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Abstract 

Uncovering Underlying Features 

for State Transition Modeling 

Ashkan Aliabadi Farahani 

The University of Texas at Arlington,  

2019 

 

“All effort to bring order into disorder is disorder.” 

David Bohm 

Supervisor Professor: Victoria C.P. Chen 

Modeling of a dynamic system is the representation of the interconnectivity of system state variables and 

their evolutionary trajectory over time. In this dissertation, the terminology “state transition modeling” refers 

to a situation when the system state transitions and its evolution is unknown and needs to be estimated. There 

are situations in many application settings where one does not simply observe the behavior of the system, but 

also has a desire to take action, intervene, and manipulate one or more system variables, and is interested in 

seeing the causal effect of the intervention. These interventions within a purely observational setting, as 

opposed to a randomized controlled trial, have induced a controversial debate between statistics and 

econometrics. This dissertation presents approaches that seek to uncover the true underlying features for state 

transition modeling given multiple decisions and set of covariates in a complex situation: finite horizon with 

a very few stages, non-stationary nature of transitions, and a highly correlated feature space.  

First, existing state space modeling methodologies are reviewed, and then the proposed methodology is 

presented in two settings. First, a simplified observational setting is studied with no interventions (i.e., no 

treatment variables), and then, second, a more complex observational setting is studied with multiple 

treatment variables under time-varying confounding and multicollinearity. 
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Chapter 1 

Introduction 

Modeling systems with temporal setting, where we are interested in “reasoning” about the state of the 

system as it evolves over time, has applications in a wide variety of fields, such as mathematics, physics, 

biology, chemistry, engineering, economics, and medicine. The evolution rule of the dynamical system is a 

function that describes what future states follow from the current state (i.e., state transition functions). We 

can model such settings in terms of a system state, whose value at time “t” is a snapshot system state of the 

relevant attributes (hidden or observed) of the system at time “t.” [1] In another words, states of dynamical 

systems are those critical variables that provide a complete representation of the internal condition or status 

of the evolution of the system at a “given time.”   

These transition functions could either be known a priori or unknown. For instance, a retail inventory 

system tracks the number of items in stock for each product type.  The state is the current number of items in 

stock, and the transition to the next time period would simply subtract the number of items that were sold to 

customers and add the number of items that were ordered from the manufacturer. This formula that enables 

calculation of the next state given the current state is the state transition function. 

Now imagine, we face a new system with no knowledge about its state attributes or about its state 

transition evolution. All we know is based on information and data gathered from the domain expert, including 

information on potential state and treatment variables. Then we begin our study in a pure observational setting, 

and at each stage or time slice, record the value of the candidate states. There are also treatments or 

interventions in the data that are dynamically occurring and not controlled as in a randomized clinical trial. 

For our studies, data are assumed to be collected over a finite horizon with very few discrete stages, and it is 

allowable for the state transitions to be nonstationary. With these data, it is desired to understand the evolution 

of the system and how interventions affected the system. In other words, we would like to model the unknown 

state transitions of the system from one stage to another, not only evolving from natural evolution but also 
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due to the interventions. One of the applications studied is that of an adaptive interdisciplinary pain 

management program. It is desired to understand the effects of a set of treatments on a patient’s chronic pain 

metrics that are observed at three points in time, pre-treatment, mid-treatment, and post-treatment [3].  

Without having the state transition function, and thereby the evolution of the system dynamics, any further 

analysis will be impossible, let al.one optimization of the system, for instance finding the most effective set 

of treatments in pain management study. Hence, this dissertation provides a step towards uncovering true 

features needed to properly represent the state transition in a dynamic simulation or optimization. 

1.1 Definition of State Transition Modeling 

Here we describe the notation and setting of the problem in more detail.  

𝑌𝑡+1   =  𝑓(𝑌1:𝑡) + 𝑓(𝑈1:𝑡) + 𝑓(𝑋𝑡)   + 𝜖𝑡                                                                                               (1) 

𝑌𝑡+1   =  state of interest at time 𝑡 + 1   

𝑌1:𝑡    =  state of interest up to time 𝑡 

𝑋𝑡      =  set of Exploratory variables  at time 𝑡   

𝑈1:𝑡   =  decision or control variable up to time 𝑡   

𝜖𝑡       =  error at time 𝑡   

Equation (1) is the general state transition model representation for our study. More complex forms are a 

challenge for future work. In particular, equation (1) shows dependency of the state on previous states, on 

possibly previous treatments/interventions/actions, and on a set of covariates that are state variables. Now, 

depending on the system setting and other limitations, this model form encompasses a wide variety of models 

in statistics and state space literature. Hence, we clarify the purpose of our study, and specify the system of 

interest, while also pointing out some limitations.  
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1.2 Definition of the Problem: Purpose, characteristics, and 

limitations 

1. Unknown State Transition Model 

As the first and foremost aim of this study, this task conceptually can be separated into two subproblems. 

First, a common problem in the statistics and computer science literature is prediction.  For this subproblem, 

we seek to predict future states from the past history and to identify the precision of this prediction. Second, 

a causal modeling problem seeks to uncover the true underlying state transition model of the system. Part of 

this subproblem is to identify, among the candidate state variables and control variables, the true features that 

contribute to evolving the state in the next stage. This problem of discovering the true underlying model 

allows us better represent reality and utilize the causal evolution to enable better interventions for controlling 

the system. While the literature focuses more on the former, our focus in this dissertation is on the latter.  

2. Finite Horizon 

 This study only focuses on dynamic systems with a limited number of stages. Our first case study has 

only three stages similar to figure 1. 

3. Linearity 

 We assume that function f in equation (1) is linear or can be approximated linearly.  

4. Non-stationary 

 The state transition of one stage differs from state transition of another stage. That is natural when we 

only have a few stages. Stationarity often exists or is assumed with infinite horizon problems or those 

with a large enough number of stages [4, 5]. 

5. Discrete or continuous 

In general, the state space of the system can be a mixture of continuous and discrete variables. However, 

in this study, the response or outcome variables is assumed to be continuous. 
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6. Offline or batch analysis 

The proposed approach conducts an offline or batch analysis, for which all the data has been collected 

and is analyzed in one batch. 

7. Intervention and causal effect 

In addition to observing the behavior of the system, a key element in causal modeling is understanding 

the effect of the treatment or intervention, i.e., the efficient estimation of the causal effect of the 

intervention. In another words, we have decision or control variables and would like to see rather the 

effect they have on system behavior, subject to several other variables that describe the state space of the 

system. 

8. Pure Observational Setting 

We emphasize again that our methodology is developed in a pure observational setting. There is a debate 

between statistics and econometrics in the last decade to address “causal reasoning” in an observational 

setting [6, 7, 8, 9, 10].  When we model the unknown state transition of a system, we would like to get as 

close as possible to the true underlying relationship among variables that are contributing to the change 

in system behavior over time. We do not claim that our methodology is capable of causal inference in an 

observational setting, but rather exploring and inventing ways to take a step closer to that concept 

regardless of the ongoing debate between statistics and econometrics [11, 12]. 

9. Highly correlated state space 

Apart from the issue of time-varying confounding that exists in the pain management case study and 

which is handled with weighting methods developed previously by Ohol et al. [3, 13], there exist high 

correlations between state variables (covariates) and controls (treatment). Detecting and extracting 

important interpretable features in this setting is a challenge. We motivate our simulated case studies 

induced by this issue, and we provide more details in Chapter 3.  
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10. Parsimony on control variables 

The result of the state transition modeling in this study may be used to optimize the system. The 

optimization task is to dynamically adjust the controls in each stage so to yield the desired system 

behavior. One of the challenges is that the control variables (i.e., U in state-space models [14]) are affected 

by state variables. When uncovering the true features underlying the unknown state transitions there could 

be many potential state variables that are unimportant features; hence, parsimony is desired. While fewer 

treatment control variables are anticipated to be unimportant, parsimony is also sought among the 

treatments.  

11. Order unknown 

The order of dependency in this study, like many other specifications of this system, is unknown. Thus, 

the matter of the order exploration of the system depends on the availability of data for not just one, but 

several runs. We defer this discussion to the end of the literature review.  

1.3 Some Comparative Terminology between Statistics and 

Computer Science 

In our literature review, because we cover a broad class of models from both the statistics and computer 

science literature, we provide the reader with a translation of equivalent terminology. The usage of the 

term learning and inference depends upon the field of study. Confusion usually arises when the words are 

used casually without reference to a particular field. The process of observing data and learning from it is an 

intuitive definition of inference. 

When statisticians talk about inference, they usually talk about statistical inference. In statistical 

inference, we observe some data, and we would like to build knowledge about the process that generated 

these data. Hence, predictions, estimating error bars, hypothesis testing, and parameter estimation would all 

be part of statistical inference. Notice how parameter estimation is also included under statistical inference. 
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On the other hand, traditional machine learning researchers from a computer science background often like 

to make a distinction between learning and inference. Learning is associated with parameter estimation and 

is not explicitly thought of as an inference problem. Hence, the conceptualization of the term "inference" is 

narrower than that of a statistician. 

Table 1.  Equivalent Terminology between Statistics and Computer Science 

Computer Scientist Statistician Meaning 

Inference 

e.g., sampling algorithm,  

Kalman forward and  

backward algorithm 

Statistical Inference 

Predictions, Confidence Intervals,  

hypothesis testing 

Use the estimated model or learned  

Parameters to predict some value 

Parameter Learning 

e.g., Gradient decent algorithm 

Parameter Estimation  

Least squares 

Using data to estimate an  

Unknown parameter   

Structure Learning  Model Selection Select the best model that predicts well  

or represents the features closest to that  

of the true model.  

 

Commonly, inference is thought of as making some sort of prediction. For example, in linear regression, 

given some features and some learned parameters, we may want to predict some real-valued variable. Or, in 

an image processing problem, given an image with many missing pixel values, we may want to fill in the 

most probable values for the missing pixels from our learned joint distribution. Both of these predictions 

would be called inferences. An advantage of making a distinction between learning and inference is that it 

naturally separates learning algorithms from inference algorithms. Although for some problems, parameters 

can be estimated analytically, most problems require a learning algorithm, such as a gradient descent type 

algorithm. Similarly, in some inference problems, such as the image processing example above, the prediction 

is usually not a closed-form formula and requires one to use an inference algorithm, such as a sampling 

algorithm, to compute the prediction. Things become even more interesting in models with latent variables, 
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where often times an inference algorithm is nested within a learning algorithm, as seen in Markov chain 

Monte Carlo (MCMC) Expectation-Maximization (EM) algorithms. 

For more clarification, estimation and learning are basically the same, but the flavor of terms is a little 

different. Estimation usually means that one specifies underlying distributions and then estimates their 

parameters. Learning may be distribution free, perhaps solely optimizing some target function, and it applies 

in situations with complex structured data when it not reasonable or possible to build a distributional model. 

To summarize, the difference between inference and learning depends on the eye of the modeler. If you think 

like a statistician, then learning/parameter estimation is a type of inference. If you think like a traditional 

machine learning researcher, then learning is usually parameter estimation and inference is usually prediction. 

Different perspectives are useful in different situations. 

The remainder of this research is organized as follows. Chapter 2 provides a literature review on common 

modeling techniques that handle state transitions in a temporal setting. These models are state-space models 

(SSM), Kalman filter models (KFM), Hidden Markov Models (HMMs), Dynamic Bayesian Networks 

(DBNs), and longitudinal data analysis. Then we discuss the shortcomings of these methods in addressing 

our application case, and then provide our motivation to fill this gap.   Chapter 3 presents and motivates our 

approach based on penalized regression and demonstrates in performance for additive underlying models that 

have varying levels of correlation structure. Chapter 4 integrates the approach in Chapter 3 with that of Ohol’s 

[13] to enable handling of time-varying confounding in adaptive treatment regimes. Finally, Chapter 5 

presents conclusions and future work. 
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Chapter 2 

Literature Review 

The data generated by a dynamical system is either sequential data or time series data or simply put, 

repeated measures of the same variable over time. Methods found in the literature to handle these kinds of 

settings are classical approaches, such as time series prediction using linear models (ARIMA, ARMAX, etc., 

see [5]) and longitudinal data analysis for repeated measures [15, 16]. Or methods, such as State Space Models 

(SSM), and its different representations of Kalman Filters (KFMs), Hidden Markov Models (HMMs) and 

more of a general representation, Dynamic Bayesian Networks(DBNs) [14, 1].   

One thing worth mentioning here is that the family of SSMs is originally designed for infinite sequences 

or sufficiently long finite sequences, so that one can assume stationarity of the state transitions. The inference 

and learning algorithms in this field rely heavily on this set of long sequences. Consequently, in spite of the 

fact that these methods structurally seem appealing, they are not appropriate for cases with very few stages 

or nonstationary transitions.   We first give a review of SSMs and their variations and then make an effort to 

redefine our problem in the body of state-space models for the purpose of an interactive review.  

2.1 State-space Models 

The terminology state-space models is often times translated as KFMS. Murphy [14] introduces the 

terminology for a broader range of models as KFM, HMM, and DBN since they are basically trying to 

accomplish the same thing in a different setting. State-space models are better than classical time-series 

modeling approaches in many respects [17]. In particular, they overcome all of the problems in time series 

[18, 19, 20, 21, 22]: they do not suffer from finite-window effects that force us to base our prediction of the 

future on only a finite window into the past; they can easily handle discrete and multivariate inputs and 

outputs; and they can easily incorporate prior knowledge. For instance, there could be variables that we cannot 

measure, but whose state we would like to estimate; such variables are called hidden or latent. Including these 

variables allows us to create models which may be much closer to the “true” causal structure of the domain 
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we are modeling [7]. Even if we are only interested in observable variables, introducing “fictitious” hidden 

variables often results in a much simpler model. For example, the apparent complexity of an observed signal 

may be more simply explained by imagining it is a result of two simple processes, the “true” underlying state, 

which may evolve deterministically, and our measurement of the state, which is often noisy. We can then 

“explain away” unexpected outliers in the observations in terms of a faulty sensor, as opposed to strange 

fluctuations in “reality.”  

In the following subsections, we discuss representation of state-space models in general terms, how to 

use them to update the belief state and perform other related inference problems, and how to learn and build 

such models from data. We then discuss the two most common kinds of state-space models, namely Hidden 

Markov Models (HMMs) and Kalman Filter Models (KFMs). In Murphy [14] the representation, inference, 

and learning of more general state-space models, called Dynamic Bayesian Networks (DBNs) are discussed 

[14]. Any state-space model must define  

1- Prior or initial state, 𝑃(𝑆1).                                                                                                                (2) 

2- State transition function, 𝑃(𝑆𝑡|𝑆𝑡−1).                                                                                                (3) 

3- Observation function 𝑃(𝑂𝑡|𝑆𝑡).                                                                                                         (4) 

Sometimes we have some control over the system we are monitoring. In this case, we would like to predict 

future outcomes as a function of our intervention (policy /decision). In the controlled case, equations (3) and 

(4) become respectively,  𝑃(𝑆𝑡|𝑆𝑡−1, 𝑈𝑡−1) and  𝑃(𝑂𝑡|𝑆𝑡, 𝑈𝑡); we allow the observation to depend on the 

control so that we can model change with intervention, known as active perception [23]. 

