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ABSTRACT 

Theoretical Modeling of Heat and Mass Transfer Processes in Phase Change and 

Electrochemical Energy Storage Systems  

Mohammad Parhizi, Ph.D. 

The University of Texas at Arlington, 2020 

Supervising Professor: Dr. Ankur Jain 

Theoretical understanding of heat and mass transfer processes in energy storage and 

conversion devices is of much interest for a wide variety of engineering applications. Two 

commonly used mechanisms for energy storage are electrochemical energy storage, such as in Li-

ion cells, and phase change based energy storage, such as in phase change materials (PCM). 

Previous studies show that heat and mass transfer in both PCMs and Li-ion cells are critical 

processes affecting the performance and safety of these systems. This dissertation investigates 

several theoretical aspects of heat and mass transfer in these energy storage systems, with the goal 

of improving performance and safety.        

In the first part, this dissertation presents a solution for a one-dimensional phase change 

problem with any arbitrary time-dependent heat flux boundary condition using the perturbation 

method. The solution presented here is shown to offer key advantages both in accuracy and 

stability over past papers. The theoretical result is then used for understanding the nature of phase 

change propagation heat transfer for a wide variety of applications. The model is used to 

investigate phase change heat transfer including a pre-melted or pre-solidified length between the 

region of interest and a time-dependent temperature boundary condition. Such a scenario can occur 

in multiple engineering applications when the heating or cooling process is intermittent in time. 
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Furthermore, the perturbation-based model is used to provide a theoretical understanding of how 

thermal conductivity and other thermophysical properties affect rate of energy stored (W) and 

energy storage density (J/m3) as two critical performance parameters of a system. Finally, the 

method is used to study phase change cooling of Lithium-ion cells. 

In the second part, this dissertation presents a heat transfer model to determine the core 

temperature of a Li-ion cell during thermal runaway using surface temperature and chemical 

kinetics data. The model presented here provides key insight into the internal state of Li-ion cells 

during thermal runaway. Later, mathematical modeling of species diffusion in Li-ion cell is carried 

out for improving performance and efficiency of electrochemical energy storage  in Li-ion cells. 

Green’s functions approach is used to solve the solution phase and solid-phase diffusion limitations 

in composite electrodes operating under a time-dependent flux boundary condition. The 

mathematical models presented in this work are validated by comparison with past studies and 

numerical simulations. The Green’s-function based model is then used to present an analytical 

Single Particle Model (SPM) based model to predict the terminal voltage and consequently 

estimate the state of charge (SoC) of Li-ion cells operating under realistic time-dependent current 

profiles. The mathematical model presented here is compared against numerical simulations and 

past experimental data for different operating conditions.  

It is expected that the theoretical models developed in this dissertation will help in 

designing and improving the performance of electrochemical and phase change energy storage 

systems. 
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Chapter 1 

1-1. Introduction 

Theoretical understanding of heat and mass transfer processes in energy storage and 

conversion systems is critical to improve the performance and safety of these systems. Two 

commonly used mechanisms for energy storage are phase change based energy storage, such as in 

phase change materials (PCMs) and electrochemical energy storage, such as in Lithium-ion cells. 

A broad introduction to each of these systems is presented next and a more detailed introduction 

is given in the beginning of each chapter.   

Phase change materials are used in a wide variety of engineering applications such as 

thermal management, energy storage, etc. Typical PCMs can be broadly divided into two 

categories – organic PCMs which are usually paraffin based and inorganic PCMs such as salt 

hydrates that offer large latent heat [1]. Operation of engineering systems comprising of PCMs 

always involves phase change heat transfer. The large latent heat of phase change relative to the 

magnitude of typical sensible heat is utilized commonly for designing effective thermal 

management [2] or energy storage techniques [3]. In both cases, energy is absorbed from a source 

of heat into a PCM that undergoes phase change from solid to liquid. As an example, latent heat 

storage has been widely investigated for storing energy harnessed from renewable sources [4], and 

forms a critical part of the infrastructure needed to address the intermittent nature of these sources 

and ultimately make renewable energy feasible. Compared to other competing mechanisms for 

energy storage, such as sensible heat [5], thermochemical [6], electrochemical [7], etc., phase 

change energy storage offers several advantages such as large rates of energy transfer, large energy 

storage density, etc. [4]. 
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Thermophysical properties such as thermal conductivity (k), heat capacity (Cp) and latent 

heat (L) of the PCM play a key role in determining the performance of phase change energy 

storage. PCMs are typically chosen for their large values of latent heat, these materials also have 

low thermal conductivity, in the range of 0.1-2.5 W/mK [8]. Due to this low thermal conductivity, 

as the phase change process proceeds, thermal impedance offered by the melted liquid slows down 

the rate of further melting. This self-limiting nature of phase change energy storage has been 

recognized to be an important limitation of phase change based energy storage [9], and the energy 

storage system is often designed to counter these effects, for example by providing fins into the 

PCM to increase surface area [10], or by enhancing PCM thermal conductivity by introducing 

nano/micro-particles [11]. 

The average rate of energy transferred and stored into the PCM over a certain time period 

is an important performance parameter for both thermal management and energy storage 

applications. Further, from a systems perspective, the density of energy stored is also an important 

parameter in order to ensure compactness of energy storage. High energy storage density can be a 

critical performance parameter when the space available for energy storage is limited and 

minimizing system weight is important. These considerations often arise in automotive, aerospace 

and military applications as well as compact consumer electronic devices. While the total energy 

stored is determined largely by the integral of heat flux at the PCM-source interface over time, the 

energy storage density additionally involves the volume of PCM melted over the time period. 

 While most experimental papers have focused on improving thermal conductivity, which 

clearly improves the rate of heat transfer from the source into the PCM, one must recognize that 

an increased thermal conductivity also increases the rate of melting. This is expected to increase 
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the total volume of PCM required, and therefore, may negatively impact energy storage density. 

Unlike extensive experimental work, a key gap in the literature pertains to the modeling and 

analysis of such effects. There is a lack in the literature of analytical models that connect these two 

key performance parameters – total energy stored and energy storage density – with underlying 

thermal properties of the PCM. Further, such an analytical model may also play a key role in 

materials selection. For example, given two candidate phase change materials that differ from each 

other in the values of both k and Cp, an analytical model may help determine which material is 

expected to have better performance in terms of total energy stored and energy storage density. In 

some cases, either one of total energy stored and energy storage density may be more critical than 

the other, and therefore, the choice of the ideal PCM depends on system-level considerations, 

which is not possible to account for using analytical models available in the literature. Moreover, 

such theoretical models which describe heat transfer during phase change can be used to 

investigate multiple engineering problems such as thermal energy storage, heat exchangers, 

additive manufacturing, welding and casting of metals, crystal growth and thermal management 

systems.  

In theoretical analysis of such problems, the interest is often in predicting the propagation 

of the phase change front as well as temperature distribution in the newly formed phase. The 

analysis of phase change problems is considerably complicated due to their non-linear nature – 

exact solutions exist only for a few idealized cases. The simplest model for phase change based 

energy storage is the case of heat transfer from a constant temperature wall into a PCM. This is 

indeed the well-known Stefan problem [12,13], for which progression of the melting front is 

known to be proportional to √𝛼𝑡  where 𝛼 is the thermal diffusivity of the PCM. For this problem, 

equations are also available for temperature distribution in the melted material, and therefore, the 
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rate of heat transfer into the PCM [12]. However, similar models are lacking for more complicated 

cases, such as in cylindrical coordinates, or for a heat-generating source surrounded by a PCM, for 

which, analysis using a time-dependent temperature boundary condition is more realistic than a 

constant temperature one. These limitations in the literature have made it difficult to optimize 

phase change based energy storage in practical engineering applications that cannot be reasonably 

modeled by the simplest, constant-temperature Stefan problem, or that are cylindrical or spherical 

in nature. Phase change heat transfer problems are, in general, non-linear in nature, making such 

theoretical analysis challenging. 

Operation of electrochemical energy storage devices such as Li-ion cells on the other hand, 

involves reaction kinetics, mass, charge and thermal transport phenomena [13,14]. Mathematical 

modeling of Li-ion cells is therefore, necessary to fully understand the underlying processes 

towards design and optimization of electrochemical energy conversion and storage systems 

[15,16]. 

Extensive research has been reported towards development of theoretical models to predict 

electrochemical and thermal transport in Li-ion cells subject to different operating conditions 

[17,18]. These electrochemical models solve the underlying charge, mass and thermal transport 

equations, as well as reaction kinetics [17-20]. Two most extensively-used electrochemical models 

are the Pseudo-2D model (P2D) and Single Particle Model (SPM) [17]. P2D model was 

constructed based on the porous electrode theory introduced by Newman [18] and the concentrated 

solution theory [19]. It solves the species and charge transport in both solution and solid phases 

[17,20]. P2D model is generally coupled and non-linear, resulting in a large number of equations 

and significant computational time. Thus, Single Particle Model (SPM) was developed to reduce 
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the complexity associated with P2D model. In SPM, concentration gradients in the solution phase 

are neglected, leading to dominance of solid phase diffusion in the porous electrode, which can be 

represented by a single, one-dimensional particle [14,21,22]. At low discharge rates and for thin 

electrodes this may be a reasonable assumption [23-24]. However, at larger discharge rates or for 

thick electrodes for example energy cells, when concentration gradient in the solution phase cannot 

be neglected, the governing equations become coupled and simplification is needed in order to 

derive an analytical solution. Towards this, Doyle et al. [25] assumed a specific form for the 

reaction rate distribution in the porous electrode, leading to uncoupling of the governing equations. 

Based on this approach, analytical solutions have been derived using the Separation of Variables 

(SOV) method for three limiting cases – solid phase, solution phase and Ohmically-dominated cell 

[25]. The governing equations in the solid phase were defined based on Fick’s law and the material 

balance in the solution phase was defined using the concentrated solution theory [25]. 

Mathematical models summarized above often result in a set of coupled equations that are 

often non-linear. As a result, exact solutions for these mathematical models exist only for a few 

limited cases. For example, diffusion equation for a solid solution cathodes initially at zero 

concentration has been solved using Laplace transformation approach [26]. Separation of 

Variables (SOV) technique has been used to solve a similar model for discharging of a Li-ion cell 

for different limiting cases [25]. Analytical solution for 1-D transient diffusion in a thin film, 

spherical electrode particle and composite electrode under constant galvanostatic discharge 

boundary condition and zero initial concentration has been developed using an extended separation 

of variables method [27,28]. Laplace transformation technique has been used to solve material 

balance equation in both solid and solution phases with non-zero initial concentration [29].  
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While most of the past analytical models focus on constant galvanostatic discharge 

conditions, there is a relative lack of work on time-dependent flux boundary conditions. In some 

cases, time-dependent boundary conditions are also important since the applied current density 

may be time-dependent. Therefore, mathematical models which can account for arbitrary time-

dependent boundary condisions, generation or consumption and arbitrary space-dependent initial 

condisions are of much interests. Such models can be used to estimate the state of charge of cells 

which is necessary for an accurate estimation of the state of the cell, and to ensure safety and 

efficient performance by avoiding overcharge or overdischarge. Thus, determining the 

concentration field in the electrodes particle is a key step for SPM-based SoC estimation. 

Analytical solutions for the diffusion equation governing the concentration field are available only 

for galvanostatic (constant current) operating conditions where the applied current density is 

constant. Even though step-wise changes in current can, in principle, be addressed by successively 

solving the concentration field in each galvanostatic time period, doing so is very difficult for 

rapidly changing current profiles encountered in vehicle drive cycles, or when the current changes 

smoothly over time, such as in alternating current (AC) systems. Previous studies have 

implemented a variety of numerical procedures and algorithms to predict the voltage and 

consequently SoC under dynamic discharge current conditions. However, an analytical solution 

for determining the SoC during time-varying charge/discharge conditions is very desirable since 

it may offer the capability of rapid, in-line SoC estimation that integrates well with other BMS 

functions. 

This dissertation first presents an approximate analytical solution for a one-dimensional 

phase change problem with any arbitrary time-dependent heat flux boundary condition using the 

perturbation method. The solution presented here is shown to offer key advantages both in 
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accuracy and stability over past papers. Later, the theoretical result is used for understanding the 

nature of phase change propagation heat transfer for a wide variety of applications. For example, 

perturbation method is used to investigate phase change heat transfer including a pre-melted or 

pre-solidified length between the region of interest and a time-dependent temperature boundary 

condition. Such a scenario can occur in multiple engineering applications when the heating or 

cooling process is intermittent in time. Furthermore, the perturbation-based model is used to 

provide a theoretical understanding of how thermal conductivity and other thermophysical 

properties affect rate of energy stored (W) and energy storage density (J/m3) as two critical 

performance parameters of a system. Finally, the method is used develop a theoretical model for 

PCM-based thermal management of Li-ion battery packs.  

In the second part of this dissertation, mathematical modeling of species diffusion in Li-

ion cell is discussed for improving performance and efficiency of electrochemical energy storage 

in Li-ion cells. Green’s functions approach is used to solve the solution phase and solid-phase 

diffusion limitations in composite electrodes operating under a time-dependent flux boundary 

condition. The mathematical models presented in this work are validated by comparison with past 

studies and numerical simulations. The Greens-function based model is then used to present an 

analytical SPM-based model to predict the terminal voltage and consequently estimate the state of 

charge (SoC) of Li-ion cells operating under realistic time-dependent current profiles. The 

mathematical model presented here is compared against numerical simulations and past 

experimental data for different operating conditions.  
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2-1. Introduction 

A fundamental understanding of heat transfer processes during phase change is critical for 

optimizing multiple engineering applications where melting and solidification occurs, such as 

metal casting, thermal management, process manufacturing, etc. [1, 2]. Heat transfer in an 

engineering system involving phase change requires the modeling of heat absorption or release at 

the phase change front, the location of which usually changes with time [3]. In general, such 

problems are non-linear in nature, although engineering approximations are often made in order 

to linearize and solve these problems [1-4]. The Stefan number, defined as  𝑆𝑡𝑒 =
𝐶𝑝(𝑇𝑟𝑒𝑓−𝑇𝑚)

𝐿
 , 

which represents the ratio of sensible heat to latent heat, is a key non-dimensional parameter in 

such problems. The simplest phase change problem involves a one-dimensional, semi-infinite 

solid, initially at the melting temperature, Tm, being heated up or cooled down by a constant 

temperature, T0 imposed at its end. This problem, often referred to as the Stefan problem has a 

standard solution, which shows that the location of the phase change front, Y(τ) is proportional to 

√𝛼𝜏 where α is the thermal diffusivity [5]. Several variants of this problem have been addressed 

in past work, including a heat flux boundary condition [6-11], convective flow within the melted 

liquid [12,13], time-dependent temperature boundary condition [14-16], convective boundary 

condition [8], phase change over a temperature range [17], etc. Only the simplest of these phase 

change problems admits an exact solution – in most other cases, one must resort to approximate 

analytical methods that often result in series solutions. 

A number of approximate solution methods are available for solving phase change 

problems [2, 18]. For example, the perturbation method has been used to solve the problem with a 

time-dependent boundary condition [14,15] as well as a problem with a constant heat flux 
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boundary condition [8]. This method involves expressing the temperature distribution as a series 

solution involving powers of the Stefan number, and solving for each term individually. Solving 

for only the first few terms of the expansion provides a reasonably accurate solution, particularly 

for small values of Ste. Integral methods apply the heat balance integral to phase change problems, 

similar to the momentum integral in boundary layer theory [19], and have been used for solving 

phase change problems with time-dependent temperature boundary conditions. Quasi-stationary 

and quasi-steady methods have also been used [3]. These methods are particularly applicable if the 

solid-liquid interface location moves slowly and the transient term in the energy equation can be 

neglected. While much of the work in this direction addresses cases with temperature boundary 

condition, relatively lesser work exists on analysis of heat flux boundary condition. This problem 

has been solved for the specific cases of constant heat flux using the integral method [6] and by 

approximating the form of the temperature distribution [7]. A series solution has been derived for 

the specific case of a sinusoidal boundary condition [8]. Solution for the problem with time-

dependent heat flux has been derived using a series solution [11] as well as expansion of the 

temperature distribution as a function of the error integral family [9]. A few highly mathematical 

treatments of such problems also exist, including proofs for existence and uniqueness of solutions 

for non-linear Stefan problems [20,21], although these results are difficult to apply for engineering 

problems.  

This work presents a theoretical analysis of the problem of one-dimensional phase change 

involving a time-dependent heat flux boundary condition using a perturbation method. Time-

dependent heat flux may be encountered when, for example, a heat-generating body such as a Li-

ion cell undergoing high rate discharge is being cooled by a phase change material. In this case, 

heat flux entering the phase change material may change with time due to time-dependent heat 
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generation and transient thermal conduction within the Li-ion cell [22]. In this work, this problem 

is solved by expanding the temperature distribution in a power series involving the Stefan number 

and solving for the first three terms of the power series. Comparison of the theoretical results with 

past papers is presented. For a specific case of constant heat flux, results from this work are shown 

to be close to results from past papers that utilized other methods. The present work is shown to 

be able to accurately predict the time evolution of the phase change front at large times while 

several past models are found to diverge. Results are found to be in good agreement with finite-

element simulation results, while providing significant advantage in terms of computational time. 

The analytical method is used for analyzing the dependence of the solution on key thermal 

parameters. This technical note contributes towards an improved theoretical understanding of a 

heat transfer problem that is commonly encountered in multiple engineering applications.  

2-2. Mathematical Modeling 

Consider a one-dimensional, semi-infinite body initially at its phase change temperature Tm. 

Figure 1 shows this schematically for the specific case of solid-to-liquid phase change, although 

the reverse process of liquid-to-solid phase change can also be analyzed using the results derived 

in this section. Heat flux at the X=0 end is a known function of time, q(τ). Heat enters or leaves the 

body with time, resulting in phase change and propagation of the phase change front with time. A 

key quantity of interest in such a problem is the location of the solid-liquid interface as a function 

of time, Y(τ). In addition, temperature distribution within the newly formed phase, T(X,τ) is also of 

interest. Convection in the liquid phase is neglected.  
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Following the non-dimensionalisation summarized in the Nomenclature section, the 

temperature field must satisfy the following governing energy conservation equation:  

                               
tx 


=



 
2

2

  (1) 

where x>0 and t>0. 

θ(x,t) is subject to the following boundary condition  

 )(tg
x
=




−


 at x=0 (2) 

where g(t) is the non-dimensional heat flux.  

Temperature continuity and energy conservation at the solid-liquid interface requires that  

 0=  at x=y(t)  (3) 

and 

Figure 1. Schematic of the one-dimensional phase change problem with time-dependent heat flux. The 

schematic shows solid-to-liquid phase change, but the opposite process can also be analyzed in the 

same framework. 
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dt

dy

x
Ste

tyx
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
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







−

= )(


 at x=y(t) (4) 

In order to determine the unknown phase change front y(t) and the temperature distribution 

following phase change θ(x,t), equation (1) is transformed in order to replace t with y as an 

independent variable. By doing so, equation (1) results in  

                        
yxxy

Ste
x =

















−=



 
2

2

     (5) 

The boundary condition at x=0 is re-written in terms of y as follows 

        )()( yGtg
x

==



−


                                  at x=0     (6) 

In order to solve this problem for time-varying heat flux g(t), the temperature distribution θ(x,y) is 

written in the form of a series involving the first three powers of Ste, similar to past papers that 

utilized this approach for a time-dependent temperature boundary condition [14,15] 

 ( ) ),(),(),(, 2

2

10 yxSteyxSteyxyx  ++=      (7) 

By substituting equation (7) into (5), governing equations and associated boundary conditions for 

the temperature components θ0(x,y), θ1(x,y) and θ2(x,y) can be derived. These ordinary differential 

equations can be easily solved to result in the following solution 

 ( )yxyGyx −−= )(),(0      (8) 
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where 
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Note that the forcing function G(y) is assumed to be appropriately differentiable.  

The location of the phase change front, y(t) in equations (8)-(14) is unknown. In order to 

solve for y(t), energy balance at the interface is utilized. Substituting equations (7)-(14) in equation 

(4) results in  
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Finally, as is the case in perturbation analysis [14,15], derivatives of G are neglected, the following 

non-linear ordinary differential equation is obtained for y(t) 
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 )()()(2)( 23322 yGSteyyGSteyyGStey =−+      (16) 

For cases with relatively simple expression for the heat flux, this equation can be directly solved. 

In general, a solution for y(t) can be derived by neglecting the Ste3 term, which may be reasonable 

since Ste<<1. In such a case, the general solution for y(t) is found to be 

 ( )( ) ( )( ) −+= **22*****22* )(exp)(exp)()( dttgSteCdtdttgStetgStety      (17) 

Where C is a constant which is determined using the initial condition of y(0)=0. The temperature 

distribution θ(x,y) can be determined by substituting y(t) from equation (17) into equations (7) 

through (14).  

This completes the derivation of solution of the problem with time-dependent heat flux using 

perturbation method. Due to approximations made during the derivation, this solution is valid only 

for small values of Ste, which is usually appropriate for materials of engineering interest due to 

the relatively large value of the enthalpy of phase change compared to heat capacity. Further, note 

that since the derivation above involves derivatives of the forcing function G(y), the approach 

utilized here may not be appropriate in the case of a heat flux profile that is not appropriately 

differentiable. 

Comparison of these results with past work, particularly for the specific case of constant 

heat flux is analyzed next. 

 

2-3. Results and discussion 

In order to compare with results from past work [9, 10, 19], it is instructive to examine the solution 

of equation (16) when the heat flux is constant, for which, solutions based on other methods are 

available. There are two distinct approaches for simplifying the general treatment in section 2 and 
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deriving the solution for the phase change front when g(t)=g0.  

Firstly, for constant heat flux, equation (16) can be shown to have an exact solution, given by 

 
( )




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2

1
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12 +



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


−

=

−t

ty  
    (18) 

where 

 0gSte=      (19) 

Alternately, the integral in equation (17) can be computed for the case of constant heat flux to 

result in the following solution  

 ...
720

1

120

1

24

1

6

1

2

1
)( 61159473523 ttttttty  −+−+−=      (20) 

While equation (18) represents the general solution for the constant heat flux case, equation 

(20) is based on neglecting higher order terms in equation (16). Note that the solution in equation 

(18) is not valid for large t where the tan function may diverge which is the case for the past work 

as well. On the other hand, equation (20) does not have such a restriction and converges uniformly 

even at large times.  

Equation (20) offers a good physical insight into the solution. The first term in equation 

(20) represents the rate of heat absorption at the phase change interface, and further terms represent 

the effect of thermal diffusivity in the newly formed phase. In many engineering cases, where 

latent heat dominates over sensible heat, heat absorption in the newly formed phase can be 

neglected, and only the first term of this equation may be sufficient.  

It is instructive to compare the solutions derived here, equations (18) and (20) with results 

from past papers that have presented solutions for the constant heat flux case. Specifically, the 
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solution for the phase change front has been derived by Tao [9], Goodman [19] and Carslaw & 

Jaegar [10] as follows 

 ...
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1
)( 59473523 tttttty  +−+−=     (21) [9] 
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1
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 ...
6

5

2

1
)( 3523 tttty  +−=     (23)  [10] 

While equation (21) was derived by Tao by expressing temperature in terms of polynomial 

functions of error integrals [9], equation (22) was derived by Goodman using the heat balance 

integral method [19]. Equation (23) was derived by Carslaw & Jaegar by writing y(t) as a power 

series [10]. 

It can be seen that the expression for the phase change front derived in this work for the 

specific case of constant heat flux by neglecting the Ste3 term, equation (20) is close to results from 

several papers that solved the same problem using other techniques. The first two terms are 

identical, with a departure occurring in the third term. Figure 2(a) plots y(t) as a function of t 

derived in this work (equations (18) and (20)) and compares with past papers [9,10,19] as well as 

numerical computation based on finite element method (FEM) for a non-dimensional, constant 

heat flux g0=5000. In this case, the enthalpy method is used in the finite-element simulations for 

solving for computing temperature distribution in the phase change material, which is defined as 

a binary mixture of liquid and solid. Results obtained from FEM simulation are validated 

separately against the analytical solution of the well-known Stefan problem with constant 

temperature boundary condition. Mesh independence is also ensured. Very good agreement with 
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past papers is seen up to a non-dimensional time of around 2.5×10-4. As time increases, solutions 

from past studies lose accuracy beyond around t=2.5×10-4, while the present result continues to 

agree well with finite element simulations. Figure 2(b) investigates this further by plotting the 

phase change front Y(τ) over a much larger time range,  up to τ=4000 for different values of thermal 

diffusivity. This plot is shown in dimensional form since plotting in non-dimensional form would 

not be appropriate as thermal diffusivity influences both t and y(t). It is clearly seen that previous 

models diverge and fail to accurately predict Y(τ) at large times, beyond around τ=1500 s for 

α=1.10×10-7 m2/s. While the convergence of past models can be improved by including many more 

terms [3], derivation of further terms for these models is very cumbersome and impractical [3,9]. 

While equation (18) may also diverge at large times due to the presence of the tan function, 

equation (20) in the present work clearly converges even at large times, even with a few number 

of terms. Computation of terms further than those showed in equation (20) is also simpler than 

past work.  

It has been shown [3] that the result from Tao [9], shown in equation (21) is valid only 

when the non-dimensional parameter 



22

2

L

q
= is less than 0.4. This explains why the solution 

by Tao [3], equation (21), diverges at large times. This also explains divergence at even smaller 

times when computed for larger value of α, as shown in Figure 2(b). On the other hand, the present 

solution, equation (20) does not suffer from such divergence problems, and continues to predict 

the interface location even at large times. This represents a key advantage of the present model 

compared to past work.  
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Note that in Figure (2), the value of the reference length for non-dimensionalization is 

taken to be b=1 m. Further, the value of Stefan number is 0.008 based on Tref-Tm=1 K and thermal 

properties of commercial paraffin wax. 

 

Figure 2. Comparison of the present analytical result with past results for the special case of constant heat 

flux: (a) Plot of non-dimensional phase change front location, y(t) as a function of non-dimensional time, 

t for the present work and three past results 

 

For further validation of the theoretical results, the phase change front y(t) is plotted in 

Figure 3(a) as a function of time based on equation (17) assuming a linear heat flux profile 𝑔(𝑡) =

𝐴 + 𝐵𝑡. While the value of A is held constant at 5000, a number of cases with different values of 

B are considered in order to investigate the effect of the slope of g(t). The values of b and Ste are 

the same as in Figure 2. Results from FEM computations are also plotted in Figure 3(a) for 

comparison. Further, Figure 3(b) plots the temperature distribution in the newly formed phase at 

different times for a specific input heat flux, with A=5000 and B=-4.56×107. Figure 3(a) shows 

very good agreement between the analytical solution and FEM-based computations for each heat 

flux considered. As the value of B increases, the nature of y(t) curves changes from concave to 

convex, which is along expected lines, since an increase in the value of B results in more heat flux 

into the medium, and therefore, a greater rate of propagation of the phase change front. There is 
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also very good agreement in the temperature distribution at multiple times, as shown in Figure 

3(b). Note that the analytical solution is significantly faster than finite element simulation since 

the solution is obtained as a closed form equation, and does not require time-intensive 

discretization and solution of a large system of equations. 

 

Figure 3. Validation of the present work with finite element simulation for linear, time-varying heat flux: 

(a) Phase change front y(t) as a function of t for linear heat flux 𝑔(𝑡) = 𝐴 + 𝐵𝑡. The value of A is taken to 

be 5000 and values of B are shown in the legend. (b) Temperature distribution as a function of x for the 

specific case of B=4.56×107. Both plots show very good agreement between the analytical model and 

finite element simulation. 

 

Periodic heat flux boundary conditions are of interest in a variety of applications. Figure 

4(a) presents computed profiles of the solid-liquid interface as a function of time for periodic heat 

flux, 𝑔(𝑡) = 𝐴(1 + 𝐶𝑜𝑠(𝜀𝑡)), where 𝜀 =
𝜔𝑏2

𝛼
 is the non-dimensional frequency. The values of b 

and Ste are the same as in Figure 2, and A=5000. Figure 4(a) shows that the theoretical model 

presented in this work is able to capture the time evolution of the phase change front for different 

frequencies. The number of oscillations within the time period considered decreases as frequency 

decreases, as expected.  
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It is of interest to examine the dependence of the solution on the value of thermal 

diffusivity, which is a key thermophysical property that governs phase change propagation. Figure 

4(b) plots phase change front as a function of time for multiple values of thermal diffusivity α. 

Figure 4(b) considers up to ±50% variation in thermal diffusivity from the baseline value of 

1.1×10-7 m2/s, which is the typical value of thermal diffusivity of paraffin wax used for multiple 

phase change heat transfer applications. This plot indicates that an increase in thermal diffusivity 

results in a slight increase in y(t). This happens because of more rapid heat transfer through the 

newly formed phase at a higher value of thermal diffusivity, and vice versa. Unlike the case of 

constant temperature boundary condition, where the phase change front location is known to be 

proportional to √𝛼𝜏 [3,4], a similar explicit relationship is not available for heat flux boundary 

conditions. 

 

Figure 4. (a) Plot of phase change front y(t) as a function of time for periodic heat flux 𝑔(𝑡) = 𝐴(1 +
𝑐𝑜𝑠(𝜀𝑡)) for multiple values of the non-dimensional frequency, ε. (b) Plot of the variation in phase 

change front propagation for different values of thermal diffusivity for constant heat flux case. 

 

Time-varying heat flux in a phase change problem can be encountered in applications 

where a phase change material cools down a heat-generating body in which the heat generation 

itself is a function of time. For example, phase change cooling of Li-ion cells has been of much 
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recent research attention [22, 23]. Since heat generation in Li-ion cells changes with time as the 

electrical load changes [24], therefore, heat flux into the phase change material is also likely to 

change with time. For such applications, the present model offers a theoretical framework for 

thermal analysis and optimization. While the perturbation method used here does not apply for 

very short times, such information is usually not important for engineering analysis.  

Extension of the treatment discussed here to problems in cylindrical and spherical 

coordinate systems, which may also have practical applications, is reasonably straightforward, 

following the same approach as equations (7)-(17) to account for the time-dependent heat flux.  

2-4. Conclusions 

This work presents a solution for the phase change heat transfer problem with time-

dependent heat flux boundary condition using the perturbation method. The solution is shown to 

converge at large times, where solutions from past papers are known to diverge. This represents a 

significant improvement in our theoretical understanding of phase change heat transfer. The 

theoretical results presented here may be relevant to multiple engineering applications such as 

cooling of Li-ion cells. Results derived here are used to understand the effect of linear and periodic 

heat flux boundary conditions, which may arise in such applications. These results can be easily 

extended to cylindrical and spherical coordinate systems. 
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2-5. Nomenclature 

b reference length scale (m) 

Cp specific heat capacity (J/kgK) 

L latent heat of fusion (J/kg) 

g non-dimensional heat flux, g=qb/k(Tref-Tm) 

k thermal conductivity (W/mK) 

q heat flux (W/m2) 

Ste Stefan number, Ste=Cp(Tref-Tm)/L 

t non-dimensional time, t= ατ/b2 

T temperature (K) 

Tm phase change temperature (K) 

Tref reference temperature (K) 

x non-dimensional lengthscale, x=X/b 

y non-dimensional location of phase change front, y=Y/b 

X lengthscale (m) 

Y location of phase change front (m) 

θ non-dimensional temperature, θ=(T-Tm)/(Tref-Tm) 

α thermal diffusivity (m2/s) 

ε non-dimensional frequency, ε= ωb2/α 

ω frequency (1/s) 

τ time (s) 
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3-1. Introduction 

Solid-liquid phase change occurs in a number of engineering applications such as thermal 

management, energy storage, etc. The large latent heat of phase change relative to the magnitude 

of typical sensible heat is utilized commonly for designing effective thermal management [1] or 

energy storage techniques [2]. In both cases, energy is absorbed from a source of heat into a phase 

change material (PCM) that undergoes phase change from solid to liquid. As an example, latent 

heat storage has been widely investigated for storing energy harnessed from renewable sources 

[3], and forms a critical part of the infrastructure needed to address the intermittent nature of these 

sources and ultimately make renewable energy feasible. Compared to other competing 

mechanisms for energy storage, such as sensible heat [4], thermochemical [5], electrochemical [6], 

etc., phase change energy storage offers several advantages such as large rates of energy transfer, 

large energy storage density, etc. [3]. 

As the phase change process proceeds, thermal impedance offered by the melted liquid 

slows down the rate of further melting. This self-limiting nature of phase change energy storage 

has been recognized to be an important limitation of phase change based energy storage [7], and 

the energy storage system is often designed to counter these effects, for example by providing fins 

into the PCM to increase surface area [8,], or by enhancing PCM thermal conductivity by 

introducing nano/micro-particles [9]. 

Typical PCMs can be divided into two categories – organic PCMs which are usually 

paraffin based and inorganic PCMs such as salt hydrates that offer large latent heat [10]. Clearly, 

thermophysical properties such as thermal conductivity (k), heat capacity (Cp) and latent heat (L) 

of the PCM play a key role in determining the performance of phase change energy storage. While 
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PCMs are typically chosen for their large values of latent heat, these materials also have low 

thermal conductivity, in the range of 0.1-2.5 W/mK [11]. Significant research has been reported 

on enhancing thermal conductivity of PCMs. A variety of techniques such as dispersing particles 

with high thermal conductivity such as graphite and nickel particles [12], adding carbon fibers 

[13], using expanded graphite and carbon fibers [14], adding high thermal conductivity promoters 

[7] and using graphite matrix [15] have been used for PCM thermal conductivity enhancement. 

Graphite matrix insertion has been shown to increase PCM thermal conductivity to up to 17 Wm-

1K-1 [16]. Multiple microscale mechanisms have been proposed to explain such enhancement, 

including Brownian motion which enables the particles to move through the fluid, nano-particles 

clustering and liquid layering around solid particles [17]. 

The average rate of energy transferred and stored into the PCM over a certain time period 

is an important performance parameter for both thermal management and energy storage 

applications. Further, from a systems perspective, the density of energy stored is also an important 

parameter in order to ensure compactness of energy storage. High energy storage density can be a 

critical performance parameter when the space available for energy storage is limited and 

minimizing system weight is important. These considerations often arise in automotive, aerospace 

and military applications as well as compact consumer electronic devices. While the total energy 

stored is determined largely by the integral of heat flux at the PCM-source interface over time, the 

energy storage density additionally involves the volume of PCM melted over the time period. 

 While most experimental papers have focused on improving thermal conductivity, which 

clearly improves the rate of heat transfer from the source into the PCM, one must recognize that 

an increased thermal conductivity also increases the rate of melting. This is expected to increase 
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the total volume of PCM required, and therefore, may negatively impact energy storage density. 

Unlike extensive experimental work, a key gap in the literature pertains to the modeling and 

analysis of such effects. There is a lack in the literature of analytical models that connect these two 

key performance parameters – total energy stored and energy storage density – with underlying 

thermal properties of the PCM. Further, such an analytical model may also play a key role in 

materials selection. For example, given two candidate phase change materials that differ from each 

other in the values of both k and Cp, an analytical model may help determine which material is 

expected to have better performance in terms of total energy stored and energy storage density. In 

some cases, either one of total energy stored and energy storage density may be more critical than 

the other, and therefore, the choice of the ideal PCM depends on system-level considerations, 

which is not possible to account for using analytical models available in the literature.  

The simplest model for phase change based energy storage is the case of heat transfer from 

a constant temperature wall into a PCM. This is indeed the well-known Stefan problem [18,19], 

for which progression of the melting front is known to be proportional to √𝛼𝑡  where 𝛼 is the 

thermal diffusivity of the PCM. For this problem, equations are also available for temperature 

distribution in the melted material, and therefore, the rate of heat transfer into the PCM [18]. 

However, similar models are lacking for more complicated cases, such as in cylindrical 

coordinates, or for a heat-generating source surrounded by a PCM, for which, analysis using a 

time-dependent temperature boundary condition is more realistic than a constant temperature one. 

These limitations in the literature have made it difficult to optimize phase change based energy 

storage in practical engineering applications that cannot be reasonably modeled by the simplest, 

constant-temperature Stefan problem, or that are cylindrical or spherical in nature. Phase change 
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heat transfer problems are, in general, non-linear in nature, making such theoretical analysis 

challenging. 

 This work presents analytical modeling of performance parameters for phase change 

energy storage in a variety of scenarios. The key novelty of this work is that the models presented 

here help understand the impact of thermal properties such as thermal conductivity and heat 

capacity on the rate of energy storage and energy storage density, which is largely missing in the 

past literature. Simplified cases such as heat transfer from a constant temperature wall in Cartesian, 

cylindrical systems are analyzed first. Perturbation method is used to derive expressions for the 

average rate of energy storage and energy storage density for cases where an analytical solution is 

not readily available. Theoretical models are extended to account for more realistic scenarios 

involving time-dependent temperature boundary conditions, which can represent a heat source 

with internal heat generation next to the PCM. Results indicate that while the rate of energy storage 

increases with increasing PCM thermal conductivity in a Cartesian phase change system, the 

energy storage density remains unchanged. Further, in cylindrical system, an increase in thermal 

conductivity may actually result in a reduction in energy storage density. By developing a 

theoretical understanding of the effect of PCM thermal properties on the performance of energy 

storage, this work addresses a key gap in literature. Results derived here help place ongoing 

experimental research on thermal conductivity enhancement in perspective, and contribute towards 

the optimization of practical energy storage systems.  

