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Abstract 

Novel analysis of wavelet coherence and phase-amplitude coupling to investigate the 

human brain at four vigilance states 

Parisa Rabbani, PhD 

The University of Texas at Arlington, 2019 

Supervising Professor: Hanli Liu 

 

Despite breakthroughs in the field of neuroimaging, there remain many unanswered 

questions about brain functions and activities and their underlying physiological processes. In my 

dissertation research, I examined brain functions while human subjects experienced four vigilance 

states: (1) resting state with eyes open, (2) resting awake state with eyes closed, (3) sleep stage 1 

and (4) sleep stage 2. Simultaneous dual modality measurements using electroencephalography 

(EEG) and functional near infrared spectroscopy (fNIRS) were acquired during the 

aforementioned vigilance states. Specifically, I examined brain processes from two different 

perspectives: brain hemodynamics (blood flow) and electrophysiology (brain waves). My 

dissertation had three aims, leading to the following results. 

In Aim 1, I explored a state-of-the-art wavelet transform coherence (WTC) method to 

analyze neurovascular coupling (NVC), or the changes in brain hemodynamics corresponding to 

changes in brain activity in four vigilance states, based on dual-mode EEG-fNIRS simultaneous 
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measurements. I had to reduce the EEG frequency range and obtain corresponding envelop 

functions in order to match the fNIRS frequency range for within-frequency analysis. With WTC, 

I was able to detect distinct in-phase and anti-phase coherence between hemodynamic and 

electrophysiological signals at four vigilance states. In specific, in-phase NVC was significantly 

higher in sleep stage 2 than other vigilance states in delta, theta and alpha bands of EEG versus 

endogenic band of fNIRS (p-value<0.05). However, anti-phase NVC was significantly higher in 

eyes closed state than other vigilance states in delta, theta and alpha bands of EEG versus 

endogenic band of fNIRS (p-value<0.05). These observations might reveal/suggest (i) activation 

of inhibitory pathways in the eyes-closed resting state in order to transition to sleep stages, and (ii) 

memory consolidation process at sleep stage two.   

In Aim 2, I confronted one of the challenges with dual modality measurements: fNIRS, by 

nature, acquires a slow hemodynamic signal, while EEG has a broad range of frequencies that are 

significantly higher than fNIRS. I explored phase-amplitude coupling (PAC) as a novel method 

for analyzing simultaneous EEG-fNIRS since PAC facilitates the relationship between low-

frequency phase signals and high-frequency amplitude signals. My unique implementation of PAC 

on EEG-fNIRS data enabled me to investigate the modulation of brain activity by brain 

hemodynamics, so called vasculo-neuronal coupling (VNC), for each vigilance state. A 

significantly higher VNC was observed during sleep stage 1 than both eyes open and eyes closed 

in three EEG-fNIRS frequency band pairs: delta-endogenic, theta-endogenic and beta-endogenic 

(p-value<0.1). In addition, VNC observations can be inferred as working memory process and 

maintenance activities at resting state and early stages of the sleep.  

In Aim 3, I investigated the interaction between different EEG frequency bands by means of 

PAC as a cross-frequency coupling (CFC) method. I studied how different EEG frequency bands 
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were coupled as the brain undergoes different vigilance states, so the communication between 

cortical and sub-cortical/deeper regions in the brain may be revealed by CFC between slow and 

fast oscillations of EEG. Sleep stage 1 has significantly stronger delta-gamma and theta-gamma 

coupling than the eyes closed and sleep stage 2 states (p-value<0.1). Additionally, in all vigilance 

states delta-gamma coupling is significantly stronger than theta-gamma coupling (p-value<0.1). 

These three frequency bands and their origins are the three key components of memory processes. 

The observed strong PAC between these frequency bands was another confirmation for 

involvement of the brain in working memory maintenance and memory consolidation during 

resting state and its transition to sleep stages. 

In summary, my dissertation project investigated the interplay between slow hemodynamic 

or vascular oscillations versus fast neurophysiological rhythms, as well as the communications 

between different regions of the brain through CFC seen in the EEG signals, during awake-to-

sleep transitions in the human brain from healthy human subjects. My scientific contributions 

include (i) novel application of WTC to analyze NVC, (ii) innovative development and 

implementation of PAC enabling to map/observe VNC first time, a direction opposite to that of 

classic neurovascular coupling, and (iii) complementary findings suggesting that CFC between 

slow and fast oscillations of EEG facilitates communications between cortical and sub-cortical 

regions.      
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Chapter 1 Introduction 

 

1.1 Sleep and vigilance states 

Brain resting state and sleep stages have become a topic of interest in the field of 

neuroscience. Vigilance states refers to the different stages undergone during the traditional sleep-

wake cycle [1]. Sleep is a complex and important processes in daily life and has role in improving 

cognitive and physical functions [2-5]. In general, sleep divides into two major categories: non- 

rapid eye movement (NREM) and rapid eye movement (REM) [6, 7]. NREM sleep has three sub 

states: NREM1, NREM2 and NREM3 [6, 7]. NREM1 has a role to transition from awake into 

sleep, while NREM2 and NREM3 are the deeper sleep stages [8]. It has been suggested that 

memory consolidation – or the transfer of information from short-term memory to long-term 

memory – exists during NREM2 [8-10]. NREM 3, also known as slow wave sleep (SWS), is the 

deepest sleep stage characterized by low-frequency brain waves. REM sleep is where dreaming 

mostly happens during the sleep, though it is not the only sleep stage for dreaming. In a normal 

night of sleep a person goes through 6 to 8 cycle of sleep stages [8]. One way to study brain 

function is through different neuroimaging modalities. Advances in the field of neuroimaging have 

made recording brain waves –  or electrophysiological signals – and brain hemodynamics possible 

[11].  

At different stages of sleep, brain waves have some distinct characteristics. NREM 1 has 

dominant alpha waves, NREM 2 has events such as the k-complex (a bi-phasic wave) and sleep 

spindles which are short burst-like waves, NREM3 has slow delta waves, and REM sleep is mostly 
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similar to a wakeful state [8]. Despite all that is known from sleep, the mechanism behind brain 

function and how it regulates cognitive operation during sleep remains unclear [12-14]. Moreover, 

the interaction between the electrophysiological signals and hemodynamics of the brain at different 

states is still unanswered. Understanding the relative behavior of the two different aspects of brain 

signals is important in order to decode the underlying mechanism in brain function under different 

sleep stages. Furthermore, elucidating the relationship between the different brain measurements 

such as synchronization or any causal relationship between the neuronal activity and the blood 

flow would give a different perspective and better understanding about brain mechanisms at 

different sleep stages. 

1.2 Neurovascular coupling 

The term neurovascular coupling (NVC) refers to changes in brain neuronal activity in 

correspondence with vascular dynamics [15, 16]. The concept of NVC has existed for more than 

100 years. Traditionally, this process was assumed to be the result of some chemical signal. 

Recently, however, it has been proposed that there may also be mechanical processes behind the 

vascular fluctuations. In general, NVC can be investigated at two different levels, (1) macroscopic 

and (2) microscopic. For a macroscopic perspective, metabolic demand of neuronal activity is 

provided with regulated cerebral blood flow through tight vasculature [17]. In observing 

microscopic point of view, NVC unit has three main components: (1) smooth muscles, (2) neurons 

and (3) astrocyte glial cells [17]. Glutamate is released as a result of neuronal activity, which 

activates pathways for both neurons and astrocytes to transmit signals for cerebral blood flow 

regulations [18, 19]. Important items in the signaling pathways of both neurons and astrocytes are 

prostaglandin, nitric-oxide and adenosine [18, 19]. The current understanding of NVC is based on 
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in-vitro studies available exploring NVC, most of which focus on glucose consumption and brain 

metabolism. Functional NVC, however, remains unknown [20, 21]. Currently, no literature exists 

reporting functional NVC in healthy subjects [22]. One of the main reasons behind the lack of 

information on NVC is the fact that it requires simultaneous measurements of brain hemodynamics 

and neuronal activity, which have been rarely reported [23-27]. 

1.3 General Phase amplitude coupling 

EEG’s varying frequency during rest or involving different tasks has been well established. 

EEG signal is composed of a variety of frequencies encompassing a range from 1 to 150+ Hertz. 

Conventional EEG bands are delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) and 

gamma (30-150+ Hz) [28]. Each frequency band may appear stronger or weaker under certain 

conditions and can appear to originate from a special structure in the brain. In the past decades, 

the concept of cross frequency coupling (CFC) has become an attractive field in brain studies. CFC 

can be characterized into different categories: phase-phase coupling (PPC), phase-frequency 

coupling (PFC), amplitude-amplitude coupling (AAP) and phase amplitude coupling (PAC) [29]. 

All CFC methods are based on some way of synchronization between the lower frequency and 

higher frequency signals. Among all CFC methods, PAC has a very interesting physiological 

mechanism behind it [30, 31]. The lower frequency signal comes from the local neuronal activity, 

which modulate the higher frequency signal either by increasing the synaptic activity or increasing 

selecting neuronal activity in the underlying network. These modulating phenomena are known as 

“broad band increase of power” or “narrow band increase of power,” respectively [31]. PAC 

explores the modulation of a higher frequency power through the phase of lower frequency 

oscillation. Therefore, it is capable of explaining more complex processes in the brain [30, 31]. 
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PAC has been reported on different cognitive functions and, more specifically, memory for 

different brain measurements encompassing both invasive and non-invasive techniques [30, 32]. 

However, PAC during a resting state and different vigilance states have not been reported on 

healthy subjects using whole-brain, non-invasive measurements. Specific Aims 

1.4 Specific aims and dissertation outline 

My dissertation research targeted to address the shortcomings in four vigilance states, with 

respect to brain waves and hemodynamics and interaction of the two. The main goal of this study 

was to investigate brain communications, connection and NVC in four different vigilance states. 

Aim 1: to quantify neurovascular coupling at four vigilance states using WTC. 

Task 1(a): To perform power analysis of whole brain EEG and fNIRS measurements. 

Task 1(b): To apply wavelet transform coherence (WTC) on whole brain EEG/fNIRS 

measurements as a quantitative measure of NVC.  

Task 1(c): To investigate NVC at different vigilance states based on WTC analysis.  

Aim 2: To explore novel PAC analysis for vasculo-neuronal coupling (VNC) based on 

simultaneous EEG and fNIRS data 

Task 2(a): To perform KL distance-based PAC as novel cross frequency measure of VNC. 

Task 2(b): To investigate VNC through PAC at different vigilance states and different 

frequency pairs.  
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Aim 3: To apply PAC analysis on EEG signals among different electrophysiological 

frequencies at four vigilance states. 

Task 3(a): To perform mean vector length PAC (MVL-PAC) on EEG at different vigilance 

states for gamma versus lower bands. 

Task 3(b): To investigate PAC at different vigilance states and different frequency pairs.  

This study was based on the data that were collected during four vigilant states: eye open 

resting state (EO), eyes closed resting state (EC), sleep stage 1 (SS1) and sleep stage 2 (SS2). One 

of the reasons that functional NVC of the human brain at the resting and sleeping states in vivo 

has not been studied intensively is lack of simultaneous measurements of neurological and 

hemodynamic signals. In this study, the dual-mode device made non-invasive measurements of 

neuronal activity and brain hemodynamics possible by means of EEG and fNIRS respectively. The 

actual experimental designs and measurements were completed by my previous colleagues, as 

reported in [11]. My dissertation focus was to explore novel data analysis methods for successfully 

analyzing and interpreting multi-mode EEG-fNIRS measurements at the four vigilant states.    

The outline of this dissertation is in order of the aims mentioned above. In chapter (2), I 

explored the NVC by dual mode EEG and fNIRS measurements of the whole head collected from 

healthy adults at different vigilance states. Specifically, I analyzed the dual-mode data for NVC 

quantification by employing cross spectrum wavelet transform coherence (WTC) analysis [33]. 

WTC is a time-frequency analysis, computing the correlation between the amplitude of two signals 

and their corresponding phases during a selected time period at each frequency. In other words, 

WTC is a within-frequency method of correlation. This makes detecting time-locked changes of 

the two signals possible. In order to apply WTC on EEG-fNIRS data, I had to reduce EEG 
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frequency bands to be matched near or to the fNIRS frequency range; otherwise, there was no 

overlap between their frequencies and thus obviously no coherence between them. As a step 

forward, I defined and analyzed the WTC indices at different phase values, separately. 

Specifically, WTC indices were sorted based on in-phase [!"# −
"
#] and anti-phase [%"# −

&"
# ] 

intervals, which resulted in in-phase and anti-phase NVC. My observations showed strong in-

phase NVC at SS2, which could be associated to the memory consolidation process happening at 

this stage. Moreover, strong anti-phase coupling was observed at EC stage, which could be 

attributed to potential activation of inhibitory pathways necessary for transitioning the subjects 

from awake into sleep. This is the first time that NVC is investigated quantitatively based on the 

whole-head, dual-mode EEG-fNIRS measurements non-invasively from healthy human subjects. 

In chapter (3), I proposed a novel implementation of PAC on the dual mode time-series data 

as a cross-frequency coupling method. As it has been mentioned earlier in this chapter, EEG and 

fNIRS have a significant frequency discrepancy which makes the corresponding dual-mode data 

analysis challenging. A desirable method of analysis would explore the two time-series without 

modifying their frequency ranges, which WTC is not able to do so. To answer this need, a cross-

frequency coupling method is an ideal approach to handle the dual-mode data. As the two 

components of the PAC are slow oscillation (SO) and fast oscillations (FO), it makes it a great 

candidate to analyze dual mode EEG-fNIRS data, utilizing fNIRS as SO and EEG as FO [30, 31, 

34]. There are different techniques to represent PAC, such as mean vector length (MVL-PAC), 

power spectrum distribution PAC, Kullback-Leiber (KL-PAC), and more [34]. I particularly chose 

KL-PAC for the dual-mode data analysis due to its independence on amplitude value. PAC has 

been applied on EEG vastly, but to the best of our knowledge, my study in this dissertation research 

is the first report on PAC applied to EEG and fNIRS data. In a nutshell, KL-PAC is based on 
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amplitude-phase distribution (APD) obtained from SO and FO time-series. The divergence of APD 

from the uniform distribution indicates the coupling strength between the two signals. The closer 

the APD to the uniform distribution, the weaker the coupling between the two time-series. With 

the dual-mode PAC analysis, I was able to detect distinct a PAC index for each vigilance state 

successfully. In particular, a strong coupling was observed between all EEG frequency bands and 

the fNIRS endogenic frequency band, which is in line with the reported strong fNIRS power in 

resting state at endogenic band. On top of that, I was able to explore not only infra-slow oscillation 

(<0.1Hz) in hemodynamic oscillations, but also their interactions with EEG data. 