In a state-space model, we assume that there is some underlying hidden state of the world (𝑆) that 

generates the observations (𝑂), and that this hidden state evolves in time, possibly as a function of our inputs 

(U).  A state-space model is a model of how 𝑆𝑡 generates or “causes” 𝑂𝑡  and 𝑆𝑡+1. The goal of inference is 

to invert this mapping, i.e., to infer 𝑆1:𝑡 given 𝑂1:𝑡 , i.e., 𝑃 (𝑆𝑡|𝑜1:𝑡, 𝑢1:𝑡). The concept of hidden is a key 

concept in SSMs, and if misunderstood, then SSMs cannot be of help to a researcher. We defer the practical 
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discussion of this to 2.4 for full observability and the appendix for partial observability, where we define 

different versions of our problem in the body of SSMs.  

2.1.1 Fundamental state-space models assumptions  

1. Time slice. The first simplification is to discretize the timeline into a set of time slices that are 

measurements of system states at intervals that are regularly spaced with predetermined time granularity 

Δ. This assumption simplifies our problem from representing distributions over a continuum of random 

variables to representing distributions over countably many random variables, sampled at discrete 

intervals. 

2. Markov assumption on the hidden state (S) and the observation (Y). One very natural approach is to 

assume that the future is conditionally independent of the past given the present.  

𝑃(𝑆𝑡|𝑆1:𝑡−1) =  𝑃(𝑆|𝑆𝑡−1)                                     (𝑆𝑡  ⊥  𝑆1:𝑡−1 | 𝑆𝑡−1)                                                       (5) 

𝑃(𝑂𝑡|𝑂1:𝑡−1, 𝑆𝑡) =  𝑃(𝑂𝑡|𝑂𝑡−1, 𝑆𝑡)                     (𝑂𝑡  ⊥  𝑂1:𝑡−1 | 𝑂𝑡−1)                                                      (6) 

We need only consider whether the Markov assumption is a sufficiently reasonable approximation to the 

dependencies in our distribution. In most cases, if we use a reasonably rich state description, the 

approximation is quite reasonable [1]. 

3. Stationarity, also called time-invariant or homogenous. If we assume that the transition functions, 

equation (2), are the same over time, then the model is said to be time-invariant or homogeneous. The 

reason behind this assumption is in case of infinite-horizon the process can continue indefinitely, then 

equation (3) still leaves us with the task of acquiring an infinite set of conditional distributions, or a very 

large one, in the case of finite-horizon processes. Therefore, we usually make one last simplifying 

assumption. Without this assumption, we could not model infinitely long sequences. A remedy to 

parameter change over time is to just add them to the state space, and treat them as additional random 

variables [1]. 
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There are many ways of representing state-space models (SSMs), the most common are Hidden Markov 

Models (HMMs) for discrete state spaces, Kalman Filter Models (KFMs) for continuous state spaces, and 

switching state space for a mixture of discrete-continuous state spaces. Finally, all of the state-space 

models can be generalized as DBNs, so that HMMs and KFMS are just special cases [14]. A brief 

representation of KFMs, HMMs, and DBNs is in the Appendix.   

2.2 Inference and Learning of State-Space Models 

Previously, we summarized the representation of state-space models, and it seems that our problem of 

interest, namely state transition modeling lies somewhere in equation (3), the state transition model of a state-

space model. Notice that in many early applications of SSMs, like tracking an object, we are studying a 

physical system with a scientifically known transition from physics law, which means that we know the  

transition models and its parameters upfront from apriori facts. In facing the system with unknown structure 

and parameters, the EM algorithm [21, 24] and its extensions are used. In machine learning and computer 

science estimating the hidden state given the observations and the model (i.e., inference), and learning the 

model parameters is considered as two separate problems of respectively, Inference and Learning or system 

identification in the engineering literature [25]. 

There are mainly two cases in state-space models. In the first case, we know what hidden states cause the 

observations and just want to estimate them. These are examples that come first in any state-space models 

tutorial, such as the aforementioned tracking problems in linear dynamic systems (KFMs). Often times we 

can have the initial state, state transition matrices, and the observation function based on the knowledge of 

the problem structure or physics. The aim then is to obtain accurate or exact inferences of the unobserved 

information from the data, which is also known as state estimation.  

The main kind of inferences that we might want to perform using state-space models are shown in 

Figure 1 [26, 27]. 
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Figure 1.The main kinds of inference for state-space models. The shaded region is the interval for which we have data. The 
arrow represents the time step at which we want to perform inference. t is the current time, and T is the sequence length. 

 

 

 

 

 

 

 

 

 

 

 

Filtering: The goal of filtering is computing the probability of the current hidden state 𝑋𝑡 given the sequence 

of inputs and outputs up to time t. 𝑃(𝑆𝑡|𝑌1:𝑡 , 𝑈1:𝑡). 

Smoothing: The goal of smoothing is to compute the probability of 𝑋𝑡 given the sequence of inputs and 

outputs up to time T, where T > t. 𝑃(𝑆𝑡|𝑌1:𝑇 , 𝑈1:𝑇). 

Prediction: Finally, the goal of prediction is to compute the probability of future states and observations 

given observations up to time t.  

The second case, which is our case, is to explore possible explanation or causes for the observed data 

without having any explicit model for what should be the state transition evolution and observation function. 

Parameter and structure learning: Discovering the true underlying model: In this case, the observation 

and state transitions are mostly or entirely unknown. The goal instead, is on learning the structure and a few 

parameters that model the observed data well (with high likelihood). In other words, for instance for the 

KFMs given only an observed sequence of the outputs (or perhaps several sequences), find the parameters of 

the SSM {𝐴, 𝐶, 𝑄, 𝑅, 𝜇1, 𝑄1} which maximize the likelihood of the observed data. This is where the concept 

of discovering the true underlying model is motivated since there is absolutely no prior knowledge about the 

true underlying transitions of the system. In general, in the sense of a directed acyclic graph (DAG), structure 



 13 

learning refers to learning the graph topology (arcs between nodes or dependency structure) no matter what 

parameterization is used. This is often called model selection in statistics. 

 In state-space models, algorithms for solving parameter and structure learning depend mainly on three 

factors, fully observed or partially observed, Frequentist or Bayesian estimation, offline or online learning. 

Fully observed or partially observed. Partially observed refers to the case where the values of some of the 

nodes in some of the cases are unknown. This may be because some data are missing, or because some nodes 

are latent/hidden. Learning in the partially observed case is much harder; the likelihood surface is multimodal, 

so one usually has to settle for a locally optimal solution, obtained using EM or gradient methods. 

Frequentist or Bayesian. A frequentist tries to learn a single best parameter/model. In the case of parameters, 

this can either be the maximum likelihood (ML) or the maximum a posteriori (MAP) estimate. In the case of 

structure, it must be a MAP estimate, since the ML estimate would be the fully connected graph. By contrast, 

a Bayesian tries to learn a distribution over parameters/models. This gives one some idea of confidence in 

one’s estimate and allows for predictive techniques, such as Bayesian model averaging. Although more 

elegant, Bayesian solutions are usually more computationally expensive to obtain. 

Offline or online learning. Offline learning refers to estimating the parameters/structure given a fixed batch 

of data which is the focus of the study here. Online learning refers to sequentially updating an estimate of the 

parameters/structure as each data point arrives. (Bayesian methods are naturally suited to online learning.) 

We emphasize again that our study here is learning parameters and structure of the model that causes the 

observations. In a DAG of our problem in figure 1, if we assume that intra-slice connectivity is fixed, then 

the goal of transition structure learning is to learn inter-slice connectivity arcs, choose the parents of nodes in 

time slice t from time slice t - 1, which is equivalent to the variable or feature selection problem.  

2.2.1 Inference and learning of linear dynamic systems or KFMs 

Inference:  The recursive algorithm to compute the three types of inference probabilities of filtering, 

smoothing, and prediction (with known parameters) is known as Kalman Filtering [28]. Kalman Smoothing 
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recursions or Rauch-Tung-Streibel (RTS) smoother (combined forward and backward recursions for 

smoothing) [29]. Filtering and smoothing over continuous states have been extensively studied in the work 

of Kalman [30] and Rauch [29], but this literature is not very well known to the machine learning community. 

To understand more about filtering and smoothing problem of LDS please refer to [25, 31]. 

Learning: The learning of the parameters of dynamic linear systems is known as system identification in 

engineering terminology. The idea of online learning is desired in real-time adaptive control situations and is 

obtained by gradient algorithms [32]. Other than gradient-based methods, the EM algorithm is mostly used 

for offline learning with unknown parameters [33, 34, 35, 36, 24]. 

Caveats: KFMs assume the system is jointly Gaussian (observation and state). This means the belief state 

must be unimodal, which is inappropriate for many problems, especially those involving qualitative (discrete) 

variables. For example, some systems have multiple modes or regimes of behavior; in these cases, KFMs 

cannot capture multi-modal patterns. This is the idea behind the switching KFMs that we discuss in 2.2.3.  

2.2.2 Inference and learning of HMMs (discrete states) 

Inference: There are two algorithms commonly used to solve two kinds of inference problems [37]. First, 

same as KFMs, is finding the posterior probability of the hidden states give the observations using a recursive 

algorithm known as the forward-backward algorithm that is analogous to Kalman filtering and smoothing. 

This algorithm is a special case of exact algorithms for probabilistic graphical models [14, 38, 6]. The second 

kind of inference algorithm is finding the single most likely sequence of the hidden states. The solution is a 

Viterbi Algorithm, which also consists of a forward and backward path in the model [39, 14]. 

Learning: For learning the maximum likelihood of Parameters of HMMs given the sequence of observation, 

the Baum-Welch algorithm [40], which is a special case of EM algorithm, is often used. 

To understand about different augmented models of HMMS and comprehensive review of their inference and 

learning algorithms, please read [14, 1].  
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Caveats: Let’s say we have K possible states, in a problem with N objects, ends up with 𝐾𝑁 possible values 

for the state space. Since we must form a Cartesian product of the state space of each individual object, to 

specify the transition and observation model, we need a lot of data to learn the model (high sample 

complexity) and exponential time 𝑂(𝑇𝑘2𝑁), for forward-backward inference algorithms (computational 

complexity). DBNs help to mitigate both of the problems.  

2.2.3 Inference and learning of switching state-space models or hybrids 

In many applications, the state space is the mixture of continuous and discrete variables, so that neither 

pure KFM nor pure HMM state transitions can appropriately capture the temporal structure of the data. For 

recent developments and representations in switching state-space models, please refer to [41, 42]. This family 

of models, also known as Hybrid Models, Jump-linear system, jump-Markov model and Switching KFMs 

[14], opened a new door for handling not only mixed states of continuous and discrete, but using the “switch” 

concept to model piece-wise linear or nonlinear state-space models [43], non-stationary state transition as a 

special case of switching state-space models [35], and non-Gaussian noise models. The term “jump” or 

“switch” implies that the state is discrete, whereas linear allows the possibility that the state is continuous. 

Note that representations of this kind of model can differ, based on the concept of the “switch” parameter in 

the application of interest, and one should probably develop a problem-specific switching state space rather 

than conventional developments in this field. For some examples of applications, please refer to [41] and [14]. 

Inference and learning: Unfortunately the exact inference algorithms in switching KFMs is intractable, 

therefore approximate inference methods are used. There are two approximate inference approaches: 

deterministic approximation and stochastic approximation. For details refer to [14]. 
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2.3. Longitudinal Data Analysis 

We now change our perspective and focus to the statistics literature and give a brief review of the family 

of statistical models known as longitudinal data analysis that is designed to handle the mechanism of the 

change of time or effect of covariates of research unit or subjects. In each of these subjects, the data are 

collected repeatedly over time. Therefore, the key feature of longitudinal data is that each individual's 

measurements are correlated to each other.  

2.3.1. Mathematical notation  

Suppose 𝑦𝑖𝑗 are the jth of 𝑛𝑖 measurements on the ith of n subjects. Let 

𝑦𝑖 = (𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑛𝑖)
𝑇 , 𝑖 = 1,2,… , 𝑛  𝑤ℎ𝑒𝑟𝑒 ∑ 𝑛𝑖𝑖 = 𝑁                                           (7) 

be the observed response vector of subject i and  

𝑡𝑖 = (𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑛𝑖)
𝑇                                                                        (8) 

be the subject observation time points for subject i. Let  

Σ𝑖 = 

[
 
 
 

Var(𝑦𝑖1) Cov(𝑦𝑖1, 𝑦𝑖2) ⋯ Cov(𝑦𝑖1, 𝑦𝑖𝑛𝑖)

Cov(𝑦𝑖2, 𝑦𝑖1) Var(𝑦𝑖2) … Cov(𝑦𝑖2, 𝑦𝑖𝑛𝑖)

⋮ … ⋱ ⋮
Cov(𝑦𝑛𝑖1, 𝑦𝑖1) Cov(𝑦𝑖𝑛𝑖 , 𝑦𝑖2) ⋯ Var(𝑦𝑖𝑛𝑖) ]

 
 
 

                                         (9) 

be a positive definite matrix, the covariance matrix of 𝑦𝑖, and 𝜇𝑖 = (𝜇𝑖1, … , 𝜇𝑖𝑛𝑖)
𝑇 is the population mean 

vector of the ith subject. Then the data can be defined as (10):  

𝑦𝑖 ∼ (𝜇𝑖 , Σ𝑖)                                                                    (10) 

We start with the classical approach of modeling longitudinal data analysis for the purpose of 

understanding and then extending the literature later in 2.3.3. The simplest way of modeling is multivariate 

data analysis to parameterize the population means of the data by a multivariate linear regression approach. 

If we believe some p variables may affect 𝜇𝑖, then the linear regression model can be expressed as: 

𝑦𝑖 = 𝑋𝑖𝛽 + 𝜀𝑖                                                                  (11) 
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where, 𝑋𝑖 is a design matrix ( 𝑛𝑖 × 𝑝 ) and  𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑝)
𝑇 is a vector of parameters representing how 

much the covariates could affect the response vector  𝑦𝑖 . The error term 𝜀𝑖   is a vector of length 𝑛𝑖  of 

unobservable random errors, 𝜀𝑖 = (𝜀𝑖1, 𝜀𝑖2, … , 𝜀𝑖𝑛𝑖)
𝑇 .  The covariates vector has dimension p and can be 

discrete or continuous and time-independent, if they do not change by time, or time-dependent, if they do. 

2.3.2 Major issue in longitudinal data analysis: Covariance structure 

specification  

Longitudinal data was born with the natural within-subject-correlation, so this correlation has to be 

incorporated into the within-subject covariance. If we suppose that random errors 𝜀𝑖 have mean zero and 

the following simple independent covariance structure in (12): 

 

 

                                                                                                                                                     (12) 

 

Then following the process of ordinary least squares, the estimator of 𝛽, �̂�, could be expressed as: 

 

                                                                                                                                                     (13) 

  

Ordinary least squares estimation is quite simple in computation, but the assumption about the 

covariance structure Σ𝑖  is very restrictive and not realistic for longitudinal data, where within-subject 

measurements are correlated. Following the process of Generalized Least Squares (GLS), with the form of 

Σ𝑖 assumed to be a known positive definite matrix, the estimators 𝛽 are expressed as: 

 

(14) 
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From the generalized least square estimators, we could see that the estimation of 𝛽  depends on the 

covariance Σ𝑖. Good estimates of Σ𝑖 increase the efficiency of the estimates of parameters 𝛽 and therefore 

the means. In practice, Σ𝑖  is always unknown and needs to be estimated. Therefore, the estimation of 

covariance is essential for the mean in longitudinal data analysis. 