3-2. Theoretical Model 

This section derives expressions for the two key performance parameters of phase change 

energy storage – average rate of energy storage and energy storage density – in Cartesian and 



34 
 

cylindrical coordinate systems. Section 2.1 analyzes a simplified model that assumes constant wall 

temperature, whereas Section 2.2 analyzes cases of internal heat generation in the heat source, 

modeled by an unsteady temperature boundary condition. 

3-2-1. Energy storage from a constant temperature wall  

The thermal interaction between the heat source and PCM can, in the most simplified form, 

be described as heat transfer from a constant temperature wall. The phase change energy storage 

system could be designed either in Cartesian or cylindrical geometries. In this sub-section, 

expressions for average rate of energy stored and energy storage density are derived for this 

simplified case. 

3-2-1-1. Cartesian wall 

Figure 1(a) shows a schematic of a Cartesian, one-dimensional phase change energy 

storage system, where a PCM, initially at its melting temperature Tm absorbs heat from an infinite 

wall maintained at a constant temperature Tw.  

 

Figure 1. Schematic of the (a) Cartesian and (b) cylindrical phase change problems consider 

here. 
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Assuming no fluid flow in the newly formed phase due to forced or natural convection, 

this is the classical Stefan problem, for which well-known solutions are available [18,19]. The 

phase change front y(t) is given by 

 𝑦(𝑡) = 2𝜆√𝛼𝑡 (1) 

where α is the thermal diffusivity and λ is the root of the transcendental equation 

 
𝜆𝑒𝑟𝑓⁡(𝜆)𝑒𝜆2

=
𝐶𝑝(𝑇𝑤 − 𝑇𝑚)

𝐿√𝜋
 

(2) 

Temperature distribution in the newly formed liquid phase is given by [18]  

 

𝑇(𝑥, 𝑡) = (𝑇𝑚 − 𝑇𝑤)
𝑒𝑟𝑓 (

𝑥

2√𝛼𝑡
)

erf(𝜆)
+ 𝑇𝑤 

(3) 

from where, the average rate of energy absorbed by the PCM up to a given time t can be found to 

be 

 

𝑄̇𝑎𝑣𝑔(𝑡) =
1

𝑡
∫−𝑘𝐴 (

𝜕𝑇

𝜕𝑥
)
𝑥=0

𝑡

0

𝑑𝜏 =
−2𝑘𝐴(𝑇𝑚 − 𝑇𝑤)

√𝜋𝛼𝑒𝑟𝑓(𝜆)√𝑡
 

(4) 

Finally, the energy storage density can be found by dividing the total energy absorbed by 

the volume of PCM melted. 
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𝑄′′′(𝑡) =

𝑄̇𝑎𝑣𝑔(𝑡) × 𝑡

𝑦(𝑡) × 𝐴
= 𝜌𝐿𝑒𝜆2

 
(5) 

Both 𝑄̇𝑎𝑣𝑔(𝑡) and y(t) have the same square root dependence on k, which, therefore, cancels 

out in the expression of the energy storage density. The final expression of the energy storage 

density is only a function of density, latent heat and specific heat capacity through λ. It is assumed 

in the analysis above that the PCM size is not fixed, but rather can be chosen in advance, based on 

the knowledge of how much PCM is expected to melt in a given time duration. As a result, the use 

of y(t) – which is a function of thermal properties – in calculating the volume of PCM melted is 

appropriate. 

Note that in most practical phase change problems, the extent of natural convection is not 

strong enough to produce significant convective heat transfer due to the relatively small 

temperature difference and consequently small value of the Rayleigh number. This, together with 

the considerable complications in the coupled analysis of heat transfer and natural convection 

justifies neglecting natural convection in the present work. 

3-2-1-2. Cylindrical wall 

Consider an infinite bed of PCM absorbing heat from the outer surface of a cylinder of 

radius R maintained at temperature Tw, as shown in Figure 1(b). Similar to section 2.1.1, the PCM 

is initially at its melting temperature Tm. Unlike the Cartesian Stefan problem discussed in section 

2.1.1, this problem in the cylindrical coordinate system does not have an exact solution. A 

technique based on perturbation method has been presented for solving this problem, based on an 

assumption of a small Stefan number [20,21].  
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The governing energy equation in cylindrical coordinate system is given by 

 1

𝑟

𝜕

𝜕
(𝑟

𝜕𝑇

𝜕𝑟
) =

1

𝛼

𝜕𝑇

𝜕𝑡
 

(6) 

and the boundary conditions are  

 𝑇 = 𝑇𝑤 at 𝑟 = 𝑅 (7) 

 𝑇 = 𝑇𝑚 at 𝑟 = 𝑦(𝑡) (8) 

 
−𝑘 (

𝜕𝑇

𝜕𝑟
)
𝑟=𝑦(𝑡)

= 𝜌𝐿
𝑑𝑦

𝜕𝑡
 

at 𝑟 = 𝑦(𝑡) (9) 

Based on perturbation technique discussed in past papers [20,21], t is replaced by phase 

change front, y(t) in the governing equation and boundary conditions. Temperature distribution is 

expressed in the form of a series involving powers of the Stefan number, 𝑆𝑡𝑒 =
𝐶𝑝(𝑇𝑤−𝑇𝑚)

𝐿
. By 

substituting temperature distribution back in the governing equation and using boundary 

conditions, similar to the treatment in [20], the phase change front, y(t) is found using an inverse 

function 
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𝑡 =

𝑅2

𝛼
[
(2(𝑦̅(𝑡))2 log 𝑦̅(𝑡) + 1)

4
+

𝑆𝑡𝑒

4 log 𝑦̅(𝑡)
((𝑦̅(𝑡))2 log 𝑦̅(𝑡)+ log 𝑦̅(𝑡) −(𝑦̅(𝑡))2 + 1)

+
𝑆𝑡𝑒2

128(𝑦̅(𝑡))2 log 𝑦̅(𝑡)
(𝑦̅4(8 (log 𝑦̅(𝑡))3 −20 (log 𝑦̅(𝑡))2 +21 log 𝑦̅(𝑡)

− 8) − 16(𝑦̅(𝑡))
2
(log 𝑦̅(𝑡) − 1) − 5 log 𝑦̅(𝑡) − 8)] 

(10) 

where 𝑦̅ =
𝑦

𝑅
 . Note that equation (10) corrects a minor error in the final result of similar 

treatment presented in [20]. Temperature distribution in the newly formed liquid is given by 

 𝑇(𝑟, 𝑡) = (𝜃0 + 𝑆𝑡𝑒 ∙ 𝜃1 + 𝑆𝑡𝑒2 ∙ 𝜃2)(𝑇𝑤 − 𝑇𝑚) + 𝑇𝑚 (11) 

where 

 
𝜃0 = 1 −

log 𝑟̅

log 𝑦̅(𝑡)
 

(12) 

 
𝜃1 =

(𝑟̅2 log 𝑟̅ −(𝑦̅(𝑡))2 log 𝑟̅ −𝑟̅2 + 1)

4(𝑦̅(𝑡))2(log 𝑦̅(𝑡))3
+

log 𝑟̅((𝑦̅(𝑡))2 − 1)

4(𝑦̅(𝑡))2(log 𝑦̅(𝑡))4
 

(13) 



39 
 

 
𝜃2 =

1

64(𝑦̅(𝑡))4(log 𝑦̅(𝑡))4
(8𝑟̅2(𝑦̅(𝑡))2

− 2𝑟̅4 log 𝑟̅ +10(𝑦̅(𝑡))4 log 𝑟̅ −8𝑟̅2 + 3𝑟̅4 − 8(𝑦̅(𝑡))2 − 8𝑟̅2(𝑦̅(𝑡))2 log 𝑟̅ + 5)

+
1

128(𝑦̅(𝑡))4(log 𝑦̅(𝑡))5
(16𝑟̅2 log 𝑟̅ −40𝑟̅2(𝑦̅(𝑡))2

− 10 log 𝑟̅ −6𝑟̅4 log 𝑟̅ +16𝑟̅2 log 𝑟̅

− 56(𝑦̅(𝑡))4 log 𝑟̅ −40𝑟̅2 + 9𝑟̅4 + 40(𝑦̅(𝑡))2 + 40𝑟̅2(𝑦̅(𝑡))2 log 𝑟̅ + 31)

+
1

128(𝑦̅(𝑡))4(log 𝑦̅(𝑡))6
(((𝑦̅(𝑡))2 − 1)(31 log 𝑟̅)

− 40𝑟̅2 log 𝑟̅ +71(𝑦̅(𝑡))2 log 𝑟̅ + 40𝑟̅2 − 40) −
(5 log 𝑟̅((𝑦̅(𝑡))2 − 1)2)

16(𝑦̅(𝑡))4(log 𝑦̅(𝑡))7
 

(14) 

 where 𝑟̅ =
𝑟

𝑅
 . As a result, the average rate of energy absorbed by the PCM up to a 

specific time t can be determined as follows 

 

  

𝑄̇𝑎𝑣𝑔(𝑡) =
1

𝑡
∫ −𝑘(2𝜋𝑅ℎ) (

𝜕𝑇

𝜕𝑥
)
𝑟=𝑅

𝑑𝜏
𝑡

0

=
1

𝑡
∫ ⌈−𝑘(2𝜋𝑅ℎ)(𝑇𝑤

𝑡

0

− 𝑇𝑚) ((
(10(𝑦̅(𝑡))4 + 8(𝑦̅(𝑡))2 − 6)

64(𝑦̅(𝑡))4(log 𝑦̅(𝑡))4
−

(5(𝑦̅(𝑡))2 − 1)2

16(𝑦̅(𝑡))4(log 𝑦̅(𝑡))7

−
(56(𝑦̅(𝑡))4 + 24(𝑦̅(𝑡))2 + 44)

128𝑦̅4(log 𝑦̅(𝑡))5
+

((𝑦̅(𝑡))2 − 1)(71(𝑦̅(𝑡))2 + 71)

128(𝑦̅(𝑡))4(log 𝑦̅(𝑡))6
) 𝑆𝑡𝑒2

+ (
((𝑦̅(𝑡))2 − 1)

4(𝑦̅(𝑡))2(log 𝑦̅(𝑡))4
−

((𝑦̅(𝑡))2 + 1)

4(𝑦̅(𝑡))2(log 𝑦̅(𝑡))3
) 𝑆𝑡𝑒 −

1

log 𝑦̅(𝑡)
)

1

𝑅
⌉ 𝑑𝜏 

(15) 

Therefore, the energy storage density can be found by dividing total energy stored in PCM 

from equation (15) by the volume of the melted PCM. 
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𝑄′′′(𝑡) =

𝑄̇𝑎𝑣𝑔(𝑡) × 𝑡

𝜋((𝑦(𝑡))2 − 𝑅2)ℎ
 

(16) 

For any given time t, the phase change front y(t) may be obtained from equation (10), 

following which, equation (16) provides the energy storage density.  

Note that, in the cylindrical coordinate system, the volume of PCM melted appearing in 

the denominator of equation (16) is a function of y2 and not y, as was the case in the Cartesian 

coordinate system. This, along with the complicated expression for Qtotal(t) indicates that the lack 

of dependence of 𝑄′′′ on k seen for the Cartesian system may not exist for the cylindrical phase 

change process.  

 

3-2-2. Energy storage from a heat-generating source: time-dependent temperature boundary 

condition 

The constant wall temperature boundary condition analyzed in section 2.1, while easily 

amenable to theoretical analysis, simplifies the heat generation process in the source that makes 

energy available for the phase change material to absorb. For example, internal heat generation in 

the source may occur due to a chemical reaction, or due to volumetric heat absorption from an 

external source of radiation. Modeling the heat transfer process within the source makes this a 

considerably more complicated, coupled heat transfer problem. In order to analyze this system 

without making it mathematically intractable, the effect of the heat-generating source is modeled 

with a time-dependent temperature boundary condition at the source-PCM interface. This is a 

reasonable assumption since the interface temperature is expected to rise with time due to heat 
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generation and thermal conduction within the source. This model is considered in this section for 

the Cartesian and cylindrical coordinate systems. 

3-2-2-1. Cartesian heat source 

This problem is similar to the one analyzed in section 2.1.1 and shown schematically in 

Figure 1(a), where wall temperature is now time-dependent, Tw(t).  In this case, the heat transfer 

problem in the PCM is a Stefan problem with time-dependent temperature boundary condition, for 

which, a perturbation method based approach is used [20]. Given a time-dependent temperature 

distribution Tw(t), the heat absorbed as a function of time is given by 

 
𝑄̇𝑎𝑣𝑔(𝑡) =

1

𝑡
∫ −𝑘𝐴 (

𝜕𝑇

𝜕𝑥
)
𝑥=0

𝑑𝜏
𝑡

0

=
1

𝑡
∫ −𝑘𝐴(𝑇𝑚 − 𝑇𝑟𝑒𝑓)

𝜏

0

(

  
 

−
𝑓(𝑡)

𝑦(𝑡)
− 𝑆𝑡𝑒

𝑓(𝑡) (𝑓(𝑡) + 2
𝑓′(𝑡)
𝑦′(𝑡)

𝑦(𝑡))

6𝑦(𝑡)

+
(𝑆𝑡𝑒)2

360𝑦(𝑡)
(𝑓(𝑡) (40(

𝑓′(𝑡)

𝑦′(𝑡)
)

2

(𝑦̅(𝑡))2 + 85𝑓(𝑡)
𝑓′(𝑡)

𝑦′(𝑡)
𝑦(𝑡)

+ 19𝑓2(𝑡) + 8
𝑓′′(𝑡)

(𝑦̅(𝑡))2
𝑓(𝑡)𝑦2(𝑡)))

)

  
 

𝑑𝜏 

(17) 
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where  

 
𝑓(𝑡) =

𝑇𝑤(𝑡) − 𝑇𝑚

𝑇𝑚 − 𝑇𝑟𝑒𝑓
 

(18) 

whereas the phase change propagation front is given by  

 

𝑦(𝑡) = [2(𝑆𝑡𝑒)𝛼 ∫ 𝑓(𝜏) (1 −
𝑆𝑡𝑒

3
𝑓(𝜏) +

7𝑆𝑡𝑒2

45
𝑓(𝜏)2)𝑑𝜏

𝑡

0

]

1
2

 (19) 

Note that expressions for y(t) and T(x,t) are taken from [20]. Further, since the wall 

temperature is not constant any more, the Stefan number cannot be defined using the wall 

temperature. Instead, 𝑆𝑡𝑒 =
𝐶𝑝(𝑇𝑟𝑒𝑓−𝑇𝑚)

𝐿
, where Tref is a reference temperature. Using equations 

(17) and (19), the energy storage density is given by 

 
𝑄′′′(𝑡) =

𝑄̇𝑎𝑣𝑔(𝑡) × 𝑡

𝑦(𝑡) × 𝐴
 

(20) 

3-2-2-2. Cylindrical heat source 

Figure 2(b) shows a schematic of a phase change energy storage system in cylindrical 

coordinate system, in which the wall temperature is now considered to be a function of time Tw(t). 

Similar to the Cartesian problem, perturbation method is used to solve this time-dependent 

boundary condition problem. Following the substitution of t with y(t) in the governing equations 

and separation of terms based on the power of Ste, temperature distribution in the PCM is given 

by 
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 𝑇(𝑟, 𝑡) = (𝜃0 + 𝑆𝑡𝑒 ∙ 𝜃1 + 𝑆𝑡𝑒2 ∙ 𝜃2)(𝑇𝑤 − 𝑇𝑚) − 𝑇𝑚 (21) 

where  

 
𝜃0 = −𝑓(𝑡) (

log 𝑟̅ − log 𝑦̅(𝑡)

log 𝑦̅(𝑡)
) 

(22) 

 
𝜃1 = (

−𝑓(𝑡)

4(𝑦̅(𝑡))2(log 𝑦̅(𝑡))4
)(𝑓(𝑡) log 𝑟̅

− 𝑓(𝑡) log 𝑦̅(𝑡) +
𝑓′(𝑡)𝑦̅(𝑡)(log 𝑦̅(𝑡))2

𝑦̅′(𝑡)
+

𝑓′(𝑡)𝑦̅(𝑡)(log 𝑦̅(𝑡))3

𝑦̅′(𝑡)

+ 𝑟̅2 𝑓(𝑡) log 𝑦̅(𝑡) − (𝑦̅(𝑡))
2
𝑓(𝑡) log 𝑟̅ −

𝑓′(𝑡)𝑦̅(𝑡)𝑟̅2(log 𝑦̅(𝑡))2

𝑦̅′(𝑡)

−
𝑓′(𝑡)𝑦̅(𝑡)𝑟̅2(log 𝑦̅(𝑡))3

𝑦̅′(𝑡)
−

𝑓′(𝑡)𝑦̅(𝑡) log 𝑟̅ (log 𝑦̅(𝑡))2

𝑦̅′(𝑡)

+
𝑓′(𝑡)(𝑦̅(𝑡))

3
log 𝑟̅ log 𝑦̅(𝑡)

𝑦̅′(𝑡)
− 𝑓(𝑡)𝑟̅2 log 𝑟̅ log 𝑦̅(𝑡)

+ 𝑓(𝑡)𝑦̅2 log 𝑟̅ log 𝑦̅(𝑡) −
𝑓′(𝑡)𝑦̅(𝑡) log 𝑟̅ log 𝑦̅(𝑡)

𝑦̅′(𝑡)

+
𝑓′(𝑡)𝑟̅2𝑦̅(𝑡) log 𝑟̅ (log 𝑦̅(𝑡))2

𝑦̅′(𝑡)
) 

(23) 

Due to the long and cumbersome nature of the expression for θ2, it is being included in 

Appendix A. 

Once the temperature profile is determined, the rate of change of phase change front with 

time can be found from the boundary condition, equation (9) given by 
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 𝑑𝑦̅

𝑑𝑡
=

(𝑆𝑡𝑒)𝑓(𝑡)

128(𝑦̅(𝑡))5(log 𝑦̅(𝑡))7
(128(𝑦̅(𝑡))4(log 𝑦̅(𝑡))6

− 32(𝑆𝑡𝑒)𝑓(𝑡)(𝑦̅(𝑡))
2
(log 𝑦̅(𝑡))3 (2(𝑦̅(𝑡))

2
(log 𝑦̅(𝑡))2

− 2(𝑦̅(𝑡))
2
log 𝑦̅ + (𝑦̅(𝑡))

2
− 1)

+ (𝑆𝑡𝑒)2(𝑓(𝑡))2 ((𝑦̅(𝑡))4(48(log 𝑦̅(𝑡))4 − 112(log 𝑦̅(𝑡))3

+ 146(log 𝑦̅(𝑡))2 − 111 log 𝑦̅(𝑡) + 40)

− 16(𝑦̅(𝑡))
2
(2(log 𝑦̅(𝑡))2 − 5 log 𝑦̅(𝑡)) + 10(log 𝑦̅(𝑡))2

+ 31 log 𝑦̅(𝑡) + 40)) 

(24) 

Due to the considerable complexity of equation (24), analytical integration in order to 

derive an expression for y(t) similar to equation (10) in the case of constant Tw may not be possible. 

Therefore, phase change front as a function of time is determined in this case by numerical time-

stepping based on the time derivative provided by equation (24) and using the initial condition of 

zero melting at t=0. Note that equation (24) has a singularity at t=0, which presents a difficulty in 

initiation of the timestepping approach. In order to address this problem, it is assumed that for a 

sufficiently small period from t=0 to t=t*, change in the imposed wall temperature f(t) is negligible. 

This reduces the problem to the cylindrical phase change with constant wall temperature, which 

has been discussed in section 2.1.2. Therefore, between t=0 and t=t*, the phase change front is 

given approximately by equation (10). Once y(t) is calculated at t=t*, timestepping is carried out 

for the remaining time period using the derivative provided by equation (24). For ensuring minimal 
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impact of this approximation on accuracy, the value of t* must be chosen to be small. In this case, 

t* is chosen to be 0.01% of the total time of interest.   

Once y(t) has been determined in this manner, the average rate of energy stored can be 

found. Due to its cumbersome nature, the expression for 𝑄̇𝑎𝑣𝑔 for this case is presented in 

Appendix A.  

Based on this, the energy storage density is given by 

 
𝑄′′′(𝑡) =

𝑄̇𝑎𝑣𝑔(𝑡) × 𝑡

𝜋((𝑦(𝑡))2 − 𝑅2)ℎ
 

(25) 

This completes the solution that describes the two key performance parameters of phase 

change based energy storage in the cylindrical coordinate system for the case of time-dependent 

temperature boundary condition. 

3-3. Results and discussion 

3-3-1. Model Validation 

While the constant temperature Cartesian problem discussed in Section 2.1.1 has a well-

established solution, validation is desirable for the other solutions discussed in the previous 

section. This is carried out by comparison with results from a variable time-step finite difference 

method for phase change problems [18], in which, the space domain is discretized into equal 

intervals Δx, whereas the time domain is discretized in such a way that during each successive time 

interval Δti, the phase change front y(t) propagates by Δx [18]. This results in a set of discretized 

linear algebraic equations, which are solved using the implicit method.  
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A phase change material with k=0.2 Wm-1K-1, Cp=2250 Jkg-1K-1, ρ=810 kgm-3 and L=270700 

Jkg-1 is considered for comparison between the results derived in Section 2 and the numerical 

method. Figure 2(a) shows a comparison of phase change front, y(t) as a function of time 

determined from equation (10) and the variable time-step method for the cylindrical coordinate 

system, with Tw-Tm=50 ºC and R=0.01 m. The analytical model is found to be in very good 

agreement with the numerical solution. Figure 2(b) plots temperature rise as a function of x for the 

same problem at t=1500s, showing similarly good agreement between analytical and numerical 

solutions.  

 

Figure 2. Comparison of the perturbation method based solutions and a finite element simulation 

for constant temperature boundary condition: (a) Phase change front, y(t) as a function of time 

for a constant temperature boundary condition Tw-Tm=50 K for the Cartesian problem; (b) 

Temperature rise as a function of x for the same problem at t=1000s. 

 

Figure 3 presents results from similar validation for the analytical models for time-dependent 

boundary conditions for the two coordinate systems discussed in Section 2.2. Progression of the 

phase change front is plotted in Figures 3(a) and 3(b) for Cartesian and cylindrical systems, 

respectively. In each case, wall temperature is assumed to vary as 𝑇𝑤(𝑡) − 𝑇𝑚 = 50 + 0.03𝑡. 
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Good agreement between the two is observed, similar to the results for constant temperature 

boundary conditions. Figures 2 and 3 provide validation of the theoretical models for phase change 

processes discussed in section 2.  

 

Figure 3. Comparison of the perturbation method based solutions and a finite element simulation 

for time-varying temperature boundary condition: (a) Phase change front, y(t) as a function of 

time for a time-dependent temperature boundary condition 𝑇𝑤(𝑡) − 𝑇𝑚 = 50 + 0.03𝑡 for the 

Cartesian problem; (b) Phase change front, y(t) as a function of time for a constant temperature 

boundary condition 𝑇𝑤(𝑡) − 𝑇𝑚 = 50 + 0.03𝑡 for the cylindrical problem. 

 

3-3-2. Effect of k on PCM performance parameters 

 The effect of thermal conductivity, k on total energy absorbed by the PCM and energy 

storage density in a Cartesian body is investigated first. Figures 4(a) and (b) present plots of the 

average rate of energy stored up to t=1000s as a function of thermal conductivity for Cartesian and 

cylindrical bodies, respectively. Tw-Tm=50ºC in each case and R=0.01m for cylindrical system. 

Similar plots for the energy storage density at t=1000s are presented in Figures 5(a) and (b). Figure 

4 shows that the total rate of energy storage increases with increasing k for geometry. For the 

Cartesian system, this originates from the √𝑘 dependence of 𝑄̇𝑎𝑣𝑔, as shown in equation (10). 

Expressions for the cylindrical system, equations (15), while more complicated, also shown that 
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𝑄̇𝑎𝑣𝑔 increases with k. Physically, this occurs because greater k results in greater heat diffusion 

into the PCM and consequently greater rate of energy stored in the system. As shown in Figure 4, 

this effect is much stronger in Cartesian bodies due to the larger surface area that heat can be 

absorbed by the PCM. Therefore, if the amount of heat absorbed is the important variable, 

cylindrical geometry has better performance than the Cartesian body.  

 

Figure 4. Effect of thermal conductivity, k on average rate of energy stored per unit area of the 

source-PCM interface in (a) Cartesian and (b) cylindrical systems for a constant temperature 

boundary condition Tw-Tm=50 K over a 1000 s time period. 

 

However, as shown in Figure 5, the energy storage density remains constant with 

increasing k for the Cartesian system, and actually reduces for cylindrical system. This occurs 

because while increasing PCM thermal conductivity results in greater energy absorbed, it also 

increases the melted PCM volume. For the Cartesian problem, both 𝑄̇𝑎𝑣𝑔 and y exhibit a √𝑘 

dependence, and therefore, these effects exactly cancel each other when determining the energy 

storage density 𝑄′′′. On the other hand, for the cylindrical problem, the effect of increased melting 

rate dominates over the effect of increased rate of energy stored, thereby resulting in a reduction 

in energy storage density with increasing thermal conductivity. This shows that while increasing 



49 
 

thermal conductivity of PCM improves a key performance parameter – rate of  energy absorbed –

the other key performance parameter, energy storage density remains the same for the Cartesian 

system and actually decreases for a cylindrical energy storage system.  

 

Figure 5. Effect of thermal conductivity, k on energy storage density in (a) Cartesian and (b) 

cylindrical systems for a constant temperature boundary condition Tw-Tm=50 K over a 1000 s 

time period. 

 

 This trade-off between the rate of energy stored and energy storage density highlighted by 

Figures 4 and 5 is important to recognize because the relative importance of these two performance 

parameters differs from one application to the other. In applications where it is important to absorb 

a large amount of energy very rapidly without regard to storage density, increasing k is clearly 

helpful, regardless of whether the energy storage system is Cartesian or cylindrical. However, 

when energy storage density is important, for example when energy must be stored compactly, 

increasing k is not likely to be effective, and in fact, may adversely affect energy storage density 

for cylindrical energy storage. This happens because in the Cartesian system, the volume of PCM 

melted has a √𝑘 dependence due to linear scaling with y(t), as shown in equation (1), whereas in 

cylindrical system, the dependence is much stronger due to the quadratic dependence of volume 
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of PCM melted on y(t) respectively. Thus, for a Cartesian body, thermal conductivity can be 

increased in order to increase the rate of heat absorbed without negatively impacting the energy 

storage density. However, in cylindrical body, such an approach will result in reduced energy 

storage density. In such a case, optimal system design using the approach presented here may be 

critical. 

For a more comprehensive analysis of how thermal properties affect energy storage 

performance, colormaps of  𝑄̇𝑎𝑣𝑔  and 𝑄′′′ are plotted in Figure 6 for Tw-Tm=50ºC and t=1000s for 

a Cartesian system. Latent heat of the PCM is assumed to be L=270700 Jkg-1. Figure 6(a) shows 

much stronger dependence of  𝑄̇𝑎𝑣𝑔  on k than on Cp, indicating that small changes in k are more 

likely to affect  𝑄̇𝑎𝑣𝑔  than changes of similar relative magnitude in Cp. However, the impact of 

these thermal properties on 𝑄′′′ is quite different, as shown in Figure 6(b). 𝑄′′′ remains invariant 

with changes in k, whereas it increases with increasing Cp. Figure 6 can be used for performance 

comparison between different candidate PCMs. For example, three candidate PCMs A, B and C 

are marked on the colorplots in Figure 6(a) and (b) in terms of their thermal properties. PCM A 

has higher k but lower Cp than PCM B. PCM C lies somewhat in the middle of A and B in terms 

of both k and Cp. The colorplots in Figures 6(a) and 6(b) show that while A is expected to have 

greater rate of energy stored, its performance in terms of energy storage density is poorer than that 

of B. Further, comparing A and C, it is seen that due to curvature in the color contours in Figure 

6(a), A and C are expected to result in the same rate of energy stored, while, based on Figure 6(b), 

C is expected to store this energy much more compactly than A. The superior performance of C is 

despite its lower thermal conductivity than A, and shows that in some conditions, a material may 

be an attractive PCM despite relatively lower thermal conductivity. 
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Figure 6. Colorplots of (a) average rate of energy absorbed by the PCM and (b) energy storage 

density as function of thermal conductivity and heat capacity in a Cartesian system. 

 

 

Similar colorplots of  𝑄̇𝑎𝑣𝑔  and 𝑄′′′ for a cylindrical energy storage system are presented 

in Figures 7(a) and 7(b) respectively. Similar to the Cartesian case, it is seen that the rate of energy 

stored increases with k. However, the energy storage density actually reduces with increasing k. 

This has several interesting consequences in the choice of thermal properties of candidate PCMs. 

For example, three candidate PCMs D, E and F are shown in Figures 7(a) and 7(b). It is seen that 

while D has greater rate of energy stored compared to E due to greater thermal conductivity, its 

energy storage density is actually lower. On the other hand, F, which has the same k as E but 

greater heat capacity, resulting in a high rate of energy stored as well as a high energy storage 

density.  
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Figure 7. Colorplots of (a) average rate of energy absorbed by the PCM and (b) energy storage 

density as function of thermal conductivity and heat capacity in a cylindrical system. 

 

These examples illustrate the importance of colorplots such as Figures 6 and 7 in 

understanding the trade-offs between thermal conductivity and heat capacity in terms of the 

performance parameters, and in choosing the correct PCM. In general, this choice depends on 

whether the rate of energy stored or the energy storage density is more critical, as well as on 

whether the energy storage system is Cartesian or cylindrical in geometry. Results from this section 

enable engineers to quantify this trade-off and choose the best material corresponding to the goal 

of their system. 

3-3-3. Results with time-dependent boundary conditions 

The key results discussed in section 3.2 pertain to a constant wall temperature boundary condition. 

However, for practical scenarios where the hot source generates heat at a certain rate, the 

temperature at the wall may not be constant and may increase over time. This is also true for 

scenarios where time-varying heat flux impinges on the wall. In such cases, variation in the wall 

temperature with time must be accounted for using models presented in Section 2.2. This section 

discusses results on this practical scenario. A linearly increasing wall temperature 𝑇𝑤(𝑡) − 𝑇𝑚 =
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50 + 0.03𝑡 is assumed. Figures 8(a) and 8(b) plot the average rate of energy stored as a function 

of k for Cartesian and cylindrical energy storage systems respectively. Similar plots for energy 

storage density are presented in Figures 9(a) and 9(b). For both Cartesian and cylindrical cases, 

the rate of energy stored increases with k, similar to the results for constant wall temperature case 

discussed in the previous section. The energy storage density remains invariant with k in the 

Cartesian case, whereas it actually reduces with k for the cylindrical case. This is also similar to 

the constant wall temperature case.  Both 𝑄̇𝑎𝑣𝑔  and y(t) for the Cartesian case, shown in equations 

(28) and (30) respectively continue to have a √𝑘 dependence, resulting in 𝑄′′′ remaining 

independent of k, just like the constant Tw case. These relationships for cylindrical case are more 

difficult to interpret due to the complexity of the equations.  

 

Figure 8. Effect of thermal conductivity, k on average rate of energy stored per unit area of the 

source-PCM interface in (a) Cartesian and (b) cylindrical coordinate systems for a time-

dependent temperature boundary condition 𝑇𝑤(𝑡) − 𝑇𝑚 = 50 + 0.03𝑡 over a 1000 s time period. 

 

These plots show that the key results discussed for the constant wall temperature case also 

hold for the more realistic, time-varying wall temperature case. The method presented here is valid 
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for quantifying the effect of improving PCM thermal conductivity on critical performance 

parameters in practical engineering applications. 

 

Figure 9. Effect of thermal conductivity, k on energy storage density in (a) Cartesian and (b) 

Cylindrical coordinate systems for a time-dependent temperature boundary condition 𝑇𝑤(𝑡) −

𝑇𝑚 = 50 + 0.03𝑡. 

 

In order to further understand the nature of energy storage performance parameters in case 

of time-dependent boundary conditions, Figure 10(a) and 10(b) plot rate of energy stored and 

energy storage density as functions of k. Plots are presented for both Cartesian and cylindrical 

energy storage systems for different expressions for Tw(t). Specifically, linearly increasing wall 

temperature with different values of slopes 𝑇𝑤(𝑡) − 𝑇𝑚 = 𝐴 + 𝐵𝑡 is assumed where A=50 and 

B=0.01, 0.03, 0.05, 0.07 and 0.09 K/s, while t=1000s. Figure 10(a) indicates that in both Cartesian 

and cylindrical coordinates, the rate of energy absorbed increases with k, which is consistent with 

results obtained from Figure 8. Further, the greater the value of slope B, the larger is the rate of 

energy absorbed, which is along expected lines due to greater temperature gradient between the 

wall and PCM.  Figure 10(b) shows that in the Cartesian system, energy storage density is not a 

function of k, similar to previous results, and also increases with increasing value of B. Increasing 
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the value of B affects increases the rate of heat absorbed as well as the phase change front 

propagation. The impact on the former is weaker, due to which, the energy storage density 

increases with increase in B. In contrast, energy storage density decreases with increasing k for the 

cylindrical system, which is consistent with previous results. The energy storage density increases 

with increasing B, which is explained by the greater impact on the rate of energy stored compared 

to phase change propagation, similar to the Cartesian result. 

 

Figure 10. Variation of (a) rate of energy storage and (b) energy storage density with thermal 

conductivity for various slopes B of linearly increasing temperature boundary condition, 𝑇𝑤(𝑡) −
𝑇𝑚 = 50 + 𝐵𝑡. Red, purple, blue, green and brown colors correspond to B=0.09, 0.07, 0.05, 0.03 

and 0.01 Ks-1 respectively. 

 

3-4. Conclusions 

Understanding the impact of thermophysical properties on performance of phase change 

energy storage systems is very important for the design and optimization of several engineering 

systems. In the past, several papers have presented strategies for improving thermal conductivity 

of commonly used PCMs. The present work shows that while improving thermal conductivity is 

helpful for increasing the rate of energy stored, it is not similarly helpful for improving the energy 

storage density, which may be an important performance parameter in several applications. Using 
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well-establised theoretical models, the present work helps fully understand the impact of 

previously reported thermal conductivity enhancement on performance of phase change energy 

storage systems. Based on the theoretical model, the performance of various PCMs can be 

compared with each other, and the optimal PCM can be chosen, depending on the relative 

importance of rate of energy stored and energy storage density, as well the geometry of energy 

storage system. 
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3-5. Nomenclature 

A area (m2) 

Cp specific heat capacity (Jkg-1K-1) 

f non-dimensional temperature, f=(Tw(t)-Tm)/(Tm-Tref) 

h height of the cylinder (m)  

k thermal conductivity (Wm-1K-1) 

L latent heat of fusion (Jkg-1) 

𝑄̇𝑎𝑣𝑔 average rate of energy absorbed (Wm-2)  

Q''' energy storage density (Wm-3) 

r radial coordinate (m) 

R radius (m) 

Ste Stefan number, Ste=Cp(ΔT)/L 

t time (s) 

T temperature (K) 

Tm phase change temperature (K) 

Tref reference temperature (K) 

Tw wall temperature (K) 

x Cartesian coordinate (m) 

y location of phase change front (m) 

α thermal diffusivity (m2s-1) 

λ characteristic parameter for phase change front propagation 

ρ density (kgm-3) 
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4-1. Introduction 

Phase change heat transfer problems involving melting and solidification occur commonly 

in engineering applications such as thermal energy storage, heat exchangers, additive 

manufacturing, welding and casting of metals, crystal growth and thermal management systems 

[1-3]. In theoretical analysis of such problems, the interest is often in predicting the propagation 

of the phase change front as well as temperature distribution in the newly formed phase. The 

analysis of phase change problems is considerably complicated due to their non-linear nature – 

exact solutions exist only for a few idealized cases. The simplest phase change problem is that of 

a one-dimensional semi-infinite body, originally at its phase change temperature, being heated or 

cooled with a constant temperature boundary condition at its end [1]. Stefan number 𝑆𝑡𝑒 =

𝐶𝑝(𝑇𝑚−𝑇𝑟𝑒𝑓)

𝐿
, which represents the ratio of sensible heat storage to latent heat storage is a key non-

dimensional parameter in phase change problems. Analytical solution for this problem [4] shows 

that the location of the solid-liquid interface, y(t) is proportional to √𝛼𝑡 where α is the thermal 

diffusivity. This analytical solution was extended later to a problem in which the initial temperature 

of the body is different from its phase change temperature [1]. Exact solutions exist only for a few 

other problems. For example, exact solution for one-dimensional solidification of a supercooled 

liquid has been also derived [5]. An exact solution for solidification of a liquid body around a line 

heat sink in cylindrical coordinate system has also been presented [6].  

 Approximate analytical methods or numerical methods have been used extensively for 

analyzing phase change problems for which an analytical solution does not exist [1,5,7]. 

