
 

 

 

 

 

OPTIMIZED REHABILITATION OF WATER PIPE NETWORKS SUBJECTED 

TO EARTHQUAKES 

by 

BINAYA PUDASAINI 

DISSERTATION 

Submitted in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy at 

The University of Texas at Arlington 

August 2019 

Arlington, Texas 

 

Supervising Committee: 

 Dr. Mohsen Shahandashti, Supervising Professor 

Dr. Shih-Ho Chao 

Dr. Jay Rosenberger 

Dr. Suyun Ham 



 

 

 

 

Disclaimer 

Any opinions, findings, and conclusions or recommendations expressed in this material are those 

of the author(s) and do not necessarily reflect the views of the National Science Foundation. 

  



 

 

 

 

Acknowledgments 

First and foremost, I would like to thank my PhD supervising professor Dr. Mohsen Shahandashti 

for his constant guidance, supervision, and support. Without his vision, his encouragement, and 

his faith in me, I would never have been able to complete my PhD. He has been an immensely 

good mentor to me, and I have been fortunate enough to learn so much from him in these past four 

years. I am also grateful to Dr. Chao, Dr. Rosenberger, and Dr. Ham for finding time out of their 

busy schedule to be in my PhD supervising committee and for guiding me in this research through 

their insightful and incisive comments. 

I would also like to convey my gratitude to my lab mates who have always been there to support 

me through thick and thin. I was really blessed with lab mates who were not only colleagues but 

true friends and who were a constant source of encouragement and inspiration.  

I also want to thank my family for their faith, belief, and unwavering support. Specifically, I want 

to thank my father for making me dream of having a PhD someday; I want to thank my mother for 

making me believe that no ambition was too big for me if I worked hard enough; and I want to 

thank my brother for his belief in me. I also want to thank my wife for her invaluable company, 

her relentless critique, and her unwavering love. For these last four years, she has been the first 

voice to rejoice besides me during the good times and the first hand to offer help during some hard 

times. Without her, this PhD journey would have been a lot harder and significantly less enjoyable. 

Lastly, I am grateful to the National Science Foundation. This material is based upon work partly 

supported by the National Science Foundation under Grant No. 1926792. 

 



 

 

 

 

Abstract 

OPTIMIZED REHABILITATION OF WATER PIPE NETWORKS SUBJECTED TO 

EARTHQUAKES 

Binaya Pudasaini, PhD 

The University of Texas at Arlington, 2019 

Supervising Professor: Dr. Mohsen Shahandashti 

Earthquakes in the past and in the recent times have demonstrated the extreme vulnerability of the 

water pipe networks. The impacts of such earthquakes on the water supply network can lead to 

significant direct and indirect losses. These losses highlight the critical need for seismic 

rehabilitation of water pipe network. Despite such criticality, water supply network managers are 

often constrained in what they can do with the limited rehabilitation budget that they have access 

to. Majority of current models dealing with seismic vulnerability assessment of water pipes do not 

provide actionable insights to the utility managers for the seismic rehabilitation of their networks. 

Furthermore, a few models that actually provide some rehabilitation decision-support are limited 

by their simplifications and the use of sub-optimal optimization techniques. In this regard, this 

research was conducted to integrate a genetic algorithm-based optimization with a component-

level seismic vulnerability assessment model and hydraulic modeling of the pipe network to 

identify critical pipes for proactive seismic rehabilitation of water pipe networks when utilities can 

only rehabilitate a finite length of pipes, to integrate a simulated annealing-based optimization with 

a component-level seismic vulnerability assessment model and hydraulic modeling of the pipe 

network to identify critical pipes for proactive seismic rehabilitation of water pipe networks when 



 

 

 

 

utilities have a limited budget for rehabilitation, and to evaluate the performance of a wide range 

of resilience metrics for optimization of seismic rehabilitation of water pipe networks. 

The results of this research show that the metaheuristic-based optimization methods such as 

genetic algorithm and simulated annealing demonstrate a really good performance when used to 

formulate an optimized policy for the seismic optimization of the water pipe network when the 

rehabilitation is subject to rehabilitation constraints. The results also shown that the metaheuristic-

based optimization demonstrate superior performance when compared to the results of the latest 

methodology in literature. The results also show that the use of some graph theory based objective 

functions to maximize the post-earthquake serviceability of water pipe network can help reduce 

significant runtime of the optimization and can be used as surrogates for the computationally 

intensive hydraulics-based objectives. 

The outcomes of this research offer novel contributions to field of decision science regarding the 

optimized seismic rehabilitation of water pipe network. Similarly, the outcomes are also valuable 

additions to the state practice since the resulting models can be highly useful to the utility managers 

for maximizing the post-earthquake serviceability of water pipe networks when the managers 

invest in the seismic rehabilitation of the water pipe networks. 
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CHAPTER 1  

INTRODUCTION 

Past earthquakes, such as the 1906 San Francisco earthquake, the 1994 Northridge, the 1995 

Hyogoken-Nanbu (Kobe) earthquakes, and more recent earthquakes, such as the 2007 Niigata 

Chuetsu-Oki earthquake, the 2011 Christchurch earthquake, the 2011 East Japan earthquake, 2015 

Gorkha earthquake, and Central Mexico earthquake (2017) have demonstrated that water pipe 

networks are extremely vulnerable to earthquakes (Cubrinovski et al. 2011; Hwang et al. 1998; 

Knight 2017; Maruyama et al. 2011; Thapa et al. 2016; Yasuda et al. 2012). Earthquake impacts 

on water supply networks can result in enormous direct losses (e.g., cost of repair) and indirect 

losses (e.g., disruption in water distribution) (Yerri et al. 2017) and severely limit capacity to 

control conflagrations following earthquakes (Selina et al. 2008). These facts highlight the 

significance of seismic vulnerability assessment of water pipe networks and mitigation of such 

vulnerabilities. A seismic vulnerability assessment of water supply networks estimates the 

likelihood of damage to pipelines and degradation of service after seismic events. The probabilistic 

nature of losses following earthquakes, complex network topology, a wide range of pipe materials, 

and different pipe and soil characteristics make seismic vulnerability assessment challenging. 

Several seismic vulnerability assessment models have been proposed to address these challenges. 

Despite all these models and technological advancements, water utility managers are often limited 

in what they can do, even when their budget allows additional maintenance. For example, if their 

budget will only cover the cost of inspecting or rehabilitating 1000 feet of large-diameter pipes, 

the water utility management must decide which pipe sections should be selected for rehabilitation. 

To address this, a methodology is required which can identify the critical pipes in water pipe 



 

 

1-2 

 

networks by considering criticality of the pipes along with limited rehabilitation resources of the 

utilities. 

Hence, this research was conducted to integrate a genetic algorithm-based optimization with a 

component-level seismic vulnerability assessment model and hydraulic modeling of the pipe 

network to identify critical pipes for proactive seismic rehabilitation of water pipe networks when 

utilities can only rehabilitate a finite length of pipes, to integrate a simulated annealing-based 

optimization with a component-level seismic vulnerability assessment model and hydraulic 

modeling of the pipe network to identify critical pipes for proactive seismic rehabilitation of water 

pipe networks when utilities have a limited budget for rehabilitation, and to evaluate the 

performance of wide range of resilience metrics and their suitability as objective function for 

optimization of seismic rehabilitation of water pipe networks. 

Chapter 2 provides a comprehensive literature review. This chapter first reviews current state of 

knowledge and practice regarding seismic vulnerability analysis of networked infrastructure and 

then focusses on the seismic vulnerability of analysis of water pipe networks. Finally, it discusses 

the optimized seismic rehabilitation of water pipe networks. Chapter 3 explains the methodology 

used to create a genetic algorithm-based optimization for proactive seismic rehabilitation of water 

pipe networks when utilities can only rehabilitate a finite length of pipes. Chapter 4 explains 

methodology used to create a simulated annealing-based for proactive seismic rehabilitation of 

water pipe networks when utilities have a limited budget for rehabilitation. Chapter 5 presents the 

methodologies that will be used to evaluate the performance of a wide range of resilience metrics 

and their suitability as objective function for optimization of seismic rehabilitation of water pipe 

networks. Chapter 6 presents that will be used to evaluate the performance of different approaches 

in decreasing optimization runtime. Finally, conclusions are presented in Chapter 7.  
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CHAPTER 2  

BACKGROUND 

In this section, we initially discuss the current literature dealing with vulnerability assessment of 

networked infrastructure systems and methodologies with synergistic applications. Then, we 

discuss the literature dealing with vulnerability assessment of water pipe networks considering 

non-seismic/generic hazards. Lastly, we focus on the works dealing particularly with the seismic 

vulnerability of buried pipe networks. 

Pipe network is one of the “lifeline” networks which perform the critical function of providing 

access to the drinking water, transportation, electric power, and transportation services (Reed et 

al. 2009). Despite their critical function, such networks are vulnerable to an array of natural and 

man-made threats such as earthquakes, flooding, hurricanes, accidents, and human threats 

(Bonneau and O’Rourke 2009). Extensive research has been done to quantify the vulnerabilities 

of infrastructure systems to these threats and to mitigate them. Due to the complexity and the 

interdependency of these infrastructure systems, synergistic application of multi-disciplinary ideas 

is usually needed to model these systems. Infrastructure systems are typically modeled as networks 

comprised of nodes and links (Eusgeld et al. 2009; Ouyang 2014) and analyzed primarily using 

topological analysis and flow-based analysis. Topological analysis use graph theory and 

topological measures to study the vulnerability of wide variety of infrastructure systems such as 

electrical power systems (Crucitti et al. 2005; Rokneddin et al. 2009), and transportation systems 

(Angeloudis and Fisk 2006; Berche et al. 2009; Chen et al. 2007). In contrast, flow-based analyses 

utilize physics-based equations to quantify the vulnerabilities of transportation networks (Pandey 

et al. 2019; Sapkota et al. 2019b; a; Sullivan et al. 2010), natural gas distribution system (Han and 

Weng 2010), and wireless networks (Huang et al. 2007). 
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Topological and flow-based approaches are used to assess the vulnerability of water pipe networks 

as well. Grigg (2003) and Haimes et al. (1998) reviewed various threats, natural and man-made 

and identified various vulnerabilities of water pipe networks. Apostolakis and Lemon (2005) used 

graph theory and value tree to yield a prioritized list of scenarios induced due to the terrorist attack 

on water supply system. Yazdani and Jeffrey (2011) used several topological metrics to formulate 

resilience-enhancing expansion strategies for water pipe network. Gutiérrez-Pérez et al. (2013) 

used “Page Rank” and “HITS” algorithm combined with graph theory to identify critical zones in 

a water supply network. These topology-based methods are economical in terms of computational 

resources when solving a relatively large network. However, these models are inferior to flow-

based models when predicting the system level serviceability of the network (Cavalieri et al. 2014). 

Hence, many other researchers used flow-based network models to assess the vulnerability of 

water network system. Murray et al. (2004) discussed the development of a probabilistic flow-

based model by the United States Environmental Protection Agency (US EPA) to assess the 

vulnerability of water distribution system to broad range of contamination attacks. Shuang et al. 

(2014) used hydraulic simulation to study the nodal vulnerability of water pipe networks subjected 

cascading failure due to intentional attacks. 

Significant literature exists in the field of seismic vulnerability of buried water pipe networks and 

can be broadly classified into two categories: component-level seismic vulnerability assessment 

models and system-level seismic vulnerability assessment models. Component-level seismic 

vulnerability assessment models evaluate the seismic performance of individual components of 

water pipe networks such as a single pipe or a single joint. System-level seismic vulnerability 

assessment models evaluate the seismic performance of the entire water pipe network and 

performance metrics of the entire network is monitored in such assessment. Early seismic 
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vulnerability assessment methods were mostly component-level vulnerability assessment methods 

that focused on the seismic performance individual water pipes. Many analytical component-level 

seismic vulnerability assessment models of buried pipes were developed. These models are 

summarized in Datta (1999). Despite the accuracy of such analytical models in estimating the 

actual stresses and strains induced in pipes due to earthquakes, these models require very accurate 

and wide-ranging data which is usually unavailable to the utilities. Few data that is available is 

prone to uncertainties and yield inaccurate results if the data is used without some data-fusion-

based processing (Shahandashti et al. 2010). However, empirically derived seismic vulnerability 

relations for buried pipes (American Lifelines Alliance (ALA) 2001; Honegger and Eguchi 1992; 

Jeon and O’Rourke 2005; O’Rourke and Ayala 1993)  are  typically used in system-level 

vulnerability assessment. 

During the past two decades, advances in computational engineering, probabilistic modeling, and 

network simulation have motivated researchers to go beyond component-level assessments and 

create seismic vulnerability assessments of water pipe networks, i.e. system-level seismic 

vulnerability assessment models. These existing component-level and system-level seismic 

vulnerability assessment methods for water pipe networks are reviewed here. Markov et al. (1994) 

developed Graphical Interactive Serviceability Analysis of Lifelines subjected to Earthquake 

(GISALLE) to evaluate the seismic performance of Auxiliary Water Supply System of San 

Francisco. Markov et al. (1994) only considered pipe breaks in their model and ignored pipe leaks. 

However, this is not realistic as most of the damages (80%) due to seismic ground shaking is 

realized as leaks (Ballantyne and Taylor 1990). Hwang et al. (1998) proposed a GIS-based method 

to study post-earthquake serviceability of water supply system considering probabilistic leaks and 

breaks. Shi (2006) built on the work of Markov et al. (1994)  and created a computer code called 
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Graphical Iterative Response Analysis for Flow Following Earthquakes (GIRAFFE). GIRAFFE 

uses empirical seismic vulnerability functions proposed by  Jeon and O’Rourke (2005) and Monte 

Carlo simulation to simulate random, earthquake-induced, pipe damages in the network. Monte 

Carlo simulation is often used in probabilistic simulation-based studies to account for the 

uncertainty in the underlying processes (Abediniangerabi et al. 2018; Shahandashti et al. 2017). 

Shi (2006) also refined hydraulic models of leaks and breaks previously used (Ballantyne and 

Taylor 1990; Hwang et al. 2004; Markov et al. 1994) and incorporated it in GIRAFFE to perform 

accurate hydraulic analysis of water pipe network damaged by an earthquake. GIRAFFE was then 

used to study the seismic response of Los Angeles Department of Water and Power (LADWP) 

during Northridge earthquake of 1994.  However, Shi (2006) did not propose any method of 

identifying proper rehabilitation measures to reduce the seismic vulnerability of the system and 

was focused solely on the seismic vulnerability assessment of water supply systems. Takao Adachi 

(2007) and Adachi and Ellingwood (2008) proposed a method to analyze the post-earthquake 

serviceability of water supply system considering its interdependency with the electrical power 

distribution system using fault tree analysis and shortest path algorithm. Their work also 

highlighted the need to consider spatial correlation and scenario earthquake when analyzing the 

seismic vulnerability of spatially distributed systems. However, their work ignored the hydraulics 

(i.e., flows and pressures) of the water pipe systems and considered only the post-earthquake 

connectivity of the system to evaluate seismic vulnerability of water pipe network. Wang et al. 