2.3.2.1 Stationary covariance structure 

 For most of the models in statistics, time series analysis, machine learning, signal processing, and state 

space modeling, for the covariance with unknown parameters, a specific stationary structure or in another 

words, a constrained stationary parameterization of covariance, such as AR(1), Compound Symmetry and 

so on, is chosen in advance even when the data do not support it. These methods all suffer when the 

covariance structure is misspecified or is not stationary. Wang and Carey [44] found that the 

misspecification of covariance may lead to great loss of efficiency of the mean parameter estimation.  

2.3.2.2 Non-Stationary Covariance Structure 

To tackle the problem of non-stationarity, an unconstrained parameterization of covariance structure, a 

'data-driven' method based on modified Cholesky decomposition was developed by Pourahmadi [45, 46]. 

The formulation of modified Cholesky decomposition has three desirable features: the first is modeling 

non-stationary dependence structure; the second is the explicit statistical interpretation of the parameters; 

the third is the assurance of positive-definiteness of the covariance structure [45]. This general model for 

longitudinal data analysis could be divided into three types, roughly: parametric model, nonparametric 

model, and semi-parametric model. For our purposes, we only review the parametric models. For non-

parametric and semi-parametric please refer to Huang [47]. 

2.3.3 Parametric modeling of longitudinal data analysis 

Diggle et al. [15] and Verbeke et al. [16] provided an excellent overview of the parametric longitudinal 

methodology for discrete and continuous data, respectively.  
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2.3.3.1 Normal-based longitudinal data 

The first fundamental development for parametric longitudinal analysis is the Linear Mixed-Effects 

Model (LMM). This model was first suggested by Laird and Ware [48]  for normally-distributed 

longitudinal data.  

𝑦𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝑏𝑖 + 𝜀𝑖                                                              (15) 

 

Here 𝛽 and 𝑏𝑖 represent the fixed and random effects, respectively. The random effects, 𝑏𝑖, are introduced 

to characterize the individual properties, namely 'heterogeneity,' of the data. With the EM algorithm to 

estimate the parameters of mean and variance, the LMM is still one of the most popular models for the 

analysis of normal-based longitudinal data. 

2.3.3.2 Non-normal longitudinal data 

An intuitive extension of LMMs is to build models which could fit non-normal longitudinal data, 

such as discrete data. Two main different models are developed to address this purpose: one is the 

marginal model, the other is the mixed-effect model. 

Non -normal longitudinal data: Marginal Models 

The development of marginal models originated from Generalized Linear Models (GLMs, Nelder, and 

Wedderburn [49]). GLM is a unified tool for analysis of either continuous or discrete distributed data 

without correlation. Liang and Zeger [50] extended GLM to Generalized Estimating Equations (GEEs). In 

this model, the working correlation matrix R(𝛼) with parameters 𝛼 are added into the estimating equations, 

which enable GEEs to accommodate the correlated data patterns, such as longitudinal or functional data. 

There are many papers that discuss and extend GEE models, which makes GEEs one of the hottest and 

most developed tools for longitudinal data analysis.  

Non -normal longitudinal data: mixed-effect Models 

In contrast to marginal models in which the mean response measurements only depend on fixed-effects 

covariates, mixed-effects models parameterize the mean response by both the fixed-effects covariates and 
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random-effects covariates. One main model of this kind is the Generalized Linear Mixed Model (GLMM), 

which is just the intuitive extension of LMM (Stiratelli, Laird, and Ware [51], Zeger, Liang and Albert [52], 

Schall [53], Breslow and Clayton [54]). Up to this point, we have reviewed the Linear Model (LM), Linear 

Mixed Model (LMM), Generalized Linear Model (GLM), Generalized Linear Mixed Model (GLMM) and 

Generalized Estimating Equation (GEE) [47]. In addition, another type of mixed-effect model named non-

linear mixed-effects model, which can be interpreted as a two-stage form of model, was proposed to 

accommodate non-linear longitudinal data. For more information, Davidian and Giltinan [55] and Vonesh, 

Chinchilli and Pu [56] give a detailed illustration of this model. 

2.3.4 Closest form of the longitudinal model to state transition modeling 

Apart from the non-linear mixed effects model, there are also some other parametric models for non-

normal distributed longitudinal data analysis. One of them is the so-called transition model, where the mean 

response measurements are set to be dependent on the previous response measurements, in addition to 

covariates (Diggle et al. [15]). The idea of the transition model could be traced back to Markov models and 

autoregressive models in time series. However, since the order of the dependence of response measurements 

on previous responses is very sensitive, this model has restricted applications (Fitzmaurice [57]). In our 

study if we assume that first order dependency is enough, and we also can assume that treatments are a 

special kind of covariates and that we can be parsimonious on treatments, then applying transition models 

is not possible, as it is obvious that they are developed only for cases with discrete and non-normal response 

and noise. Our study in terms of longitudinal data analysis is modeling the current continuous response 

dependent on the previous continuous response and a set of mixed discrete-continuous covariates with 

normal errors. The only applicable form is the linear mixed effect model (LMM). However, LMM does not 

explicitly model the dependency of the response on past responses, but rather captures this dependency 

implicitly by assuming or testing a structured covariance matrix, such as AR(1).  
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Figure 3. A highly simplified version of our problem in DAG or causal graph. The arcs or edges are dotted 

line to emphasize that these are hypothesized influence. The Graph is only unrolled in time. That means, X, 

U and Y can be unrolled based on the problem. U and Y can be unrolled based on the problem. U is double 

circle here to emphasize its control nature. 

 

Figure 2.  Development of Longitudinal Data Analysis 

2.4 Motivation and Contribution 

Now we would like to see where our problem of interest lies in the body of state-space models and what 

is the gap that motivated us for this dissertation.  

2.4.1 Defining the problem as a state-space model 

Assuming the reader has prior knowledge about directed acyclic graphs (DAG) or causal diagrams [1, 

14, 58, 6] , we have a graphical representation (DAG) of the general problem of interest in figure 3.  
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Figure 3 is not fully representative of our problem, but is highly simplified and general in terms of 

dependency structure. Let Y be a continuous response of interest. Let X be a set of predictors, which is a 

mixture of continuous-discrete variables, which can be time-invariant or time-variant. The time-variant case 

is shown in figure 3, and the edge between X and U is removed, where U is the intervention in the system 

(a.k.a, decision, control or treatment), containing multiple binary control variables (more than one treatment 

can be activated at a time), and we would like to see its effect on the transition of Y. The figure is only unrolled 

in time slices. That means, X, U, and Y at each time slice can be unrolled to multiple variables of its own and 

relationships or edges can exist among them. For simplicity, we keep them unrolled here. One difference in 

the control variable, as opposed to most of the state-space models, is that we also have dynamics between 

controls (U). The edge in figure 3 between treatments is representing the same concept. One can think of U 

as state variables since they are also evolving in the system. We assume for now that the observation and state 

are jointly Gaussian. We also assume first-order stationarity and Markov. Then we represent DAG in figure 

3 in KFMs in two forms, fully observed and partially observed for interested reader in appendix.  

2.4.1.1 Fully observed state space 

Similar to any other SSM, we define our problem in three steps. 

1- The initial state is the past records of the X, Y in time slice 1.  

We take the first action U at time slice 1 and observe Y in the next stage or time slice 2.  

2- Now let 𝑆𝑡 = (𝑋𝑡 , 𝑌𝑡 , 𝑈𝑡) represent the state of the system at time t. by assuming 𝑆𝑡 as all Gaussian 

continuous, so that we can use Kalman Filter.   

The state transition function is: 

[

𝑌𝑡
𝑈𝑡
𝑋𝑡

] =  [
𝐴1 𝐴2 𝐴3
0 𝐴4 0
0 0 1

] [

𝑌𝑡−1
𝑈𝑡−1
𝑋𝑡−1

] + 𝑉𝑡                                                (16) 

𝑉𝑡~Ν(0,𝑄), 𝑄 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥. 

𝑄 = [

𝑄𝑦 𝑄𝑦,𝑢 𝑄𝑦,𝑥
𝑄𝑢,𝑦 𝑄𝑢 𝑄𝑢,𝑥
𝑄𝑥,𝑦 𝑄𝑥,𝑢 𝑄𝑥

]                                                            (17) 
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As observed in the equation above, the parameters of matrix A, or the state transition matrix in this study, are 

unknown (𝐴1, 𝐴2, 𝐴3, 𝐴4) and need to be estimated. This is the main focus of our study, state transition 

modeling, in case of the unknown parameters. 

3- Observation Model:  𝑌𝑡
𝑂 = (1 0 0)(

𝑌𝑡
𝑈𝑡
𝑋𝑡

)    

All the variables (X, Y, and U) in figure 3 are assumed to be observed and there is no observation noise (𝑊𝑡 =

0) 𝑜𝑟 𝑌𝑡
𝑂 = 𝑌𝑡  . Hence, there is no need to do state estimation because there is no hidden state. Prediction is 

straightforward, since there are no future observations on which to condition. The problem from inference 

and learning shrinks down to only the “learning of A and Q parameters.” This is equivalent to structure 

learning (model selection) or discovering the true underlying model. From now on in this study, we assume 

full observability, therefore, from the next section and throughout, we focus on the problem of true underlying 

feature selection as the first step of uncovering the true underlying model. However, if we assume that the 

observed behavior of the system is affected by a hidden state or in plain English if we assume partial 

observability, then the entire model representation, inference and learning, will change. This is out of the 

scope of our study and for interested readers, the discussion on partially observed is given in Appendix D. 

2.4.2 Contribution 

In this dissertation, inspired by the pain management case at the Eugene McDermott Center for Pain 

Management at the University of Texas Southwestern Medical Center in Dallas, we endeavor to develop a 

feature selection technique that targets “true underlying features” as opposed to “predictive features” in pure 

observational setting.  We first simplified the case and removed the interventions (treatments), and proposed 

the Iterative Elastic Net  (ITELNET) with a unique stopping rule of “similarity condition” for true underlying 

feature selection under multicolinearity in pure observational setting. Then in the second paper we extend 

ITELNET to Outcome-adaptive ITELNET (OA-ITELNET) to handle the interventions (treatments) in the 

observational setting accounting for time-varying confounding and selection bias. The OA-ITELNET 
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uncovers the causal outcome features and subsequently estimates the unbiased causal effect of treatments, in 

(1) a multiple treatments setting, (2) with highly correlated state space both among treatments and covariates 

(3) under the time-varying confounding. We also suggest a way to conduct balance diagnostics for inverse 

probability of treatment weighting (IPTW) in case of multiple treatments, as a necessary post-evaluation task 

for every IPTW weighting method. 

2.5 Major tools  

2.5.1 Regularized (Penalized) Linear Regression  

Least Absolute Shrinkage and Selection Operator or LASSO is modern regression technique that was 

proposed by Tibshirani [59] and performs estimation and variable selection simultaneously. Modern 

regression methods based on LASSO introduce 

 some bias but significantly reduce the variance in the non-orthogonal setting, originally designed for 

better prediction accuracy. Most modern methods for regression can be expressed as:  

                                                             

                                                                                                                                                                      (18)  

Or equivalently:  

                                                                                                                                                                      (19)  

The R term is called a penalty or regularizer, and modifying the regression problem in this way is called 

applying regularization. The original LASSO solves the 𝑙1-penalized regression of finding: 

 

                                                                                                                                                                      (20)  

 

The form of the 𝑙1-regularizer allows estimation and shrinkage of some coefficients to zero, which amounts 

to feature selection [60]. A number of authors have studied the ability of the LASSO and related penalized 

methods to recover the correct model. 
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Despite the fact that LASSO is consistent in prediction or some say “persistent,” it is only a consistent 

variable selector under the “irrepresentability” condition on the design matrix [60, 61]. Let 𝑆 index the subset 

of features with non-zero coefficients in the true underlying model, and 𝑋𝑆 are the columns of design matrix  

𝑋 corresponding to those features. Similarly 𝑆𝑐 are the features with true coefficients equal to zero, and 𝑋𝑆𝑐  

the corresponding columns.  The “irrepresentability” condition says that the least squares coefficients for the 

columns of 𝑋𝑆𝑐  on 𝑋𝑆 are not too large, that is, the good variables 𝑆 are not too highly correlated with the 

nuisance variable 𝑆𝑐 . For example, the orthogonal design guarantees the irrepresentability necessary 

condition for consistency of the LASSO selection, which is far from reality in many real-world case scenarios 

with high correlation among predictors. 

The adaptive LASSO [62] uses a weighted penalty of the form, 

 

                                                            (21) 

 

where �̂�𝑗 =
1

|�̂�|
𝛾   𝛾 > 0 and �̂�  can be �̂�(OLS).  When we face high-dimensional data 𝑝 > 𝑛 , we can use 

univariate regression coefficients in place of ordinary least squares (OLS). Zou [62] claims and proves the 

oracle property and consistency of that adaptive LASSO in discovering the true underlying model under a 

milder condition compared to LASSO. The concept of adaptive comes from the �̂�𝑗 which acts as a tuning 

parameter for different predictors. It makes the penalization more flexible by assigning different degrees of 

shrinkage to different factors. When using OLS estimators to estimate the adaptive weights, intuitively, a  

larger degree of penalty is applied to the zero coefficients and a relatively smaller amount is used for 

coefficients that remain in the model.  

Now imagine a situation like genomic applications where there are often strong correlations among the 

variables with thousands of variables (genes). The LASSO penalty is somewhat indifferent to the choice 

among a set of strong, but correlated variables and tends to select one feature among the correlated group 

with no care on the choice. The ridge penalty or 𝑙2-regularizer, on the other hand, outperforms LASSO in this 
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situation and tends to shrink the coefficient of correlated variables toward each other [63]. Now the attention 

goes toward a family of models that has a grouping effect, which tends to select correlated variables in a 

group. The Elastic Net is a compromise, convex combination of the LASSO and ridge penalties and has the 

form,  

                             �̂�(Elastic Net) = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝑦 − ∑ 𝑥𝑗𝛽𝑗
𝑝
𝑗=1 ‖

2
+ ∑ (𝛼| 𝛽𝑗|

𝑝
𝑗=1

𝛽

+ (1 − 𝛼)𝛽𝑗
2).                       (22) 

The second term encourages highly correlated features to be averaged, while the first term encourages a 

sparse solution in the coefficients of these averaged features. In addition to the grouping effect, Elastic Net is 

particularly useful when we have the curse of high dimensionality, where the LASSO result is not a 

satisfactory variable selection method in this situation since LASSO cannot select more than min (𝑛, 𝑝). 

Simulation studies have shown that Elastic Net outperforms LASSO in such situations [64]. 