Perturbation methods and heat balance integral methods are two commonly used approximate 

analytical methods for phase change heat transfer problems. In heat balance integral method, the 
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temperature profile is assumed to be a particular function of the spatial coordinate, x, similar to the 

boundary layer theory developed by Karman and Pohlhausen [1]. The governing energy equation 

is then integrated with respect to x and the resulting integral equation is solved to obtain the 

temperature profile and phase change propagation front as functions of time. This approach has 

been used for phase change problems with a variety of boundary conditions, including time-

dependent temperature boundary condition, constant heat flux and convective boundary conditions 

[8-12]. In perturbation method, the temperature profile is written as a series involving powers of 

Ste. This expression is then inserted back into the governing equation and the obtained equations 

are solved through term-by-term comparison and use of energy conservation at the phase change 

interface. This approach has been used for solving phase change problems subjected to a variety 

of boundary conditions, including time-dependent temperature boundary condition [13-14], phase 

change problems in cylindrical [14] and spherical [14] coordinate systems, and time-dependent 

heat flux [15] boundary conditions In addition to these approaches, the variable eigenvalue method 

has been also used to solve phase change problems involving time-dependent boundary conditions 

[1]. Approximate solutions for a number of problems involving convection within the liquid phase 

have also been presented [16-17]. 

Most of the past theoretical studies on phase change problems consider cases where the 

body is initially in one phase exclusively, and the second phase is then gradually formed due to 

melting or solidification of the original phase. However, there may be some engineering problems 

where both phases exist at the initial time, such as a melting problem where part of the solid body 

is already melted at the initial time and is at a certain initial temperature different from that of the 

solid body itself, as shown schematically in Figure 1(a). This could occur due to discontinuous 

heating and cooling that causes the phase change process to be intermittent. For example, in phase 
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change thermal management of Li-ion batteries [18-19], heat generated during battery discharge 

may initiate melting of the phase change material, but because battery discharge may start and stop 

depending on loading conditions, the melting process may be very intermittent, leading to the 

existence of a pre-melted region of the phase change material at the start of further phase change. 

Similarly, the intermittent nature of phase change based solar energy storage may cause a pre-

melted region shielding the material that is not yet melted.     

In such cases, the nature of heat transfer may be significantly different from classic phase 

change problems, and this problem may not be solvable within the framework of classical Stefan 

problems, because the presence of both phases at t=0 introduces additional complexity not 

accounted for by traditional methods. Heat transfer between the phase change front and boundary 

condition must pass through the pre-melted region, which constitutes a thermal resistance for the 

flow of heat. Thickness of the pre-melted liquid, its initial temperature distribution and thermal 

properties are all expected to play a key role in determining the rate at which further melting 

occurs. Further, depending on the magnitude of the temperature distribution in the pre-melted 

liquid relative to the temperature boundary condition, heat flow may occur entirely into the solid 

body, or partly in the reverse direction. Due to these complications in the present problem, 

solutions available for classical phase change problems may not be applicable for this problem, 

and other approaches may be needed. 

This work develops a theoretical method to solve a one-dimensional melting problem that 

includes a pre-melted length with an arbitrary initial temperature along with a time-dependent 

temperature boundary condition. While discussed here in the context of melting, this method can 

also be used to solve the reverse problem of solidification of a liquid with a pre-solidified length. 
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A solution method is developed by iteratively solving the thermal conduction problem in the pre-

melted length and phase change problem in the remaining body. Specifically, the phase change 

problem comprises a time-dependent temperature boundary condition, which is solved using a 

perturbation method. The iterative approach adopted in this work has been used in the past, but 

only for single phase problems such as heat transfer in three-dimensional integrated circuits 3D 

ICs [20], thermal management of Li-ion batteries [18, 21] and other conjugate heat transfer 

problems [22]. 

The next section presents the theoretical models underlying the iterative method. The 

effects of various geometrical and thermophysical parameters on the solution are discussed in the 

subsequent section.     

4-2. Mathematical Modeling 

The heat transfer problem considered here, shown schematically in Figure 1(a), consists of a 

one-dimensional, semi-infinite solid body initially at its melting temperature. The region 0<x<W 

of the body is already melted, and has an initial temperature distribution G(x). The remainder 

region is initially a solid at its phase change temperature. A time-dependent temperature boundary 

condition T0(t) is applied at the x=0 end of the domain. Key heat transfer processes in this problem 

include thermal conduction from the x=0 boundary condition and the pre-melted region into the 

initially solid region and then into the phase change interface, thermal conduction from the pre-

melted region to the boundary at x=0 (if the boundary temperature is lower than the temperature 

in the pre-melted region) and phase change at the liquid-solid interface y(t). 
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Figure 1. Schematic of the one-dimensional phase change problem with a pre-melted region. (a) 

Schematic of the overall conjugate problem along with the associated initial and boundary conditions. (b) 

Schematic of the two sub-problems including the conduction problem and the phase change problem 

 

The nature of these heat transfer processes and relative magnitudes and directions of heat flow 

in this problem depend on the magnitude of temperature in the pre-melted region, particularly the 

initial temperature G(x) compared to the magnitude of the time-dependent temperature boundary 

condition T0(t). For example, if T0(t) is always greater than the initial temperature G(x), then heat 

will always flow from left to right as shown in Figure 1(a), i.e. from the pre-melted region to 

liquid-solid interface. In a more complicated scenario, if G(x) is greater than T0(t), then some heat 

may flow from the pre-melted region to the x=0 boundary. Due to the time-dependent nature of 

T0, these directions of heat flow may also reverse over time. These dynamics make this an 

interesting problem, with specific interest in understanding the role of various initial and boundary 

conditions and thermophysical properties in phase change that occurs in this problem.   

 

This problem is solved in an iterative fashion by splitting the domain of interest into two 

regions – the pre-melt region, 0<x<W and the phase change region, x>W, and solving for 

temperature distribution in both regions separately, while ensuring temperature and heat flux 
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continuity at x=W. Both heat conduction and phase change occur in the second region (x>W), 

referred to as the phase change sub-problem. Only heat conduction occurs in the pre-melted region 

(0<x<W), referred to as the conduction sub-problem. Figures 1(b) and 1(c) show schematics of 

these two sub-problems. In order to solve the two sub-problems, an unknown time-dependent heat 

flux 𝑞′′(𝑡) leaving the pre-melt region at x=W and entering the phase change region is applied as 

the boundary condition for the conduction sub-problem at x=W. For solving the phase change sub-

problem, a time-dependent temperature boundary condition Tw(t) is considered at the interface 

between the two regions. Since both 𝑞′′(𝑡) and Tw(t) are unknown, an iterative approach is used 

wherein time-dependent temperature Tw(t) at xʹ=0 is first guessed and is used to find the 

temperature profile within the phase change sub-problem. The resulting interfacial heat flux from 

the solution of the problem is then used as an input into the conduction sub-problem, which in turn 

provides a value for the temperature profile at xʹ=0 that can be used to improve the initial guess. 

This iterative process is repeated until the change in temperature from one iteration to another is 

negligible. The iterative approach explained above is summarized in a flowchart in figure 2. Such 

an iterative approach has been used in past studies to solve a variety of conjugate steady state and 

transient problems [18, 20-22].  

Analytical solutions for each of the two sub-problems are needed in order to execute the 

iterative approach. Sub-sections 2.1 and 2.2 below describe these analytical solutions.   
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Figure 2. Flowchart of the iterative approach used to solve the overall conjugate problem 

 

4-2-1. Solution for the phase change sub-problem 

Figure 1(c) shows a schematic of the phase change sub-problem along with the respective 

boundary condition, in the region x>W. For convenience, a new coordinate axis xʹ shown in Figure 

1(c) is used, where xʹ=x-W. Within this region, the entire body is solid at t=0, and the phase change 

front, originates at xʹ=0 and propagates with time. Temperature at xʹ=0 in this problem is taken to 

be Tw(t). As such, Tw(t) is unknown in advance. The liquid-solid interface position, y(t) is an 

important parameter of this problem that must be determined from the solution. The phase change 

problem described above is a generalization of the original Stefan problem, in that the temperature 

driving the phase change process is time-dependent. 

The mathematical description of this sub-problem is as follows: the governing energy 

conservation equation for the temperature field is 



68 
 

 
𝜕2𝑇1

𝜕𝑥ʹ2
=

1

𝛼𝑙

𝜕𝑇1

𝜕𝑡
     (1) 

where αl is the thermal diffusivity of the newly formed liquid. Note that T1 represents temperature 

rise above the melting temperature Tm.  

The following time-dependent boundary condition is imposed at one end of the domain.  

 𝑇1(𝑥ʹ, 𝑡) = 𝑇𝑤(𝑡)                                      at xʹ=0 (2) 

Temperature at the solid liquid interface, y(t) must equal the melting temperature. Further, 

energy must be conserved at this interface. These result in the following equations: 

     𝑇1(𝑥ʹ, 𝑡) = 0                                           at xʹ=y(t) (3) 

and 

 −𝑘𝑙 (
𝜕𝑇1

𝜕𝑥ʹ
)
𝑥ʹ=𝑦(𝑡)

= 𝜌𝐿
𝑑𝑦

𝑑𝑡
                                 at xʹ=y(t) (4) 

where kl and ρl are the thermal conductivity and mass density of the liquid, respectively, and L is 

the latent heat. Convection in the newly formed liquid is neglected. 

While an exact solution is available for the specific case of constant Tw – the well-known 

Stefan solution – approximate analytical methods such as integral methods [8] and perturbation 

methods [14] have been used for solving the more general problem posed in this sub-section. Here, 

the perturbation technique presented by Caldwell & Kwan [14] is used. The general methodology 

and final results are briefly outlined below, while complete details may be found in past papers 

[14]. 

For solving this problem using the perturbation method, the time variable is first eliminated 

by replacing t with the solid-liquid interface location y(t), which is a monotonic function of time. 

This is followed by writing the solution of the new governing equation as a series involving powers 

of Ste [14]. Substituting the assumed form of the temperature solution back into the governing 
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equation, applying boundary conditions and a term-by-term comparison results in a set of ordinary 

differential equations. Temperature profile in the liquid phase is derived by solving these ordinary 

differential equations. The location of the solid-liquid interface y(t) is then determined by utilizing 

energy conservation at the phase change interface, given by equation (4). This procedure results 

in the following expression for temperature profile and phase change front y(t) [14] 

 𝑇(𝑥, 𝑡) = (𝜃0 + 𝑆𝑡𝑒 ∙ 𝜃1 + 𝑆𝑡𝑒2 ∙ 𝜃2)(𝑇𝑟𝑒𝑓) (5) 

 𝜃0 = 𝑓(𝑡) (1 −
𝑥

𝑦(𝑡)
) (6) 

 𝜃1 =
1

6
𝑓(𝑡)

𝑥

𝑦(𝑡)
(

𝑥

𝑦(𝑡)
− 1) [𝑓(𝑡) (

𝑥

𝑦(𝑡)
+ 1) −

𝑓′(𝑡)

𝑦′(𝑡)
𝑦(𝑡) (

𝑥

𝑦(𝑡)
− 2)] (7) 

 

𝜃2 = −
1

360
𝑓(𝑡)

𝑥

𝑦(𝑡)
(

𝑥

𝑦(𝑡)
− 1) [𝑓(𝑡)2 (

𝑥

𝑦(𝑡)
+ 1) (9 (

𝑥

𝑦(𝑡)
)
2

+ 19)

+ 10 (
𝑓′(𝑡)

𝑦′(𝑡)
)

2

𝑦(𝑡)2 (
𝑥

𝑦(𝑡)
+ 4)

+ 5𝑓(𝑡)
𝑓′(𝑡)

𝑦′(𝑡)
𝑦(𝑡) (3 (

𝑥

𝑦(𝑡)
)
2

+ 5
𝑥

𝑦(𝑡)
+ 17)

+ 𝑓(𝑡)
𝑓′′(𝑡)

𝑦′(𝑡)2
𝑦(𝑡)2 (

𝑥

𝑦(𝑡)
− 2) (3 (

𝑥

𝑦(𝑡)
)
2

− 6
𝑥

𝑦(𝑡)
− 4)] 

(8) 

   

 𝑦(𝑡) = [2(𝑆𝑡𝑒)𝛼𝑙 ∫ 𝑓(𝜏) (1 −
𝑆𝑡𝑒

3
𝑓(𝜏) +

7𝑆𝑡𝑒2

45
𝑓(𝜏)2)𝑑𝜏

𝑡

0

]

1
2

 (9) 

Where f(t) is the non-dimensional time-dependent temperature boundary condition given by [14] 

 𝑓(𝑡) = −
𝑇𝑤(𝑡)

𝑇𝑟𝑒𝑓
 (10) 

Note that both Tw and Tref represent temperature rise above the melting temperature Tm. 
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Finally, heat flux between the phase change region and the pre-melt region at xʹ=0, which is 

an input into the second sub-problem, is determined using Fourier’s law as follows [18]: 

 𝑞′′(𝑡) = −𝑘𝑙
𝑑𝑇

𝑑𝑥
= 𝑘𝑙𝑇𝑟𝑒𝑓

[
 
 
 
 

−
𝑓(𝑡)

𝑦(𝑡)
− 𝑆𝑡𝑒

𝑓(𝑡)(𝑓(𝑡)+2
𝑓′(𝑡)

𝑦′(𝑡)
𝑦(𝑡))

6𝑦(𝑡)
+

𝑆𝑡𝑒2
𝑓(𝑡)(40(

𝑓′(𝑡)

𝑦′(𝑡)
)
2

𝑦2(𝑡)+85𝑓(𝑡)
𝑓′(𝑡)

𝑦′(𝑡)
𝑦(𝑡)+19𝑓2(𝑡)+8

𝑓′′(𝑡)

𝑦′2(𝑡)
𝑓(𝑡)𝑦2(𝑡))

360𝑦(𝑡) ]
 
 
 
 

         (11)  

4-2-2. Solution for the conduction sub-problem 

Figure 1(b) shows a schematic of the conduction sub-problem along with the associated 

boundary conditions. The only heat transfer phenomenon of relevance in this region is thermal 

conduction. Fluid flow and convective heat transfer is neglected. 

Initial temperature distribution in the pre-melted region, G(x) is known. In addition, a time-

dependent temperature boundary condition T0(t) is imposed on the boundary at x=0. Finally, a 

time-dependent heat flux leaving the pre-melted region at x=W, 𝑞′′(𝑡) is known based on the 

solution of temperature distribution in the phase change region. These comprise three non-

homogeneities in this thermal conduction problem. The governing energy conservation equation 

for temperature rise in the pre-melted region relative to melting temperature, T2(x,t) is 

 
𝜕2𝑇2

𝜕𝑥2
=

1

𝛼𝑝

𝜕𝑇2

𝜕𝑡
 

     

(12) 

where αp is the thermal diffusivity of the pre-melted region. 

The temperature distribution must also satisfy the following initial and boundary conditions: 

 𝑇2 = 𝐺(𝑥)                                      at t=0 (13) 

 𝑇2 = 𝑇0(𝑡)                                      at x=0 (14) 

and 
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 −𝑘𝑝
𝜕𝑇2

𝜕𝑥
= 𝑞′′(𝑡)                                 at x=W (15) 

Equations (12) through (15) can be solved by linearly splitting the problem into three sub-

problems a, b and c, each of which account for only one non-homogeneity – initial condition G(x), 

time-dependent boundary temperature T0(t) and time-dependent boundary heat flux 𝑞′′(𝑡), 

respectively. Solutions for these sub-problems are quite straightforward. 

The solution for the initial condition problem, based on the method of separation of variables, 

[1] is 

 𝑇2𝑎(𝑥, 𝑡) = ∑ 𝐴𝑛 sin(𝜆𝑛𝑥)exp⁡(−𝛼𝑝𝜆𝑛
2𝑡)∞

𝑛=1                                (16) 

where 

 𝐴𝑛 =
1

𝑁𝑛
∫ 𝐺(𝑥) sin(𝜆𝑛𝑥)𝑑𝑥

𝑊

0
                               (17) 

 Here, 𝑁𝑛 =
2

𝑊
 is the eigenvalue norm, and 𝜆𝑛 =

(2𝑛−1)𝜋

2𝑊
 , n=1,2,3… are the eigenvalues of the 

problem.  

The method of variation of parameters [23-24] is used for solving sub-problems b and c. 

The solution for sub-problem b is: 

 𝑇2𝑏(𝑥, 𝑡) = ∑ 𝐵𝑛(𝑡) sin(𝜆𝑛𝑥)∞
𝑛=1                                (18) 

where the coefficients Bn are given by: 

 𝐵𝑛(𝑡) = ∫
𝜆𝑛𝛼𝑝

𝑁𝑛

𝑡

0
𝑇0(𝑡) exp (−𝛼𝑝𝜆𝑛

2(𝑡 − 𝜏)) 𝑑𝜏                               (19) 

Similarly, the solution for sub-problem c is given by:  

 𝑇2𝑐(𝑥, 𝑡) = ∑ 𝐶𝑛(𝑡) sin(𝜆𝑛𝑥)∞
𝑛=1                                (20) 

where the coefficients Cn are given by: 

 𝐶𝑛(𝑡) = ∫ −
𝛼𝑝

𝑘𝑁𝑛

𝑡

0
𝑞′′(𝑡) sin(𝜆𝑛𝑊)exp (−𝛼𝑝𝜆𝑛

2(𝑡 − 𝜏)) 𝑑𝜏                               (21) 

Temperature profile within the pre-melted region is then given by 
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 𝑇2(𝑥, 𝑡) = 𝑇2𝑎(𝑥, 𝑡) + 𝑇2𝑏(𝑥, 𝑡) + 𝑇2𝑐(𝑥, 𝑡)                               (22) 

Based on this solution, temperature at the intersection of the pre-melted and phase change 

regions is determined by putting x=W in equation (22) 

 𝑇𝑤(𝑊, 𝑡) = ∑ [𝐴𝑛 exp(−𝛼𝑝𝜆𝑛
2𝑡) + 𝐵𝑛(𝑡) + 𝐶𝑛(𝑡)] sin(𝜆𝑛𝑊)∞

𝑛=0                               (23) 

Note that this temperature is an input needed for determining the temperature distribution 

in the phase change sub-problem, as discussed in section 2.1. 

4-2-3. Iterative approach 

Because the solutions for temperature distributions in the pre-melted and phase change 

regions are coupled with each other through continuity of temperature and heat flux at their 

intersecting boundary, the temperature fields in the two regions can be determined in an iterative 

fashion.  

The iterative approach starts with an initial guess of the temperature Tw(t) at the intersecting 

boundary between the two regions. Based on this, the temperature distribution in the phase change 

region as well as the location of the phase change front are determined as derived in section 2.1. 

Solution to this sub-problem provides the heat flux 𝑞′′(𝑡) at the intersection between the two 

regions, given by equation (11). In the second step of the iterative approach, this heat flux is used 

to solve the conduction sub-problem. Based on the solution of this sub-problem, the temperature 

distribution at the intersection is determined using equation (23), which in turn serves to update 

Tw(t) that is used for solving the phase change problem. If the difference between the previous and 

newly computed Tw(t) is within acceptable tolerance, the computation is complete, otherwise, Tw(t) 

is updated based on the new value and the phase change problem is solved again. Figure 2 shows 

a schematic of this iterative process. In practice, the old and new values of Tw(t) are blended 

linearly using a blending factor β, which is a number between 0 and 1. It is important to note that 
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the blending factor β impacts stability and speed of convergence. The larger the value of β, the 

larger is the contribution of the newly computed temperature distribution in Tw(t) for the new 

iteration, and therefore, the faster does the solution converge. However, this may result in 

instability, and therefore, a reasonably low value of β is used throughout to maintain stability.  

 

4-3. Results and discussion 

4-3-1. Validation of the two sub-problems against finite element simulations 

Prior to investigating the combined problem, analytical solutions for the separate phase 

change and thermal conduction sub-problems presented in sections 2.1 and 2.2 are first validated 

by comparing with finite element method (FEM) simulations.  

In order to validate the phase change problem, the same geometry as Figure 1(c) is created 

and meshed in a finite element solver. Thermal conductivity, heat capacity and latent heat are 

assumed to be kl=0.2 W/m.K, Cp=2250 J/kg.K and L=270.7 kJ/kg, corresponding to paraffin wax. 

The enthalpy method [1] is used in the simulations to account for by defining the phase change 

material as a binary mixture of liquid and solid, each with its associated properties and a reference 

enthalpy of fusion. A time-dependent temperature boundary condition given by 𝑇𝑝(𝑡) = 40 +

0.02𝑡 is implemented for validating the phase change problem discussed in section 2.1. Figure 

3(a) plots the liquid-solid interface location y(t) as a function of time and compares results from 

the analytical solution given by equation (11) and finite element simulations. This plot shows 

excellent agreement between the analytical solution and numerical simulations, with less than 

1.8% deviation between the two. Similarly, the thermal conduction sub-problem in the pre-melted 

region is validated by comparison with finite element simulations. A time dependent temperature 
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boundary condition 𝑇𝑝(𝑡) = 50 + 0.01𝑡 is applied at x=0, while a time-dependent heat flux 

ttq 10200)( +=  leaving the pre-melted region is imposed on the boundary at x=W. A linear initial 

temperature xxG 300020)( +=  is considered in the premelt region. Thermal properties of the pre-

melted region are taken to be the same as in the phase change problem. Figure 3(b) shows a plot 

of temperature rise as a function of time at x=W for both analytical model and FEM simulations. 

Similar to Figure 3(a), results indicate a good agreement between the analytical model and FEM 

simulations for the thermal conduction problem, with a worst-case deviation of only 1.5% between 

the two. The analytical model does not require mesh generation, which may result in reduced 

computational time. This approach also does not involve discretization errors that are possible in 

numerical simulation and offers the capability of solving such problems without the need for a 

commercial simulation tool. 

Following the validation of the individual sub-problems as described above, the iterative 

integration of the two is characterized next.  

 

Figure 3. Comparison of the analytical solutions of the two sub-problems with Finite element 

simulations. (a) Plot of solid-liquid interface location y(t) as a function of time; (b) Plot of 

surface temperature rise at x=W as a function of time for the conduction problem.  
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4-3-2. Validation of the iterative approach 

In order to validate the complete problem, a phase change material of the same properties 

as the previous section is considered. The phase change material is initially at its melting 

temperature and the initial temperature of the pre-melted region is assumed to be  𝐺(𝑥) = 10 −

1000𝑥. A time-dependent boundary condition 𝑇0(𝑡) = 100 + 0.1𝑡 is applied at x=0. This problem 

is solved using finite-element simulations as well as the iterative approach described in section 2, 

starting from an initial guess of temperature distribution. Figure 4 plots temperature rise at the 

intersection between the two regions as a function of time for different number of iterations, 

including the initial guess, labeled as 0. Figure 4 indicates a rapid change in temperature profile as 

a function of time for the first few iterations. However, as the number of iterations increases, 

temperature distribution stabilizes and converges to a single curve. It is seen that after six 

iterations, the change in temperature curve from one iteration to the next is negligible. This 

indicates that around six iterations may be sufficient in this case for convergence. In addition, it 

has been verified that the temperature distribution computed by the iterative approach is largely 

independent of the initial guess. When the initial guess is much different from the actual 

temperature distribution, the iterative approach takes a larger number of iterations to converge, but 

results in the same converged solution irrespective of the initial guess. Note that a blend factor of 

β=0.1 is used in this and all further computations in order to avoid instability.  
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Figure 4. Validation of the iterative approach with finite element simulation for a linear time-

dependent temperature T0(t) and a linear initial temperature distribution in the pre-melted region 

G(x). Temperature rise at the intersection between the two regions Tw(t) is plotted as a function 

of time for multiple iterations. Results from the finite element simulation is also plotted. 

 

4-3-3. Effects of the initial condition 

In this section, effect of the initial condition on the solid-liquid interface location y(t) as 

well as temperature rise at the intersection between the two regions, Tw(t) is investigated. In order 

to do so, the iterative approach is implemented for cases with different values of a constant initial 

condition G. The time-dependent temperature boundary condition is chosen to be 𝑇𝑝(𝑡) = 50 +

0.01𝑡 up to t=1000 s, while values 40, 60 and 80 °C are considered for the initial condition G. A 

heat-generating body such as a Li-ion cell generates heat in a periodic cycle. In this context, the 

different values of the initial condition G may represent scenarios where the premelted region is 

initially at different temperatures due to the residual effect of previous cycles of heating. The 

choice of specific numbers for G here ensure that the initial condition being studied here is not 

overwhelmed by the time-dependent boundary condition. Thermophysical properties of the pre-
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melted region and the melting solid are considered to be the same as the previous section. Figure 

5(a) plots computed temperature rise at the intersection between the two regions, Tw(t) as a function 

of time for different values of initial condition G. Results show that larger initial temperature 

results in higher interface temperature at early times. However, this effect of the initial temperature 

fades away as time increases, and after some time, the three plots are close to each other. At large 

times, initial thermal energy in the pre-melted region dissipates away, and only the effect of the 

boundary condition remains. To further confirm this, Figure 5(b) plots the solid liquid interface 

location y(t) as a function of time for various values of initial condition G. It is seen that as initial 

temperature increases y(t) increases as well due to more heat transfer from the pre-melted region 

to the melting solid body. For the parameters chosen here, significant impact of G on the phase 

change propagation occurs in the first few hundred seconds, when the initial temperature is the 

predominant forcing function. As time passes, there remains only a constant offset between the 

curves for different values of G. In the context of Li-ion cells, the initial period during which 

significant impact of G is present may be compared with the rest period between successive heat-

generating periods to determine if the impact of G dissipates away sufficiently during the rest 

period.   
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Figure 5. Effect of the initial temperature distribution G(x). (a) Plot of temperature rise at the 

intersection between the two regions Tw(t) as a function of time for multiple values of constant 

G. (b) Plot of solid-liquid interface location y(t) as a function of time for different values of G. 

   

4-3-4. Effect of length of pre-melted region  

Effect of the length of the pre-melted region W is investigated next. Four different lengths 

W=1, 5, 10, 15 and 20 mm are considered. A constant temperature boundary condition T0=70 ºC 

is applied at x=0 for 1000 s and the initial condition is considered to be G=60 ºC, similar to the 

previous section. All thermophysical properties are also the same as the previous sections. Figure 

6(a) plots temperature rise at x=W, the intersection between the two regions as a function of time 

for four different values of W. Figure 6(b) shows a plot of the location of the solid-liquid interface 

y(t) as a function of time for these cases. These plots show that as the length of the pre-melted 

region increases, the temperature at x=W and location of the phase change front both decrease. 

This is however, not a linear effect – there is significant reduction between W=1 mm and W=5 

mm, but the effect saturates at larger values of W. In general, the interface temperature is 

influenced by both the temperature boundary condition T0 as well as the initial temperature G(x). 

As W increases, the influence of T0 decreases due to increased thermal resistance between the 
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boundary condition and the phase change front. On the contrary, increasing W increases the effect 

of G(x) due to greater total initial energy in the pre-melted region. As a result, the net impact of 

increasing W depends on the relative magnitude of these two effects. Similarly, Figure 6(b) plots 

the solid-liquid interface location y(t) as a function of time. Results indicate that as W increases, 

the rate of phase change propagation decreases. This can be explained based on Figure 6(a), which 

shows larger values of W resulting in lower Tw(t), and consequently lesser heat entering the phase 

change region, which eventually results in slower melting front propagation.  

In addition to plots for different values of W, Figure 6(b) also plots the phase change 

propagation for the classical Stefan problem with the same boundary condition, for which, phase 

change propagation occurs at a rate proportional to √𝛼𝑡 [4]. Figure 6(b) shows, as expected, that 

as the value of W gets close to zero, the phase change propagation predicted by the iterative model 

approaches that predicted by the classical Stefan problem.  

 

Figure 6. Effect of the pre-melted length W. (a) Plot of temperature rise at the intersection 

between the two regions Tw(t) as a function of time for multiple values of W. (b) Plot of solid-

liquid interface location y(t) as a function of time for different values of W. Result for the special 

case of W approaches to zero is also plotted. 
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4-3-5. Effect of pre-melted region thermal diffusivity  

In order to investigate the effect of thermal diffusivity of the pre-melted region, αp, on the 

phase change process, the temperature field is computed using the iterative technique for different 

values of αp. In each case, a time-dependent temperature boundary condition 𝑇0 = 50 + 0.02𝑡 is 

applied at x=0, along with an initial temperature of G=40 ºC for the pre-melted region of length 

W=10 mm.  

Figures 7(a) and 7(b) plot the temperature rise at the intersection between the two regions, 

Tw(t) and the location of the phase change front, y(t) respectively as functions of time for different 

values of αp. These plots show that the thermal diffusivity of the pre-melted region plays a key role 

in the phase change process. As αp increases, temperature at x=W goes up due to increased 

diffusion of thermal energy, both from the T0 boundary condition as well as the initial condition 

G. The increased diffusion also explains the strong dependence of the rate of phase change 

propagation on thermal diffusivity of the pre-melted region, as shown in Figure 7(b).  

While the trends shown in Figures 7(a) and 7(b) may be expected based on an 

understanding of the governing heat transfer physics, the iterative model makes it possible to 

quantifiably compute the impact of αp on the phase change process, as shown in Figures 7(a) and 

7(b). 
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Figure 7. Effect of pre-melted region thermal diffusivity αp. (a) Plot of temperature rise at the 

intersection between the two regions Tw(t) as a function of time for multiple values of αp. (b) Plot 

of solid-liquid interface location y(t) as a function of time for different values of αp. 

 

4-3-6. Effects of phase change material thermal diffusivity 

Effect of thermal diffusivity of the phase change material, αl, on the phase change front 

location y(t) and temperature rise at the intersection between the two regions is investigated next. 

In order to do so, different values of PCM thermal diffusivity, αl are considered while keeping the 

initial condition, time-dependent boundary condition at x=0 and the pre-melted region W the same 

as in sub-section 3.5. Figure 8(a) plots temperature rise at the intersection between the two regions, 

Tw(t) as a function of time for different values of αl. In addition, Figure 8(b) plots the location of 

the phase change front y(t) as a function of time for these cases. Results indicate that as the value 

of PCM thermal diffusivity increases, the temperature rise at the intersection between the two 

regions increases as well. This effect stems from an enhanced rate of thermal conduction from the 

pre-melted region into the phase change region at larger values of the PCM thermal diffusivity. 

Figure 8(b) also confirms this by showing an increase in the solid-liquid interface location in the 

phase change region at larger values of the PCM thermal diffusivity.  
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Figure 8. Effect of phase change material thermal diffusivity αl. (a) Plot of temperature rise at the 

intersection between the two regions Tw(t) as a function of time for multiple values of αl. (b) Plot 

of solid-liquid interface location y(t) as a function of time for different values of αl. 

 

4-3-7. Phase change over multiple heat absorption cycles 

In order to demonstrate the capability of the model discussed in this work to address 

problems of practical relevance, the effect of heat absorption from a hot source over multiple cycles 

is investigated. Heat absorption processes often occur in a cyclic fashion, which may result in the 

pre-melted scenario addressed in this work. A phase change material with the same thermal 

properties as previous sections is considered. Heat absorption occurs over multiple cycles, each of 

1000 s duration. Between cycles, it is assumed that the PCM melted in the previous cycles cools 

back down until it reaches the melting temperature. In the first stage, the phase change material is 

initially solid at the melting temperature and in direct contact with a heat source maintained at 70 

K above the melting temperature. The first stage can be described by a simple Stefan problem. 

Thermal analysis for subsequent stages is carried out using the analytical model, which, in each 

case accounts for the effect of the cumulative pre-melted liquid due to all previous heating periods. 

Figure 9 plots the location of the phase change front y(t) as a function of time for all four heating 
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periods. In the first period, y(t) is proportional to √𝑡 according to the solution of the Stefan 

problem. In subsequent periods, Figure 9 shows that the rate of growth of y(t) becomes slower and 

slower due to the growing pre-melted region.  

              

 

 

 

 

 

 

4-4. Conclusions 

This work presents a theoretical solution for heat transfer problems involving phase change 

in which a pre-melted or pre-solidified region exists initially. Results derived here, based on an 

iterative approach, highlight the nature of heat transfer in a problem that can be used to model a 

number of engineering problems. While presented here for the specific case of melting, the 

solidification problem can also be addressed based on these results. Other complexities, such as 

convection in the liquid phase may also be accounted for, provided the underlying analytical 

solutions for the liquid phase are available. This work improves our fundamental understanding of 

Figure 9.  Propagation of phase change front with time during a four-cycle heat absorption process. 
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phase change heat transfer, and facilitates analysis of heat transfer in applications related to energy 

conversion and thermal management. 

4-5. Nomenclature 

Cp specific heat capacity (J/kgK) 

L latent heat of fusion (J/kg) 

G initial temperature distribution, relative to Tm (K) 

f non-dimensional, time-dependent temperature boundary condition, f=(T0-Tm)/(Tm-Tref)  

k thermal conductivity (W/mK) 

q heat flux (W/m2) 

Ste Stefan number, Ste=Cp(Tref-Tm)/L 

t time (s) 

T temperature, relative to Tm (K) 

Tm phase change temperature (K) 

T0 time-dependent temperature at the boundary, relative to Tm (K) 

Tref reference temperature, relative to Tm (K) 

W length of the initially melted/solidified region (m)  

x spatial coordinate (m) 

y location of phase change front (m) 

α thermal diffusivity (m2/s) 

λ eigenvalues 

Subscripts 

1 phase change region 

2 pre-melt region 

ρ mass density (kg/m3) 
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5-1. Introduction 

Li-ion cells are used commonly for energy storage and conversion in a variety of 

applications including electric vehicles, renewable energy storage, consumer electronics, etc. [1-

2]. Despite favorable electrochemical characteristics compared to competing technologies, Li-ion 

cells often suffer from overheating due to excessive heat generation [3,4], which has severely 

limited the application of this technology. Overheating is undesirable for both safety and 

performance. For example, current draw from a cell is often throttled in order to limit temperature 

rise, which reduces cell performance and lowers the power density of the battery pack. Excessive 

temperature rise in a Li-ion cell may also result in thermal runaway [5-8], which causes severe 

safety problems due to fire and explosion. Some fundamental reasons behind these severe thermal 

challenges in a Li-ion cell include poor thermal conductivity within the cell [9-10], non-linear 

temperature-dependent heat generation [7-8], particularly at high temperatures, and the stacking 

of cells very close to each other in a battery pack in order to maximize energy storage density [11].  

Due to the reasons outlined above, thermal management of a Li-ion battery pack is of 

utmost importance, particularly for aggressive applications that require large discharge rates. For 

reference, discharge rate of a cell is often represented by its C-rate [3,4], which is the reciprocal of 

the time needed for complete discharge in hours. The larger the C-rate, the more aggressive is the 

discharge process in terms of heat generation rate [3,4]. A number of thermal management 

approaches have been investigated in the past, and are well summarized in multiple review papers 

[3,12]. These include cold plate cooling [13,14], single phase convective cooling [15,16], heat pipe 

cooling [17,18], etc. Innovations in materials within the cell have been pursued in order to improve 

thermal conduction within the cell. Both water and air have been used as coolants in battery packs 

[11,16]. A variety of heat pipe configurations including oscillating heat pipes have been 
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implemented, both within a single cell and between cells in a battery pack [17,18]. The thermal 

effect of Boron Nitride coating on the cell casing has been investigated [19]. 

In contrast to thermal management approaches outlined above, phase change cooling 

involving melting and solidification may offer many advantages. A much greater heat removal rate 

may be achieved through phase change cooling compared to single phase thermal management 

due to the large latent heat associated with phase change.  Due to its promising nature, experimental 

investigation of phase change cooling of Li-ion cells has been reported in several recent papers 

[20-24]. Experimental measurements of the performance of phase change materials (PCMs) such 

as paraffin wax for cooling of Li-ion cells have been carried out, and a significant reduction in cell 

temperature has been reported [21, 25]. A number of innovative materials and composites, such as 

metal foams have been investigated for further improving the performance of phase change cooling 

through thermal conductivity enhancement [20,21,24,25]. Experiments have shown that phase 

change cooling can prevent propagation of thermal runaway induced by nail penetration to 

neighboring cells [22]. Despite the various advantages of phase change cooling, however, it may 

lead to increased system complexity. Particularly, in the context of a Li-ion battery pack, the 

insertion of phase change material between cells reduces energy storage density. As a result, there 

is a need for careful co-optimization of PCM cooling with other system-level performance 

characteristics, for which, theoretical modeling is critical. 

In comparison with the extensive literature available on measurements of phase change 

thermal management in Li-ion cells, there is a lack of theoretical modeling of these processes. 

Rigorous theoretical modeling is critical not only for fully optimizing the benefits of phase change 

cooling, but also for balancing trade-offs that exist with other system-level performance 
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parameters such as energy storage density. Some simulation models using commercial finite-

element tools are available [21,26], but these do not provide good analytical insight into the 

fundamental nature of the problem. Rigorous theoretical analysis of this problem is complicated 

considerably by the non-linear nature of phase change [27], making it difficult to analyze using 

standard theoretical tools. The coupling between phase change heat transfer with thermal 

conduction within the cell as well as electrochemical heat generation further complicates this 

problem. From a heat transfer perspective, this is a conjugate problem [28-30], involving thermal 

conduction in a heat-generating body and phase change heat transfer in the coolant. While these 

two modes of heat transfer have been individually analyzed extensively, the conjugate problem 

has not been paid much attention. For example, while the well-known Stefan problem addresses 

phase change in an infinite body with a constant temperature boundary condition [27], the presence 

of thermal conduction in a heat-generating body – the Li-ion cell in this case – makes the problem 

much more difficult to solve.  