In chapter (4), I analyzed different vigilance states through MVL-PAC method applied on 

only EEG time series between the high-frequency gamma band and other lower frequency bands, 

including delta and theta. The main goal of this chapter was to investigate the communication 

between EEG frequency pairs at different vigilance states and how the coupling was affected 

through the transition between different vigilant states. In other words, the communication 

between different brain regions -origin of the three frequency bands- is the target here. To be more 

specific, delta, theta and gamma oscillations have striatum, hippocampus and cortex origin, 

respectively [128]. MVL-PAC is based on a mean value of the amplitude and phase vector at all 

time points; this value is further normalized by amplitude and time. The phase values are derived 

from slow oscillations (SO) - delta and theta here - and the amplitude values are derived from the 

fast oscillation, which is gamma band here. A higher PAC index means a stronger coupling 

between the amplitude and phase time-series. Although PAC is a well stablished method and was 

reported on sleep data, none of these reports were on full-brain EEG measurements from healthy 

human subjects. My analysis-driven observations showed a strong delta-gamma and theta-gamma 

coupling, especially at SS1. Based on the origins of these three frequency bands, I may infer them 
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as strong communications between striatum and the cortex, as well as between hippocampus and 

the cortex. These three locations play an important role in memory processes, which might be 

justification for the observed strong PAC index in our data. 
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Chapter 2 Investigating neurovascular coupling in four vigilance states of 
human brain by simultaneous EEG-fNIRS measurement and wavelet 

coherence analysis 

 

2.1 Introduction 

The term neurovascular coupling (NVC) refers to the coupling relationship between neuronal 

activity and vascular dynamics in the brain [15, 16, 18]. In the field of neuroimaging, there were a 

variety of model-based research for understanding NVC [19, 35], while in vitro studies regarding 

NVC were reported too [12, 36, 37]. 

Vigilance states are referred to different states of the wake-sleep cycle [1]. Sleep is an 

important factor in operating and/or improving cognitive and physical functions in human daily 

lives [2-5]. In general, a sleep cycle can be divided to none rapid eye movement (NREM) and rapid 

eye movement (REM) [6, 7]. A large amount of research have been conducted with different 

approaches; for example, several measurement-based studies investigated frequency-dependent 

characteristics of the awake-sleep cycle in cortical activity by electroencephalography (EEG), 

muscle tone by electromyography (EMG), and eye movements by electrooculography (EOG) [36], 

photoplethysmography (PPG) [38], by performing fast Fourier transform (FFT) on respective 

measurements[39, 40]. However, much knowledge on neurological regulation and connections 

during the awake-sleep cycle remains unknown [12-14]. In particular, while several investigations 

reported sleep-related glucose consumption and brain metabolism [41, 42], no study has reported 

NVC across the awake-sleep cycle. 

The goal of my study was to bridge this gap, but I had to identify or understand the challenges 

in order to propose and prove appropriate hypotheses for this study. First, the challenge came from 
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the hardware. In order to investigate NVC across the awake-sleep cycle (NVCa-s), it is necessary to 

obtain simultaneous measurements of both neurophysiological activity and brain hemodynamics. 

There were only few dual-mode human studies found in literature, with only partial coverage of the 

sensors or optodes on the human head. Second, proper data-processing techniques were needed to 

analyze the dual-mode data with matched frequency characteristics. Third, to explore NVCa-s, a 

special protocol was needed so that human participants could go through an adequate period of time 

across the awake-to-sleep cycle. 

For the first challenge, it was planned to perform whole-head, simultaneous EEG and 

functional near infrared spectroscopy (fNIRS) measurements to acquire signals from collective 

neuronal activity and corresponding brain hemodynamics, respectively. However, EEG and fNIRS 

have much different sampling rates due to the fact that neurophysiological activity and brain 

hemodynamics occur in the millisecond and second time scales, respectively. The recorded EEG 

signals consist of a broad range of frequencies, often divided into five brain rhythm bands: delta (< 

4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) and gamma (> 30 Hz) [28]. On the other 

hand, fNIRS results from cerebral blood flow/volume, which are closely related to the mechanism 

called vasomotion. Vasomotion represents the change in diameter of blood vessels originating from 

movements of smooth muscles, endothelial cells and also neuronal activity of blood vessel wall 

[43]. Thus, vasomotion leads to oscillation in blood flow and consecutively fNIRS signals, with 

three major frequency components, endogenic (0.01-0.02 Hz) resulting from endothelial activity, 

neurogenic (0.02-0.04 Hz) from neurogenic activity, and myogenic (0.04-0.15 Hz) from smooth 

muscle movements [44, 45]. To the best of my knowledge there has been no report of simultaneous 

EEG-fNIRS analysis for neurovascular coupling. To solve the second challenge, I took a novel 

approach using wavelet transform coherence (WTC) analysis to determine the coherence between 
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the signals from the dual-mode measurements and relative phase lags with respect to one another 

during the awake-sleep cycle [33]. Using WTC, I was able to generate a time-frequency map and 

thus to quantify wavelet coherence in both time and frequency between the two types of signals, 

namely, reflecting the coupling between neurophysiological and hemodynamic activities through 

the awake-sleep cycle. For the third challenge, a special experiment protocol was designed to have 

human participants experience four vigilance states: (1) resting state with eyes open, (2) wakeful 

resting state with eyes closed, (3) sleep stage 1 and (4) sleep stage 2.  

2.2 Methods and materials 

The data collection was done by Thien Nguyen and Olajide Babawale. Dual-mode 

instrumentation detailed information on dual-mode hardware and the experimental protocol can 

be found elsewhere [11]. To briefly review here, fNIRS recording was taken using the LABNIRS 

system (Shimadzu, Japan) with a sampling rate of 8.13 Hz. This system employed 40 light 

detectors and 40 light sources at three wavelengths (780 nm, 805 nm, and 830 nm). The sources 

and detectors were designed to form 133 channels, covering the whole head (Figure 2-1 (a) & (c)).  

The distance between a pair of a source and a detector was 3 cm. In the meantime, 64-channel 

electroencephalography (EEG) and 2-channel electrooculography (EOG) signals were taken using 

the Biosemi Active Two System. The EEG electrodes were placed between the fNIRS optodes 

such that the EEG electrodes’ sites were as close to the standard 10–20 system as possible. The 

sampling rate of the system was 1024 Hz. The fNIRS and EEG recording system were 

synchronized using a CLK supply assembly embedded in the LABNIRS system. 

Locations of the fNIRS optodes and EEG electrodes were digitized with a 3D digitizer 

(Fastrak, Shimadzu, Japan). Four reference landmarks were measured at the nasion (Nz), right pre-



 12 

 

auricular point, left pre-auricular point, and anterior commissure. With these reference points, the 

coordinates of the fNIRS optodes and EEG electrodes were calculated. NIRS-SPM software [46, 

47]was used to label the coordinates of all 133 fNIRS channels based on the positions of the 

sources and detectors (Figure 2-1(c)). 

2.2.1 Participants 

The simultaneous EEG-fNIRS measurements were collected from 18 healthy human 

participants (15 males and 3 females) with an age range of 18-29 years old (mean age of 24). The 

population under study was college students from the University of Texas at Arlington. The 

experimental protocol was approved by the Institutional Review Board at the University of Texas 

at Arlington. All tests were performed in accordance with the relevant guidelines and regulations.  

The criteria for the participants’ eligibility to participate in this study were: (1) No sleep or 

psychiatric disorder history, (2) no history of brain injury, neurological disorder, or violent 

behavior, (3) no history of institution imprisonment, (4) not currently taking any medicine or 

diagnosed with any psychological problem [11]. Before the experiment, the experimental protocol 

was explained to each participant, who signed an informed consent agreement.  

2.2.2 Experiment Protocol and Sleep Stages   

During the experiment, each participant was seated comfortably in a chair with the head 

rested on a soft, supporting pillow. The awake-sleep experiment took place during a 19-min period 

of time to induce/include an awake-sleep cycle. During the awake phase, the participant relaxed 

with eyes open in a bright room (all room lights being on) for 5 minutes (Figure 2-1 (d)). Followed 

by an almost 4-min break, afterwards the participants were told to relax and go to sleep with eyes 
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closed while all room lights (including the computer screen) were off. After this preparation break, 

the dual-mode data collection restarted for 10 minutes, when each participant experienced several 

vigilance states: (1) wakeful resting state with eyes closed, (3) sleep stage 1 (SS1) and (4) sleep 

stage 2 (SS2). Table 1 lists detailed time in each vigilance state that each participant spent. Three 

subjects are removed from the data set, for this study due to timing mismatch between fNIRS and 

EEG data. 

Based on the experimental protocol and the sleep scoring results [11], the subject’s condition 

was divided into four states: quiet rest with eyes open (EO), quiet rest with eyes closed (EC), non-

rapid eye movement (NREM) sleep stage 1 (SS1), and NREM sleep stage 2 (SS2). The EO state 

was from the 5-min rest phase, and the other three states were from the 10-min awake-sleep phase.  

Detailed information on how to identify/define the sleep stage can be found in (Nguyen et al., 

2018). 

 

 

 

 

 

 

Figure 2-1 (a) Experiment and Measurement set-up: Dual-mode EEG-fNIRS, (b) schematic of each 

EEG channel and its surrounding fNIRS channels, S: source and D: detector, (c)  fNIRS optode locations 

(b) 

(a) 

(d) 

(c) 



 14 

 

(arrow points to anterior) , (d) experiment duration and sections, EO: eyes open, EC: eyes closed, SS1: 

sleep stage 1 and SS2: sleep stage 2. 

Experiment and Measurement set-up: Dual-mode EEG-fNIRS (a), schematic of each EEG 

channel and its surrounding fNIRS channels (b), fNIRS optode locations (arrow points to anterior) 

(c), experiment duration and sections (d). 

2.2.3 Preprocessing 

A few steps for data preprocessing were necessary before performing WTC on the EEG-

fNIRS signals. The data preprocessing is needed to remove artifacts of different sorts, clean up 

temporal and/or instrumentation noises, and select a specific frequency band or time window.  

EEG 

All the preprocessing steps for EEG signals were done by EEGLab, which is an open source 

MATLAB-based toolbox [48]. EEG signals were down sampled to 512 Hz and band-pass filtered 

to 1-150 Hz. The locations are then set to MNI standard location. The line noise was removed 

through CleanLine plugin of EEGLab in its default settings. Faulty channels were automatically 

removed by Clean_rawData EEGLab plugin, which looks for artifacts of different kind such as 

flat line channels, low-frequency drifts, noisy channels and short-time burst. The removed 

channels were interpolated back by superfast spherical interpolation option in EEGLab. 

Independent component analysis was done to remove bad components as a result of eye blink, 

muscle movement and non-brain originated signals. Bad components were rejected manually by 

inspecting the topoplots of each component.  
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The eyes closed section of the data was scored for the different vigilance states including 

eyes closed awake, SS1, and SS2 by the help of an expert medical doctor in this area. The scoring 

process was done following American Association of Sleep Medicine (AASM) guideline on 30s 

epoch data [11, 49]. According to sleep scores the data was segmented to eyes-closed-awake (EC), 

sleep-stage 1 (SS1) and sleep-stage 2 (SS2). More details on duration of each state can be found 

in table 2-1. Due to timing conflicts three subjects were removed for this study. 

The clean data was then split into different EEG frequency bands namely delta (2-4Hz), theta 

(4-8Hz), alpha (8-12 Hz), beta (12-30 Hz), gamma (30-80 Hz) by Hamming windowed Sinc-FIR 

filter of EEGLab in MATLAB, which computes the filter order automatically [48].  

Vigilance 
State 

Participant 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

EO 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

EC 10 9.5 8.5 10 5 10 5.5 1.5 1 9.5 2 5.5 0 3 0.5 10 10 0.5 

SS1 0 0.5 1.5 0 5 0 4.5 4.5 4 0.5 3 4.5 3 1.5 2.5 0 0 1.5 

SS2 0 0 0 0 0 0 0 4 5 0 5 0 7 5.5 7 0 0 8 

Table 2-1 Detailed timing of each vigilance state for each subject. Shaded column shows the subjects that 

were not considered for this study. 

fNIRS 

Data acquired by fNIRS consists of three different measures namely oxy-, deoxy-, and total 

hemoglobin. For this study I only considered the oxy-hemoglobin. To prepare the data for further 

analysis it needs to be cleaned by removing interfering physiological signals such as cardiac and 

respiratory artifacts. Data was band passed to frequency range of 0.01-0.2Hz by MATLAB built-
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in FIR band-pass filter. The clean eyes-closed data was then further segmented to EC, SS1 and 

SS2. 

2.2.4 Power Analysis 

Power spectral density for both EEG and fNIRS signal is estimated by Welch also called 

periodogram method that is based on fast Fourier transform [50, 51]. This method is based on 

breaking the signal into segmented overlapping time windows equation 2-1 and computing the 

periodogram equation 2-2 for each window. The power spectrum density estimation is based on 

the average over all periodograms eq.1.4. 

'((*) = '-(. − 1)0 + *2, * = 1,… ,5
. = 1,… , 6 		  Equation 2-1 

'((*): jth window of the signal  

M: is the number of data points in each window;  

K=M/2 (for %50 overlap);  

S: number of windows=2(number of data points)/M; 

89:(;) =
<
=> ?∑ A(*)'((*)B!CDE=

EF< ?G          Equation 2-2 

where P is the power of the temporal window A(*) in equation 2-3. Temporal window is a 

weighting sequence also called taper. 

H = <
=
∑ |A(*)|G=
EF<                 Equation 2-3 
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Power at frequency	; is the average of the windowed periodograms from equation 2-3 and 

it is mathematically expressed as in equation 2-4.  

8J: (;) = <
K
∑ 89:(;)K
(F<     Equation 2-4 

8J: (;) represents the Welch power density spectrum estimation and the subscript “W” 

refers to Welch. 

MATLAB functions were used for both EEG and fNIRS power analysis. For EEG power, 

EEGlab’s “spectopo” function was applied to get the power over the full range of frequency and 

was followed by MATLAB’s built-in function “bandpower” to compute the power for each EEG 

frequency band. fNIRS power spectrum was also analyzed in MATLAB by its built-in functions. 

The “pwelch” was used to get the power distribution over the full range of frequency and followed 

by “bandpower” function to obtain power for each fNIRS frequency band. I need to mention 

“spectopo” is based on Welch method, but it takes EEGLab data structure as an input that is the 

main reason that I didn’t use this function for fNIRS data as well. 

Power analysis is applied on each channel of EEG and fNRIS individually for each vigilance 

states. In order to get the topographic distribution of power for EEG, power is averaged over delta, 

theta, alpha, beta and gamma at each vigilance state. Power analysis topographs for fNIRS are 

derived by average power over fNIRS frequency bands- endogenic, neurogenic and myogenic at 

each vigilance states.  
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2.2.5 Wavelet Coherence 

Wavelet coherence analysis is performed in MATLAB and its built-in function [33, 52, 53]. 

The coherence between continuous wavelet transform (CWT) equation 2-6 of two time-series is 

the basis of wavelet coherence (WTC) equation 2-7. This method can reveal the time-locked 

behavior of two signals. One of the elements in CWT is mother wavelet function which is Morlet 

here equation 2-5, this function stretches in time by variation of the scale. Performing WTC on 

dual modality data gives an understanding of neuronal activity changes with respect to 

hemodynamic changes in the brain, which gives an estimate of neurovascular coupling. The WTC 

for neurovascular coupling purpose has been applied on local EEG and fNIRS signals. The WTC 

is performed between each EEG location and its corresponding fNIRS. EEG and fNIRS from the 

same location lead to local NVC. All the WTC analysis were done in MATLAB using the 

WCoherence built-in function.  

L(M) = N!< #O B(DPQB
!QR

GO 		        Equation 2-5 

where M is non-dimensional time and ;S is nondimensional frequency. In order to meet the 

admissibly criteria for the wavelet which zero mean and being localized in both time and frequency 

space, ;S is selected to be zero[54, 55].  

