�⃑  dV = −∫𝜕𝜕(𝜌𝜌𝑢𝑢��⃑ )

𝜕𝜕𝜕𝜕
dV.         (2.3) 

Now, the net rate of the gain or loss through the surface S is given by,  

∫𝜌𝜌𝑢𝑢�⃑ (𝑢𝑢�⃑ ∙ 𝑛𝑛�) dS = ∫∇ ∙ (𝜌𝜌𝑢𝑢�⃑ ⨂𝑢𝑢�⃑ )dV,         (2.4) 

which is derived from the divergence theorem, i.e., the flux of a vector field through a 

closed surface is equal to the divergence of the field in the volume enclosed and ⨂ represents the 
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outer product, that is, 𝜌𝜌𝑢𝑢�⃑ ⨂𝑢𝑢�⃑ = 𝜌𝜌𝑢𝑢�⃑ 𝑢𝑢�⃑ 𝑻𝑻 which is a tensor. 

If we let 𝒃𝒃 be the sources and sinks inside the control volume V, then the conservation of 

momentum inside the volume V is given by, 

 ∫ 𝜕𝜕(𝜌𝜌𝑢𝑢��⃑ )
𝜕𝜕𝜕𝜕

dV = −∫∇ ∙ (𝜌𝜌𝑢𝑢�⃑ ⨂𝑢𝑢�⃑ )dV + ∫ 𝜌𝜌𝒃𝒃 dV or, ∫ �𝜕𝜕
(𝜌𝜌𝑢𝑢��⃑ )
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝜌𝜌𝑢𝑢�⃑ ⨂𝑢𝑢�⃑ ) − 𝜌𝜌𝒃𝒃�dV = 0. (2.5) 

Since the volume V is arbitrary inside the fluid, then, 𝜕𝜕(𝜌𝜌𝑢𝑢��⃑ )
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝜌𝜌𝑢𝑢�⃑ ⨂𝑢𝑢�⃑ ) − 𝜌𝜌𝒃𝒃 = 0, where forces 

𝒃𝒃 can be separated into two types:  the stress form forces and body forces. 

Next, we have, 𝜌𝜌𝒃𝒃 = 𝜌𝜌𝒇𝒇 + (∇ ∙ 𝝈𝝈) where f represents the body forces and 𝝈𝝈 is the stress force 

tensor. The stress force comprises the forces that act within a body to respond to externally applied 

forces and body forces. It can be divided into normal and shear components. If we assume a 

Newtonian fluid, there is a linear relation between the stress (𝝈𝝈) and the rate of strain of the fluid, 

then by Stokes (1845), 𝝈𝝈 = −(𝑝𝑝 − 𝜇𝜇𝑣𝑣∇ ∙ 𝑢𝑢�⃑ )𝐈𝐈 + 𝜇𝜇 �∇𝑢𝑢�⃑ + (∇𝑢𝑢�⃑ )𝑻𝑻 − 2
3

(∇ ∙ 𝑢𝑢�⃑ )𝐈𝐈�, where 𝑝𝑝 is the 

pressure, 𝐈𝐈 is the identity matrix, 𝜇𝜇v is the bulk viscosity related to the viscosity 𝜇𝜇, i.e.,  

𝜇𝜇v = 𝜆𝜆 + 2
3
𝜇𝜇, and according to Stokes’ hypothesis, 𝜇𝜇 is taken to make 𝜇𝜇v = 0. Therefore,  

𝝈𝝈 = −𝑝𝑝𝐈𝐈 + 𝜆𝜆(∇ ∙ 𝑢𝑢�⃑ )𝐈𝐈 + 𝜇𝜇[∇𝑢𝑢�⃑ + (∇𝑢𝑢�⃑ )𝑻𝑻] = − �𝑝𝑝 + 2
3
𝜇𝜇(∇ ∙ 𝑢𝑢�⃑ )� 𝐈𝐈 + 𝜇𝜇[∇𝑢𝑢�⃑ + (∇𝑢𝑢�⃑ )𝑻𝑻].   (2.6) 

Hence, the conservation of momentum equations can be written as: 

𝜕𝜕(𝜌𝜌𝑢𝑢��⃑ )
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝜌𝜌𝑢𝑢�⃑ ⨂𝑢𝑢�⃑ ) = 𝜌𝜌𝒇𝒇 − ∇𝑝𝑝 − 2
3
∇[𝜇𝜇(∇ ∙ 𝑢𝑢�⃑ )] + ∇[𝜇𝜇(∇𝑢𝑢�⃑ + (∇𝑢𝑢�⃑ )𝑻𝑻)].   (2.7) 

 

2.1.3 Conservation of Energy 

From the first law of thermodynamics, the conservation of energy for a fluid of volume V 

contained within a surface S can be found by calculating the work done on the mass of fluid by 

volume, surface forces, and the heat gained through transfer across the boundary and other sources 

inside the volume. The total energy 𝐸𝐸 provides the conserved quantity and is defined as the sum of 
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its internal energy and kinetic energy per unit mass, i.e., 𝐸𝐸 = 𝑒𝑒 + 1
2
𝑢𝑢�⃑ ⋅ 𝑢𝑢�⃑ , where 𝑒𝑒 is the internal 

energy per unit mass of the fluid. 

The rate of change of the total energy inside the volume V contained within a surface S is 

𝜕𝜕
𝜕𝜕𝜕𝜕 ∫ 𝜌𝜌𝜌𝜌 dV = ∫ 𝜕𝜕(𝜌𝜌𝜌𝜌)

𝜕𝜕𝜕𝜕
dV, while the net rate of what is gained or lost through the surface is 

∫(𝜌𝜌𝜌𝜌)(𝑢𝑢�⃑ ∙ 𝑛𝑛�) dS = ∫∇ ∙ (𝜌𝜌𝜌𝜌)𝑢𝑢�⃑  dV.         (2.8) 

Heat is also transferred to the fluid in the volume by molecular conduction through the surface S. 

Then, ∫(𝑘𝑘∇𝑇𝑇) ∙ 𝑛𝑛� dS = ∫∇ ∙ (𝑘𝑘∇𝑇𝑇) dV, where 𝑇𝑇 is the absolute temperature, and 𝑘𝑘 is the thermal 

conductivity coefficient of the fluid. The work done on the fluid by forces can be divided into 

volume and surface sources. 

The volume sources include the volume forces 𝒇𝒇 and heat sources 𝑞𝑞𝐻𝐻  other than conduction, such 

as radiation or heat released by chemical reactions. This gives the work done for the volume V,  

∫(𝜌𝜌𝒇𝒇 ∙ 𝑢𝑢�⃑ + 𝑞𝑞𝐻𝐻) dV.          (2.9) 

The work done on the fluid by the surface sources, i.e., internal shear stresses (𝝈𝝈)  acting on the 

surface of the volume considering that there are no external surface heat sources, is given by, 

∫(𝝈𝝈 ∙ 𝑢𝑢�⃑ ) ∙ 𝑛𝑛� dS = ∫∇ ∙ (𝝈𝝈 ∙ 𝑢𝑢�⃑ ) dV. Grouping all terms, we get the energy conservation equation, 

∫ 𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝜕𝜕

dV + ∫∇ ∙ (𝜌𝜌𝜌𝜌)𝑢𝑢�⃑  dV = ∫∇ ∙ (𝑘𝑘∇𝑇𝑇) dV + ∫(𝜌𝜌𝒇𝒇 ∙ 𝑢𝑢�⃑ + 𝑞𝑞𝐻𝐻) dV + ∫∇ ∙ (𝝈𝝈 ∙ 𝑢𝑢�⃑ ) dV, or  

𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝜌𝜌𝜌𝜌)𝑢𝑢�⃑ − ∇ ∙ (𝑘𝑘∇𝑇𝑇) − ∇ ∙ (𝝈𝝈 ∙ 𝑢𝑢�⃑ ) = 𝜌𝜌𝒇𝒇 ∙ 𝑢𝑢�⃑ + 𝑞𝑞𝐻𝐻, and  

𝝈𝝈 = − �𝑝𝑝 + 2
3
𝜇𝜇(∇ ∙ 𝑢𝑢�⃑ )� 𝐈𝐈 + 𝜇𝜇[∇𝑢𝑢�⃑ + (∇𝑢𝑢�⃑ )𝑻𝑻].       (2.10) 

 

2.2. Numerical Setup  

The computational domain has the grid number 1920× 128 × 241,  representing the number of 

grids in streamwise (x), spanwise (y), and wall-normal (z) directions. In normal direction, these 
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grids are stretched, while in streamwise and spanwise directions, they are uniform. The length of 

the first grid interval in the normal direction at the entrance is 0.43 in wall units (Z+ = 0.43).  

The flow parameters are listed in Table 2.1. Here, 𝑀𝑀∞ is Mach number, 𝑅𝑅𝑅𝑅 is Reynolds number 

and, 𝑇𝑇𝑤𝑤  𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇∞ are wall and free stream temperature, respectively. Likewise, 𝑥𝑥𝑖𝑖𝑖𝑖 represents the 

distance between the leading edge and the inlet of the flat plate. 𝐿𝐿𝐿𝐿, 𝐿𝐿𝐿𝐿 and 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 are the lengths of 

computational domain in x, y, and z directions. 𝛿𝛿𝑖𝑖𝑖𝑖  is the inflow displacement thickness.  

 

 
Figure 2.1. Vortex structure in transitional boundary with Ω�𝐿𝐿 = 0.52. 

 

Figure 2.2. Computation domain 
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Figure 2.3. Domain decomposition along the streamwise direction in the computational space. 

 

𝑀𝑀∞ 𝑅𝑅𝑅𝑅 𝑥𝑥𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 𝑇𝑇𝑤𝑤 𝑇𝑇∞ 

0.5 1000 300.79𝛿𝛿𝑖𝑖𝑖𝑖 798.03𝛿𝛿𝑖𝑖𝑖𝑖 22𝛿𝛿𝑖𝑖𝑖𝑖 40𝛿𝛿𝑖𝑖𝑖𝑖 273.15K 273.15K 

Table 2.1. DNS parameters 

The parameters in Table 2.1 are defined as 

𝑀𝑀∞ =  Mach number  

𝑅𝑅𝑅𝑅  =  Reynolds number 

𝑥𝑥𝑖𝑖𝑖𝑖  =  distance between the leading edge of flat plate and upstream boundary of the computational 

domain 

𝛿𝛿𝑖𝑖𝑖𝑖  =  inflow displacement thickness 

𝐿𝐿𝐿𝐿   =  length of the computational domain along x direction 

𝐿𝐿𝐿𝐿   =  length of the computational domain along y direction 

𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖=  height at the inflow boundary 

𝑇𝑇𝑤𝑤   =  wall temperature 

𝑇𝑇∞  =  free stream temperature 

For more details about case setup and validation of code, refer to Yan et al. 2014 and Liu et al. 