A good theoretical understanding of this problem is important for many practical reasons. 

The inclusion of a phase change material in a battery pack reduces overall energy density, since 

the phase change material increases pack weight and volume without contributing to 

electrochemical energy storage. A robust theoretical model can help understand the minimum 

amount of phase change material needed for a given cell undergoing a specific charge or discharge 

process, and therefore avoid overdesign of thermal management. A robust theoretical model can 

also help predict the effect of PCM cooling on internal temperature of the cell, which is critical for 

cell performance and safety, but is difficult to measure directly. Predictions from a theoretical 

model can also be used for accurate thermal management design in conditions where experimental 

data may not be available in advance. A theoretical model also helps understand the parametric 
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dependence of the thermal characteristics of the system on various parameters such as thermal 

properties of the cell and phase change material, geometry, dimensions, etc. 

This work presents a theoretical model for predicting the transient temperature distribution 

in the cooling of a heat-generating Li-ion cell with a phase change material. The novelty of the 

theoretical approach in this work lies in solving the energy conservation equations in the two 

bodies in an iterative fashion to determine the transient temperature fields in both. This approach 

offers significantly reduced computational time compared to finite element simulations, and 

provides key insights into the fundamental nature of PCM cooling of Li-ion cells. A key result 

from this work is that while improving thermal conductivity of the PCM reduces cell surface 

temperature through greater melting rate, it does not effectively cool the core of the cell, which 

remains a key shortcoming of PCM cooling. Most of the past experimental work evaluates the 

effectiveness of PCM cooling based on surface temperature measurement alone, whereas, this 

work shows that PCM cooling provides only limited benefit to the core temperature. Results show 

that improving thermal conductivity of the cell is critical for fully benefiting from PCM thermal 

management.  Another key contribution of this work is the analysis of the system-level trade-off 

between thermal management effectiveness and energy storage density. This work not only 

develops a good theoretical understanding of heat transfer during phase change thermal 

management of a Li-ion cell, but also contributes towards understanding key design trade-offs in 

practical thermal management systems for Li-ion cells. 

5-2. Mathematical Modeling 

Figure 1(a) shows a schematic of the geometry of a battery pack with multiple prismatic Li-

ion cells being cooled by a phase change material (PCM) inserted between cells. Assuming 
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uniformly spaced cells in a single direction, symmetry could be used to analyze only one part of 

the pack, shown in Figure 1(b). Within this region, the relevant heat transfer processes include heat 

generation inside the cell of half-thickness W, thermal conduction within the cell, heat transfer 

from the cell into the phase change material at the cell-PCM interface, conduction into the PCM 

and phase change at the liquid-solid interface, located by x=y(t). Thermal contact resistance 

between the cell and PCM is neglected due to the expected intimate contact between the cell 

surface and PCM that melts and solidifies repeatedly. Note that the location of the liquid-solid 

interface, y(t), is a function of time – as more and more heat is absorbed by the PCM, y(t) increases 

with time.  

 

Figure 1. (a) Schematic of a prismatic Li-ion battery pack with phase change cooling; (b) 

Schematic of the overall conjugate heat transfer problem. 

 

Given the complicated and coupled nature of this conjugate heat transfer problem, a direct 

solution may not be possible. Instead, this problem is solved by splitting into two sub-problems, 

which are solved individually while considering continuity of temperature and heat flux at the cell-

PCM interface. The two sub-problems are shown schematically in Figure 2. The cell sub-problem 

involves a certain heat flux )(tq   leaving the cell at the cell-PCM interface, while the PCM sub-
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problem involves a certain time-dependent temperature T0(t) at the interface. Both )(tq   and T0(t) 

are unknown. However, this problem can be solved in an iterative process, wherein a certain T0(t) 

is guessed and used to solve the PCM sub-problem. Based on the solution of this problem, 

interfacial heat flux is calculated and used to solve the cell problem, which requires the heat flux 

as an input. The solution of the cell problem is then used to determine the interface temperature 

T0(t), which is used to improve the initial guess of the interfacial temperature. The process is then 

repeated iteratively until there is acceptably small change in T0(t) from one iteration to the next. 

Figure 3 shows a flowchart of the iterative method for determining the solution of the conjugate 

heat transfer problem. 

 

Figure 2. Schematic of the two heat transfer sub-problems: (a) Cell problem; (b) PCM problem. 

 

Such an iterative process has been used for solving a variety of conjugate problems [11,29], 

including the problem of single phase cooling of cells in a Li-ion battery pack. The novelty of the 

approach adopted in this work lies in the conjugate analysis of the much more complicated phase 

change problem. Further, unlike past papers, where only steady state problems were solved 
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[11,29], this work addresses a more realistic, transient problem, involving increasing cell 

temperature with time, as well as a phase change front in the PCM that advances with time. 

The iterative approach described above requires analytical solutions for the cell and PCM sub-

problems, given the interfacial heat flux and temperature respectively as functions of time. These 

solutions are derived in the next two sub-sections. 

 

Figure 3. Flowchart of the iterative process for determining the solution of the conjugate heat 

transfer problem. 

 

5-2-1. Solution for the PCM sub-problem 

The PCM sub-problem involves a one-dimensional phase change material of thermal conductivity 

k, specific heat capacity Cp, latent heat L and mass density ρ being heated up by an imposed 

temperature T0(t) at the boundary x=0, as shown in Figure 2(b). Due to this temperature boundary 

condition, the PCM slowly melts, starting at x=0. The liquid-solid interface, located at x=y(t) 

progresses towards the right as time passes, and more and more liquid is formed due to phase 
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change. This is a generalization of the well-known Stefan problem, in which a constant 

temperature boundary condition is imposed, as opposed to a time dependent T0(t) considered here. 

The governing energy conservation equation for Tp(x,t), the temperature field in the melted PCM 

is 
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along with the following boundary condition 
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where T0(t) is the imposed time-dependent temperature boundary condition on the face of the 

PCM. 

In addition, energy conservation and continuity of temperature at liquid-solid front requires that 
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where Tm is the PCM melting temperature. Equations (1) through (4) represent a non-linear phase 

change problem, which is further complicated by the time-dependence in the boundary condition 

at x=0. While a direct analytical solution for this general problem is likely not possible, several 

approximate analytical methods have been presented in the literature for solving similar problems, 

including integral methods [31], perturbation methods [30], etc. In this case, the perturbation 

method [30] is used. Briefly, the solution is assumed to be a power series expansion based on the 
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Stefan number, 𝑆𝑡𝑒 =
𝐶𝑝(𝑇𝑚−𝑇𝑟𝑒𝑓)

𝐿
 where Tref is a reference temperature [27,30]. The problem is 

transformed in order to change one of the dependent variables from time to the interface location 

y(t). The power series form of the temperature solution is inserted into the governing equation and 

simplified using boundary conditions. Through a term-by-term comparison, a solution for the 

temperature profile in the liquid is derived in terms of the interface location. Finally, the location 

of the phase change front itself is determined by using the principle of energy conservation at the 

phase change front [30], given by equation (4). The interface heat flux is then determined by 

differentiating the liquid temperature distribution as follows:  
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where f(t) is the non-dimensional time-dependent boundary temperature given by [30] 

 

 
refm

m

TT

TtT
tf

−

−
=

)(
)( 0      (6) 

and the liquid-solid interface location, y(t) is given by [30] 
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where α is the PCM thermal diffusivity. The interfacial heat flux determined in this manner from 

equation (5) can be used to solve the cell sub-problem as described below. 
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5-2-2. Solution for the cell sub-problem 

The cell sub-problem involves a one-dimensional body of thickness H, thermal conductivity 

kc and thermal diffusivity αc generating heat at a volumetric rate of Q  , as shown in Figure 2(a). 

There is zero heat flux at x=0 due to symmetry, whereas a certain outgoing heat flux )(tq   is 

imposed on the boundary at x=W. The governing energy conservation equation for the temperature 

distribution in the cell, Tc(x,t) is 
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Boundary conditions associated with equation (8) are  

 0=




x

Tc  at x=0 (9) 

and 

 )(tq
x

T
k c

c
=




−  at x=W  (10) 

Due to the two non-homogeneities in the problem, the solution is split into two parts, each of 

which account for one of the non-homogeneities. The solution for the heat generation part is quite 

straightforward as follows: 

t
C

Q
tT

p

c



=)(1                                                                     (11) 

The method of undetermined parameters [32,33] is used for deriving the second part of the 

solution that accounts for the time-dependent heat flux. The solution is assumed to be a series sum 

of eigenfunctions of the corresponding homogeneous problem.  
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 =  are the eigenvalues of the corresponding homogenous problem. The 

unknown coefficients Cn(t) in equation (12) are determined by differentiating equation (12) with 

respect to time, substituting in the governing energy equation and using the boundary conditions 

and the principle of orthogonality to simplify. This results in an ordinary differential equation for 

Cn(t) 
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for which, the solution, assuming zero temperature rise at t=0 is 
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where Nn is the eigenvalue norm. 

 This completes the solution of the cell sub-problem shown in Figure 2(a), from where the 

interface temperature is found to be   

 

Note that in this case, the internal heat generation rate Q   heats up the cell whereas the 

heat flux )(tq   may cool the cell down. Therefore, for this sub-problem, the cell temperature may 

go up or down with time depending on the relative magnitudes of Q   and )(tq  .  

 

( ) ( ) t
C

Q
dttqWCos

Wk
dttq

Wk
tWxTtT

pn

t

ncn

c

c

t

c

c

cerface



 

+−−−+−===  


=1 0

22

0

int ))(exp()(
2

)(,)(  (15) 



99 
 

5-2-3. Iterative process 

The iterative procedure for solving the conjugate problem starts with guessing an initial cell-

PCM interface temperature curve, T0(t). The PCM sub-problem is then solved using T0(t) as the 

boundary condition as discussed in section 2.2. The solution provides the cell-PCM interface heat 

flux, )(tq   which can be used to solve the cell sub-problem. Solution to the cell sub-problem 

provides a new interface temperature T0(t)new, which is used to repeat the iterative procedure. The 

interface heat flux leaving the cell, )(tq  , may be large in the first few iterations due to the large 

temperature gradient between the cell and PCM caused by the initial interface temperature. This 

large outgoing heat flux may result in negative temperature particularly if the initial interface 

temperature is not accurate. To avoid such problems, the coupled interface temperature is blended 

with that from the previous iteration using a low value of the blending factor in order to prevent 

instability in the iterative process. Figure 3 shows a flowchart of the iterative method, including 

the blending process.  

In summary, the iterative theoretical model presented in this section predicts temperature 

distribution in the cell and the surrounding PCM, taking into account various heat generation and 

heat transfer processes, including propagation of the phase change front. The next section presents 

a discussion of validation of and various results obtained based on this theoretical model.  

5-3. Results and discussion 

5-3-1. Validation and optimization of analytical model 

Since the analytical solution approach is iterative in nature, it is important to track the 

predicted temperature distribution over multiple iterations. A realistic case is considered, wherein 

a 20 mm thick cell generating heat at 87000 W/m3 corresponding to a discharge rate, also known 

as the C-rate of 5C [34] is being cooled by paraffin wax, a commonly used phase change material 
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of thermal conductivity k=0.2 W/m.K and latent heat L=270.7 kJ/kg [25]. For reference, the C-rate 

of a Li-ion cell refers to the reciprocal of the time in hours needed for completely the discharging 

the cell. The higher the value of the C-rate, the more aggressive is the discharge process. 

In these conditions, the computed temperature at the cell-PCM interface is plotted as a 

function of time for multiple number of iterations in Figure 4. The initial guess for the interface 

temperature as a function of time is also plotted. Figure 4 shows that the temperature distribution 

changes rapidly in the first few iterations, but eventually stabilizes as it converges. Beyond seven 

iterations, there is minimal change in the temperature distribution from one iteration to the next. 

This shows that for the conditions assumed here, around seven iterations are sufficient for 

obtaining the analytical solution. This is an important insight in optimizing the computation of the 

analytical model since each iteration requires additional computation time. Additional 

computations have been carried out with multiple other initial guesses to verify that the 

temperature field converges to the same value regardless of the initial guess. Note that these results 

are obtained with a blend factor γ=0.1. The convergence could be obtained faster with a large value 

of γ. However, in case the initially assumed temperature distribution deviates significantly from 

the correct temperature distribution, a large value of γ may lead to instability. As a result, a 

conservative value of γ=0.1 is used throughout this work. 
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Figure 4. Cell-PCM interfacial temperature rise, T0(t) as a function of time for multiple number 

of iterations, including the initial temperature curve. Values for PCM thermal conductivity and 

latent heat are k=0.2 Wm-1K-1 and L=270.7 kJkg-1 respectively. The cell generates heat at 87000 

W/m3, corresponding to 5C discharge rate. Plot indicates that the temperature distribution 

converges within around seven iterations. 

 

Analytical solutions for the two sub-problems discussed in sections 2.1 and 2.2 are also 

validated by comparison of the predicted temperature distribution for specific cases with finite-

element simulation results for a set of parameters representative of realistic conditions. In order to 

validate the PCM model, a one-dimensional transient finite-element simulation is carried out in 

ANSYS CFX. A phase change material of thermal conductivity k=0.2 W/m.K and latent heat 

L=270.7 kJ/kg is considered. A time-dependent temperature boundary condition 
100

20)(0

t
tT +=

is imposed on the material at x=0 for 1000 seconds. To carry out the phase change simulation, 

same geometry as figure 2(b) is created in ANSYS CFX. A mesh sensitivity study shows that 1.5 
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million node is needed for the results be independent of mesh. PCM is defined as a homogenous 

binary mixture of liquid and solid where the liquid part has the specific reference enthalpy of 270.7 

kJ/kg. Saturation properties for the binary mixture is defined as well based on the PCM properties. 

The analytical model is used for computing the melting front y(t) and compared against finite-

element simulation results. As shown in Figure 5(a), the two are in good agreement with each 

other. While the analytical model can be computed quite rapidly, within 60 seconds, the transient 

finite-element simulation takes about 20 minutes, even when not accounting for the setup time 

needed for gridding prior to the finite element computations. 

 

Figure 5. Comparison of the analytical solution (red curves) and a finite element simulation 

carried out in ANSYS-CFX (blue circles) for the two sub-problems: (a) PCM melting front, y(t) 

as a function of time for a time-dependent temperature boundary condition. (b) Cell core 

temperature rise as a function of time for a given heat flux )(tq   on the x=W  boundary.  

 

Similar to the PCM sub-problem, the cell sub-problem discussed in section 2.2 is also 

validated by comparison against finite-element simulations. For a cell of thermal conductivity 

k=0.2 Wm-1K-1 and generating 106 W/m3 with a given heat flux )(tq   on its boundary at x=W, the 

predicted interface temperature as a function of time and compared against finite element 
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simulation results in Figure 5(b). The interfacial heat flux as a function of time, )(tq   assumed for 

this comparison is also shown in Figure 5(b). In this case, the interfacial temperature initially 

decreases due to the increase in heat flux leaving the cell and insufficient generated heat reaching 

the boundary. As time progresses, however, more and more heat generated in the cell reaches the 

boundary, and also, heat flux imposed on the boundary decreases, resulting in an increase in the 

cell surface temperature. Throughout the entire period, the predicted interface temperature is in 

good agreement with finite-element simulation results. In this case, 500 eigenvalues are considered 

for the analytical solution represented by equation (15). It is verified that additional eigenvalues 

do not significantly change the predicted temperature distribution.  

Comparison of the analytical models against finite-element simulations shown in Figure 5 

provides a validation of these models. Phase change based thermal management of Li-ion cells in 

a variety of scenarios in analyzed next. 

5-3-2. Effect of phase change material properties 

Thermal properties of the phase change material are likely to be important for the design 

of phase change based thermal management because this process is driven primarily by heat 

absorption during phase change and because heat entering the phase change material must first 

conduct through the melted liquid before being absorbed in the phase change process. While phase 

change materials have reasonably high latent heat, the thermal conductivity is usually low, and 

multiple papers have attempted to improve thermal conductivity through various mechanisms such 

as insertion of metal foams, fillers, etc. [20-25]. The expected impact of these thermal property 

enhancements on cooling effectiveness is investigated here.  
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For a cell with a thermal conductivity of kc=0.2 Wm-1K-1 – a realistic value based on past 

measurements [9] – undergoing 10C discharge, peak temperature rise in the cell that occurs at its 

core is plotted in Figure 6(a) as a function of time for multiple values of the phase change material 

thermal conductivity, assuming the latent heat to be 270.7 kJ/kg. Figure 6(b) shows the 

corresponding cell-PCM interface temperature rise as a function of time. These plots show that 

while improving PCM thermal conductivity has a significant impact on the cell surface 

temperature rise, there is only a minor change in cell core temperature rise. This happens because 

while a greater PCM thermal conductivity ensures heater heat transfer through the PCM, and 

therefore, reduced cell surface temperature, the core temperature remains relatively unaffected due 

to the slower rate of thermal conduction within the cell. The impact of improving PCM thermal 

conductivity – a heavily researched topic – on the core temperature of the cell saturates once the 

thermal conductivity reaches a threshold. Beyond that, there is minimal impact of further 

improving PCM thermal conductivity on the cell core temperature because the cell thermal 

conductivity is the rate-limiting property. This is a critical issue for safety of Li-ion cells and 

highlights a key limitation of external, phase change cooling of the cell. 

 

Figure 6. Effect of PCM thermal conductivity on (a) Cell peak temperature rise as a function of 

time; and (b) Cell surface temperature rise as a function of time. Results indicate that improving 
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PCM thermal conductivity significantly improves cell surface temperature but not the cell core 

temperature. 

Figure 7 presents a similar investigation of the effect of latent heat of the phase change 

material. In this case, thermal conductivity is held constant at k=0.2 Wm-1K-1. Figures 7(a) and 

7(b) plot the temperature rise at the cell core and surface respectively for multiple values of the 

latent heat at 6C discharge rate. Similar to thermal conductivity, a strong impact of latent heat on 

the cell surface temperature is seen. However, similar to Figure 6(a), the core temperature does 

not reduce significantly with increasing value of the latent heat, once again due to the throttling 

effect of the relatively poor thermal conductivity of the cell itself.  

These results indicate that improving PCM thermal properties alone, as has been proposed 

in several recent papers [20-25], does not ensure effective cooling throughout the cell. 

Fundamentally, this occurs because of the low thermal conductivity of the Li-ion cell, which 

severely limits the rate of heat transfer from within the cell into the PCM, even if the PCM itself 

may have excellent thermal properties. Therefore, enhancing heat transfer within the cell and 

understanding the impact of improvements in cell thermal conductivity is equally important, and 

is investigated next.   

 



106 
 

Figure 7. Effect of PCM latent heat on (a) Cell core temperature rise as a function of time; and 

(b) Cell surface temperature rise as a function of time. Results indicate that improving latent heat 

improves cell surface temperature but not the cell core temperature. 

5-3-3. Effect of cell properties  

 Measurements reported in the past show that Li-ion cells have relatively poor thermal 

conductivity, around 0.1-1.0 Wm-1K-1 [3, 9, 35], due to which thermal conductivity may be a 

dominant parameter in determining the effectiveness of phase change thermal management. In 

order to investigate this, temperature distributions in the cell and phase change material are 

computed for a discharge rate of 6C. Figure 8(a) plots these temperature distributions at the end of 

the discharge process for different values of the cell thermal conductivity while holding all other 

parameters constant. A phase change material of thermal conductivity k=0.2 Wm-1K-1 and latent 

heat L=270.7 kJ/kg [25] is assumed. Figure 8(a) shows significant improvement in cell temperature 

distribution at higher values of cell thermal conductivity, including at the core of the cell. Up to 

50% reduction in cell core temperature is seen for cell thermal conductivity of 2.0 Wm-1K-1 

compared to the baseline value of 0.2 Wm-1K-1, unlike the case of improved PCM thermal 

conductivity, which reduces surface temperature but not the core temperature. In addition, Figure 

8(a) also shows significant improvement in temperature uniformity across the cell, which is an 

important consideration in electrochemical performance of the cell.  

The importance of cell thermal conductivity has been largely overlooked in past work on 

PCM thermal management, which has focused mostly on thermal properties of the PCM. Further, 

note that improving thermal conductivity of a Li-ion cell remains a key challenge due to the 

complicated, heterogeneous nature of the cell, with only limited work available, based on material 

and interfacial changes within the cell [36]. 
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For the same conditions, Figure 8(b) plots the solid-liquid interface position y(t), measured 

from the cell-PCM interface as a function of time in the phase change material. This plot shows 

higher rate of phase change in the PCM with increasing cell thermal conductivity. This directly 

results from improved heat diffusion through the cell, leading to greater heat absorption by the 

PCM. Figure 8(b) further confirms that increasing cell thermal conductivity is critical for fully 

benefitting from phase change based thermal management. 

 

Figure 8. Effect of cell thermal conductivity on (a) Cell peak temperature rise; and (b) PCM 

melting front, y(t) as a function of time. Plots indicate significant improvement in cell core 

temperature and higher rate of phase change in the PCM with increasing cell thermal 

conductivity. PCM thermal conductivity and latent heat are taken to be k=0.2 Wm-1K-1 and 

L=270.7 kJkg-1 respectively, corresponding to paraffin wax. 

 

5-3-4. Trade-off between thermal management and energy storage density 

Heat generation rate in a Li-ion cell can change significantly with time due to changes in 

the charge and discharge current. In general, the greater the discharge current, the higher is the 

heat generation rate. Any passive thermal management strategy, such as one based on phase change 

materials, must take these dynamics into account and be able to effectively cool the worst-case 
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discharge rate expected during the duty cycle of the battery pack. As the discharge rate goes up, 

the volumetric heat generation rate also goes up, but the duration of heat generation reduces 

because the cell discharges faster [34]. In order to understand the effect of these parameters on 

thermal management, the peak temperature in the cell, which occurs at the cell core, is plotted in 

Figure 9 as a function of time for a number of discharge rates. For these simulations, a phase 

change material of thermal conductivity of 0.2 Wm-1K-1 and latent heat of 270.7 kJkg-1 is assumed. 

Values for heat generation rate and thermal conductivity are taken from past measurements [9, 

34]. Figure 9 shows that the effect of increased heat generation rate at larger C-rates dominates 

over the reduced time period, due to which the peak temperature is significantly greater at higher 

C-rates.  

 

Figure 9. Effect of cell discharge rate on the peak temperature rise as a function of time. Phase 

change material of thermal conductivity of 0.2 Wm-1K-1 and latent heat of 270.7 kJ/kg is 

assumed. Heat generation values corresponding to different discharge rates are taken from past 

measurements [34].  
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To investigate this further, Figure 10 plots the maximum cell temperature, which occurs at 

the end of the discharge period as a function of C-rate. As expected, the peak temperature increases 

as discharge rates increases. Further, as the discharge rate goes up, the phase change front also 

increases, indicating the need for more and more phase change material between cells in order to 

sustain phase change cooling throughout the discharge process. Note that the phase change 

material in the battery pack is electrochemically passive, and therefore reduces energy storage 

density – a key performance parameter of the pack. To quantify this, Figure 10 also plots the energy 

storage density of the battery pack on a relative scale accounting for the presence of the passive 

PCM in the pack. Figure 10 shows that as the discharge rate goes up, the peak temperature rise 

goes up, and consequently, the energy storage density reduces due to inclusion of more and more 

PCM. This quantifies a fundamental, system-level trade-off in Li-ion battery pack design – the 

requirement of large discharge rate inherently reduces the energy storage density due to the need 

for greater thermal management. Many applications call for aggressive discharge rates, which 

Figure 10 shows will result in greater temperature rise and reduced energy storage density. Based 

on overall system requirements, a balance between these performance parameters must be 

achieved.  
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Figure 10. Plot of the maximum cell core temperature rise and relative energy storage density of 

the battery pack as a function of C-rate. Plot indicates that at larger discharge rates, there is 

greater temperature rise, and hence more PCM needed for thermal management, resulting in 

reduced energy storage density of the battery pack. 

 

5-3-5. Phase change vs forced convection thermal management  

Finally, the phase change based thermal management approach is compared with traditional, 

single phase convective cooling of the battery pack. For this comparison, the same cell as shown 

schematically in Figure 1(a), except with convective cooling with a heat transfer coefficient h 

instead of the phase change material. In this case, the transient temperature distribution in the cell 

can be easily derived to be [27] 
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For the case of a 20 mm cell undergoing 6C discharge, Figure 11 plots the peak temperature 

in the cell as a function of time for multiple values of the convective heat transfer coefficient h. 

For comparison, the peak temperature expected for phase change based cooling with a phase 

change material of k=0.2 Wm-1K-1 and L=270.7 kJ/kg is also plotted as a function of time. Figure 

11 shows that convective cooling, even with fairly low heat transfer coefficient up to 50 Wm-2K-1 

may be as effective as PCM-based thermal management assuming baseline PCM thermal 

conductivity. A higher convective heat transfer coefficient of 100 Wm-2K-1 compares well with 

the case of an improved PCM thermal conductivity of 7.0 Wm-1K-1 – a value that is at the higher 

end of the range reported in the literature [24]. This result is consistent with recent work where the 

performance of phase change cooling has been compared with forced convection cooling of Li-

ion cells [37]. For comparison, Figure 11 also plots the expected thermal response in case of a 

PCM with a very high thermal conductivity of 15 Wm-1K-1, and shows that the impact of improving 

thermal conductivity saturates – the curves for 7 Wm-1K-1 and 15 Wm-1K-1 are nearly identical. In 

this range, improving PCM thermal conductivity does not offer improved performance compared 

to forced convective cooling. 

This comparison demonstrates the limitations of PCM cooling in Li-ion cells because of 

the short time duration of heating. In many cases, convective cooling by itself may offer an 

attractive thermal management option. On the other hand, phase change thermal management is 

passive, easier to implement and does not require energy, whereas providing fluid flow and high 

convective heat transfer coefficient to the surface of each cell in a large battery pack complicates 

thermal management design, and may involve significant pressure drops, and therefore higher 
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energy costs. Therefore, a holistic approach combining multiple thermal management may be more 

effective.   

 

Figure 11. Comparison on phase change cooling with convective cooling. Plot of peak 

temperature rise in the cell as a function of time for multiple values of the convective heat 

transfer coefficient h. For comparison, plots for PCM cooling with baseline (k=0.2 Wm-1K-1) and 

thermally enhanced (k=7.0 Wm-1K-1) cases are also plotted.  

5-4. Conclusions 

  Phase change cooling of Li-ion cells is a promising approach for thermal management of 

battery packs, particularly due to its passive nature and no power requirement. Modeling of phase 

change cooling, such as one presented in this work, involves several theoretical challenges. 

However, insights gained from such analysis can be critical for optimization of thermal 

management systems, particularly when applied together with experimental data. For example, 

multiple papers have investigated thermal conductivity improvement of the phase change material 

for battery cooling. However, this work shows that while such an approach has a significant impact 

on the melting rate and the cell surface temperature, adequate cooling of the core of the cell 
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requires substantial improvement in thermal conductivity of the cell. While this is consistent with 

the basic principles of heat transfer, it has not been recognized adequately in past work. The present 

theoretical model quantifies this key challenge in PCM based thermal management. 

Results also highlight and quantify the key system-level trade-off between discharge rate 

and energy storage density, which can prevent needless overdesign of thermal management. 

Another important insight from this work is the comparison between phase change cooling and 

convective cooling. It is expected that the theoretical model and key results presented in this work 

will contribute towards accurate design of practical thermal management systems for Li-ion 

battery packs, eventually leading to improvement in safety and performance of energy conversion 

and storage devices. The present theoretical approach ignores sensible heating of the PCM prior 

to phase change, which may occur if the melting temperature of the PCM is greater than ambient 

temperature. While this is unlikely to be a dominant effect due to the small value of Stefan number 

for most phase change materials, accounting for this may be an interesting direction for future 

work. Further, the model assumes perfect symmetry between cells in the battery pack, and needs 

to be extended to account for non-symmetric features in large battery packs. Further, integration 

of experiments with theoretical modeling is also an important direction for future work. 

Incorporation of the theoretical model presented here in practical Battery Management Systems 

(BMS) of large battery packs is also important. Finally, the impact of the phase change material in 

the battery pack on other battery functions, such as battery heating in a cold environment – relevant 

for automotive applications – is also important. 
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5-5. Nomenclature 

Cp specific heat capacity (Jkg-1K-1) 

f non-dimensional temperature, f=(T0-Tm)/(Tm-Tref)  

h convective heat transfer coefficient (Wm-2K-1) 

k thermal conductivity (Wm-1K-1) 

L latent heat of fusion (Jkg-1) 

N eigenvalue norm  

qʺ heat flux (Wm-2)  

Q''' volumetric heat generation rate (Wm-3) 

Ste Stefan number, Ste=Cp(Tm-Tref)/L 

T temperature (K) 

t time (s) 

Tm phase change temperature (K) 

Tref reference temperature (K) 

W cell half-thickness (m)  

x length scale (m) 

y location of phase change front (m) 

α thermal diffusivity (m2s-1) 

λ eigenvalues nπ/W (m-1) 

ρ thermal diffusivity (m2s-1) 
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6-1. Introduction 

Li-ion cells offer an excellent mechanism for electrochemical energy storage and 

conversion, with superior energy storage and power density compared to predecessor technologies 

[1-4]. However, the performance of Li-ion cells is known to be highly sensitive to temperature [5, 

6], and even modest rise in operating temperature results in severe safety and reliability concerns. 

Fundamentally, high temperature triggers multiple exothermic reactions and processes inside a Li-

ion cell, such as degradation of separator, reaction between the anode active material and 

electrolyte, reaction between the positive active material and electrolyte and finally electrolyte 

decomposition [7-10]. As the cell temperature rises due to such processes, the rates of heat 

generation increase even more [11]. In addition, newer, more exothermic reactions are also 

triggered. This chain mechanism continues until the heat generation rate becomes unsustainably 

large, thereby pushing the cell into a catastrophic thermal runaway situation. Thermal runaway is 

a significant technological challenge that has been investigated in a large body of experimental 

and theoretical research [7, 8, 10-16]. 

A number of experimental techniques have been used for investigating the nature of 

thermal runaway in Li-ion cells [8, 10, 13]. Reactions and processes leading to thermal runaway 

are usually modeled based on Arrhenius kinetics. Reaction rate parameters for these processes 

have been experimentally determined [8, 17]. Heat generation rates have been measured in both 

nominal and runaway conditions using both calorimetric and non-calorimetric techniques [12, 18, 

19]. At the cell level, thermal runaway has been induced through a variety of mechanisms 

including nail penetration, internal short circuit, high temperature oven tests, etc. [5, 6, 10, 13, 20]. 

In each case, the surface temperature of the cell has been measured and used as a metric to represent 

the thermal health of the cell. Surface temperature measurement has been carried out through both 
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contact and non-contact techniques such as thermocouples and infrared thermography respectively 

[10, 13, 21-24]. Temperature thresholds in terms of the surface temperature for inducing a thermal 

runaway have been determined experimentally [10, 12, 13]. The fundamental processes that 

contribute towards thermal runaway, including temperature-dependent heat generation, thermal 

conduction and convection have been combined into a single non-dimensional number [11]. A 

threshold value for this number has been shown to exist, above which thermal runaway is 

imminent.  

The risk of thermal runaway is usually managed by battery management approaches such 

as load reduction on the cell when its temperature exceeds a certain threshold. While this approach 

may keep the cell safe, it comes at the cost of performance. The effectiveness of this significant 

trade-off between safety and performance depends critically on accurate measurement of the cell 

temperature, which is a key indicator of the thermal health of the cell and a predictor of the onset 

of thermal runaway. Surface temperature measurement, while providing some indication of the 

thermal state of the cell, is not completely representative, since the internal temperature at the core 

of the cell may be much higher due to internal heat generation [18] and poor thermal conductivity 

[25] of the cell. The higher, internal temperature may drive thermal runaway even when the surface 

temperature is much lower. Information about the core temperature is therefore critical for fully 

understanding and alleviating thermal runaway. Any technique to manage thermal runaway based 

on surface temperature alone is likely to be in significant error, as the core temperature – and not 

the surface temperature – is an appropriate indicator of the thermal state of the cell. 

Most past papers have only measured cell temperature on the outer surface [10, 12, 13] and 

not the core temperature, possibly due to the several challenges associated with core temperature 
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measurement, such as the hermetically sealed nature of the cell and lack of physical access to the 

core. A limited number of techniques that have been evaluated for measuring the internal 

temperature of the cell include fiber Bragg gratings [26], temperature measurement through 

electrochemical parameter measurement [27] and even micro-thermocouples [28,29]. Limited 

work exists on internal temperature measurement using embedded thermocouples during short 

circuit and overcharge conditions [29], wherein a significant temperature difference between 

internal temperature and external surface temperature was reported. This work reported internal 

temperature of up to 195 °C for LiCoO2 cells in mild abuse conditions [29], although temperature 

during a thermal runaway event that causes fire and explosion is expected to be much higher. 

Several of these techniques require physical insertion of a sensor into the cell, which often leads 

to cell failure and is unlikely to work well for widespread implementation. Others, such as 

electrochemical based temperature measurement only provide an average temperature of the cell, 

and not the peak temperature, which is more critical. In the recent past, a method for predicting 

the internal temperature of a cylindrical Li-ion cell based on measurement of the surface 

temperature has been developed [21, 22]. This method requires information about the heat 

generation rate and thermophysical properties of the cell, and has been experimentally 

demonstrated for nominal, non-runaway operating conditions. Given the technological importance 

of predicting, managing and preventing thermal runaway, it is of much interest to extend such 

methods for measurement of the internal temperature of the cell during extreme conditions 

encountered in thermal runaway. Any such effort will help understand the thermal state inside the 

cell during thermal runaway and will positively impact the fundamental understanding and 

practical management of thermal runaway in Li-ion cells. 
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This work presents an experimentally validated method for determining the core 

temperature of a cylindrical Li-ion during thermal runaway. This technique is based on measured 

surface temperature data as a function of time and chemical reaction kinetics during thermal 

runaway. These data are used in an analytical heat transfer model to determine the core temperature 

as a function of time. The core temperature determined in this manner is found to be in good 

agreement with experimental measurements on a thermal test cell undergoing a thermal process 

that mimics thermal runaway in real cells. The technique is used to determine the core temperature 

as a function of time for a number of surface temperature measurements reported in past papers. 

In each case, it is found that the core temperature reaches several hundred degrees Celsius higher 

than the surface temperature. This provides a critical, previously unavailable insight into the 

thermal state inside the cell, which is not possible through surface temperature measurement alone. 

The capability for determining the core temperature of the cell during thermal runaway, enabled 

by this work, may contribute towards an improved fundamental understanding of thermal runaway, 

as well as practical techniques for improved safety of Li-ion cells through effective management 

of thermal runaway risks.  

6-2. Mathematical Modeling 

Figure 1(a) shows a schematic of the geometry considered here, comprising a cylindrical 

lithium ion cell of radius R.  Radial thermal conductivity and diffusivity of the cell are assumed to 

be kr and α respectively. Internal heat generation within the cell, Q(T), which occurs due to various 

electrochemical processes, is a function of temperature. Surface temperature at the outer surface, 

r=R, is assumed to be known from experimental measurements, as reported in several past papers. 

The interest here is to develop a model to predict the evolution of the core temperature based on 

the measured surface temperature and the internal heat generation. 
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Figure 1. (a) Schematic of the problem, (b) Picture, and (c) Schematic of the experimental setup. 

 

In the cylindrical coordinate system used here, it is possible to derive a governing partial 

differential equation for the temperature field T(r,t) by considering energy conservation of an 

infinitesimally small element [30,31]. By accounting for thermal conduction into and out of this 

element, as well as internal heat generation and energy storage, the energy equation, used 

commonly for heat transfer analysis, can be found to be  
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Temperature rise at t=0 is assumed to be zero. Temperature-dependent heat generation in 

equation (1) and time-dependent surface temperature in equation (3) are the two non-

homogeneities in this problem. In order to derive a solution, the problem is first divided into two 

sub-problems, T1(r,t) and T2(r,t) that account for each non-homogeneity separately. T1(r,t) 

represents the temperature rise due to internal heat generation alone, and T2(r,t) represents the 

temperature rise due to time-dependent surface temperature alone.  

The solution for T1(r,t) depends on the nature of internal heat generation Q(T). Heat generation 

during thermal runaway is usually modeled as an Arrhenius function 
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Where Q0 is the pre-exponential constant, Ea is the activation energy and Ru is the universal 

gas constant.  