(2010) introduced the System Serviceability Index (SSI) for a water pipe network subjected to 

earthquakes. Theses indices combined with the efficient frontier approach were used to identify 

and rank the network’s critical pipes. The System Serviceability Index (SSI), as per Wang et al. 

(2010),  is defined as the ratio of water demand fulfilled after an earthquake to the inherent 
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(original) demand of the water pipe network. Zohra et al. (2012) proposed an index for prioritizing 

pipes in a water supply network. The index is based on the pipe diameter, seismic intensity, and 

soil conditions. However, hydraulics and network topology are not considered in this index. 

From the above discussion, it can be concluded that most of the literature dealing with the seismic 

vulnerability of water pipe networks are focused on the estimating the response of the water pipe 

networks to earthquakes; very few of them go beyond that and provide some actionable insights 

to the utility managers to perform some seismic rehabilitation of their water pipe networks. Despite 

existence of several literature dealing with investment evaluations under uncertainty for other 

infrastructure systems (Kashani et al. 2012; Zahed et al. 2017), similar do not exist for the water 

supply systems. 

2.1 Problem Statement 

Water utilities cannot perform seismic rehabilitation of an entire network due to budget limitations. 

They must identify a few critical pipes and invest in their seismic rehabilitation to enhance the 

network’s post-earthquake serviceability (Klise et al. 2015). Currently, utility managers are 

struggling to find a comprehensive model that can identify critical pipes for seismic rehabilitation. 

However, most of the models (Adachi 2007; Hwang et al. 1998; Shi 2006; Zolfaghari and Niari 

2009) only propose approaches for seismic vulnerability assessment of water pipe networks but 

do not recommend any methods to mitigate these vulnerabilities. A few simple prioritization 

models (Fragiadakis and Christodoulou 2014; Wang et al. 2010; Zohra et al. 2012), based on 

seismic vulnerability, are proposed in the literature to identify critical pipes for seismic 

rehabilitation despite existence of other powerful and more appropriate meta-heuristic based 

optimization solvers (Chen and Shahandashti 2007, 2009, 2008; Juan et al. 2015). Fragiadakis and 

Christodoulou (2014) and Zohra et al. (2012) ignored hydraulics of the problem when 
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recommending critical pipes. Wang et al. (2010) oversimplified the seismic vulnerability 

assessment by using a uniform peak ground velocity for the entire network when identifying 

critical links. This leads to underestimation of seismic hazard, especially for spatially distributed 

systems such as water pipe networks (Adachi 2007; Weatherill et al. 2013; Zanini et al. 2016). 

Furthermore, none of the discussed models, consider the limited rehabilitation resource constraint 

and system level distribution of this limited resources and therefore, cannot find an economical 

solution. Hence, as such, following gaps in literature can be identified in the current literature: 

▪ Current methods in literature do not integrate a metaheuristic-based optimization algorithm 

with a component-level seismic vulnerability assessment model and hydraulic modeling of the 

pipe network. 

▪ Current literature does not have a comprehensive study that evaluates performance of 

resilience metrics and their suitability as objective function for optimization of seismic 

rehabilitation of water pipe networks. 

2.2 Objectives 

The broad objective of the current research is to develop an approach for identifying pipes that are 

most critical to the proactive seismic rehabilitation of water pipe networks for enhancing post-

earthquake serviceability. The broad objectives can be broken down into the following specific 

objectives: 

▪ To integrate a genetic algorithm-based optimization with a component-level seismic 

vulnerability assessment model and hydraulic modeling of the pipe network to identify critical 

pipes for proactive seismic rehabilitation of water pipe networks when utilities can only 

rehabilitate a finite length of pipes, 
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▪ To integrate a simulated annealing-based optimization with a component-level seismic 

vulnerability assessment model and hydraulic modeling of the pipe network to identify critical 

pipes for proactive seismic rehabilitation of water pipe networks when utilities have a limited 

budget for rehabilitation, and 

▪ To evaluate the performance of wide range of resilience metrics and their suitability as 

objective function for optimization of seismic rehabilitation of water pipe networks. 

2.3 Research Plan 

To achieve the set-out objectives, the research plan is divided into following tasks: 

Task 1: Create a genetic algorithm-based optimization for proactive seismic rehabilitation of water 

pipe networks when utilities can only rehabilitate a finite length of pipes 

Task 2: Create a simulated annealing-based for proactive seismic rehabilitation of water pipe 

networks when utilities have a limited budget for rehabilitation 

Task 3: Evaluate the performance of a wide range of resilience metrics and their suitability as 

objective function for optimization of seismic rehabilitation of water pipe networks. 

The methodology and results associated with each of these tasks are presented in chapter 3, chapter 

4, and chapter 5 of this dissertation. 
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CHAPTER 3  

OPTIMIZED PROACTIVE SEISMIC REHABILITATION OF WATER PIPE 

NETWORKS SUBJECT TO LENGTH CONSTRAINT 

This chapter explains the methodology adopted to create a genetic algorithm-based optimization 

for proactive seismic rehabilitation of water pipe networks when utilities can only rehabilitate a 

finite length of pipes. The methodology can be divided into following two sub-tasks: 

1) Formulation of stochastic combinatorial optimization to maximize post-earthquake 

serviceability of water pipe networks where rehabilitation is constrained by the ability 

of the utilities to rehabilitate only a limited length of pipes. 

2) Solving the stochastic combinatorial optimization by integrating a genetic algorithm 

with the network-level seismic vulnerability assessment to identify critical pipes for 

proactive seismic rehabilitation.  

3.1 Formulation of Stochastic Combinatorial Optimization 

The problem was defined as the maximization of the expected value of the System Serviceability 

Index (SSI) of a water pipe network if water agencies can only rehabilitate a limited length of pipes 

(𝒍𝒓𝒆𝒉𝒂𝒃) due to budget limitations. Equation 3-1 presents the objective function. 

𝐦𝐚𝐱𝐱∈𝐗 𝑬[𝑺𝑺𝑰(𝒙)]     (3-1) 

where X represents the set of all the rehabilitation policies (x). Here, a rehabilitation policy (x) is 

created by choosing two outcomes: “rehabilitation” or “no rehabilitation”, for each pipe in the 

network. Let us consider a network with two pipes. A rehabilitation policy for this network can be 

represented by a set {𝑥1, 𝑥2} where 𝑥𝑖 = 1 represents 𝑖𝑡ℎ pipe is rehabilitated and 𝑥𝑖 =  0  means 

𝑖𝑡ℎ pipe is not rehabilitated. Based on this, the set of all rehabilitation policy for this network would 
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be X = {{0,0}, {0,1}, {1,0}, {1,1}}. As such, without any feasibility constraints, X 𝜖 𝐁𝟐𝑵𝒑  𝐱 𝑵𝒑   

which is a combinatorial decision space where 𝑵𝒑 is the total number of pipes in the network. 

However, the size of X is reduced by the feasibility constraint imposed by the condition that any 

rehabilitation policy (𝐱 ∈ 𝐗) cannot suggest rehabilitating pipes longer than 𝑙𝑟𝑒ℎ𝑎𝑏. As a proof of 

concept, we have used the rehabilitation length constraint as the only constraint in this study. 

However, the proposed model is flexible enough to accommodate any other constraints, such as 

always rehabilitating a set of pipes or not rehabilitating a set of pipes. 

The calculation of the SSI involves solving many nonlinear hydraulic equations that require 

knowledge of the location and magnitude of earthquake-induced damage (pipe leaks and pipe 

breaks). The properties of earthquake-induced damage are probabilistic, due to aleatory 

uncertainties, making the SSI a probabilistic quantity. Thus, the probabilistic nature of the SSI, 

along with the combinatorial nature of the selection of pipes for seismic rehabilitation, makes the 

problem a stochastic combinatorial optimization. Hence, a solution of the formulated problem will 

entail solution of stochastic combinatorial optimization.  

3.2 Solution Methodology  

Solving the stochastic combinatorial optimization problem is extremely challenging due to non-

convex and non-continuous objective function and the lack of closed-form representation for the 

objective function. Since the objective function does not necessarily have a closed-form 

representation, conventional algorithms for solving combinatorial stochastic optimization 

problems, such as deterministic reformulation, are not applicable. Therefore, a genetic algorithm 

(Holland 1975) was devised and integrated with the seismic vulnerability assessment of water pipe 

networks. The integrated genetic algorithm identifies which pipes in a water pipe network are 

critical for proactive seismic rehabilitation to maximize the post-earthquake serviceability of water 
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pipe networks. The maximization is constrained by the water agencies’ inability to rehabilitate all 

the pipes due to infrastructure funding gaps (US EPA 2002). Figure 3-1 shows how the genetic 

algorithm is integrated with the seismic vulnerability assessment of water pipe networks. 

 

 

Figure 3-1 Genetic algorithm integrated with seismic vulnerability assessment of water pipe 

networks 
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Binary encoding was adopted to represent rehabilitation policies, i.e., chromosomes of the genetic 

algorithm. Each rehabilitation policy (𝑥) was represented by a binary vector, so that each element 

of the binary vector represented a rehabilitation decision for a specific pipe. (0 and 1 indicate no 

rehabilitation, and rehabilitation for a pipe, respectively.) For example, assume a water pipe 

network with five pipes. A rehabilitation policy of rehabilitating the first and last pipe for this 

network would be represented by the binary vector [10001]. These vectors are referred to as 

solution vectors in this study.  

While generating solution vectors, the following constraint was used to discard solutions: 

                        ∑ 𝒂𝒌𝒍𝒌 ≤ 𝒍𝒓𝒆𝒉𝒂𝒃
𝑵𝒑

𝒌=𝟏
        (3-2) 

where 𝑎𝑘 is 1 if pipe k is rehabilitated, 𝑎𝑘 is 0 if pipe k is not rehabilitated, 𝑁𝑝 is number of pipes 

in the network, and 𝑙𝑘 is the length of pipe 𝑘.  

The algorithm begins with an initial population generation, which involves the creation of five 

random solution vectors that represent five random rehabilitation policies. This initial population 

acts as the current generation at the start of the genetic algorithm. The mutation rate of the genetic 

algorithm is initialized at 0.9 at the start of the algorithm. 

Following the initialization of parameters of the genetic algorithm, seismic pipe repair rates were 

calculated. ALA defines seismic pipe repair rate as the expected pipe repairs per 304.8 m. (1000 

ft.) of pipe following an earthquake. Thus, the seismic pipe repair rate indicates the number of 

expected leaks and breaks in a pipe following an earthquake and is determined based on the peak 

ground velocity at the location of the pipe, the structural properties of the pipes, and the corrosivity 

of soil. The method of calculating the seismic pipe repair rate is illustrated in Figure 3-2 



 

3-5 

 

 

Figure 3-2. Seismic pipe repair rate calculation 

The calculation of the seismic pipe repair rate starts with the selection of a scenario earthquake 

subjected to which the expected SSI of a water pipe network should be maximized. Scenario 

earthquakes are typically used for seismic analysis of utilities because modeling earthquakes as 

scenarios allows consideration of spatial correlation between seismic intensities which cannot be 

ignored for spatially distributed infrastructure like water pipe networks, transportation networks, 

and spatially distributed portfolio of structures (Adachi 2007; Weatherill et al. 2013; Zanini et al. 

2016, 2017). Moreover, results from scenario earthquakes are easier to communicate with non-

specialist decision makers (Adachi 2007).  Hence, for this study, we use a scenario earthquake 

selected based on deaggregation analysis proposed by Adachi (2007). Based on this method, a 

return period is selected based on utility’s resources and utility’s risk tolerance. The selected return 

period is then used to generate deaggregation maps for 1.0s spectral acceleration maps using 
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deaggregation tool developed by USGS (2018). Then, an earthquake with highest contribution 

ratio is selected as the scenario earthquake, for the analysis, from the list of characteristic 

earthquakes obtained from deaggregation analysis.  

Next, the peak ground velocity and permanent ground deformation should be calculated for the 

selected earthquake. Peak ground velocity quantifies the maximum level of transient seismic 

ground shaking experienced at a given location during an earthquake. We select peak ground 

velocity as the seismic intensity parameter because peak ground velocity is directly related to the 

transient strains induced in the soil during an earthquake, which are the primary causes of failures 

of buried pipes, due to seismic ground shaking (Pineda-Porras and Najafi 2010). 

Permanent ground deformation quantifies the expected level of earthquake-induced geotechnical 

instability, such as liquefaction, landslide, and lateral spreading at a given location following an 

earthquake. For this study, to focus on the effects of seismic ground shaking alone, it was assumed 

that the site was not susceptible to earthquake-induced geotechnical instability; hence peak ground 

displacement was assumed to be zero. 