2014. Other research papers such as Robinson 1991 and Wang et al. 2017 also use similar case 

setups.  
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Chapter 3  

Vortex Identification Methods 
 
The standard form of the velocity gradient tensor is: 

𝛁𝛁𝐯𝐯�⃑ =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ⎦
⎥
⎥
⎥
⎤

 .                                                                                             

3.1 First Generation: Vorticity 

In 1858, Helmholtz introduced the concept of the vorticity tube/filament (Helmholtz 1858). Since 

then, many researchers have believed that vortices consist of small vorticity tubes called vortex 

filaments, and the magnitude of vorticity gives the vortex strength. The vorticity vector is 

mathematically defined as the curl of the velocity. i.e., 

vorticity =  𝛁𝛁 × 𝐯𝐯�⃑ =  �
�

𝐢𝐢 𝐣𝐣 𝐤𝐤

𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕

𝑢𝑢 𝑣𝑣 𝑤𝑤

�
� = 𝐢𝐢 �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� − 𝐣𝐣 �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� + 𝐤𝐤 �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�.  (3.1) 

Helmholtz also introduced vortex lines and vortex filaments based on the vorticity vector. These 

vortex lines are drawn through the fluid mass so that their direction at every point coincides with 

the direction of the momentary axis of rotation of the water particles lying in it. The vortex filament 

was defined as the portions of the fluid mass cut out by constructing corresponding vortex lines 

through all circumference points of an infinitely small surface element. This dissertation will define 

the vorticity tensor, vorticity vector in its vector form, and the vorticity magnitude below. 
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3.1.1 Vorticity Tensor 

The vorticity tensor is the antisymmetric tensor 𝑩𝑩 from the traditional Cauchy-Stokes 

decomposition of the velocity gradient tensor 𝛁𝛁𝐯𝐯�⃑  (Liu et al. 2019): 

𝑩𝑩 = 1
2

(𝛁𝛁𝐯𝐯�⃑ − 𝛁𝛁𝐯𝐯�⃑ 𝐓𝐓) =

⎣
⎢
⎢
⎢
⎡ 0 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 −  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�

1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� 0 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�

1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� 0 ⎦

⎥
⎥
⎥
⎤

 .    (3.2) 

 

3.1.2 Vorticity Vector 

The vorticity vector is derived as follows (Jeong 1995): 

ω��⃑ =  𝛁𝛁 × 𝐯𝐯�⃑ = � 𝜕𝜕
𝜕𝜕𝜕𝜕

,  𝜕𝜕
𝜕𝜕𝜕𝜕

,  𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑻𝑻

× (u, v,  w)𝑻𝑻 =  �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
,  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
,  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
𝑻𝑻
.  (3.3) 

 

3.1.3 Vorticity Magnitude 

The vorticity magnitude is defined as 

 ‖ω��⃑ ‖ = ��𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
𝟐𝟐

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
𝟐𝟐

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
𝟐𝟐
.      (3.4) 

 

3.2 Second Generation: Eigenvalue-based Methods 

3.2.1 𝜟𝜟 Method 

The 𝛥𝛥 method defines a vortex to be the region where the velocity gradient tensor 𝛁𝛁𝐯𝐯�⃑  has one real 

eigenvalue and a pair of complex conjugate eigenvalues (Chong et al. 1990). If 𝜆𝜆1, 𝜆𝜆2 𝑎𝑎𝑎𝑎𝑎𝑎  𝜆𝜆3 are 

the eigenvalues of the 3× 3 matrix of 𝛁𝛁𝐯𝐯�⃑ , then the characteristic equation can be written as  

𝜆𝜆3 − 𝑡𝑡𝑡𝑡(𝛁𝛁𝐯𝐯�⃑ )𝜆𝜆2 − 1
2

[tr(𝛁𝛁𝐯𝐯�⃑ 2) − tr(𝛁𝛁𝐯𝐯�⃑ )2]𝜆𝜆 − det(𝛁𝛁𝐯𝐯�⃑ ) = 𝜆𝜆3 + 𝐷𝐷1𝜆𝜆2 + 𝐷𝐷2𝜆𝜆 + 𝐷𝐷3 = 0. (3.5)             
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𝐷𝐷1, 𝐷𝐷2, and 𝐷𝐷3 are the first, second, and third invariants and are given by: 

𝐷𝐷1 = −(𝜆𝜆1 + 𝜆𝜆2  +  𝜆𝜆3) = −𝑡𝑡𝑡𝑡(𝛁𝛁𝐯𝐯�⃑ ),                  (3.6) 

𝐷𝐷2 = 𝜆𝜆1𝜆𝜆2 + 𝜆𝜆2𝜆𝜆3 + 𝜆𝜆3𝜆𝜆1 = −1
2

[𝑡𝑡𝑡𝑡(𝛁𝛁𝐯𝐯�⃑ 2) − 𝑡𝑡𝑡𝑡(𝛁𝛁𝐯𝐯�⃑ )2],                (3.7) 

𝐷𝐷3 = −𝜆𝜆1𝜆𝜆2𝜆𝜆3 = − det(𝛁𝛁𝐯𝐯�⃑ ).                    (3.8) 

The discriminant of the characteristic equation of the velocity gradient tensor is given by: 

𝛥𝛥 = �𝑄𝑄
�

3
�
3

+ �𝑅𝑅
�

2
�
2
,           (3.9) 

where 𝑄𝑄� = 𝐷𝐷2 −
1
3
𝐷𝐷12 and 𝑅𝑅� = 𝐷𝐷3 + 2

27
 𝐷𝐷13 −  1

3
𝐷𝐷1𝐷𝐷2.  

For incompressible flow, the first invariant 𝐷𝐷1 = 0, which results in 𝛥𝛥 = �𝐷𝐷2
3
�
3

+ �𝐷𝐷3
2
�
2

. If 𝛥𝛥 ≤0, 

this indicates that all three eigenvalues of 𝛁𝛁𝐯𝐯�⃑  are real, but if 𝛥𝛥 > 0, there exists one real and two 

conjugate complex eigenvalues, which means that the point is inside a vortex region. Although the 

𝛥𝛥 method can capture the vortex region successfully, it is susceptible to the threshold value, which 

is man-made and arbitrary in general.  

 

3.2.2 𝑸𝑸 Method 

Proposed by Hunt, the 𝑄𝑄 method is one of the most popular methods used to visualize the vortex 

structure (Hunt et al. 1988). 𝑄𝑄 is defined as the difference between the squared Frobenius norms of 

the vorticity and strain-rate tensors. i.e., 

 𝑄𝑄 = 1
2

(‖𝑩𝑩‖𝐹𝐹2 − ‖𝑨𝑨‖𝐹𝐹2).         (3.10) 

𝑨𝑨 and 𝑩𝑩 are the symmetric (strain-rate tensor) and antisymmetric (vorticity tensor) parts of the 

velocity gradient tensor from the traditional Cauchy-Stokes decomposition. 
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𝑨𝑨 = 1
2

(𝛁𝛁𝐯𝐯�⃑ + 𝛁𝛁𝐯𝐯�⃑ 𝑻𝑻) =

⎣
⎢
⎢
⎢
⎡

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�

1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�

1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 ⎦
⎥
⎥
⎥
⎤

         (3.11)       

𝑩𝑩 = 1
2

(𝛁𝛁𝐯𝐯�⃑ − 𝛁𝛁𝐯𝐯�⃑ 𝑻𝑻) =

⎣
⎢
⎢
⎢
⎡ 0 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 −  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�

1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� 0 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�

1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� 0 ⎦

⎥
⎥
⎥
⎤

               (3.12) 

The 𝑄𝑄 method considers that a vortex occurs in the region where 𝑄𝑄 > 0. The 𝑄𝑄 method is currently 

the most popular method used in research. However, 𝑄𝑄 is scalar-valued, and a proper threshold is 

required to visualize the vortex region, which is kind of arbitrarily chosen. 

 

3.2.3 𝝀𝝀𝟐𝟐 Method 

The 𝜆𝜆2 criterion is calculated based on the observation that pressure tends to be the lowest on the 

axis of a swirling motion of fluid particles in a vortical region. This occurs because the centrifugal 

force is balanced by the pressure force (the cyclostrophic balance). This method is valid only in a 

steady inviscid planar flow (Jeong et al. 1995). However, this assumption fails to accurately 

identify vortices under strong, unsteady, and viscous conditions. By neglecting these unsteady and 

viscous effects, the symmetric part 𝑺𝑺 of the gradient of the incompressible Navier–Stokes equation 

can be expressed as 𝑺𝑺 = 𝑨𝑨2 + 𝑩𝑩2 = −𝛁𝛁(𝛁𝛁𝑝𝑝)
𝜌𝜌

 , where p is pressure, 𝜌𝜌 is density and 𝑺𝑺 is a 

representation of the pressure Hessian matrix, i.e., ((𝛁𝛁(𝛁𝛁𝑝𝑝))𝑖𝑖𝑖𝑖 = 𝜕𝜕2𝑝𝑝
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑦𝑦𝑖𝑖

 .  

Jeong and Hussain (Jeong et al. 1995) defined the vortex core as a connected region with two 

positive eigenvalues of the pressure Hessian matrix, i.e., a connected region with two negative 

eigenvalues of the symmetric tensor 𝑺𝑺. If 𝜆𝜆1, 𝜆𝜆2 & 𝜆𝜆3 are three real eigenvalues of the symmetric 
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tensor 𝑺𝑺, then by reordering them as 𝜆𝜆1 ≥ 𝜆𝜆2 ≥ 𝜆𝜆3, there must be 𝜆𝜆2 < 0 as two eigenvalues are 

negative, which confirms the existence of a vortex. In general, 𝜆𝜆2 cannot be expressed in terms of 

eigenvalues of the velocity gradient tensor; however, in some special cases, when eigenvectors are 

orthonormal, 𝜆𝜆2 can be exclusively determined by eigenvalues of the velocity gradient tensor. The 

vortex structure can be visualized as iso-surface by selecting a proper threshold of 𝜆𝜆2 (Liu et al. 

2019).  