Now if we expand the concept of group selection, there are problems for which the predictors belong to 

“pre-defined groups.” In genomic applications, where genes that belong to the same biological pathway or 

where a collection of indicator (dummy) variables for categorical predictors should be treated as a group. In 

these situations, it may be desirable to shrink and select the members of a group together. Group LASSO is 

one way to achieve this and was suggested by Yuan and Lin [65]. Suppose that, d predictors 𝑥𝑖 ∈  ℝ
𝑑 are 

divided into 𝑝 pre-defined groups,  𝑥𝑖 = (𝑥𝑖1
𝑇 ,…, 𝑥𝑖𝑝

𝑇 )𝑇 , where 𝑥𝑖𝑗 = (𝑥𝑖𝑗1 ,…, 𝑥𝑖𝑗𝑑𝑗)
𝑇  ∈ ℝ𝑑𝑗  and 𝑑𝑗  is the 

size of each group. Then the Group LASSO has the form, 

 

                                                                                                                                                                    (23) 

 

where ‖ . ‖ is the 𝑙2-norm. Suppose 𝑑𝑗 = 1, then the above penalized function reduces to the LASSO. The 

group LASSO yields sparsity at group level, meaning it either keeps a group or drops it.  

The standard Group LASSO algorithm suggested by Yuan and Lin [65] uses coordinate descent and 

assumes that the design matrix in each group is orthonormal (not just orthogonal), and uses simple soft-

thresholding. This is a restrictive assumption; for example, if we have a categorical predictor coded by 
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indicator variables, we can orthonormalize without changing the problem only if the number of observations 

in each category is the same. Yang and Zou [66] derive a unified algorithm that handles general design matrix 

without the orthonormal requirement. However, Group LASSO suffers from inconsistency in estimation and 

feature selection [62, 67]. Likewise, an adaptive approach for Group LASSO has been developed by Wang 

and Leng [68] and has the form, 

 

                                                                                                                                                                     (24) 

 

The consistent property of adaptive group LASSO depends on the estimate of  𝜆𝑗 = 𝜆‖𝛽�̂�‖
−𝛾

 , which can be 

estimated in the same OLS manner as Zou [62].  

Friedman et al. [69] combined LASSO with the Group LASSO to relax the orthonormal design matrix 

assumption, and the resulting model not only gives sparsity at the group level, but adding LASSO provides 

sparsity within the group with a number of nonzero coefficients within a nonzero group.  

 

                                                                                                                                                                    (25) 

 

where 𝛼 ∈ [0,1], a convex combination of the LASSO and Group LASSO. When 𝛼 = 0, equation (25) is 

equivalent to Group LASSO and when 𝛼 = 1, it is LASSO. Back to the purpose of this study in 1.2, we are 

employing penalized methods for uncovering the true underlying features (item 1).  

2.5.2 Choice of tuning parameter: Uncovering the true underlying model 

(structure learning) 

Every regularization method has an associated tuning parameter: 𝜆 in equation (19) or t in equation (18). 

The tuning parameter controls the amount of regularization, so choosing a good value for the tuning parameter 

is crucial. In general, if 𝜆 or amount of shrinkage increases, the bias also increases, but the variance decreases; 

also known as the bias-variance trade off. Because each tuning parameter value corresponds to a fitted model, 
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we also refer to this task as model selection or structure learning in the computer science community. What 

we might consider a good choice of tuning parameter, however, depends on whether our goal is prediction 

accuracy or recovering the correct underlying model. Choosing the tuning parameter for the latter purpose is 

a harder task [60]. Most of the literature, mainly in the computer science community, has focused on the 

regularized method for the purpose of prediction accuracy; therefore, achieving minimal prediction error is 

their goal. For that, one of the most frequent metrics in use is K-fold cross-validation which is an estimate for 

prediction error at any fixed value of 𝜆. To achieve this goal, the best tuning parameter is then the one with 

minimum K-fold cross-validation error. The value of the parameter that achieves the smallest cross-validation 

error often corresponds to not enough regularization for the purpose of recovering the true model. This 

motivated the development of a unique criteria in Chapter 3 to choose a tuning parameter for the purpose of 

uncovering the correct features.  
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Chapter 3 

Iterative Elastic Net for Uncovering Underlying State 

Transition Model Features 

Abstract  

In the pure observational setting, causal variable selection or uncovering the true underlying model is 

a practical challenge and a controversial task to accomplish. This is even harder when the data under study 

are highly correlated and the aim is to detect causation. Under this condition, we propose a methodology 

that outperforms other current LASSO type modeling techniques in discovering the true underlying model. 

We examined our proposed method using an experimental design study with 324 simulated cases. Variables 

are generated from a multivariate normal distribution, and observations are created by defining a linear 

relationship between the response and defined “causal variables.” The most important study factor of 

interest for design and generation of the data is the unique correlation structure, which controls not only the 

magnitude of the correlation within causal predictors but also controls the intensity of the correlation 

between causal predictors and non-causal variables. This allows us to monitor the ability of the 

methodology in differentiating causation from correlation. The rest of the study factors are the proportion 

of the number of causal predictors to the total number of variables, the magnitude of regression coefficients 

and finally the total number of observations. We adopted the confusion matrix suggested by Kubat et al. 

[70]  to evaluate the performance of our suggested methodology compared to current LASSO-type models. 

Keywords: Causal variable selection; True Underlying Model, Penalized regression, Tuning parameter 

selection, LASSO, Elastic Net, Adaptive LASSO, Multicollinearity. 
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3.1 Introduction and motivation 

While predictive models help us to forecast what is going to happen, causal or true models on the contrary 

are capable of control and change. Back to the famous saying “correlation does not imply causation” [71], it 

is most common to employ randomized controlled trials to identify causal models. However, there are many 

real-world situations in which observational data are the only option to develop a decision. Regardless of 

which statistical methodology is used, building graphical causal models [10] [7] [8] [1] with the help of 

domain knowledge is a strong tool of causal inference in the observational setting.  

In modern regression methods, there are three important factors in recovering the true underlying model. 

First, the careful design of the penalized function can increases the ability to capture the true underlying model 

while examining the path of the tuning parameter (𝜆 ). Notice that this task entirely depends on the 

characteristics of the problem and the structure of the observational data. To shed some light on this matter 

we will present a brief review on how these modern regression functions have been developed and what is 

the logical motive behind them. Originally, Least Absolute Shrinkage and Selection Operator or LASSO, 

which was proposed by Tibshirani [59], solves the 𝑙1-penalized regression of finding Eq. (1), 

 

 �̂�LASSO = argmin‖𝑦 − 𝑋𝛽‖2 +  𝜆 ∑ |𝛽𝑗|
𝑝
𝑗=1                                                (1) 

                

which allows estimation and shrinkage of some coefficients to zero or feature selection simultaneously [59]. 

[60]. LASSO and its extensions introduce some bias, but significantly reduce the variance in the non-

orthogonal setting and increase prediction accuracy, which is the most common goal of its application in 

practice.  

Despite the fact that LASSO is “consistent in prediction” or say “persistent,” it is only a consistent 

variable selector under the “irrepresentability” condition on the design matrix [60] [61]. We open up this 

discussion for the reader since we inherit this concept in design of the correlation structure in section 3.   Let 
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𝑆 index the subset of features with non-zero coefficients in the true underlying model, and 𝑋𝑆 be the columns 

of design matrix  𝑋 corresponding to those features. Similarly 𝑆𝑐 are the features with true coefficients equal 

to zero, and 𝑋𝑆𝑐  the corresponding columns.  The “irrepresentability” condition says that correlation 

coefficients for the column of 𝑋𝑆𝑐 on 𝑋𝑆 are not too large, that is, the good variables 𝑆 are not too highly 

correlated with the spurious variable 𝑆𝑐. The orthogonal design guarantees the irrepresentability necessary 

condition for consistency of the LASSO selection, which is far from reality in the pure observational setting, 

where high correlation among variables is present. To relax the irrepresentability condition, with a small 

change in LASSO function, Zou proposed the adaptive LASSO [62] that uses a weighted penalty in Eq. (2), 

 

(2) 

 

where �̂�𝑗 =
1

|�̂�|
𝛾   𝛾 > 0 and �̂� can be �̂�(𝑜𝑙𝑠).  Zou [62] claims and proves the oracle property and consistency 

of that adaptive LASSO in variable selection under a milder condition compared to LASSO.  

Now imagine a situation where there are strong correlations among the variables and there are thousands 

of variables from which to choose. LASSO and adaptive LASSO penalties are somewhat indifferent to the 

choice among a set of strong, but correlated variables, and tends to select one feature among the correlated 

group with no care about the choice. There are problems for which the predictors belong to “pre-defined 

groups.” For instance, in genomic applications, where genes that belong to the same biological pathway or 

where a collection of indicator (dummy) variables for categorical predictors should be treated as a group. In 

these situations, it may be desirable to shrink and select the members of a group together. Group LASSO is 

one way to achieve this and was suggested by Yuan and Lin [65]. Suppose that, d predictors 𝑥𝑖 ∈  ℝ
𝑑 are 

divided into 𝑝 pre-defined groups,  𝑥𝑖 = (𝑥𝑖1
𝑇 ,…, 𝑥𝑖𝑝

𝑇 )𝑇  where 𝑥𝑖𝑗 = (𝑥𝑖𝑗1,…, 𝑥𝑖𝑗𝑑𝑗)
𝑇 ∈ ℝ𝑑𝑗 and 𝑑𝑗 is the size 

of each group. Then the Group LASSO has the form, 

 

                                                                                                                                                                      (3) 
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where ‖ . ‖ is the  𝑙2-norm. Suppose 𝑑𝑗 = 1, then the above penalized function reduces to the LASSO. The 

Group LASSO yields sparsity at group level, meaning it either keeps a group or drops it.  

If we shift the grouping need from “pre-defined” to “a natural grouping effect,” the combination of ridge 

penalty or 𝑙2-regularizer [63], and LASSO penalty creates a family of models called “Elastic Net,” which is 

a compromise, convex combination of LASSO and ridge penalties and has the form, 

 

�̂�Elastic Net = argmin‖𝑦 − ∑ 𝑥𝑗𝛽𝑗
𝑝
𝑗=1 ‖

2
+ ∑ (𝛼 ‖ 𝛽𝑗‖1

𝑝
𝑗=1

𝛽

+ (1 − 𝛼)‖ 𝛽𝑗‖
2
)                          (4)     

             

The second term encourages highly correlated features to be averaged, while the first term encourages a 

sparse solution in the coefficients of these averaged features. In addition to the natural grouping effect, Elastic 

Net is particularly useful when we have the curse of high dimensionality, where the LASSO result is not a 

satisfactory variable selection method since LASSO cannot select more than min (𝑛, 𝑝). Simulation studies 

have shown that Elastic Net outperforms LASSO in such situations [64].  

The second most important factor in discovering the true underlying model in modern regression 

techniques is the choice of the metric to choose the tuning parameter. A great number of publications in 

modern regression techniques, place an emphasis on prediction accuracy when it comes to comparing the 

performance. If a researcher’s goal is to obtain a close estimation of the true underlying model for 

“generalization and causal inference,” the model selection based solely on the best fit and prediction accuracy, 

often selects an unnecessarily complex model that overfits the data and, hence, generalizes poorly on other 

data generated from the same underlying model [72].  

Obtaining minimum error by K-fold cross validation is the most popular method used by the computer 

science community for building predictive models. However, it has shown poor performance in true model 

recovery and true feature selection [61]. On the other hand, the one standard error (1SE) metric proposed by 

Breiman, Friedman, Ohlsen and Stone [73] provides more parsimony without harming accuracy, by selecting 
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the smallest model for which the cross validation error lies within one standard error of minimum CV. 

Simulation studies have demonstrated its supremacy in capturing the true underlying model compared to 

minimum CV [61]. The simplest reason is that the true model often times requires and corresponds to a larger 

lambda, however, the tuning parameter selected by minimum K-fold CV is not large enough. There are other 

model selection techniques (e.g., information criteria) that are beyond the scope of this paper, and we 

encourage the interested reader to refer to [61] for a quick review of model selection metrics.  

The third and final factor in recovering the true model is the adaptive concept  �̂�𝑗 from Eq. (2), which 

enables different tuning parameters for different predictors. It makes the penalization more flexible by 

assigning different degrees of shrinkage to different factors. When using OLS estimators to estimate the 

adaptive weight, intuitively, a larger degree of penalty is applied to the zero coefficients and a relatively 

smaller amount is used for coefficients that remain in the model. In other words, true predictors stand a higher 

chance for selection. Therefore, this concept should be an inextricable part and backbone of any proposed 

penalized method that tries to capture true or causal model. When high correlation is present, it is suggested 

to incorporate ridge or close to ridge estimates as the adaptive weights. 

What we endeavor here is to incorporate and combine these concepts and develop a LASSO extension 

methodology that outperforms other methods in discovering the true underlying model features in the 

presence of high multicollinearity. Elastic Net and other modern regression methods with a grouping effect 

(e.g., group LASSO), can shrink the effect towards correlated variables and select a group. However, there 

arises a question when the true underlying features are surrounded by a more complex correlation structure, 

for instance, when a high correlation exists between some of causal (relevant) and spurious (irrelevant) 

variables.  Then, is there any method that increases the probability of distinguishing causation from 

correlation?  We propose the Iterative Elastic Net (ITELNET) as a special case of an iterative penalized 

regression with a unique stopping criteria to augment the true feature selection property. Our ITELNET 

approach is compared against some current LASSO based methods in a designed simulation study.  

The rest of the paper is organized as follows. Section 2 describes the phases of the iterative penalized 

regression algorithm, in general. The simulation design, performance measure, and candidate penalized 



 34 

methods are given in section 3. Simulation results and discussion are presented in section 4. Section 5 

represents the real case study, and section 6 concludes the paper with a summary and future research.  

3.2 General description of Iterative Penalized Regression 

Preparation 

Input. The full model 

Like any other algorithm that starts with an input, at this phase the input for ITELNET is the full model. 

Specify the base penalized function  

We explained in the introduction how the penalized techniques are applied and chronologically developed 

in practice as a direct consequence of the complexities of the problem, the properties of the data and finally 

the goal of the study.  This pre-step acts as an input base penalized function which repeats during the 

iterative process of the algorithm until it achieves the stopping criterion. Not choosing the right penalized 

based function, consequently, will lead to a chain of poor results in the body of iterative process. 

Since we are addressing the situation of highly correlated data, we should take into account the family 

of LASSO methods with a grouping effect to make sure no true predictor is dropped in phase 2. The reason 

is that when high correlation exists between a true predictor and a spurious variable, it is possible that the 

irrelevant variable is selected while the true predictor is dropped. If we were to choose Group LASSO and 

its extensions in the first phase, we would have to know which variables are pre-defined in the same group. 

The adaptive Elastic Net in Eq. (5) is used in the body of ITELNET: 

min
𝛽
 ‖𝑦 − ∑ 𝑥𝑗𝛽𝑗

𝑝
𝑗=1 ‖

2
+  𝜆 ∑ 𝑤𝑗(𝛼|𝛽𝑗| + (1 − 𝛼)|𝛽𝑗|

2𝑝
𝑗=1  )                                          (5) 

Since the focus here is sparsity within the grouping effect,  𝛼 = 0.5  is suggested by Hastie and Qian [74].  
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3.2.1 Phase 1.  Compute the adaptive weights 

In phase 1, the adaptive weights are calculated by estimating the coefficients 𝛽. The features entering 

this phase for estimating 𝛽 are the full model in the first iteration and the reduced model in the second 

iteration and subsequent iterations. Again, the modeling method to obtain the weights depends on nature of 

the observational data and can be obtained by OLS, ridge or close to ridge estimates, if we have a correlated 

data space, and if needed, weighted least squares (WLS). Considering high correlation in the setting under 

study here, we use close to ridge estimates  for adaptive weights  �̂�𝑖. This can be achieved by  𝛼 = 𝜀 for 

some very small 𝜀 > 0  in the Elastic Net in Eq. (4). 