Following the selection of earthquake scenario, we choose Ground Motion Prediction Equation 

(GMPE) proposed by Abrahamson and Silva (2007) along with Zanini et al. (2016, 2017)’s 

approach to generate spatially correlated peak ground velocity field. The general expression for 

calculating peak ground velocity is given by  

𝒍𝒐𝒈𝟏𝟎(𝑷𝑮𝑽𝒊𝒋) = 𝒇(𝑴𝒊, 𝑹𝒊𝒋, 𝜽𝒊) + 𝝈𝑩𝝂𝒊 + 𝝈𝑾𝜺𝒊𝒋             (3-3) 

where 𝑃𝐺𝑉𝑖𝑗 is the peak ground velocity for a site j, at a distance of 𝑅𝑖𝑗 from the source 𝑖 during 

an earthquake event of magnitude 𝑀𝑖, 𝜃𝑖 is the geological parameters defining the fault at source 
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𝑖 , 𝜎𝐵𝜈𝑖  represents the residual inter-event variability whereas 𝜎𝑊𝜀𝑖𝑗  represents intra-event 

residual. Peak ground velocity map for the selected earthquake, without inter-event and intra-event 

variability i.e., 𝑓(𝑀𝑖 , 𝑅𝑖𝑗 , 𝜃𝑖) , was generated based on Abrahamson and Silva (2007). To 

incorporate the inter-event and intra-event variabilities in this map, 𝜈𝑖  and  𝜀𝑖𝑗  were generated 

where 𝜈𝑖  and  𝜀𝑖𝑗  are normally distributed random variables with mean (𝜇 = 0) and standard 

deviations 𝜎𝐵 and 𝜎𝑊. However, 𝜀𝑖𝑗 is spatially correlated as well. To consider this, we used the 

following equation based on Weatherill et al. (2013) and Zanini et al. (2016) to generate 𝜀𝑖𝑗 such 

that 

𝜺𝒊𝒋 = 𝝁 + 𝑳𝒁        (3-4) 

where 𝜇 is taken as 0, Z is the vector of random variable with standard normal distribution, and L 

is the lower triangular matrix, obtained using Cholesky decomposition method, such that 𝑳𝑳𝑻 =

𝑪, where C is positive-definite covariance matrix calculated as 

𝑪 = [

𝟏 𝝈(𝒉𝟏,𝟐) … 𝝈(𝒉𝟏,𝑵)

 𝟏 … 𝝈(𝒉𝟐,𝑵)

  ⋱ ⋮
𝒔𝒚𝒎   𝟏

]    (3-5) 

where 𝜎(ℎ𝑗,𝑘) is correlation coefficient between intra-event residuals calculated for sites 𝑗, 𝑘  , 

among total N sites, where 𝜎(ℎ𝑗,𝑘) is calculated, based on Zanini et al. (2016) as: 

𝝈(𝒉𝒋,𝒌) = 𝒆
(

−𝟑𝒉𝒋,𝒌

𝒃
)
      (3-6) 

where ℎ𝑗,𝑘  is the inter-site distance between sites j and k, b is the inter-site distance between which 

spatial correlation is negligible. Wang and Takada (2005) recommends the value of b within a 
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range of 20 km to 40 km, when the spatial correlation is calculated for peak ground velocity. 

Hence, for this study, b=30 km is used. m random peak ground velocity fields were generated by 

repeating this process m times Zanini et al. (2017). For each of these m fields, average peak ground 

velocity was calculated for each pipe. The average peak ground velocity was used because Adachi 

(2007) concluded that, using average peak ground velocity for each water pipe leads to a lower 

bound estimate of network serviceability, which is conservative from disaster planning 

perspective. 

After the average peak ground velocity is calculated for each pipe, seismic repair rate is calculated 

by using the empirical seismic vulnerability relationship proposed by ALA (2001). The 

relationship is stated as: 

𝑹𝑹𝒌,𝒎 = 𝑲𝟏 ∗ 𝟎. 𝟎𝟎𝟏𝟖𝟕 ∗ 𝑷𝑮𝑽𝒎   (For seismic ground shaking)   (3-7) 

where 𝑅𝑅𝑘,𝑚 is seismic repair rate per 304.8 m. (1000 ft.) of pipe k for 𝑚𝑡ℎ peak ground velocity 

field; 𝑃𝐺𝑉𝑚 (measured in inches/second) is the average peak ground velocity for the pipe based on 

𝑚𝑡ℎ peak ground velocity field; and 𝐾1 is the modification factor which adjusts the repair rate 

based on pipe material, diameter, pipe joint characteristics, and soil corrosivity. The values of 𝐾1 

are tabulated in ALA (2001). 

Seismic pipe repair rates thus calculated are referred as unmodified repair rates. Modified seismic 

pipe repair rates are calculated using Eq. (3-8) for each rehabilitation policy in the current 

generation of the genetic algorithm. 

𝑹𝑹𝒌
𝒙,𝒋

= 𝑹𝑹𝒌,𝒋 ∗ (𝟏 − 𝒂𝒌
𝒙)                                           (3-8) 
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where 𝑅𝑅𝑘
𝑥,𝑗

 is the modified seismic pipe repair rate for pipe k based on rehabilitation policy x and 

𝑗𝑡ℎ peak ground velocity field, 𝑅𝑅𝑘,𝑗 is the seismic pipe repair rate for pipe 𝑘 and 𝑗𝑡ℎ peak ground 

velocity field  , 𝑎𝑘
𝑥 is 0 if the pipe is unrehabilitated based on policy x, and 𝑎𝑘

𝑥 is 1 if the pipe is 

rehabilitated based on policy x.  

After the modified seismic pipe repair rate is calculated for each pipe in the network, expected 

SSI is calculated for the rehabilitation policy x. Calculation of expected SSI is required for the 

fitness evaluation of each rehabilitation policy in the current generation of the genetic algorithm. 

To accomplish this, a Monte Carlo simulation is devised to calculate the expected SSI (Figure 3-3).  
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Figure 3-3. Expected system serviceability index calculation for a rehabilitation policy 

The expected System Serviceability Index for a rehabilitation policy T is calculated as: 

𝑬[𝑺𝑺𝑰(𝒙 = 𝑻)] =
∑ ∑ ∑ 𝒙𝒓𝒊

𝑻,𝒋
𝑫𝒊

𝑵
𝒊=𝟏

𝑵𝑴𝑪𝑺
𝒓=𝟏

𝒎
𝒋=𝟏

𝒎∗𝑵𝑴𝑪𝑺∗∑ 𝑫𝒊
𝑵
𝒊=𝟏

                                                                (3-9) 

Subject to 
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 𝒙𝒓𝒊
𝑻,𝒋

= 𝟏 𝒊𝒇 𝑷𝒓𝒊
𝑻,𝒋

≥ 𝑷𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 

       𝒙𝒓𝒊
𝑻,𝒋

= 𝟎 𝒊𝒇 𝑷𝒓𝒊
𝑻,𝒋

≤ 𝑷𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 

where 𝑁 is the number of nodes in the network, 𝑁𝑀𝐶𝑆 is the number of Monte Carlo simulation 

runs adopted for evaluating each rehabilitation policy, 𝐷𝑖 is the water demand at node 𝑖, 𝑃𝑟𝑖
𝑇,𝑗

 is the 

hydraulic pressure at node 𝑖 during the 𝑟𝑡ℎ run of Monte Carlo simulation for rehabilitation policy 

T  for 𝑗𝑡ℎ peak ground velocity field, and 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is the minimum hydraulic pressure required at 

the node, imposed by the firefighting demand. In this study, a hydraulic pressure of  0.14 MPa (20 

psi) was used as the 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, as suggested by Trautman et al. (2013). 

For a rehabilitation policy T, each run of the Monte Carlo simulation begins by determining the 

location of earthquake-induced leaks and breaks in the water pipe network. This is accomplished 

by modeling the earthquake-induced leaks and breaks as the Poisson process, where the location 

of the ith leak or break in a pipe P is determined by: 

𝒍𝑷,𝒊 = 𝒍𝑷,𝒊−𝟏 −
𝟏

𝑹𝑹𝑷
𝑻,𝒋 ∗ 𝐥𝐧(𝟏 − 𝑼)    𝒘𝒉𝒆𝒓𝒆   𝒍𝑷,𝟎 = 𝟎                                                       (3-10) 

where lP,i is the distance of ith discontinuity (leak or break) in pipe P from its start node, 𝑅𝑅𝑃
𝑇,𝑗

 is 

the seismic pipe repair rate calculated for the pipe P based on policy T for the jth peak ground 

velocity field, and U is the uniformly distributed random number between 0 and 1. If the location 

of the first leak or break lies within the length of the pipe, i.e., 𝑙𝑃,1  is less than the length of pipe 

P, then a second random number is generated to classify it as either a leak or a break.  If the second 

random number generated is less than or equal to 0.8, the discontinuity at the location 𝑙𝑝,1 is 

classified as a leak; otherwise, it is classified as a break (FEMA - Federal Emergency Management 

Agency 2013; Shi 2006). Leaks are further classified, and the diameters of the leaks are calculated 
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based on Shi (2006). This process is repeated for higher values of 𝑖 until the value of 𝑙𝑝,𝑖 exceeds 

the length of the pipe. The same process is repeated for other pipes in the network. 

After all of the leaks and breaks have been located and the diameters of all of the leaks have been 

determined for the current Monte Carlo run, they are integrated into the network hydraulic model 

of the undamaged water pipe network. The hydraulic modeling of leaks and breaks proposed by 

Shi (2006) is used for this integration. The resulting hydraulic model is then analyzed, using a 

quasi-pressure-driven hydraulic analysis, to determine the hydraulic pressures at each node (𝑃𝑟𝑖
𝑇 ). 

This analysis is required because conventional demand-driven hydraulic analysis assumes that the 

hydraulic demand at each node is always fulfilled, and that may not be a valid assumption for 

water pipe networks damaged by an earthquake (Cheung et al. 2005; Ozger and Mays 1994, Shi 

2006 ). Hydraulic analysis, with the assumption that nodal water demand is not always fulfilled, 

and that the system can have no negative pressure in the nodes, is more realistic. Therefore, for 

this study, the quasi-pressure-driven analysis approach was adopted, and the following operations 

were performed for each run of the Monte Carlo simulation: 

1) Hydraulic model with integrated leaks and breaks was analyzed. 

2) Nodes with negative pressure were identified and removed from the network. 

3) Step 1 and step 2 were repeated until there were no nodes with negative pressure.  

Using this approach, the hydraulic pressure at each node (𝑃𝑟𝑖
𝑇 )  was calculated and recorded 

for a predefined maximum number of Monte Carlo runs (NMCS) for the rehabilitation policy 

(x=T). The expected serviceability index of the water pipe network for a rehabilitation policy(x=T) 

in the current generation of genetic algorithm was calculated, using Eq. (3-9). The entire process 

was repeated for other rehabilitation policies until the expected serviceability index of every 

rehabilitation policy in the current generation of genetic algorithm was determined. 
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Next, to advance to the next generation of the genetic algorithm, genetic operations as proposed 

by Chen and Shahandashti (2009) were used for this research. All the policies in the current 

generation were ranked, based on their expected SSIs, and the two policies with the highest 

expected SSIs were selected to produce an offspring policy. A two-point crossover followed by 

random mutation of 20% of the offspring was performed on the offspring policy. The crossover 

and mutation operation were repeated until the cumulative rehabilitation length represented by the 

mutated offspring was less than or equal 𝑙𝑟𝑒ℎ𝑎𝑏 . 

Subsequently, the current generation’s rehabilitation policy with the least expected SSI was 

replaced by the offspring. This replacement yielded a new current generation of genetic algorithms. 

Subsequently, the generation number was increased and checked for exceedance of the maximum 

generation number. If no exceedance occurred, then for the next generation, the mutation rate was 

decreased by 3%. This process of expected SSI calculation and the genetic operation was repeated 

for new current generation until the maximum generation was reached. The rehabilitation policy 

with highest expected SSI in the last generation represented the best seismic rehabilitation policy 

for the selected earthquake, given water pipe network, and the given rehabilitation budget 

constraints. The pipes chosen for seismic rehabilitation were identified as the critical pipes in the 

water pipe network. 

3.3 Results 

To demonstrate the application of the approach created in this study, we used a benchmark network 

called Modena network (Figure 3-4), from Center of Water Systems (2018). This network was 

created for resilience study of large dimensional water pipe network. The network has 268 

junctions, 317 pipes, and four reservoirs with fixed head within 72.0 m to 74.5 m. The total length 

of the pipes of the entire network is 71806.11 m. For the calculation of seismic repair rate, pipes 
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with diameter less than 300 mm (12 inches) were considered as Cast-Iron pipes with lead joints 

while pipes with diameter greater than 300 mm (12 inches) were considered as Ductile-Iron (DI) 

pipes with rubber gasketed joints. 

 

Figure 3-4.. Modena Network 

For the seismic vulnerability analysis, the location of the centroid of the network was assumed to 

be Pasadena, California (34.146267° N, 118.144040 W). A deaggreagation analysis was 

performed at 34.146267° N , 118.144040 W for 1.0 s spectral acceleration for the return period of 

2475 years using USGS (2018). From the deaggregation result, an earthquake originating at 

Raymond fault, 3.25 km from the network’s centroid, with a magnitude of 7.12 was identified with 

maximum contribution ratio (13.84%). This was selected as the scenario earthquake for this study. 

Subsequently, peak ground velocity field due to the scenario earthquake without inter-event and 

intra-event variability was generated based on Abrahamson and Silva (2007) around the network. 
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Grid of 0.1° was used for generating this field. The generated peak ground velocity field is shown 

in Figure 3-5 and Figure 3-6.  The fault parameters used to generate the field was obtained from  

SCEDC (2018) and USGS (2018b). An average peak ground velocity was calculated for each pipe. 

These were then used to calculate expected SSI of the network using Eq. (3-9) for each 

rehabilitation policy. Using the Monte Carlo simulation, the expected SSI of the network without 

any rehabilitation was calculated as 0.789 for the scenario earthquake. The devised algorithm was 

then used to calculate the best seismic rehabilitation policy, and consequently the critical pipes, 

for different rehabilitation constraints. Table 3-1 shows the parameters of the genetic algorithm, 

while Table 3-2 summarizes the results. The critical pipes identified by the devised approach for 

different rehabilitation constraints are marked as thick green lines in Figure 3-7. Figure 3-7 shows 

the critical pipes for rehabilitation with lengths less than or equal to 15% (Figure 3-7-a), 20% 

(Figure 3-7-b), 25% (Figure 3-7-c), 30% (Figure 3-7-d), 35% (Figure 3-7-e), 40% (Figure 3-7-f), 

45% (Figure 3-7-g), and 50% (Figure 3-7-h), of the total pipe length. 