 

3.2.4 𝝀𝝀𝒄𝒄𝒄𝒄 Method 

The 𝜆𝜆𝑐𝑐𝑐𝑐 criterion (Zhou et al. 1999, Chakraborty et al. 2005) uses the imaginary part of the velocity 

gradient tensor's complex eigenvalues to visualize the vortex structure. It is based on the idea that 

the local time-frozen streamlines exhibit a rotational flow pattern when 𝛁𝛁𝐯𝐯�⃑  has a pair of complex 

conjugate eigenvalues. In this case, the tensor transformation of 𝛁𝛁𝐯𝐯�⃑  is given by: 

𝛁𝛁𝐯𝐯�⃑ = [𝑣⃑𝑣𝑟𝑟 𝑣⃑𝑣𝑐𝑐𝑐𝑐 𝑣⃑𝑣𝑐𝑐𝑐𝑐] �
𝜆𝜆𝑟𝑟 0 0
0 𝜆𝜆𝑐𝑐𝑐𝑐 𝜆𝜆𝑐𝑐𝑐𝑐
0 −𝜆𝜆𝑐𝑐𝑐𝑐 𝜆𝜆𝑐𝑐𝑐𝑐

�  [𝑣⃑𝑣𝑟𝑟  𝑣⃑𝑣𝑐𝑐𝑐𝑐 𝑣⃑𝑣𝑐𝑐𝑐𝑐]−1, where 𝜆𝜆𝑟𝑟 is the real eigenvalue with the 

corresponding eigenvector 𝑣⃑𝑣𝑟𝑟 and the pair of complex conjugate eigenvalues are 𝜆𝜆𝑐𝑐𝑐𝑐 ± 𝑖𝑖𝜆𝜆𝑐𝑐𝑐𝑐 with 

corresponding eigenvectors 𝑣⃑𝑣𝑐𝑐𝑐𝑐 ± 𝑖𝑖 𝑣⃑𝑣𝑐𝑐𝑐𝑐. In this case, in the local curvilinear system (𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3) 

spanned by the eigenvector (𝑣⃑𝑣𝑟𝑟 , 𝑣⃑𝑣𝑐𝑐𝑐𝑐 , 𝑣⃑𝑣𝑐𝑐𝑐𝑐), the instantaneous streamlines exhibit a spiral motion. The 

equations of such streamlines can be written as:   

𝑐𝑐1(𝑡𝑡) = 𝑐𝑐1(0)𝑒𝑒𝜆𝜆𝑟𝑟𝑡𝑡 ,                                 (3.13) 

𝑐𝑐2(𝑡𝑡) = [𝑐𝑐2(0) cos(𝜆𝜆𝑐𝑐𝑐𝑐𝑡𝑡) + 𝑐𝑐3(0)𝑠𝑠𝑠𝑠𝑠𝑠(𝜆𝜆𝑐𝑐𝑐𝑐𝑡𝑡)]𝑒𝑒𝜆𝜆𝑐𝑐𝑐𝑐𝑡𝑡 ,      (3.14) 

𝑐𝑐3(𝑡𝑡) = [𝑐𝑐3(0) cos(𝜆𝜆𝑐𝑐𝑐𝑐𝑡𝑡) − 𝑐𝑐2(0)𝑠𝑠𝑠𝑠𝑠𝑠(𝜆𝜆𝑐𝑐𝑐𝑐𝑡𝑡)]𝑒𝑒𝜆𝜆𝑐𝑐𝑐𝑐𝑡𝑡 ,                (3.15) 

where t represents the time parameter and constants 𝑐𝑐1(0), 𝑐𝑐2(0), and 𝑐𝑐3(0) are determined by 

initial conditions (Liu et al. 2019). 
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3.2.5 𝜴𝜴 Method 

The Omega method originated from an important physical understanding that a vortex is a region 

where the vorticity overtakes the deformation. The vorticity cannot directly represent the fluid 

rotation, although there is no rigid rotation without vorticity. Therefore, the vorticity could be small 

in the region with strong rotation and large in the region with weak or zero rotation. The Blasius 

boundary layer is a typical example. The deformation is also an essential factor in a rotational flow 

while a vortex presents. Therefore, it is reasonable to consider the ratio of vorticity and the 

deformation for vortex identification. As given in Ref. (Liu et al. 2016), Ω is defined as the ratio of 

the vorticity tensor norm squared over the sum of the vorticity tensor norm squared and 

deformation tensor norm squared, i.e., 

Ω = ‖𝐵𝐵‖𝐹𝐹
2

‖𝐴𝐴‖𝐹𝐹
2+‖𝐵𝐵‖𝐹𝐹

2 = 𝑏𝑏
𝑎𝑎+𝑏𝑏

 .         (3.16) 

In practice, a small positive parameter 𝜀𝜀 is added to the denominator of Ω to avoid non-physical 

noises so that Ω can be expressed as Ω = 𝑏𝑏
𝑎𝑎+𝑏𝑏+𝜀𝜀

  and  𝜀𝜀 = 0.001 × (𝑏𝑏 − 𝑎𝑎)𝑚𝑚𝑚𝑚𝑚𝑚 (Dong et al. 2018). 

The (𝑏𝑏 − 𝑎𝑎)𝑚𝑚𝑚𝑚𝑚𝑚  term represents the maximum of the difference of the vorticity squared and the 

deformation squared. This term is easy to obtain at each timestep in a certain case. This allows us to 

avoid manually adjusting 𝜀𝜀 in many cases. The Omega method requires a parameter larger than 0.5 

as the threshold. In practice, Ω = 0.51 or Ω = 0.52 can be used as the fixed threshold because the 

omega method is threshold insensitive.  
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3.3 Third Generation: Liutex-based Method 

3.3.1 Liutex Method 

Liutex (Liu et al. 2018, Gao and Liu 2018) is a vector defined as 𝑅𝑅�⃑ = 𝑅𝑅𝑟𝑟. 𝑅𝑅 represents the Liutex 

magnitude defined as twice the angular velocity, and 𝑟𝑟 represents the directional unit vector of 

Liutex. According to Wang (Wang et al. 2019), 𝑟𝑟 is the real eigenvector of the velocity gradient 

tensor, and the explicit formula of 𝑅𝑅 is 

𝑅𝑅 = 𝜔𝜔��⃑ ∙ 𝑟𝑟 − �(𝜔𝜔��⃑ ∙ 𝑟𝑟)2 − 4𝜆𝜆𝑐𝑐𝑐𝑐2  .        (3.17) 

Liutex, as a vector, overcomes the drawbacks of the scalar methods, e.g., the threshold requirement 

when creating and analyzing graphics.  
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Chapter 4  

Principal Coordinate System 
 
4.1 Principal Coordinate 

We have that  𝛁𝛁𝐯𝐯�⃑ =  

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ⎦
⎥
⎥
⎥
⎤

  , let 𝐐𝐐 be an orthogonal matrix that rotates the xyz frame to 

XYZ frame so that the Z-axis is parallel with the real eigenvector 𝑟𝑟 of 𝛁𝛁𝐯𝐯�⃑ . In general, 

𝛁𝛁𝑽𝑽��⃑ = 𝐐𝐐𝐐𝐐𝐯𝐯�⃑ 𝐐𝐐𝑻𝑻 =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ⎦
⎥
⎥
⎥
⎤
 . Define  𝑷𝑷 = �

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0
−𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 0

0 0 1
�  the rotation matrix around the 

fixed Z-axis. Next, rotating through 𝜃𝜃 around the Z-axis will give you the Principal Coordinates XY 

plane (Yu et al. 2020). 

𝛁𝛁𝑽𝑽𝜃𝜃�����⃑ = 𝑷𝑷∇𝑽𝑽��⃑ 𝑷𝑷𝑻𝑻 =

⎣
⎢
⎢
⎢
⎡𝜆𝜆𝑐𝑐𝑐𝑐

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜆𝜆𝑐𝑐𝑐𝑐 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜆𝜆𝑟𝑟⎦
⎥
⎥
⎥
⎤

= �
𝜆𝜆𝑐𝑐𝑐𝑐 − 1

2
𝑅𝑅 0

1
2
𝑅𝑅 + 𝜀𝜀 𝜆𝜆𝑐𝑐𝑐𝑐 0
𝜉𝜉 𝜂𝜂 𝜆𝜆𝑟𝑟 

�  ,     (4.1) 

where ∂U
∂Y

< 0 and �∂U
∂Y
� ≤ �∂V

∂X
�. 
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4.2 Principal Decomposition 

𝛁𝛁𝑽𝑽𝜃𝜃�����⃑ = �
𝜆𝜆𝑐𝑐𝑐𝑐 − 1

2
𝑅𝑅 0

1
2
𝑅𝑅 + 𝜀𝜀 𝜆𝜆𝑐𝑐𝑐𝑐 0
𝜉𝜉 𝜂𝜂 𝜆𝜆𝑟𝑟 

� = �
0 −𝑅𝑅

2
0

𝑅𝑅
2

0 0
0 0 0

� + �
0 0 0
𝜀𝜀 0 0
𝜉𝜉 𝜂𝜂 0

� + �
𝜆𝜆𝑐𝑐𝑐𝑐 0 0
0 𝜆𝜆𝑐𝑐𝑐𝑐 0
0 0 𝜆𝜆𝑟𝑟

� =  𝑹𝑹 + 𝑺𝑺 + 𝑪𝑪 

            (4.2) 

𝑹𝑹, 𝑺𝑺, and 𝑪𝑪 represent the rotation part, the shear part, and the stretching part, respectfully. This 

decomposition is unique and Galilean invariant (Yu et al. 2020). 
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Chapter 5  

Dimensional Analysis 
 
The dimension of any physical quantity expresses its dependence on the base quantities as a 

product of symbols (or powers of symbols) representing the base quantities. The importance of 

dimension arises from the fact that any mathematical equation relating physical quantities must be 

dimensionally consistent. (Moebs et al. 2016) 

Base Quantity Symbol for Dimension 

Length L 

Mass M 

Time T 

Temperature Θ 

                Table 5.1: List of the Base quantities and corresponding Dimension Symbols. 

 

The Dimension of 𝛼𝛼 is  1
𝑇𝑇

  or 𝑇𝑇−1. Liutex magnitude 𝑅𝑅 is defined as twice the angular velocity, i.e., 

𝑅𝑅 = 2𝛼𝛼. This implies that Liutex magnitude 𝑅𝑅 has the same dimension as angular velocity 𝛼𝛼. 