TU(V, W) = ∑ XYZ[
YZFS L∗ ]-Y

Z!^2_E
` a	       Equation 2-6 

where X is the signal, a is the scaling parameter, b is the shifting parameter, L is mother 

wavelet (Morlet) and * stands for complex conjugate. 
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bTUc(V, W) =
?K(de∗(`,^))df(`,^)?

R

K(|de(`,^)|R)K(?df(`,^)?
R)
	          Equation 2-7 

where 6 is a smoothing function,	TU is CWT signal x, Tc is CWT of signal y, and * shows 

the complex conjugate. Respective phase between two signals 8Uccan be extracted as in equation 

2-8. 

8Uc(V, W) = *Vg!<(
hi`jk]?K-de∗(`,^)2df(`,^)?

Ra

lk`m]?K-de∗(`,^)2df(`,^)?
Ra
		)              Equation 2-8 

Coherence is, in general, based on two key components: a shared frequency range and 

relative phase between the two signals. EEG has a frequency range of 1-150+ Hz while fNIRS has 

a frequency range of 0.01- 0.15 Hz. The issue that is presented is that there is no overlap between 

the frequency ranges of the two signals. Therefore, to prepare the EEG signals for WTC, two 

additional steps are necessary to make the frequency range of EEG comparable to fNIRS without 

losing valuable information. For this purpose, the envelope of the signal for each frequency band 

is computed by absolute of analytic signal Equation 2-11 of Hilbert Transform [56, 57]. The steps 

towards generating analytical signal are described in Equations 2-9 to 2-11. 

n(o) = p∑ X[g]!(G"sYt[!<
YFS 	Equation 2-9 

n(o) is the Fourier transform of discrete signal X[g]with N points and the period of T. Then 

the N-point analytical signal is derived from removing the negative frequencies from the Fourier 

transform and make the amplitude doubled Equation 2-10 followed by an inverse Fourier 

transform Equation 2-11. 
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u[v] =

⎩
⎪
⎨

⎪
⎧ n[0]	o|}	v = 0
2n[v]	o|}	1 ≤ v ≤ [

G

n Ä[GÅ o|}	v = [
G

0		o|}	 [G + 2 ≤ v ≤ Ç

						                                      Equation 2-10 

ℎ[g] = <
[t ∑ u[v]B(G"iY/[[!<

iFS 		                                             Equation 2-11 

h[n] is the analytical signal and its imaginary component represents the Hilbert transform 

while its real component is the original signal. 

The advantage of utilizing the Hilbert transform is that it keeps the power and amplitude 

distribution the same as the original signal. Therefore, it reduces the frequency of the EEG signal 

while preserving its power and amplitude distribution. Also, WTC is time-resolved so the length 

of two time series should be the same. The envelope of EEG has the same sampling frequency -

number of data points - as the original signal, which needs to further be reduced to 8Hz in order to 

match the fNIRS sampling frequency. For this purpose, the power of envelope - square of 

magnitude of analytic signal - is down sampled to 8 Hz by the moving average method with the 

window of size 0.5 s and the step size of 0.125 s. 

Figure 2-2 is an example of a WTC time-frequency map. The area inside the dashed curve – 

or outside of the cone of influence – should be considered as reliable and the rest should be ignored. 

Each EEG channel is surrounded with 4 fNIRS channels, as shown in (Figure 1-4 (d)). WTC was 

performed for each EEG channel and its 4 corresponding fNIRS, which results in four time-

frequency maps. These maps were averaged for each location, therefore there is only one WTC 

map for each location. Two main processing steps were performed on the averaged WTC maps: 

(1) the whole area covering each fNIRS frequency band is averaged for each vigilance state 
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separately, so for each EEG location there is an average coherence value for each band of EEG 

and each band of fNIRS and the these values are averaged over subjects, (2) WTC coherence 

values are averaged over all locations to give a general estimate of each band and state NVC. 

 

 

 

Figure 2-2 WTC map for one EEG (T7) and one fNIRS (69) channel. Different fNIRS frequency 

bands are marked by E, N and M for endogenic, neurogenic and myogenic respectively. The timeline of 

the protocol is shown on the top part of the figure. Dashed Curve shows the Cone of Influence. Arrows 

show the direction of phase. 

For better understanding of the WTC results, step (1) and (2) of WTC map analysis were 

repeated considering the phase information. Two state of in-phase and anti-phase coherence were 

investigated which results in in-phase and anti-phase NVC. In-phase coherence refers to 8Uc of 

0 ± N 4O , in this case both signals oscillate in the same direction. Anti-phase coherence refers to 

8Uc of N ± N 4O , in this case signals oscillate in the opposite directions.  

2.2.6 Statistical Analysis 

As the data includes four different groups (EO, EC, SS1 and SS2) a test of variance, 

ANOVA, was applied on the results from investigation on different frequency bands, local and 

multi-site neurovascular coupling. The significant outcomes of ANOVA with 0.05 p-value went 
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through Tukey-Kramer test with 0.05 alpha to see between for groups which pairs are exactly 

dealing with the result being significant. All the statistical analysis was done in MATLAB.  

2.3 Results 

2.3.1 Power Analysis 

(Figure 2-3) shows the averaged topoplots of the power spectral density for fNIRS and EEG. 

Delta and theta band power increases in transition from eyes open to eyes closed and sleep stages. 

Delta power is more focused on frontal area in EO and EC, though it spreads to the back as well 

in SS1 and SS2. theta power distribution is stronger in the back in the all vigilance states. Alpha 

band power increases increase in EC and SS1in and decreases in SS2, its distribution is mostly 

focused on posterior areas. (Figure 2-3 (a)). In beta band (Figure 2-3(a)) shows higher power in 

the back of the brain in EO, EC and SS1 and the power decreases in SS2. Gamma band power is 

distributed in both front and back of the brain (Figure 2-3(a)), power is high in EO, EC and SS1 

and has a drastic decrease in SS2. (Figure 2-3(b)) shows power in endogenic band of fNIRS 

increases globally from EO to EC, it decreases in the frontal area in SS1 and decreases more 

globally in transition from SS1 to SS2. Neurogenic power is weak in EO and increases in central 

area of the brain in EC as shown by (Figure 2-3(b)), it decreases in transition from EC to SS1 and 

SS2. (Figure 2-3 (b)) shows the same trend for myogenic power in different vigilance states as 

neurogenic band. In general, higher power is observed in endogenic band than neurogenic and 

myogenic band from (Figure 2-3 (b)). Main purpose of performing power analysis on both EEG 

and fNIRS was to check for the symmetrical distribution of power in both left and right sides of 

the brain, (Figure 2-3) shows this symmetry for both data. Moreover, to investigate any overlap 
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between the EEG and fNIRS power distributions. There are two saturated regions on the right side 

on fNIRS power topographs that look suspicious and needs further investigation of the equipment. 

 

 

 

 

 

 

Figure 2-3 (a) EEG power density spectrum topoplots for different bands and different states, (b) 

fNIRS power density spectrum topoplots for different bands and different states. The unit for the color bar 

is (dB/Hz). 

2.3.2 Wavelet coherence   

Very low in-phase NVC was observed in EO between delta band of EEG and endogenic 

band of fNIRS. This coupling increases slightly in EC and SS1 while it has a drastic increase in 

SS2 (Figure 2-4 (a)). In-phase NVC between theta band and endogenic band of fNIRS is the lowest 

at EO. It starts to increase in EC and shifts toward the front in SS1 and spreads out in SS2. An 

increase in the in-phase NVC between alpha band and endogenic band in EC is observed which 

follows with a steep decrease in SS1 and an increase in SS2 (Figure 2-4 (a)). Among three lowest 

frequency bands of EEG, in-phase NVC between delta band and endogenic band covers the largest 

areas with strong coupling, while alpha band covers the smallest area with the strong coupling. All 

(dB/Hz) 

(dB/Hz) 
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three of delta, theta and alpha bands coupling with endogenic band of fNIRS have stronger 

coupling more towards the left hemisphere (Figure 2-4 (a)). In-phase NVC between beta band and 

endogenic band of fNIRS has a strong spot in the back in EO, it spreads out to more central and 

frontal area in EC, followed by a decrease in SS1 and an increase in SS2 mostly on the sides 

(Figure 2-4 (a)). In-phase NVC between gamma band and endogenic band is rather high in the 

back and front in EO, it gets more localized toward the center in EC and decreases in SS1 which 

follows by an increase in SS2 (Figure 2-4(a)).  

In-phase NVC between EEG bands and neurogenic band of fNIRS have a patchy pattern 

which appears weaker than in-phase NVC in endogenic band (Figures 2-4 (a) & (b)). Compared 

to EO, EC and SS1, in-phase NVC between delta and theta band of EEG and neurogenic band of 

fNIRS is higher in SS2 and on the left side (Figure 2-4 (b)). There is not a significant change in 

the in-phase NVC between alpha band and neurogenic band in different vigilance states except 

relatively stronger coupling on the right side of the brain in SS2 (Figure 2-4 (b)). Higher EEG 

frequency bands - beta and gamma - have stronger in-phase NVC with neurogenic band of fNIRS 

in EC state in comparison with other states in the frontal and central area. In SS2, beta band has a 

high coupling with neurogenic band on the sides (Figure 2-4 (b)). In-phase NVC between EEG 

bands and myogenic band of fNIRS has a steady state almost in all vigilance states as shown in 

(Figure 2-4 (c)). EC and SS1 showed lower in-phase NVC for all EEG bands and myogenic band 

of fNIRS in compared with EO and SS2 (Figure 2-4 (c)).  
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Figure 2-4 Average in-phase NVC topoplots (n=15) in four vigilance states between all EEG bands 

and fNIRS endogenic (a), neurogenic (b), myogenic (c) band. WTC is unitless. 

Anti-phase NVC between all EEG bands and endogenic band of fNIRS shows a strong 

coupling in EC state (Figure 2-5). The location and topographical distribution of the strong anti-

phase spots is not the same for all EEG bands and endogenic fNIRS band.  delta band is more 

spread out to the sides while for theta it is more in the back, for alpha band it is a big area from 

front to back and stronger in the back, beta is similar to alpha but weaker, gamma has a strong 

(a.u.) 

(a.u.) (a.u.) 
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coupling on the sides (Figure 2-5). Anti-phase NVC between gamma band and endogenic band is 

strong in EC, it decreases in transition from EO to EC and sleep stages (Figure 2-5). In SS1 higher 

frequency bands of EEG (8-80 HZ) show higher coupling with endogenic band than the lower 

frequency bands of EEG (1-8HZ) (Figure 2-5). In SS2, there is a strong anti-phase coupling 

between delta and theta band of EEG and endogenic band of fNIRS in the right side of the mid-

line. Coupling with alpha band is only at the right frontal area, and beta band has a similar pattern 

as delta and theta bands. Anti-phase NVC between endogenic band of fNIRS and gamma band of 

EEG has a strong coupling on the sides (Figure 2-5).  

 

 

 

 

 

 

Figure 2-5 Average anti-phase NVC topoplots (n=15) between all EEG bands and fNIRS endogenic 

band in four vigilance states. 

2.3.3 Statistical Analysis 

The average in-phase NVC between delta band and endogenic band of fNIRS is significantly 

higher in SS2 than all other three states as confirmed by ANOVA and Tukey-Kramer test at 0.05 

p-value (Figure 2-6 (a)). It increases in transition from EO to EC and decreases again in SS1, 

(a.u.) 
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although these changes were not statistically significant. The average in-phase NVC between theta 

band and endogenic band increases from EO to EC and stays steady in SS1 without being 

statistically significant, while it is significantly higher in SS2 than all other three states (Figure 2-

6 (a)). In-phase NVC between alpha band and endogenic band of fNIRS is the same as that of delta 

and theta band, additionally, in-phase NVC in SS1 is significantly lower than all other three states 

(Figure 2-6 (a)). In-phase NVC between beta band and endogenic band is significantly lower in 

SS1 than all other states (Figure 2-6 (a)). In general, all average in-phase NVC between all EEG 

bands increase from EO to EC, decrease in SS1 and increases in SS2, the statistically significant 

one mentioned above and marked in (Figure 2-6(a)). The average in-phase NVC between all EEG 

bands and neurogenic band of fNIRS has the general pattern of an increase from EO to EC, 

decrease in SS1 and again increase in SS2 (Figure 2-6(b)). Although, in-phase NVC is significantly 

higher in SS2 than every other state only between delta, theta and alpha bands and neurogenic 

band of fNIRS. In-phase NVC at EO is significantly lower than all other states for beta band of 

EEG and neurogenic band of fNIRS (Figure 2-6 (b)). (Figure 2-6(c)) shows almost steady in-phase 

NVC between all EEG frequency bands and myogenic band of fNIRS. There is a slight decrease 

in EC and SS1 in-phase NVC in lower frequency bands of EEG and myogenic band of fNIRS. At 

SS2 in-phase NVC between mamma band and myogenic band of fNIRS increases. Although none 

of the changes in coupling between EEG bands and fNIRS’ myogenic band at different vigilance 

states are statistically significant (Figure 2-6 (c)). 

 

 

 



 28 

 

 

 

 

 

 

Figure 2-6 Average in-phase NVC over locations are shown as mean ± standard error (n=15) in 

four vigilance states between all EEG frequency bands and fNIRS endogenic (a), neurogenic (b) and 

myogenic (c) band. The single * shows the significance with every other bar in the group with p-

value<0.05.  

Beside topographs, the average anti-phase NVC shows a higher coupling in EC in 

comparison with other states; high coupling at EC is statistically significant with ANOVA and 

Tukey-Kramer test and p-value 0.05 for delta, theta, alpha and beta bands of EEG and endogenic 

band of fNIRS (Figure 2-7). EO anti-phase NVC is significantly lower in EO for beta band of EEG 

and endogenic band of fNIRS (Figure 2-7). Average anti-phase NVC is statistically significantly 

higher in EO than SS1 and SS2 for gamma band of EEG and endogenic band of fNIRS (Figure 2-

7).  

 

Figure 2-7 Average anti-phase NVC over locations are shown as mean ± standard error (n=15) in 

four vigilance states between all EEG bands and fNIRS endogenic band. Single star shows significant to 

all other bars in the group with p-value<0.05 otherwise it has been directed so. 
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2.4 Discussion 

The underlying mechanism of NVC remains a topic of interest in the neuroimaging field. 

Specifically, the mechanism of NVC in the brain at resting state has not been explored deeply. In 

this study I used simultaneous EEG-fNIRS measurements on 15 subjects to look at the changes 

and behavior of NVC in resting state and during the transition from wakefulness to different non-

REM sleep stages. The collected data is 15 minutes in total, the first two minutes are EO, the last 

ten minutes were scored by a medical doctor for EC, SS1 and SS2. They were prepared for the 

further analysis by pre-processing methods.  

2.4.1 Novelty of WTC implementation 

In this study, WTC was used as a tool to explore the NVC. The strength of this method relies 

on finding the coherence between two time-locked time series, which allows investigating the 

simultaneous EEG-fNIRS data to better understand the NVC. Performing WTC on dual modality 

data gives an understanding of neuronal activity changes with respect to hemodynamic changes in 

the brain, providing a quantitative measure of neurovascular coupling. The key point in 

implementing WTC is that the sampling frequency of the two time-series should be the same and 

their frequency range should match. In dual-mode measurements, EEG was acquired by much 

higher sampling frequency than fNIRS. In this work I reduced the EEG data to infra slow 

frequencies (<0.1Hz) by using Hilbert transform and envelope.  