Table 3-1. Genetic Algorithm Parameters 

GA Parameter Values 

Maximum Generation 50 

Initial Mutation Rate 90% 

Cross Over Type 2 Point Cross Over 

Decrease of Mutation 

Rate 

3% every generation 

Number of bits mutated 20% of chromosome=24 bits 
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Figure 3-5. Peak ground velocity field due to the selected earthquake scenario 
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Figure 3-6. Peak ground velocity field due to the selected earthquake scenario 

 

Figure 3-7. Critical pipes identified by the devised approach for Modena network 
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Table 3-2. Results based on the proposed approach for different rehabilitation length constraints 

for Modena network 

Percentage of total 

pipe length 

allowed for 

rehabilitation 

Percentage of total 

pipe length 

actually 

rehabilitated 

Expected SSI Variance 

 

 

Not more than 15 13.553 0.8377 0.0289 

Not more than 20 19.648 0.8557 0.0245 

Not more than 25 23.859 0.8669 0.0249 

Not more than 30 29.401 0.8864 0.0206 

Not more than 35 34.813 0.8997 0.0167 

Not more than 40 38.359 0.9103 0.0185 

Not more than 45 43.697 0.9293 0.0111 

Not more than 50 49.334 0.9313 0.0117 

 

 

3.3.1 Validation 

For validation, a simple rehabilitation scheme was considered, based on pipe length, wherein the 

longer pipes were identified as the critical pipes. This scheme was combined with different 

rehabilitation length constraints, as shown in Table 3-3, to identify critical pipes for seismic 

rehabilitation. The critical pipes identified by this simple prioritization scheme are highlighted 
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green in Figure 3-8, and the results obtained for this scheme are summarized in Table 3-3. Figure 

3-8 shows the critical pipes that were identified using this approach, when the length was less than 

or equal to 15% (Figure 3-8-a), 20% (Figure 3-8-b), 25% (Figure 3-8-d), 35% (Figure 3-8-e), 40% 

(Figure 3-8-f), 45% (Figure 3-8-g), and 50% (Figure 3-8-h), of the total pipe length. When the 

expected SSI for each of these cases (Table 3-3) was compared with the expected SSIs obtained 

by using methodology created in this study for respective rehabilitation constraint (Table 3-2), it 

was clearly seen that the expected SSI of the policy identified by the devised methodology was 

greater than the expected SSI of the policy based on the simple prioritization scheme for respective 

rehabilitation constraint.  

 

Figure 3-8. Critical pipes identified by simple length-based prioritization scheme for Modena 

network 

(g) 
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Table 3-3. Results based on simple length-based prioritization scheme for Modena network 

Percentage of total 

pipe length 

allowed for 

rehabilitation 

Percentage of total 

pipe length 

actually 

rehabilitated 

Expected SSI Variance 

 

 

Not more than 15 14.741 0.8290 0.0318 

Not more than 20 19.417 0.8426 0.0288 

Not more than 25 24.454 0.8455 0.0295 

Not more than 30 29.599 0.8528 0.0281 

Not more than 35 34.735 0.8702 0.0252 

Not more than 40 39.516 0.8818 0.0246 

Not more than 45 44.987 0.8902 0.0225 

Not more than 50 49.964 0.9002 0.0202 

 

3.4 Conclusions 

An approach to identify critical pipes for resource-constrained seismic rehabilitation and to 

improve post-earthquake serviceability of a water pipe was created by integrating a genetic 

algorithm with a network-level seismic vulnerability assessment. This integration enables the 

identification of critical pipes, for distribution of rehabilitation resources at the system level. The 

application of the created approach was demonstrated using benchmark networks developed for 

testing algorithms dealing with formulating resilient designs of large water pipe networks.  

Furthermore, the results obtained from our proposed methodology was compared to the results 

obtained by using simple length prioritization scheme. Results demonstrated that the methodology 
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created in this study outperforms the simple prioritization scheme practiced by utilities. 

Additionally, the created approach was also validated by using identifying critical pipes for seismic 

rehabilitation in a water distribution network developed by the US EPA. These results were then 

compared with the latest methodology in literature. The comparison showed that our methodology 

identified more economical seismic rehabilitation policy compared to the most recent proposed 

approach in the literature when there are limitations about the length of pipes that can be 

rehabilitated. It is expected that the result of this study will help water utilities make informed 

decisions that will enhance post-earthquake serviceability of the water pipe networks. 
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CHAPTER 4  

PROACTIVE SEISMIC REHABILITATION OF WATER PIPE NETWORKS SUBJECT 

TO BUDGET CONSTRAINT USING SIMULATED ANNEALING 

This chapter describes the simulated-annealing based methodology adopted to of identify critical 

pipes for proactive seismic of water pipe networks. The methodology can be divided into 

formulating optimization problem and solving the optimization problem. The definitions and 

solution methodology adopted accomplish these tasks are explained in following sections. 

4.1 Pipe Network Definition 

Pipe network is defined as a collection of pipes delivering water from a finite number of water 

sources to a finite number of demand nodes. The attributes of network are as follows: 

• N is the number of nodes in the pipe network. A node may or may not have a water demand. 

Nodes with negative pressure are assumed non-functional (Markov et al. 1994; Shi 2006).  

• Np is the number of pipes in the pipe network. 

• Pipe network is provided with finite number of water sources and water tanks. Constant 

water demand is used for this study. 

4.2 Post-Earthquake Serviceability Indicator 

System serviceability index (SSI) is used as an indicator to measure the serviceability after an 

earthquake event where SSI is defined as the ratio of water demand fulfilled after an earthquake 

to inherent demand of water pipe system  (Shi 2006; Wang et al. 2010). If the water pressure at a 

demand node is above the threshold pressure, then the demand is supposed to be fulfilled at that 

node.  Using these definitions, SSI is formulated as shown by Eq. (4-1). 



 

4-2 

 

𝑺𝑺𝑰(𝒙 = 𝜶) =
∑ 𝒙𝒊

𝜶𝑫𝒊
𝑵
𝒊=𝟏

∑ 𝑫𝒊
𝑵
𝒊=𝟏

                                                                      (4-1) 

Subject to 

𝒙𝒊
𝜶 = 𝟏 𝒊𝒇 𝑷𝒊

𝜶 ≥ 𝑷𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 

𝒙𝒊
𝜶 = 𝟎 𝒊𝒇 𝑷𝒊

𝜶 < 𝑷𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 

where 𝑁  is the number of nodes in the network, 𝐷𝑖  is the water demand at node 𝑖 , 𝑃𝑖
𝛼  is the 

hydraulic pressure at node 𝑖 for rehabilitation policy α, and 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is the minimum hydraulic 

pressure required at the node, imposed by the firefighting demand. In this study, a hydraulic 

pressure of  0.14 MPa (20 psi) was used as the 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, as suggested by Trautman et al. (2013). 

4.3 Problem Formulation 

The problem is formulated as an optimization problem which aims to maximize the expected value 

of system serviceability index (SSI). Mathematical model of the optimization is represented by Eq. 

(4-2) and Eq. (4-3).  

𝐦𝐚𝐱𝒙∈𝐗 𝑬[𝑺𝑺𝑰(𝒙)]                                             (4-2) 

 Subject to   

𝐶𝑜𝑠𝑡(𝒙) ≤  𝐶𝑚𝑎𝑥                                  (4-3) 

where X represents the set of all possible rehabilitation policies, and each rehabilitation policy (x) 

represents the decision of the utilities to rehabilitate certain pipes, 𝐶𝑜𝑠𝑡(𝒙) represents cost of 

rehabilitation policy x, 𝐶𝑚𝑎𝑥 represents maximum rehabilitation budget available to the utilities. 

Evaluation of SSI involves determining the locations of seismic damages (leaks and breaks) in 

pipes. Occurrences of such damages are stochastic. Additionally, the nature of selecting pipes for 
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rehabilitation makes this optimization a combinatorial optimization. Stochastic objective function 

and combinatorial decision space makes optimization problem represented by Eq. (4-2) and Eq. 

(4-3) a stochastic combinatorial optimization. Furthermore, the objective function is non-convex 

and non-linear without any closed form representation.   

4.4 System of coding  

For this study, each rehabilitation policy, x, is a potential solution. Binary encoding is used to 

represent x. Hence, x has the same number of bits as the number of pipes in the water pipe network. 

There exists a one to one relationship between each bit in x and a pipe in the network. If a bit in x 

has a value of 1 then it means, the rehabilitation policy x suggests rehabilitating the pipe associated 

with that bit. If the bit has a value of 0, then the rehabilitation policy x suggests leaving the pipe 

associated with that bit unrehabilitated. For example, a potential rehabilitation policy for a network 

with 4 pipes could be [1001]. This string suggests rehabilitation of only the first and the last pipe 

of the network. 

4.5 Integrated Simulated Annealing, Network-Level Seismic Vulnerability Assessment, and 

Monte Carlo Simulation 

The lack of closed form representation of objective function and stochastic combinatorial nature 

of the optimization makes the problem really challenging. Hence, simulated annealing is adopted 

to solve the optimization represented by Eq. (4-2) and Eq. (4-3) as simulated annealing is effective 

in optimization of such complex, non-differentiable objective function. Simulated annealing is 

inspired by the process of solid annealing  where the set of states of the solid is analogous to the 

set of potential solutions; energy is analogous to the objective function; and rate of cooling of solid 

is analogous to the temperature schedule in simulated annealing (Kirkpatrick et al. 1983). The 

algorithm uses metropolis criterion (Metropolis et al. 1953) to select or reject new solutions. At 
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the initial stages of simulated annealing, temperature is set at high value. At these stages, simulated 

annealing has high probability of accepting inferior solutions. Hence, simulated annealing is more 

exploratory when temperature is high. In contrast, at low temperatures, only the solution with 

higher fitness value than the current solution is accepted. Hence, at low temperature simulated 

annealing behaves as traditional hill-climbing algorithm. As such, temperature of simulated 

annealing is the indicator of the algorithm’s probability of accepting inferior solutions. The rate of 

cooling determines the rate of transition of the algorithm from an exploratory algorithm to a 

traditional hill-climbing algorithm. The initial exploratory stage of the algorithm reduces chances 

of the algorithm being trapped in locally optimal values and increases the chances of identifying 

promising regions of decision space. The final hill climbing stage of the algorithm leads to fine 

tuning of the optimal value within the most promising region of decision space. Combination of 

initial temperature and the rate of cooling determines the convergence of algorithm to optimal 

solution in a finite amount of time. More information regarding initial temperature, rate of cooling, 

and stopping criteria can be found in Ingber (1993). Typically, sensitivity analysis is conducted to 

fix these parameters (Chen and Shahandashti 2009; Cunha and Sousa 1999). The simulated 

annealing algorithm integrated with network-level seismic vulnerability assessment of water pipe 

network adopted for this study is illustrated in Figure 4-1.  
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Figure 4-1. Simulated annealing integrated with network-level seismic vulnerability assessment 

of water pipe network 
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4.6 Initialization of simulated annealing 

Simulated annealing is initialized by randomly selecting a rehabilitation policy x. The cost of 

rehabilitation policy x (i.e. Cost(x)) is calculated. There can be two cases; Case 1:  𝐶𝑜𝑠𝑡(𝒙) >

𝐶𝑚𝑎𝑥 and Case 2: 𝐶𝑜𝑠𝑡(𝒙) ≤ 𝐶𝑚𝑎𝑥. For both the cases, we use a greedy heuristic (Wolsey and 

Nemhauser 1999) to eliminate the evaluation of infeasible or cheap policies. We choose to use this 

heuristic because greedy heuristic is known to give a good feasible solution (Wolsey and 

Nemhauser 1999). Hence, if the current rehabilitation policy x belongs to Case 1 i.e. if  𝐶𝑜𝑠𝑡(𝒙) >

𝐶𝑚𝑎𝑥 , we update x by removing the shortest rehabilitated pipe from the set of rehabilitated pipes. 

We continue this process till 𝐶𝑜𝑠𝑡(𝒙) > 𝐶𝑚𝑎𝑥  is valid.  However, if the current rehabilitation 

policy x initially belonged to Case 2 i.e. if 𝐶𝑜𝑠𝑡(𝒙) ≤ 𝐶𝑚𝑎𝑥 , we update the current policy x by 

adding unrehabilitated pipes to the set of rehabilitated pipes. This addition of unrehabilitated pipes 

is continued till anymore addition leads to 𝐶𝑜𝑠𝑡(𝒙) > 𝐶𝑚𝑎𝑥. At this stage, the greedy heuristic is 

terminated, and we obtain an updated rehabilitation policy x, which is always feasible. 

Subsequently, the simulated annealing is initialized with an initial temperature of 100 and the 

cooling rate of 2 at each decrement. Ten iterations were performed before each temperature 

decrement. These parameters of simulated annealing were finalized based on the sensitivity 

analysis. 

4.7 Evaluation of objective function 

Evaluation of objective function begins with the calculation of seismic pipe repair rate for each 

pipe in the network. The process of calculation of seismic pipe repair rate is illustrated in Figure 

4-2.  
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Figure 4-2. Seismic pipe repair rate calculation for current rehabilitation policy of simulated 

annealing 

For the calculation of the seismic pipe repair rate, peak ground velocity fields were generated using 

the approach described in Chapter 3. Seismic pipe repair rates were then calculated using Eq. (4-4) 

based on ALA (2001), 
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𝑅𝑅𝑚,𝑘
𝒙=𝛂 = 𝐾1 ∗ 0.00187 ∗ 𝑃𝐺𝑉𝑚,𝑘 ∗ (1 − 𝑎𝑘

𝒙=𝛂)                                                                (4-4) 

where 𝑅𝑅𝑚,𝑘
𝒙=𝛂 is the seismic pipe repair rate of pipe k based on rehabilitation policy x=α and 𝑚𝑡ℎ 

peak ground velocity field, K1 is the modification factor which adjusts the repair rate based on 

pipe material, pipe diameter, pipe joint characteristics, and soil corrosivity. The values of K1 are 

tabulated in ALA (2001).  𝑃𝐺𝑉𝑚,𝑘 (measured in inches/second) is the average peak ground velocity 

at the location of the pipe k due to the 𝑚𝑡ℎ  peak ground velocity field ; 𝑎𝑘
𝒙=𝛂  is 0 if pipe is 

unrehabilitated based on policy x=α, and 𝑎𝑘
𝒙=𝛂 is 1 if pipe is rehabilitated based on policy x=α. 