Therefore, these two quantities are relatable because their dimensions are consistent. We will focus 

on the 𝑅𝑅 components of the following 2nd generation methods and analyze their dimensional 

consistency with 𝛼𝛼. (Nottage et al. 2021) 
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5.1 Mathematical Calculation 

5.1.1 𝜟𝜟 Method 

Recall: 

𝛁𝛁𝑽𝑽𝜃𝜃�����⃑ = �
𝜆𝜆𝑐𝑐𝑐𝑐 − 1

2
𝑅𝑅 0

1
2
𝑅𝑅 + 𝜀𝜀 𝜆𝜆𝑐𝑐𝑐𝑐 0
𝜉𝜉 𝜂𝜂 𝜆𝜆𝑟𝑟 

�. 

The characteristic equation of velocity gradient tensor 𝛁𝛁𝑽𝑽𝜃𝜃�����⃑  is: 

(𝜆𝜆 − 𝜆𝜆𝑟𝑟) �(𝜆𝜆 − 𝜆𝜆𝑐𝑐𝑐𝑐)2 + 𝑅𝑅
2
�𝑅𝑅
2

+ 𝜀𝜀�� = 0.       (5.1) 

This implies that the three eigenvalues are: 

𝜆𝜆1 = 𝜆𝜆𝑟𝑟,         𝜆𝜆2 = 𝜆𝜆𝑐𝑐𝑐𝑐 + 𝑖𝑖�𝑅𝑅
2
�𝑅𝑅
2

+ 𝜀𝜀�,      𝜆𝜆3 = 𝜆𝜆𝑐𝑐𝑐𝑐 − 𝑖𝑖�𝑅𝑅
2
�𝑅𝑅
2

+ 𝜀𝜀� 

 𝐷𝐷1 =  −(𝜆𝜆1 +  𝜆𝜆2 +  𝜆𝜆3) = −𝜆𝜆𝑟𝑟 − 2𝜆𝜆𝑐𝑐𝑐𝑐 ,         (5.2) 

 𝐷𝐷2 =  𝜆𝜆1𝜆𝜆2 + 𝜆𝜆2𝜆𝜆3 + 𝜆𝜆3𝜆𝜆1 = 2𝜆𝜆𝑟𝑟𝜆𝜆𝑐𝑐𝑐𝑐 + 𝜆𝜆𝑐𝑐𝑐𝑐2 + 𝑅𝑅
2
�𝑅𝑅
2

+ 𝜀𝜀� ,      (5.3) 

 𝐷𝐷3 = −𝜆𝜆1𝜆𝜆2𝜆𝜆3 = −𝜆𝜆𝑟𝑟 �𝜆𝜆𝑐𝑐𝑐𝑐2 + 𝑅𝑅
2
�𝑅𝑅
2

+ 𝜀𝜀��        (5.4) 

𝑄𝑄� = 𝐷𝐷2 −
1
3
𝐷𝐷12 = −1

3
(𝜆𝜆𝑐𝑐𝑐𝑐 − 𝜆𝜆𝑟𝑟)2 + 𝑅𝑅

2
�𝑅𝑅
2

+ 𝜀𝜀�       (5.5)         

𝑅𝑅� = 𝐷𝐷3 + 2
27
𝐷𝐷13 −

1
3
𝐷𝐷1𝐷𝐷2 = 2

27
(𝜆𝜆𝑐𝑐𝑐𝑐 − 𝜆𝜆𝑟𝑟)3 + 2

3
(𝜆𝜆𝑐𝑐𝑐𝑐 − 𝜆𝜆𝑟𝑟) 𝑅𝑅

2
�𝑅𝑅
2

+ 𝜀𝜀�    (5.6) 

Then, the expression for 𝛥𝛥 can be written as: 

𝛥𝛥 = �𝑄𝑄
�

3
�
3

+ �𝑅𝑅
�

2
�
2
  

    = 1
243

�9 �𝑅𝑅
2
�
3
�𝑅𝑅
2

+ 𝜀𝜀�
3
− 6 �𝑅𝑅

2
�
2
�𝑅𝑅
2

+ 𝜀𝜀�
2

(𝜆𝜆𝑐𝑐𝑐𝑐 − 𝜆𝜆𝑟𝑟)2 + 5𝑅𝑅
2
�𝑅𝑅
2

+ 𝜀𝜀� (𝜆𝜆𝑐𝑐𝑐𝑐 − 𝜆𝜆𝑟𝑟)4�  (5.7) 

The highest power of 𝑅𝑅 present in 𝛥𝛥 is 𝑅𝑅6. Therefore, the dimension of 𝛥𝛥 is equivalent to the 

dimension of 𝛼𝛼6, which is 𝑇𝑇−6. Since the dimension of angular velocity 𝛼𝛼 is 𝑇𝑇−1, 𝛥𝛥 is not 

dimensionally consistent with 𝛼𝛼. (Nottage et al. 2021) 
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5.1.2 𝑸𝑸 Method 

Recall: 

𝑨𝑨𝜃𝜃 =  

⎣
⎢
⎢
⎢
⎡

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�

1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�

1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 ⎦
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎡𝜆𝜆𝑐𝑐𝑐𝑐

𝜀𝜀
2

𝜉𝜉
2

𝜀𝜀
2

𝜆𝜆𝑐𝑐𝑐𝑐
𝜂𝜂
2

𝜉𝜉
2

𝜂𝜂
2

𝜆𝜆𝑟𝑟⎦
⎥
⎥
⎥
⎤
    (5.8) 

𝑩𝑩𝜃𝜃 =

⎣
⎢
⎢
⎢
⎡ 0 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 −  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�

1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� 0 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�

1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 0 ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡ 0 −𝑅𝑅+𝜀𝜀

2
− 𝜉𝜉

2
𝑅𝑅+𝜀𝜀
2

0 −𝜂𝜂
2

𝜉𝜉
2

𝜂𝜂
2

0 ⎦
⎥
⎥
⎥
⎤
    (5.9) 

Then, 𝑄𝑄 = 1
2

(‖𝑩𝑩𝜃𝜃‖𝐹𝐹2 − ‖𝑨𝑨𝜃𝜃‖𝐹𝐹2) 

                = 1
2
�2 �𝑅𝑅

2
+ 𝜀𝜀

2
� + 2 �𝜉𝜉

2
�
2

+ 2 �𝜂𝜂
2
�
2
� − 1

2
�2 𝜆𝜆𝑐𝑐𝑐𝑐

2 + 𝜆𝜆𝑟𝑟
2 + 2 �𝜀𝜀

2
�
2

+ 2 �𝜉𝜉
2
�
2

+ 2 �𝜂𝜂
2
�
2
�  

                = �𝑅𝑅
2
�
2

+ 1
2
𝑅𝑅𝑅𝑅 − 𝜆𝜆𝑐𝑐𝑐𝑐

2 − 1
2
𝜆𝜆𝑟𝑟

2 .       (5.10) 

The highest power of 𝑅𝑅 present in 𝑄𝑄 is 𝑅𝑅2. Therefore, the dimension of Q is equivalent to the 

dimension of 𝛼𝛼2, which is 𝑇𝑇−2. Since the dimension of angular velocity 𝛼𝛼 is 𝑇𝑇−1, 𝑄𝑄 is not 

dimensionally consistent with 𝛼𝛼. (Nottage et al. 2021) 

 

5.1.3 𝝀𝝀𝒄𝒄𝒄𝒄 Method 

Recall from 5.1.1, the eigenvalues of velocity gradient tensor 𝛁𝛁𝑽𝑽𝜃𝜃�����⃑  are: 

𝜆𝜆1 = 𝜆𝜆𝑟𝑟,         𝜆𝜆2 = 𝜆𝜆𝑐𝑐𝑐𝑐 + 𝑖𝑖�𝑅𝑅
2
�𝑅𝑅
2

+ 𝜀𝜀�,      𝜆𝜆3 = 𝜆𝜆𝑐𝑐𝑐𝑐 − 𝑖𝑖�𝑅𝑅
2
�𝑅𝑅
2

+ 𝜀𝜀� . 

Since rotation is orthogonal, the eigenvalues are the same as the original velocity gradient tensor, 

i.e., 𝜆𝜆2 = 𝜆𝜆𝑐𝑐𝑐𝑐 + 𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐  and  𝜆𝜆3 = 𝜆𝜆𝑐𝑐𝑐𝑐 − 𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐.  

This implies that, 𝜆𝜆𝑐𝑐𝑐𝑐 = �𝑅𝑅
2
�𝑅𝑅
2

+ 𝜀𝜀� .        (5.11) 
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The highest power of 𝑅𝑅 present in 𝜆𝜆𝑐𝑐𝑐𝑐 is 𝑅𝑅1. Therefore, the dimension of 𝜆𝜆𝑐𝑐𝑐𝑐 is equivalent to the 

dimension of 𝛼𝛼, which is 𝑇𝑇−1. Which implies that 𝜆𝜆𝑐𝑐𝑐𝑐 is dimensionally consistent with 𝛼𝛼. (Nottage 

et al. 2021) 

 

5.2 Graphical Representation 

Two graphical examples are considered and analyzed to illustrate the importance of the 

dimensional quantifier of the methods. 

 

5.2.1 2D Rigid Rotation 

Consider 2D rigid rotation (Gao et al. 2018). The velocity in polar coordinates and cartesian 

coordinates are expressed as: 

�
𝑣𝑣𝑟𝑟 = 𝛼𝛼𝑟𝑟
𝑣𝑣𝜃𝜃 =    0        , �𝑢𝑢 = −𝛼𝛼𝑦𝑦

𝑣𝑣 =    𝛼𝛼𝑥𝑥   , 

where 𝛼𝛼 represents the angular velocity, which is a positive constant. 

The velocity gradient tensor for this example is 𝛁𝛁𝑽𝑽𝜃𝜃�����⃑ = �
0 −𝛼𝛼 0
𝛼𝛼 0 0
0 0 0 

�. 

Recall: 𝛼𝛼 = 𝑅𝑅
2
 . 

We can analytically express the second-generation methods as: 

Δ =  1
27
𝛼𝛼6 , 𝑄𝑄 =  𝛼𝛼2 , −𝜆𝜆2 =  𝛼𝛼2 , and 𝜆𝜆𝑐𝑐𝑐𝑐 = 𝛼𝛼. 

The value of 𝛼𝛼 is increased by increments of 0.2, and the flow of the values is depicted in Fig. 5.1. 
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Fig. 5.1: Line graphs depicting the values of the Criterions with respect to 𝜶𝜶 with a 0.2 increase on 𝜶𝜶 
at each time step. 