Due to the exponential nature of temperature dependence of Q, the governing energy equation for 

T(r,t) is highly nonlinear, and consequently very difficult to solve. Linearization through time-

stepping is carried out in order to solve for T1(r,t). The time duration of interest is divided into a 

number of smaller time intervals, for which T1(r,t) is computed in a sequential fashion. Each time 

interval is chosen to be small enough, such that the change in heat generation due to increased 

temperature during the interval is reasonably small. This allows the Q(T) term to be considered to 

be constant during each time interval. Based on linearization of the problem in this fashion, the 

temperature distribution T1(r,t) during each time interval can be computed using the method of 

separation of variables techniques. The solution for T1(r,t) is found to be 

 ( ) ( ) ( )trwrstrT ,,1 +=  (5) 

where 
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Where the eigenvalues λn are given by the roots of J0, the Bessel function of the first kind and 

of order zero.  

Note that Qgen is the heat generation rate during the specific time interval, and Tinitial(r) is the 

temperature distribution in the cell at the start of the time interval, which must be determined by 

computing the temperature distribution during the immediately preceding time interval. Equations 

(5) through (8) provide an approach for handling the non-linearity in the equations for T1(r,t) and 

computing the temperature distribution in a recursive fashion.  

This linearization approach introduces approximations in the temperature distribution because 

it assumes the heat generation rate to be uniform throughout the cell. Further, because the 

temperature distribution in the cell may be non-uniform due to the low thermal conductivity of the 

cell [25], it is important to determine the temperature at which to compute the heat generation rate 

for each time interval. These limitations of the linearization approach can be minimized by 

choosing the time intervals to be sufficiently short. During computation of T1(r,t).   
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Deriving an expression for T2(r,t) is relatively simpler, and is similar to a procedure outlined 

in a recent paper [21]. Using the method of undetermined parameters, T2(r,t) is found to be 
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and the radial norm Nr,n is  
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Equations (9) through (11) show that T2(r,t) can be determined by appropriately integrating 

the measured surface temperature T0(t). 

Finally, by combining T1(r,t) and T2(r,t), the core temperature of the cell Tcore(t) can be 

computed as follows 

 

 ( ) ( ) ( )tTtTtTcore ,0,0 21 +=  (12) 

Note that determining the core temperature of the cell during thermal runaway using the 

method outlined above requires information about the temperature-dependent heat generation rates 

during runaway, as well as thermal properties of the cell. These parameters are generally available 
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in several past papers. Heat generation rates are usually modeled using the Arrhenius equation and 

the various associated Arrhenius parameters have been determined and reported in past papers [7, 

8, 10]. On the other hand, thermal properties of a Li-ion cell, including thermal conductivity and 

specific heat have also been measured [18] as well as estimated from theoretical models [19]. 

 

6-3. Experiments 

Experiments are carried out to validate the analytical model for determining the core 

temperature of a cell as presented in section 2. Note that imposing a precise and well-controlled 

temperature-dependent heat generation rate in a Li-ion cell is not straight forward. Further, there 

is a lack of experimental methods to directly measure the core temperature, in part due to its 

hermetically sealed nature. As a result, these experiments are carried out on a thermal test cell that 

is carefully designed and fabricated in order to closely match the geometry and thermal transport 

properties of a 26650 Li-ion cell. Fabrication and measurements on such thermal test cells have 

been described in recent papers [11, 21, 22]. In short, the thermal test cell comprises a rolled, thin 

resistive 304 stainless steel foil placed inside a 26650 cell casing. Thermocouples are placed at 

different radii, including at the core and surface of the roll for temperature measurement. Heat is 

generated inside the cell by passing electrical current through the resistive metal foil. Temperature-

dependence of heat generation rate is implemented by monitoring the cell temperature through 

embedded thermocouples and changing the heating current in order to implement any desired Q(T) 

expression, as shown schematically in Figure 1(c).  

 

6-3-1. Experimental Setup 

Figure 1(b) shows a picture of the experimental setup, comprising the thermal test cell, T-
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type thermocouples, a NI-9213 data acquisition system (DAQ), Keithley 2401 power sources and 

LabView software running on a 64-bit computer. Figure 1(c) shows a schematic of the flow of 

information during the experiment.  

 Core temperature of the thermal test cell is measured in one second intervals by LabVIEW 

software through the NI-9213 DAQ. The heat generation rate to be imposed in the cell is 

determined using the measured temperature and the desired temperature dependence, Q(T). The 

amount of current needed for the heat generation rate is determined based on the electrical 

resistance of the metal foil, which is then supplied to the thermal test cell by the Keithley 2401 

power sources. Surface temperature of the thermal test cell is measured every one second. 

Experiments are repeated by changing the Q(T) expression implemented in the heat generation 

feedback loop for multiple values of Q0 and Ea.    

In addition to experiments described above, analysis of experimental data on 18650 cells 

reported in three past papers is also carried out. Section 4 shows that specific heat of the 18650 

cell is a critical parameter in these computations. As a result, experiments are carried out to 

independently measure the specific heat of an 18650 Li-ion cell.  

To do so, a completely discharged 18650 Li-ion cell is heated up to 45oC inside a BOEKEL 

incubator. Surface temperature of the cell is measured using Omega T-type thermocouples 

connected to a NI-9213 data acquisition system (DAQ) and controlled by LabView software. Once 

the cell reaches a steady temperature, it is placed inside a lab-grade 350ml vacuum flask containing 

150 grams of water at room temperature. It is ensured that the cell is completely submerged in 

water and the flask is sealed. Temperature of water is also monitored using a thermocouple. During 

the process, heat transfers from the cell to water due to temperature difference until they both reach 

the same temperature. Neglecting any minor heat losses from the flask to the ambient, a statement 
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of energy conservation can be written as follows 

 0,, =+ wwpwccpc TCmTCm  (13) 

Where m is mass, Cp is specific heat and ΔT is the total temperature change during the 

experiment. Subscripts c and w refer to the cell and water respectively. Since masses and 

temperatures are measured, therefore the specific heat of the cell can be determined from equation 

(13) based on the well-known specific heat of water.    

 

6-4. Results and discussion 

6-4-1. Numerical validation 

The analytical model presented in section 2 is first validated against numerical simulations. 

Figure 2 shows a comparison between the core temperature rise as a function of time predicted by 

the analytical model and a finite-element numerical simulation carried out in ANSYS-CFX. The 

boundary temperature used in this comparison is obtained from one of the experimental data on a 

thermal test cell illustrated in section 3. The values for Q0 and Ea in the heat generation expression 

for this comparison are 5×1022 Wm-3 and 1.3×105 Jmol-1 respectively. Figure 2 shows that the 

analytical model and finite-element simulations are in very good agreement throughout the entire 

time duration, with a worst-case deviation of only 3.1% between the two. This provides validation 

of the accuracy of the analytical model presented in section 2.  
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Figure 2. Core temperature rise of the thermal test cell as a function of time predicted by the 

analytical model (blue curve) and a finite-element numerical simulation carried out in ANSYS-

CFX (red curve). Values for Q0 and Ea for this comparison are 5×1022 Wm-3 and 1.3×105 Jmol-1 

respectively. 

6-4-2. Experimental validation 

Further validation is carried out by comparison with experimental data on a thermal test 

cell with known heat generation rate Q(T). Two sets of experiments are carried out. In the first set, 

the pre-exponential factor, Q0 is kept constant at 1044 Wm-3 while varying the activation energy Ea 

for heat generation in the thermal test cell through temperature-dependent heating current 

implemented by the LabVIEW controller. Figure 3(a) compares the core temperature rise as a 

function of time measured through experiments with the one predicted by the analytical model for 

different values of activation energy. Experimental data and analytical model are in very good 

agreement. It is seen that as the activation energy increases while keeping Q0 constant, there is 

reduction in temperature rise, and thermal runaway occurs much later in time. In each case, the 

experimental data are found to agree well with predictions from the analytical model. The worst-

case deviation between the two is found to be less than 1%. In addition to validating the analytical 
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model, these data also show that increase in the value of activation energy results in a decrease in 

the slope of temperature rise as a function of time, implying that as the activation energy increases, 

the temperature curve will eventually begin to reach a steady state and therefore not go in thermal 

runaway. Both experimental data and the analytical model from section 2 follow this trend. 

In the second set of experiments, Q0 is varied while holding Ea constant at 246.9 kJmol-1. 

Similar to the first set of experiments, there is very good agreement between experimental data 

and analytical model, as shown in Figure 3(b), with a worst-case deviation of 1.2%. These 

experiments demonstrate the accuracy of the theoretical model in section 2 for computing the core 

temperature of the cell undergoing temperature-dependent heat generation over a wide parameter 

space. 

 

 

  

Figure 3. Experimental validation of the analytical model. Core temperature rise as a function of 

time (a) for different values of activation energy Ea, while the pre exponential factor Q0 is kept 

constant at 1044 Wm-3; (b) for different values of pre-exponential constant Q0 while activation 

energy Ea is kept constant at 246.9 kJmol-1. Both experimental measurements and analytical 
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model are presented. Subplots show zoom-ins at the later stages of each experiment when the 

cell begins to enter thermal runaway. 

 

6-4-3. Components of the core temperature 

As outlined in section 2, the core temperature of the cell is computed as the sum of two 

different contributions, T1,core and T2,core that account for the effect of internal heat generation and 

outside surface temperature respectively. Under different experimental conditions, either of these 

two may dominate the overall core temperature. To illustrate this, Figures 4(a) and 4(b) plot the 

core temperature rise as a function of time, along with its two components T1,core and T2,core for two 

different scenarios.In the first case, the value of the activation energy is relatively small. In this 

case, as shown in Figure 4(a), the core temperature is dominated by contributions from the surface 

temperature component T2,core for the first 1500 seconds or so. Subsequently, however, as the 

temperature rises, internal heat generation becomes more and more important, and as shown in 

Figure 4(a), the contribution from T1,core begins to increase, and eventually dominate the core 

temperature computation, beyond 3500 seconds or so. In a different scenario, however, the core 

temperature could be dominated throughout by only one of the two components. This is illustrated 

in Figure 4(b), where the internal heat generation rate is so small that the surface temperature 

component T2,core dominates the overall core temperature throughout the duration. These insights 

into the dominance of one or the other component, or the switch from one to the other as time 

passes are critical in designing computational approaches for determining the core temperature. 

For example, knowing that one of the two components is not significant under certain conditions 

can be used to speed up core temperature computation by not computing that component at all.  
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Figure 4. Plots of the core temperature rise as a function of time, along with its two components 

T1,core and T2,core for (a) Q0 = 5×1022 Wm-3 and Ea = 1.1×105 Jmol-1; (b) Q0 = 5×1022 Wm-3 and Ea 

= 1.1×106 Jmol-1 . 

 

6-4-4. Prediction of the core temperature for past papers 

Several past papers have reported measurement of surface temperature of Li-ion cells 

during thermal runaway events caused by a variety of factors such as high ambient temperature 

during an oven test [10,12,13]. A key drawback of these papers is the lack of information on the 

true temperature at the core of the cell, which may be significantly different from the reported 

surface temperature data. The analytical model presented in section 2, and validated through 

comparison with experimental data in section 4.2 is used to determine the core temperature as a 

function of time and compare against surface temperature measurements reported by these papers. 

The primary interest here is to determine how much hotter the core is compared to the surface 

temperature during a thermal runaway event.In order to do so, it is first important to define the 

total heat generation during thermal runaway based on chemical reaction kinetics. Heat generation 

during thermal runaway has been well characterized in several past papers [8-10]. The total heat 

generation is the sum of heat generated due to multiple processes, including solid electrolyte 
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interface (SEI) decomposition, negative-solvent reaction, positive-solvent reaction and electrolyte 

decomposition. Each of these reactions begins at a specific temperature. Table 1 summarizes the 

governing equations for heat generation for each of these processes, as well as the respective 

starting temperature. In these equations, H, W and R refer to reaction specific heat release, material 

content and reaction rate, respectively. Further, m, Ea, A, c and α refer to order, activation energy, 

frequency factor and initial dimensionless content, respectively. Also, tSEI is the initial SEI 

thickness. Values for various kinetic and physical parameters in the equations in Table 1 have been 

taken from past papers [9, 10].  

Total heat generation within the cell during thermal runaway is the sum of all the heat 

generations due to the specified reactions and is given by 

 epeneseigen QQQQQ +++=  (14) 

Core temperature of an 18650 cell undergoing thermal runaway as reported by Lopez, et 

al. [10] is computed and compared against the reported surface temperature data. In this work, a 

Lithium-cobalt-oxide 18650 cell was subjected to a conventional oven test at 155 °C and surface 

temperature measurement using a thermocouple was reported. In order to determine the core 

temperature under these conditions, the reported surface temperature measurement is extracted, 

and used as the boundary condition for the mathematical model in section 2. 
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Table 1: Governing equations and parameters for heat generation rates of various 

processes responsible for thermal runaway. 
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Figure 5 shows a plot of the computed core temperature for another study by Golubkove, 

et al. [13]. In this work, an 18650 NMC (Li (Ni0.45 Mn0.45 Co0.10)O2 layered oxide cathode) Li-ion 

cell fixed inside a heater sleeve was placed inside a heatable reactor. The cell was initially at 25 

°C and heated through constant power Joule heating. Surface temperature of the cell, measured 

using thermocouples, is used to determine the core temperature using the analytical model in 

section 2. In the absence of significant internal heat generation for the first 4000 seconds, the core 

and surface temperatures remain very close to each other. In this study the temperature of the 

heater increases slowly which results in only a minor difference between the core and the surface 

temperature during the initial period. When the cell temperature becomes large enough, significant 

heat begins to be generated due to exothermic reactions, which results in sharp increase in the core 

temperature. The peak core temperature during thermal runaway is several hundred of degrees 

Celsius higher than the measured surface temperature. Once the external heating is stopped, both 

core and surface temperature begin to drop off, similar to the previous case.  

  

Figure 5. Plot of the computed core temperature compared to reported surface temperature [13] 

for a NMC 18650 cell undergoing an oven test. 
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Finally, the core temperature is also computed for thermal runaway of a LiMn2O4 Li-ion 

cell in an oven test [12]. In this case, the oven temperature is set to 240 °C throughout the 

experiment. The core temperature for this case, computed using the analytical model in section 2, 

as well as the reported surface temperature measurement [12] is plotted in Figure 6.  Similar to the 

previous case, this plot shows a significant difference in the computed core temperature and 

measured surface temperature. This shows the importance of determining the core temperature 

during thermal runaway events instead of relying only on surface temperature measurements, 

which may significantly under-predict the thermal state of the cell. During thermal runaway, the 

cell may be much hotter than reported by an external thermocouple, and this must be accounted 

for in design and run-time management of a thermal runaway situation. 

  

Figure 6.  Plot of the computed core temperature compared to reported surface temperature 

measurement for an 18650 LiMn2O4 Li-ion cell undergoing an oven test [12]. 
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As pointed out in section 2, the determination of the core temperature of the cell during 

thermal runaway requires information about heat generation parameters as well as thermal 

properties of the cell. Both of these data are easily available in past papers, where values of 

Arrhenius parameters of various processes during thermal runaway [7,8,10] as well as thermal 

properties of Li-ion cells [18,19] have been presented. 

 

 

 

6-5. Conclusions 

This work develops an analytical heat transfer model to determine the core temperature of 

a Li-ion cell undergoing thermal runaway based on surface temperature measurement. The 

technique is suitable for determining the core temperature as a function of time for a variety of 

experimental conditions where the surface temperature has been measured. Results show that the 

maximum core temperature during thermal runaway is several hundreds of degrees Celsius higher 

than the surface temperature. This demonstrates the critical importance of the core temperature of 

the cell during thermal runaway. The accuracy of the technique depends on chemical kinetics data 

during thermal runaway, as well as on thermophysical properties of the cell, particularly its specific 

heat. This work provides a new fundamental insight into the thermal behavior of Li-ion cells during 

thermal runaway, which is not possible through surface temperature measurement alone. It is 

expected that information about the core temperature of the cell during thermal runaway, 

determined by the technique described here may help improve the fundamental understanding of 

thermal runaway, as well as help design practical tools to predict the thermal state of the cell so 

that thermal runaway could be mitigated.   
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7-1. Introduction 

Superior electrochemical characteristics of Li-ion cells compared to other secondary 

batteries have made them the preferred energy storage and conversion devices in a wide variety of 

applications1-3. Higher power and energy density, longer cycle life and lower self-discharge rate 

are among the key advantages of Li-ion cells over competing technologies4-7. A wide variety of 

mathematical models have been developed to predict and optimize electrochemical transport in a 

Li-ion cell under different operating conditions8,9. Mathematical models for Li-ion cells can 

broadly be divided into two categories – empirical and electrochemical models10,11. Empirical 

models employ data analysis techniques to predict the future state of a Li-ion cell based on past 

experimental data12,13. Compared to electrochemical models, empirical models are relatively faster 

and simpler, but cannot be used to determine finer details of electrochemical properties and cell 

characteristics. Alternatively, electrochemical models are more detailed, physics-based models 

that solve reaction kinetics, mass and charge transport equations8,14,15. Among the available 

physics-based models for Li-ion cells, Pseudo-2D model (P2D) and Single Particle Model (SPM) 

are the most popular ones8. P2D model solves for diffusion of Li-ions in the liquid electrolyte 

phase, as well as diffusion of Li-ions in solid particles and charge transport in both liquid and solid 

phases8,10. Diffusion of Li-ions in electrolyte and electronic conduction in both the liquid and solid 

phase are considered to occur in the linear dimension, x, while the diffusion of Li-ions in solid 

phase, assumed to be a spherical particle is considered to be a function of radial dimension, r within 

the solid particle, as well as x. Although P2D model is robust and accurate, the large number of 

equations needed to be solved significantly increases computational time16. Some work has been 

presented in simplification of computation associated with the P2D model16,17. In contrast, the 

SPM is a simplified, one-dimensional P2D model that describes only the solid phase diffusion of 
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Li-ions in porous electrodes and neglects spatial variations in the electrolyte concentration and the 

potentials8,18,19. SPM is simple and computationally fast but limited to thin electrodes and 

applications with low discharge rates where the gradient in concentration of Li-ions in the liquid 

phase can be neglected and the porous electrode can be assumed to be a single particle16,20.  

Mathematical models summarized above often result in a set of coupled equations that are 

often non-linear. As a result, exact solutions for these mathematical models exist only for a few 

limited cases. For example, diffusion equation for a solid solution cathodes initially at zero 

concentration has been solved using Laplace transformation approach21. Separation of Variables 

(SOV) technique has been used to solve a similar model for discharging of a Li-ion cell for 

different limiting cases22. Analytical solution for 1-D transient diffusion in a thin film, spherical 

electrode particle and composite electrode under constant galvanostatic discharge boundary 

condition and zero initial concentration has been developed using an extended separation of 

variables method23,24. Laplace transformation technique has been used to solve material balance 

equation in both solid and solution phases with non-zero initial concentration25. This model 

considers the migration term in solution phase diffusion with a constant transference number25. 

Integral transform method has been used to solve material balance equation for different cathode 

geometries under galvanostatic discharge boundary conditions26. A Finite Integral Transform 

(FIT) method has been used to find an exact solution for the diffusion of Li/Li+ into a spherical 

particle for arbitrary initial and boundary conditions27. The method of Pseudo-Steady-State (PSS) 

is used to ensure convergence in this work27. Green’s function approach has been used to solve the 

material balance equation in solution phase of a thin film electrode under a constant galvanostatic 

discharge condition28.  
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In addition to the limited cases where an exact solution is possible, approximate analytical 

solutions have also been developed in order to reduce the complexity and required computational 

time. An example is the Parabolic Profile approximation (PP) method, in which the concentration 

profile in a spherical electrode particle is assumed to be a second, fourth, or sixth order 

polynomial29,30. Other approximate analytical methods include residue grouping technique which 

is based on the transcendental transfer function approach31, State Variable Model (SVM), which 

is a combination of analytical transfer functions and a numerical transfer matrix31,32, Electrode 

Averaged Model (EAM)33, Proper Orthogonal Decomposition (POD)34, Extended Single Particle 

Model (ESPM)35,36, etc. 

While most of the past analytical models focus on constant galvanostatic discharge 

conditions, there is a relative lack of work on time-dependent flux boundary conditions. For 

example, the diffusion problem in composite electrode has been solved for a constant boundary 

condition23. However, in some cases, time-dependent boundary conditions are also important since 

the applied current density may be time-dependent. While several past studies presented 

approximate solutions to such problems15,16,37,38, there is a relative lack of analytical solutions for 

this class of problems. The few analytical solutions has been presented for such problems are for 

the case of single-layer electrodes and not composite electrodes27. For instance, exact solutions for 

diffusion in a spherical single electrode particle has been presented using the finite integral 

transform method for time-dependent boundary conditions27. Green’s function is a powerful tool 

for solving such problems. While the use of Green’s functions in heat transfer problems is quite 

common39,40
, only limited work exists on the use of this tool for species diffusion problems in 

electrochemical systems28.       
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This work presents an exact analytical solution for Li-ion diffusion in thin film and 

spherical electrodes, as well as composite two-layer electrodes with arbitrary initial conditions and 

time-dependent flux boundary condition using Green’s function approach. The exact solution 

presented here is validated against both numerical simulations and previous studies. Concentration 

distribution for cases representative of realistic discharge conditions is predicted using the model. 

The mathematical tools developed in this work help understand species transport in a Li-ion cell, 

thereby contributing towards improved performance of electrochemical energy storage devices 

and systems. 

7-2. Mathematical Modeling 

7-2-1. Green’s function solution 

Greens’ function is a powerful mathematical tool which can be used to solve linear partial 

differential equations with multiple non-homogeneities in the governing equation, boundary 

conditions and initial condition39,40. While the method of separation of variables is not applicable 

to problems with time-dependent non-homogeneities, Green’s function approach can be used to 

solve a wide variety of such problems. Green’s function approach has been used for a wide variety 

of thermal conduction problems39,40. Since thermal and species diffusion are governed by similar 

conservation equations, Green’s function approach can also be used for solving species diffusion 

problems, such as those that appear in Li-ion cell electrodes. 

The general form of the solution to any 1-D diffusion problem in non-dimensional form 

using Green’s function approach is given by39:   
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𝑐(𝑥, 𝑡) = ∫𝐺(𝑥, 𝑡|𝑥′, 𝑡′)𝑡′=0𝐹(𝑥′)𝑥′𝑝𝑑𝑥′ + ∬𝐺(𝑥, 𝑡|𝑥′, 𝑡′) 𝑔(𝑥′, 𝑡′)𝑥′𝑝𝑑𝑥′𝑑𝑡′

+ ∑ {∫[𝑥′𝑝𝐺(𝑥, 𝑡|𝑥′, 𝑡′)]
𝑥=𝑥′𝑓𝑖(𝑡

′)𝑑𝑡′}

𝑁

𝑖=1

 

(1) 

Where 𝑥′𝑝 is the Sturm–Liouville weight function, and p=0, 1 and 2 for slabs, cylinders and 

spheres respectively.  Here, F(x) is the initial condition and g is the generation or consumption 

term. The summation is taken over all boundaries of the problem. G is the Green’s function that 

must be determined.  

The three terms on the right-hand side of equation (1) represent contributions of the initial 

concentration, generation or consumption, and boundary conditions respectively. In order to 

present the solution given by equation (1) for a specific problem, the Green’s function, 

𝐺(𝑥, 𝑡|𝑥′, 𝑡′) needs to be determined first. This is usually done by solving the corresponding 

homogeneous version of the problem. For any homogeneous problem, the second and third term 

in equation (1) will be zero. Therefore, a comparison between the solution to the homogeneous 

problem and the first term in equation (1) provides the Green’s function evaluated at 𝑡′ = 0, 

𝐺(𝑥, 𝑡|𝑥′, 𝑡′)𝑡′=0. The full Green’s function, 𝐺(𝑥, 𝑡|𝑥′, 𝑡′) is then determined by replacing t with 

(𝑡 − 𝑡′) in 𝐺(𝑥, 𝑡|𝑥′, 𝑡′)𝑡′=0.  

Analytical solutions for transient diffusion under a time-dependent flux condition using 

Green’s function approach are presented next. A number of progressively complicated cases are 

considered – a thin film electrode, a spherical particle electrode and composite electrodes, both 

Cartesian and spherical. Figures 1(a)-(d) show schematics of the thin film, spherical particle, two 
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layer and spherical composite electrodes respectively. Specific details for these cases are discussed 

in sub-sections below.  

  

Figure 1. Schematic of the four electrode geometries considered in this work: (a) Thin film 

electrode; (b) Spherical electrode particle; (c) Composite slab electrode; (d) Composite spherical 

electrode. 
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7-2-2. Thin film electrode 

Figure 1(a) shows a schematic of a one-dimensional thin film electrode initially at a non-

uniform concentration of F(x) and operating under a time-dependent flux boundary condition. 

Referring to the non-dimensionalization scheme presented in the Nomenclature section, the 

governing equation for concentration distribution can be written in non-dimensional form as 

follows:  

 𝜕2𝑐

𝜕𝑥2
=

𝜕𝑐

𝜕𝑡
 

(2) 

Associated boundary conditions at the two ends are  

 
(
𝜕𝑐

𝜕𝑥
)

𝑥=0
= 0 

at  𝑥 = 0 (3) 

 
(
𝜕𝑐

𝜕𝑥
)
𝑥=1

= 𝛿(𝑡) 
at 𝑥 = 1 (4) 

Equation (3) results from symmetry at x=0 and equation (4) represents the applied, time-dependent 

flux boundary condition at x=1, where δ(t) is the dimensionless current density. 

where δ is the dimensionless, time-dependent current density defined in the nomenclature section.  

The initial condition associated with this problems is:  

 𝑐 = 𝐹(𝑥) at  𝑡 = 0 (5) 
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As outlined in the previous sub-section, the first step to construct the Green’s function 

associated with this problem is to solve the corresponding homogeneous problem. The solution to 

the homogeneous problem can be determined using the Separation of Variables technique39 as 

follows:  

 
𝑐(𝑥, 𝑡) = ∫ 𝐹(𝑥′)𝑑𝑥′

1

0

+ ∫ ∑[2 cos(𝜆𝑛𝑥) cos(𝜆𝑛𝑥′)

∞

𝑛=1

1

0

exp⁡(−𝜆𝑛
2𝑡)]𝐹(𝑥′)𝑑𝑥′ 

(6) 

where 𝜆𝑛 = 𝑛𝜋 are the eigenvalues for n=1,2,3,…. A comparison between equations (1) and (6) 

indicates that the expression for Green’s function calculated for 𝑡′ = 0 can be written as follows:  

  

 

𝐺(𝑥, 𝑡|𝑥′, 𝑡′)𝑡′=0 = 1 + 2 ∑ cos(𝜆𝑛𝑥) cos(𝜆𝑛𝑥′)

∞

𝑛=1

exp⁡(−𝜆𝑛
2 𝑡) 

(7) 

Therefore, the general form of the Green’s function is obtained by replacing t with 𝑡 − 𝑡′ 

in equation (7): 

 
𝐺(𝑥, 𝑡|𝑥′, 𝑡′) = 1 + 2 ∑ cos(𝜆𝑛𝑥) cos(𝜆𝑛𝑥′)

∞

𝑛=1

exp⁡(−𝜆𝑛
2(𝑡 − 𝑡′)) 

(8) 

  Now that the Green’s function is determined, a solution for the problem defined in 

equations (2)-(5) can be constructed. The solution can be written as:  

 𝑐(𝑥, 𝑡) = 𝑐1(𝑥, 𝑡) + 𝑐2(𝑥, 𝑡) + 𝑐3(𝑥, 𝑡) (9) 

where  
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𝑐1(𝑥, 𝑡) = ∫ 𝐹(𝑥′)𝑑𝑥′

1

𝑥′=0

+ ∫ ∑[2 cos(𝜆𝑛𝑥) cos(𝜆𝑛𝑥′)

∞

𝑛=1

1

𝑥′=0

exp⁡(−𝜆𝑛
2𝑡)]𝐹(𝑥′)𝑑𝑥′ 

(10) 

 𝑐2(𝑥, 𝑡) = 0 (11) 

 
𝑐3(𝑥, 𝑡) = ∫ 𝛿(𝑡′)𝑑𝑡′

𝑡

𝑡′=0

+ 2 ∑ cos(𝜆𝑛𝑥) cos(𝜆𝑛)

∞

𝑛=1

∫ exp⁡(−𝜆𝑛
2(𝑡 − 𝑡′))𝛿(𝑡′)𝑑𝑡′

𝑡

𝑡′=0

 
(12) 

Note that the solution accounts for the time-dependent flux boundary condition in the 

expression for c3(x,t), given by equation (12). Further, since there is no non-homogeneity in 

equation (2), the second term of the Green’s function solution is zero. 

As a special case, if the initial concentration is constant, C0, the second term in equation 

(10) becomes zero, leading to further simplification.  

7-2-3. Spherical electrode particle  

Figure 1(b) shows a schematic of a one-dimensional spherical particle initially at a given 

concentration distribution F(r) and subject to time-dependent flux at its surface. The non-

dimensional governing equation for concentration distribution and boundary conditions can be 

written in non-dimensional form as follows:  

 1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑐

𝜕𝑟
) =

𝜕𝑐

𝜕𝑡
 

(13) 

where the initial and boundary conditions are 
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 𝑐 = 𝐹(𝑟) at  𝑡 = 0 (14) 

 𝑐 ⟹ 𝑓𝑖𝑛𝑖𝑡𝑒 as  𝑟 ⟶ 0 (15) 

 
(
𝜕𝑐

𝜕𝑟
)
𝑟=1

= 𝛿(𝑡) 
at 𝑟 = 1 (16) 

Similar to the thin film electrode problem, the homogeneous problem must be solved first. 

In order to do so, a new variable U is defined as 𝑈(𝑟, 𝑡) = 𝑟𝑐(𝑟, 𝑡), which facilitates a solution of 

the homogeneous problem using separation of variables method. The concentration profile can be 

derived to be:   

 
𝑐(𝑟, 𝑡) = 3∫ 𝑟′2𝐹(𝑟)𝑑𝑟′

1

0

+ ∫ ∑[
1

𝑁𝑛𝑟𝑟′
sin(𝜆𝑛𝑟)

∞

𝑛=1

1

0

sin(𝜆𝑛𝑟′) exp⁡(−𝜆𝑛
2 𝑡)𝑟′2𝐹(𝑟′)𝑑𝑟′ 

(17) 

where Nn is the norm defined as 𝑁𝑛 =
𝜆𝑛

2

2(𝜆𝑛
2+1)

, and the eigenvalues 𝜆𝑛 are positive roots of the 

transcendental equation 𝜆𝑛 cot 𝜆𝑛 = 1. 

Thus, comparing equation (17) with equation (1) and taking p=2 for the case of a sphere, 

the Green’s function calculated at 𝑡′ = 0 can be determined as follows:  

 
𝐺(𝑟, 𝑡|𝑟′, 𝑡′)𝑡′=0 = 3 + ∑

1

𝑁𝑛𝑟𝑟′
sin(𝜆𝑛𝑟)

∞

𝑛=1

sin(𝜆𝑛𝑟′) exp⁡(−𝜆𝑛
2𝑡) 

(18) 

The complete form of Green’s function can be obtained by obtained by replacing t with 

(𝑡 − 𝑡′) in equation (18). 
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𝐺(𝑟, 𝑡|𝑟′, 𝑡′) = 3 + ∑

1

𝑁𝑛𝑟𝑟′
sin(𝜆𝑛𝑟)

∞

𝑛=1

sin(𝜆𝑛𝑟′) exp⁡(−𝜆𝑛
2(𝑡 − 𝑡′)) 

(19) 

 Thus, based on equation (1), the concentration profile for the original problem can be 

written as:  

 𝑐(𝑟, 𝑡) = 𝑐1(𝑟, 𝑡) + 𝑐2(𝑟, 𝑡) + 𝑐3(𝑟, 𝑡) (20) 

where  

 
𝑐1(𝑟, 𝑡) = 3∫ 𝑟′2𝐹(𝑟′)𝑑𝑟′

1

𝑟′=0

+ ∫ ∑[
1

𝑁𝑛𝑟𝑟′
sin(𝜆𝑛𝑟)

∞

𝑛=1

1

0

sin(𝜆𝑛𝑟′) exp⁡(−𝜆𝑛
2𝑡)]𝑟′2𝐹(𝑟′)𝑑𝑟′ 

(21) 

 𝑐2(𝑟, 𝑡) = 0 (22) 

 
𝑐3(𝑟, 𝑡) = 3∫ 𝛿(𝑡′)𝑑𝑡′

𝑡

𝑡′=0

+
1

𝑟
∑

1

𝑁𝑛
sin(𝜆𝑛𝑟) sin(𝜆𝑛)

∞

𝑛=1

∫ exp⁡(−𝜆𝑛
2(𝑡 − 𝑡′))𝛿(𝑡′)𝑑𝑡′

𝑡

𝑡′=0

 
(23) 

Similar to the previous problem, the third component of the solution contains various 

integrals of the time-dependent flux boundary condition. Note that c2(x,t) becomes zero since there 

is no non-homogeneity in equation (13).  

7-2-4. Composite electrodes 

This section presents solutions for composite electrodes under time-dependent flux 

boundary condition. Section 2.3.1 presents the solution for a two-layer composite electrode in a 
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rectangular geometry while Section 2.3.2 presents the solution for a composite spherical electrode 

particle.  

Green’s function approach can be used to solve multilayer problems. While the general 

procedure is similar to single-layer problems discussed in sections 2.2 and 2.3, the derivation of 

the solution is somewhat more complicated. Green’s function solution for an M-layer problem 

involving non-homogeneities in the governing equation and boundary conditions can be written 

as39: 

 

𝑐(𝑥, 𝑡) = ∑∫ 𝐺𝑖𝑗(𝑥, 𝑡|𝑥′, 𝑡′)𝑡′=0𝐹𝑗(𝑥′)𝑥′𝑝𝑑𝑥′
𝑥𝑗+1

𝑥′=𝑥𝑗

𝑀

𝑗=1

+ ∫ ∫ 𝐺𝑖𝑗(𝑥, 𝑡|𝑥′, 𝑡′)𝑔𝑗(𝑥
′, 𝑡′)𝑥′𝑝𝑑𝑥′𝑑𝑡′

𝑥𝑗+1

𝑥′=𝑥𝑗

𝑡

𝑡′=0

+ ∑ {∫ [𝑥′𝑝𝐺𝑖𝑗(𝑥, 𝑡|𝑥′, 𝑡′)]
𝑥=𝑥′𝑓𝑗𝑘(𝑡

′)𝑑𝑡′
𝑡

𝑡′=0

}

𝐾

𝑘=1

 

(24) 

where i=1,2,…,M and p=0, 1 and 2 for slabs, cylinders and spheres, respectively 

The composite Green’s function is defined as39:  

 
𝐺𝑖𝑗(𝑥, 𝑡|𝑥′, 𝑡′)𝑡′=0 = ∑

1

𝑁𝑛

∞

𝑛=1

Γ(𝑡)𝜓𝑖𝑛(𝑥)𝜓𝑗𝑛(𝑥′) 
(25) 

 
𝐺𝑖𝑗(𝑥, 𝑡|𝑥′, 𝑡′) = ∑

1

𝑁𝑛

∞

𝑛=1

Γ(𝑡 − 𝑡′)𝜓𝑖𝑛(𝑥)𝜓𝑗𝑛(𝑥′) 
(26) 
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where 𝑥′𝑝 is the Sturm–Liouville weight function. Nn is the norm, given by  

 

𝑁𝑛 = ∑∫ 𝑥′𝑝𝜓𝑗𝑛
2 (𝑥′)𝑑𝑥′

𝑥𝑗+1

𝑥′=𝑥𝑗

𝑀

𝑗=1

 

(27) 

where Г(t) and ѱ(x) can be found by solving the corresponding homogeneous problem, as 

discussed next.   

7-2-4-1. Two-layer composite electrode 

Figure 1(c) shows a two-layer composite electrode with an initial concentration distribution 

given by F1(x) and F2(x) in the two layers, respectively. The two layers have diffusion coefficient 

of D1 and D2, respectively. The goal is to find the concentration profile in the two regions. The 

governing equation, initial and boundary conditions can be written in non-dimensional form as 

follows:  

 𝜕2𝑐1

𝜕𝑥2
=

1

α

𝜕𝑐1

𝜕𝑡
 

 0 < 𝑥 < 𝑙 (28) 

 𝜕2𝑐2

𝜕𝑥2
=

𝜕𝑐2

𝜕𝑡
 

 𝑙 < 𝑥 < 1 (29) 

Subject to the following boundary conditions 

  
(
𝜕𝑐1

𝜕𝑥
)
𝑥=0

= 0 
at  𝑥 = 0 (30) 
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 𝑐1 = 𝑐2 at 𝑥 = 𝑙 (31) 

 
α (

𝜕𝑐1

𝜕𝑥
)
𝑥=𝑙

= (
𝜕𝑐2

𝜕𝑥
)
𝑥=𝑙

 
at 𝑥 = 𝑙 (32) 

 
(
𝜕𝑐2

𝜕𝑥
)
𝑥=1

= 𝛿(𝑡) 
at 𝑥 = 1 (33) 

Equation (30) arises from symmetry at x=0. Equations (31) and (32) are interfacial conditions 

representing species continuity and conservation of flux, respectively. Equation (33) is the applied 

time-dependent boundary condition.  