Setting 𝑎𝑘
𝒙=𝛂 as 1 if pipe is rehabilitated based on policy x=α is equivalent to assuming that the 

rehabilitated pipe is not vulnerable to earthquakes anymore. One method to ensure this is to replace 

the critical pipes with earthquake resistant ductile iron pipes. These pipes have no record of any 

leaks and breaks in some major earthquakes in Japan where almost all other utilities and 

infrastructures were severely affected (Haddaway 2015). Therefore, for this study, the critical 

pipes are assumed to be replaced with earthquake resistant pipes during seismic rehabilitation of 

the network. As such, seismic pipe repair rate is calculated for each pipe in the network based on 

rehabilitation policy x=α for M different peak ground velocity field. Following this, objective 

function is evaluated using Eq. (4-5). 

   max
𝒙𝜖𝐗

𝐸[𝑆𝑆𝐼(𝒙 = 𝛂)] =
∑ ∑ 𝑆𝑆𝐼𝑟

𝑚(𝒙=𝛂)𝑁𝑀𝐶𝑆
𝑟=1

𝑀
𝑚=1

𝑀∗𝑁𝑀𝐶𝑆
     (4-5) 

where 𝑁𝑀𝐶𝑆 is the maximum number of Monte Carlo simulation runs adopted for evaluating each 

rehabilitation policy, 𝑆𝑆𝐼𝑟
𝑚(𝒙 = 𝛂) is the system serviceability index calculated using Eq. (4-1) 

for 𝑟𝑡ℎ Monte Carlo run for the rehabilitation policy 𝛂, for 𝑚𝑡ℎ peak ground velocity field, M is 

the number of random peak ground velocity field generated for a single earthquake scenario. 
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4.8 Monte Carlo Simulation 

Monte Carlo simulation is used to propagate component level seismic vulnerability of the pipes 

into the network to calculate expected serviceability of the network. Occurrence of earthquake-

induced pipe leaks and breaks is modeled as Poisson process. The Monte Carlo simulation used in 

this study to accomplish this is shown in Figure 4-3.  
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Figure 4-3. Monte Carlo simulation to evaluate the objective function of simulated annealing 
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Monte Carlo simulation adopted for this study generates NMCS scenarios of earthquake-induced 

leaks and breaks in the water pipe network. For each scenario, the location of the ith leak or break 

in a pipe p is determined by: 

𝒍𝒑,𝒊 = 𝒍𝒑,𝒊−𝟏 −
𝟏

𝑹𝑹𝒎,𝒑
𝒙=𝛂 ∗ 𝐥𝐧(𝟏 − 𝑼)    𝒘𝒉𝒆𝒓𝒆   𝒍𝒑,𝟎 = 𝟎                                                        (4-6) 

where l𝑝,i is the distance of ith discontinuity (leak or break) in pipe p from its start node, 𝑅𝑅𝑚,𝑝
𝒙=𝛂 is 

the average seismic pipe repair rate calculated for the pipe p based on policy x=α for the 𝑚th peak 

ground velocity field, and U is the uniformly distributed random number between 0 and 1. If the 

location of the first leak or break lies within the length of the pipe p, i.e., if 𝑙𝑝,1  is less than the 

length of pipe p, then a second random number is generated to classify it as either a leak or a break.  

If the second random number generated is less than or equal to 0.8, the discontinuity at the location 

𝑙𝑝,1 is classified as a leak; otherwise, it is classified as a break (FEMA - Federal Emergency 

Management Agency 2013; Shi 2006). Leaks are further classified, and the diameters of the leaks 

are calculated based on Shi (2006). This process is repeated for higher values of 𝑖 until the value 

of 𝑙𝑝,𝑖 exceeds the length of the pipe. The same process is repeated for other pipes in the network. 

After all the leaks and breaks have been located and the diameters of all the leaks have been 

determined for the current Monte Carlo run, they are integrated into the network hydraulic model 

of the undamaged water pipe network. The hydraulic modeling of leaks and breaks proposed by 

Shi (2006) is used for this process. The resulting hydraulic model is then analyzed, using a quasi-

pressure-driven steady-state hydraulic analysis, to determine the hydraulic pressure at each 

node(𝑃𝑖
𝛂). This analysis is required because conventional demand-driven steady-state hydraulic 

analysis assumes that the hydraulic demand at each node is always fulfilled, and that may not be a 

valid assumption for water pipe networks damaged by an earthquake (Cheung et al. 2005; Ozger 
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and Mays 1994; Shi 2006). Hydraulic analysis, with the assumption that nodal water demand is 

not always fulfilled and that the system cannot have negative pressure in the nodes imitates the 

performance of actual networks after earthquakes (Shi 2006). Therefore, for this study, the quasi-

pressure-driven analysis approach is adopted, and the following operations were performed for 

each run of the Monte Carlo simulation: 

1) Hydraulic model with integrated leaks and breaks is analyzed. 

2) Nodes with negative pressure are identified and removed from the network. 

3) Step 1 and step 2 are repeated until there were no nodes with negative pressure.  

Using this approach, the hydraulic pressure at each node (𝑃𝑟𝑖
𝛂 )  is calculated and recorded for 

a predefined maximum number of Monte Carlo runs (NMCS) for the rehabilitation policy (x=α). 

Then expected SSI of the rehabilitation policy (x=α) is finally calculated using Eq. (4-1) and Eq. 

(4-5). 

 

4.9 Progression of simulated annealing and its termination 

After the evaluation of objective function for the first rehabilitation policy (x = α) using Eq. (4-5), 

another rehabilitation policy (x = β) is identified by searching in the neighborhood of the first 

rehabilitation policy. This neighborhood search is accomplished by randomly mutating current 

rehabilitation policy (x = α). In this study, twenty percent of binary string representing current 

rehabilitation policy (x = α) is modified randomly. The cost of modified rehabilitation policy is 

calculated. Then, at this stage, we update the new policy (x = β) using greedy heuristic to eliminate 

infeasible and cheap rehabilitation policy. Subsequently, expected SSI of this new policy (x = β) 

is evaluated using Eq. (4-1) and Eq. (4-5). If the expected SSI of the new policy i.e. E(SSI(x = β)) 

is greater than or equal to the expected SSI of the old policy i.e. E(SSI(x = α)), then the new policy 
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(x = β) is accepted and taken to the next iteration of simulated annealing.  If the expected SSI of 

the new policy i.e. E(SSI(x = β)) is less than the expected SSI of the old policy i.e. E(SSI(x = α), 

difference (δ) is calculated using Eq. (4-7) and r is calculated by using Eq. (4-8). 

𝜹 = 𝒆
(

−(𝑬(𝑺𝑺𝑰(𝒙=𝛂)−𝑬(𝑺𝑺𝑰(𝒙=𝛃)))

𝒕𝒄
)
                   (4-7) 

𝑟 = 𝑟𝑎𝑛𝑑 [0,1]                                (4-8) 

where tc is the current temperature of the simulated annealing, rand [0,1] is a function to generate 

uniformly distributed random number between 0 and 1. 

If r < 𝛿, then new rehabilitation policy (x = β) replaces the old rehabilitation policy (x = α). If r ≥ 

𝛿, same old rehabilitation policy (x = α) is carried to next iteration of simulated annealing. This is 

known as Metropolis step. Temperature (tc) is decreased at the selected cooling rate after allowing 

certain number of iterations at each temperature. Elitist strategy of saving the rehabilitation policy 

with highest expected SSI is adopted for this study to avoid the loss of good solutions. The 

simulated annealing progresses in this way by finding new rehabilitation policies, evaluating it, 

and replacing the old solution with the new using Metropolis step. The simulated annealing stops 

when the final temperature is reached. The rehabilitation policy with the maximum expected SSI 

up to this step in the algorithm is reported as the best rehabilitation policy for the given 

rehabilitation budget constraint. 

4.10 Application 

To demonstrate the application of the approach created in this study, we used a benchmark network 

called Modena network (Figure 4-4), from Center of Water Systems (2018) with 268 junctions, 

317 pipes, and four reservoirs. The total length of the pipes of the entire network is 71806.11 m. 
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This network was created for resilience study of large dimensional water pipe network. For the 

calculation of seismic repair rate, pipes with diameter less than 300 mm (12 inches) were 

considered as Cast-Iron pipes with lead joints while pipes with diameter greater than 300 mm (12 

inches) were considered as Ductile-Iron (DI) pipes with rubber gasketed joints. 

 

Figure 4-4. Modena Network 

For selecting earthquake scenario, the location of the centroid of the network was assumed to be 

Pasadena, California (34.146267° N, 118.144040° W). A deaggreagation analysis was performed 

at 34.146267° N , 118.144040° W for 1.0 s spectral acceleration for the return period of 2475 years 

using USGS (2018). From the deaggregation result, an earthquake originating at Raymond fault, 

3.25 km from the network’s centroid, with a magnitude of 7.12 was identified as the earthquake 

with highest contribution ratio (13.84%). This earthquake was selected as the scenario earthquake. 

Peak ground velocity fields, as shown in Figure 4-5 and Figure 4-6, were generated using method 

described in Chapter 3. Subsequently, average peak ground peak ground velocities for each pipe 
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were calculated using method described in Chapter 3. These average peak ground velocities of all 

the pipes were then used to calculate expected SSI of the network using Eq. (4-5) for each 

rehabilitation policy.  

 

Figure 4-5. Peak ground velocity field due to the selected earthquake scenario without intra-

event and inter-event residuals 
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Figure 4-6. Peak ground velocity field due to the selected earthquake scenario without intra-

event and inter-event residuals zoomed to the network’s scale 

To identify the adequate number of Monte Carlo runs, a convergence study was carried out (Figure 

4-7). Modena network without any rehabilitation, subjected to the selected scenario earthquake, 

was chosen for the convergence study. No rehabilitation scenario was used because a network 

without any rehabilitation has the highest uncertainty compared to any rehabilitated scenarios. 

Hence, the number of Monte Carlo runs adequate to model the uncertainty for the unrehabilitated 

scenario would also be adequate for any rehabilitated scenarios. Convergence study, as shown in 

Figure 4-7 demonstrates that 3000 Monte Carlo runs is adequate. Hence, using 3000 Monte Carlo 
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runs, the expected SSI of the network, without any rehabilitation, was calculated as 0.785. Table 

4-1 shows the parameters of the simulated annealing used.  

 

Figure 4-7. Convergence study to identify adequate Monte Carlo runs for the Modena network 

Table 4-1. Simulated annealing parameters 

Parameters Value 

Initial Temp 100 

Final Temp 1 

Cooling Rate 2 

Iterations per Temperature 10 

Maximum Monte Carlo Runs 3000 

Total Iterations 500 
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The cost data used for the rehabilitation is summarized in Table 4-2. The material costs and bare 

costs for installing ductile iron pipes manufactured in United States were obtained from RS Means 

(2017). The backfill cost was obtained from JM Eagle (2017). They were added to get the total 

cost for installing ductile pipes manufactured in United States. Then, the cost of installing 

earthquake resistant Japanese ductile iron pipe were obtained by adjusting the price of US 

manufactured pipe. The adjustment was based on the fact that the earthquake resistant Japanese 

ductile iron pipe can be three times the price of US manufactured ductile iron pipes (Haddaway 

2015). The information regarding the earthquake resistant pipes’ readily available diameters was 

obtained via correspondence with one of the major manufacturers of the pipes to formulate a 

practical rehabilitation policy.  

Table 4-2. Rehabilitation costs adopted for this study 

 US manufactured ductile iron pipe   Earthquake resistant Japanese 

ductile iron pipe 

Pipe 

diameter 

(mm) 

Material 

cost a 

(USD) 

Bare 

cost 

without 

backfill 

costa 

(USD) 

Backfill 

cost b 

(USD) 

Total 

cost 

with 

backfill 

cost 

(USD) 

 Bare 

cost 

without 

backfill 

cost c 

(USD) 

Total 

cost 

with 

backfill 

cost 

(USD) 

Normalized 

cost in 

terms of 

101.6 mm 

diameter 

pipe 

101.6  30.50 42.58 4.49 47.07  103.58 108.07 1.00 

152.4 26.50 41.57 5.15 46.72  94.57 99.72 0.92 
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203.2 44.50 62.62 5.83 68.45  151.62 157.45 1.46 

254.0 58.50 79.61 6.50 86.11  196.61 203.11 1.88 

304.8 79.00 101.94 7.20 109.14  259.94 267.14 2.47 

355.6 93.00 117.16 7.91 125.07  303.16 311.07 2.88 

406.4 94.50 127.50 8.63 136.13  316.50 325.13 3.01 

457.2 126.00 160.80 9.37 170.17  412.80 422.17 3.91 

508.0 127.00 169.10 10.12 179.22  423.10 433.22 4.01 

609.6 141.00 192.25 11.66 203.91  474.25 485.91 4.50 

a These costs are based on the RS Means (2017) for class 50 water piping with 5.4864 m (18 ft.) 

length. 

b These costs are based on JM Eagle (2017). Backfill is assumed to be 30.48 cm (1 ft.) above the 

top of the pipe, the backfill cost is assumed to be $0.015 per kg and the density of the backfill is 

assumed to be 2162.49 kg/m3 (135 lb/ft3). 

c These costs assume that material cost of Kubota company manufactured earthquake resistant DI 

pipes is three times the cost of DI pipes manufactured in US based on Haddaway (2015) 

Using the created approach and the normalized cost vector (last column of Table 4-2), 

rehabilitation policies were identified for different rehabilitation budget constraints for the Modena 

network. The results for such policies are shown in Table 4-3 while critical pipes identified 

corresponding to each of these policies are highlighted by thick green lines in Figure 4-8. The 

progression of simulated annealing is shown in Figure 4-9. 
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Table 4-3. Results of implementing the proposed methodology to the Modena network for 

different rehabilitation budget constraint 

Policy ID a 

Rehabilitation 

cost upper 

bound (USD) 

Actual cost of 

rehabilitation 

(USD) 

Expected SSI 

Variance of 

SSI 

Solution 

Time b (Hrs.) 