In Fig. 5.1, 𝜆𝜆𝑐𝑐𝑐𝑐 is the best second-generation method when compared to Liutex, which is considered 

as the exact quantity of rotation, because in 2D rigid rotation 𝜆𝜆𝑐𝑐𝑐𝑐 is equal to the angular velocity 𝛼𝛼. 

On the other hand, as 𝛼𝛼 increases, the values of the other criteria spread out further away from the 

value of 𝛼𝛼. 𝑄𝑄 and −𝜆𝜆2 increase similarly from 𝛼𝛼 since both have dimension 𝑇𝑇−2. While 𝛥𝛥 

increases in value significantly from 𝛼𝛼. This occurs because the dimension of 𝛥𝛥 is 𝑇𝑇−6. The 

increment is so different from the other methods that 𝛥𝛥 is the most inaccurate in terms of 

quantifying the value of the angular velocity 𝛼𝛼. 

 

5.2.2 Boundary Layer Transition DNS 

A DNS simulation of boundary transition of which the grid level is 1920 × 128 × 241 is 

conducted. Three X positions are chosen from the grid, namely 402.8, 500.7, and 815.5. These 

positions are chosen from the laminar, transitional, and turbulent flow, respectively. Liutex 
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magnitude 𝑅𝑅 is used in comparison with the values of the other methods since it is twice the 

angular velocity 𝛼𝛼. (Nottage et al. 2021) 

 

     Fig 5.2: The point selected in Laminar Flow at x=402.8 

Laminar flow is the area at the beginning of the vortex structure, where the vortex starts to develop. 

If there is vortex activity in this area, the strength of the vortex should be minimal and close to 0. 

Fig. 5.2 shows that this area’s vortical structure is symmetrical. 

 

        

Fig. 5.3: The point selected in Transitional Flow at x=500.7 

Transitional flow is where the vortex strength begins to increase, and the formation of hairpin 

vortex rings begins to appear. Fig. 5.3 shows that this area’s vortical structure is mostly 
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symmetrical.  

 

 

Fig. 5.4: The point selected in turbulent flow at x=815.5 

Turbulent flow is where many hairpin vortex rings have formed, and the strength of the vortex 

varies between strong and weak. Fig. 5.4 shows that this area is very chaotic and antisymmetric.   

 

One hundred snapshots of the data were observed and recorded. The relative values are computed 

to get a better comparison between the data values of the methods. The relative data values are 

derived by dividing the original data values by the absolute value of the max data value for each 

method. i.e., 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛
� max
1≤𝑚𝑚≤100

(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚)�
= 𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 , where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 represents the original data value, 𝑅𝑅𝑅𝑅 

represents the relative data value, n = 1 to 100 and 𝑖𝑖 ∈ {𝑄𝑄, 𝛥𝛥, 𝜆𝜆2, 𝜆𝜆𝑐𝑐𝑐𝑐, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿}. The data and 

relative data values are depicted in the following graphs.   
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Fig. 5.5: Values of vortex criteria in different period T at x=402.8 

 

Fig. 5.6: Relative values of vortex criteria in different period T at x=402.8 
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Fig. 5.7: Values of vortex criteria in different period T at x=500.7 

 

Fig. 5.8: Relative values of vortex criteria in different period T at x=500.7 
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Fig. 5.9: Values of vortex criteria in different period T at x=815.5 

 

Fig. 5.10: Relative values of vortex criteria in different period T at x=815.5 

In Fig. 5.5, the 𝑄𝑄, 𝜆𝜆2, and 𝛥𝛥 methods were closely wrapped around zero for period T. This 

indicates that the values of these methods were significantly minuscule in the laminar flow. On the 

other hand, 𝜆𝜆𝑐𝑐𝑐𝑐’s values followed the flow of Liutex, which is an indicator that 𝜆𝜆𝑐𝑐𝑐𝑐, and Liutex have 
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the same dimensional quantifier. In Fig. 5.6, the relative values reveal that 𝛥𝛥 is positive when 

Liutex is positive. This satisfies the condition that a vortex region exists. However, we observed 

that 𝑄𝑄 and −𝜆𝜆2 are not able to detect the weak vortex region. 

In Fig. 5.7 and Fig. 5.9, the values of 𝑄𝑄 and −𝜆𝜆2 in the transitional and turbulent flow were 

identical. This corresponds with the conclusions in graphical example 5.2.1 that their dimensions 

are the same. In Fig. 5.8 and Fig. 5.10, the relative values of 𝑄𝑄 and −𝜆𝜆2 in the transitional and 

turbulent flow still had similar flow patterns but −𝜆𝜆2 was able to detect some weak vortex regions 

that 𝑄𝑄 could not. In figures 5.7 to 5.10, the 𝜆𝜆𝑐𝑐𝑐𝑐 method followed the flow of Liutex, again showing 

the close relationship between the two methods. 

Based on the mathematical and graphical dimensional analysis, 𝜆𝜆𝑐𝑐𝑐𝑐 seems to be the best method 

among the four second-generation vortex identification methods in comparison with Liutex. 

   

5.3 Conclusion 

The dimensional quantifier is very important because any mathematical equation relating physical 

quantities must be dimensionally consistent. Liutex magnitude 𝑅𝑅, equal to twice the angular 

velocity, has the same dimension as the angular velocity 𝛼𝛼. The dimensions of 𝑄𝑄, 𝜆𝜆2, and 𝛥𝛥 are not 

equivalent to the dimension of angular velocity 𝛼𝛼. Therefore, the values of 𝑄𝑄, 𝜆𝜆2 and 𝛥𝛥 can be 

significantly higher or lower than the value of 𝛼𝛼.  

Only 𝜆𝜆𝑐𝑐𝑐𝑐 had the proper dimensional quantifier to be comparable to Liutex magnitude 𝑅𝑅. Of the 

four second-generation methods, 𝜆𝜆𝑐𝑐𝑐𝑐 is the only one not affected by stretching. However, 𝜆𝜆𝑐𝑐𝑐𝑐 is 

affected by shear, is scalar-valued, and depends on a threshold to visualize the iso-surface. 

Therefore, Liutex is superior to the second-generation methods since it is defined as a vector, and 

Liutex magnitude 𝑅𝑅 has the proper dimension. 
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Chapter 6  

The Local Fluid Rotational Axis 
 
6.1 Definition of the Local Fluid Rotational Axis 

Definition 6.1:  

The local fluid rotational axis is defined as a vector that can only have stretching (compressing) 

along its length and cannot rotate itself. In other words, the increment of velocity along the rotation 

axis 𝛾⃑𝛾 must be along itself, i.e., 𝑑𝑑v�⃑ = 𝑐𝑐𝛾⃑𝛾 (Liu et al. 2019, Gao et al. 2018).  

 

From the definition of the velocity gradient tensor, 𝑑𝑑𝑣⃑𝑣 = 𝛁𝛁𝐯𝐯�⃑ ∗ 𝛾⃑𝛾. Therefore, 𝑑𝑑v�⃑ = 𝛁𝛁𝐯𝐯�⃑ ∗ 𝛾⃑𝛾 = 𝑐𝑐𝛾⃑𝛾 

along the rotation axis. This indicates that 𝛾⃑𝛾 is the real eigenvector of 𝛁𝛁𝐯𝐯�⃑ . Any axis that does not 

satisfy Definition 6.1 will not be a rotation axis. 

 

6.2 Mathematical Analysis 

There are five vector candidates for the local rotational axis. They are the symmetrical tensor’s 

eigenvectors, the vorticity vector, and the Liutex directional unit vector. 

 

6.2.1 Liutex directional vector 

The definition of Liutex vector is 𝑅𝑅�⃑ = 𝑅𝑅𝑟𝑟, where 𝑟𝑟 represents the directional unit vector of Liutex 

and is the real eigenvector of 𝛁𝛁𝐯𝐯�⃑ , i.e., 𝑑𝑑𝑣⃑𝑣 = 𝛁𝛁𝐯𝐯�⃑ ∗ 𝑟𝑟 =  𝜆𝜆𝑟𝑟𝑟𝑟. Therefore, the Liutex directional vector 

satisfies the definition of the local rotation axis. 

Note: Since a normalized eigenvector is unique up to a ± sign, a second condition is imposed, 

which is 𝜔𝜔��⃑ ∙ 𝑟𝑟 > 0, where 𝜔𝜔��⃑  is the vorticity vector. 
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6.2.2 The 3 Eigenvectors of the symmetrical tensor 𝑨𝑨 

The symmetrical tensor 𝑨𝑨 in the principal coordinate is 

𝑨𝑨𝜽𝜽 =

⎣
⎢
⎢
⎢
⎡𝜆𝜆𝑐𝑐𝑐𝑐

𝜀𝜀
2

𝜉𝜉
2

𝜀𝜀
2

𝜆𝜆𝑐𝑐𝑐𝑐
𝜂𝜂
2

𝜉𝜉
2

𝜂𝜂
2

𝜆𝜆𝑟𝑟⎦
⎥
⎥
⎥
⎤
.          (6.1) 

Let 𝜆𝜆1, 𝜆𝜆2, and 𝜆𝜆3 be the eigenvalues of 𝑨𝑨𝜽𝜽, and 𝑑𝑑1, 𝑑𝑑2 and 𝑑𝑑3 be the eigenvectors of 𝑨𝑨𝜽𝜽,  

i.e., 𝑑𝑑𝑖𝑖 = [𝑋𝑋𝑖𝑖 𝑌𝑌𝑖𝑖 𝑍𝑍𝑖𝑖]𝑇𝑇, for 𝑖𝑖 = 1,2,3.  

Since  𝛁𝛁𝑽𝑽𝜃𝜃�����⃑ ∗ 𝛾⃑𝛾 = 𝑑𝑑𝑉𝑉�⃑ = 𝑐𝑐𝛾⃑𝛾, then  𝛁𝛁𝑽𝑽𝜃𝜃�����⃑ ∗ 𝛾⃑𝛾 = 𝑐𝑐𝛾⃑𝛾. 