The initial condition is 

 𝑐1 = 𝐹1(𝑥) at  𝑡 = 0 (34) 

 𝑐2 = 𝐹2(𝑥) at  𝑡 = 0 (35) 

where F1 and F2 are the non-dimensional initial conditions.  

Note the presence of additional non-dimensional parameters in this problem due to the 

presence of two layers that, in general, may have different thicknesses and diffusion coefficients. 

This problem is considerably more complicated than the ones discussed in previous two 

sub-sections. However, the same concept of developing a Green’s function solution can be applied, 

starting with derivation of a solution of the corresponding homogeneous problem. Similar to the 

separation of variables method for single-layer problems, the solution can be written as  
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 𝑐𝑖(𝑥, 𝑡) = 𝜓𝑖(𝑥)Γ(𝑡)  (36) 

Where i=1, 2.  

Substituting equation (36) back into the governing equations results in two separate 

differential equations which can be solved for time-dependent and space-dependent components 

of equation (36) as follows: 

 Γ𝑛(𝑡) = exp⁡(−𝜆𝑛
2 𝑡) (37) 

  
𝜓1𝑛(𝑥) = 𝐴1𝑛 sin (

𝜆𝑛𝑥

√α
) + 𝐵1𝑛 cos (

𝜆𝑛𝑥

√α
) 

(38) 

 𝜓2𝑛(𝑥) = 𝐴2𝑛 sin(𝜆𝑛𝑥) + 𝐵2𝑛 cos(𝜆𝑛𝑥) (39) 

Note that the non-dimensional parameter α is absorbed in the solution of one of the layers. 

Applying boundary conditions results in a set of equations for the unknown coefficients Ain and 

Bin written in matrix form as follows:  

[
 
 
 
 
 
 
1 0 0 0

0 cos
𝜆𝑛𝑙

√α
− sin 𝜆𝑛𝑙 − cos 𝜆𝑛𝑙

0 √𝛼 sin
𝜆𝑛𝑙

√α
cos 𝜆𝑛𝑙 − sin 𝜆𝑛𝑙

0 0 cos 𝜆𝑛 −sin 𝜆𝑛 ]
 
 
 
 
 
 

[

𝐴1𝑛

𝐵1𝑛

𝐴2𝑛

𝐵2𝑛

] = [

0
0
0
0

] 

(40) 
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In order to determine the eigenvalues, λn, equations (40) may be required to result in a 

nontrivial solution. This implies that the determinant of the matrix in equation (40) must be equal 

to zero, thereby resulting in a transcendental equation for the eigenvalues as follows: 

tan(𝜆𝑛𝑙 − 𝜆𝑛) − √𝛼 tan(𝜆𝑛) = 0 (41) 

Without loss of generality, any one of the non-vanishing coefficients in equation (44) may 

be set to unity. In this case, B1n is chosen to be equal to 1.  Consequently, the coefficients, Ain and 

Bin, are determined to be  

𝐴1𝑛 = 0 (42) 

𝐵1𝑛 = 1 (43) 

𝐴2𝑛 = cos
𝜆𝑛𝑙

√α
sin 𝜆𝑛𝑙 − √𝛼 sin

𝜆𝑛𝑙

√α
cos 𝜆𝑛𝑙 

(44) 

𝐵2𝑛 = cos
𝜆𝑛𝑙

√α
cos 𝜆𝑛𝑙 + √𝛼 sin

𝜆𝑛𝑙

√α
sin 𝜆𝑛𝑙 

(45) 

With these values, all the information is available to construct Green’s functions based on 

equations (25) and (26). The concentration profile in each layer is found to be  
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𝑐1(𝑥, 𝑡) = ∑ ∫
1

𝑁𝑛

𝑥′=𝑙

𝑥′=0

exp(−𝜆𝑛
2 𝑡) cos (

𝜆𝑛𝑥

√α
) cos (

𝜆𝑛𝑥′

√α
)𝐹1(𝑥

′)𝑑𝑥′

∞

𝑛=0

+ ∫
1

𝑁𝑛

𝑥′=1

𝑥′=𝑙

exp(−𝜆𝑛
2 𝑡) cos (

𝜆𝑛𝑥

√α
) (𝐴2𝑛 sin(𝜆𝑛𝑥′) + 𝐵2𝑛 cos(𝜆𝑛𝑥′))𝐹2(𝑥

′)𝑑𝑥′

+ ∫
1

𝑁𝑛

𝑡′=𝑡

𝑡′=0

exp(−𝜆𝑛
2(𝑡 − 𝑡′)) cos (

𝜆𝑛𝑥

√α
) (𝐴2𝑛 sin(𝜆𝑛) + 𝐵2𝑛 cos(𝜆𝑛))𝛿(𝑡′)𝑑𝑡′ 

(46) 

𝑐2(𝑥, 𝑡) = ∑ ∫
1

𝑁𝑛

𝑥′=𝑙

𝑥′=0

exp(−𝜆𝑛
2𝑡) (𝐴2𝑛 sin(𝜆𝑛𝑥) + 𝐵2𝑛 cos(𝜆𝑛𝑥)) cos (

𝜆𝑛𝑥′

√α
)𝐹1(𝑥

′)𝑑𝑥′

∞

𝑛=0

+ ∫
1

𝑁𝑛

𝑥′=1

𝑥′=𝑙

exp(−𝜆𝑛
2 𝑡) (𝐴2𝑛 sin(𝜆𝑛𝑥) + 𝐵2𝑛 cos(𝜆𝑛𝑥))(𝐴2𝑛 sin(𝜆𝑛𝑥′)

+ 𝐵2𝑛 cos(𝜆𝑛𝑥′))𝐹2(𝑥
′)𝑑𝑥′

+ ∫
1

𝑁𝑛

𝑡′=𝑡

𝑡′=0

exp(−𝜆𝑛
2(𝑡 − 𝑡′)) (𝐴2𝑛 sin(𝜆𝑛𝑥) + 𝐵2𝑛 cos(𝜆𝑛𝑥))(𝐴2𝑛 sin(𝜆𝑛)

+ 𝐵2𝑛 cos(𝜆𝑛))𝛿(𝑡′)𝑑𝑡′ 

(47) 

Where A2n and B2n are shown in equations (44) and (45) and Nn is defined in equation (27).Note 

that the zeroth terms of equations (46) and (47) can be calculated by finding the limits of these 

equations as λ→0. In a special case of zero initial concentration in both layers and constant flux, 

the solution can be written as follows:  

𝑐1(𝑥, 𝑡) = 𝛿 ∙ 𝑡 + ∑ ∫
1

𝑁𝑛

𝑡′=𝑡

𝑡′=0

exp(−𝜆𝑛
2(𝑡 − 𝑡′)) cos (

𝜆𝑛𝑥

√α
) (𝐴2𝑛 sin(𝜆𝑛) + 𝐵2𝑛 cos(𝜆𝑛))𝛿(𝑡′)𝑑𝑡′

∞

𝑛=1

 
(48) 
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𝑐2(𝑥, 𝑡) = 𝛿 ∙ 𝑡

+ ∑ ∫
1

𝑁𝑛

𝑡′=𝑡

𝑡′=0

exp(−𝜆𝑛
2(𝑡 − 𝑡′)) (𝐴2𝑛 sin(𝜆𝑛𝑥) + 𝐵2𝑛 cos(𝜆𝑛𝑥))(𝐴2𝑛 sin(𝜆𝑛)

∞

𝑛=1

+ 𝐵2𝑛 cos(𝜆𝑛))𝛿(𝑡′)𝑑𝑡′ 

(49) 

Diffusion in a two-layer spherical composite electrode is analyzed next.      

7-2-4-2. Spherical composite electrode 

Figure 1(d) presents a schematic of a composite spherical electrode. Similar to the previous 

sub-section, the initial concentration in the two layers is assumed to be F1(r) and F2(r), 

respectively. A time-varying, inward flux 𝛿(𝑡) is assumed at the outer surface. In this case, the 

governing equation, initial and boundary conditions can be written as follows:  

 1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑐

𝜕𝑟
) =

1

𝛼

𝜕𝑐1

𝜕𝑡
 

 0 < 𝑥 < 𝑏 (50) 

 1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑐

𝜕𝑟
) =

𝜕𝑐2

𝜕𝑡
 

 𝑏 < 𝑥 < 1 (51) 

Subject to the following boundary conditions 

 𝑐 ⟹ 𝑓𝑖𝑛𝑖𝑡𝑒 as  𝑟 ⟶ 0 (52) 

 𝑐1 = 𝑐2 at 𝑟 = 𝑙 (53) 
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α (

𝜕𝑐1

𝜕𝑟
)
𝑟=𝑏

= (
𝜕𝑐2

𝜕𝑟
)
𝑟=𝑏

 
at 𝑟 = 𝑙 (54) 

 
(
𝜕𝑐2

𝜕𝑟
)
𝑟=1

= 𝛿(𝑡) 
at 𝑟 = 1 (55) 

and the initial conditions  

 𝑐1 = 𝐹1(𝑟) at  𝑡 = 0 (56) 

 𝑐2 = 𝐹2(𝑟) at  𝑡 = 0 (57) 

 Here, equations (53) an (54) represent species continuity and flux conservation, 

respectively, at the interface. 

Similar to the single spherical particle problem, a new variable U is defined as 𝑈(𝑟, 𝑡) =

𝑟𝑐(𝑟, 𝑡), to facilitate the derivation. After re-writing the governing equations and boundary 

conditions based on the new variable, U, and employing the separation of variables technique, the 

solution to the homogeneous problem can be written as:  

 𝑐𝑖(𝑥, 𝑡) = 𝑟𝜓𝑖(𝑟)Γ(𝑡)  (58) 

 Γ𝑛(𝑡) = exp⁡(−𝜆𝑛
2 𝑡) (59) 

  
𝜓1𝑛(𝑟) = 𝐴1𝑛 sin (

𝜆𝑛𝑟

√α
) + 𝐵1𝑛 cos (

𝜆𝑛𝑟

√α
) 

(60) 
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 𝜓2𝑛(𝑟) = 𝐴2𝑛 sin(𝜆𝑛𝑟) + 𝐵2𝑛 cos 𝜆𝑛𝑟 (61) 

Substituting equations (60) and (61) back into the boundary conditions results in the 

following equations in matrix form   

[
 
 
 
 
 
 sin

𝜆𝑛𝑙

√α
0 − sin 𝜆𝑛𝑙 − cos 𝜆𝑛𝑙

1 0 0 0

α (
𝜆𝑛𝑙

√α
cos

𝜆𝑛𝑙

√α
− sin

𝜆𝑛𝑙

√α
) 0 sin 𝜆𝑛𝑙 − 𝜆𝑛𝑙 cos 𝜆𝑛𝑙 cos 𝜆𝑛𝑙 + 𝜆𝑛𝑙 sin 𝜆𝑛𝑙

0 0 𝜆𝑛 cos 𝜆𝑛 − sin 𝜆𝑛 𝜆𝑛 sin 𝜆𝑛 + cos 𝜆𝑛 ]
 
 
 
 
 
 

[

𝐴1𝑛

𝐵1𝑛

𝐴2𝑛

𝐵2𝑛

] = [

0
0
0
0

] 

(62) 

Similar to the previous section, one of the non-zero coefficients, A1n is set to a value of 1. 

Therefore, the coefficients, Ain and Bin, are determined to be 

𝐴1𝑛 = 1 (63) 

𝐵1𝑛 = 0 (64) 

𝐴2𝑛 = sin
𝜆𝑛𝑙

√α
(cos 𝜆𝑛𝑙 +𝜆𝑛𝑙⁡sin 𝜆𝑛𝑙) − 𝛼 cos 𝜆𝑛𝑙 (sin

𝜆𝑛𝑙

√α
−

𝜆𝑛𝑙

√α
cos

𝜆𝑛𝑙

√α
) 

(65) 

𝐵2𝑛 = 𝛼 sin 𝜆𝑛𝑙 (sin
𝜆𝑛𝑙

√α
−

𝜆𝑛𝑙

√α
cos

𝜆𝑛𝑙

√α
) − sin

𝜆𝑛𝑙

√α
(sin 𝜆𝑛𝑙 − 𝜆𝑛𝑙 cos 𝜆𝑛𝑙) 

(66) 

Based on the requirement of non-trivial solution of equation (62), the eigenvalues, λn are 

determined to be given by the roots of the following transcendental equation 
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tan
𝜆𝑛𝑙

√α
tan(𝜆𝑛𝑙 − 𝜆𝑛)(𝛼 − 1 − 𝜆𝑛

2 𝑙) + tan
𝜆𝑛𝑙

√α
(𝜆𝑛𝑙 − 𝜆𝑛 + 𝛼𝜆𝑛) − 𝛼

𝜆𝑛𝑙

√α
tan(𝜆𝑛𝑙 − 𝜆𝑛)

− 𝛼
𝜆𝑛

2 𝑙

√α
= 0 

(67) 

Based on these expressions for the coefficients, the concentration profile can be determined 

in both spherical regions from the following equations:  

𝑐1(𝑥, 𝑡) = ∑ ∫
𝑟′1

𝑟𝑁𝑛

𝑟′=𝑙

𝑟=0

exp(−𝜆𝑛
2𝑡) sin (

𝜆𝑛𝑟

√α
) sin (

𝜆𝑛𝑟′

√α
)𝐹1(𝑟

′)𝑑𝑥′

∞

𝑛=0

+ ∫
𝑟′

𝑟𝑁𝑛

𝑟′=1

𝑟′=𝑙

exp(−𝜆𝑛
2𝑡) sin (

𝜆𝑛𝑟

√α
) (𝐴2𝑛 sin(𝜆𝑛𝑟′) + 𝐵2𝑛 cos(𝜆𝑛𝑟′))𝐹2(𝑟′)𝑑𝑥′

+ ∫
𝑙

𝑟𝑁𝑛

𝑡′=𝑡

𝑡′=0

exp(−𝜆𝑛
2(𝑡 − 𝑡′)) sin (

𝜆𝑛𝑟

√α
) (𝐴2𝑛 sin(𝜆𝑛) + 𝐵2𝑛 cos(𝜆𝑛))𝛿(𝑡′)𝑑𝑡′ 

(68) 

𝑐2(𝑥, 𝑡) = ∑ ∫
𝑟′

𝑟𝑁𝑛

𝑟′=𝑙

𝑟′=0

exp(−𝜆𝑛
2𝑡) (𝐴2𝑛 sin(𝜆𝑛𝑟) + 𝐵2𝑛 cos(𝜆𝑛𝑟)) sin (

𝜆𝑛𝑟′

√α
)𝐹1(𝑟

′)𝑑𝑥′

∞

𝑛=0

+ ∫
𝑟′

𝑟𝑁𝑛

𝑟′=1

𝑟′=𝑙

exp(−𝜆𝑛
2𝑡) (𝐴2𝑛 sin(𝜆𝑛𝑟) + 𝐵2𝑛 cos(𝜆𝑛𝑟))(𝐴2𝑛 sin(𝜆𝑛𝑟′)

+ 𝐵2𝑛 cos(𝜆𝑛𝑟′))𝐹2(𝑟
′)𝑑𝑟′

+ ∫
𝑙

𝑟𝑁𝑛

𝑡′=𝑡

𝑡′=0

exp(−𝜆𝑛
2(𝑡 − 𝑡′)) (𝐴2𝑛 sin(𝜆𝑛𝑟) + 𝐵2𝑛 cos(𝜆𝑛𝑟))(𝐴2𝑛 sin(𝜆𝑛)

+ 𝐵2𝑛 cos(𝜆𝑛))𝛿(𝑡′)𝑑𝑡′ 

(69) 
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Note that the zeroth terms of equations (68) and (69) can be calculated by finding the limits 

of these equations as λ→0. Moreover, in order to calculate the concentration at r=0, one must 

calculate the limit when r→0. In a simple case of zero concentration in both layers and constant 

flux, the solution can be written as follows:  

𝑐1(𝑥, 𝑡) = 3𝛿 ∙ 𝑡 + ∑ ∫
𝑙

𝑟𝑁𝑛

𝑡′=𝑡

𝑡′=0

exp(−𝜆𝑛
2(𝑡 − 𝑡′)) sin (

𝜆𝑛𝑟

√α
) (𝐴2𝑛 sin(𝜆𝑛) + 𝐵2𝑛 cos(𝜆𝑛))𝛿(𝑡′)𝑑𝑡′

∞

𝑛=0

 
(70) 

𝑐2(𝑥, 𝑡) = 3𝛿 ∙ 𝑡

+ ∑ ∫
𝑙

𝑟𝑁𝑛

𝑡′=𝑡

𝑡′=0

exp(−𝜆𝑛
2(𝑡 − 𝑡′)) (𝐴2𝑛 sin(𝜆𝑛𝑟) + 𝐵2𝑛 cos(𝜆𝑛𝑟))(𝐴2𝑛 sin(𝜆𝑛)

∞

𝑛=0

+ 𝐵2𝑛 cos(𝜆𝑛))𝛿(𝑡′)𝑑𝑡′ 

(71) 

7-3. Results and Discussion 

7-3-1. Model validation 

Validation of the Green’s function based models presented in Section 2 is carried out by 

comparison with past studies and numerical computation. This comparison is discussed in sub-

sections 3.1.1 and 3.1.2, respectively, below.   

7-3-1-1. Validation against past studies 

Concentration profiles predicted by the Green’s function based models are compared 

against past studies by Subramanian & White23 and Guo & White37. While Subramanian & White23 

used the method of separation of variables for composite electrodes under a constant galvanostatic 

boundary condition, Guo & White37 used an approximate analytical solution for spherical electrode 



165 
 

particle under both constant and a time-dependent flux boundary conditions. For comparison with 

Subramanian & White23, the cases of constant galvanostatic discharge boundary condition for both 

thin film composite electrodes and composite spherical electrode particle are considered. The 

dimensionless current density, δ, and ratio of diffusion coefficients, α, are taken to be 1 and 0.25, 

respectively, consistent with Subramanian & White23. Thicknesses of both layers are considered 

to be equal. Figure 2(a) plots the concentration profile determined by the present model and 

previous work23 for a composite slab. Similar comparison is presented in Figure 2(b) for a 

composite spherical electrode. In both cases, results show very good agreement between the 

present model and past studies across the entire electrode and at multiple times. In order to further 

validate the Green’s function model, a study by Guo & White37 is used for comparison. This paper 

presented an approximate analytical solution for solid-phase diffusion in a spherical particle under 

constant and time-dependent flux boundary condition. Values of various parameters are taken to 

be consistent with the previous work. Figure 3 presents a plot of concentration as a function of 

time at the surface of the electrode for a constant dimensionless current density of δ=0.2. Very 

good agreement between the present work and past work is seen. 

 

Figure 2. Validation against past study23 for composite two-layer electrodes: Non-dimensional 

concentration as a function of non-dimensional distance, x and r, at multiple times for (a) A 
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composite slab electrode, (b) A composite spherical electrode. Both cases are for discharge, with 

δ=-1. 

 

Figure 3. Validation against past study37 for a spherical particle electrode: Non-dimensional 

concentration as a function of non-dimensional time at the particle’s surface for a constant 

flux δ=0.2. 

 

7-3-1-2 Validation against numerical simulations 

Further validation is carried out by comparison with a finite difference based calculation 

for solid-phase diffusion in thin film, spherical particle, composite slab and composite spherical 

electrodes. In order to do so, a finite difference method is used. The governing equations and 

boundary conditions are discretized using an implicit approach. 1000 and 2000 nodes are used for 

single layer and double layer electrodes, respectively. A time-step of 1 second is used for the 

numerical solution. Mesh and time-step sensitivity study is carried out in order to ensure that the 

results are independent of these variables. Figures (4)–(7) present comparisons between the 

Green’s function solution and numerical solution.  
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Figure 4. Validation against numerical model for a linear flux boundary condition, δ(t)=A+B∙t in 

a thin film electrode: (a) Non-dimensional concentration as a function of non-dimensional time 

at the electrode’s surface for A=-1 and multiple values of slope, B, (b) Non-dimensional 

concentration as function of non-dimensional distance, x, for A=-1 and B=-0.05 at multiple times. 

 

Figure 4(a) plots concentration as a function of time for a linear time-dependent current 

density at the electrode’s surface, δ(t)=A+B∙t for a thin film electrode for both analytical and 

numerical models. The concentration profile is plotted for a constant value of A and multiple values 

of slope, B. Very good agreement is seen for each case. Figure 4(b) plots the concentration as a 

function of distance, x, at multiple times for a linear current density, δ(t)=A+B∙t, where A=-1 and 

B=-0.05. Note that the negative signs are due the discharge boundary condition.  
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Figure 4. Validation against numerical model for a linear flux boundary condition, δ(t)=A+B∙t in 

a thin film electrode: (a) Non-dimensional concentration as a function of non-dimensional time 

at the electrode’s surface for A=-1 and multiple values of slope, B, (b) Non-dimensional 

concentration as function of non-dimensional distance, x, for A=-1 and B=-0.05 at multiple times. 

 

Similarly, for the same linear boundary condition, Figures 5(a) and 5(b) plot the 

concentration as a function of time and distance for spherical electrode particle. Results show very 

good agreement between the two models.  

 

Figure 5. Validation against numerical model for a linear flux boundary condition, δ(t)=A+B∙t in 

a spherical electrode particle: (a) Non-dimensional concentration as a function of non-

dimensional time at the electrode’s surface for A=-1 and multiple values of slope, B, (b) Non-
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dimensional concentration as function of non-dimensional distance, r, for A=-1 and B=-0.05 at 

multiple times. 

Similar plots are shown in Figures 6 and 7 for composite slab and spherical electrodes. The 

length of each layer in these composite electrodes are considered to be equal i.e. l=0.5 and the 

ration of diffusion coefficient, α is considered to be 0.25. A linear dimensionless current density, 

δ(t)= A+B∙t, is used as the boundary condition for both geometries.  

 

Figure 6. Validation against numerical model for a linear flux boundary condition, δ(t)=A+B∙t in 

a composite slab electrode: (a) Non-dimensional concentration as a function of non-dimensional 

time at the electrode’s surface for A=-1 and multiple values of slope, B, (b) Non-dimensional 

concentration as function of non-dimensional distance, x, for A=-1 and B=-0.05 at multiple times. 

 

Figure 6(a) plots the concentration as a function of time at the electrodes surface for 

different values of slope, B for a composite slab electrode for both numerical and analytical 

models. Figure 6(b) plots the concentration as a function of distance at multiple times for the same 

case. Similarly, Figures 7(a) and 7(b) plot concentration as a function of time at the electrode’s 

surface and distance respectively for a composite spherical electrode for both numerical and 

analytical models. All plots show very good agreement between the analytical model and 
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numerical simulation, thereby providing further validation in addition to the comparison with past 

studies.   

7-3-2. Application of the model 

Following validation, the Green’s function based model is used for analyzing a number of 

realistic problems involving time-dependent current density functions. Specifically, two different 

types of time-dependent flux boundary conditions are considered – sinusoidal and step functions. 

The first category not only covers periodic functions but also any arbitrary function since any 

function can be written as a series summation of sinusoidal functions with different frequencies.  

Step functions can be used to address problems with sudden changes in C-rate during cyclic charge 

and discharge processes in Li-ion cells.  

Figures 8(a) and 8(b) present plots for a non-dimensional time-dependent sinusoidal current 

density δ=1+Sin(ωt) with two different frequencies. Figure 8(a) plots concentration as a function 

of time at the surface of a spherical particle for ω=100, whereas Figure 8(b) presents a similar plot 

for ω=1000. As expected, the concentration profile goes up and down with time at the expected 

frequency based on the value of ω. Figures 8(a) and 8(b) also present the results from a previous 

study Guo & White37 which used an approximate solution for diffusion in spherical electrode 

particle under time-dependent boundary conditions. As seen from the figures, there is very good 

agreement between the present work and past paper37, with a worst-case deviation of 1.1% and 1% 

for data presented in Figures 8(a) and 8(b), respectively. 
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Figure 8. Non-dimensional concentration as a function of non-dimensional time at the surface of 

a spherical particle with sinusoidally varying flux, δ(t)=1+sin(ωt) for: (a) ω=100; (b) ω=1000. 

For comparison, plots from a past paper37 are also shown. 

 

Figures 9(a) and 9(b) present spatial distributions of concentration for the same boundary 

conditions as Figures 8(a) and 8(b), respectively. Figure 9(a) and 9(b) plot concentration as a 

function of distance, r, at multiple times for ω=100 and ω=1000, respectively. As expected, the 

concentration is highest at the surface of the electrode since the flux is coming in at this location. 

Figure 9(a) shows that concentration increases rapidly between t=0 and t=0.02, corresponding to 

the time during which flux is high. Following that, the concentration close to the surface actually 

reduces for t=0.04 and t=0.06, beyond which, there is a sharp increase. This is consistent with flux 

as a function of time, as well as the surface concentration plot as a function of time shown in Figure 

8(a). The corresponding concentration distribution plots for ω=1000 are, in comparison, 

monotonic, due to the larger frequency.  
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Figure 9. Non-dimensional concentration as a function of non-dimensional distance, r, at 

multiple times at the surface of a spherical particle with sinusoidally varying flux, 

δ(t)=1+sin(ωt) for: (a) ω=100; (b) ω=1000. 

     

Figure 10 presents results for a discharge process with sinusoidal current density, 𝛿(𝑡) =

𝐴(1 + sin𝜔𝑡) for multiple values of frequency, ω. Surface concentration is plotted as a function 

of time for a thin film electrode and a spherical electrode particle in Figures 10(a) and 10(b), 

respectively. In both cases, the predicted concentration plot is consistent with the periodic nature 

of the forcing function. As expected, the concentration profile oscillates at the same frequency as 

the imposed current density, whereas the overall rate of reduction in the concentration is nearly 

the same for all cases.  
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Figure 10. Practical application of the model in predicting concentration profile for periodic flux 

boundary condition, δ(t)= A(1+sin(ωt)): Non-dimensional concentration as a function of non-

dimensional time at the electrode’s surface for A= -1 and multiple values of frequency, ω, for (a) 

a composite slab electrode (b) a composite spherical electrode. 

 

Figure 11 presents plots for a scenario where the current density changes with time as a 

step function. This may be relevant where the C-rate of the cell changes due to changes in the 

external circuit, such as when an electric vehicle suddenly brakes or accelerates. Another practical 

scenario of relevance may be the cyclic charge and discharge of a Li-ion cell where the current 

density switches directions between charge and discharge periods. Two specific cases are 

considered. In the first case, the current density changes from a negative value of δ=-1 at t=0.025 

to a positive value of δ=0.5, and then becomes negative (δ=-1.5) again at t=0.05. Figure 10(a) plots 

concentration as a function of time at the electrode’s surface in a thin film electrode for this case. 

The current density is plotted as a function of time in the inset. Figure 10 shows that the 

concentration reduces during the discharge period, then increases rapidly during charge, and 

finally follows a downward trend again during the third phase of the process. The computational 

time associated with the calculations for Figure 10 is relatively small (less than 30s on a 3.30 GHz 
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desktop computer with 8 GB RAM), since the eigenvalues depend only on the geometry and 

diffusivity, and need to be calculated only one time. Once the eigenvalues are calculated, they can 

be used to calculate the concentration profile under any types of boundary conditions. Therefore, 

the Green’s function based model can be used for rapidly analyzing complicated, realistic 

charge/discharge scenarios. Figure 11(b) plots the concentration profile as a function of time for a 

spherical electrode particle with a step-change current density. In this case, the current density 

function is a three-step function with values of δ=-0.5, -1 and -1.5, as shown in the inset of Figure 

11(b). This scenario may occur in applications with sudden changes in discharge rate. Figure 11(b) 

shows, as expected, a gradual reduction in concentration due to the negative current density. As 

the discharge current density increases in magnitude, concentration reduces more and more 

rapidly, as expected. 

 

Figure 11. Practical application of the model in predicting concentration profile for step-change 

flux boundary conditionsNon-dimensional concentration as a function of non-dimensional time 

at the electrode’s surface for (a) a charge-discharge process (b) a discharge process at different 

rates. 
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Figure 12 plots corresponding spatial concentration profiles at multiple times for the same 

parameters of step-function flux boundary condition as Figure 11. Figure 12(a) shows that the 

concentration reduces, then increases, and then reduces, consistent with the variation of the flux 

boundary condition over time. Concentration at r=1 is the highest at t=0.04, which is because 

t=0.04 lies in the region when the flux is positive. Concentration profiles in Figure 12(b) are 

similarly consistent with the corresponding variation of flux with time. 

 

Figure 12. Practical application of the model in predicting concentration profile for step-change 

flux boundary conditions: Non-dimensional concentration as a function of non-dimensional 

distance, x and r,  at multiple times at the electrode’s surface for (a) a charge-discharge process 

(b) a discharge process at different rates. 

 

7-4. Conclusions 

In this work, an exact solution is developed for solid-phase diffusion under a time-

dependent flux boundary condition using the Green’s function approach, which has been used 

widely in the past for solving thermal conduction problems. The method is first applied to a thin 

film electrode and a spherical electrode particle. The method is then extended to determine the 
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concentration profile in two-layer slab and spherical composite electrodes. The mathematical 

models agree well with previous studies for specific cases, as well as numerical simulations. The 

Green’s function-based model presented here is able to accurately predict the transient behavior 

during solid phase diffusion process relevant to a Li-ion cell. The Laplace transform approach used 

in previous studies provides separate expressions for short time and long solutions. The short time 

solution derived using Laplace transform, which is very useful for some applications such as high 

rates and short times may be calculated faster than the Green’s function solution presented here, 

since there is no separate expression for short time solution using this method. However, for 

complicated flux boundary conditions, inversion of the Laplace solution may be challenging, 

whereas the present approach offers a closed-form solution. The model presented here can be used 

to predict the concentration profile under realistic time-dependent boundary conditions that may 

appear in practical applications for electrochemical energy storage. 
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7-5. Nomenclature 

a Length of the inner layer from x=0 (m) 

b Length of the outer layer from x=0  (m) 

c non-dimensional concentration, (C-C0)/C0 

C0 initial concentration (mol m-3) 

C concentration (mol m-3) 

D diffusion coefficient (m2s-1) 

F(x) non-dimensional initial concentration  

i current (A)  

l ratio of the inner layer to the outer layer of the electrodes, l=a/b   

t non-dimensional time, t= Dτ/b2 

x non-dimensional lengthscale, x=X/b 

X lengthscale (m) 

R radius (m) 

r non-dimensional radius, r=R/b 

α non-dimensional diffusion coefficient α=D1/D2  

δ non-dimensional current density, δ=ib/nFDC0 

ε frequency (1/s) 

ω non-dimensional frequency, ω = ε b2/D 

τ time (s) 

λ eigenvalues 
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Chapter 8 
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8-1. Introduction 

Li-ion cells are an attractive candidate for electrochemical energy storage and conversion 

in electric vehicles (EVs) and power grids1. In such applications, managing the health and safety 

of Li-ion cells is very important, particularly for high power applications with significant demand 

variability. Battery Management Systems (BMS) using battery models of varying levels of 

complexity are commonly used to monitor and control the state of the cells, and to fulfill system 

design requirements2-4. The State of Charge (SoC) of a cell is one of the most important variables 

that needs to be estimated frequently by the BMS. SoC has been defined in several different ways, 

such as an indication of the fraction of energy left in the battery at a given time, or the ratio of the 

available capacity to the maximum capacity of the cell at a given time2,5. An accurate estimate of 

the SoC helps infer useful information about the vehicle range, remaining energy and health of the 

battery pack5,6. Unlike electric parameters such as voltage and current, SoC cannot be measured 

directly and other methods must be implemented to obtain an accurate estimate of SoC7. Due to 

the coupled and non-linear nature of the electrochemical phenomena that occurs in Li-ion cells, 

SoC estimation is always a challenging task5. While SoC estimation for constant current processes 

may be relatively easier, it is a much more complicated task under dynamic load conditions, as 

one would expect, for example, in an electric vehicle. 

A variety of techniques have been proposed in the literature to evaluate SoC of Li-ion cells. 

State of charge estimation techniques can be broadly divided into the categories of non-model 

based techniques, data-driven (machine learning) approaches and model-based techniques5,8,9.   

One example of non-model based techniques is the open-circuit voltage (OCV) method that uses 

a look-up table based on a monotonic relationship between state of charge and open-circuit 

voltage10. This method is not suitable for SoC estimation in electric vehicles since an accurate real-
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time measurement of OCV is not straightforward5,11.  Also, the flat nature of OCV behavior of 

certain cathode chemistries used in Li-ion batteries, such as Lithium Iron Phosphate makes it 

unsuitable to accurately estimate the SoC at all times. In the Ampere-hour integral method, also 

known as the Coulomb counting method, SoC is estimated by integrating the current over time8,12. 

This method can be fairly accurate as long as the initial SoC, cell maximum capacity and electric 

current are precisely known5,13. However, any inaccuracy in the initial SoC along with noise in the 

current measurements can significantly affect the accuracy of the SoC prediction.  

Data-driven methods use large sets of experimental data obtained under different operating 

conditions to build a pattern and demonstrate a relationship – often non-linear – between different 

input and output variables5,14.  Fuzzy logic15, autoregressive moving average (ARMA)16, artificial 

neural network (ANN)17 and support vector machine (SVM)18 are key data-driven methods14. 

Data-driven methods are often computationally expensive, and the accuracy depends strongly on 

the size and quality of the statistical population. 

Model-based methods can be broadly divided into equivalent circuit models (ECMs) and 

electrochemical models. ECM uses a circuit network comprising of capacitors, resistors and other 

electrical circuit components to simulate battery behavior5,19. Compared to electrochemical 

models, ECMs are simpler and faster, but do not provide insights on electrochemical processes 

occurring inside the cell2. Estimation algorithms such as Kalman filter20-23, extended Kalman 

filter24, voltage inversion technique25, sliding mode observer26, and Luenberger observer27 have 

been used with ECM techniques.  

Electrochemical models, on the other hand, provide a robust and detailed solution by 

solving reaction kinetics, mass and charge transport equations under appropriate assumptions. 
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Pseudo-two dimensional model (P2D) proposed by Doyle et al.28 has been used widely in modeling 

of Li-ion batteries and SoC estimation29. 1-D electrochemical model has been also used to predict 

the SoC of Li-ion cells30-32. Due to the coupled and non-linear nature of the partial differential 

equations (PDEs) that the P2D models solve, the equations usually need to be solved numerically, 

which is computationally expensive. Several researchers have proposed reduced-order models to 

simplify the computational complexity. Recently, a lumped electrochemical model for lithium-ion 

batteries called Tank-in-Series approach has been introduced, in which the governing equations of 

the P2D model are volume-averaged over each region of the cell33. One of the most commonly 

used simplifications is the single particle model (SPM)34, in which each electrode is replaced by a 

representative single, spherical particle, and the concentration distribution in the particle due to the 

imposed current is solved analytically or numerically. Compared to P2D, this results in only one 

PDE for each electrode. The current density is assumed to fully contribute towards the pore wall 

flux that is uniformly distributed throughout the surface of the electrode35,36. Moreover, the 

concentration and potential gradient in the electrolyte is neglected. SPM is a valid approach only 

for low to moderate C-rate, where the concentration gradient in the electrolyte can be 

neglected35,36. At high current densities, the Li-ion concentration gradient and potential gradient 

in the electrolyte cannot be ignored and SPM results in inaccurate potential predictions37. A 

number of modifications of SPM have been proposed to overcome some of these limitations.For 

example extended SPM model has been proposed to account for energy balance35 and the effect 

of electrolyte concentration and potential8,38,39. Moreover, state estimation techniques such as an 

extended Kalman filter (EKF)40 and Luenberger observer32 has been applied to traditional and 

extended SPM to estimate the SoC of a Lithium ion cell40.  
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Regardless of the estimation technique, solving the concentration field in the spherical 

particle is a key step for SPM-based SoC estimation. Analytical solutions for the diffusion equation 

governing the concentration field are available only for galvanostatic (constant current) operating 

conditions where the applied current density is constant36. Even though step-wise changes in 

current can, in principle, be addressed by successively solving the concentration field in each 

galvanostatic time period, doing so is very difficult for rapidly changing current profiles 

encountered in vehicle drive cycles, or when the current changes smoothly over time, such as in 

alternating current (AC) systems. Previous studies have implemented a variety of numerical 

procedures and algorithms to predict the voltage and consequently SoC under dynamic discharge 

current conditions3,4. However, an analytical solution for determining the SoC during time-varying 

charge/discharge conditions is very desirable since it may offer the capability of rapid, in-line SoC 

estimation that integrates well with other BMS functions.  

A Green’s function based analytical solution for the concentration field in a single particle 

undergoing time-varying charge/discharge has recently been presented41. In the present work, this 

analytical model is used to determine the voltage profile of the cell and the SoC as a function of 

time under a general, time-dependent current profile. The approach presented in this study results 

in an analytical expression for the voltage and SoC that can be used for any arbitrary time-

dependent current profile. The analytical solution presented in this study is validated against past 

numerical simulations and experimental data under different operating conditions. The model is 

then used to predict the voltage and SoC of a Li-ion cell operating under realistic conditions such 

as drive cycles with rapidly changing charge/discharge current, as well as stepwise or periodically 

varying charge/discharge. While recognizing that the model presented here is valid only under the 

assumptions associated with the use of SPM, it is expected that the present study may contribute 
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towards improved SoC estimation in a wide variety of applications containing extremely low-

memory computational platforms where numerical solutions are impractical.  