2.4.2 High delta power in EEG and endogenic power in fNIRS during sleep 

Power analysis of EEG by the Welch method gives an overview of how power spectrum is 

distributed in the brain as it progresses through different states of wakefulness (Figure 2-3).  delta 
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band has a low distribution in eyes open state, begins to increase in SS1 and is the highest in the 

SS2. This confirms what has been reported in previous studies [58-61]. theta band power follows 

the same patterns as delta band. These two low frequency bands are mostly related to NREM sleep 

stages and is the reason why an incline in the power is being seen in SS1 and SS2. Alpha band has 

the highest power in EC and SS1 which is due to the fact that alpha activities increase in more 

relaxing states. Similarly, beta power density spectrum decreases in lower alert states due to its 

greatest activity in high alert states [58, 60, 61]. Highest frequency band of EEG (á) is present in 

wakefulness and some cognitive task, and as expected is diminished in SS2 [60, 62]. The 

endogenic band of fNIRS power spectrum density is stronger in EC and SS1, the more relaxed 

states, than EO. By transition to SS2 it decreases. Neurogenic and myogenic bands follow the same 

trend, with an increase in EC and SS1. Transition to relaxed states and drowsiness affects the 

vasomotion and thus the power analysis. Comparing power spectrum of the three different 

frequency bands of the fNIRS data shows higher power in endogenic band than the others, which 

is in line with the literature [45, 63]. As expected, both EEG and fNIRS have a symmetrical power 

density spectrum.   

2.4.3 Strong in-phase NVC in sleep stage 2 

The in-phase NVC comes from the points in the time frequency map that the phase difference 

between the two signal is 0±p/4. This means as one of the time series increase or decrease the 

second one also decreases or increases; they oscillate in the same direction (Figure 2-4). Delta 

band’s endogenic in-phase NVC increases in transition from EO to SS2. There is strong in-phase 

NVC in the prefrontal and temporal lobes in the left hemisphere. The prefrontal lobe is where the 

short-term memory (working memory) is stored. Memory consolidation or transitioning from 
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short-term memory to long-term memory (stored in the hippocampus), occurs through the temporal 

lobe and thalamus, potentially explaining the rise in NVC. Additionally, delta waves can have both 

thalamic and cortical origins. Memory consolidation is hypothesized to occur during NREM sleep, 

with the thalamus taking part in the process. The increase in the in-phase endogenic NVC in SS2 

may be the result of memory consolidation at this state [64, 65]. In-phase endogenic NVC for theta 

band also increases while transitioning from wakefulness to SS2 and is at its highest in SS2 (Figure 

2-4 (a)). theta oscillations are in phase with endogenic vasomotion during SS2. The brain regions 

with the highest coupling are similar to delta band in prefrontal and temporal lobe in the left 

hemisphere, and the theta wave also originates from the hippocampus and modulates to the 

corresponding temporal lobe, which can be the underlying reason for this observation. 

Furthermore, theta band is also involved in memory consolidation. High in-phase coupling in the 

aforementioned areas can confirm transferring the short-term memory to hippocampus for long-

term storage through this pathway [66, 67]. There is an overlap between sleep spindles and alpha 

band, and the increase in in-phase NVC at this band in SS2 can be in part due to the presence of 

sleep spindles. Stronger in-phase NVC at alpha are observed at the prefrontal and temporal lobes, 

which are key components of the memory consolidation pathway. This can be a confirmation of 

the high coupling because of the sleep spindle and the occurrence of memory consolidation in 

NREM SS2 [65, 68]. Beta band shows a high in-phase NVC in SS2. Part of sleep spindle frequency 

is overlapping with beta band which can justify the increase in sleep stage 2. However, it is not as 

strong as the lower frequency bands since beta band is broader and only a small part of (12-16Hz) 

has the overlap with sleep spindles [69, 70]. In-phase endogenic NVC in gamma band shifts from 

visual cortex (occipital lobe) to premotor cortex (frontal lobe) in transition from EO to EC and 

further to parietal lobe and the right frontal lobe in SS1. It then shifts back again to left occipital 
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lobe on top of the frontal and parietal lobe and temporal lobe in transition from SS1 to SS2. High 

frequency oscillations are present in memory consolidation which can result in the high in-phase 

NVC in temporal areas in gamma bands [71, 72]. In-phase neurogenic NVC is a slightly weaker 

than in-phase endogenic NVC.  NVC increases in SS2 at the temporal lobe for delta band can be 

justified by memory consolidation. Similar to endogenic in-phase NVC, theta, alpha and beta band 

have a higher NVC due to memory consolidation since alpha and beta partly overlap with sleep 

spindles frequency and theta is also involved in the process as it has high NVC in temporal and 

frontal lobe. Myogenic in-phase NVC is almost steady. There is slight increase in occipital and 

parietal lobe in-phase NVC in delta and theta bands respectively in SS2, which can be due to 

memory consolidation although it is not significant statistically. Average in-phase endogenic NVC 

over location (Figure 2-6) confirms the significantly higher coupling at delta, theta, alpha and beta 

frequency band in SS2, which can be inferred as a result of memory consolidation at this stage. 

Average in-phase neurogenic has a lower coupling in SS2 in comparison with endogenic, which 

is due to stronger endogenic component of the fNIRS [45]. 

2.4.4 Strong anti-phase NVC in eyes closed state 

In anti-phase coherence case (Figure 2-5), fNIRS and EEG signals oscillate in opposite 

directions which can be interpreted as an inhibitory process or originating from inhibitory neurons. 

Endogenic anti-phase NVC in delta band is low in EO state, which can be because of two reasons: 

low delta band activity and less constriction in vasculature since it is an alert state. Coupling 

increases significantly in EC, a more relaxed state, which can be the result of more constriction in 

blood vessels and less need for blood flow. Delta band has thalamic and cortical origins and the 

local increase occurs in the temporal lobe, which can be justified by its connection to thalamus 



 33 

 

[73]. Delta band in SS2 has strong coupling in the right hemisphere, which may be an indication 

of memory consolidation occurring in the left hemisphere (temporal and parietal lobes) while right 

hemisphere is involved in maintaining the sleep state [74, 75]. theta band follows the same trend 

as delta band in anti-phase NVC, except that during EC it is stronger in more mid-temporal, parietal 

and occipital areas. The left side is stronger in SS2 which can also be part of maintaining the sleep 

state by anti-phase NVC. Alpha and beta bands both have broader and stronger anti-phase NVC 

in EC than other frequency bands. This is partly because they are stronger in EC (alpha band, 

specifically) than the other bands, so higher coupling is expected. Anti-phase NVC decreases in 

both bands, though more drastically for alpha. Again, the coupling in sleep stages in alpha and 

beta band can be due to presence of sleep spindles that overlap partly with these two bands. Beta 

band displays a more spread out pattern in SS1 and is concentrated more in the frontal region in 

SS2. This can indicate the pathway for inhibiting the ascending arousal pathway in maintaining 

the sleep states. GABAergic neurons and in general basal ganglia play a role in inhibiting the 

arousal system and there is finding on direct connection of GABAergic from basal ganglia to 

frontal cortex which can be an explanation of later statement [76, 77]. Gamma band both have 

high anti-phase in EO but decrease in transition from EO to sleep stages. EO is the most alert and 

active state with a high anti-phase NVC. This finding suggests that negative coupling might not 

be only due to inhibitory processes. Therefore, as gamma band power lowers in vigilance states, 

the anti-phase NVC also decreases. Relatively strong anti-phase NVC occurs in SS2 on the left 

hemisphere which suggests anti-phase NVC involvement in memory consolidation. Neurogenic 

anti-phase NVC is weak for both delta and theta band and the first three vigilance states, while it 

is more empowered in the left hemisphere and the SS2, which also can be interpreted as 

maintaining the sleep status. Alpha and beta anti-phase NVC increase during EC state, and can be 
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due to greater constriction versus dilation in transition from EO to more relaxed state, observed by 

neuronal activity and hemodynamics demonstrating opposing directions of oscillation. 

Appearance of anti-phase coupling in the left hemisphere can be an indication that anti-phase 

coupling has a role in memory consolidation or left side anti-phase coupling is involved in 

maintaining the sleep status. Gamma band anti-phase neurogenic NVC display a similar trend as 

endogenic anti-phase NVC of these bands, although they are weaker and slightly more spread out. 

The same speculation can be made, anti-phase NVC does not only take part in inhibitory processes 

so consequently higher coupling occurs in EO state and it decreases in the less alert states. 

Moreover, in SS2, relatively high coupling exists in the left hemisphere which can suggest that 

anti-phase has a part in memory consolidation, and it might be due to an underlying inhibitory 

process. Myogenic anti-phase NVC is relatively weak and does not change in transition from EO 

to sleep stages. Also, only a slight difference is observed in different frequency bands, which can 

be the result of the fact that the myogenic component of the fNIRS is the weakest of the three 

components. Endogenic anti-phase is relatively stronger than neurogenic and myogenic, with a 

significantly strong coupling during EC state which can be linked to constriction of vessels in this 

state due to lower activity of neurons. 

2.4.5 Limitations of the study 

One of the potential limitations of this study includes the short duration of measurement. The 

data as collected includes up to sleep stage 2 and not any deeper stages of the sleep. During a full 

cycle of sleep an individual transition through the multiple stages of sleep 

stages several times. Measurements on these stages and transitions would be valuable and are the 

missing points in this study. Additionally, there was a limited number of subjects in which to 
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analyze. The availability of more subjects will increase the reliability of the findings. From 

a technical standpoint, power analysis of fNIRS data showed unexpected hot spots on the right 

hemisphere. These strong points might be due to some erroneous channels and calls for some 

troubleshooting of the device. As far as the interference of the power value with the WTC results 

is concerned, I can say that WTC is independent of the power/amplitude value. The only important 

factor is the respective changes between the two time-series. Therefore, as long as the 

power retains the same trend regardless of its strength, it will not affect the WTC analysis.  

2.5 Summary 

Investigating NVC without considering the phase information is not reliable. Accounting for 

the different phase value has a huge effect on NVC trends being observed. Relative changes in 

neuronal activity and vascular vasomotion are not in the same direction in all conditions and 

locations. The in-phase NVC in lower frequency bands can be a confirmation of memory 

consolidation in NREM SS2 with the endogenic NVC being stronger than the neurogenic NVC. 

Despite the in-phase NVC that happens mostly in the left hemisphere during SS2, anti-phase is 

stronger in the right hemisphere. This can be inferred as memory consolidation mostly occurring 

in the left hemisphere while the right is more involved in transitioning from awake to sleep and 

maintaining the sleep state. In both, in-phase and anti-phase changes are bolder in endogenic band 

in comparison with neurogenic and myogenic. Myogenic remains steady in all vigilance states and 

corresponding EEG frequency bands, potentially due to arterioles becoming smaller and lose their 

smooth muscle mass when they come in contact with neuronal cells though the endothelial cells 

maintain their positions[78]. This study is by the best of my knowledge the first case of 

investigating NVC by means of EEG-fNIRS dual measurement of the whole brain. Relatively low 
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quantitative coupling might be due to the indirect measurement of neuronal activity and vascular 

vasomotion. In order to confirm these findings more repetition is required. One short come of the 

current study is the relatively short period of measurement, I cannot confirm the same outcome 

will be yield with longer measurements. 
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Chapter 3 Investigating brain electrophysiology and hemodynamic 
communication by novel implementation of phased amplitude coupling on 

simultaneous EEG-fNIRS measurement  

 

3.1 Introduction 

NVC at different vigilance states has been explored in Chapter 2 by using WTC. In this 

chapter, vascular and neuronal systems communication/connection was investigated without 

limiting their frequency ranges. Conventionally and initial studies on NVC are based on the theory 

that increased neuronal activities will elevate the blood flow due to increased metabolic needs of 

neurons or the interaction between the neuronal system and vasculature. Additionally, there are 

other hypotheses on functional hyperemia or an increase in blood flow evoked by local neuronal 

activity role. These hypotheses include regulation of neuronal activity adaptation to blood flow 

and also protection against pathological conditions by functional hyperemia [79-81].  Interaction 

between neuronal activity and vasomotion is not a one-way street, namely, not strictly based on 

modulation of blood flow by neuronal activity. In recent studies, it has been suggested that blood 

flow can also modulates the neuronal activity [80, 82]. Here, I also explore this aspect of vascular 

and neuronal communication by analyzing the neuronal modulation by blood flow. In other words, 

this chapter investigated to reveal the higher frequency signals carried by EEG to be modulated by 

lower frequency fNIRS signals at four different vigilance states.  

For this purpose, a novel implementation of phase-amplitude coupling (PAC) analysis was 

introduced. PAC is one of the four cross frequency coupling (CFC) methods. In general, PAC 

indicates the strength of modulation of the amplitude of high-frequency oscillation (HO) by phase 

of low-frequency oscillation (LO). PAC implementation was reported in a large body of studies 
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on both invasive and non-invasive measures of neuronal activity [29-31, 83], such as local field 

potentials (LFP) and subdural electrocorticogram (ECoG) in invasive studies, and 

electroencephalogram (EEG) and magnetoencephalogram (MEG) in non-invasive experiments 

[30]. The physiological process supporting PAC is that LO phase profiles modulate HO amplitudes 

by either increasing the synaptic activity (-general increase-) or amplifying the selected neurons 

from the sub-network (-local increase) [29, 30]. One of the appealing features of PAC is the 

physiology behind it and it has been reported in several studies proving the existence of this 

mechanism in the brain [31, 84-86]. As different frequency oscillations being generated at different 

sites in the brain, PAC is one way to describe/reveal the mechanism behind the communication 

between different regions in the brain. In a simple term, it can be stated that LO plays a role as a 

carrier, and HF is the message or information to be carried or transmitted. 

The novelty of this Chapter was to implement or apply PAC on EEG-fNIRS data analysis One 

of the challenges for analyzing simultaneous EEG-fNIRS data is their significant frequency-range 

discrepancy. EEG has a frequency range of 1-150 Hz while fNIRS has a range of 0.01-0.15 Hz. 

This difference makes PAC as a great method for analyzing simultaneously acquired EEG-fNIRS. 

fNIRS is considered as LO, and EEG is considered as FO. The amplitude of EEG signals 

modulated by the phase of fNIRS signals was then investigated through PAC. In particular, this 

approach did not require to reduce EEG time series frequency in order match the fNIRS frequency 

range. It introduced a new point of view regarding communications between the 

neuronal/electrophysiological and vascular systems.  

To implement PAC, EEG time series were segmented into 5 frequency bands encompassing 

1-20 Hz: delta, theta, alpha and lower beta.- The time series of fNIRS were separated into 3 
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frequency bands: endogenic (0.01-0.02 Hz), neurogenic (0.02-0.04 Hz) and myogenic (0.01-0.15 

Hz) bands. This dual-mode PAC analysis provided a new aspect of neuronal and vascular 

communications, exploring the cross-frequency coupling instead of within frequency correlation 

introduced in Chapter 2. Specifically, the PAC analysis on four vigilance states characterized the 

neuronal and vascular communication, which will be called vasculo-neuronal coupling (VNC) 

hereafter in order to avoid confusion with our previous findings on NVC. 