Let 𝛾⃑𝛾 = 𝑑𝑑𝑖𝑖, then, 

 𝛁𝛁𝑽𝑽𝜃𝜃�����⃑ ∗ 𝑑𝑑𝑖𝑖 = 𝑨𝑨𝜽𝜽 ∗ 𝑑𝑑𝑖𝑖 + 𝑩𝑩𝜽𝜽 ∗ 𝑑𝑑𝑖𝑖 =  𝜆𝜆𝑖𝑖𝑑𝑑𝑖𝑖 + 𝑩𝑩𝜽𝜽 ∗ 𝑑𝑑𝑖𝑖 

                = 𝜆𝜆𝑖𝑖 �
𝑋𝑋𝑖𝑖
𝑌𝑌𝑖𝑖
𝑍𝑍𝑖𝑖
� +

⎣
⎢
⎢
⎢
⎡ 0 −𝑅𝑅+𝜀𝜀

2
− 𝜉𝜉

2
𝑅𝑅+𝜀𝜀
2

0 −𝜂𝜂
2

𝜉𝜉
2

𝜂𝜂
2

0 ⎦
⎥
⎥
⎥
⎤
�
𝑋𝑋𝑖𝑖
𝑌𝑌𝑖𝑖
𝑍𝑍𝑖𝑖
� = 𝜆𝜆𝑖𝑖 �

𝑋𝑋𝑖𝑖
𝑌𝑌𝑖𝑖
𝑍𝑍𝑖𝑖
� + 1

2
�
−(𝑅𝑅 + 𝜀𝜀)𝑌𝑌𝑖𝑖 − 𝜉𝜉𝑍𝑍𝑖𝑖
(𝑅𝑅 + 𝜀𝜀)𝑋𝑋𝑖𝑖 − 𝜂𝜂𝑍𝑍𝑖𝑖

𝜉𝜉𝑋𝑋𝑖𝑖 + 𝜂𝜂𝑌𝑌𝑖𝑖
� 

                = 𝜆𝜆𝑖𝑖 �
𝑋𝑋𝑖𝑖
𝑌𝑌𝑖𝑖
𝑍𝑍𝑖𝑖
� + �− �

𝑋𝑋𝑖𝑖
𝑌𝑌𝑖𝑖
𝑍𝑍𝑖𝑖
� × �

𝜂𝜂
−𝜉𝜉
𝑅𝑅 + 𝜀𝜀

�� = 𝜆𝜆𝑖𝑖𝑑𝑑𝑖𝑖 + �−𝑑𝑑𝑖𝑖 × ω��⃑ � ≠ 𝑐𝑐𝑑𝑑𝑖𝑖.   (6.2) 

This implies that 𝑑𝑑𝑖𝑖 does not satisfy the definition of the rotation axis. Therefore, the three 

eigenvectors of symmetrical tensor 𝑨𝑨 are not the rotation axis. (Nottage et al. 2021) 

 

6.2.3 The Vorticity Vector 

The vorticity vector in the principal coordinates is 

𝛁𝛁 × 𝑽𝑽𝜃𝜃�����⃑ = ω��⃑ = �
𝜂𝜂
−𝜉𝜉
𝑅𝑅 + 𝜀𝜀

�.         (6.3) 

Since 𝛁𝛁𝑽𝑽𝜃𝜃�����⃑ ∗ 𝛾⃑𝛾 = 𝑑𝑑𝑽𝑽𝜃𝜃�����⃑ = 𝑐𝑐𝛾⃑𝛾, then 𝛁𝛁𝑽𝑽𝜃𝜃�����⃑ ∗ 𝛾⃑𝛾 = 𝑐𝑐𝛾⃑𝛾 and let 𝜔𝜔��⃑ = 𝛾⃑𝛾. 
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𝛁𝛁𝑽𝑽𝜃𝜃�����⃑ ∗ 𝜔𝜔��⃑ = 𝑨𝑨𝜽𝜽 ∗ 𝜔𝜔��⃑ + 𝑩𝑩𝜽𝜽 ∗ 𝜔𝜔��⃑ = 𝑨𝑨𝜽𝜽 ∗ 𝜔𝜔��⃑ + 0 =  

⎣
⎢
⎢
⎢
⎢
⎡𝜆𝜆𝑐𝑐𝑐𝑐

𝜀𝜀
2

𝜉𝜉
2

𝜀𝜀
2

𝜆𝜆𝑐𝑐𝑐𝑐
𝜂𝜂
2

𝜉𝜉
2

𝜂𝜂
2

𝜆𝜆𝑟𝑟⎦
⎥
⎥
⎥
⎥
⎤

�
𝜂𝜂
−𝜉𝜉
𝑅𝑅 + 𝜀𝜀

� 

                =  �
𝜂𝜂𝜆𝜆𝑐𝑐𝑐𝑐
−𝜉𝜉𝜆𝜆𝑐𝑐𝑐𝑐

(𝑅𝑅 + 𝜀𝜀)𝜆𝜆𝑟𝑟
� + 1

2
�
𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅
0
� = 𝜆𝜆𝑐𝑐𝑐𝑐 �

𝜂𝜂
−𝜉𝜉
0
� + 𝜆𝜆𝑟𝑟 �

0
0

(𝑅𝑅 + 𝜀𝜀)
� + 𝑅𝑅

2
�
𝜉𝜉
𝜂𝜂
0
�    (6.4) 

Only in special cases does the equation stand: 

𝜆𝜆𝑐𝑐𝑐𝑐 �
𝜂𝜂
−𝜉𝜉
0
� + 𝜆𝜆𝑟𝑟 �

0
0

(𝑅𝑅 + 𝜀𝜀)
� + 𝑅𝑅

2
�
𝜉𝜉
𝜂𝜂
0
� = 𝑐𝑐 �

𝜂𝜂
−𝜉𝜉
𝑅𝑅 + 𝜀𝜀

�.      (6.5) 

The following are two cases where vorticity could possibly satisfy the equation above: 

1) No rotation: If 𝜆𝜆𝑟𝑟 = 𝜆𝜆𝑐𝑐𝑐𝑐 and 𝑅𝑅 = 0 then, (implies no rotation axis) 

𝜆𝜆𝑐𝑐𝑐𝑐 �
𝜂𝜂
−𝜉𝜉
0
� + 𝜆𝜆𝑐𝑐𝑐𝑐 �

0
0

(0 + 𝜀𝜀)
� + 0

2
�
𝜉𝜉
𝜂𝜂
0
� = 𝜆𝜆𝑐𝑐𝑐𝑐 �

𝜂𝜂
−𝜉𝜉
𝜀𝜀
� = 𝑐𝑐 �

𝜂𝜂
−𝜉𝜉
𝜀𝜀
�.    (6.6) 

2) No shear in the X and Y directions: If 𝜉𝜉 = 𝜂𝜂 = 0 then, (not possible in boundary layer) 

𝜆𝜆𝑐𝑐𝑐𝑐 �
0
0
0
� + 𝜆𝜆𝑟𝑟 �

0
0

(𝑅𝑅 + 𝜀𝜀)
� + 𝑅𝑅

2
�
0
0
0
� = 𝜆𝜆𝑟𝑟 �

0
0

(𝑅𝑅 + 𝜀𝜀)
� = 𝑐𝑐 �

0
0

𝑅𝑅 + 𝜀𝜀
�.   (6.7) 

This implies that the vorticity vector is not generally the rotation axis (Nottage et al. 2021). 

 

6.3 Boundary Layer Transition DNS 

A direct numerical simulation (DNS) is taken as an example to show the incorrectness mentioned 

above of the candidates (Nottage et al. 2021). The point selected to analyze is shown in Fig. 6.1. 
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Fig. 6.1 The selected point 

The velocity gradient tensor at this point is  

𝛁𝛁𝐯𝐯�⃑ = �
0.0533380 0.2818661 0.2621670
−0.0139413 0.0003662 0.1193656
−0.0055126 −0.0798357 −0.0548821

�.     (6.8) 

The corresponding Liutex and vorticity can be expressed as: 

𝑅𝑅�⃑ = [−0.1292245 0.0197261 −0.0100723]𝑇𝑇,      (6.9) 

𝜔𝜔��⃑ = [−0.1992013 0.2676797 −0.2958074]𝑇𝑇.      (6.10) 

The direction of the three eigenvectors of symmetric matrix 𝑨𝑨 is: 

𝑑𝑑1 = [−0.6333458 0.4286110 0.6443335]𝑇𝑇,      (6.11) 

𝑑𝑑2 = [0.1600420 −0.7420691 0.6509377]𝑇𝑇,      (6.12) 

𝑑𝑑3 = [0.7571391 0.5153891 0.4013906]𝑇𝑇.      (6.13) 
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Fig. 6.2 Directions of Liutex, vorticity, and velocity 

In Fig. 6.2, the Liutex line lies within the middle of the vortical structure, while the vorticity line is 

perpendicular to the vortical structure. Therefore, visually we can see that the vorticity vector is not 

the local fluid rotation axis. It is also worth noting that the streamlines are shown to swirl around 

the Liutex line. This is an indication that the Liutex directional vector is the local fluid rotation 

axis. 

 

 

Fig. 6.3 Directions of the three eigenvectors of the symmetric matrix 𝑨𝑨 

In Fig. 6.3, the directions of three eigenvectors of the symmetric matrix 𝐴𝐴 are shown. All of them 

stretch in different directions, and none of them are aligned with the vortical structure. 
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6.3.1 Testing condition 1 

Condition 1: The rotation axis can only be stretched or compressed in one of the physical rotation 

instances. 

The increase of velocity along Liutex, vorticity, and the eigenvectors are described as follows: 

𝑑𝑑𝐯𝐯�⃑ 𝑅𝑅 = 𝛁𝛁𝐯𝐯�⃑ ∗ 𝑅𝑅�⃑ = [−0.0039731 6.0649258 −3.0968137]𝑇𝑇,    (6.14) 

𝑑𝑑𝐯𝐯�⃑𝜔𝜔 = 𝛁𝛁𝐯𝐯�⃑ ∗ 𝜔𝜔��⃑ = [0.0127261 −0.0324341 −0.0040377]𝑇𝑇,    (6.15) 

𝑑𝑑𝐯𝐯�⃑ 𝑑𝑑1 = 𝛁𝛁𝐯𝐯�⃑ ∗ 𝑑𝑑1 = [0.2559524 0.0858979 −0.0660894]𝑇𝑇,    (6.16) 

𝑑𝑑𝐯𝐯�⃑ 𝑑𝑑2 = 𝛁𝛁𝐯𝐯�⃑ ∗ 𝑑𝑑2 = [−0.0299734 0.0751966 0.0226365]𝑇𝑇,    (6.17) 

𝑑𝑑𝐯𝐯�⃑ 𝑑𝑑3 = 𝛁𝛁𝐯𝐯�⃑ ∗ 𝑑𝑑3 = [0.2908864 0.0375455 −0.0673495]𝑇𝑇.    (6.18) 

The vectors are normalized to avoid the influence of magnitudes. 