3.2.2 Phase 2.  Employ the adaptive penalized method chosen in input and 

choose features by minimum K-fold CV and one standard error (1SE) 

The idea in the first phase is to guarantee that the first set of selected features “includes” the true 

underlying model with an excellent chance.  It is shown that the “true” model tends to be a subset of the 

one that maximizes our estimate of predictive performance [75, 76, 77] . That is to say if the true model is 

the set of predictors 𝐴, and the penalized model selects the subset �̂�(𝜆), then we want to make sure that in 

the first phase with strong probability we achieve (6); 

𝐴 ⊆ �̂�(𝜆)                                                                      (6) 

Simulation studies have shown that although minimum CV has poor performance in true variable selection, 

it guarantees condition (4) with high likelihood [61, 75, 76, 77]. In addition, the features selected by one 

standard error (1SE) |�̂�𝜆
1𝑆𝐸| are also recorded for active use in the stopping rule in the next step. The path 

of the iterations seeks to drop and shrink more variables until we get as close as possible to the true model 

with minimum inclusion and exclusion of spurious variables and true predictors, respectively. 
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3.2.3 Phase 3. Check the “similarity condition”  |�̂�𝝀
𝐦𝐢𝐧𝐢𝐦𝐮𝐦 𝐂𝐕| − |�̂�𝝀

𝟏𝐒𝐄| ≤ 𝒉 ? 

We need to provide a logical explanation behind the convergence rule first. Minimum CV seeks to find 

the value of the tuning parameter (𝜆) that minimizes the average error over all folds. Suppose the set 

{1,… , 𝑛} is divided into K folds of roughly equal size randomly, 𝐹1, … , 𝐹𝐾. 

For  𝑘 = 1,… , 𝐾 , consider training on (𝑥𝑖 , 𝑦𝑖), 𝑖 ∉  𝐹𝐾 , and validating on (𝑥𝑖, 𝑦𝑖), 𝑖 ∈  𝐹𝐾 .  F̂λ
−k  is the 

estimate on the training set. For each tuning parameter (λ), we compute the average error over all folds, 

𝐶𝑉(𝜆) =  
1

𝑛
∑ ∑ (𝑦𝑖 −𝑖𝜖𝐹𝑘
𝐾
𝑘=1  𝑓𝜆

−𝑘(𝑥𝑖))
2                                                    (7) 

Minimum CV chooses the value of lambda that minimizes 𝐶𝑉(𝜆). 

�̂� =
argmin 𝐶𝑉(𝝀)

𝜆𝜖{𝜆1, 𝜆2, … , 𝜆𝑚}  
                                                                   (8) 

 To obtain the standard errors for cross validation, we first average the validation errors in each fold by Eq. 

(9). 

𝐶𝑉𝑘(𝜆) =  
1

𝑛𝑘
∑ (𝑦𝑖 − 𝑓𝜆

−𝑘(𝑥𝑖))
2

𝑖𝜖𝐹𝑘                                                      (9) 

 where 𝑛𝑘is the number of points in the kth fold. Finally, we estimate the standard error of 𝐶𝑉(𝜆) by Eq. 

(10). 

𝑆𝐸(𝜆) =  √
∑ (𝐶𝑉𝑘(𝜆)−𝐶𝑉(𝜆))

2 𝐾
𝑘=1

𝐾
                                                           (10) 

The one standard rule results in a sparser model by increasing the regularization from minimum CV as 

much as it can, such that the cross-validation error curve 𝐶𝑉(𝜆) is still within one standard error of 

minimum CV [73]. Notice that 𝐶𝑉(𝜆) in Eq. (6) is in fact the mean of the validation errors in each fold.  If 

the standard error 𝑆𝐸(𝜆) of the validation errors is too small, the deviation of all folds from the mean is too 

small on average, thereby the values of lambda chosen by CV and 1SE are very close to each other, 

suggesting that the model and features selected by two methods are in fact behaving similarly in all folds 
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and stands as an indication of getting closer to the true underlying model. By the same logic, we use the 

concept of distance between 1SE and minimum CV, instead of using each one of them alone, in an iterative 

process to develop a new feature selection criteria that targets recovering the true underlying model. 

Subsequently, this can be interpreted in another way. Literally when the selected lambda values by two 

methods are very close, they choose almost the same number of features. Therefore, at each stage we check 

if: 

|�̂�𝜆
minimum CV|−|�̂�𝜆

1SE| ≤ ℎ                                                    (11) 

We call this the “similarity condition.” If we set the difference to zero, we might force the model to drop 

too many variables than necessary.  One might evaluate the ideal difference in a separate study, however, 

the default ℎ = 1 seems the reasonable value since we need minimum CV and 1SE to be close, but not so 

much (ℎ = 0) that overpenalizing could result in the dropping of too many true predictors.  The cardinality 

of the selected subset of features by minimum CV varies from the cardinality of selected features by 1SE 

method with maximum one unit in Eq. (10). This idea is embedded in the iterative process depicted in figure 

4, where it starts with full model, and ends at a reduced model that satisfies Eq. (11).                                                    

If the number of selected features by minimum CV and 1SE is not equal at the end of each iteration, in 

the next iteration, the algorithm starts at phase 1 with the “reduced model” chosen by minimum CV in the 

previous iteration and updates the adaptive weights by the new features and then repeats phase 2 until it 

satisfies Eq. (10). If the stopping criterion is satisfied, we extract the selected model by minimum CV at 

this stage as the best estimate of true underlying model. By this framework, with the help of 1SE and the 

iterative process, we turn minimum CV into a true feature selection metric. Figure 4 illustrate the iterative 

process at a glance. 
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Figure 4. The process of iterative penalized regression in general 

 

 

 

 

 

 

 

 

 

 

 

3.3 Design of the experimental study and performance measure 

3.3.1 Simulation design 

We generate datasets by assuming the true outcome follows an additive linear relationship with true 

predictors.  

𝑦𝑖 = ∑ 𝛽𝑗𝑥𝑖𝑗 + 𝜀𝑖
`𝑝
𝑗=1          where 𝜀𝑖 ~ 𝑁(0,1)                                         (12) 

The cases have been designed considering five factors:  

(1) total number of variables p= {10,20}  

(2) number of observations n={100,250,500}  

(3) proportion of true (causal) predictors among all variables. Prop = {0.3, 0.5, 0.7}  

(4) correlation structure.   

(5) magnitude of the effects (coefficients) whether [0.4, 0.6] or [0.8, 1].  
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Respectively from (1) to (5), we have full factorial combination of 2*3*3*(3*3)*2 =324 cases. For each 

case, 100 replications are generated to evaluate the performance of the true model recovery on average.  

3.3.2 Performance measure  

If the true model is the set of predictors 𝐴 and the penalized model selects the subset �̂�(𝜆), then these 

measures are given by, 

1- The probability of choosing the correct subset (PCS) [61]. 

PCS(𝜆) = P(�̂�(𝜆) =  𝐴)                                                              (13) 

2- The probability that correct model is the subset of selected model by penalized function.  

PIS(𝜆) = P(𝐴 ⊆ �̂�(𝜆))                                                              (14) 

Ideally, discovering the correct subset (CS) is desired in causal feature selection and is very hard task to 

achieve in reality. This is the reason that a milder condition is imposed in the second metric (IS). However, 

a better compromise metric is desired. Hence, for evaluation of the overall performance of the methods, we 

adopt the confusion matrix in table 1, which is similar to type I and II errors of hypothesis testing in 

statistics. This table contains information about true and estimated classes and is adopted from the 

information retrieval community [78] [79] [80]. From table 1, accuracy, sensitivity and specificity are 

respectively defined as Eqs. (15)- (17).  

Accuracy = (a + d) / (a + b + c + d)                                                                                                           (15) 

Sensitivity = d / (c + d)                                                                                                                                               (16) 

Specificity = a / (a + b)                                                                                                                                        (17) 

Accuracy is a biased measure when classes are not balanced [78], and it is also a challenge to have a 

single measure that enables easiert comparison. We use the geometric mean of sensitivity and specificity 

in Eq. (18), suggested by Kubat et al. [78], which is a robust measure for imbalanced proportions of true 

and spurious predictors. 
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Table 2. Confusion Matrix 

 

 

 

 

g-mean = √Sensitivity ∗  Specificity
2

                                                      (18) 

Sensitivity or positive accuracy is the proportion of selected true features among all true features. 

Specificity or negative accuracy is the proportion of unselected spurious variables among all spurious 

variables. The value of g-mean moves between zero and one. If g-mean gives a value close to 1, it implies 

that most of the variables are classified correctly.  

3.3.3 Candidate methods for comparison 

Among modern regression techniques we compare our methodology to three methods. For the purpose 

of recovering the true underlying model in a highly correlated space, all of the candidate LASSO type 

methods should have two proper ties. First, all of them must incorporate the adaptive concept, as mentioned 

in section 1. Second, they should be a consistent variable selector in a correlated state space.  The adaptive 

LASSO is shown to be a consistent variable selector when there are high correlations between true 

predictors and spurious [62]. From the model selection perspective, both minimum CV and 1SE are being 

tested on the adaptive LASSO. The last technique to compare is the Elastic Net with identical parameter 

settings to our base model in the body of ITELNET. The reason is that in our proposed iterative process, 

Elastic Net is employed as the base penalized function. One might wonder at the cost of the iterative 

computational time, whether the ITELNET outperforms the Elastic Net and whether the new model 

selection technique discussed in 2.3 will outperform the 1SE rule in the task of true feature selection. Close 

Confusion Matrix 

Predicted Model 

Spurious True 

True 

Model 

Spurious a b 

True c d 
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to ridge estimate is used for adaptive weights in all methods. We conclude this section by listing the 

candidate penalized regressions:  

(a) Adaptive LASSO with close to ridge adaptive weights (minimum CV)  

(b) Adaptive LASSO with close to ridge adaptive weights (1SE)  

(c) Adaptive Elastic Net (alpha=0.5) with close to ridge adaptive weights (1SE)  

(d) ITELNET (alpha = 0.5) with close to ridge adaptive penalty at each stage (proposed methodology). 

3.4 Simulation results  

As mentioned before, 100 replications for each of the 324 simulated cases are created to compare the 

performance of the aforementioned methods in recovering true underlying model features. At each 

replication, the confusion matrix was formed and g-mean was calculated. Then for each study factor of 

interest (e.g., the correlation structure), g-mean was averaged for comparison. We also provide PCS and 

PIS as complimentary pieces of information for evaluating overall comparative results when studying the 

number of observations. For the rest of the factors, the result is presented only based on average g-mean.  

Apart from true model recovery metrics, the root mean square prediction error (RMPSE) of the predicted 

response was also obtained to examine the task of prediction performance versus true model recovery. 

3.4.1 Comparison based on g-mean 

Before we provide a detailed interpretation of the result, by a quick look at figures 2-7 illustrate the 

overall superiority of our proposed ITELNET across all study factor combinations. Now let us discuss each 

study factor of interest. 
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3.4.2 Correlation structure 

Figures 2-4 are formed based on three levels of the correlation structure between causal and spurious 

variables, low, medium and high. The associated averaged g-mean values are provided in an attached table 

below each figure. In addition, within each block the magnitude of correlation within causal predictors also 

varies from low to high. The worst case scenario of detecting causal features in reality happens in figure 5, 

when there is a high correlation between causal and spurious variables.  This condition is milder in figures 

6-7. The proposed method, ITELNET with the green solid line, is observed above all other methods in all 

three figures, suggesting better model recovery performance, most significantly in the worst case scenario 

in figure 5. In addition, it seems that all these modern regression techniques follow some general patterns. 

The highest performance peak of each method happens when between correlation matches the within 

correlation level, and it decreases as these two correlation structures become farther from each other. This 

explains the upward and downward trend in figure 5 and figure 7, respectively, and the medium peak at 

figure 6. It also tells us that if the overall correlation level in a data set is observed to be in a certain range 

of low, medium or high, we can expect all methods in this study to have relatively high performance.  In 

particular, ADALASSO(minCV) clearly has the lowest performance in all structures in figures 5-7. This 

confirms that predictive models based on minimum CV do not achieve the modeling purpose of discovering 

true features. Figure 7 is an indication of an overall very close and high performance of all methods when 

the between correlation is very low. If we look at the performance between methods from figures 5 to 7, if 

we exclude the adaptive LASSO with minimum CV, we realize that when between correlation gets stronger 

the performance become more distinguishable.    
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Figure 5. Averaged g-mean performance based on correlation structure: High correlation between true  

and spurious predictors 

 

Figure 6. Averaged g-mean performance based on correlation structure: Medium correlation between true  

                 and spurious predictors 
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Figure 7. Averaged g-mean performance based on correlation structure: Low correlation between true  

and spurious predictors 

 

3.4.3 Proportion of true predictors 

Figure 8 presents the g-mean performance according to the proportion of causal predictors along with 

associated values at the bottom of the figure. From the proportion perspective factor, similar to the 

correlation structure factor, the superiority of ITELNET and inferiority of minimum CV are observable. 

This figure also suggests the performance decreases as the proportion increases. 

3.4.4 Magnitude of the coefficient 

From figure 9, as expected, the overall performance increases with magnitude of the effect, except for 

adaptive LASSO with minimum CV. This downward odd behavior cannot be explained, but is also evident 

in another simulation study by Chong et al. [79]. 
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Figure 8. Average g-mean performance according to the proportion of causal predictors 

 

Figure 9. Average g-mean performance according to the magnitude of coefficients 
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3.4.5 Number of observations 

The compiled result based on number of observations in figure 10, provides an overall view of the 

methods altogether. Here we look at g-mean and compare our findings to PCS and PIS to get an additional 

perspective on overall performance. Again, the ITELNET outperforms the other methods, followed by, in 

order, the Elastic Net, the adaptive LASSO with 1SE, and the adaptive LASSO with minimum CV. The 

slight increase in performance when N goes up is also sensible. What is interesting is that there is only a 

slight change in the ITELNET model recovery performance when the number of observations increase.  

 Figure 11 demonstrates the overall performance from the PCS perspective. Notice that if someone was 

to form a confusion matrix for PCS, the value of g-mean would equal to 1, meaning that we reach the ideal 

when all the variables are classified correctly. The large gap between ITELNET and the next method 

suggests its strength in true feature selection. Conversely, from the PIS perspective in figure 12, the results 

are somewhat reversed.  

 If we form the g-mean for PIS, we find out that the g-mean value only depends on “a” in the confusion 

matrix, that is, the correct classification of spurious variables. The fact that minimum CV is superior in PIS 

is telling us that as N goes up, minimum CV captures more “IS” models but with a greater number of 

spurious variables or false positives. This confirms the fact that minimum CV is capturing more complex 

models that may be suitable for prediction of response, rather than interpretation. This also explains the odd 

downward trend in figure 10; as N goes up, the number of false positives in minimum CV also increases, 

which consequently results in dropping the average g-mean performance.  
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Figure 10. Average g-mean performance according to the number of observations 

 

Figure 11. PCS compiled at number of observations 
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Figure 12. PIS compiled at number of observations 

 

3.4.6 Comparison of prediction performance based on RMSE and RMSPE 

One interesting question about which one might be speculating is how the model recovery performance 

is related to prediction performance. We can compile the simulation result now on an entirely different 

measure. Root mean square error (RMSE) obtained by Eq. (19) is illustrated in Figure 13. Notice that the 

values of the y-axis at each case index is the average value of RMSE for all 100 replicated data sets of the 

same setting. Interestingly, the exact opposite pattern to g-mean is evident in figure 13, suggesting that 

methods with the priority of high prediction are to be dominated in the true model recovery task and causal 

model building.   