S2.5 2.5 Million 2,499,331.50 0.89527 0.01959 295.53 

S5.0 5.0 Million 4,999,709.50 0.91035 0.01557 295.09 

S7.5 7.5 Million 7,495,438.50 0.92534 0.01120 287.29 

S10.0 10.0 Million 9,998,185.00 0.93876 0.00830 283.58 

S12.5 12.5 Million 12,463,533.00 0.95095 0.00761 284.05 

 aSk means policy identified by our simulated annealing-based approach constrained such that 

seismic rehabilitation cost cannot exceed k million USD. 

bSolution time reported is for a workstation with Intel(R) Xeon(R) CPU E3-1240 v5 @3.50GHz 

processor and 16.0 GB of RAM running Windows 7 Enterprise operating system. 
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Figure 4-8. Critical pipes identified by our SA based approach for the Modena network 
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Figure 4-9. Progression of simulated annealing for different rehabilitation budget constraints for 

the Modena network 

4.11 Validation 

For the first step in validation, rehabilitation policies were generated using simple length-based 

heuristic. Simple length-based heuristic is represented by Lk, where Lk refers to a length-based 

rehabilitation heuristic which prioritizes rehabilitating longer pipes such that cost of rehabilitation 

does not exceed k million USD. This length-based heuristic is similar to the greedy heuristic that 

we used to eliminate infeasible and cheap solutions in our SA-based approach. Hence, in this 
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heuristic, we try to rehabilitate the longest unrehabilitated pipe. We keep on doing this until the 

cost of rehabilitation is less than the cost constraint. During this process, there will be a stage when 

rehabilitating the longest unrehabilitated pipe will cause the cost constraint to be exceeded. When 

this happens, we then try to rehabilitate second longest pipe. If rehabilitating second pipe also leads 

to infeasible solution, third pipe is checked. This is continued till we cannot add rehabilitate even 

the shortest unrehabilitated pipes in the network. When this happens, the heuristic is stopped, and 

the resulting rehabilitation policy is analyzed. This heuristic was used to create 5 rehabilitation 

policies for cost constraints equal to that of SA based approach (in Table 4-3). These length-based 

policies were then analyzed. Figure 4-10 shows the pipes selected based on 5 policies identified 

by length-based heuristic. Results obtained for these cases are tabulated in Table 4-4. We selected 

this length-based heuristic to demonstrate that rehabilitating few long pipes in the network is less 

economical when compared to rehabilitating pipes identified by considering seismic vulnerability 

of network and network level distribution of rehabilitation resources. The comparison of the 

expected SSI of the policies identified by our SA based approach and length-based heuristic is 

done in Figure 4-11. It can be clearly seen from Figure 4-11 that, for the given network and the 

simulated earthquake, policies identified by our SA-based approach clearly gives significantly 

higher expected SSI when compared to the policies identified by the length-based heuristic. 
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Figure 4-10. Critical pipes selected based on length-based rehabilitation heuristic 

 

Table 4-4. Results for length-based rehabilitation heuristic prioritizing longer pipes for Modena 

network 

Policy ID Rehabilitation 

cost upper 

bound (USD) 

Actual cost of 

rehabilitation 

(USD) 

Expected SSI Variance of SSI 

L2.5 2.5 Million 2,499,880.00 0.81604 0.03295 

L5.0 5.0 Million 4,999,680.50 0.84275 0.02833 

L7.5 7.5 Million 7,499,982.00 0.86752 0.02506 

L10.0 10.0 Million 9,998,892.00 0.88928 0.02084 

L12.5 12.5 Million 12,499,842.00 0.90582 0.01928 

a Lk means length-based rehabilitation heuristic which prioritizes rehabilitating longer pipes such 

that cost of rehabilitation does not exceed k million USD 
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Figure 4-11. Comparison between expected SSIs of the policies identified by our SA based 

approach and length-based heuristic with the same cost constraint for the Modena network 

For the next step in validation, the policies identified by our simulated annealing-based approach 

was compared to the rehabilitation policy suggested by Wang et al. (2010). Wang et al. (2010) 

uses EPANET example network (Figure 4-12) as the test-bed for implementing their methodology. 

The EPANET example network was developed by the US Environmental Protection Agency (US 

EPA) for testing models involving hydraulic simulation. The network is composed of 117 pipes 

and 92 junctions. A river and a lake supply water to the network while 3 tanks are provided within 

the network for storage. For this study, the water demand and material assignment of each pipe is 

based on Wang et. al. (2010). Hence, the pipes with diameters less than 24 inches are assumed as 

cast iron pipes with brittle joints while pipes with diameters 24 inches and above are assumed as 

steel pipes with welded joints. Setting the assignment of water demand and pipe materials as per 

Wang et al. (2010) facilitates comparing the results obtained using our methodology to the results 

obtained by Wang et. al. (2010). Furthermore, we had to use a uniform peak ground velocity of 50 
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cm/sec for this case because Wang et al. (2010) use this uniform peak ground velocity field for 

their analysis. Convergence study was conducted for the unrehabilitated EPANET network as well 

(Figure 4-13). The study indicated that 3000 Monte Carlo runs were adequate for this case as well. 

Hence, Table 4-1 and Table 4-2 were used to configure the SA based approach to identify critical 

pipes for this network as well. SA based approach configured as such was then used to identify the 

critical pipes for different rehabilitation budget constraints for the EPANET network. The details 

of the policies identified are shown in Table 4-5 while critical pipes identified corresponding to 

each of these policies are highlighted by thick green lines in Figure 4-14.  

 

Figure 4-12. EPANET example network 



 

4-27 

 

 

Figure 4-13. Convergence study to identify adequate Monte Carlo runs for the EPANET 

network 

Table 4-5. Results of implementing our SA based approach to the EPANET network for 

different rehabilitation budget constraint 

Policy ID a 

Rehabilitation 

cost upper 

bound (USD) 

Actual cost of 

rehabilitation 

(USD) Expected SSI 

Variance of 

SSI 

Solution 

Timeb (Hrs.) 

S10 10 Million 9,995,563.00 0.92675 0.03179 236.90 

S15 15 Million 14,878,407.00 0.93511 0.03200 238.55 

S20 20 Million 18,234,756.00 0.94798 0.02645 240.68 

S25 25 Million 23,619,262.00 0.95630 0.01708 236.68 

S30 30 Million 29,401,872.00 0.95821 0.01656 233.84 
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aSk means policy identified by our simulated annealing-based approach constrained such that 

seismic rehabilitation cost cannot exceed k million USD. 

bSolution time reported is for a workstation with Intel(R) Xeon(R) CPU E3-1240 v5 @3.50GHz 

processor and 16.0 GB of RAM running Windows 7 Enterprise operating system. 

 

Figure 4-14. Critical pipes identified by our SA based approach for the EPANET network  

For validation, these policies (From Table 4-5), were compared to the rehabilitation policy 

identified by Wang et. al. (2010). The pipes recommended for rehabilitation by Wang et al. (2010) 

are highlighted by thick red lines in Figure 4-15. The network, with these pipes rehabilitated, was 

analyzed, and the expected SSI was calculated for this case. Upon comparison of those results with 

the results of our approach (in Figure 4-16), it can be observed that policy identified by our 

approach for constraints of 20 million USD, 25 million USD, and 30 million USD have higher 
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SSI. However, these policies cost substantially less than Wang et al. (2010)’s policy, which costs 

nearly 60 million USD. This shows that, compared to Wang et al. (2010)’s approach, our approach 

was able to identify much more economical seismic rehabilitation policy for this test network 

against the simulated earthquake.  However, a more general conclusion requires analysis of 

observations from more examples. 

 

Figure 4-15. Critical pipes based on rehabilitation policy suggested by Wang et al. (2010) for the 

EPANET network 
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Figure 4-16. Comparison of expected SSI of policies identified by our SA based approach and 

rehabilitation policy identified by Wang et. al. (2010) for the EPANET network 

4.12 Conclusions 

Although many researchers propose approaches for seismic vulnerability assessment for the water 

pipe networks, approaches to identify critical pipes for seismic rehabilitation of water pipes are 

rare. However, even these rare approaches are based on some simple prioritization techniques or 

ignore the correlation between the effect of pipes’ damages on the network serviceability. As such, 

there was a need of an approach to identify critical pipes for pro-active seismic rehabilitation of 

water pipe networks that is based on comprehensive seismic vulnerability assessment; that 

considers spatial correlation between seismic intensities; that considers limited rehabilitation 

budget; and does not ignore the correlation between the effect of pipes’ damages on the network 

serviceability. To address this, a simulated annealing-based optimization is developed and 

integrated with network-level seismic vulnerability assessment of water pipe network to maximize 

its post-earthquake serviceability by considering network-level distribution of limited 
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rehabilitation resources. The developed approach is used to identify critical pipes for seismic 

rehabilitation of two benchmark networks. The results thus obtained were compared to the 

rehabilitation policy suggested by a simple length-based heuristic and the policy suggested by a 

latest methodology in literature. The comparison showed that our approach was able to identify 

more economical rehabilitation policy as compared to the simple length-based rehabilitation 

heuristic and the latest methodology in literature. The developed approach adds to the existing 

literature, a new method of considering network level distribution of limited rehabilitation 

resources for the seismic rehabilitation of water pipe networks. Moreover, the developed approach 

can be used by the water utility managers to formulate economical seismic rehabilitation policy 

for their water pipe networks when rehabilitation budget is constrained. 
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CHAPTER 5  

RESILIENCE METRICS AND PROACTIVE SEISMIC OPTIMIZATION OF WATER 

PIPE NETWORKS 

This chapter describes the methodologies adopted in this study to evaluate the performance of a 

wide range of resilience metrics and their suitability as objective function for optimization of 

seismic rehabilitation of water pipe networks. Water pipe networks are often subjected to 

devastating natural disasters such as earthquakes. To ensure reliability of these networks against 

such earthquakes, seismic resilience of the networks must be analyzed and subsequently enhanced 

via a combination of proactive and reactive rehabilitation. Calculating resilience of a water pipe 

network presents many challenges. One of these is to identify a proper metric of resilience. Klise 

et al. (2015) reports that currently there is lack of a satisfactory resilience metric for water supply 

systems. 

Currently available resilience metrics can be divided broadly into two categories: qualitative and 

systems-modeling based metrics. Qualitative resilience metrics are in the form of qualitative 

ranking, scorecard, and indexes (Fiksel et al. 2014; Fisher et al. 2010). Even though these metrics 

are flexible enough to combine information from distinct fields and invite collaboration of diverse 

stakeholders, these metrics are highly subjective and cannot capture the dynamic linkages and 

feedback loop inherent in water supply systems (Klise et al. 2015). In contrast, systems-modeling 

based metrics are in the form of mathematical models which are designed to simulate the actual 

behavior of water supply systems subjected to damages. These metrics can effectively identify 

dynamic interactions between the components of water supply system and help examine the 

linkage between them, especially when these systems are damaged by some catastrophic events. 
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These systems-modeling based metrics can be further divided into two sub-categories: topological 

based and hydraulics based. 

 Topological metrics are based on graph theory. To calculate resilience of water supply 

system using these metrics, the water supply systems are modeled as graphs i.e. 𝐺(𝑉, 𝐸) where 𝑉 

is the set of nodes or vertices in the network and 𝐸 is the set of pipes or arc in the network. 

Commonly, the network is modeled as bidirectional graphs. Hence, each pipe is modeled as two 

directed arcs. Such metrics offer a simplified approach of modeling water supply systems since 

they simply the analysis by ignoring the hydraulics and physics of water flow through the water 

supply system. Hydraulics based metrics such as Available Demand Fraction (Ozger and Mays 

1994), System Serviceability Index (Shi 2006; Wang et al. 2010), and Entropy Based Reliability 

(Awumah et al. 1991) are based on physics that govern the flow of water in a water pipe systems. 

Hence, hydraulics-based metrics are better suited for a more rigorous study. However, these 

hydraulic equations tend to make the model more complex and data hungry. 

A lot of researchers have used the above described metrics to study the resilience of water pipe 

networks. First group of studies is based on topological metrics. Jacobs and Goulter (1988, 1999) 

showed network represented by regular graphs are least vulnerable. A regular graph is 

a graph where each vertex has the same number of neighbors; i.e. every vertex has the same degree 

or valency. Ostfeld (2005) proposed a methodology to identify operational and backup digraph 

that yielded one-level system redundancy. Fragiadakis et. al. (2014) used fragility formulation by 

ALA (2001) and Djikstra’s shortest path algorithm to assess reliability of water pipes networks 

subjected to earthquakes. Another group of studies used hydraulic based metrics. Shi (2006) and 

Wang et al. (2010) used System Serviceability Index to measure seismic resilience of water pipe 

networks and thus studied seismic response of water supply systems. 
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As such, a variety of metrics based on network topology (e.g. redundancy, average path length), 

hydraulics (e.g. Available Demand Fraction), and entropy (e.g. Entropy Based Resilience) could 

be used to analyze the seismic resilience of water pipe networks. Performance of seismic 

optimization algorithms for water pipe networks depends on the selection of these resilience 

metrics. Even though a few rare research has been done using some of these metrics in optimization 

of water pipe networks (Pudasaini et al. 2017; Pudasaini and Shahandashti 2018; Shahandashti 

and Pudasaini 2019),  there is no research that studies the tradeoff between computational economy 

and solution quality when these metrics are used for resource constrained seismic optimization of 

water pipe networks. Hence, the objective of this study is to: 

▪ analyze the performance of a variety of resilience metrics in the resource-constrained seismic 

rehabilitation optimization of the water pipe networks  

▪ identify the trade-off between solution economy and solution quality associated with each 

metrics.  

The methodology adopted to study the performance of various topological metrics as the objective 

function for maximizing seismic resilience of water pipe networks was executed in the steps which 

are explained in the following sections. 

5.1 Modeling of water pipe network as a graph 

Water pipe network was modeled as a bi-directional graph 𝐺(𝑽, 𝑬) where 𝑽 is the set of vertices 

of the graph and 𝑬 is the set of edges of the graph. Each junction of the water pipe was assigned 

to vertex set 𝑽. For each pipe, two directed edges were defined where one edge was directed from 

the start node of the pipe to the end node while the other edge was directed from the end node to 

the start node. This is illustrated in Figure 5-1. 
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Figure 5-1. Modeling of water pipe network as a graph 

5.2 Evaluation of Seismic Resilience Metrics 

Various topological metrics defined in the literature of graph theory (Bondy and Murty 2008; 

Diestel 2000) and social network analysis (Wasserman and Faust 1994) were used in this study to 

quantify seismic resilience of the water pipe network. Each of them is defined below with its 

formulation: 

5.2.1 Link Density (𝜌𝐿𝑖𝑛𝑘):  

It is defined as the fraction between the total and the maximal number of edges in the graph. It is 

calculated for a graph using Eq. (5-1). For  a water pipe network, link density indicates how linked 

or sparse the water pipe network really is (Haegele 2016; Paez and Filion 2017; Yazdani et al. 

2011). 

𝜌𝐿𝑖𝑛𝑘 =
2|𝐸|

|𝑉|(|𝑉|−1)
            (5-1) 
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5.2.2 Average Node Degree (𝑑̅):  

Average node degree is the measure of the average number of edges incident to a node in the graph. 

It is calculated using Eq. (5-2). For water pipe network, if most of the nodes have degree close to 

average node-degree, then it indicates equalized distribution of flow and pressure under varying 

demands in the network (Haegele 2016; Paez and Filion 2017; Yazdani et al. 2011). 

𝑑̅ =
2|𝐸|

|𝑉|
                     (5-2) 

 

5.2.3 Network Diameter (𝜙): 

It is the measure of the maximum number of edges between any two nodes in the network. It is 

calculated using Eq. (5-3). 