To test if the directions of two vectors are parallel, the cross-product result is used: 

(𝑑𝑑𝐯𝐯�⃑ 𝑅𝑅)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 × 𝑅𝑅�⃑ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = [−3.5 × 10−18 2.5 × 10−17 1.1 × 10−16]𝑇𝑇 ≈ 0�⃑ ,  (6.19) 

(𝑑𝑑𝐯𝐯�⃑𝜔𝜔)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 × 𝜔𝜔��⃑ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = [0.68 −0.19 −0.63]𝑇𝑇 ≠ 0�⃑ ,     (6.20) 

�𝑑𝑑𝐯𝐯�⃑ 𝑑𝑑1�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 × 𝑑𝑑1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = [0.08 −0.12 0.16]𝑇𝑇 ≠ 0�⃑ ,     (6.21) 

�𝑑𝑑𝐯𝐯�⃑ 𝑑𝑑2�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 × 𝑑𝑑2𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = [0.07 0.02 0.01]𝑇𝑇 ≠ 0�⃑ ,     (6.22) 

�𝑑𝑑𝐯𝐯�⃑ 𝑑𝑑3�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 × 𝑑𝑑3𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = [0.05 −0.17 0.12]𝑇𝑇 ≠ 0�⃑ .     (6.23) 

If two vectors are parallel, then their cross-product equals the zero vector. Based on the calculation 

above, only the cross-product with Liutex was approximately the zero vector. Therefore, only 

Liutex satisfies the first condition of the rotation axis (Nottage et al. 2021). 
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6.3.2 Testing condition 2 

Condition 2: The rotation axis cannot rotate itself. 

In classical theory, the vorticity tensor is misunderstood to represent the rotation part; however, the 

real rotation part should be described by Liutex. The rotation matrix 𝐷𝐷 is: 

𝐷𝐷 =

⎣
⎢
⎢
⎢
⎡ 0 −1

2
𝑅𝑅𝑧𝑧

1
2
𝑅𝑅𝑦𝑦

1
2
𝑅𝑅𝑧𝑧 0 −1

2
𝑅𝑅𝑥𝑥

− 1
2
𝑅𝑅𝑦𝑦

1
2
𝑅𝑅𝑥𝑥 0 ⎦

⎥
⎥
⎥
⎤

= �
0 0.0050362 0.0098630

−0.0050362 0 0.0646122
−0.0098630 −0.0646122 0

�.  (6.24) 

To test if the vectors rotate themselves, the multiplication between 𝐷𝐷 and the normalized vectors is 

calculated:   

𝐷𝐷 ∗ 𝑅𝑅�⃑ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = [0 0 0]𝑇𝑇,         (6.25) 

𝐷𝐷 ∗ 𝜔𝜔��⃑ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = [−0.0035 −0.0406 −0.0344]𝑇𝑇,     (6.26) 

𝐷𝐷 ∗ 𝑑𝑑1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = [0.0085 0.0448 −0.0214]𝑇𝑇,      (6.27) 

𝐷𝐷 ∗ 𝑑𝑑2𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = [0.0027 0.0413 0.0464]𝑇𝑇,      (6.28) 

𝐷𝐷 ∗ 𝑑𝑑3𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = [0.0066 0.0221 −0.0408]𝑇𝑇.      (6.29) 

If the multiplication is equal to the zero vector, the candidate vector is not rotated. Based on the 

calculation above, only the dot product with Liutex is equal to the zero vector. Therefore, Liutex is 

the only one that satisfies the second condition of the rotation axis (Nottage et al. 2021). 

 

6.4 Conclusion 

The local rotational axis is defined as a vector along which the velocity increment can only have 

stretching (compression) along its length (Definition 6.1). Vorticity vector is, in general, not the 

rotation axis, which directly opposes the traditional and classical concepts in fluid kinematics. 

Vorticity vector is rotation axis only when shear is zero, which cannot occur in boundary layers. 
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The direction of vorticity was misunderstood as the rotational axis because people incorrectly 

considered matrix 𝑨𝑨 as stretching and antisymmetric matrix 𝑩𝑩 as rotation. Liutex is the only 

candidate for the local rotation axis as it satisfies Definition 6.1.  
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Chapter 7  

Vorticity is not vortex 
 
7.1 Vorticity = rotation + shear 

In Computational fluid dynamics, many researchers and textbooks accept that vorticity is vortex. 

This is due to a misunderstanding from the Cauchy-Stokes decomposition of velocity gradient 

tensor. It was understood that the symmetric tensor 𝑨𝑨 represented stretching/compression, and the 

antisymmetric tensor 𝑩𝑩 (vorticity tensor) represented rotation. In this section, I will prove and give 

evidence to back up my claim that vorticity is not vortex as it consists of rotation and shear 

components.     

 

7.1.1 Vorticity tensor in the Principal Coordinate  

𝑩𝑩𝜽𝜽 =

⎣
⎢
⎢
⎢
⎡ 0 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 −  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�

1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� 0 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�

1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 0 ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡ 0 −𝑅𝑅+𝜀𝜀

2
− 𝜉𝜉

2
𝑅𝑅+𝜀𝜀
2

0 −𝜂𝜂
2

𝜉𝜉
2

𝜂𝜂
2

0 ⎦
⎥
⎥
⎥
⎤
  

       = �
0 −𝑅𝑅

2
0

𝑅𝑅
2

0 0
0 0 0

� +

⎣
⎢
⎢
⎢
⎡0 − 𝜀𝜀

2
− 𝜉𝜉

2
𝜀𝜀
2

0 −𝜂𝜂
2

𝜉𝜉
2

𝜂𝜂
2

0 ⎦
⎥
⎥
⎥
⎤

= 𝑹𝑹 + 𝑨𝑨𝑨𝑨.       (7.1) 

Therefore, 𝑩𝑩𝜽𝜽 (vorticity tensor) can be decomposed further to yield 𝑹𝑹 (rotation part or Liutex) and 

𝑨𝑨𝑨𝑨 (the antisymmetric shear deformation part). This decomposition implies that the vorticity tensor 

is not strictly rotation (Yu et al. 2020). 
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7.1.2 Vorticity vector in the Principal Coordinate 

7.1.2.1 Proof 1 

ω��⃑ =  𝛁𝛁 × 𝑽𝑽𝜃𝜃�����⃑ = � 𝜕𝜕
𝜕𝜕𝜕𝜕

,  𝜕𝜕
𝜕𝜕𝜕𝜕

,  𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑻𝑻

× (𝑈𝑈,  𝑉𝑉,  𝑊𝑊)𝑻𝑻 =  �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
,  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
𝑻𝑻
  

    = �η,   − ξ,   𝑅𝑅
2

+ 𝜀𝜀 − �− 𝑅𝑅
2
��

𝑻𝑻
=  (η,   − ξ,   𝑅𝑅 + 𝜀𝜀)𝑻𝑻  

   = (η,   − ξ,   𝜀𝜀)𝑻𝑻 + (0,   0,   𝑅𝑅)𝑻𝑻 = 𝑆𝑆 + 𝑅𝑅�⃑         (7.2) 

Therefore, ω��⃑  contains shearing and rotation components (Shrestha et al. 2021).  

 

7.1.2.2 Proof 2 

Let 𝑑𝑑𝑐𝑐 be an arbitrarily selected real vector, 𝑑𝑑𝑐𝑐 = �
𝑥̇𝑥
𝑦̇𝑦
𝑧̇𝑧
�. 

2𝑩𝑩𝜽𝜽 ∗ 𝑑𝑑𝑐𝑐 = 2

⎣
⎢
⎢
⎢
⎡ 0 −𝑅𝑅+𝜀𝜀

2
− 𝜉𝜉

2
𝑅𝑅+𝜀𝜀
2

0 −𝜂𝜂
2

𝜉𝜉
2

𝜂𝜂
2

0 ⎦
⎥
⎥
⎥
⎤
�
𝑥̇𝑥
𝑦̇𝑦
𝑧̇𝑧
� = �

−(𝑅𝑅 + 𝜀𝜀)𝑦̇𝑦 − 𝜉𝜉𝑧̇𝑧
(𝑅𝑅 + 𝜀𝜀)𝑥̇𝑥 − 𝜂𝜂𝑧̇𝑧

𝜉𝜉𝑥̇𝑥 + 𝜂𝜂𝑦̇𝑦
�  

                 = −�
𝑥̇𝑥
𝑦̇𝑦
𝑧̇𝑧
� × �

𝜂𝜂
−𝜉𝜉
𝑅𝑅 + 𝜀𝜀

� = −𝑑𝑑𝑐𝑐 × �𝛁𝛁 × 𝑽𝑽𝜃𝜃�����⃑ �.       (7.3) 

2𝑩𝑩𝜽𝜽 ∗ 𝑑𝑑𝑐𝑐 = (2𝑹𝑹 + 2𝑨𝑨𝑨𝑨) ∗ 𝑑𝑑𝑐𝑐 = 2𝑹𝑹 ∗ 𝑑𝑑𝑐𝑐 + 2𝑨𝑨𝑨𝑨 ∗ 𝑑𝑑𝑐𝑐 

                 = �
0 −𝑅𝑅 0
𝑅𝑅 0 0
0 0 0

� �
𝑥̇𝑥
𝑦̇𝑦
𝑧̇𝑧
� + �

0 −𝜀𝜀 −𝜉𝜉
𝜀𝜀 0 −𝜂𝜂
𝜉𝜉 𝜂𝜂 0

� �
𝑥̇𝑥
𝑦̇𝑦
𝑧̇𝑧
� = �

−𝑅𝑅𝑦̇𝑦
𝑅𝑅𝑥̇𝑥
0

� + �
−𝜀𝜀𝑦̇𝑦 − 𝜉𝜉𝑧̇𝑧
𝜀𝜀𝑥̇𝑥 − 𝜂𝜂𝑧̇𝑧
𝜉𝜉𝑥̇𝑥 + 𝜂𝜂𝑦̇𝑦

�  

                 =  −�
𝑥̇𝑥
𝑦̇𝑦
𝑧̇𝑧
� × �

0
0
𝑅𝑅
� − �

𝑥̇𝑥
𝑦̇𝑦
𝑧̇𝑧
� × �

𝜂𝜂
−𝜉𝜉
𝜀𝜀
� = −𝑑𝑑𝑐𝑐 × 𝑅𝑅�⃑ − 𝑑𝑑𝑐𝑐 × 𝑆𝑆.                        (7.4) 

⟹        −𝑑𝑑𝑐𝑐 × 𝑅𝑅�⃑ − 𝑑𝑑𝑐𝑐 × 𝑆𝑆 =  𝟐𝟐𝑩𝑩𝜽𝜽 ∗ 𝑑𝑑𝑐𝑐 = −𝑑𝑑𝑐𝑐 × �𝛁𝛁 × 𝑽𝑽𝜃𝜃�����⃑ �    (7.5) 

⟹           𝑑𝑑𝑐𝑐 × �𝛁𝛁 × 𝑽𝑽𝜃𝜃�����⃑ � = 𝑑𝑑𝑐𝑐 × 𝑅𝑅�⃑ + 𝑑𝑑𝑐𝑐 × 𝑆𝑆 = 𝑑𝑑𝑐𝑐 × �𝑅𝑅�⃑ + 𝑆𝑆�    (7.6) 

Since 𝑑𝑑𝑐𝑐 was arbitrarily selected, then, 𝛁𝛁 × 𝑽𝑽𝜃𝜃�����⃑ = 𝑅𝑅�⃑ + 𝑆𝑆, where 𝑅𝑅�⃑  is a rotational vector and 𝑆𝑆 is a 
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non-rotational shear vector. 7.1.2.1 and 7.1.2.2 imply that the vorticity vector contains rotational 

and shearing factors; hence the vorticity vector is not strictly rotational (Jeong et al. 1995, Nottage 

et al. 2021).   