 

Figure 1. Schematic of a Li-ion cell comprising two electrodes, separator and current collectors. 

Two spherical particles representative of the two electrodes during discharge are also shown. 
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8-2. Mathematical Modeling 

8-2-1. Solid phase diffusion  

Single particle model (SPM) is used in the present study to predict the concentration profile 

in the electrodes. SPM neglects the concentration gradient in the solution phase and assumes the 

electrodes to comprise of spherical particles. Further, the assumption of a uniform current 

distribution results in identical conditions for each particle, so that a single spherical particle is 

representative of the entire electrode. It is important to note that these assumptions are valid for 

low current densities where the concentration gradient in the electrolyte can be neglected and the 

cell is dominated by the solid phase diffusion. Under these assumptions, the governing equation 

for concentration diffusion for the positive and negative electrodes can be written as36: 

 𝐷𝑗

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑐𝑗

𝜕𝑟
) =

𝜕𝑐𝑗

𝜕𝑡
 

(1) 

where the initial and boundary conditions are 

 𝑐𝑗 = 𝑐𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑗 at  𝑡 = 0 (2) 

 𝑐𝑗 ⟹ 𝑓𝑖𝑛𝑖𝑡𝑒 as  𝑟 ⟶ 0 (3) 

 
𝐷𝑗 (

𝜕𝑐𝑗

𝜕𝑟
)

𝑟=𝑅𝑗

= −𝐽𝑗(𝑡) 
at 𝑟 = 1 (4) 

where the subscript j=p,n represents the positive and negative electrodes respectively. D is 

the solid phase diffusion coefficient and J(t) is the time-dependent molar flux at the surface of the 

particle. The molar flux for the cathode and anode can be written as36:  
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𝐽𝑝(𝑡) =

𝐼(𝑡)𝑅𝑝

3𝜀𝑝𝑉𝑝𝐹
 

 (5) 

 
𝐽𝑛(𝑡) = −

𝐼(𝑡)𝑅𝑛

3𝜀𝑛𝑉𝑛𝐹
 

 (6) 

 Where I(t) is the current that is assumed to be time-dependent in this work, Rj is the radius 

of the particle electrode j. εj is the volume fraction of the active material in the electrode, Vj is the 

total volume, and F is the Faraday’s constant. Note that the sign of the current, I, is negative for 

discharge and positive for charge.   

Equations (1)-(6) have been recently solved analytically using Green’s function approach 

for the case of time-dependent current. A detailed description of the solution procedure for solid 

phase diffusion under time-dependent boundary conditions can be found in a recent publication41, 

which results in the following equation for the concentration distribution in the electrode particle41:  

 
𝑐𝑗(𝑟, 𝑡) = 𝑐𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑗 −

3

𝑅𝑗
∫ 𝐽𝑗(𝜏)𝑑𝜏

𝑡

𝜏=0

− ∑
𝑅𝑗

𝑟𝑁𝑛,𝑗
sin(𝜆𝑛,𝑗𝑟) sin(𝜆𝑛,𝑗𝑅𝑗)

∞

𝑛=1

∫ 𝐽𝑗(𝜏)exp⁡(−𝐷𝑗𝜆𝑛,𝑗
2 (𝑡 − 𝜏))𝑑𝜏

𝑡

𝜏=0

 

(7) 

where the eigenvalues, 𝜆𝑛,𝑗 are the positive roots of 𝑅𝑗𝜆 cot 𝑅𝑗𝜆 = 1 and Nn,j is the 

norm, defined as: 
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𝑁𝑛,𝑗 =

𝑅𝑗 (𝜆𝑛,𝑗
2 +

1
𝑅𝑗

2) −
1
𝑅𝑗

2 (𝜆𝑛,𝑗
2 +

1
𝑅𝑗

2)

 

(8) 

Specifically, concentration on the surface of the particle, which is important for calculating 

the potential can be determined by substituting r=Rj in equation (7), resulting in:  

 𝑐𝑗,𝑠(𝑡) = 𝑐𝑗(𝑅𝑗 , 𝑡)

= 𝑐𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑗 −
3

𝑅𝑗
∫ 𝐽𝑗(𝜏)𝑑𝜏

𝑡

𝜏=0

− ∑
1

𝑁𝑛,𝑗
sin2(𝜆𝑛,𝑗𝑅𝑗)

∞

𝑛=1

∫ 𝐽𝑗(𝜏)exp⁡(−𝐷𝑗𝜆𝑛,𝑗
2 (𝑡 − 𝜏))𝑑𝜏

𝑡

𝜏=0

 

(9) 

8-2-2. Potential and state of charge (SoC)  

Once the concentration profile is determined for an arbitrarily varying charge/discharge 

current, the cell voltage and SoC can be computed as functions of time using Butler-Volmer 

kinetics approach that has been widely used in past papers. 

The state of charge of the electrode at any time can be written using the average concentration of 

the electrodes as follows:  

 
𝑆𝑜𝐶𝑗(𝑡) =

𝑥̅𝑗,𝑎𝑣𝑒(𝑡) − 𝑥𝑗,𝑎𝑣𝑒0%,

𝑥𝑗,𝑎𝑣𝑒100% − 𝑥𝑗,𝑎𝑣𝑒0%,
 

(10) 

 Where 𝑥̅𝑗,𝑎𝑣𝑒(𝑡) is the volume-averaged scaled concentration in electrode j at time t which can be 

obtained through integration as follows:  
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𝑥̅𝑗,𝑎𝑣𝑒(𝑡) =
3∫ 𝑟2𝑐𝑗(𝑟, 𝑡)𝑑𝑟

𝑅𝑗

𝑟=0

𝑅𝑗
3𝑐𝑗,𝑚𝑎𝑥

 

(11) 

By applying a total mass balance of Lithium in the full cell, the SoCs of the individual electrodes 

can easily be related to the overall capacity and correspondingly SoC of the cell. However, we 

only explore the variation of SoC of the negative electrode in this work to demonstrate the 

capability of this approach.  

In order to calculate the electrode potential, the Butler-Volmer kinetics equation is used36:  

 
𝐽𝑗(𝑡) = 𝑐𝑗,𝑚𝑎𝑥𝑘𝑗𝑐𝑒

0.5𝑥𝑗,𝑠
0.5(1 − 𝑥𝑗,𝑠)

0.5 [exp (
0.5𝐹

𝑅𝑢𝑇
𝜂𝑗) − exp (−

0.5𝐹

𝑅𝑢𝑇
𝜂𝑗)] 

(12) 

Where 𝑥𝑗,𝑠 =
𝑐𝑗,𝑠

𝑐𝑗,𝑚𝑎𝑥
 is the stoichiometry or scaled concentration at the surface of electrode 

j, k is the reaction rate constant, ce is the electrolyte concentration, Ru is the universal gas constant, 

T is the surface temperature and ηj is the overpotential that can be written as: 

 𝜂𝑗 = 𝜑1,𝑗 − 𝜑2,𝑗 − 𝑈𝑗  (13) 

Where U is the open circuit potential, which, in general, depends on the electrode material 

in the cell, and is obtained from the expressions presented in previous papers36. The solid phase 

and liquid phase potentials can be written as:    

 𝜑1,𝑝 − 𝜑1,𝑛 = 𝑉𝑐𝑒𝑙𝑙 (14) 
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 𝜑2,𝑝 − 𝜑2,𝑛 = 𝐼𝑅𝑐𝑒𝑙𝑙 (15) 

Note that the potential difference in the solution phase is modeled as a resistor in this 

model. Equation (13)-(15) can be combined and substituted in equation (12). Finally, equation (12) 

can be inverted36 to result in the following equation for the voltage of the cell as a function of time:  

 
𝑉𝑐𝑒𝑙𝑙(𝑡) = 𝑈𝑝 − 𝑈𝑛 +

2𝑅𝑢𝑇

𝐹
𝑙𝑛 [

√𝑚𝑝
2 + 4 + 𝑚𝑝

2
] +

2𝑅𝑢𝑇

𝐹
𝑙𝑛 [

√𝑚𝑛
2 + 4 + 𝑚𝑛

2
] + 𝐼𝑅𝑐𝑒𝑙𝑙 

(16) 

Where  

 
𝑚𝑝 =

𝐼(𝑡)

𝐹𝑘𝑝𝑆𝑝𝑐𝑝,𝑚𝑎𝑥𝑐𝑒
0.5(1 − 𝑥𝑝,𝑠)0.5𝑥𝑝,𝑠

0.5 
(17) 

 
𝑚𝑛 =

𝐼(𝑡)

𝐹𝑘𝑛𝑆𝑛𝑐𝑛,𝑚𝑎𝑥𝑐𝑒
0.5(1 − 𝑥𝑛,𝑠)0.5𝑥𝑛,𝑠

0.5 
(18) 

and Sj=3εjVj/Rj is the total electroactive area of the electrodes.  

Equation (16) provides an analytical expression for the cell voltage as a function of time 

during a charge/discharge process with time-varying current. Note that the concentration field in 

equation (16) comes from equation (9), which represents the Green’s function solution for the 

concentration field under time-dependent flux. These equations make it possible to predict the cell 

voltage as a function of time for any arbitrary charge/discharge current profile, which could 

comprise both smooth and discontinuous variations of current with time. In addition, the time-

dependence of current could be provided to the model either in the form of analytical equations, 

or discrete experimental data. 
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8-3. Results and Discussion 

8-3-1. Model validation 

The analytical model for predicting SoC and voltage curves for time-varying current 

presented in section 2 is validated by comparison against predictions based on numerical 

simulations as well as experimental data reported in the past. These results are discussed in sub-

sections below. 

8-3-1-1. Validation against SPM numerical simulation 

Voltage profile predicted by the analytical model is compared against numerical models 

for a special case of constant current as well as other time-dependent current profiles. For constant 

current, a previously reported SPM-based numerical computation tool for constant current 

charge/discharge (S. Kolluri & V. Subramanian, personal communication, May 17, 2020) is used 

for comparison. For time-dependent current, a finite-difference based code originally written for 

solving heat transfer problems is modified and used. In both cases, the governing equation and 

boundary conditions for solid phase diffusion in a spherical electrode particle (equations (1)-(4)) 

are discretized in time and space. The concentration at the surface of the electrodes is determined 

and used to calculate the cell voltage using equation (16).  

For validation in constant current conditions, a LiCoO2 cell is considered with nominal 

capacity of 1.78 A-hr. The cutoff voltage for charge and discharge are set to be 4.2 V and 2.8 V, 

respectively. Values of cell parameters used for comparison against the numerical simulation are 

taken from28,42 and summarized in Table 1. Comparison is carried out for charge and discharge at 

four different C-rates, as shown in Figures 2(a) and 2(b), respectively. There is excellent agreement 

between the analytical model and numerical simulation at each C-rate for both charge and 
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discharge. In each case, the curves for analytical model and numerical simulation are nearly 

indistinguishable from each other. 

 

Figure 2. Validation of the analytical model against SPM-based numerical simulations for 

constant current processes: Voltage as a function of time for (a) discharge, and (b) charge for 

multiple C-rates. 

 

Validation of the analytical model is then carried out for time-dependent currents. Two 

specific current profiles are used – the first one has two cycles of a discharge-rest-charge process, 

and the second one is a part of the US06 drive cycle commonly used for automotive 

benchmarking43,44. The US06 drive cycle features significant fluctuations in currents 

representative of realistic driving behavior. Figures 3(a) and 3(b) present comparison of the 

analytical model against numerical simulation for these two current profiles, respectively. In each 

case, the variation in current with time is also plotted for comparison. Plots show that the analytical 

model and the numerical simulation are in a very good agreement even for complicated time-

dependent current profiles.   
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Figure 3. Validation of the analytical model against SPM-based numerical simulations for time-

dependent current processes: Voltage as a function of time for (a) discharge-rest-discharge, and 

(b) dynamic current profile. 

 

8-3-1-2. Validation against other models 

This subsection presents a comparison of the model developed in this work with other past 

approaches for calculating the voltage curve. Two past models developed by Smith, et al.31 and 

Cen & Kubiak45 are considered here. Smith, et al.31 presented a linear Kalman filter approach based 

on a reduced-order electrochemical model for voltage and SoC estimation. Cen & Kubiak45, on 

the other hand, presented an adaptive observer based on a simplified single particle model (SPM) 

to predict the voltage and SoC of a Li-ion cell. The electrochemical parameters used for these 

comparison plots can be found in the corresponding papers31,45. Figure 4(a) plots voltage as a 

function of time obtained from the analytical model presented here and the past study by Smith, et 

al.31. The current profile used for this comparison is also shown on the right axis. Results show 

good agreement between the two models, with a worst-case disagreement of only around 0.4%. 

Note that the model presented by Smith, et al.31 accounts for electrochemical dynamics of the 
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electrolyte, while the present model considers the electrolyte dynamic as a fixed film resistance, 

which may explain the difference in the voltage peaks between the two models. Similarly, Figure 

4(b) plots voltage as a function of time for the present analytical model and the past study by Cen 

& Kubiak45 for a constant current-constant voltage (CC-CV) process, also shown in the Figure. 

There is a reasonable agreement between the two models. The slight disagreement between the 

two models is likely due to lack of clarity about some of the parameters used by Cen & Kubiak45. 

 

Figure 4. Validation of the analytical model against past numerical models for variable current 

processes: Voltage as a function of time for (a) discharge-charge process31, and (b) discharge-

rest-charge process45 

 

8-3-1-3 Validation against past experimental data 

Finally, validation of the analytical model is also carried out by comparison with previously 

reported experimental measurements by Guo, et al.36 and Smith & Wang32. Guo, et al. 36 presented 

experimental measurement of voltage under a constant discharge rate of C/33 for a pouch cell with 

a nominal capacity of 1.656 A-hr. Smith and Wang32, on the other hand, presented experimental 

data for a HPPC drive cycle profile for multiple values of initial state of charge. Both papers listed 
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electrochemical properties of the cell used in experiments32,36. Using these cell parameters, the 

analytical model is used to compute the voltage curve for both experiments. Figures 5(a) presents 

a comparison between measurements and analytical model for constant current discharge 

measurements by Guo, et al. 36. There is excellent agreement between the two throughout the entire 

measurement period. Figure 5(b) shows a similar comparison for a more complicated current 

profile used for voltage measurements by Smith and Wang32 for two different values of the initial 

SoC. Figure 5(b) shows that the analytical model is able to successfully predict the voltage profile 

for the pulsed current profile. 

 

Figure 5. Validation of the analytical model against past experimental measurements: Voltage as 

a function of time for (a) constant current discharge36, and (b) HPPC drive cycle32 

 

Taken together, the comparison against numerical computation, other past models as well 

as experimental measurements in a variety of constant and time-varying current conditions 

provides very good validation of the analytical model presented in Section 2.   
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8-3-2. Applications of the model 

In this section, the Green’s function based analytical model is used to predict the voltage 

and SoC profiles of a cell in a number of operating conditions. Step-function and sinusoidal 

changes in current over time are considered. In addition, current profiles for two drive cycles – 

ECE-15 and US06 – that represent realistic driving conditions are analyzed. Cell parameters used 

in all the figures in this section are same as those used in Figures 2 and 3, and are summarized in 

Table 1. 

Table 1. Electrochemical and physical properties used in this study. 

Properties Anode Cathode Units 

R  5×10-6 5×10-6 m 

l 4.000×10-5 3.655×10-5 m 

D 1.4×10-14 2.0×10-14 m2 s-1 

cmax 31080 51830 mol m-3 

k 0.6346667351×10-9 0.6306608809×10-9 m2.5 mol-0.5 s-1 

S 1.6206 1.2974 m2 

x0% 0.005139 0.947659 ------- 
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x100% 0.790813 0.359749 ------- 

T 298 K 

F 96487 C mol-1 

Ru 8.314 J mol-1 K-1 

ce 1200 mol m-3 

Rcell 0.001 Ω 

Up -10.72×x4
p,s+23.88× x3

p,s -16.77×x2
p,s +2.595×xp,s +4.563 V 

Un 0.1493+0.8493×exp(-61.79×xn,s)+.3824×exp(-665.8×xn,s)-

exp(39.42×xn,s -41.92)-0.03131×atan(25.59×xn,s -4.099)-

0.009434×atan(32.49×xn,s -15.74) 

V 

 

8-3-2-1 Step-function current profile 

Cell performance is analyzed under two different step-function current profiles – 

successive discharge at multiple C-rates (0.5C, 1.5C and 3C) and discharge-charge-discharge 

process. To illustrate the electrochemical phenomena that occurs inside the cell operating under 

step-function current profiles, surface concentrations on the positive and negative electrodes are 

computed using equation (9) and plotted as a function of time for the two current profiles in Figures 

6(a) and 6(b), respectively. In both cases, the current profile is shown as an inset. As expected, 
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during discharge, concentration on the surface of the negative electrode decreases while 

concentration on the surface of the positive electrode increases. Further, the rate of change of the 

concentration goes up as the discharge rate increases. Figure 6(b) presents a similar plot for a 

discharge-charge-discharge current profile, also shown as an inset. It is seen that concentration in 

the positive electrode increases for t<1500s while the cell discharges, then decreases for 

1500s<t<3000s while the cell charges, and finally increases again for t>3000s while the cell 

discharges. Concentration on the surface of the negative electrode shows similar behavior that is 

consistent with the current profile. As expected, the slopes of the curves are larger for the second 

discharge than the first one due to the greater rate of the second discharge.  

 

Figure 6. Application of the analytical model for a step-function current profile: Concentration as 

a function of time for (a) discharge at multiple C-rates, (b) discharge-charge-discharge process. 

 

Based on the concentration fields computed by the Green’s function approach, as illustrated 

in Figure 6, the voltage and SoC as functions of time are computed using equations (16) and (10), 

respectively. Figures 7(a) and 7(b) present voltage and average SoC at the negative electrode 

curves for the two current profiles discussed in Figure 6. It is seen from Figure 7(a) that the voltage 
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decreases continuously due to the discharge process, and shows a change in the rate of reduction 

when the discharge rate changes from 0.5C to 1.5C, and then to 3C at 500s and 1000s, respectively. 

This is consistent with both the current profile as well as the concentration profile shown in Figure 

6(a). The volume-averaged SoC of the negative electrode given by equation (10), also shown in 

Figure 6(a), is consistent with the current and voltage profiles. The SoC decreases throughout, as 

expected, and at the greatest rate for the highest C-rate, also as expected.  

 

Figure 7. Application of the analytical model for a step-function current profile: Voltage and 

SOC as functions of time for (a) discharge at multiple C-rates, (b) discharge-charge-discharge 

process. 

 

A similar plot for the discharge-charge-discharge profile is shown in Figure 7(b). In this 

case, as expected, both voltage and SoC decrease in the discharge period, increase in the charge 

period and finally decrease in the last period of discharge at a greater rate due to the greater C-rate. 

These plots demonstrate the capability of the Green’s function based analytical model to 

predict the voltage and SoC variation in the cell over time due to current profiles comprising of 

step functions.        
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8-3-2-2 Sinusoidal current profile 

The analytical model is used next to investigate the voltage/SoC behavior of a Li-ion cell 

operating under two sinusoidal current profiles, which may be the case for Electrochemical 

Impedance Spectroscopy (EIS), or for alternating current (AC) charging/discharging of the cell. 

Two different sinusoidal current profiles are considered. Figure 8 presents plots for voltage and 

SoC of a Li-ion cell under a sinusoidal discharge current profile of 𝐼(𝑡) = 𝐼0(1 + 𝑠𝑖𝑛𝜔𝑡), where 

I0=-1.76 A corresponds to 1C discharge. This current profile is a combination of AC and DC that 

discharges the cell throughout the time period. This specific current profile is chosen in this study 

to demonstrate the applicability of this approach for complicated dynamic current profiles. Such 

profiles have been recently used for battery diagnostics46. Figures 8(a) and 8(b) plot cell voltage 

and SoC, respectively, as functions of time for three different values of frequency, 𝜔. The current 

profiles are also shown as an inset. While both voltage and SoC decrease over time, as expected, 

periodicity in the voltage and SoC is also seen, with the number of crests and troughs being 

consistent with the current profile for each frequency. At each crest, when the discharge current 

becomes zero for an instant, the voltage curve becomes flat momentarily. It is interesting that for 

each frequency considered here, the cell fully discharges at about the same time, which is because 

the integral of the current profile over the time period remains the same for all three frequencies 

considered here and the DC component of the current primarily causes the reduction in voltage 

and SoC. Figure 8(b) presents a plot of average SoC at the negative electrode as a function of time 

for different values of frequency. The sinusoidal footprint of the current profile is also easily seen 

in the SoC curve, where, similar to voltage, the SoC curve flattens momentarily when the current 

becomes zero.  
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Figure 8. Application of the analytical model for a combination of AC-DC profile, 

I(t)=I0(1+sinωt): (a) Voltage and (b) SOC as functions of time. 

 

A second type of sinusoidal current profile 𝐼(𝑡) = 𝐼0𝑠𝑖𝑛𝜔𝑡 is also considered. This profile 

is representative of AC charge/discharge, which is commonly used in EIS measurements for 

investigating the electrochemical processes that occur inside the cell. Based on this current profile, 

the cell is periodically subjected to both charge and discharge. Figures 9(a) and 9(b) plot voltage 

and SoC, respectively, as functions of time for this current profile with multiple values of 

frequency. The current profile is also shown as an inset. Unlike the previous case where the voltage 

and SoC gradually reduce over time due to the discharge-only nature of the process, in this case, 

both voltage and SoC oscillate harmonically due to the charge-discharge nature of the current 

profile. As the current frequency increases, the number of times that voltage and SoC plots oscillate 

also increases. EIS typically uses a very low current amplitude to probe only the linear response 

of the physical processes inside the cell, whereas a large amplitude of current used here causes a 

corresponding large amplitude of voltage and SoC.  
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Figure 9. Application of the model for a harmonic current profile I(t)=I0(sinωt): (a) Voltage and 

(b) SOC as functions of time. 

 

8-3-2-3 ECE-15 and US06 current profiles 

The current profiles considered so far are ideal ones, whereas current profiles may be a lot 

more complicated in realistic charge/discharge conditions, for example in automotive applications. 

The Green’s function based analytical model presented in section 2 is next used to predict the 

behavior of a Li-ion cell operating under two dynamic load cycles – ECE-15 and US06. Both are 

representative of conditions that may be encountered in a realistic electric vehicle battery pack and 

are commonly used as benchmarks for studying battery performance. Figures 10(a) and 10(b) 

present voltage and SoC plots for an ECE-1547 current profile, which is also plotted in both Figures 

for comparison.  Both voltage and SoC plots closely follow the changes in the current profile. In 

general, the voltage and SoC curves are smoother than the current profile due to the diffusion time 

constants – it takes a finite time for voltage and SoC curves to respond to fluctuations in current. 

In some instances, such as around t=140 s, the voltage and SoC continue to drop even after the 

magnitude of the discharge current has passed its peak, which is likely because the cell is still 

being discharged even though the magnitude of the discharge current is reducing with time. Higher 
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discharge current causes a larger voltage drop due to cell polarization. The voltage drop due to the 

cell polarization continues to decrease as the magnitude of the current decreases, leading to an 

increase in the voltage of the cell after 145s. It is interesting to see that whenever the current 

becomes zero, the voltage still changes a little while SoC becomes flat almost instantaneously 

which is expected as the cell reverts back to its open circuit potential.  

 

Figure 10. Cell response predicted by the analytical model for a realistic process based on ECE-

15 drive cycle47: (a) Voltage and (b) SoC as functions of time 

 

The second drive cycle is even more complicated, and illustrates the capability of the 

Green’s function based analytical model to predict voltage and SoC for very complicated and 

dynamic drive profiles. The US06 drive cycle is commonly used to represent current profile for an 

electric vehicle battery pack for realistic driving conditions43,44. The drive profiles are scaled for 

an 1.78Ah cell, used in the analytical model. Figures 11(a) and 11(b) plot voltage and SoC, 

respectively, as functions of time for the US06 current profiles, also shown in these Figures. While 

the current profile is very dynamic and includes multiple, sharp changes, including between charge 

and discharge, Figures 11(a) and 11(b) demonstrate the capability of the analytical model to follow 
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the current profile and predict the cell voltage and SoC as functions of time. The cell voltage and 

SoC are seen to follow the fluctuations in current, and generally decrease over time because the 

applied current is negative (discharge) for most of the duration. Note that, the concentration profile 

and consequently the voltage and SoC are determined analytically even for these very complicated 

profiles, which results in fast computation without the need for mesh generation.   

 

Figure 11. Cell response predicted by the analytical model for a realistic process based on US06 

drive cycle: (a) Voltage and (b) SoC as functions of time. 

       

8-4. Conclusions 

The voltage and SoC computation presented here is carried out using a Green’s function 

based exact analytical solution for the concentration profile in the electrodes for an arbitrary time-

dependent current profile. This analytical approach agrees well with numerical simulations for a 

variety of conditions and may be easier to implement in practical battery management systems, 

especially with controllers containing limited memory. The individual electrode SoC can easily be 

related to the overall capacity/SoC of the cell. Even for very complicated current profiles, the 

analytical model is shown to be able to accurately predict the voltage and SoC changes in the cell 
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over time. It should be noted that the model presented here is based on a single spherical particle 

model, and therefore is valid within the range of validity of the SPM model, i.e. low to moderate 

C-rates. Also note that the Green’s function approach is inherently valid only for linear systems. 

Non-linearities such as concentration-dependent diffusivities, which may be significant for 

modeling of certain battery chemistries, sizes and form factors are not accounted for by the model. 

Finally, the model is isothermal, and does not account for the impact of temperature on diffusion 

or kinetic processes. Note that the analytical solution presented here can be used as a basis for state 

estimation algorithms such as Kalman filter approach for SoC estimation. Furthermore, the 

solution can also be coupled with the energy balance equation to account for thermal effects. This 

work is expected to contribute towards the improvement of battery management systems (BMS) 

for a variety of applications.    

 

 

 

8-4. Nomenclature 

c concentration (mol m-3) 

cinitial initial concentration (mol m-3) 

cmax maximum concentration (mol m-3) 

ce electrolyte concentration (mol m-3) 

D diffusion coefficient (m2s-1) 

F Faraday constant (96485 C mol-1) 

I current (A)  
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J molar flux (mol m-2 s-1)  

k reaction rate constant (m2.5 mol-0.5 s-1) 

r radial spatial coordinate (m)   

R particle radius (m) 

Ru universal gas constant (8.314 J mol-1 K-1) 

Rcell cell resistance (Ω) 

S total electroactive area (m2) 

t time (s) 

U open circuit potential (V) 

V total volume of the electrodes (m3) 

x state of charge  

ε volume fraction of the active material in electrode  

η overpotential (V) 

λ eigenvalue (m-1) 

ω frequency (hr-1) 

φ potential (V) 
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9-1. Introduction 

Li-ion batteries are among the most popular rechargeable batteries for a wide variety of 

applications due to their promising electrochemical characteristics [1-3]. Favorable characteristics 

of Li-cells include high energy density, high power density, low self-discharge rate, stability and 

long cycle life [4-6]. The operation of Li-ion cells involves coupled thermal and electrochemical 

processes such as kinetic reactions, mass, charge and thermal transport phenomena [7,8]. 

Mathematical modeling of Li-ion cells is therefore, necessary to fully understand the underlying 

processes towards design and optimization of electrochemical energy conversion and storage 

systems [9,10].  

Extensive research has been reported towards development of theoretical models to predict 

electrochemical and thermal transport in Li-ion cells subject to different operating conditions 

[11,12]. These electrochemical models solve the underlying charge, mass and thermal transport 

equations, as well as reaction kinetics [11-14]. Two most extensively-used electrochemical models 

are the Pseudo-2D model (P2D) and Single Particle Model (SPM) [11]. P2D model was 

constructed based on the porous electrode theory introduced by Newman [15] and the concentrated 

solution theory [16]. It solves the species and charge transport in both solution and solid phases 

[11,17]. P2D model is generally coupled and non-linear, resulting in a large number of equations 

and significant computational time. Thus, Single Particle Model (SPM) was developed to reduce 

the complexity associated with P2D model. In SPM, concentration gradients in the solution phase 

are neglected, leading to dominance of solid phase diffusion in the porous electrode, which can be 

represented by a single, one-dimensional particle [8,18,19]. At low discharge rates and for thin 

electrodes this may be a reasonable assumption [20-21]. However, at larger discharge rates or for 

thick electrodes for example energy cells, when concentration gradient in the solution phase cannot 
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be neglected, the governing equations become coupled and simplification is needed in order to 

derive an analytical solution. Towards this, Doyle et al. [22] assumed a specific form for the 

reaction rate distribution in the porous electrode, leading to uncoupling of the governing equations. 

Based on this approach, analytical solutions have been derived using the Separation of Variables 

(SOV) method for three limiting cases – solid phase, solution phase and Ohmically-dominated cell 

[22]. The governing equations in the solid phase were defined based on Fick’s law and the material 

balance in the solution phase was defined using the concentrated solution theory [22]. 

A variety of approximate analytical methods have been developed, including the Parabolic 

Profile (PP) method [23,24], State Variable Model (SVM) [25,26], Extended Single Particle Model 

(ESPM) [27-28], Proper Orthogonal Decomposition (POD) [29] and Electrode Averaged Model 

(EAM) [30]. Due to the coupled and non-linear nature of the underlying equations, exact solutions 

are available only for a limited number of problems. For example, an extended SOV technique has 

been used to predict concentration profile in both solid and liquid phase diffusion problems in 

composite electrodes under constant galvanostatic discharge boundary condition and zero initial 

concentration [31]. An exact solution has been presented for solid phase diffusion in a spherical 

particle under time-dependent flux boundary condition using Finite Integral Transform technique 

[32]. Material balance equations in thin film, cylindrical and spherical electrodes under 

galvanostatic boundary condition have been solved using integral transform method [33]. Exact 

solution for both solid and solution phase diffusion with non-zero initial condition has been 

developed using Laplace transformation technique [34]. Green’s function approach has been used 

to solve the solution phase diffusion in composite electrode for a constant boundary condition [35].  
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The diffusion problem in Li-ion cells is inherently multi-layer in nature, involving diffusion 

through the electrodes as well as the separator. A number of papers have presented analysis of 

multilayer diffusion problems through a variety of theoretical methods, such as eigenvalue 

methods [36,37], Laplace transforms [38] and variable substitution followed by use of Vodicka-

type orthogonality [39]. Time-dependent boundary conditions have been accounted for using 

Duhamel theorem [40] as well as Laplace transforms [41]. For eigenvalue-driven approaches, 

computation of eigenvalues is often challenging for a multilayer geometry [36].  

While these methods have been discussed for a variety of applications such as 

heterogeneous porous media [38], geology [42,43], biotransport [37], semiconductor devices [44], 

etc., there is a relative lack of similar work on multilayer diffusion in Li-ion cells. Specifically, 

most of the past work in this field assumes constant boundary conditions and constant 

generation/consumption rate, while time-dependent boundary conditions may be important for 

practical applications, where the applied charging or discharging current changes with time. This 

could occur, for example, in an electric vehicle battery pack where the discharge rate changes with 

time due to changes in the driving load. In some cases, the cell may even switch between charge 

and discharge. Only a few analytical and approximate solutions have been presented to address 

such problems with time-dependent boundary conditions. For example, finite integral transform 

method has been used to develop an exact solution for solid-phase diffusion in a single spherical 

porous electrode operation under arbitrary initial and boundary conditions [32]. Green’s function 

approach has been used to solve the solid phase diffusion in single layer and composite electrodes 

[45]. Approximate solutions have been presented for solid phase diffusion limitation single layer 

electrode under time-dependent boundary conditions [28].  



216 
 

In light of the relative lack of analytical solutions for problems with time-dependent 

boundary conditions, time-dependent generation/consumption rate and an arbitrary space-

dependent initial concentration, mathematical modeling of such problems may be of much interest. 

A feasible approach for providing solutions to such problems is the use of Green’s function 

technique. Green’s functions have been used commonly for heat transfer problems with 

complicated geometry and boundary/initial conditions [46,47], including the use of techniques 

such as method of fundamental solutions [42] and singular boundary method [43]. Green’s 

function has been used for solving multilayer problems in biotransport [48] and multilayer 

materials [49]. However, only limited use of Green’s function approach exists for addressing 

species transport problems in electrochemical systems [35,36].       

This work presents an analytical solution for Li-ion diffusion in a composite porous 

electrode operating under time-dependent flux boundary condition and arbitrary initial conditions 

using Green’s function approach. Solid-phase diffusion limitation is neglected and the solution 

phase diffusion limitation is dominant, which is one of the limiting cases of Li-ion cell operation 

[22]. While the reaction term in the species conservation equation is, in general, a function of both 

and time, under solution-phase diffusion limitation, this term has been treated to be a constant [22]. 

The present work generalizes this by considering a time-dependent function, which may occur 

when the external current changes with time, for example during cyclic charge/discharge of the 

battery pack of an electric vehicle. Also note that the governing equations in this study are 

presented for a single insertion electrode but the results can be easily generalized to two insertion 

electrodes. The analytical model presented in this work provides a useful mathematical tool to 

understand transport phenomena in a composite porous Li-ion cell, which may improve the 

analysis and design of electrochemical energy storage and conversion devices. 
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9-2. Mathematical Modeling 

9-2-1. Green’s function approach for composite electrodes 

Heat and mass transport are often governed by similar diffusion equations. If the non-

homogeneities in these equations are arbitrary functions of time, the commonly-used SOV method 

may not be applicable. On the other hand, Green’s function approach continues to be a powerful 

mathematical tool for solving a wide range of linear partial differential equations with arbitrary 

time-dependent non-homogeneities in the governing equation and boundary conditions [46,47]. 

Green’s function method can be used to address species diffusion problems in single or multi-

layers bodies. 

 

Figure 1. Schematic of a M-layer composite electrode. 

Consider diffusion in a M-layer composite body shown in Figure 1. In general, each layer 

may have different properties and species consumption/generation due to reaction. In addition, two 

time-dependent flux boundary conditions are considered at the two ends. The governing 

conservation equation can be written in non-dimensional form as:  
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subject to the following general boundary and initial conditions:  
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(4) 

 
−𝑘𝑀 (

𝜕𝑐𝑀

𝜕𝑥
)
𝑥=𝑥𝑀+1

= 𝑞𝑀(𝜏) 
at 𝑥 = 𝑥𝑀+1 

(5) 

 𝑐𝑖 = 𝑓𝑖(𝑥) at  𝑡 = 0 (6) 

Where 𝑥′𝑝 is the Sturm–Liouville weight function, and p=0, 1 and 2 for slabs, cylinders 

and spheres respectively. α and k are constants and can be determined based on a specific problem. 

Here, equations (3) and (4) represent continuity of species and flux balance at the interfaces, 

whereas equations (2) and (5) represent a balance between diffusion and mass flux at the two ends. 

f(x) is the initial condition, g is the generation or consumption term and q(τ) is the non-

homogeneous boundary condition.  

The solution to this multi-layer diffusion problem using Green’s function approach is given by 

[48]:   
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𝑐𝑖(𝑥, 𝑡) = ∑ {∫ 𝐺𝑖𝑗(𝑥, 𝑡|𝑥′, 𝑡′)𝑡′=0𝑓𝑗(𝑥′)𝑥′𝑝𝑑𝑥′
𝑥𝑗+1

𝑥′=𝑥𝑗

𝑀

𝑗=1

+ ∫ ∫ 𝐺𝑖𝑗(𝑥, 𝑡|𝑥′, 𝑡′)
𝑥𝑗+1

𝑥′=𝑥𝑗

𝑡

𝑡=0

𝛼𝑗

𝑘𝑗
𝑔𝑗(𝑥

′, 𝑡′)𝑥′𝑝𝑑𝑥′𝑑𝑡′}

+ ∑
𝛼𝑚

𝑘𝑚
∫ [𝑥′𝑝𝐺𝑖𝑚(𝑥, 𝑡|𝑥′, 𝑡′)]

𝑥=𝑥𝑏,𝑚
𝑞𝑚(𝑡′)𝑑𝑡′

𝑡

𝑡′=0𝑚=1,𝑀

 

(7) 

Where the summation in the third term is taken over all layers with an external boundary. 

xb,m refers to the location of the external boundary for the mth layer (referring to Figure 1, xb,1=x1 

and xb,M=xM+1). 

The first term in equation (7) accounts for the initial condition, while the second and third 

terms represent contributions of non-homogeneities in the governing equation and boundary 

conditions, respectively. The solution represented by equation (7) is particularly powerful in its 

ability to account for the effect of arbitrary space-dependent initial condition, time- and space-

dependent generation/consumption and time-dependent boundary conditions.   

A key step in deriving the Green’s function-based solution for the specific problem under 

consideration is to determine the Green’s function, 𝐺(𝑋, 𝜏|𝑋′, 𝜏′) that appears in equation (7). To 

do so, the corresponding homogeneous version of the problem must be solved first. For a 

homogeneous problem, the only non-zero term in equation (7) is the first term which represents 

the contribution of the initial concentration. Thus, a comparison between the first term in equation 

(7) and the solution to the homogeneous problem results in the evaluation of the Green’s function 

at 𝑡′ = 0, 𝐺(𝑥, 𝑡|𝑥′, 𝑡′)𝑡′=0. In order to determine the complete Green’s function at any time, t, i.e. 