3.2 Methods and materials 

3.2.1 Dual-mode instrumentation, participants and experimental protocol 

Detailed information on EEG-fNIRS instrumentation and set-up can be found in Section 

2.2.1. The information about the participants and experimental protocol was elaborated in Sections 

2.2.2 and 2.2.3, respectively. Procedures for EEG and fNIRS preprocessing were also stated in 

Section 2.2.4, I avoided duplication in this chapter. 

3.2.2 Phase Amplitude Coupling to analyze EEG-fNIRS time series 

The PAC method implemented in this study is based on amplitude-phase distribution and its 

divergence from a uniform distribution; this method was originally introduced by Tort et. al [34]. 

The main idea behind PAC is that slow-frequency oscillations (SO) phase is coupled with the fast-

frequency oscillation (FO) amplitude. Both the SO phase and FO amplitude were quantified by 

Hilbert transform of the two time-series. All PAC analysis were performed in MATLAB, I used 

Tort et.al source code and based on my needs for dual-mode analysis made modifications to the 

code. The MATLAB code can be found in Appendix IV, where I marked clearly what parts are 

my contribution to the code. 
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I made several major modifications to the original method in order to utilize PAC for dual-

mode time series processing. Usually the data is filtered to slow and fast oscillations; but in case 

of dual-modality PAC, there was no such a need since fNIRS signals had much slower oscillation 

rhythms than EEG. In this case, the phase information was provided by fNIRS data as 

hemodynamic series had much slower signals. KL-base PAC was chosen specifically because the 

modulation index (MI) driven from this method was independent of the amplitude value and also 

had a good sensitivity to multimodality [34]. Step by step implementation of this method is as 

follows: 

Step (1): Filtering the EEG and fNIRS time series around the desired frequency centers (fc). EEG 

center frequencies (fc) ranged 1-20 Hz with a step size of 0.5 Hz, with the band width of 0.5 Hz. 

Center frequencies (fc) for fNIRS were between 0.001-0.2 Hz with step size of 0.0005 Hz. In order 

to achieve a filter with a narrow band width that met the requirement for filtering the fNIRS, the 

fNIRS signal was further down sampled to 0.08 Hz. A zero-phase finite impulse response (FIR) 

filter was used for filtering fNIRS, with edge frequencies of 0.9*fc and 1.1*fc. Filtered signal was 

up-sampled to 512Hz in order to match the number of EEG data points. 

Step (2): Filtered fNIRS signals went through Hilbert transform, and the phase at each time point 

was extracted respectively. Phase values were binned into 180 bins from −N: N.  

Step (3): Filtered EEG signals were taken through Hilbert transform, and the amplitude at each 

time point was extracted from. 

Step (4): The amplitude was averaged over each bin of the phase, giving the amplitude-phase 

distribution. 
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Step (5): All amplitudes were normalized over the average of all bins. In a mathematical expression 

in Equation 3-1, we can write P having the characteristic of a probability density function, though 

it is not a random variable [34]. 

H(.) =
〈äãå〉éãè(()

∑ 〈äãå〉éãè(ê)
ë
íìî

								    Equation 3-1 

Step (6): Divergence of this distribution from uniform distribution is calculated by Kullback-

Leilbler distance (KL). KL is a measure for difference of two distributions [34]. 

   ïñó(H, ò) = ∑ H(.)ô|ö	(õ(()ú(())
[
(F< 		    Equation 3-2 

Step (7): Modulation index is defined by: 

   5ù = ûü†(>,ú)
m°j	([) 			      Equation 3-3 

where P is the distribution of amplitude over phase, U is the normal distribution, and N is 

the number of bins. If MI is zero, it is an indication of no coupling; We would have MI=1 if only 

the amplitude-phase distribution is similar to a Dirac function, when one bin is equal to one and 

the rest are zero. More details about KL-based PAC can be found at the original paper [34]. 

Dual-mode PAC was performed on each EEG channel and each of its surrounding fNIRS 

channels. The result of PAC is a frequency-frequency comodulogram for each channel and 

frequency pair. For each EEG channel, all corresponding fNIRS maps are averaged to get 64 maps 

per subject and per vigilance state. These secondary maps are averaged over subjects, and further 

divided into different frequency range areas: endogenic (0.01-0.02 Hz), neurogenic (0.02-0.04 Hz), 

myogenic (0.04-0.15 Hz) versus delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and lower beta 
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(12-20 Hz) (Figure 3-2). Each area is averaged, so for each frequency band pair one value is 

obtained for each channel per subject and vigilance state. These 64 values per state were averaged 

over subject, resulting in the topoplots in (Figure 3-3 (a)-(c)). In order to have a global comparison 

of PAC on different vigilance states and frequency band pairs, the PAC value was averaged over 

all channels, resulting in the bar charts at (Figure 3-4). 

3.2.3 fNIRS filtering and frequency centers 

All three frequency bands of fNIRS -endogenic (0.01-0.02 Hz), neurogenic (0.02-0.04Hz) 

and myogenic (0.04-0.15Hz) - were included in this study. The center frequencies were extracted 

from the frequency range of 0.01-0.2 Hz, starting from 0.01 Hz and step size of 0.005 Hz. In order 

to be able to have a very small bandwidth to fulfill the fNIRS filter need, the fNIRS data was down 

sampled to 0.8Hz. Zero-phase FIR filter with Kaiser window is used for this purpose. The filtering 

was done in frequency domain. As the phase of fNIRS is a key part of PAC method it is important 

to make sure the filtered signal is not phase-shifted, that is why the zero-phase filter was 

implemented here. 

An example of filtered fNIRS signal around 0.01 Hz and its phase in a dashed line can be 

seen in (Figure 3-1 (a)). The phase of SO is driven from its Hilbert transform and extracting the 

phases. Figure 3-1 (b) shows the amplitude of the filtered EEG around 2Hz. Amplitude was 

obtained by passing the filtered EEG signal through Hilbert transform and extracting its amplitude, 

also known as envelope. To obtain the amplitude-phase distribution the phase of the SO was 

binned, in this example to 18 bins. Corresponding to each phase bin, the amplitude of FO was 

averaged. In amplitude-phase distribution, the height of each bin shows the average amplitude over 

that bin of phase signal. Each bin eventually was normalized by average amplitude value to make 
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the distribution independent of the amplitude value. The amplitude-phase distribution can be 

observed in (Figure 3-1 (c)).  

 

 

 

 

 

 

 

Figure 3-1 (a) filtered fNIRS around 0.01 Hz and its phase (dashed-line), (b) amplitude of EEG 

signal filtered around 2Hz, (c) amplitude-phase distribution. 

In order to obtain the comodulogram or the frequency-frequency maps. The amplitude-phase 

distribution should be computed for all possible SO and FO frequency pairs. Divergence of each 

distribution from the normal distribution is the PAC index or modulation index. For each EEG 

channel and its surrounding fNIRS channels this process was repeated. Each EEG channel has 

more than one comodulogram, since it is surrounded with more than one fNIRS channel. For each 

channel of EEG all comodulograms were averaged to get a single comodulogram per location. 

This process was repeated for each subject and each vigilance state. For each state and location, 

the comodulograms were averaged over all subjects. Figure 3-2 shows two instances of the PAC 

comodulograms at two different locations on the brain and four different vigilance states. From 

(a) 

(b) 

(c) 
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EO to SS2, each state has a distinct pattern. Color bar shows the strength of the coupling and is 

unitless. 

 

 

 

 

 

 

 

 

Figure 3-2 An example of PAC maps for four different vigilance states at two locations (F8 and 

F6). PAC is unitless. 

3.2.4 EEG filtering and frequency centers 

The EEG frequency range of interest here is delta, theta, alpha and lower beta. The center 

frequencies for the EEG signal are extracted from 1-20 Hz, starting from 1Hz with 0.5 Hz step 

size. The bandwidth of the EEG filter is constant for all center frequencies and equal to 0.5Hz. The 

filter that was used here is least mean square FIR filter from EEGLab toolbox. 

(a.u.) 
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3.2.5 Statistical Analysis 

In order to be able to explore statistical significances between the four vigilances group. 

ANOVA test of variance was followed by Tukey-Kramer correction on all four vigilance states 

and each frequency pair of bar graphs in (Figure 3-3). 

3.3 Results 

The PAC was performed on EEG-fNIRS dual mode measurement at four different vigilance 

states, between the whole range of fNIRS frequency band (0.01-0.2) and 1-20 Hz of EEG band. 

MI index topoplots can be found in (Figure 3-3). In endogenic versus all EEG bands, SS1 shows 

the strongest coupling among all vigilance states and all frequency pairs (Figure 3-3(a)). EO 

through SS1 states showed strong coupling at the occipital area in endogenic-alpha frequency pair. 

In endogenic-theta coupling, SS1 has a strong coupling in the frontal area. SS2 has a relatively 

weak coupling, except for the somatosensory area, it has a strong endogenic-delta, -theta, -beta 

coupling (Figure 3-3 (a)). Neurogenic and myogenic couplings showed the same behavior as 

endogenic couplings, though they are weaker than endogenic couplings (Figure 3-3 (b) & (c)). 
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Figure 3-3(a) endogenic band of fNIRS versus delta, theta, alpha and beta band of EEG MI index 

topoplots at four vigilance states; (b) neurogenic band of fNIRS versus delta, theta, alpha and beta band 

of EEG MI index topoplots; (c) myogenic band of fNIRS versus delta, theta, alpha and beta band of EEG 

MI index topoplots. Number of subjects: EO (15), EC (11), SS1 (8) and SS2 (7). PAC is unitless. 

(a) (b) 

(c) 

(a.u.) (a.u.) 

(a.u.) 
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Global endogenic-delta, -theta, -beta coupling is significantly higher in SS1 than EC and EO 

as confirmed by ANOVA followed by the Tukey-Kramer correction (p-value < 0.1) (Figure 3-3 

(a)). Global endogenic-alpha coupling is significantly higher in SS1 than SS2 (p-value < 0.1). The 

global MI has an increasing trend from EO to SS1 in endogenic versus all EEG bands (Figure 3-3 

(a)). From (Figure 3-3 (b)), it can be observed that neurogenic versus all EEG bands coupling 

follows the same trend as endogenic versus all EEG bands; there is an increasing trend from EO 

to SS1. SS1 has significantly stronger coupling than EC and EO in neurogenic- delta, -theta, -beta 

(p-value < 0.1) couplings. Global myogenic- EEG bands couplings follow the same trend as the 

neurogenic and endogenic -all EEG bands, MI index increases from EO to SS1. In myogenic- 

delta, -theta, -beta there is a significantly stronger coupling at SS1 than EO (p-value < 0.1). 

Comparing the coupling between fNIRS and EEG bands, in all three fNIRS bands the alpha 

coupling is higher than delta, theta and beta. Comparing endogenic, neurogenic and myogenic 

versus EEG bands couplings, endogenic has the highest and myogenic has the lowest Global MI 

index. 
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Figure 3-4 (a) endogenic band of fNIRS versus delta, theta, alpha and beta band of EEG global MI 

index at four vigilance states; (b) neurogenic band of fNIRS versus delta, theta, alpha and beta band of 

EEG global MI index at four vigilance states; (c) myogenic band of fNIRS versus delta, theta, alpha and 

beta band of EEG global MI index at four vigilance states. The star shows significant pairs by ANOVA – 

Tukey Corrected test (p-value <0.1). Error-bars show standard error. Number of subjects: EO (15), EC 

(11), SS1(8), SS2(7). PAC is unitless. 

3.4 Discussion 

Complex interaction between neuronal activity and brain hemodynamics was investigated. 

A new aspect of interaction and communication between the two systems was introduced by 

applying PAC on EEG-fNIRS simultaneous data. Modulation of neuronal activity or 

electrophysiological signals by brain hemodynamics was explored which was called vasculo-

neuronal coupling (VNC). 
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3.4.1 Novelty of the dual-mode PAC 

In this study a novel application of PAC on dual mode measurements was introduced. It was 

successfully implemented on simultaneous EEG-fNIRS data of healthy subjects at four different 

vigilance states. To the best of my knowledge this is the first time that PAC is utilized on fNIRS-

EEG dual-mode measured data. A very important fact about the dual-mode PAC implementation 

is that the intrinsic characteristics of both EEG and fNIRS time-series were put into use for 

implementing PAC. This not only solves one of the challenges in EEG-fNIRS analysis but also 

generates a quantitative measure for modulation between hemodynamics and electrophysiological 

signals of the brain. Referring to (Figure 3-2 & 3-3) neuronal activity modulation by 

hemodynamics of the brain at four different vigilance states can be observed. Each state has its 

own distinct distribution of modulation index (Figure 3-2). Additionally, there is an increasing 

trend in modulation from EO to SS1 (Figure 3-3). Major findings by applying PAC on dual mode 

data can be summarized as follow: (1) VNC measurements demonstrates an increasing trend from 

EO to SS1, (2) endogenic-, neurogenic- and myogenic- alpha coupling is stronger in occipital and 

parietal areas in EO, EC and SS1, (3) VNC is SS2 is strongest in the center (intersection between 

parietal and frontal lobe – somatosensory area) except for alpha which is more diffuse, (4) 

endogenic versus all EEG frequency bands has higher modulation index compared to neurogenic 

and myogenic. The latter finding will be discussed in the next section with more emphasis. 

As can be observed from (Figure 3-4), there is an increasing trend in VNC from EO to SS1. 

Considering the WM maintenance and processing, it happens at more relaxed vigilance states, 

therefore it is expected to see stronger coupling in transition from EO to SS1. As blood flow is the 

main source of energy for neurons one can justify the increase in VNC at more active WM states, 
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since more energy is needed. Therefore, having higher VNC at SS1 indicates, in spite of minimum 

input from somatomotor during sleep, WM is highly active which can be interpreted as processing 

the information from short term memory [87]. In SS1, stronger coupling locations overlap with 

the resting-state working memory network as well as relevant Broadman areas for working 

memory (Figure 3-3) in delta, theta and beta frequency bands [88, 89]. Based on endo-delta and -

theta coupling, it can be inferred that working memory (WM) maintenance and processing is the 

most active at SS1. As shown here, the increase in VNC from EO to SS1 may also be an indication 

of an increase in WM maintenance and processing during this transition. Also, in examining the 

coupling of endogenic versus beta band (Figure 3-3), there are strong coupling spots at locations 

correlating with working memory EEG electrodes (and fMRI RSN WM) [88, 89]. In general, based 

on the observation on SS1 one can suggest that SS1, is strongly involved in working memory 

maintenance and processing. 

In (Figure 3-3), strong VNC was observed in the alpha band at the visual cortex and occipital 

area. There is a strong body of evidence that alpha waves are involved in working memory 

maintenance on the visuospatial path. Alpha waves perform an important role in allocating 

attention, by cutting out irrelevant information and selecting relevant items [90, 91]. Interestingly, 

in the dual-mode study of resting state, strong VNC was observed at the area of interest for alpha 

activities on WM, the parietal and visual cortexes. This can potentially be due to alpha wave 

involvement in WM maintenance and processing which leads to strong VNC in the occipital and 

visual cortex. 

Strong VNC was observed in the somatomotor resting state network (RSN) area in SS2 at 

delta, theta and beta frequency bands (Figure 3-3). Alpha band at this stage and location, however, 
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remains low. Strengthening of the somatomotor resting state network in SS2 has previously been 

reported, which aligns with my results and confirms a strong VNC at this region in SS2 [92-94]. 