𝜙 = max (𝑁𝐸(𝑣𝑖 , 𝑣𝑗)) ∀ 𝑣𝑖 ϵ V , 𝑖 ≠  𝑗                                     (5-3) 

where 𝑁𝐸(𝑣𝑖 , 𝑣𝑗) is the minimum number of edges that need to be traversed between vertices 𝑣𝑖 

and 𝑣𝑗. It is an indicator of the topological spread and network efficiency of the water pipe network 

(Haegele 2016; Pandit and Crittenden 2012; Yazdani et al. 2011). Dijkstra’s shortest path 

algorithm (Dijkstra 1959) was used to find the minimum number of edges needed to be traversed 

between any two vertices. 
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5.2.4 Average Geodesic Path Length (𝐿̅):  

This metric estimates the average number of paths that need to be traversed to get from one node 

to other. It is calculated using Eq. (5-4) 

𝐿̅ =
1

|𝑉|(|𝑉|−1)
∗ ∑ 𝑁𝐸(𝑣𝑖 , 𝑣𝑗)𝑖≠𝑗 : ∀ 𝑣𝑖 ∈ 𝑉                      (5-4) 

where 𝑁𝐸(𝑣𝑖 , 𝑣𝑗) is the minimum number of edges that need to be traversed to reach from vertex 

𝑣𝑖  to 𝑣𝑗 . Dijkstra’s shortest path algorithm (Dijkstra 1959) was used to find the shortest path 

between the vertices. It provides an approximation of water pipe network’s efficiency (Haegele 

2016; Pandit and Crittenden 2012; Yazdani et al. 2011). 

5.2.5 Transitivity or Global Clustering Coefficient (GCC): 

It is defined by Wasserman and Faust (1994) as the fraction between the total number of triangles 

(𝑁Δ) and the total number of connected triples (𝑁3) as is shown by Eq. (5-5).  It is a measure of 

the tendency of the nodes in the network to cluster or form triangles.  

𝐺𝐶𝐶 =
3𝑁Δ

𝑁3
                                      (5-5) 

It provides an estimate of the water pipe network’s redundancy (Haegele 2016; Yazdani et al. 

2011). The number of triangles in the network was found by calculating the trace of the adjacency 

matrix of the graph (i.e. the sum of main diagonal elements) while the number of triples was 

calculated by using a simple enumeration.  
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5.2.6 Meshedness Coefficient (MC): 

As per Buhl et al. (2006), meshedness coefficient is defined as the fraction between the total and 

the maximum number of independent loops in a planar graph. It is calculated using Eq. (5-6). 

𝑀𝐶 =
|𝐸|−|𝑉|+1

2|𝑉|−5
         (5-6) 

 

It provides an estimate of topological redundancy of water pipe network by calculating the ratio 

of the number of independent loops to the number of maximum loops (Haegele 2016; Paez and 

Filion 2017; Pandit and Crittenden 2012). 

5.2.7 Central Point Dominance (𝐶𝑃𝐷): 

As per Freeman (1977), central point dominance is the average difference between the centrality 

of a node (𝐶𝑖) to the centrality of most central node (𝐶𝑚𝑎𝑥). It is calculated using Eq. (5-7). 

𝐶𝑃𝐷 =
1

|𝑉|−1
∑(𝐶𝑚𝑎𝑥 − 𝐶𝑖)      (5-7) 

where  𝐶𝑖 is given by the ratio of the number of the shortest geodesic path between two vertices 

that pass-through node 𝑖  to the total number geodesic path between the two vertices. It was 

calculated using the an algorithm proposed by Brandes (2001). This metric provides an estimate 

of robustness of the water pipe network (Pandit and Crittenden 2012; Yazdani et al. 2011). 
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5.2.8 Density of Articulation Points (𝜌𝐴𝑃): 

Articulation point is a vertex in a graph such that its removal leads to isolation of a part of the 

graph. For water pipe networks, these points correspond to junctions whose damage leads to the 

isolation of a part of the water network. Density of articulation point is calculated using Eq. (5-8). 

𝜌𝐴𝑃 =
𝑁𝐴𝑝

|𝑉|
                                    (5-8) 

where 𝑁𝐴𝑝  is the total number of articulation points in the graph. A simple depth first search 

(Cormen et al. 2009) was used to identify the articulation points in the graph. Large value of 

articulation point density indicates the presence of a large number of vulnerable points in the water 

pipe network. Hence, this metric is an estimate of robustness of water pipe networks (Paez and 

Filion 2017). 

5.2.9 Density of Bridges (𝜌𝐵𝑟): 

A bridge in a graph is a link such that its removal leads to the isolation of a part of the graph. For 

water pipe networks, these links correspond to pipes whose break leads to a part of the water pipe 

network being isolated. Density of bridges is calculated using Eq. (5-9). 

𝜌𝐵𝑟 =
𝑁𝐵𝑟

|𝐸|.
                                  (5-9) 

where 𝑁𝐵𝑟 is the total number of bridges in the graph. A simple depth first search (Cormen et al. 

2009) was used to identify the articulation points in the graph. High value of bridge density 

indicates the presence of  a large number of vulnerable links in the network. Hence, this metric is 

an estimate of robustness of the water pipe networks (Paez and Filion 2017). 
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5.2.10 Spectral Gap (𝑆𝐺) (Estrada 2006): 

It is the difference between first and second eigen values of the graph’s adjacency matrix. For 

water pipe networks, it estimates the robustness and optimal connectivity layouts of the network 

(Yazdani et. al. 2011). 

5.2.11 Algebraic Connectivity (𝐴𝐶) (Fiedler 1973): 

This is the second smallest eigen value of the normalized Laplacian matrix of the network. For 

water pipe networks, it estimates the robustness and resistance of a network towards efforts to 

decouple the network (Pandit and Crittenden 2012; Yazdani et al. 2011). 

5.3 Generating earthquake induced stochastic pipe damages and Monte Carlo simulation 

The methodology of generating earthquake induced stochastic pipe damages and the Monte Carlo 

simulation is illustrated in the Figure 5-2. 
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Figure 5-2. Simulation of stochastic seismic damages and Monte Carlo simulation 

To initiate the analysis, expected seismic damages were evaluated. The methodology detailed in 

Pudasaini and Shahandashti (2018) was used for this. Accordingly, using seismic deaggregation 

analysis, an earthquake having maximum contribution ratio was identified (Adachi 2007). This 

earthquake was selected as the scenario earthquake. Using the magnitude and seismogenic 

characteristics of the scenario earthquake, the spatial distribution of Peak Ground Velocity (𝑃𝐺𝑉) 

in the vicinity of water pipe network was mapped. To do this, the ground motion prediction model 

expressed by Eq. (5-10) was used. 

𝑙𝑜𝑔10(𝑃𝐺𝑉𝑖𝑗) = 𝑓(𝑀𝑖 ,  𝑅𝑖𝑗 ,  𝜽𝒊) + 𝜎𝐵𝜈𝑖 + 𝜎𝑊𝝐𝒊𝒋              (5-10) 

where 𝑃𝐺𝑉𝑖𝑗 is the 𝑃𝐺𝑉 for a site 𝑗 due to the earthquake at source 𝑖, 𝑅𝑖𝑗 is   the distance from the 

source 𝑖 to site 𝑗, 𝑀𝑖 is the magnitude of the earthquake event at source 𝑖, 𝜽𝒊 are the seismogenic 

characteristics for the fault at source 𝑖, 𝜎𝐵𝜈𝑖 is the residual due to inter-event variability, and 𝜎𝑊𝝐𝒊𝒋 

is the  residual due to intra-event variability. A finite number of 𝑃𝐺𝑉  maps were created to 
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accommodate the uncertainty of the spatial distribution of PGV caused by the simulated 

earthquake. Then, for each pipe for each 𝑃𝐺𝑉 map , 𝑃𝐺𝑉𝑠 were averaged along the pipe’s length 

to get the average PGV for the pipe (𝑃𝐺𝑉𝑝
̅̅ ̅̅ ̅̅ ̅). 

After average 𝑃𝐺𝑉 was determined for each pipe, its expected seismic repair rate was estimated 

using empirical fragility relationship given by ALA (2001). The formulation of expected seismic 

repair rate as per ALA (2001) is given by Eq. (6-11). 

𝑅𝑅𝑝
𝑚 = 𝐾𝑝*0.00187*𝑃𝐺𝑉̅̅ ̅̅ ̅̅

𝑝
𝑚 ∗ (1 − 𝑥𝑝)      (6-11) 

where  𝑅𝑅𝑝
𝑚 is the expected seismic repair rate for pipe 𝑝 and 𝑃𝐺𝑉 map 𝑚 (measured in number 

of damages per 304.8 m i.e. 1000 ft of pipe), 𝐾𝑝 is the modification factor which considers the 

structural properties of pipe 𝑝 (Tabulated in ALA (2001) ),  𝑃𝐺𝑉̅̅ ̅̅ ̅̅
𝑝
𝑚 is the average 𝑃𝐺𝑉 for pipe 𝑝 

based on the 𝑃𝐺𝑉 map 𝑚 (measured in inches/second), 𝑥𝑝 is the rehabilitation decision variable 

associated with pipe 𝑝 which takes a value of 0 if the pipe is unrehabilitated and takes a value if 1 

if the pipe is rehabilitated. 

Using these expected seismic repair rate values, probabilistic leaks and breaks were simulated in 

the network using the Poisson process and leak probability matrix given by Shi (2006).  Thousands 

of such damage scenarios were generated using Monte Carlo simulation. For each of these 

scenarios, an equivalent graph was created, and metrics described in the preceding section were 

calculated for the created graphs. The values of these metrics were then averaged over all the 

damage scenarios to estimate the expected value of those metrics for a rehabilitation decision. 

These expected values were then optimized. 
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5.4 Formulation of Stochastic Combinatorial Optimization 

The optimization problem is formulated as a stochastic combinatorial optimization problem given 

by Eq. (5-12) and Eq. (5-13). The constraint represented by Eq. (5-13) is a knapsack constraint 

(Kellerer et al. 2004) imposed by the limited rehabilitation budget available to the water utilities. 

            𝑚𝑎𝑥𝒙∈𝑿 𝐸[𝑦(𝒙)] (5-12) 

 ∑ 𝑎𝑝𝐶𝑝 ≤ 𝐶𝑚𝑎𝑥

|𝑬|

𝟐

𝒑=𝟏
              (5-13) 

where X is the set representing the decision space with every possible rehabilitation policy, 𝑦(𝒙) 

is a random variable representing the value of the metric measured for a damage scenario after the 

implementation of rehabilitation suggested by policy 𝒙 , 𝑎𝑝 is a binary variable to indicate 

rehabilitation decision based on policy x for pipe 𝑝, 
|𝑬|

𝟐
 is half the number of edges in the graph i.e.   

total number of pipes in the network, 𝐶𝑝 is the cost of proactive seismic rehabilitation for the pipe 

𝑝. This is evaluated by cost estimation done using the latest cost data from RSMeans (2018), and 

𝐶𝑚𝑎𝑥 is the maximum rehabilitation budget. 

The decision variable (𝒙) is a vector. Each member of this vector (𝑥𝑝) is associated with a pipe 𝑝 

in the water pipe network and the member’s value indicates whether to rehabilitate or not to 

rehabilitate the pipe 𝑝 . Hence, the decision space is a binary space and the problem is a 

combinatorial optimization problem. Furthermore, the problem is a stochastic optimization 

problem. This is due to the nature of the objective function. Here, random variable in the objective 

function (𝑦(𝒙)) is a stochastic quantity since the spatial distribution of 𝑃𝐺𝑉 associated with the 

earthquake, the location of the pipe damages due to those velocities, and magnitude of such 
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damages are all stochastic. Therefore,  the optimization problem is a stochastic combinatorial 

optimization. 

5.5 Simulated Annealing Based Solution Methodology 

Because of the combinatorial and stochastic nature of the objective function, simulated annealing 

based metaheuristic algorithm was used to solve the optimization problem. Simulated annealing 

based optimization is based on the process of physical annealing process in metals and was first 

proposed by Kirkpatrick et al. (1983). This is the earliest of all physics-based metaheuristic 

algorithms (Siddique and Adeli 2015). The configuration of atoms in solid annealing corresponds 

to the set of feasible solutions of simulated annealing; energy of atoms in solid annealing 

corresponds to the simulated annealing’s objective function; and rate of decrease of temperature 

in solid annealing corresponds to the cooling schedule of simulated annealing (Siddique and Adeli 

2016). Metropolis criterion proposed by Metropolis et al. (1953) is used by simulated annealing 

for accepting or rejecting the neighboring solution. Metropolis criterion used for simulated 

annealing when maximizing the objective function is given by the following steps. 

Step 1:  Find neighboring solution 𝑥𝑛 = 𝑁(𝑥𝑖) 

Step 2: Calculate objective function at 𝑥𝑛 i.e. 𝑓(𝑥𝑛) 

Step 3: If f(𝑥𝑛) < 𝑓(𝑥𝑖), replace the old solution with new one  i.e. 𝑥𝑖  =  𝑥𝑛 

Else if [𝑟𝑎𝑛𝑑[0,1) < 𝑝(𝑥𝑖 , 𝑥𝑛)], replace the old solution with the new one i.e. 𝑥𝑖  =  𝑥𝑛 

Else keep the old solution. 

Here, 𝑥 represents the decision variable, 𝑥𝑛 represents neighboring solutions,  
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𝑁(𝑥)  is the neighborhood function which gives neighboring solution by randomly 

disturbing the current solution,  

𝑓(𝑥) is the objective function evaluated at 𝑥, 

 𝑟𝑎𝑛𝑑[0,1) is the uniformly distributed random number generator, and  

𝑝(𝑥𝑖 , 𝑥𝑛) is the acceptance rule given by Boltzmann probability calculated using Eq. (5-

14) where 𝑇 is the current temperature. 

p(𝑥𝑖 , 𝑥𝑛) = exp (−
𝑓(𝑥𝑖)−𝑓(𝑥𝑛)

𝑇
) (5-14) 

Simulated annealing is a trajectory based metaheuristic algorithm where only one solution is 

analyzed at a time and the direction of search for the next solution is given by the Boltzmann 

probability and metropolis criterion (Siddique and Adeli 2015). The behavior of simulated 

annealing is governed by the temperature (𝑇 ). The algorithm starts at high temperature and 

decreases as the algorithm progress. The rate of decrease is dependent of the selection of cooling 

schedule adopted. At high temperature, the algorithm has high chance of selecting inferior 

solutions. This enables the algorithm to avoid getting stuck in local maximum. In contrast, at low 

temperature, the algorithm converges to the best available solution and tries to optimize it in its 

neighborhood. Selection of initial temperature, cooling schedule, and stopping criteria are highly 

dependent on the optimization problem at hand. Hence, these parameters usually fixed based on 

grid search to create the final solver (Chen and Shahandashti 2009). 

Simulated annealing is a popular optimization algorithm and had shown good performance when 

used to solve optimization problems related to civil engineering (Chen and Shahandashti 2009; 

Hackl et al. 2018; Nayak and Turnquist 2016; Paya et al. 2008; Zeferino et al. 2009). One of the 
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strong attributes of metaheuristic-based optimizers such as simulated annealing is that they do not 

make any strong assumptions regarding the objective function such as its convexity or continuity. 