RMSE =  √∑ (𝑦𝑖 − �̂�𝑖)
2𝑛

𝑖=1 𝑛⁄                                                              (19) 
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Figure 13. Mean RMSE for the training data at each simulated case 

In addition to the training set, by generating the new test set from the same functional underlying model, 

the actual root mean square prediction error (RMSPE) can be estimated by Eq. (20). A total of 100 test sets 

are created within which the number of observations is set to 500. Figure 14 sheds light on another 

perspective in the modeling that might look counter-intuitive, generalizability. It seems that minimizing the 

training error is not necessarily “generalizable” to the actual test error and might even act conversely.  

Observing and comparing the patterns in the compiled result (figures 5-14), gives us a similar insight as 

[72] on how the best fitted model methods, such as minimum CV, are more likely to build an over-complex 

estimated model (high PIS) that is far from the true underlying model and less generalizable and less-

interpretable.  

                                                         RMSPE =  √∑ (𝑦𝑖
𝒩 − �̂�𝑖)

2𝑛
𝑖=1 𝑛𝒩⁄                                                (20) 

where (𝑦𝒩) is the new data set.  
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Figure 14. RMSPE for the test data sets (100 sets each 500 observations) 

 

3.5 Summary and future research 

In this paper, we proposed a “general iterative regularized method” with a unique “similarity condition” 

for uncovering the true underlying features under a variety of data structures. We then proposed the use of 

ITELNET in the highly complex correlated data space. The compiled computational results for the full 

combination of study factors, suggests that ITELNET outperforms other LASSO-type methods, extending 

true feature selection of regularized method to a higher level. This study also suggests some deeper 

understanding of “true predictive models” versus models that minimize the training error and so-called 

“predictive models” in computer science community. Uncovering the true underlying model has a direct 

relationship with the modeling approach, which prioritizes interpretability and generalizability over 

prediction accuracy and complexity.   
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There is still room for further investigation of the “true model form” (e.g., interaction terms). One possible 

way to do so is to put the iterative process as a true feature selection tool in the body of the broader model 

building framework, where we treat the selected features as non-droppable main effects, and then by the use 

of traditional regression techniques (e.g., OLS) we adjust the model form by investigating the other possible 

terms generated by those features.  
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Chapter 4 

Outcome-Adaptive Iterative Elastic Net: Causal Variable 

Selection Under Time-varying Confounding 

Abstract 

Randomized control trials are not always the feasible solution for selecting and estimating the causal 

effect of the interventions or treatments in practice. The use of observational data, however, requires the 

methods to effectively account for the bias created by either treatment assignment or other complexities in 

the observational setting. In this paper, we focus on the sequential treatment structure known as adaptive 

treatment regime, where the dynamic nature of the problem causes a bias called endogeneity or time-varying 

confounding. While previous studies handled the one treatment case, we are focusing on the multiple 

treatment case where treatments are correlate and the aim of the study is to uncover the true underlying 

outcome model features that consistently estimates the effect of the causal treatments on the outcome of 

interest at each stage. We design two-stage adaptive treatment simulated cases, where treatments are binary, 

and covariates are the mixture of binary and normal, and the response is continuous. At each stage, 

observations are created by defining a linear relationship between the response and “outcome” predictors, 

the confounders, and the “causal” treatments. In the simulation design we take full factorial combination of 

the study factors: (1) the total number of variables in the model consists of treatments and covariates; (2) 

the proportion of causal treatment variables, true outcome predictors and confounders among all treatments 

and covariates, respectively; (3) the correlation structure that controls the correlation within causal 

treatments and the correlation between causal treatments and spurious treatments; and (4) interaction terms 

that create treatment-treatment, treatment-past treatment, treatment-outcome covariate and treatment-

confounder terms. To uncover the true underlying outcome model, we propose the Outcome-Adaptive 

Iterative Elastic Net in the body of a suggested outcome-modeling framework. We justify its performance 

based on the computational results of the simulation. 
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Keywords: Causal variable selection; True Underlying Model, time-varying confounding, Penalized 

regression, Tuning parameter selection, LASSO, Elastic Net, Adaptive LASSO, Multicollinearity. 

4.1 Introduction and motivation 

During the adaptive treatment plan, the level and type of treatments are modified over time based on 

patient information, patient risk factors and past treatments, and patient response to the treatment [81, 82, 

83, 84, 85]. What inspired this study is the two-stage interdisciplinary pain management program at the 

Eugene McDermott Center for Pain Management at The University of Texas Southwestern Medical Center 

at Dallas. To clarify the definition of the problem, we seek to take into account two important biases that 

are present in this study, confounding and time-varying confounding. For simplicity, the causal diagram 

[86, 87] in figure 15 represents the “one treatment” clinical case. To avoid clutter, the causal diagram only 

starts from the treatment at the stage 1 (𝑇1) and ends with recording the patient pain outcome (Y), at the end 

of stage 2. The causal path (  𝑇1 − 𝑌1 − 𝑇2 − 𝑌2)   along with (𝑌1 − 𝑌2 ) in figure 1, showing that the 

prescribed treatment in the stage 2 (𝑇2), is modified in type or dose according to the patient outcome, as a 

time-varying confounder at the end of the previous stage (𝑌1), which itself is affected by past treatment (𝑇1) 

and a common cause of (𝑇2) and (𝑌2). This creates a bias called time-varying confounding in the causal 

treatment effect on the outcome of interest [88, 89]. In figure 15, two outward edges from (X) indicates 

another type of bias created by the confounder (X), a variable associated with both treatment and outcome 

[90]. In observational studies and epidemiology, this is discussed extensively as selection bias [91]. In this 

study, the confounders are time-invariant during the course of treatment plan.  
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Figure 15. Time-varying confounding and the confounder, in case of one treatment 

 

In the presence of only one treatment,  to account for both aforementioned biases, many methods in use 

require either modeling of the outcome conditional on treatment, past outcome, and potential confounders, 

known as an outcome model (e.g., regression techniques) or specifying the model for treatment, known as 

n exposure or treatment model (e.g., propensity score matching and inverse probability of treatments 

weighting (IPTW) [92, 93, 94, 95, 96, 97]) or both, known as doubly robust methods [98, 99, 100, 101]. 

The advancements in these methods concentrate on “consistent selection” of true outcome-predictors and 

true confounders, the correct inclusion of interaction terms, known as “effect-measure modifiers,” and 

finally the “consistent estimation” of the causal treatment effect by adjusting for time-varying confounding. 

One important assumption in all these methods are “no unmeasured confounders,” meaning that all the 

outcome-treatment confounders are accounted for in the inverse probability of treatment weighting (IPTW) 

or exposure model (i.e., propensity score) . This is the motivation for why analysts are using the domain 

expert knowledge to incorporate as many covariates as possible in the model to avoid serious bias caused 

by unmeasured potential confounders. On the other hand, while this this approach helps, recent studies have 

shown inclusion of spurious variables and covariates only associated with treatment in the propensity score 

model causes efficiency loss [102, 103, 104, 105] and variance inflation and possibly additional bias [105, 
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106]. Conversely, the study in [107] has shown that the inclusion of outcome covariates in the IPTW or 

propensity score model can potentially improve the precision and efficiency of the estimation. This suggests 

a variable selection technique that prioritizes uncovering the true underlying features of the outcome over 

prediction performance as opposed to most of the methods in practice. All the previous studies addressing 

the problem of variable selection for causal inference are limited to only one treatment, while we are 

developing a causal variable selection method for multiple treatments when high correlation is present. In 

addition, these studies evaluated their proposed method under only a flat correlation structure, which is not 

realistic. In reality, one might face a situation with spurious variables that are highly correlated with 

outcome covariates. We particularly take this into account and designed a correlation structure that 

separately controls the correlation level for (1) within outcome predictors and (2) between spurious and 

outcome predictors. This provide an ideal platform to analyze the performance of methods in detecting 

causation versus correlation. The multiple correlated treatments create these difficulties:  

(1) To obtain IPTW weights instead of calculating the probability of single treatment, the joint 

portability of multiple treatments given covariates, past treatments, and past outcome should be obtained. 

We are using Ohol’s approach [13] in which the novel MIMIC algorithm [108] was employed to estimate 

the joint probability of treatments.  

(2) The diagnostics of the IPTW weights is a cumbersome task where exposed observations no longer 

can be separated in the multiple treatment setting.  We propose a new way to calculate the weighted absolute 

mean difference.  

In general we propose the Outcome-adaptive Iterative Elastic Net (OA-ITELNET) for discovering the 

true underlying model and achieving consistent estimation of causal treatments. Our approach augments 

the consistent selection of true outcome-predictors, true confounders and more importantly causal 

treatments in the outcome model. Adjusting for time varying-confounding is achieved via IPTW and a 

proposed IPTW diagnostic tool for the multiple treatments case. Finally, our experimental design study 
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investigates the feature selection performance in the presence of effect-modifiers or interactions in the 

outcome model.  

The rest of this paper is organized as follows. Section 4.2 describes step by step phases of the proposed 

approach. The simulation design, performance measure, and candidate methods are given in section 4.3, 

4.4, 4.5 respectively. The result and discussion is encapsulated in section 4.6. Section 4.7 represents the 

real case study, and section 4.8 concludes the paper with summary and future research. 

4.2 Outcome-Adaptive Iterative Elastic Net (OA-ITELNET): A tool 

for causal variable selection 

In the simulation study in Chapter 3, it is shown how the iterative process with the help of the proposed 

model selection technique improves the recovery of the true underlying features. We extend ITELNET to 

outcome-adaptive ITELNET to take into account the nature of time-varying confounding and selection bias 

created by confounders. The whole process of the method is depicted in figure 16 and explained in phases. 

The Input: The full model 

The algorithm starts with the full model and sparsify the features until it reaches the stopping criteria. 

4.2.1   Phase 1. Adjusting the folds 
 

Step 1. Preliminary feature selection  

Studies have shown that the IPTW weights performs very poorly when the true model is far from the 

full model OLS estimates, meaning that a preliminary variable selection is required before obtaining 

usable weights. In the case of high correlation, this could be achieved using the Elastic Net and minimum 

CV as model selection metric. 

 



 57 

Step 2. Obtain the IPTW weights  

In phase 1, the IPTW weights are calculated for the multiple treatment case by the method proposed by 

Ohol [13] using the MIMIC algorithm [108]. The features entering this phase for estimating IPTW are to 

remove bias and improve efficiency and precision. For the first iteration, the algorithm starts with the input 

of the full model, and for the 𝑖𝑡ℎ  iteration ( 𝑖 > 1), the reduced model at the end of the (𝑖 − 1)𝑡ℎ iteration 

enters phase 1.  

Step 3. Specify the fold membership for each observation by K-Stratified sampling from K-

quantiles (strata) of the associated IPTW weights 

The philosophy behind the general use of balanced randomized assignment of the observations to folds 

is the balanced distribution of the folds. However, the nature of the adaptive treatment setting creates 

imbalance and rare cases in the assignment of treatment, and therefore, in the distribution of observations. 

Accordingly, small IPTW weights conceptually represent the patients with high probability of receiving the 

treatments given the patient’s state variables and vice versa. A unified approach to causal variable selection 

and estimation is to extend the adjusting concept to the distribution of observations by incorporating the 

joint probability of treatments given past treatments, past outcome and the covariates in assigning each 

observation to the 𝑘𝑡ℎ fold, as follows. 

(1) Sort and divide the data set into K quantiles or strata according to the associated IPTW weight 

magnitude. 

(2) Conduct K-stratified sampling from K-strata in step 1 to determine the fold membership of each 

observation. 
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4.2.2   Phase 2.  Feature selection  
 

Step 1. Compute and update the adaptive weights by  𝛽𝑟𝑖𝑑𝑔𝑒 

Instead of OLS estimates, the circumstance of the adaptive treatment setting and correlated data space 

suggests to employ the 𝛽𝑟𝑖𝑑𝑔𝑒 or close to ridge estimates as suggested in the literature. The effect of 

utilizing either  𝛽𝑟𝑖𝑑𝑔𝑒 or 𝛽𝑊𝐿𝑆(ridge) estimates are compared in 4.6.1.  

 

 

Figure 16. Outcome-Adaptive ITELNET Process 

 

Step 2. Employ the adaptive Elastic Net and choose features by minimum CV and one standard error 

(1SE) using adjusted K-fold CV  

 From here on, we follow the same logical steps in the algorithm as in ITELNET, proposed in Chapter 

3. The penalized function is provided in Eq. (1). 
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min
𝛽
 ‖𝑦 − ∑ 𝑥𝑗𝛽𝑗

𝑝
𝑗=1 ‖

2
+  𝜆 ∑ 𝑤𝑗(𝛼|𝛽𝑗| + (1 − 𝛼)|𝛽𝑗|

2𝑝
𝑗=1  )                               (1) 

where 𝑤𝑗 are adaptive weights. 

4.2.3   Phase 3. Check for convergence  
 

Step 1. Check the stopping condition: Is the similarity condition  |�̂�𝝀
𝐦𝐢𝐧𝐢𝐦𝐮𝐦 𝐂𝐕|−|�̂�𝝀

𝟏𝐒𝐄| ≤ 𝒉 

satisfied? 

It is shown in the iterative process in Chapter 3, where standards error 𝑆𝐸(𝜆) of minimum cross 

validation 𝐶𝑉(𝜆) is too small, the features selected are more likely to be close to the true underlying 

features. This is equivalent to satisfy the similarity condition. They also suggest to use h = 1 for general 

applications. Another reason for adjusting for the folds is that imbalance in the folds can cause 

misrepresentation of the similarity condition. If the similarity condition is satisfied the algorithm stops and 

return �̂�𝝀
𝐦𝐢𝐧𝐢𝐦𝐮𝐦 𝐂𝐕. Otherwise, the algorithm continuous to the next iteration (𝑖 + 1). 

Step 2. Diagnostic check on the magnitude of the  𝒘𝑨𝑴𝑫𝒊 at �̂�𝝀
𝐦𝐢𝐧𝐢𝐦𝐮𝐦 𝐂𝐕  

The weighted absolute mean difference (wAMD) as the diagnostic tool for IPTW weights has a direct 

and mutual relationship with the causal true underlying outcome model, as shown by Shortreed et al. [109] 

and many other studies mentioned earlier.  