3.4.2 Strongest coupling between fNIRS endogenic band versus all EEG bands 

The results here show that the strongest modulation between EEG and fNIRS happens at the 

endogenic band of fNIRS at all four vigilance states. This observation is in line with the reported 

results on the power of fNIRS frequency bands [45]. Numerous studies have shown the importance 

of the endogenic component of vasomotion fNIRS [45, 95-97]. Specifically, during sleep Zhang 

et al 2014, reported stronger endogenic power than neurogenic and myogenic power in all sleep 

stages. Role of different hemodynamics range in autoregulation – maintenance of adequate blood 

flow with changes in blood pressure - was reported to be more important at endothelial vasomotion 

[43, 95]. I was able to show that not only does the endogenic component have the highest power 

and plays the strongest role in autoregulation. Additionally, the coupling between neuronal activity 

and brain hemodynamics is strongest at fNIRS endogenic component. It can be inferred from PAC 

analysis results that major modulation of the neuronal activity during different vigilance states is 

done by the endogenic component of the fNIRS signal. In other word, endothelial vasomotion 

plays a critical role in modulating the neuronal activity. Regarding the spatial and general 

distribution of modulation between the two time-series, fNIRS neurogenic- and myogenic-EEG 

coupling has the same pattern as fNIRS endogenic-EEG coupling. Comparing three frequency 

bands of fNIRS, myogenic frequency band showed a very weak coupling with all EEG frequency 

bands. This observation can be explained by the fact that brain arterioles lose the smooth muscle 

mass and become smaller and turn into cerebral capillaries, which means smooth muscle role in 

vasomotion is minor at this point [81]. 
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3.4.3 infra-slow oscillation during sleep and their importance 

At different vigilance states various strengths of PAC and its spatial distribution was 

observed in this study. These distinct patterns for dual-mode PAC distribution on the scalp can be 

hallmarks of different vigilance states. fNIRS data has a frequency band of <0.15Hz, this low range 

of frequency are referred to as infra-slow oscillations (ISO) and have recently become a topic of 

interest between neuroscientists [98, 99]. There are reports on the existence of ISL during NREM 

sleep which could be the reason behind the strong PAC observed in SS1. Additionally, there is a 

stronger PAC in the somatomotor area in NREM 2 which is in line with the reported strong ISO 

at these locations during SS2 [97]. The main function of ISO was reported to be controlling the 

excitability of the cortex and basically an underlying reason for higher frequency fluctuations [98, 

99]. What I explored here is beyond exploring ISL solely. The coupling between ISO and the 

higher frequency oscillations was explored, which can be an indication of more complex processes 

than controlling the cortex excitability. In other words, given the ISO controlling the cortex 

excitability function, its coupling to higher frequency oscillation can explain the modulation of the 

HO by ISO. High power of ISL during NREM sleep was associated with memory recall [100, 

101]. Based on that, the strong observed PAC in my results can be due to memory processing or 

maintenance. It can be inferred that ISL control or mediate the cortex excitability to manage the 

memory processing. However, in order to state this interpretation with absolute certainty, further 

investigation is required. 

3.4.4 Limitations of the study 

One of the potential limitations of this study includes the short duration of measurement. The 

data as collected includes up to sleep stage 2 and not any deeper stages of the sleep. During a full 
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cycle of sleep an individual transition through the multiple stages of sleep 

stages several times. Measurements on these stages and transitions would be valuable and are the 

missing points in this study. Additionally, there was a limited number of subjects in which to 

analyze. The availability of more subjects will increase the reliability of the findings. From 

a technical standpoint, KL-PAC needs relatively long data, at least one cycle of the slowest 

frequency in our case 0.01Hz, in order to have a reliable output. We had to remove a few subjects 

that had readings shorter than 100Hz. In general, PAC is sensitive to the phase signal, which may 

result in false couplings. In order to avoid the random coupling due to faulty phase, more 

measurements or use of statistical methods such as bootstrapping and surrogate data is needed.  

3.5 Summary 

In this study, a novel application of PAC on dual mode EEG-fNIRS was proposed as VNC 

index. PAC was able to detect the coupling between EEG and fNIRS successfully. Looking at 

VNC at different bands in general fNIRS endogenic versus all EEG bands showed stronger 

coupling compared with neurogenic and myogenic fNIRS bands. Among different vigilance states, 

SS1 had the strongest VNC, which is in line with the ISL sleep studies. Furthermore, in SS2, 

stronger coupling was observed at the somatomotor area which can be due to strong ISL at that 

area during NREM sleep. As the coupling between ISL and higher frequency signal was explored 

here, it can be an explanation for more complicated processes such as WM maintenance and 

processing as it has been discussed in detail in the discussion. PAC appeared effective in 

quantification of VNL or neuronal activity modulation by the vascular system, through vasomotion 

and blood flow. One key advantage of this method is direct use of EEG and fNIRS without further 

processing of the two time-series in order to match their frequency characteristics. 
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Chapter 4 Investigating Phase Amplitude Coupling in four vigilance states of 

human brain on EEG 

 

4.1 Introduction 

Communication between neuronal oscillations frequencies, or cross frequency coupling 

(CFC), has been a topic of interest in recent years among neuroscientist [29, 102-104]. Among 

different methods for studying cross frequency interaction - such as phase-phase coupling, phase 

synchronization, amplitude-amplitude coupling and phase amplitude coupling (PAC) - PAC is 

more significant due to its inherent physiological implications beside the computational rationale 

behind it [29, 30]. PAC function is based on the coupling of lower frequency with higher frequency 

oscillations. In the brain, slower frequency oscillations are reflection of the local neurons’ 

excitation while the higher frequencies are thought to originate from two sources: (1) the general 

increase in the synaptic activity (broad-band power increase), or (2) or activation of specific 

population of the neurons in the sub network (narrow-band power increase) [30]. PAC studies have 

been conducted both on invasive measurements such as local field potentials (LFP) and subdural 

electrocorticogram (ECoG), as well as non-invasive measurements such as electroencephalogram 

(EEG) and magnetoencephalogram (MEG) [30]. PAC phenomena was originally observed in 

rodents and macaque across different sites: basal ganglia, amygdala and neocortex [83, 105-108]. 

Studies exploring PAC on human subjects under different conditions found CFC across cortical 

and subcortical regions [84, 109-114]. There are some concerns about CFC not truly being actually 

linked to the functional activity and communications, leading researchers to attempt to modulate 

the CFC by external and internal factors [115]. Numerous studies demonstrated different coupling 
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between lower frequency phase and higher frequency amplitude, for example: theta (4-8 Hz) 

versus gamma (30-80Hz) coupling was dominant in frontal and temporal sites while subjects were 

involved in an auditory task-based experiment. Other investigators suggested gamma versus theta 

and alpha coupling at different areas of the brain during different tasks [114, 116, 117]. Not all the 

analyses are involved with gamma as the high frequency oscillations, delta (1-4 HZ) and theta 

coupling versus alpha and beta (12-30 Hz) has been also observed in medial frontal area while 

subjects were involved in decision making tasks [116]. 

Among different areas of brain studies, researchers investigating working memory and 

memory consolidation are most interested in PAC. The main theory behind PAC is that lower 

frequency oscillations affect the higher frequency variations in order to encode, store, and retrieve 

information in the brain [32, 118]. It has been hypothesized that during memory consolidation 

there is a coupling between the amplitude of hippocampus ripples (80-100Hz Hz) and slow 

oscillations SO-waves (<1Hz) in the slow wave sleep (SWS), and thalamo-cortical sleep spindles 

(12-16Hz) [119, 120]. The interplay between these three oscillations are being speculated to 

orchestrate the memory consolidation process by communication between the neocortex to 

hippocampus during sleep [32]. There have been studies exploring the working memory by means 

of PAC on human hippocampus. Researchers suggest that PAC is necessary in order to represent 

each item separately in multi-item working memory maintenance [84, 121]. Additionally, there 

are animal studies on retrieving memories that are already in the long-term memory [122-124]. 

These studies have related a high gamma-theta coupling to short term memory maintenance and 

encoding the information to long-term memory [118]. The memory model supported here is a two-

step model consisting of: (1) working memory retrieves and processes information during SWS 

and becomes stronger (slow learning), (2) during the rapid eye movement (REM) sleep these new 
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memories obtain higher plasticity in the long-term memory storage (fast learning) [125]. It has 

also been suggested that retrieving information from long-term memory might be done by way of 

an inverse theta-gamma coupling process [124, 126, 127]. Beside SO-waves, sleep spindle and 

hippocampus ripple, there are three distinct oscillations - delta, theta, and gamma - that are thought 

to play a role in facilitating the flow of information between regions and optimizing the 

information process locally [128]. Three main areas in the brain involving memory are cortex, 

hippocampus, and striatum. Declarative memory involves with cortex and hippocampus which 

occurs at SWS while striatum is involved in procedural memory that occurs at REM sleep [129]. 

Delta, theta and gamma originate or interact in one of the aforementioned areas during declarative 

and procedural memory [128, 130]. 

While several studies have been performed examining PAC on different frequencies 

throughout the sleep stages, none of these studies have been conducted on healthy subjects with a 

whole brain measurement [131]. Here, the question to be addressed is exploring PAC in transition 

from wakefulness in two vigilance states of eyes open and eyes closed followed by the light NREM 

sleep of stage 1 and stage 2. These measurements were performed non-invasively and more 

comprehensively by 64-channel EEG system. The cross-frequency coupling is explored at delta 

(1-4Hz), theta (4-8Hz) frequency bands versus higher gamma (50-70 Hz). 

4.2 Methods and Materials 

4.2.1 Dual-mode Instrumentation, participants and experimental protocol 

Detailed information on EEG-fNIRS instrumentation and set-up can be found in Section 

2.2.1. The information about the participants and experimental protocol was elaborated in Sections 
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2.2.2 and 2.2.3 respectively. Procedures for EEG and fNIRS preprocessing were also stated in 

Section 2.2.4, I avoided duplication in this chapter. 

4.2.2 Phase Amplitude Coupling 

There are different methods such as phase-phase, amplitude-amplitude, phase-frequency and 

phase-amplitude coupling for cross frequency coupling purposes [29]. Here I utilized PAC  method 

introduce by Canolty et al (2006) in order to explore CFC behavior in transition between different 

vigilance states [109]. The mechanism of this method is based on a physiological concept that low 

frequency signal is due to activation of local neurons and high frequency is due to increase in 

synaptic activation or selected neuron activation [30]. The backbone of this method is using the 

phase and amplitude of slow oscillations (SO) and fast oscillations (FO). Brainstorm toolbox was 

used for performing the PAC [132]. This method is based on mean vector value which will be 

explained in more details at this section. First step is to filter the signal around the low frequency 

centers and high frequency centers of desired. All filtering is based on Gaussian Chirplet filter. 

¢£(A, AS, 6S, §S) = 2< #O × k
¶ßP
® ©p(™¶™P)

R´ßP
¶î©¨≠P´ßP

Æ!CØP¶ßP
				                                Equation 4-1 

            Where §S is a chirp rate, which is zero here so no chirping. 

6S (duration parameter): ∞±≤(G ∞±≤( G))
(s^≥)R¥™PR

 

AS: center frequency (of both high and low frequency oscillations) 

A: sµY∂ × [0,1, … , gt − 1] (Hz) 
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o∑: sampling frequency, gt: number of sample points 

oW∏ (fractional bandwidth): π∫mm	≥CªEº	Ω`ms	=`UCi∫iæP
; it is constant value of 0.15 here which 

means for higher frequencies it has broader band width. 

Both slow and fast signals go through Hilbert transform to get the phase and amplitude 

respectively.  

 øså = |6(1: gt, oℎ)|                                                                        Equation 4-2 

 8sè = VgöôB-6(1: gt, oô)2                                                            Equation 4-3 

Where oº are center frequencies for the high frequency oscillations with the range of 50-70 

Hz. om are center frequencies for the high frequency oscillations with the range of 1-20 Hz 

Having the amplitude and phase the Z value will be obtained by equation 4-4.  

          ¿ = øsä. BC¬ã√					                                                                          Equation 4-4 

The average, mean vector, of this Z value is normalized and gives the PAC index, that is the 

reason why this method is called mean vector length (MVL).  

            PAC is normalized over amplitude and length of data and time equation 4-5: 

g|}vVôƒ≈B∆>äd =
>äd

«∑ (äãå)
R»∂

î ×√Y∂
		                                           Equation 4-5 
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4.2.3 Polar plots from the real data 

To better understand the concept of amplitude of high frequency and phase of low frequency 

time series, an example of these two was shown in (Figure 4-1). These two PAC components in 

(Figure 4-1 (a) & (b)) were from the CPz electrode - central-parietal - during eyes open state. On 

top of that the complex number or the Z number in Equation 4-4 was also plotted as a polar plot 

in (Figure 4-1 (c)). Imaginary part of the Z number which indicates the phase (or angle with respect 

to the x-axis) came from the lower frequency signal or SO. The amplitude of Z or distance from 

the center was determined by the amplitude of high frequency signal or FO. The polar plot of Z 

trajectory (Figure 4-1 (c)) was averaged and normalized by the length of the signal and amplitude 

of the high frequency time-series to obtain the PAC index. It is important to realize that 

corresponding to each time-point there is a vector in Z trajectory, so the average of Z is actually 

mean of all these vectors. The reason behind the name of this method – mean vector value – is due 

PAC being driven from average vector value of all Z numbers. In this example the low frequency 

signal is 3Hz and the high frequency signal is 55Hz. To have the full CFC between all desired 

frequencies, the same Z number (polar plot) was computed for all possible frequency pairs and 

accordingly the PAC value for each pair is computed based on the mean of all vectors in the polar 

plot. Two instances of full CFC comodulogram at two different locations were presented in (Figure 

4-2) for four vigilance states.  
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Figure 4-1 An example of PAC building blocks during eyes open, (a) Phase of lower frequency 

oscillation, (b) amplitude of higher frequency oscillation and (c) polar plot of the complex number Z. 

By PAC computation a comodulogram (frequency-frequency) map will be obtained. As the 

data has for different vigilance state, there is a comodulogram for each channel and each vigilance 

state of each subject. These maps were averaged over subjects per state, yielding in general 64 

maps per vigilance state. These maps were further divided into delta-, theta-, alpha-, lower beta- 

gamma1 (30-50 Hz) and gamma2 (50-70 Hz) regions and averaged over each region. This will 

give 64 values for each coupling pair, which was used to get the topoplots for each vigilance state 

and frequency coupling pair. There is also a global measure over all locations for each vigilance 

state and coupling frequency pair that derived from averaging over the 64 values (respective to 

each EEG channel) that are depicted by bar charts for each frequency pair. 

4.2.4 Statistical Analysis 

In order to have a statistical measure of the changes in between different states, non-

parametric ANOVA test was performed between different groups. Then the Tukey correction test 

was performed to determine the significant pairs of groups. 

(

(

(
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4.3 Results 

Performing PAC on EEG data and different vigilance states, creates frequency-frequency 

maps or comodulogram. Different vigilance states of EO, EC, SS1 and SS2 each have their 

significant comodulogram. Instances of two location in parietal-occipital area both left and right 

side (PO3, PO4) and their comodulogram at four vigilance states is shown in (Figure 4-2). As it is 

shown in (Figure 4-2), EC and SS1 in general have stronger coupling in all amplitude frequencies, 

while EC strong coupling spreads less on phase frequency than SS1. The strong coupling in SS2 

are very isolated and happen in very small areas. EO has higher coupling in very low both 

amplitude and phase frequencies. Comparing the four vigilance states and their comodulogram, 

EO and SS2 seem to have weaker coupling than EC and SS1. 