𝐺(𝑥, 𝑡|𝑥′, 𝑡′),  t must be replaced with (𝑡 − 𝑡′) in 𝐺(𝑥, 𝑡|𝑥′, 𝑡′)𝑡′=0.  
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The next sections present the problem statement and derivation of the solution for liquid 

phase diffusion in a porous Li-ion cell sandwich under an arbitrary time-dependent flux using 

Green’s function method.  

9-2-2. Governing equations and boundary conditions 

Figure 2 shows a schematic of a Li-ion cell sandwich comprising a porous electrode, 

separator and Li-ion foil electrode. The separator and porous electrode, referred to with subscripts 

1 and 2, respectively, are initially at a non-uniform concentration of F1(x) and F2(x). The cell 

sandwich operates under a time-dependent discharge boundary condition, q(τ) at X=0. Doyle and 

Newman presented governing equations for composite Li-ion cell sandwich under a uniform 

current distribution [22]. Note that, the reaction rate distribution in the electrode is, in general, a 

function of both location and time, J(x,t).  

 

Figure 2. Schematic of the composite porous electrode consisting of Li-ion foil, separator and 

positive porous electrode. 
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However, under the solution-phase diffusion limitation, the spatial distribution of the 

reaction term can be neglected [22]. When the external current on the cell is a function of time, as 

may be the case during cyclic charge and discharge of a Li-ion cell in an electric vehicle, the 

reaction term is, in general, a function of time. Neglecting solid-phase diffusion limitation, 

conservation equations for the separator and porous electrodes for this case can be written as:  

 
𝐷

𝜕2𝐶1

𝜕𝑋2
=

𝜕𝐶1

𝜕𝜏
 

 0 < 𝑋 < 𝐿𝑠 (8) 

 
𝐷𝜀3 2⁄

𝜕2𝐶2

𝜕𝑋2
+ 𝑎𝑗𝑛(𝜏)(1 − 𝑡+) = 𝜀

𝜕𝐶2

𝜕𝜏
 

 𝐿𝑠 < 𝑋 < 𝐿𝑠 + 𝐿𝐶  (9) 

Subject to the following boundary conditions: 

  
(
𝜕𝐶1

𝜕𝑋
)
𝑋=0

= 𝑞(𝜏) = −
𝐼(𝜏)(1 − 𝑡+)

𝐹𝐷
 

at  𝑋 = 0 (10) 

 𝐶1 = 𝐶2 at 𝑋 = 𝐿𝑠 (11) 

 
(
𝜕𝐶1

𝜕𝑋
)
𝑋=𝐿𝑠

= 𝜀3 2⁄ (
𝜕𝐶2

𝜕𝑋
)
𝑋=𝐿𝑠

 
at 𝑋 = 𝐿𝑠 (12) 

 
(
𝜕𝐶2

𝜕𝑋
)
𝑋=𝐿𝑠+𝐿𝐶

= 0 
at 𝑋 = 𝐿𝑠 + 𝐿𝐶 (13) 

and initial conditions are:  
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 𝐶1 = 𝐹1(𝑋) at  𝜏 = 0 (14) 

 𝐶2 = 𝐹2(𝑋) at  𝜏 = 0 (15) 

Where D, ε and a refer to diffusion coefficient of the electrolyte, porosity of the electrode 

and specific interfacial area, respectively. I, jn, t
+ and F refer to current density, pore wall flux, 

transference number, and Faraday constant respectively. Ls and LC are the separator and porous 

electrode lengths, respectively. Note that equations (8) and (9) describe diffusion in the separator 

and material balance in the solution phase of the porous electrode, respectively. Equation (10) 

describes the time-dependent flux boundary condition. Equations (11) and (12) ensure the 

continuity of concentration and flux at the separator-electrode interface. Equation (13) ensures that 

no ions diffuse through the back of the electrode, and finally equations (14) and (15) represent the 

initial condition. 

The current distribution is assumed to be time-dependent and uniform throughout the 

electrode. While in general, the reaction rate distribution might be quite complicated and non-

uniform [22], it has been shown that if the kinetic resistance dominates Ohmic resistance, the 

reaction rate distribution can be considered as its average value throughout the electrode [15].  

Note that, in case of uniform initial concentration, the two non-homogeneities driving this 

problem during discharge are concentration flux into the separator (equation (10)) and species 

consumption due to Lithium intercalation in the cathode. The interplay between the two processes 

over time determines how the concentration field changes with time.  
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For a uniform current distribution, jn can be written as its average value everywhere in the 

porous electrode [22] as follows:  

 
𝑗𝑛(𝜏) =

−𝐼(𝜏)

𝑎𝐹𝐿𝑐
 

(16) 

Using the non-dimensionalization scheme presented in the nomenclature section, and after 

some mathematical simplification, the non-dimensional form of the governing equations for the 

separator and electrode can be written as:   

 𝜕2𝑐1

𝜕𝑥2
=

𝜕𝑐1

𝜕𝑡
 

 0 < 𝑥 < 1 (17) 

 
𝜀1 2⁄

𝜕2𝑐2

𝜕𝑥2
+

𝜀1 2⁄

𝜀3 2⁄
𝐽(𝑡) =

𝜕𝑐2

𝜕𝑡
 

 1 < 𝑥 < 1 + 𝑟 (18) 

Subject to the following boundary conditions: 

    
(
𝜕𝑐1

𝜕𝑥
)
𝑥=0

= 𝐽(𝑡)𝑟 
at  𝑥 = 0 (19) 

 𝑐1 = 𝑐2 at 𝑥 = 1 (20) 

 
(
𝜕𝑐1

𝜕𝑥
)
𝑥=1

= 𝜀3 2⁄ (
𝜕𝑐2

𝜕𝑥
)
𝑥=1

 
at 𝑥 = 1 (21) 

 
(
𝜕𝑐2

𝜕𝑥
)
𝑥=1+𝑟

= 0 
at 𝑥 = 1 + 𝑟 (22) 
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The initial conditions for the separator and electrode are:  

 𝑐1 = 𝑓1(𝑥) at t⁡= 0 (23) 

 𝑐2 = 𝑓2(𝑥) at t = 0 (24) 

Comparison between equations (17)-(24) specific to this problem, and the general problem 

statement for Green’s function solution given by equations (1)-(6) indicates that, in this case, M=2, 

α1=1, k1=1, α2=ε1/2, and k2= ε3/2. Note that J in equation (19) has a negative sign in its expression 

shown in nomenclature section. This negative sign indicates species flux into the separator during 

discharge, when the electrode considered here is the cathode. 

9-2-3. Solution procedure 

In order to solve equations (17)-(24), the Green’s function associated with this problem 

must be determined first. The general form of the Green’s function for multi-layer geometries can 

be written as follows [22]:  

 
𝐺𝑖𝑗(𝑥, 𝑡|𝑥′, 𝑡′)𝑡′=0 = ∑

1

𝑁𝑛

𝑘𝑗

𝛼𝑗

∞

𝑛=1

Γ(𝑡)𝜓𝑖𝑛(𝑥)𝜓𝑗𝑛(𝑥′) 
(25) 

 
𝐺𝑖𝑗(𝑥, 𝑡|𝑥′, 𝑡′) = ∑

1

𝑁𝑛

𝑘𝑗

𝛼𝑗

∞

𝑛=1

Γ(𝑡 − 𝑡′)𝜓𝑖𝑛(𝑥)𝜓𝑗𝑛(𝑥′) 
(26) 

where 𝑥′𝑝 is the Sturm–Liouville weight function, and Nn is the norm, given by  
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𝑁𝑛 = ∑
𝑘𝑗

𝛼𝑗
∫ 𝑥′𝑝𝜓𝑗𝑛

2 (𝑥′)𝑑𝑥′
𝑥𝑗+1

𝑥′=𝑥𝑗

𝑀

𝑗=1

 

(27) 

In order to construct the Green’s function associated with this problem, Г(t) and ѱ(x) are 

determined by solving the corresponding homogeneous problem. Note that the term J(t) in the 

governing equation, equation (18) and the boundary condition, equation (19) becomes zero in the 

corresponding homogeneous problem. The SOV technique can be used to solve the homogeneous 

problem, based on which, the concentration profile in the separator and electrode for the 

homogeneous problem can be written as follows:  

 
𝑐ℎ,𝑖(𝑥, 𝑡) = ∑ 𝜓𝑖𝑛(𝑥)Γ𝑛(𝑡)

∞

𝑛=0

 
 (28) 

Where i=1, 2.  

Equation (28) is then substituted back into the governing equations, which results in two 

separate differential equations in space and time. The solutions for time-dependent and space-

dependent components of equation (28) can be written as:  

 Γ𝑛(𝑡) = exp⁡(−𝜆𝑛
2 𝑡) (29) 

  
𝜓1𝑛(𝑥) = 𝐴1𝑛 sin (

𝜆𝑛𝑥

√α1

) + 𝐵1𝑛 cos (
𝜆𝑛𝑥

√α1

) 
(30) 

 
𝜓2𝑛(𝑥) = 𝐴2𝑛 sin (

𝜆𝑛𝑥

√α2

) + 𝐵2𝑛 cos (
𝜆𝑛𝑥

√α2

) 
(31) 
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Note that α1 and α2 are already defined in the previous section. Using boundary conditions, 

a set of equations can be written in a matrix form for the unknown coefficients Ain and Bin as 

follows:  

[
 
 
 
 
 
 
 
1 0 0 0

0 cos
𝜆𝑛

√α1

−sin
𝜆𝑛

√α2

−cos
𝜆𝑛

√α2

0 𝐾 sin
𝜆𝑛

√α1

cos
𝜆𝑛

√α2

−sin
𝜆𝑛

√α2

0 0 cos
𝜆𝑛(1 + 𝑟)

√α2

−sin
𝜆𝑛(1 + 𝑟)

√α2 ]
 
 
 
 
 
 
 

[

𝐴1𝑛

𝐵1𝑛

𝐴2𝑛

𝐵2𝑛

] = [

0
0
0
0

] 

(32) 

Where 𝐾 =
𝑘1

𝑘2
√

α2

α1
= 𝜀−5/4. In order to determine the eigenvalues, λn, the determinant of 

the matrix in equation (32) must be equal to zero, in order to result in a nontrivial solution. This 

requirement results in a transcendental equation for the eigenvalues as follows: 

tan (
𝜆𝑛𝑟

√α2

) + 𝐾 tan(
𝜆𝑛

√α1

) = 0 
(33) 

Without loss of generality, any one of the non-vanishing coefficients in equation (44) may 

be set to unity. In this case, B1n is chosen to be equal to 1.  Consequently, the coefficients, Ain and 

Bin, are determined to be  

𝐴1𝑛 = 0 (34) 

𝐵1𝑛 = 1 (35) 
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𝐴2𝑛 = cos
𝜆𝑛

√α1

sin
𝜆𝑛

√α2

− 𝐾 sin
𝜆𝑛

√α1

cos
𝜆𝑛

√α2

 
(36) 

𝐵2𝑛 = cos
𝜆𝑛

√α1

cos
𝜆𝑛

√α2

+ 𝐾 sin
𝜆𝑛

√α1

sin
𝜆𝑛

√α2

 
(37) 

This completes the derivation of the solution. Using equations (25) and (26), the 

concentration profile in the separator and electrode layers can be written as:   

𝑐1(𝑥, 𝑡) = ∑ (∫
1

𝑁𝑛

𝑥′=1

𝑥′=0

exp(−𝜆𝑛
2𝑡) cos (

𝜆𝑛𝑥

√α1

) cos (
𝜆𝑛𝑥′

√α1

)𝑓1(𝑥
′)𝑑𝑥′

∞

𝑛=0

+ ∫
1

𝑁𝑛

𝑥′=1+𝑟

𝑥′=1

exp(−𝜆𝑛
2𝑡) cos (

𝜆𝑛𝑥

√α1

) (𝐴2𝑛 sin (
𝜆𝑛𝑥′

√α2

)

+ 𝐵2𝑛 cos (
𝜆𝑛𝑥′

√α2

))𝑓2(𝑥
′)𝑑𝑥′

+
𝛼2

𝑘2
∫ ∫

1

𝑁𝑛
exp(−𝜆𝑛

2(𝑡 − 𝑡′)) cos (
𝜆𝑛𝑥

√α1

) (𝐴2𝑛 sin (
𝜆𝑛𝑥′

√α2

)
1+𝑟

𝑋′=1

𝜏

𝜏=0

+ 𝐵2𝑛 cos (
𝜆𝑛𝑥′

√α2

)) 𝐽(𝑡′)𝑥′𝑝𝑑𝑥′𝑑𝜏′

+
𝛼2

𝑘2
∫

1

𝑁𝑛

𝑡′=𝑡

𝑡′=0

exp(−𝜆𝑛
2(𝑡 − 𝑡′)) cos (

𝜆𝑛𝑥

√α1

) (𝐴2𝑛 sin (
𝜆𝑛(1 + 𝑟)

√α2

)

+ 𝐵2𝑛 cos (
𝜆𝑛(1 + 𝑟)

√α2

)) (−𝑟𝐽(𝑡′))𝑑𝑡′) 

(38) 
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𝑐2(𝑥, 𝑡) = ∑ ∫
1

𝑁𝑛

𝑥′=1

𝑥′=0

exp(−𝜆𝑛
2 𝑡) (𝐴2𝑛 sin (

𝜆𝑛𝑥

√α2

) + 𝐵2𝑛 cos (
𝜆𝑛𝑥

√α2

)) cos (
𝜆𝑛𝑥′

√α1

)𝑓1(𝑥
′)𝑑𝑥′

∞

𝑛=0

+ ∫
1

𝑁𝑛

𝑥′=1+𝑟

𝑥′=1

exp(−𝜆𝑛
2𝑡) (𝐴2𝑛 sin (

𝜆𝑛𝑥

√α2

) + 𝐵2𝑛 cos (
𝜆𝑛𝑥

√α2

)) (𝐴2𝑛 sin (
𝜆𝑛𝑥′

√α2

)

+ 𝐵2𝑛 cos (
𝜆𝑛𝑥′

√α2

)) 𝐹2(𝑥
′)𝑑𝑥′

+
𝛼2

𝑘2
∫ ∫

1

𝑁𝑛
exp(−𝜆𝑛

2(𝑡 − 𝑡′)) (𝐴2𝑛 sin (
𝜆𝑛𝑥

√α2

)
1+𝑟

𝑋′=1

𝜏

𝜏=0

+ 𝐵2𝑛 cos (
𝜆𝑛𝑥

√α2

)) (𝐴2𝑛 sin (
𝜆𝑛𝑥′

√α2

) + 𝐵2𝑛 cos (
𝜆𝑛𝑥′

√α2

)) 𝐽(𝑡′)𝑥′𝑝𝑑𝑥′𝑑𝜏′

+
𝛼2

𝑘2
∫

1

𝑁𝑛

𝑡′=𝑡

𝑡′=0

exp(−𝜆𝑛
2(𝑡 − 𝑡′)) (𝐴2𝑛 sin (

𝜆𝑛𝑥

√α2

)

+ 𝐵2𝑛 cos (
𝜆𝑛𝑥

√α2

)) (𝐴2𝑛 sin (
𝜆𝑛(1 + 𝑟)

√α2

) + 𝐵2𝑛 cos (
𝜆𝑛(1 + 𝑟)

√α2

)) (−𝑟𝐽(𝑡′))𝑑𝑡′ 

(39) 

Where A2n and B2n are defined in equations (36) and (37) and Nn is defined in equation 

(27). Note that the zeroth terms of equations (38) and (39), as well as the norm for the zeroth term 

must be determined by calculating the limits of these equations as λ→0. Further, note that if initial 

concentrations f1 and f2 are zero, there is some simplification in equations (38) and (39). 

Next, the validation of the model and its applications in a variety of realistic scenarios will 

be discussed. All plots in the next section are generated for a cathode.  
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9-3. Results and Discussion 

9-3-1. Model validation 

Analytical model derived in the previous section is validated against past work and 

numerical simulations. To the best of our knowledge, no literature is available for solution-phase 

diffusion under time-dependent flux boundary condition. Therefore, comparison with past studies 

has been carried out for a special case of galvanostatic boundary condition where the applied 

current density is constant. 

Table 1. Electrochemical and physical properties used in this study. 

Properties  Values  Units 

D 2.6×10-10 m2s-1 

F 96,487 C mol-1 

t+ 0.2 - 

ε 0.35 - 

Ls 25×10-6 m 

Lc 125×10-6 m 

C0 1000 mol m-3 
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r 5 ----- 

 

Green’s function-based model presented in this study is compared against a past work by 

Subramanian, et al. [50], where an approximate method was used to solve the solution phase 

diffusion in the porous electrode without solving for concentration in the separator [50]. Note that 

their method was limited to galvanostatic boundary conditions where the current density is 

constant. Thus, comparison of the present model against this previous study is carried out for a 

special case of constant current density. For comparison, a composite electrode comprising a 

porous cathode, separator and Li-ion foil similar to Figure 1 operating under a galvanostatic 

discharge boundary condition is considered.  

 

Figure 3. Validation against previous study [50] for a special case of constant current density: (a) 

dimensionless concentration at the electrode/separator interface (x=1) as a function of 

dimensionless time for different rates of discharge; (b) dimensionless concentration at the current 

collector (x=1+r) as a function of dimensionless time for different rates of discharge. 
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The parameters used for comparison are listed in Table 1, consistent with Subramanian, et 

al. [50]. Figure 3(a) plots the non-dimensional concentration as a function of non-dimensional time 

at the electrode/separator interface, x=1, for multiple values of current density for both the present 

model and previous work [50]. Figure 3(b) presents a similar plot at the current collector, x=1+r 

for both models. Results show excellent agreement between the Green’s function solution and past 

work. These Figures show, as expected, that concentration at the separator-electrode interface 

increases with time, while concentration at the end of the electrode decreases with time. This is 

consistent with species consumption occurring throughout the electrode and species flux into the 

electrode only from the separator side. The rate of change of concentration increases with 

increasing current, and a steady-state concentration is reached in each case. As expected, the larger 

the current, the greater/lower is the concentration at x=1 and x=1+r, respectively.  

To further validate the analytical model presented here, a numerical simulation of solution-

phase diffusion limitation in the composite porous electrode is carried out. The numerical method 

solves equations (17)-(24) using an implicit finite difference method in MATLAB.  The numerical 

computation uses a fully implicit approach to discretize the governing equations and boundary 

conditions in both separator and porous electrode, resulting in m+1 number of equations where m 

is the number of nodes. Each equation contains three unknowns including the concentration of the 

ith point and its two neighbors for the next time, n+1. Initial, boundary and interface conditions on 

the other hand provide the known values for these equations. Spatial discretization is carried out 

in a way that ensures that a node is always present at the intersection between layers. Interface 

conditions are defined to ensure the continuity of concentration and flux at the separator/electrode 

interface. The resultant equations in the matrix form are solved using tri-diagonal matrix algorithm 

(TDMA) instead of direct inversion to reduce the computational time. 2000 nodes are found to 



232 
 

sufficiently ensure mesh-independent of computed results. Figure 4(a) compares the non-

dimensional concentration as a function of non-dimensional time at the current collector, x=1+r, 

determined from the Green’s function approach with numerical simulations. This comparison is 

carried out for multiple values of B for a linear time-dependent current density, 𝐼(𝑡) = 𝐼0(1 + 𝐵 ∙

𝑡) where I0=60 Am-2. The plot shows very good agreement between the Green’s function-based 

model and numerical solution for each case. Figure 4(a) shows that as the current density increases 

over time due to the slope B, the concentration at the back of the electrode, x=1+r, decreases faster, 

which consistent with results from Subramanian, et al. [50]. The rate of reduction in concentration 

is greater for higher values of B, as expected. Figure 4(b) plots the non-dimensional concentration 

as a function of non-dimensional distance, x, at multiple times for the same current density profile 

as Figure 4(a) and B=1/30. Similar to Figure 4(a), results show good agreement between the 

present analytical model and numerical simulations. The concentration behavior agrees well with 

results presented in a study by Subramanian & White [31] in which an exact solution for solution 

phase diffusion in composite electrodes under galvanostatic boundary conditions was derived. 

Results from the present work and [31] both show that as the passes, concentration increases in 

the separator due to the incoming flux from negative electrode, while the concentration deceases 

at the back of the electrode due to consumption of Li-ions.  
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Figure 4. Validation against numerical simulation for a linear current density 𝐼(𝑡) =

𝐼0(1 + 𝐵 ∙ 𝑡) where I0=60 Am-2 (a) dimensionless concentration at the current collector (x=1+r) 

as a function of dimensionless time for different values of slopes, B, (b) dimensionless 

concentration as a function of dimensionless distance at multiple times for B=1/60. 

 

9-3-2. Application of the model 

In this section, the Green’s function solution is used to address a number of practical 

problems in which time-dependent boundary conditions may occur. Among different possible 

types of time-dependent functions, sinusoidal and step functions may be particularly relevant to 

battery operation. Sinusoidal functions are important since any reasonably well-behaved time-

varying function may be expressed in the form of a Fourier series comprising sinusoidal functions. 

Another important type of boundary conditions relevant to operation of Li-ion cells are step 

functions, since sudden changes in charge/discharge rate may be encountered in realistic settings. 

Therefore, this section focuses specifically on problems with sinusoidal and step function 

boundary conditions. 
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First, discharge process for a porous cathode is considered, with a time-dependent 

sinusoidal current density,⁡𝐼(𝑡) = 𝐼0(1 + sin⁡(2𝜋𝜔𝑡) where I0=60 Am-2. Two different 

frequencies ω=1/60 & ω=1/30 are considered.  All other problem parameters are similar to 

previous figures and summarized in Table 1. Figure 5(a) plots non-dimensional concentration as a 

function of time at three different locations – x=0, 1 and 1+r – for the two frequencies. Results 

show a periodic behavior for concentration consistent with the sinusoidal current density. Figure 

5(b) presents a plot of non-dimensional concentration as a function of non-dimensional distance 

at multiple times for I0=60 Am-2 and ω=1/30. Figure 5(b) shows an interesting behavior with 

intersections at multiple points and a non-monotonic nature. The concentration in the separator 

region is maximum at t=40, minimum at t=60 and in between at t= 20. This behavior reverses in 

the region close to the back of the electrode, x=1+r. This can be explained with the help of Figure 

5(a). For instance, in Figure 5(a), at t=60, due to the periodic nature of the current density, the 

concentration at the back of the electrode is at its maximum whereas the concentration at x=0 and 

1 are at their minimum. These Figures show that the model is successfully able to capture the 

concertation profiles under a sinusoidal time-dependent current density. 
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Figure 5. Application of the model for a periodic current density 𝐼(𝑡) = 𝐼0(1 + sin 2𝜋𝜔𝑡) where 

I0=60 Am-2 (a) dimensionless concentration at multiple location as a function of dimensionless 

time for ω=1/30 and 1/60, (b) dimensionless concentration as a function of dimensionless 

distance at multiple times for ω=1/30. 

 

In order to more comprehensively capture the concertation profile throughout the 

composite electrode at different times, Figure 6 shows a colorplot of concentration as a function 

of time and space, with the same current density profile as Figure 4, and ω=1/15. It is seen that 

four maxima/minima occur up to t=60, which is consistent with the frequency of the sinusoidal 

current density.  

 

Figure 6. Application of the model for a periodic current density 𝐼(𝑡) = 𝐼0(1 + sin 2𝜋𝜔𝑡) where 

I0=60 Am-2 and ω =1/15: Three dimensional plot of concentration as functions of space and time. 

 



236 
 

Figures 7 and 8 present plots for applications where the current density profile can be 

represented by step functions. This scenario may occur, for example, in the battery pack of an 

electric vehicle, where the discharge rate may suddenly change due to changes in the external load. 

Further, in several commonly used charge/discharge protocols, Li-cells may be cyclically charged 

and discharged at different rates, so that the current density may change its magnitude and/or 

direction over time. Two specific cases are presented in Figures 7 and 8.  

Figure 7 presents concentration plots for a step-function boundary condition, with changes 

only in the magnitude of current, and not the direction. In this case, the current density function is 

a three-step discharge process at multiple discharge rate of 60, 120 and 180 Am-2 corresponding 

to C-rates of 1, 2 and 3, respectively. Figure 7(a) plots non-dimensional concentration as a function 

of non-dimensional time at three different locations, whereas Figure 7(b) presents the plot of non-

dimensional concentration as a function of non-dimensional distance at multiple times. It is seen 

from Figure 7(a) that the concentration at the back of the electrode decreases gradually and the 

rate of this reduction increases with increasing magnitude of current density. On the other hand, 

concentration in the separator increases with time. This is due to concentration flux into the 

separator during the discharge process, and simultaneous depletion of species in the electrode due 

to reaction. As expected from the current density profile, Figure 7(b) shows that concentration at 

the back of the electrode is lowest at the highest discharge rate and the concentration in the 

separator is highest at the highest discharge rate.  
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Figure 7. Application of the model for a step function discharge current density (a) 

dimensionless concentration as a function of dimensionless time at multiple locations, x=0, 1 and 

1+r (b) dimensionless concentration as a function of dimensionless distance at multiple times, 

t=20, 40 and 60. 

 

Figure 8 considers a somewhat more complicated scenario, in which the current density 

starts with a constant discharge rate of 60 Am-2, switches directions to a 40 Am-2 charge at t=20, 

and finally changes back to 120 Am-2 discharge at t=40. Figure 8(a) plots the computed non-

dimensional concentration for this case as a function of non-dimensional time at three different 

locations, x=0, 1 and 1+r. For reference, the current density profile as a function of time is also 

plotted in the inset. It is seen that concentration at the back of the electrode decreases in the 

beginning for t<20 (discharge), and increases as the current density switches directions in the 

20<t<40 period (Charge). Finally, the concentration at x=1+r decreases again for t>40 (discharge), 

consistent with the current density profile. Concentration profiles at the other two locations, x=0 

and x=1 exhibit the opposite trend, which is consistent with concentration flux dominating over 

species consumption due to intercalation in the electrode. Figure 6(b) presents a plot of 

dimensionless concentration throughout the composite electrode at multiple times. Concentration 
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profiles are plotted at t=20, 40 and 60. Results in this plot are consistent with Figure 6(a). The 

maximum concentration in the electrode occurs at t=40, consistent with the inset plot of current 

density.   

 

Figure 8. Application of the model for a cyclic step function current density (a) dimensionless 

concentration as a function of dimensionless time at multiple locations, x=0, 1 and 1+r (b) 

dimensionless concentration as a function of dimensionless distance at multiple times, t=20, 40 

and 60. 

 

Note that all results presented here are computed with only five eigenvalues. This helps 

significantly reduce the computational time, particularly when the operating condition is a 

complicated function of time. The use of more than five eigenvalues is found to result in no 

significant change in the computed concentration distribution. It is important to note that 

eigenvalues for this problem depend only on r and ε and therefore, once the values of these 

parameters is known, the eigenvalues can be calculated once and be used for any arbitrary 

boundary condition. Table 2 presents the first five eigenvalues for ε=0.35 and multiple values of 

r.    
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Table 2. Values of eigenvalues for ε=0.35 for multiple values of r 

r λ1 λ2 λ3 λ4 λ5 

4 0 0.408935 0.943229 1.513226 2.085300 

5 0 0.341385 0.766828 1.223153 1.686654 

6 0 0.294434 0.647903 1.02749 1.414978 

8 0 0.232656 0.497336 0.780636 1.071196 

10 0 0.193285 0.405536 0.631237 0.863146 

 

9-4. Conclusions 

In this work, the Green’s function approach is used to derive an analytical solution for 

solution-phase limitation diffusion in composite electrodes under a wide variety of time-dependent 

flux boundary conditions. The method is applied to a composite electrode consisting of Li-ion foil, 

separator and porous electrode similar to the composite Li-ion cell sandwich proposed by Doyle 

and Newman [22]. Concentration profiles in the separator and porous electrode are determined as 

functions of space and time. The mathematical model is validated against previous studies for the 

special case of galvanostatic boundary conditions. Furthermore, Green’s function-based model is 

validated by comparison with numerical simulations for time-dependent boundary conditions. The 

mathematical model presented in this study can be used to accurately predict the transient behavior 
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of solution-phase limitation diffusion. The model is used to predict the concentration profile for a 

number of realistic time-dependent current densities such as sinusoidal and step functions that may 

be encountered in energy conversion and storage applications.  The computational time associated 

with the present model is lower than numerical simulations due to the low number of eigenvalues 

required for convergence. This work contributes towards the theoretical understanding of species 

diffusion in Li-ion cells, and provides tools that may be helpful for designing, predicting and 

improving the performance of electrochemical devices. 

9-5. Nomenclature 

a specific interfacial area (m-1) 

c non-dimensional concentration, c=C/C0 

C0 reference concentration (mol m-3) 

C concentration (mol m-3) 

D diffusion coefficient of electrolyte in the solution (m2s-1) 

f(x) non-dimensional initial concentration, f(x)=F(x)/C0  

F(x) initial concentration (mol m-3) 

F Faraday’s constant (C mol-1) 

g non-dimensional generation or consumption  

G Green’s function  

I current density (A/m2)  

jn pore wall flux, jn=-I/aFLc (mol m-2 s-1) 

J non-dimensional pore wall flux, J=-I(1-t+)Ls
2/FDLcC0 

k non-dimensional constant  

Ls length of the separator (m) 
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Lc length of the porous electrode (m) 

r ratio of electrode length to separator length, r=Lc/Ls   

t non-dimensional time, t= Dτ/Ls
2 

t+ transference number 

x non-dimensional lengthscale, x=X/Ls 

X lengthscale (m) 

α non-dimensional constant   

ε porosity 

ω non-dimensional frequency 

τ time (s) 

λ eigenvalues 

 

Subscripts 

c cathode 

h homogeneous problem 

s separator 
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Chapter 10 

Conclusion and Future Direction 

10-1. Conclusion 

In chapter 2, a solution for the phase change heat transfer problem with time-dependent 

heat flux boundary condition using the perturbation method is presented. The solution is shown to 

converge at large times, where solutions from past papers are known to diverge. This represents a 

significant improvement in our theoretical understanding of phase change heat transfer. The 

theoretical results presented here may be relevant to multiple engineering applications such as 

cooling of Li-ion cells. Results derived here are used to understand the effect of linear and periodic 

heat flux boundary conditions, which may arise in such applications. These results can be easily 

extended to cylindrical and spherical coordinate systems. 

Chapter 3 shows that while improving thermal conductivity is helpful for increasing the 

rate of energy stored, it is not similarly helpful for improving the energy storage density, which 

may be an important performance parameter in several applications. Using well-establised 

theoretical models, the present work helps fully understand the impact of previously reported 

thermal conductivity enhancement on performance of phase change energy storage systems. Based 

on the theoretical model, the performance of various PCMs can be compared with each other, and 

the optimal PCM can be chosen, depending of the relative importance of rate of energy stored and 

energy storage density, as well the geometry of energy storage system. 

Chapter 4 presents a theoretical solution for heat transfer problems involving phase change 

in which a pre-melted or pre-solidified region exists initially. Results derived here, based on an 
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iterative approach, highlight the nature of heat transfer in a problem that can be used to model a 

number of engineering problems. While presented here for the specific case of melting, the 

solidification problem can also be addressed based on these results. Other complexities, such as 

convection in the liquid phase may also be accounted for, provided the underlying analytical 

solutions for the liquid phase are available. This work improves our fundamental understanding of 

phase change heat transfer, and facilitates analysis of heat transfer in applications related to energy 

conversion and thermal management.  

Chapter 5 develops a theoretical model for phase change cooling of Li-ion battery packs. 

Results highlight and quantify the key system-level trade-off between discharge rate and energy 

storage density, which can prevent needless overdesign of thermal management. Another 

important insight from this work is the comparison between phase change cooling and convective 

cooling. It is expected that the theoretical model and key results presented in this work will 

contribute towards accurate design of practical thermal management systems for Li-ion battery 

packs, eventually leading to improvement in safety and performance of energy conversion and 

storage devices. 

Chapter 6 develops an analytical heat transfer model to determine the core temperature of 

a Li-ion cell undergoing thermal runaway based on surface temperature measurement. The 

technique is suitable for determining the core temperature as a function of time for a variety of 

experimental conditions where the surface temperature has been measured. Results show that the 

maximum core temperature during thermal runaway is several hundreds of degrees Celsius higher 

than the surface temperature. This demonstrates the critical importance of the core temperature of 

the cell during thermal runaway. The accuracy of the technique depends on chemical kinetics data 

during thermal runaway, as well as on thermophysical properties of the cell, particularly its specific 
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heat. This work provides a new fundamental insight into the thermal behavior of Li-ion cells during 

thermal runaway, which is not possible through surface temperature measurement alone. It is 

expected that information about the core temperature of the cell during thermal runaway, 

determined by the technique described here may help improve the fundamental understanding of 

thermal runaway, as well as help design practical tools to predict the thermal state of the cell so 

that thermal runaway could be mitigated. 

  In chapter 7, an exact solution is developed for solid-phase diffusion under a time-

dependent flux boundary condition using the Green’s function approach, which has been used 

widely in the past for solving thermal conduction problems. The method is first applied to a thin 

film electrode and a spherical electrode particle. The method is then extended to determine the 

concertation profile in two-layer slab and spherical composite electrodes. The mathematical 

models agree well with previous studies for specific cases, as well as numerical simulations. The 

Green’s function-based model presented here is able to accurately predict the transient behavior 

during solid phase diffusion process relevant to a Li-ion cell. The Laplace transform approach used 

in previous studies provides separate expressions for short time and long solutions. The short time 

solution derived using Laplace transform, which is very useful for some applications such as high 

rates and short times may be calculated faster than the Green’s function solution presented here, 

since there is no separate expression for short time solution using this method. However, for 

complicated flux boundary conditions, inversion of the Laplace solution may be challenging, 

whereas the present approach offers a closed-form solution. The model presented here can be used 

to predict the concentration profile under realistic time-dependent boundary conditions that may 

appear in practical applications for electrochemical energy storage. 
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The voltage and SoC computation presented in chapter 8 is carried out using a Green’s 

function based exact analytical solution for the concentration profile in the electrodes for an 

arbitrary time-dependent current profile. This analytical approach agrees well with numerical 

simulations for a variety of conditions and may be easier to implement in practical battery 

management systems, especially with controllers containing limited memory. The individual 

electrode SoC can easily be related to the overall capacity/SoC of the cell. Even for very 

complicated current profiles, the analytical model is shown to be able to accurately predict the 

voltage and SoC changes in the cell over time. It should be noted that the model presented here is 

based on a single spherical particle model, and therefore is valid within the range of validity of the 

SPM model, i.e. low to moderate C-rates. Also note that the Green’s function approach is 

inherently valid only for linear systems. Non-linearities such as concentration-dependent 

diffusivities, which may be significant for modeling of certain battery chemistries, sizes and form 

factors are not accounted for by the model. Finally, the model is isothermal, and does not account 

for the impact of temperature on diffusion or kinetic processes. Note that the analytical solution 

presented here can be used as a basis for state estimation algorithms such as Kalman filter approach 

for SoC estimation. Furthermore, the solution can also be coupled with the energy balance equation 

to account for thermal effects. This work is expected to contribute towards the improvement of 

battery management systems (BMS) for a variety of applications.   

In chapter 9, the Green’s function approach is used to derive an analytical solution for 

solution-phase limitation diffusion in composite electrodes under a wide variety of time-dependent 

flux boundary conditions. The method is applied to a composite electrode consisting of Li-ion foil, 

separator and porous electrode similar to the composite Li-ion cell sandwich proposed by Doyle 

and Newman [22]. Concentration profiles in the separator and porous electrode are determined as 
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functions of space and time. The mathematical model is validated against previous studies for the 

special case of galvanostatic boundary conditions. Furthermore, Green’s function-based model is 

validated by comparison with numerical simulations for time-dependent boundary conditions. The 

mathematical model presented in this study can be used to accurately predict the transient behavior 

of solution-phase limitation diffusion. The model is used to predict the concentration profile for a 

number of realistic time-dependent current densities such as sinusoidal and step functions that may 

be encountered in energy conversion and storage applications.  The computational time associated 

with the present model is lower than numerical simulations due to the low number of eigenvalues 

required for convergence. This work contributes towards the theoretical understanding of species 

diffusion in Li-ion cells, and provides tools that may be helpful for designing, predicting and 

improving the performance of electrochemical devices.  

10-2. Future direction 

Mathematical modeling presented in this dissertation might be extended to investigate 

multiple engineering problems. For example, theoretical modeling of phase change heat transfer 

can might be extended and coupled with flow in porous media for local thermal equilibrium and 

non-local thermal equilibrium conditions.  

Electrochemical models presented in this dissertation can be extended to account for 

energy equations and result in a coupled thermal-electrochemical model. Further, the SPM-based 

analytical solution for solid phase diffusion under time-dependent flux boundary conditions may 

be used for cell parameter estimation. Also, analytical solution presented here may be used as a 

basis for state estimation algorithms such as Kalman filter approach for SoC estimation. 
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