4.2.3.1    Weighted absolute mean difference (wAMD) for multiple treatments 

Using inverse probability of treatment weighting (IPTW) for estimating the causal effect of treatment 

in observational studies is only valid if there are no significant differences in distribution of observed state 

variables between exposed (treated) and unexposed (control) in the weighted sample [110] . This is called 

balance diagnostics, and the goal is to create a weighted sample or a pseudo-population in which the 

distribution of outcome covariates and confounders (𝑋𝑂  , 𝑋𝑂𝑇)  is the same between exposed and control 
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subjects. With everything else held equal, the model with minimum difference or higher balance is more 

competitive in the adaptive treatment setting and therefore should be taken as a secondary performance 

measure. One quantitative way to measure balance is the weighted absolute mean difference (wAMD), 

which has only developed for the single treatment case. We extend AMD to mean (AMD) for multiple 

treatments in Eq. (2). This is for comparing continuous covariates and justifiably can be used for 

dichotomous variables [111]. For the 𝑗𝑡ℎ covariate in 𝑗 = {1,2,… , 𝑑}, the mean absolute mean difference 

for V  treatments is: 

mean(AMD) =

∑ 𝜃𝑣𝜁𝑗
(�̅�𝑗𝑣

treatment− �̅�𝑗𝑣
control)

√𝑠𝑗𝑣
2 treatment

+𝑠𝑗𝑣
2 control

2
⁄

𝑉
𝑣=1

∑ 𝜃𝑣
𝑉
𝑣=1

 × 100                                                (2) 

where 

{
 
 

 
 𝜃𝑣 = 0      if 𝑣

𝑡ℎ treatment is dropped from the model

𝜁𝑗 = 0         if 𝑗
𝑡ℎcovariate is dropped  from the model

𝜃𝑣 = 1                 if 𝑣
𝑡ℎ treatment remains  in the model

𝜁𝑗 = 1                    if 𝑗
𝑡ℎcovariate remains  in the model

  

The mean weighted absolute mean difference is then defined by replacing �̅� 𝑏𝑦 �̅�weight = 
∑𝑤𝑖𝑥𝑖

∑𝑤𝑖
 and 𝑠2 by  

𝑠weight 
2 =

∑𝑤𝑖

(∑𝑤𝑖)
2−∑𝑤𝑖

2  ∑𝑤𝑖(𝑥𝑖 − �̅�weight), where 𝑤𝑖 is the IPTW weight estimated and assigned to object 

𝑖. 

If the true features are selected, we are adjusting for the true confounders, which technically means 

IPTW given these confounders accounts for the confounding bias to its full potential, and this causes 

wAMD to have ideally zero or a very small value. Now imagine an extreme situation where all coefficients 

in the model are zero. This could happen in the extreme case of strong penalization, 𝜆 =  ∞. In this case, 

the estimated propensity score would just have an intercept term. All individuals in the exposed group 

would receive a constant weight (i.e., constant across all values of covariates), and all individuals in the 

unexposed group would receive a constant weight (also constant across all values of covariates), which may 

be the same or different than the weights in the exposed group, depending on the marginal probability of 
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exposure on the sample. In this case, the IPTW weights are not accounting for any confounding, since they 

are constant over all values of the covariates. If the weights are not accounting for the confounding then 

there will be differences in the covariate distributions in the exposed and unexposed groups in the weighted 

sample. This would mean that the wAMD would be large. Therefore, in the case of convergence by the 

similarity condition in step 1, if the magnitude of the wAMD is too high, then we should consider making 

adjustments to our model and investigate for the reason.  

4.3 Experimental setting 

4.3.1 Simulation design  

Inspired by the adaptive treatment setting at the Eugene McDermott Center, the linear association in the 

simulated case studies are created, as shown by arrows in figure 17 and described in the following logic. Here, 

the first goal of modeling is to capture the closest to true causal features. Let 𝑋𝑂 denote covariates associated 

with outcome, 𝑋𝑂𝑇 predictors of both as confounders, 𝑋𝑇 the predictors of exposure (treatment), and finally 

𝑋𝑆 nuisance or spurious covariates. All the covariates are correlated with a designated correlation matrix and 

generated by a modified version of the BinNor package in R.  Later on, we describe the correlation structure 

in detail. The probability of each binary treatment is calculated by linear association with some selection of 

 𝑋𝑂𝑇, 𝑋𝑇 ,   the past treatments and the previous outcome by Eq. (3) 

𝑃trt𝑡 =
exp(𝛽𝑇𝑋𝑇+𝛽𝑡𝑟𝑡

𝑂𝑇𝑋𝑂𝑇+ 𝜂𝑡−1𝑡𝑟𝑡𝑡−1+𝛾𝑡−1𝑌𝑡−1) 

1+ exp(𝛽𝑇𝑋𝑇+𝛽
𝑂𝑇𝑋𝑂𝑇+ 𝜂𝑡−1𝑡𝑟𝑡𝑡−1+𝛾𝑡−1𝑌𝑡−1)

                                                   (3) 

Then by predefined correlation matrix and approximate multivariate normal, correlated binary treatments are 

created.  The algorithm divides the data in two groups: effective and non-effective treatments. 
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Figure 17. Process map and causal diagram for creation of simulation cases. 

 

Finally, the outcome at the end of stage 𝑡 is created by linear dependence on the effective treatment, 𝑋𝑂 , 𝑋𝑂𝑇 

and the previous outcome and some interaction terms in Eq. (4).  

𝑌𝑡 = 𝛽
𝑂𝑋𝑂 + 𝛽𝑌

𝑂𝑇𝑋𝑂𝑇 + 𝜂𝑡 𝑡𝑟𝑡𝑡 + 𝜂𝑡−1 𝑡𝑟𝑡𝑡−1  + 𝛾𝑡−1𝑌𝑡−1 + interaction terms               (4) 

   Where 𝜀𝑖 ~ 𝑁(0,1) 

We used R programming to generate the simulation, and the codes are available at:  

https://github.com/ashkanfa/Generate.adaptive.data.  

The cases have been designed considering five study factors.  

(1) total number of covariates and treatments in the model. To be realistic, in such studies in collecting data 

too many potential confounders are recorded to avoid unmeasured confounders. Hence, even after cleaning 

the data, the total number of covariates are more than pool of available treatments, same pattern in Eugene 

McDermott Center for pain management. Inspired from that, these combinations are considered for covariates 

and treatment respectively, {16,8}, {20,8}, and{16,12}.  

https://github.com/ashkanfa/Generate.adaptive.data
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(2) proportion of causal treatment among all treatments, {0.5, 0.75}  

(3) proportion of outcome covariates and confounders to the total number of covariates. {0.25,0.5}. 

Mimicking real situation, the proportion of treatments are higher than proportion of covariates.  

(4) the correlation structure shown in figure 18 gives the researcher the leverage to effectively study the 

performance of the methods in distinguishing the causation from correlation, especially when the correlation 

between causal and spurious variables are high. For each block of correlation we consider three magnitude of 

correlation; low [0, 0.2], medium [0.3, 0.6], and high [0.7, 0.9]. We did not however consider separate 

structure for treatments and covariates since cross-production of separate consideration would yield 81 

combination. In addition, since the within spurious correlation structure is not the focus in this paper,  it is set 

to a constant range from low to high.(5) Interaction structure of (a) no interaction and simultaneous 

combination of  (b) treatment-treatment, (c) treatment-past treatment, (d) treatment-outcome covariate and 

(e) treatment-confounder are generated to get a more realistic estimate of the real model and provide the 

opportunity for us to compare the methodology in uncovering the true features under more complex model 

form. There is no simultaneous treatment-outcome covariate and treatment-confounder interaction terms in 

the simulation setting. The reason is that we are to investigate how the nature of the interaction terms will 

affect the causal variable selection. 

Magnitude of coefficient and number of observations are set to [0.6,1] and 100 respectively due to the fact 

that in the previous study in the Chapter 3, the effect of these factors in causal variable selection has been 

studied and they are far from the motivation of this paper. Respectively from (1) to (5), we have full factorial 

combination of 3*2*2*9*5 equals to 540 cases. 100 replications of each case will lead to comparative 

performance analysis of 54,000 data set. The methods however applied to fractional factorial when compiling 

the result on a factor of interest.  
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Figure 18. Design of the Correlation Structure for simulated cases: the shaded are controlled structure 

 

4.4 Performance measure 

4.4.1 Confusion matrix 

For evaluation of the overall causal variable selection performance, we adopt the confusion matrix in 

table 3 from the information retrieval community [78, 79, 80].  

Table 3. Confusion Matrix 

 

 

 

Geometric mean of sensitivity and specificity suggested by Kubat et al. [78] is a robust measure to 

imbalanced proportion of true and spurious predictors and used in this paper. 

Sensitivity = d / (c + d)                                                                                                                                               (5) 

Specificity = a / (a + b)                                                                                                                                        (6) 

g-mean = √Sensitivity ∗  Specificity
2

                                                                                                        (7) 

Confusion 

Matrix 

Predicted Model 

Spurious Causal 

True 

Model 

Spurious a b 

Causal c d 
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If g-mean turns out to a value close to 1, it implies that most of the variables classified correctly.  In this 

study we investigate the result of g-mean for treatments and covariates separately. 

4.5 Candidate methods for causal variable selection 

In addition to extensive literature on causal variable selection for one treatment, there is almost no clear 

guideline available for the multiple treatment case. Hence in the effort of collecting competitive methods, 

some the current methods in the literature was adjusted in order to be qualified for comparison.(1) Outcome-

adaptive LASSO is first introduced by Shortreed [109], in the one treatment setting, with competitive 

performance in low to medium correlation magnitude [0.2,0.5]. The use of wAMD as a model selection is 

proposed. We extend the OAL to outcome-adaptive Elastic Net and generalize their suggested wAMD  to 

Eq.(8) to adjust for the presence of high correlation and multiple treatments setting respectively. 

 wAMD(𝜆𝑛) = ∑ |𝜂𝑣| ∑ |𝛽𝑗|
(𝑥𝑤̅̅ ̅̅ 𝑗𝑣

treatment
− 𝑥𝑤̅̅ ̅̅ 𝑗𝑣

control
)

√𝑆𝑊
2
pooled

𝑑
𝑗=1

𝑉
𝑣=1                                        (8) 

Where 𝜂𝑘 and 𝛽𝑗 are the coefficients of the treatment k and covariate j accordingly, and �̅�𝑤 and 𝑠𝑤
2
 are 

weighted mean and weighted variance. (2) We also include the normal adaptive Elastic Net with 1SE rule 

as base model selection technique. (3) Before we enter our proposed model for comparative performance 

study, the performance of some of the adjusted and proposed elements in the outcome-adaptive ITELNET 

al.gorithm is evaluated (a) first we check if the IPTW adjusted folds in phase 1 makes a difference (b) 

Although it was not considered in our study, we also compare what if scenarios of the adaptive  𝛽𝑊𝐿𝑆(𝑟𝑖𝑑𝑔𝑒) 

against  𝛽𝑟𝑖𝑑𝑔𝑒 in computing the adaptive weights in the first step of phase 2. 

 

 

 

 



 66 

Figure 19. The effect of IPTW adjusted folds on average g-mean of treatment selection by stages 

Figure 20. The effect of IPTW adjusted folds on average g-mean of covariate selection by stages 

4.6 Simulation results  

4.6.1 Investigation within Outcome-Adaptive ITELNET  

First we investigate the effect of two elements within the outcome-adaptive Elastic Net; (1) IPTW 

adjusted folds. (2) The possible effect of using  𝛽WLS(ridge)  vs.  𝛽ridge in forming the adaptive weights. In 

all combinations we separate the result for covariates and treatments. Figure 19 to 20 compares the g-mean 

performance of the OA-ITELNET where folds are adjusted by IPTW weights against the usual randomized 

K-fold assignment from a uniform distribution. The plots are consists of 108 no-interaction cases. 

Simulation results suggests slight improvement in feature selection where folds are adjusted by IPTW 

weights (green solid line vs. the red dashed line). 
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Figure 21. The effect of IPTW WLS adaptive weights on average g-mean 

Figure 21 on the other hand is an indication of no difference if IPTW WLS estimates are used for the 

adaptive weights (The green line over writes the red dashed). The justification of the phases let us to 

continue to the comparative result in the next section. 

 

 

 

 

 

 

 

 

 

 

4.6.2 Comparative result on g-mean in cases with no interaction 

There are 108 cases with no interaction, each 100 replications, all with 100 number of observations. 

Figure 22-24, represents the average g-mean in no interaction cases, from the proportion perspective and 

correlation structure. The associated average g-mean is also summarized in a table attached at the bottom 

of each figure. In all the plots the proposed method (OA-ITELNET, green solid line) has the best feature 

selection performance regardless of the factor of interest. This pattern follows by ELASTIC NET(ELNET, 

red solid line), and at the bottom comes Outcome-adaptive LASSO (OA-ELNET). In addition, it is observed 

that stage 2 follows the same performance pattern with irregularities compared to the first stage. This could 

happen due to the escalated complex association among the variables, the effect of confounder and time-

varying confounding.  
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Figure 22. Average g-mean performance based on true proportion combination of 

covariate-treatment (e.g., 25-50 means proportion of true covariates is 0.25  

and proportion of true treatments is 0.50). 
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Figure 23. Average g-mean performance based on covariate correlation structure 
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Figure 24. Average g-mean performance based on treatment correlation structure 
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4.6.3 Comparative result on g-mean in cases with interaction 

Discovering how sensitive the feature selection methods react to the true model form is very crucial 

since the true model, especially in clinical research more likely to be more complex and possibly have 

interaction terms or effect-modifiers. At this stage we are not able to detect the interaction terms but 

examine how the selection of the same features are affected under a true model with interaction terms. In 

figure 25, the x-axis from left to right represents “no interaction,”” treatment-treatment and treatment -𝑿𝑶 

interaction” and finally “treatment-treatment and treatment-𝑿𝑶𝑻  interaction.” In the second stage (dashed 

line in figure 25) the same scenario applies except adding another interaction term of treatment-past 

treatment. These interaction terms are designed to account for common true model form complexities in 

adaptive treatments setting [112]. It is interesting how the performance pattern takes the opposite role for 

Elastic Net (1SE) compared to Elastic Net (wAMD) as we move from no interaction case to cases with 

interaction terms.  If someone was to make a decision solely based on the additive setting in the previous 

section, the performance of the Elastic Net with wAMD dominated all the time. Although the proposed 

method (OA-ITENET), distinguishes itself with a significant distance, if we were to set the h parameter to 

1, similar to chapter 3, the performance was dropped. This is where we notice the sensitivity of the h 

parameter in similarity condition to the true model form.  
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Figure 25. Average g-mean performance based on interaction structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.7 Pain management case study 

This section discusses the application of the outcome-adaptive ITELNET to a case study from Eugene 

McDermott Center of Pain at University of Texas Southwestern in Dallas. After cleaning the data, the final 
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set consists of 235 observations with 25 patient variables including mix of binary and continuous variables 

as age, gender, litigation, marital status, race, physical history, past diagnosis, surgical history, and etc [85, 

84]. Table 2 is referring to the 14 binary treatments in the study which are divided in two groups, 8 

pharmaceutical and 6 procedural treatments. Some of the treatments and patient variables are grouped to 

handle data separation issue which is extensively discussed in [13, 85, 113].Each patient should receive at 

least one treatment during the course of the study which can be prescribed from either one or both groups. 

The associated pain outcome is the continuous variable, Oswestry Pain Disability measure (OSW) [114] 

which is observed and recorded in a “pure observational setting” at the pre-, mid- and post-evaluation. The 

previous research on this application concerned adjusting for time-varying confounding in the multiple 

treatment case [85, 13, 84], outcome modeling and finally developing a two-stage stochastic dynamic 

programming that incorporates the estimated outcome model to find the most effective treatments [113].    