 

 

 

 

 

Figure 4-2 Comodulogram at four different vigilance states for two locations on left and right 

parietal-occipital area, PO3 and PO4 respectively. PAC is unitless. 

By averaging over the area of interest, PAC topoplots are obtained (Figure 4-3). Delta-

gamma coupling is stronger in SS1 and EC than SS2 and EO. SS1 has strong delta- gamma 

coupling in frontal, temporal and occipital areas while EC has a very strong frontal delta-gamma 

(a.u.) 
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coupling (Figure 4-3(a)). EO has stronger delta-gamma coupling in frontal area than other 

locations on the topoplot (Figure 4-3 (a)). Theta-gamma coupling is strong in EO at frontal areas. 

EC and SS1 have the strongest theta-gamma coupling across all four vigilance states. Both have a 

very strong frontal and occipital coupling, SS1 has strong coupling at temporal area too. Theta-

gamma coupling is weak in SS2 compared to the other states. Comparing delta-gamma and theta-

gamma coupling, delta-gamma coupling is stronger in all vigilance states than theta-Gama 

coupling (Figure 4-3(b)). 

 

 

 

 

Figure 4-3 Topoplots of average PAC at different vigilance states comparing states (a); and 

comparing phase frequency (b).  Number of subjects: EO (15), EC (14), SS1(12) and SS2(7). PAC is 

unitless. 

Global PAC shows and increasing trend from EO to SS1, and it lower at SS2 for both delta-

gamma and theta-gamma couplings (Figure 4-4). SS1 is significantly higher than EO and SS2 in 

delta-gamma coupling, it is significantly higher than EC and SS2 in theta-gamma coupling. The 

significance coupling was testes by non-parametric test of variance and Tukey-Kramer 

correction(p-value<0.1). 

 

((
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Figure 4-4 Average global PAC index at four different vigilance states and delta-gamma and theta-

gamma coupling; state-wise comparison (a), frequency-wise comparison(b). Star shows the significant 

pairs by ANOVA non-parametric test (p-value<0.1). The error bar shows the significant pairs by ANOVA 

non-parametric test (p-value<0.1). The error bar shows the standard error. Number of subjects: EO (15), 

EC (14), SS1(12) and SS2(7). PAC is unitless. 

4.4 Discussion 

4.4.1 Novelty of current study 

This study focused on CFC on resting state EEG data at four different vigilance states of 

eyes open, eyes closed, SS1 and SS2. As a more comprehensive study in this area PAC on four 

vigilance stages on healthy subjects, with 64-channel EEG recording was explored. There are other 

PAC investigation on sleep data reported, although they have lower spatial resolutions -only few 

electrodes for EEG- and also main focus is not healthy subjects and explored instances of  seizures 
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or other pathological conditions [131, 133, 134]. PAC analysis was reported on NREM and REM 

sleep data recorded by 19-electrode EEG from a public dataset from Physionet, with a focus on 

different pathological conditions and cyclic alternating patterns (CAP) during different sleep 

stages [134]. Seizure patients EEG data from seizure and non-seizure areas was also investigated 

by PAC on delta, theta and alpha versus gamma at different sleep stages [133]. Although all these 

studies suggested changes of PAC at different stages of sleep, none of them was conducted on 

healthy subjects and a whole brain EEG measurement. Moreover, CFC of different frequency 

bands was investigated in the current study which includes coupling of delta and theta phase with 

higher-gamma (50-70 Hz) amplitude. The major findings of this study are: (1) the strongest 

coupling in all four states was observed between delta and gamma frequency bands, (2) theta-

gamma coupling is stronger in frontal and temporal areas during EC and SS1 while in EO and SS2 

the string coupling is only frontal, (3) in general, CFCs of all frequency pairs during EO and SS2 

showed weaker coupling than EC and SS1 and (4) there is an increasing trend from EO to SS1 in 

average PAC index. These finding are discussed in more details in the next section. 

4.4.2 delta-gamma and theta-gamma couplings at four different vigilance states 

Average PAC topoplots (Figure 4-3) showing the delta-gamma distribution of PAC revealed 

higher PAC index compared to theta-gamma coupling. In investigating the EEG data power 

density spectrum, it was determined that the delta band has the highest power compared to other 

frequency bands of EEG. Correlation of PAC index and the power of the phase signal has been 

explored by the developers of the PAC method [109]. It has been observed that higher amplitude 

of the phase signal correlates with where the PAC index is higher. This may raise the question of 

if the PAC computation is therefore flawed or has a phase signal dependency downside. The 

answer to this is “NO”, as PAC does not rely on the amplitude of the phase signal. In PAC 
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computation, the phase information from the phase signal is used, while the amplitude comes from 

the higher frequency amplitude signal. As it has been mentioned earlier, delta band has the 

strongest power density spectrum in this data, therefore higher PAC index at delta-gamma 

coupling matches with what has been claimed in other studies and in specific the developers of the 

method [30, 109]. Furthermore, from physiological point of view, delta oscillations are dominant 

in quiet resting and slow wave sleep while theta oscillations are dominant during REM sleep. This 

can be another approval. Together, these provide support for a stronger coupling between delta – 

gamma, compared with theta-gamma [32]. 

A strong theta-gamma coupling was observed in frontal region in both EC and SS1 (Figure 

4-3). SS2 and EO also have strong theta-gamma coupling in frontal area but not as high as EC and 

SS1. Theta originates from the hippocampus and therefore will not be prominent in the cortex, 

apart from for prefrontal cortex [32]. This may explain the strong theta-gamma coupling in frontal 

areas. There is a strong body of evidence relating theta-gamma oscillation to working memory 

maintenance [91]. Theta-gamma oscillations are involved in a sequential path of working memory 

(WM) and its phonological loop storage [135]. Theta-gamma oscillations are involved in 

sequential information coding and dominant at prefrontal cortex and medial temporal lobe. Cycles 

of gamma oscillations are responsible for coding multiple or sequential items in WM and, in turn, 

these gamma waves are coordinated through theta oscillations originating in the hippocampus. 

Together, these form the core of theta-gamma coupling which is a significant factor in the WM 

paradigm [84, 91, 136]. Comparing the findings of studies from WM and theta-gamma coupling. 

Comparing the findings of studies from WM and theta-gamma coupling with my results, I can 

suggest that what was represented in (Figure 4-3) is also due to coding information in WM or its 

maintenance. 
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Higher EC and SS1 coupling can be an indicator of higher activity of WM at these two states 

(Figure 4-3 & 4-4), which happens despite the minimal sensorimotor interaction. An increasing 

trend in PAC from EO to SS1 is expected, as a more relaxed state can play a role in preparation 

for memory consolidation through WM. The importance of WM in memory consolidation and 

long-term memory is discuss in Diekelmann & Bon (2010) [125]. Since PAC is mostly related to 

memory and the memory consolidation processes, one might expect a higher PAC in SS2 which 

is contradictory to my results for this state. Since it is hypothesized and referred in literature that 

NREM 2 has a key role in memory consolidation therefore PAC should be higher at this stage. An 

important characteristic of the SS2 which makes it a candidate for memory consolidation is the 

existence of sleep spindles, fast pace waves (12-16Hz) which are related to the transition from 

short term memory to the long-term memory. Potentially spindle episodes are the ones with higher 

PAC, however, in order to explore those events an expert is needed to score the data for spindle 

episode which was not in the scope of this study. Additionally, there are cyclic alternating patterns 

(CAPs) which indicate the complex microstructures during NREM sleep. These patterns are 

mostly dominant in SS2 and have three different phases. Each of these CAPs have different PAC 

characteristic, which were not discerned in this study. Therefore, this may be another potential 

reason for not seeing an increase in PAC at SS2 since it is a mix of different patterns and episodes. 

Delta-gamma and theta-gamma coupling showed an increasing trend from EO to SS1 (Figure 

4-4). Delta waves can originate from deeper or more superficial brain locations, including the 

thalamus, Striatum or cortex. It can be either from thalamus, Striatum or cortex. Gamma waves 

originate from neocortex or hippocampal locations [128]. The trend from EO to SS1 in delta-

gamma coupling can suggest an increase in communication between the thalamus and striatum to 

the cortex during transition from different vigilance states. In addition to gamma waves, theta 
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waves also originate either from the hippocampus or neocortex [128]. Considering the location of 

the brain waves, the increase in theta-gamma coupling can be an indicator of an increase in cross-

talk between the hippocampus and neocortex, which is quantified through PAC. It has been 

mentioned in other studies that for deeper brain waves to be detectable by EEG there needs to be 

a coupling between the lower frequency and higher frequency (gamma) [137]. Considering the 

communication between regions can be another confirmation of WM and an increase in its activity 

from EO to SS1. As it is known that these three frequency bands delta, theta and gamma and their 

origins: striatum (one of the main input sites of basal ganglia from cortex and connected afferent 

fibers to thalamus), hippocampus, and cortex are three components of memory systems. Together, 

the interplay between these sites plays an important role in memory [128]. Based on the reported 

observations here, this interplay is stronger in EC and SS1 states. 

4.4.3 Limitations of the study 

One of the potential limitations of this study includes the short duration of measurement. The 

data as collected includes up to sleep stage 2 and not any deeper stages of the sleep. During a full 

cycle of sleep an individual transition through the multiple stages of sleep 

stages several times. Measurements on these stages and transitions would be valuable and are the 

missing points in this study. Additionally, there was a limited number of subjects in which to 

analyze. The availability of more subjects will increase the reliability of the findings. From 

a technical standpoint, MVL-PAC needs relatively long measurement, at least ten cycle of the 

slowest frequency in our case 1 Hz, in order to have a reliable output which is ten time longer than 

KL-PAC. In general, MVL-PAC is error prone due to its sensitivity to amplitude and phase values, 

it is really important to make sure of the quality of the data before analysis. In order to avoid the 
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random coupling, more measurements or use of statistical methods such as bootstrapping and 

surrogate data is needed.  

4.5 Summary 

To summarize, observation from this study showed high coupling during SS1 and EC for 

different frequency band pairs. The main reason behind that may be due to preparation, rehearsal 

and processing of short-term memory for being later on transferred to long-term memory during 

the deeper stages of sleep. Despite what was expected at the beginning of this study, PAC decreases 

at SS2 which may be due to appearance of different cyclic alternating patterns and spindle episodes 

at this state. In order to have better understanding of SS2, one needs to extract these episodes and 

then analyze them individually by PAC. It has been shown that PAC successfully revealed CFC 

for different frequency bands on resting state data.  

  



 69 

 

Chapter 5 Summary and future works 

 

5.1 Summary 

In summary, the main focus of my dissertation was to investigate the interaction between the 

slow hemodynamic oscillations and fast neurophysiological waves or oscillations, as well as 

communications of different brain regions through cross frequency coupling of brain waves, 

during four vigilance states from awake to early stages of sleep. The objectives of my dissertation 

were: 

(i) to analyze and quantify NVC by implementation of the state-of-the-art WTC applied 

on EEG-fNIRS simultaneously measured data;  

(ii) to develop a novel PAC analysis for dual-mode EEG-fNIRS measurements and to 

explore the VNC which looks at the possibility of fast neurophysiological activity 

modulated by slow vascular signals. 

(iii) to investigate slow and fast oscillation coupling among different frequency brain 

waves for analyzing the communication between different brain regions. 

Summary of my accomplishment on the three objectives and their relationships is listed as 

follows: 

(1) I introduced a unique method (i.e., WTC) to analyze within-frequency coherence of slow 

hemodynamics oscillations and fast neuronal activity oscillation. The purpose of this 

objective was to quantify NVC by the conventional definition, which states that increases 
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in neuronal activity and/or metabolism evoke or lead to changes in cerebral blood flow 

and thus hemodynamics in the brain. This concept has been well accepted in the field of 

neuroscience and supported by advanced neural imaging tools, such as fMRI. 

(2)  A more recent view on vascular and neuronal communication was proposed and 

investigated by the vasculo-neuronal coupling mechanism, the so called VNC. In 

mechanistic principle, VNC is in the opposite direction of classic NVC. The evidence for 

vessel-to-neuron communication in a brain slice was reported in a recent study by Kim 

KJ et al. (2016). VNC explores how blood flow and brain hemodynamics can modulate 

the neuronal activities. In my research, I investigated functional vessel-to-neuron 

communication by means of cross-frequency coupling between SO brain hemodynamics 

and FO brain waves. In short, through Chapters 2 and 3, I was able to analyze both 

possible interaction pathways between cerebral hemodynamics and neurophysiological 

waves quantitatively by implementing and applying WTC and PAC on the EEG-fNIRS 

simultaneously measured data. 

(3)  EEG data were analyzed also by PAC to investigate the coupling between the slow and 

fast oscillations of neuronal activities for potential communication between neocortex 

and deeper brain regions. Although SO and FO coupling was investigated in Chapter 3, 

its focus was on communication between vascular and neuronal activity through VNC. 

However, Chapter 4 utilized PAC to analyze SO and FO coupling within 

neurophysiological rhythms to explore communication between cortical and deeper brain 

regions. 
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Overall, throughout this dissertation research, four vigilance states were extensively 

analyzed from different aspects including two potential communication pathways between brain 

hemodynamics and neurophysiological rhythms, as well as, communication between cortical and 

deeper brain regions through SO and FO coupling.  

5.2 Future direction 

A complete understanding of vigilance states and sleep stages requires longer measurements. 

Ideally, data collection should be done through the night so that the data would include complete 

cycles of sleep.  

The use of methods that were introduced for dual-mode data analysis can be extended to 

different experiments and neurophysiological conditions. I just provided an early stage study of 

quantitative neuronal and vascular communications with the focus on the computational methods. 