 

7.1.3 Vorticity Magnitude in the Principal Coordinate  

The vorticity magnitude in the Principal Coordinate is ‖ω��⃑ ‖ = �(𝜂𝜂)2 + (𝜉𝜉)2 + (𝑅𝑅 + 𝜀𝜀)2. 

The vorticity magnitude contains rotation 𝑅𝑅 and shearing components 𝜂𝜂, 𝜉𝜉, 𝜀𝜀 (Shrestha et al. 2021). 

 

7.2 Statistical analysis of vorticity (𝝎𝝎), Liutex (𝒍𝒍), and shear (s). 

Using a direct numerical simulation (DNS), we will: 

1) Investigate the behavior of shear, Liutex, and vorticity from laminar flow to turbulent flow.  

2) Analyze the effect of shear on vorticity. 

The results of the DNS over a grid of 1920 × 128 × 241 are recorded. 

Statistical analysis is performed over the whole grid domain and across 500 t time steps.  

The Statistical integration formula is ∑ ∑ ∑ 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑗𝑗𝑖𝑖 = 𝜄𝜄𝑡𝑡 , where 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is a point in the grid, i = 

1 to 1920, j = 1 to 128, k = 1 to 241 and t represents the step-in time. 𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖 is the volume of the 

space around the point 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 𝜄𝜄𝑡𝑡 is the integration output value in time t. We calculate and record the 

data across time t = 10 to 15 for: 

• 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 = Liutex magnitude component 

• 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 = vorticity magnitude component 

• 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 = shear magnitude component 

• 𝑙𝑙𝑦𝑦 = Liutex component in the y direction 
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• 𝜔𝜔𝑦𝑦 = vorticity component in the y direction 

• 𝑠𝑠𝑦𝑦 = shear component in the y direction 

The difference in the values of vorticity and Liutex is significantly high, so the relative values are 

used to compare the change in the values over period T. 

 

7.2.1 Whole domain for the y direction 

 
Fig. 7.1: Vortex structures by modified Liutex-Omega with 𝛀𝛀�𝑳𝑳 = 𝟎𝟎.𝟓𝟓𝟓𝟓 at t = 13.00T 

Figure 7.1 shows the formation of the vortex structures from the Y direction view in laminar flow 

from 340 to 400, transitional flow from 401 to 470, and turbulent flow from 471 to 520. In laminar 

flow, there is no vortex structure. In transition flow, the formation of hairpin vortex rings begins, 

and in turbulent flow, many vortex rings have formed. 

The spanwise Y direction is the most prominent since it contributes the most to the value of the 

magnitudes (Dong et al. 2018). 
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Fig. 7.2: Relative integration values for 𝝎𝝎𝒚𝒚, 𝒍𝒍𝒚𝒚 & 𝒔𝒔𝒚𝒚 from T = 10 to 15 

In Fig. 7.2, the relative 𝒍𝒍𝒚𝒚 values increased significantly over period T, which is the T-S wave 

period. 𝝎𝝎𝒚𝒚 showed no change throughout period T. The change in 𝒔𝒔𝒚𝒚 values were negative, which 

coincides with the increase in 𝒍𝒍𝒚𝒚 and no change in 𝝎𝝎𝒚𝒚.  The period T travels from laminar flow to 

turbulent flow. There should be minuscule rotation or vortex activity in laminar flow, and then as 

we move into transitional flow, the vortex activity increases, creating hairpin vortex rings. This 

coincides with 𝒍𝒍𝒚𝒚 relative values behavior.  
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7.2.2 Whole domain for magnitudes 

 

Fig. 7.3: Relative Integration values for 𝝎𝝎𝒎𝒎𝒎𝒎𝒎𝒎, 𝒍𝒍𝒎𝒎𝒎𝒎𝒎𝒎 & 𝒔𝒔𝒎𝒎𝒎𝒎𝒎𝒎 from T = 10 to 15 

It can be observed from Fig. 7.3 that the relative change in 𝒍𝒍𝒎𝒎𝒎𝒎𝒎𝒎 across time is much greater than 

𝝎𝝎𝒎𝒎𝒎𝒎𝒎𝒎. As we moved from laminar flow to turbulent flow in time, the values of 𝒍𝒍𝒎𝒎𝒎𝒎𝒎𝒎 continually 

increased, showing that 𝒍𝒍𝒎𝒎𝒎𝒎𝒎𝒎 picked up the formation of vortex rings, whereas 𝝎𝝎𝒎𝒎𝒎𝒎𝒎𝒎 barely 

changed. 

 

7.3 Conclusion 

Vorticity is not strictly rotation since shear contaminates it. The effect of shear on vorticity can 

substantially lead to a misrepresentation of vortex indication in the laminar flow with no rotation.  

The Y direction relative graph shows that over time 𝝎𝝎𝒚𝒚 had little to no change in value, while 𝒍𝒍𝒚𝒚 

increased as time progressed. This occurs because the hairpin vortex rings form in the Y direction 

during transitional flow. However, since 𝝎𝝎𝒚𝒚 had little to no change throughout period T, it cannot 

identify the formation of these hairpin vortex rings.     
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Since the 𝝎𝝎𝒚𝒚 change in values was minuscule but 𝒍𝒍𝒚𝒚 values were increasing, 𝒔𝒔𝒚𝒚 values were 

decreasing. Therefore, Liutex has a negative relation with shear deformation. The magnitude graphs 

show that the relative increase in 𝒍𝒍𝒎𝒎𝒎𝒎𝒎𝒎 as time progressed was more significant than the increase in 

𝝎𝝎𝒎𝒎𝒎𝒎𝒎𝒎 and 𝒔𝒔𝒎𝒎𝒎𝒎𝒎𝒎. Since vorticity misrepresented shear as rotation in laminar flow and could not 

identify when the hairpin vortex rings formed, vorticity should not be considered as vortex.  
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Summary of the Conclusions 

In Chapter 5, the importance of the dimensional quantifier was emphasized. Any mathematical 

equation relating physical quantities must be dimensionally consistent. Liutex magnitude 𝑅𝑅, 

equal to twice the angular velocity, has the same dimension as the angular velocity 𝛼𝛼. The 

dimensions of 𝑄𝑄, 𝜆𝜆2, and 𝛥𝛥 are not equivalent to the dimension of angular velocity 𝛼𝛼. 

Therefore, the values of 𝑄𝑄, 𝜆𝜆2 and 𝛥𝛥 can be significantly higher or lower than the value of 𝛼𝛼. 

Only 𝜆𝜆𝑐𝑐𝑐𝑐 had the proper dimensional quantifier to be comparable to Liutex magnitude 𝑅𝑅. Of the 

four second-generation methods, 𝜆𝜆𝑐𝑐𝑐𝑐 is the only one not affected by stretching. However, 𝜆𝜆𝑐𝑐𝑐𝑐 is 

affected by shear, is scalar-valued, and depends on a threshold to visualize the iso-surface. 

Therefore, Liutex is superior to the second-generation methods since it is defined as a vector, 

and its magnitude 𝑅𝑅 has the proper dimension. 

In Chapter 6, the local rotational axis was defined. Five vector candidates were assessed to find 

the proper vector that can represent the local rotational axis. The local rotational axis is defined 

as a vector along which the velocity increment can only have stretching (compression) along its 

length (Definition 6.1). The eigenvectors of the symmetric tensor 𝑨𝑨 failed to satisfy definition 

6.1. The vorticity vector, in general, is not the rotation axis, which directly opposes the 

traditional and classical concepts in fluid kinematics. The vorticity vector is rotation axis only 

when shear is zero, which cannot occur in boundary layers. The direction of vorticity was 

misunderstood as the rotational axis because people incorrectly considered matrix 𝑨𝑨 as 

stretching and antisymmetric matrix 𝑩𝑩 as rotation. Liutex is the only candidate for the local 

rotation axis as it satisfies Definition 6.1.  

Lastly, in chapter 7, the relationship and behavior of vorticity, Liutex, and shear were observed over 

period T (10 to 15). Vorticity was proven to be contaminated by shear and is not strictly rotation. 



 

56 
 

The effect of shear on vorticity can be very significant, which leads to a misrepresentation of vortex 

indication in the laminar flow where there is no rotation.  The Y direction relative graph showed 

that over time 𝝎𝝎𝒚𝒚  had little to no change in value, while 𝒍𝒍𝒚𝒚  increased as time progressed. This 

occurred because the hairpin vortex rings form in the Y direction during transitional flow. Since 𝝎𝝎𝒚𝒚 

had little to no change throughout period T, it cannot identify the formation of these hairpin vortex 

rings.     

Since the 𝝎𝝎𝒚𝒚 change in values was minuscule, but 𝒍𝒍𝒚𝒚 values increased significantly, the 𝒔𝒔𝒚𝒚 values 

decreased. Therefore, Liutex has a negative relation with shear deformation. Since vorticity 

misrepresented shear as rotation in laminar flow and could not identify when the hairpin vortex 

rings formed, vorticity should not be considered as vortex.  
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