 A model entering the optimization must be close to the true model that describes the true underlying 

relationship between outcome, confounders, and treatments. This a modeling approach that captures the 

true underlying causal model with the highest probability in the observational setting. The MIMIC approach 

by [13, 108] is used for computation of IPTW weights and the proposed outcome-adaptive ITELNET is 

applied to the pain management data; the selected features and the associated wAMD is summarized in 

table 5. 

 

Table 4.  List of treatments in the pain management case study 
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Table 5. Feature selected by OA-ITELNET and associated wAMD 

 

 

 Figure 26 represents the result of the balance measured by absolute mean difference, in weighted 

samples (wAMD) using reduced features via OA-ITELNET (green solid line), compared to the absolute 

mean difference (AMD – black solid line) in unweighted sample. We also included the wAMD achieved 

by the extreme case of the full features (red solid line) to have an idea what would happen if the importance 

of feature selection in obtaining the IPTW was ignored.   Figure 26 suggests that the features selected by 

OA- ITELNET reasonably reduces the imbalance in samples to a great degree compared to full model, 

except for Phdyx33 in stage 1 and marital_3 in stage 2. For these two cases, one should use the stabilized 

IPTW weights versus the unstabilized version which we applied here and see if the odd result persists. In 

that case we should re-investigate the process and get feedbacks from a domain expert regarding the selected 

state variables and treatments.  
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Figure 26. IPTW balance diagnostics for important covariates in pain management case. 
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4.8 Summary and future research 

Compared to other LASSO type feature selection techniques, the Outcome-adaptive ITELNET (OA-

ITELNET) has made a significant improvement in causal feature selection under time-varying confounding. 

The superiority of the proposed method become more significant where different complicated correlation 

structure and different true model forms are tested, in particular where some of these structures are 

mimicking the worst real-world scenarios. The promising results under these conditions, opens up a new 

window for family of modern feature selection techniques in which the iterative process improves the 

contradictory task of uncovering the causal model in the pure observational setting to a great extent. We 

observed in 4.6.3 that the feature selection performance is insensitive to the true model form if we choose 

the right value for the h parameter. This means as a future direction, OA-ITELNET can be embedded in a 

larger perspective of uncovering the “causal model” by first uncovering the features and then building the 

model form based on selected features.  In order to accomplish that, the first step is to establish a pre-phase 

of tuning for h parameter in the iterative process.  

 

 

 

 

 

 

 

 



 77 

Chapter 5 

Conclusion and Future Research 

In this dissertation, inspired by the pain management case at Eugene McDermott Center of Pain at 

University of Texas Southwestern in Dallas, we endeavor to develop a feature selection technique that 

targets true underlying features as opposed to prediction purpose.  We first simplified our case and removed 

the interventions (treatments) from the first paper, and proposed the ITELNET for true underlying feature 

selection under different scenarios in particular we targeted the dominant complexity of multicolinearity in 

the observational setting. The proposed method has shown some significant improvement in correct 

classification of true features from just highly correlated features. Then in the second paper we extend 

ITELNET to Outcome-adaptive ITELNET to handle the interventions (treatments) in the observational 

setting accounting for time-varying confounding and selection bias. We updated our simulated cases to the 

observational setting with interventions under a more complex setting and checked the sensitivity of the 

method to the true model form by adding interactions. OA-ITELNET has provided promising result for 

causal variable selection compared to other penalized method in practice.  

However, like every method, the flip side of the good model recovery performance is the high 

computational time due to its iterative nature. If it takes the algorithm for instance 18 iterations to converge, 

it means 18 times convergence time of any usual regularized method.  To mitigate this, one might suggest 

using the similarity condition in the single iteration searching the whole path of lambda for the values that 

satisfies the similarity condition. Although it is free for future direction, we took some precaution and 

diligence in the iterative design. At each step by the use of minimum CV we assure that the true model is 

the subset of selected features with high probability. And from one step to another we take cautiously tiny 

step to not ignoring the optima point if it can be obtained by similarity condition and the iterative process. 

From the optimization perspective, taking a greedy step might exhaust the performance in climbing the hill. 

Another direction worth of mentioning is investigating the effect of different tuning parameter𝜶, different 

number of folds, different increment values for lambda, finally and more importantly tuning the ℎ 
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parameter in similarity condition. One can think of it as another tuning parameter. Establishing a pre-phase 

for the iterative process, tuning techniques for ℎ seems an interesting future direction. 

The challenge is how one can measure the best value of the h parameter. One suggestion is using a 

secondary model selection metrics (e.g., BIC), keeping the rest of parameters in the base penalized function 

at a constant value, and obtain h parameter that optimizes (e.g., minimize) the selected metrics. The 

secondary metrics preferably should align with the purpose of this study which is the causal model recovery 

rather than prediction.  Finally, one might examine the effect of non-parsimony against treatments on the 

causal feature selection. The reason is that researchers are often time interested to see the effect of the 

controls or treatments in the system rather than removing the unimportant ones.  

Remember that we assumed full observability at the beginning (2.4.1) and built our entire research upon 

structure learning only. It is a very interesting future direction to change the perspective and instead, assume 

partial observability in the SSM, and find the similarities and differences in both approaches.  
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Appendix A 

Hidden Markov Models (HMMs) 

Here, we give a compact description of Hidden Markov Models (HMMs). HMMs define probability 

distributions over sequences of observations given a discrete hidden state 𝑆𝑡. 

A.1 Representation 

𝑆𝑡 here denote the hidden discrete state with K passible states.  𝑂𝑡 , as always the observation. 

1- Initial state  𝜋(𝑖) = 𝑃(𝑆1 = 𝑖). 𝜋(. ) 𝑖𝑠 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑙𝑎 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

2- 𝑻𝒉𝒆 𝒕𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏 𝒎𝒐𝒅𝒆𝒍  A(𝑖, 𝑗) = 𝑃(𝑆𝑡 = 𝑗|𝑆𝑡−1 = 𝑖) A is a stochastic matrix (each row sums to one), 

a conditional multinomial distribution 

3- The observation model 𝑃(𝑂𝑡|𝑆𝑡) 

If the observations are discrete, we can represent the observation model as a matrix, 𝐵(𝑖, 𝐾) = 𝑃(𝑂𝑡 =

𝐾|𝑆𝑡 = 𝑖) 

If the observations are continuous in ℝ𝐿 , it is very common to represent 𝑃(𝑂𝑡|𝑆𝑡)  as Gaussian: 

𝑃(𝑂𝑡 = 𝑜|𝑆𝑡 = 𝑖) =  Ν(𝑂; 𝜇𝑖 , Σ𝑖) or a mixture of Gaussian [14]. 
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Appendix B 

Kalman Filter Models (KFMs) or Linear Dynamical Systems 

(LDS) 

Here, we give a compact description of Kalman Filter Models (KFMS) known as Linear Dynamic 

Systems (LDSs). These models have been initially developed and heavily in use in the control theory 

community [30] [115] [116] [28]. 

B.1 Representation 

The basic model here is the discrete time linear dynamical systems with Gaussian noise. Despite that in 

LDS we assume that state of the system under study is continuous, it can be described by K-vector of state 

variables or “causes” S which we cannot observe directly, at each stage an output p-vector O is observed and 

accessible.  

1- 𝑆𝑡 ∈  ℝ𝑁𝑆  ¸  𝑂𝑡 ∈  ℝ𝑁𝑜 , 𝑈𝑡 ∈  ℝ𝑁𝑢 

Initial state: 𝑆1 =  Ν(𝜇1, 𝑄1) 

Transition and observation function are Linear-Gaussian. 

2-  State Transition Function 

  𝑆𝑡 = 𝐴𝑆𝑡−1 + 𝐵𝑈𝑡 + 𝑉𝜊        𝑊ℎ𝑒𝑟𝑒           𝑉𝜊  ∼ Ν(𝜇𝑆, 𝑄)  

    Or in other words, 

       𝑃(𝑆𝑡 = 𝑠𝑡|𝑆𝑡−1 = 𝑠𝑡−1, 𝑈𝑡 = 𝑢) =  Ν(𝑠𝑡; 𝐴𝑠𝑡−1 + 𝐵𝑢 + 𝜇𝑠, 𝑄) 

 A is a 𝑁𝑠  ×  𝑁𝑠 matrix, B is a 𝑁𝑠  ×  𝑁𝑢 matrix, Q is a 𝑁𝑠  × 𝑁𝑠 positive semi-definite        (PSD) 

matrix called the process noise. Since the Q noise is Gaussian and its dynamics are linear, 𝑆𝑡 is a first-

order Gauss-Markov Random Process. In another word, the state S is assumed to evolve according to 

simple first-order Markov dynamics. 

3- Observation Function    

 𝑂𝑡 = 𝐶𝑆𝑡 + 𝐷𝑈𝑡 +𝑊𝜊        𝑊ℎ𝑒𝑟𝑒           𝑊𝜊  ∼ Ν(𝜇𝑂, 𝑅) 

Or in other words, 
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𝑃(𝑂𝑡 = 𝑜|𝑆𝑡 = 𝑠, 𝑈𝑡 = 𝑢) =  Ν(𝑜; 𝐶𝑠 + 𝐷𝑢 + 𝜇𝑜, 𝑅) 

C is a 𝑁𝑂  ×  𝑁𝑠 matrix, D is a 𝑁𝑜  × 𝑁𝑢 matrix 

Each output vector O is generated from the current state by a simple linear function plus a Gaussian 

noise.  

4- 𝑊ο 𝑎𝑛𝑑 𝑉ο 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡,𝑊ο  ⊥  𝑉ο . 

5- 𝑊ο 𝑎𝑛𝑑 𝑉ο 𝑎𝑟𝑒 𝑎𝑠𝑠𝑢𝑚𝑒𝑑 𝑡𝑜 𝑏𝑒 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑙𝑦 𝑤ℎ𝑖𝑡𝑒 𝑜𝑟 𝑛𝑜 𝑠𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛   

             ∀ 𝑡 ≠ 𝑡′, 𝑊ο
𝑡 ⊥  𝑊ο

𝑡′  𝑎𝑛𝑑 𝑉ο
𝑡 ⊥  𝑉ο

𝑡′ 

6- Time-invariant (stationary) Parameters. 

7- Transition and observation function are Linear-Gaussian. 

8- Without loss of generality, we can assume 𝜇𝑆 and 𝜇𝑂 are 0, since we can always augment 𝑆𝑡 with the 

constant 1, and add 𝜇𝑆 ( 𝜇𝑂 ) to the first column of A (C) respectively.  

9- We can assume Q or R is diagonal; see [25] for details.  

10- Note that the noise is noted as 𝑉𝜊 and 𝑊𝜊 instead of 𝑉𝑡 and 𝑊𝑡, to show that noise process does not 

have the knowledge of the time index [25]. 

11- Note that the noises are the key elements of the model: without the process noise 𝑉ο, the state 𝑆𝑡 would 

always either shrink exponentially to zero or blow up exponentially in the direction of the leading 

eigenvector of A; same for the absence of the observation noise 𝑊ο, the state would no longer be hidden 

[25]. 
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Appendix C 

Dynamic Bayesian Networks (DBNs) 

Now we are concerned with the representation of a class of models called dynamic Bayesian networks 

(DBNs), of which HMMs and KFMs are just special cases. By using DBNs, we are able to represent, and 

hence learn, much more complex models of sequential data, which hopefully are closer to “reality.” The price 

to be paid is increased algorithmic and computational complexity. One thing to consider here is that DBNs 

have their biggest payoff in a discrete setting: combining multiple continuous variables together results in a 

polynomial increase in complexity, but combining multiple discrete variables results in an exponential 

increase in complexity, since the new “mega” state space is the cross product of the individual variables’ state 

spaces; DBNs help ameliorate this combinatorial explosion. This the reason why DBNs mostly used for 

discrete or mixed discrete-continuous states [14]. DBNs are represented by Bayesian net or DAG (Directed 

Acyclic Graph). 

In a directed acyclic graph (DAG) G or in Bayesian Network, nodes are the random variables in our domain 

and edges correspond, intuitively, to direct influence of one node on another. In another word, an arc from A 

to B can be informally interpreted as indicating that A “causes” B. Sometimes DAGs are called “Causal 

Diagrams” in other domains such as epidemiology [58] and that helps to understand the problem and possible 

causal relationship regardless of whether Bayesian inferences or frequentist inferences are used. For more 

information on Bayesian Network or tutorial on DAGs and graphical representation of HMMs, KFMs and 

switching state-space models refer to [1, 14] [6] [38] [117] [58]. There is no reason for us to duplicate the 

work of Murphy and Kohler here; therefore for comprehensive representation, inference and learning of State-

space models as DBNs and their algorithms go to [14] and [1] respectively. 
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Appendix D 

Partially Observed State 

Now, in this case, assumes that initial state and state transition representation remains the same as 2.4.1 

except the observation model that has the noise 𝑊𝑡. 

 This assumes that what we observe 𝑌𝑡
𝑂 is dependent on a hidden state variable 𝑌𝑡. The DAG of the problem 

will change and shown in figure 27. 

3- Observation Model:  𝑌𝑡
𝑂 = (1 0 0)(

𝑌𝑡
𝑈𝑡
𝑋𝑡

)   +  𝑊𝑡      𝑤ℎ𝑒𝑟𝑒 𝑊𝜊  ∼ Ν(0, 𝑅) 

Hence, in the case of hidden state, we should do state estimation or inferences along with parameter and 

structure learning. 

Unlike what assumed, we have a mixture of continuous and discrete state variables known as SSM with 

switching regime. Therefore, neither pure KFMs nor HMMs algorithms can handle the modeling. Hence, let’s 

expand the problem and relax the assumption of joint Gaussian for the state variables and observation. 

 

 

 

 

 

 

 

 

 

 

Figure 27. DAG of the problem with the assumption of a hidden variable: Partially Observed 

 

We know That U includes multiple binary decisions or treatments. So if we add treatments as “switch” 

variables, The DAG is shown in figure 28. 
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Figure 28. DAG of the problem - partially observed with control as a switch variable. square nodes are discrete,  

round nodes are continuous 

 

Switching state-space models are useful for modeling “modes” of behavior. If binary treatments or 

interventions in our study is effective then they might switch the linear transition behavior of the hidden Y 

from one to another. We also know that treatments depend on previous treatments in this study. Therefore the 

model described in Figure 28 is a closer representation of the problem. Now let’s define the transition and 

observation functions again.  

1- Transition models: 

𝑃(𝑌𝑡 = 𝑦𝑡|𝑌𝑡−1 = 𝑦𝑡−1, 𝑋
0 = 𝑥,𝑈𝑡

0 = 𝑖, ) =  Ν(𝑦𝑡; 𝐴𝑖𝑦𝑡−1 + 𝐵𝑖𝑥 + 𝜇𝑠, 𝑄𝑖) 

𝑃(𝑈𝑡
0 = 𝑗|𝑈𝑡−1

0 = 𝑖) = 𝐴(𝑖, 𝑗) 

2- Observation model  

𝑃(𝑌𝑡
0 = 𝑦𝑡

0|𝑌𝑡 = 𝑦𝑡) =  Ν(𝑦𝑡
0; 𝐶𝑦𝑡 , 𝑅) 



 85 

Note that U could also be hidden if we assume it’s not also affected by previous U but another hidden state. 

One can redefine the state space equations and it’s DAG by different assumption and doing so is entirely 

depends on the researcher and reality of the situation. 
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