This makes them really powerful optimization tools when dealing with an objective function which 

does not have a closed form representation. Hence, to solve the optimization problem represented 

by Eq. (5-12) and Eq. (5-13) an optimization solver based on simulated annealing was created. 

Grid search was used to calibrate its maximum temperature, stopping criteria, and cooling 

schedule. The flow of simulated annealing designed to solve the optimization problem given by 

Eq. (5-12) and Eq. (5-13) is illustrated in Figure 5-3. 

 

Figure 5-3. Flow of the simulated annealing 
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5.6 Evaluation of the performance of resilience metrics as the objective function 

Optimization runtime was recorded for each simulated annealing run. Furthermore, the optimal 

policy identified by the simulated annealing using each resilience metric was evaluated using Eq. 

(5-14) and Eq. (5-15) to calculate the post-earthquake serviceability offered by the identified 

optimal policy. To calculate the left side of Eq. (5-14) and Eq. (5-15), the water pipe network was 

at first rehabilitated as per the suggestion of the respective rehabilitation policy. Then, the 

rehabilitated network was subjected to seismic ground motion intensities due to the selected 

scenario earthquake. After that, using Monte Carlo simulation described in preceding sections, 

thousands of damage scenarios were generated. These damage scenarios were then evaluated using 

quasi-static hydraulic analysis to calculate actual flows and pressure for each damage scenario. 

Available demand fraction (Ozger 2003), a measure of post-earthquake serviceability, was then 

calculated using Eq. (5-14) and Eq. (5-15). 

𝑦𝑛
𝑗(𝒙) = {

1, 𝑃𝑛
𝑗
(𝒙) ≥ 𝑃𝑚𝑖𝑛

0, 𝑃𝑛
𝑗
(𝒙) < 𝑃𝑚𝑖𝑛

                   (5-15) 

where  𝐴𝐷𝐹(𝒙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  : Average available demand fraction for given rehabilitation policy 𝒙, 𝑁𝑀𝐶𝑆 : 

Maximum Monte Carlo Runs, |𝑽| :  Total number of nodes in the water pipe network i.e. the total 

number of vertices in the graph, 𝑄𝑛 ∶ Water demand at node n, 𝑦𝑛
𝑗(𝒙) : Indicator function denoting 

if the demand is fulfilled t at node 𝑛 or not for 𝑗𝑡ℎ Monte Carlo run for a given rehabilitation policy 

(𝒙), 𝑃𝑛
𝑗
(𝒙) : Hydraulic pressure at node 𝑛 for j for 𝑗𝑡ℎ Monte Carlo run for a given rehabilitation 

policy (𝒙), and 𝑃𝑚𝑖𝑛 ∶ Minimum pressure required to fulfill firefighting demand (0.14 MPa as per 

Trautman et al. (1987) ). 
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Available demand fraction (𝐴𝐷𝐹(𝒙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) and optimization runtime were then used to compare the 

optimal rehabilitation policies identified using different metrics as the objective function. 

5.7 Results 

A benchmark network (Centre for Water System 2017) simulating a city scale water pipe network 

was used for this study. The network consists of 317 pipes and 268 junctions. Four reservoirs act 

as the source of water for the network. The benchmark network is illustrated in Figure 5-4. Figure 

5-5 shows the assumed arbitrary spatial distribution of pipes embedded in corrosive soil. 

 

Figure 5-4. Benchmark network to illustrate the application of the proposed methodology 
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Figure 5-5. Distribution of pipes embedded in corrosive soil 

The rehabilitation cost constraint (𝐶𝑚𝑎𝑥) was assumed to be 5 million US dollars. To have a spatial 

reference for seismic vulnerability analysis, this network was assumed to be in Pasadena, 

California. 𝑃𝐺𝑉 maps were then generated for a scenario earthquake having an epicenter in the 

nearby Raymond fault. This scenario earthquake was selected based on a methodology involving 

seismic deaggregation analysis outlined in Adachi (2007). Figure 5-6 shows the spatial distribution 

of median peak ground velocity due to the scenario earthquake. 
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Figure 5-6. Spatial distribution of median peak ground velocity due to the scenario earthquake  

 Since different resilience metrics have different sensitivity to stochastic seismic damages, 

identification of sufficient Monte Carlo iterations for stabilizing the expected value for each metric 

was needed. Hence, before the optimization was started, a Monte Carlo convergence study was 

carried out to identify adequate Monte Carlo runs for each metric. Adequate Monte Carlo runs 

identified based on the convergence study for each metric is tabulated in Table 5-1. Table 5-1 also 

shows whether the metric was maximized or minimized. The decision to maximize and minimize 

was based on the calculation of a metric for the unrehabilitated network and completely 

rehabilitated network. For instance, average link density for the unrehabilitated network (for 900 

Monte Carlo runs) was calculated as 0.00824 and for the completely rehabilitated network was 

calculated to be 0.00860. This shows that the metric should be maximized to enhance the resilience 
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of the network. This was done for each metric to identify the type of optimization needed to 

enhance the resilience of the network. After identification of adequate Monte Carlo runs and the 

type of optimization, an estimate of the runtime of simulated annealing was made. The parameters 

of the simulated annealing used for this estimate are given in Table 5-2. The plot of the estimated 

runtime for different metrics is shown in Figure 5-7. 

Table 5-1. Adequate Monte Carlo runs identified based on convergence study 

Metrics Monte Carlo Runs Optimization Type 

Average Link Density 900 Maximization 

Average Node Degree 900 Maximization 

Meshedness Coefficient 900 Maximization 

Articulation Point Density 2700 Minimization 

Central Point Dominance 3700 Minimization 

Available Demand Fraction 3000 Maximization 

 

Table 5-2. Parameters of the final solver 

Parameter Value 

Starting Temperature 100 

Terminal Temperature 1 

Cooling Schedule Linear (𝑇𝑖+1 = 𝑇𝑖 − 2) 

Objective Evaluations at each Temperature 10 

Maximum Monte Carlo Runs Variable for each metric 

Total Objective Evaluations 500 
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This estimation enabled the identification of the metrics which would have led to computationally 

prohibitive optimization runtime. For this study, an optimization runtime of 500 hours was adopted 

as the threshold value for computational feasibility in terms of runtime. Based on these criteria, 

average link density, average node degree, meshedness coefficient, articulation point density, 

central point dominance, and available demand fraction were selected for further analysis. Figure 

5-7 also showed that even though hydraulic equations do not have to solved when evaluating 

topological metrics, evaluating some topological metrics might end up taking more time than 

hydraulic-based metrics such as available demand fraction due to the costly operations involved 

in calculating them. 

 

 

Figure 5-7. Runtime estimation for each metric 

.Following the identification of metrics with feasible optimization runtime, these metrics were 

individually used as the objective in the simulated annealing to identify optimal rehabilitation 
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policies. The pipes recommended for rehabilitation by the optimal policies identified using each 

of these metrics are shown in Figure 5-8 with thick lines. 

 

Figure 5-8. Optimal policies identified using objective based on (a) Average Link Density (b) 

Average Node Degree (c) Meshedness Coefficient (d) Articulation Point Density (e) Central 

Point Dominance (f) Available Demand Fraction 

After the identification of these optimal policies, the post-earthquake performance of each of these 

policies was analyzed in terms of available demand fraction (Eq. (5-14)) which is the measure of 

post-earthquake serviceability offered by the rehabilitation policy. The results of such analyses are 

plotted in . Available demand fraction is plotted for optimal policy identified by using each of the 

six metric. Here, the confidence interval with 5 percent level of significance is also added to the 

plot of available demand fraction. As such, Figure 5-9 is a combined plot of available demand 

fraction and the optimization runtime for each resilience metric. The available demand fraction for 

the unrehabilitated case is also plotted in Figure 5-9 to illustrate that irrespective of the choice of 

metrics, significant improvement in post-earthquake serviceability was achieved. This figure 
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shows that metrics which have significantly low computational runtime (i.e. average link density 

and average node degree) yield rehabilitation policies which perform on par with the optimal 

policies identified by the use of metrics which have significantly high runtime (Central Point 

Dominance, Articulation Point  Density, and Available Demand Fraction) in terms of post-

earthquake serviceability. Here, despite much less optimization runtime, average link density-

based optimization was able to yield a highly competent optimal policy. This policy had available 

demand fraction comparable to the available demand fraction of the optimal policy given by 

optimization which used available demand fraction itself as the objective function. This indicates 

that graph theory-based metrics such as average link density despite their low computational 

runtime may be used as a surrogate for hydraulics-based metrics such as available demand fraction 

to identify optimal rehabilitation policy for maximizing seismic resilience of water pipe network. 

This can be tremendously important for large urban pipe networks where a large number of pipes 

would lead to a large decision space making the use of hydraulic-simulation-based metrics such as 

available demand fraction for resilience optimization computationally prohibitive. 
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Figure 5-9. Comparison of optimal policies based on optimization runtime and post-earthquake 

serviceability 

5.8 Conclusions 

A methodology has been proposed to study the performance of topological metrics when they are 

used to formulate the objective functions to maximize the seismic resilience of the water pipe 

networks.  The objective function to maximize the seismic resilience was formulated using 

different graph theory-based topological metrics common in network analysis literature. The 

resulting stochastic combinatorial optimization problem was then solved using a simulated 

annealing-based optimization algorithm. For the optimization corresponding to each resilience 

metric, the runtime of the optimization and post-earthquake serviceability of the optimal 

rehabilitation policy was calculated. Comparison of these two quantities enabled the evaluation of 

the metric’s suitability for seismic optimization of large-scale water pipe networks. The results 

obtained in this study showed that optimization using metrics which have significantly low 
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computational runtime (i.e. average link density and average node degree) can potentially yield 

rehabilitation policies which perform on par with the optimal policies identified by optimization 

using metrics which have significantly high runtime (Central Point Dominance, Articulation Point  

Density, and Available Demand Fraction) in terms of post-earthquake serviceability. Furthermore, 

the findings also demonstrated suitability of metrics having low computational time such as 

average link density as potential surrogates for computationally intensive hydraulic simulation-

based resilience metrics such as available demand fraction for maximizing seismic resilience of 

water pipe networks. 

These findings will be valuable for utility managers in charge of managing large water pipe 

networks where the use of typical hydraulic simulation-based metrics such as available demand 

fraction for optimization could be computationally prohibitive. For such cases, metrics such as 

average link density can be used as a surrogate for hydraulics-based metrics. This could result in 

optimization runtime reduction by several hours without any significant loss of solution quality. 
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CHAPTER 6  

CONCLUSIONS 

Although many researchers have proposed approaches for seismic vulnerability assessment for the 

water pipe networks, approaches to identify critical pipes for seismic rehabilitation of a water pipe 

network are rare. However, even these rare approaches are based on some simple prioritization 

techniques or ignore the correlation between the effect of pipes’ damages on the network 

serviceability. As such, there was a need of an approach to identify critical pipes for pro-active 

seismic rehabilitation of water pipe networks that is based on comprehensive seismic vulnerability 

assessment; that considers spatial correlation between seismic intensities; that considers limited 

rehabilitation budget; and does not ignore the correlation between the effect of pipes’ damages on 

the network serviceability. Furthermore, there is no literature that studies the performance of 

resilience metrics as the objective function for proactive seismic rehabilitation of water pipe 

network. Hence, this study was conducted, and based on the results, following conclusions were 

derived. 

Task 1 Conclusions: An approach to identify critical pipes for resource-constrained seismic 

rehabilitation and to improve post-earthquake serviceability of a water pipe was created by 

integrating a genetic algorithm with a network-level seismic vulnerability assessment. This 

integration enables the identification of critical pipes, for distribution of rehabilitation resources at 

the system level. The application of the created approach was demonstrated using benchmark 

networks developed for testing algorithms dealing with formulating resilient designs of large water 

pipe networks.  Furthermore, the results obtained from our proposed methodology was compared 

to the results obtained by using simple length prioritization scheme. Results demonstrated that the 

methodology created in this study outperforms the simple prioritization scheme practiced by 
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utilities. Additionally, the created approach was also validated by using identifying critical pipes 

for seismic rehabilitation in a water distribution network developed by the US EPA. These results 

were then compared with the latest methodology in literature. The comparison showed that our 

methodology identified more economical seismic rehabilitation policy compared to the most recent 

proposed approach in the literature when there are limitations about the length of pipes that can be 

rehabilitated. It is expected that the result of this study will help water utilities make informed 

decisions that will enhance post-earthquake serviceability of the water pipe networks. 

Task 2 Conclusions: A simulated annealing-based optimization is developed and integrated with 

network-level seismic vulnerability assessment of water pipe network to maximize its post-

earthquake serviceability by considering network-level distribution of limited rehabilitation 

resources. The developed approach is used to identify critical pipes for seismic rehabilitation of 

two benchmark networks. The results thus obtained were compared to the rehabilitation policy 

suggested by a simple length-based heuristic and the policy suggested by a latest methodology in 

literature. The comparison showed that our approach was able to identify more economical 

rehabilitation policy as compared to the simple length-based rehabilitation heuristic and the latest 

methodology in literature. The developed approach adds to the existing literature, a new method 

of considering network level distribution of limited rehabilitation resources for the seismic 

rehabilitation of water pipe networks. Moreover, the developed approach can be used by the water 

utility managers to formulate economical seismic rehabilitation policy for their water pipe 

networks when rehabilitation budget is constrained. 

Task 3 Conclusions: Resource constrained seismic resilience optimization of water pipe networks 

using graph theory based metrics which have significantly low computational runtime (such as 

average link density and average node degree) can potentially yield rehabilitation policies which 
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perform on par with the optimal policies identified by the optimization with metrics which have 

significantly high runtime (Central Point Dominance, Articulation Point  Density, and Available 

Demand Fraction) in terms of post-earthquake serviceability. Furthermore, the findings also 

demonstrated suitability of metrics having low computational time such as average link density as 

potential surrogates for computationally intensive hydraulic simulation-based resilience metrics 

such as available demand fraction for maximizing seismic resilience of water pipe networks. 

These findings will be valuable for utility managers in charge of managing large water pipe 

networks where the use of typical hydraulic simulation-based metrics such as available demand 

fraction for optimization could be computationally prohibitive. For such cases, metrics such as 

average link density can be used as a surrogate for hydraulics-based metrics. This could result in 

optimization runtime reduction by several hours without any significant loss of solution quality. 
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