All the methods developed can be applied to task-based studies; they are not limited to resting state 

investigations. The computational methods that I implemented for EEG-fNIRS data are based on 

either linear or non-linear synchronization and correlation. The need for further development and 

implementation of methods concerning causal relation between the two time-series remains open 

for future studies.  
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Appendix I EEG preprocessing pipeline and envelope extraction 
 

% Preprocessing pipeline 

function OUTEEG = EEG_PreProcessing_PipeLine() 
% Read Files 
path='/Volumes/SAMSUNG/multimodalSTUDY/'; 
names=dir(path); 
names=names(3:end); 
% OUTEEG=struct; 
for sb=1:18 
    a=dir(strcat(names(sb).folder,'/',names(sb).name)); 
    for i=1:length(a) 
        k=strfind(a(i).name,'rest'); 
        if k 
                 

INEEG=pop_readbdf(strcat(strcat(names(sb).folder,'/',names(sb).name),'/',a(i).name),[],65,48); 
        end 
    end 
 end 
  
end 
  
function out_eeg=prep(EEG) 
% Resampling 512 
[OUTEEG] = pop_resample( EEG, 512); 
  
% Band pass Filter to 1-150Hz 
[EEGf, com, b] = pop_eegfiltnew(OUTEEG, 1, 150); 
  
%Set location to MNI 
newchans = pop_chanedit(EEGf,  'lookup', 

'/Users/parisarabbani/Documents/MATLAB/eeglab14_1_2b-
2/plugins/dipfit2.3/standard_BEM/elec/standard_1020.elc','eval','chans = pop_chancenter( chans, 
[],[]);'); 

% EEGf.chanlocs=newchans; 
  
%clean line 
[EEG, Sorig, Sclean, f, amps, freqs, g] = cleanline('EEG',newchans); 
  
%Outlier 
    originalEEG = EEG; 
    EEG = clean_rawdata(EEG, 5, -1, 0.85, 4, 20, 'off'); 
  
%Interpolate 
   EEG = pop_interp(EEG, originalEEG.chanlocs, 'spherical'); 
  
%Re-reference 
    EEG.nbchan = EEG.nbchan+1; 
    EEG.data(end+1,:) = zeros(1, EEG.pnts); 
    EEG.chanlocs(1,EEG.nbchan).labels = 'initialReference'; 
    EEG = pop_reref(EEG, []); 
    EEG = pop_select( EEG,'nochannel',{'initialReference'}); 
  
  
%ICA 
out_eeg=pop_runica(EEG,'icatype','runica'); 
end 
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% Envelope extraction  
function eeg_bands() 
% Read data 
path='/Volumes/PARISA/Organized_NVC_Data/Sleep_ICA/Final/Cleaned/'; 
fs=512; 
fs_n=8; 
for i=1:18 
     if ismember(i,[2,3,5,7,8,9,10,11,12,13,14,15,18]) 
    n=strcat('subject',num2str(i),'_SS1.set'); 
    data=pop_loadset(n,strcat(path,'/SS1')); 
    %FRequency Bands 
    [delta,theta,alpha,beta,gamma1,gamma2]=freq_band(data); 
     
    %Envelope for each band 
    delta_p=power_x(delta.data); 
    theta_p=power_x(theta.data); 
    alpha_p=power_x(alpha.data); 
    beta_p=power_x(beta.data); 
    gamma1_p=power_x(gamma1.data); 
    gamma2_p=power_x(gamma2.data); 
     
    %Down Sample Envelope Power to 8Hz 
    delta_ds=movav_down_sample(delta_p,fs,fs_n); 
    theta_ds=movav_down_sample(theta_p,fs,fs_n); 
    alpha_ds=movav_down_sample(alpha_p,fs,fs_n); 
    beta_ds=movav_down_sample(beta_p,fs,fs_n); 
    gamma1_ds=movav_down_sample(gamma1_p,fs,fs_n); 
    gamma2_ds=movav_down_sample(gamma2_p,fs,fs_n); 
  
%Save Frequncy Bands 
    

pop_saveset(delta,'filename',strcat('S',num2str(i,'%02d'),'_SS1_delta'),'filepath',strcat(path,'/
Bands/new/delta'),'version','7.3'); 

    
pop_saveset(theta,'filename',strcat('S',num2str(i,'%02d'),'_SS1_theta'),'filepath',strcat(path,'/
Bands/new/theta'),'version','7.3'); 

    
pop_saveset(alpha,'filename',strcat('S',num2str(i,'%02d'),'_SS1_alpha'),'filepath',strcat(path,'/
Bands/new/alpha'),'version','7.3'); 

    
pop_saveset(beta,'filename',strcat('S',num2str(i,'%02d'),'_SS1_beta'),'filepath',strcat(path,'/Ba
nds/new/beta'),'version','7.3'); 

    
pop_saveset(gamma1,'filename',strcat('S',num2str(i,'%02d'),'_SS1_gamma_l'),'filepath',strcat(path
,'/Bands/new/Gamma1'),'version','7.3'); 

    
pop_saveset(gamma2,'filename',strcat('S',num2str(i,'%02d'),'_SS1_gamma_u'),'filepath',strcat(path
,'/Bands/new/Gamma2'),'version','7.3'); 

  
    %Save the Envelope 
    

save(strcat(path,'/Bands/new/delta/','S',num2str(i,'%02d'),'_SS1_delta_p.mat'),'delta_p','-
v7.3'); 

    
save(strcat(path,'/Bands/new/theta/','S',num2str(i,'%02d'),'_SS1_theta_p.mat'),'theta_p','-
v7.3'); 

    
save(strcat(path,'/Bands/new/alpha/','S',num2str(i,'%02d'),'_SS1_alpha_p.mat'),'alpha_p','-
v7.3'); 

    
save(strcat(path,'/Bands/new/beta/','S',num2str(i,'%02d'),'_SS1_beta_p.mat'),'beta_p','-v7.3'); 

    
save(strcat(path,'/Bands/new/Gamma1/','S',num2str(i,'%02d'),'_SS1_gamma_l_p.mat'),'gamma1_p','-
v7.3'); 

    
save(strcat(path,'/Bands/new/Gamma1/','S',num2str(i,'%02d'),'_SS1_gamma_u_p.mat'),'gamma2_p','-
v7.3'); 
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%Save the donw sampled Envelope 
    

save(strcat(path,'/Bands/new/delta/','S',num2str(i,'%02d'),'_SS1_delta_ds.mat'),'delta_ds','-
v7.3'); 

    
save(strcat(path,'/Bands/new/theta/','S',num2str(i,'%02d'),'_SS1_theta_ds.mat'),'theta_ds','-
v7.3'); 

    
save(strcat(path,'/Bands/new/alpha/','S',num2str(i,'%02d'),'_SS1_alpha_ds.mat'),'alpha_ds','-
v7.3'); 

    
save(strcat(path,'/Bands/new/beta/','S',num2str(i,'%02d'),'_SS1_beta_ds.mat'),'beta_ds','-v7.3'); 

    
save(strcat(path,'/Bands/new/Gamma1/','S',num2str(i,'%02d'),'_SS1_gamma_l_ds.mat'),'gamma1_ds','-
v7.3'); 

    
save(strcat(path,'/Bands/new/Gamma2/','S',num2str(i,'%02d'),'_SS1_gamma_u_ds.mat'),'gamma2_ds','-
v7.3'); 

    end 
end 
end 
  
function [EEG_d,EEG_th,EEG_a,EEG_b,EEG_g1,EEG_g2]=freq_band(EEG) 
%delta band 
[EEG_d, com, b] = pop_eegfiltnew(EEG, 1, 4); 
%theta band 
[EEG_th, com, b] = pop_eegfiltnew(EEG, 4, 8); 
%alpha band 
[EEG_a, com, b] = pop_eegfiltnew(EEG, 8, 12); 
%beta band 
[EEG_b, com, b] = pop_eegfiltnew(EEG, 12, 30); 
%gamma band 1 
[EEG_g1, com, b] = pop_eegfiltnew(EEG, 30, 80); 
%gamma band 2 
[EEG_g2, com, b] = pop_eegfiltnew(EEG, 80, 100); 
end 
  
function x_p=power_x(data) 
x_p=abs(hilbert(data')).^2; 
end 
  
function x_down_sampled=movav_down_sample(data,fs,fs_n) 
 x_down_sampled=movav(data,[],0.5*fs,(fs/fs_n),[],[],[],[]); 
end 
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Appendix II Power spectrum topographs of all subjects 
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Appendix III Wavelet coherence without separating the phase 

 

 

  

Supplementary Figure 1. Average NVC 

topoplots (n=15) in four vigilance states between all 

EEG bands and fNIRS endogenic (a), neurogenic (b), 

myogenic (c) band. 

 

 

Time-frequency maps as a result of WTC 

where further break down in time and relative 

fNIRS frequency bands. The area corresponding 

to each vigilance state and belonging to each 

fNIRS band is averaged over subjects and 

illustrated in topographs (Supplementary Figure 

(1)). Further the band-vigilance state values are 

averaged over the locations too (Supplementary 

Figure (2)). Endogenic NVC is the highest in a 

and b bands during eyes closed, and in g during 

eyes open (Supplementary Figure (1&2 A)). 

Alternatively, NVC in the neurogenic band is 

rather weak, having stronger NVC in g band 

during the eyes open state (Supplementary Figure 

(1&2 B)). Myogenic NVC, in comparison with 

endogenic and neurogenic NVC, is low in g band 

and eyes open state. In general, low NVC has 

been observed for this band, lower EEG 
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Supplementary Figure 2. Average NVC over locations are shown as mean ± sd (n=64) in four 

vigilance states between all EEG frequency bands and fNIRS endogenic (a), neurogenic (b) and myogenic 

(c) band. The single * shows the significance with every other bar in the group with p-value < 0.05. 

 

 

  



 79 

 

Appendix IV MATLAB code for dual mode PAC 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blocks color code: 

Blue: Tort et al original code.  

Orange: I did some modification on the original code. 

Green: My code. 
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%My contribution to the original code: 
% Filter fNIRS: 
n_f=1; 
PhaseFreqTransformed=zeros([length(PhaseFreqVector),length(eeg)]); 
%Down Sample to 0.81301Hz for filtering 
xpad=[repmat(fnirs(1,1),30,1);fnirs;repmat(fnirs(end,1),30,1)]; 
tpad=-30/fs:1/(fs*(fs_l/fs)):(length(fnirs)/fs+30/fs); 
ypad=resample(xpad,1,10,5,20); 
x_resample_clean=ypad(tpad>=0 & tpad<=length(fnirs)/fs,:); 
  
%Zero padding for the filter 
if length(x_resample_clean)<1362 
    n=(length(x_resample_clean)-1362)/2; 
    n=round(n)+2; 
    if n<60 
        n=60; 
    xpad1=[repmat(zeros(1,1),n,1);x_resample_clean;repmat(zeros(1,1),n,1)]; 
    end 
    if n>=60 
    xpad1=[repmat(zeros(1,1),n,1);x_resample_clean;repmat(zeros(1,1),n,1)]; 
    end 
end 

 

PAC function: Note that the code is based on Tort et al, 2010 original code.  
function 

[Comodulogram,M_amp,PhaseFreqVector,AmpFreqVector]=PAC_dual_II(eeg,fnirs,positio
n) 

 
srate=512; 
data_length = length(eeg); 
fs=8.1301; 
fs_l=0.81301; 

 
% Define the amplitude- and phase-frequencies 
PhaseFreqVector=0.01:0.005:0.2; 
AmpFreqVector=0.75:0.5:19.75; 
PhaseFreq_BandWidth=0.004; 
AmpFreq_BandWidth=0.5; 
  
Comodulogram=single(zeros(length(PhaseFreqVector),length(AmpFreqVector))); 

 

for i=1:length(PhaseFreqVector) 
    edge_l=0.9*PhaseFreqVector(i);%lower edge 
    edge_h=1.1*PhaseFreqVector(i);%stop ban lower 
    stop_l=0.5*PhaseFreqVector(i);%upper edge 
    stop_h=1.5*PhaseFreqVector(i);%stop band upper; 
    %PhaseFreqVector(i)-0.002; 
    fcuts=[stop_l edge_l edge_h stop_h]; 
  
    F=fnirs_filt2(xpad1,fs_l,fcuts); 
    F=F(n+1:end-n)'; 
    fff(i,:)=F; 
    %Up Sample the filtered signal to 512 Hz (EEG smapling frequency) 
    xpad=[repmat(F(1,:),30,1);F;repmat(F(end,:),30,1)]; 
    tpad=-

30/fs_l:1/(fs_l*(length(eeg)/length(F))):(length(F)/fs_l+30/fs_l); 
    ypad=resample(xpad,length(eeg),length(F),5,20); 
    F=ypad(tpad>=0 & tpad<=length(F)/fs_l,:); 
     
    %fNIRS Envelope 
    ff(i,:)=F; 
    PhaseFreqTransformed(i,:) =angle(hilbert(F'))'; 
End 

 
% from here on is the original code 
% EEG filter 
AmpFreqTransformed = zeros([length(AmpFreqVector), length(eeg)]); 
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for ii=1:length(AmpFreqVector) 
     
    Af1 = AmpFreqVector(ii); 
    Af2=Af1+AmpFreq_BandWidth; 
    AmpFreq=eegfilt(eeg,srate,Af1,Af2); % filtering 
    AmpFreqTransformed(ii, :) = abs(hilbert(AmpFreq)); % getting the 

amplitude envelope 
end  
  
  
% Compute MI and comodulogram 
% 'Comodulation loop' 
M_amp=[]; 
counter1=0; 
n=length(AmpFreqVector); 
for ii=1:length(PhaseFreqVector)   
    
        [MI,MeanAmp]=ModIndex_v3(PhaseFreqTransformed(ii, :), 

AmpFreqTransformed, position); 
        Comodulogram(ii,:)=MI; 
        M_amp(ii,:,:)=MeanAmp; 
     
  
end 
end 

 
fNIRS filter function: 
 
function x_filt=fnirs_filt(X,fsamp,fcuts) 
% Digital filter with Kaiser window 
%x: the signal to be filtered, filter will be applied on the columns 
%fsamp: sampling rate 
%fcuts: lower stop, lower edge, higher edge, higher stop 
 
if rem(length(X),2)==0 
    nn=length(X)/2; 
else 
     nn=(length(X)-1)/2+1; 
end 

 
%it's a band pass: 
 mags=[0 1 0]; 
 deversus = [0.01 0.05 0.01]; 
 
% Create window and filter coeff 
[n,Wn,beta,ftype] = kaiserord(fcuts,mags,deversus,fsamp); 
n = n + rem(n,2); 
hh = fir1(n,Wn,ftype,kaiser(n+1,beta),'scale'); 
[H,f] = freqz(hh,1,length(X),fsamp); 
x_fft=fft(X',[],2); 
hh_fft=fft(hh,length(X)); 

 
%zero shift transition: 
x_filt=ifft((x_fft'.*abs(hh_fft').^2)',[],2); 
end 

 



 82 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

  

PAC Computation function 
 
% [MI,MeanAmp]=ModIndex_v3(Phase, Amp, position) 
% 
% Phase-amplitude cross-frequency coupling measure: 
% 
% Inputs: 
% Phase = phase time series 
% Amp = amplitude time series 
% position = phase bins (left boundary) 
% 
% Outputs: 
% MI = modulation index (see Tort et al PNAS 2008, 2009 and J Neurophysiol 

2010) 
% MeanAmp = amplitude distribution over phase bins (non-normalized) 
  
%This is the original code from the developers of the method. Parisa made 

some changes in order to remove one for loop in the main program, so it is 
faster. 

  
function [MI,MeanAmp]=ModIndex_v3(Phase, Amp, position) 
%phase dim: 1x datapoints 
%Amp dim: N_Amp_Freqs x datapoints 
nbin=length(position);   
winsize = 2*pi/nbin; 
  
% now we compute the mean amplitude in each phase: 
MeanAmp=zeros(size(Amp,1),nbin);  
for j=1:nbin 
I = find(Phase <  position(j)+winsize & Phase >=  position(j)); 
MeanAmp(:,j)=mean(Amp(:,I),2,'omitnan'); %average each row (for each 

frequency) 
end 
  
% the center of each bin (for plotting purposes) is position+winsize/2 
  
% quantifying the amount of amp modulation by means of a 
% normalized entropy index (Tort et al PNAS 2008): 
  
% MI=(log(nbin)-(-

sum((MeanAmp/sum(MeanAmp,'omitnan')).*log((MeanAmp/sum(MeanAmp,'omitnan'))),'omitn
an')))/log(nbin); 

  
MI=(log(nbin)-(-

sum((MeanAmp./sum(MeanAmp,2,'omitnan')).*log((MeanAmp./sum(MeanAmp,2,'omitnan'))),
2,'omitnan')))/log(nbin); 
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