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ABSTRACT

Likelihood Inference for Flexible Cure Rate Models in the Context of Infectious

Diseases with Multiple Exposures

Zachry J Engel, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professor: Dr. Suvra Pal

Cure rate models are mostly used to study data arising from cancer clinical

trials. Its use in the context of infectious diseases has not been explored well. In 2007,

Tournoud and Ecochard first proposed a mechanistic formulation of cure rate model in

the context of infectious diseases with multiple exposures to infection. However, they

assumed a simple Poisson distribution to capture the unobserved number of pathogens

at each exposure time. In this thesis, we propose a new flexible cure rate model

to study infectious diseases with discrete multiple exposures to infection. This new

model uses the Conway-Maxwell Poisson (COM-Poisson) distribution to model the

number of competing pathogens at each moment of exposure. This new formulation

takes into account both over-dispersion and under-dispersion with respect to the count

on pathogens at each time of exposure and includes the model proposed by Tournoud

and Ecochard as a special case. We also propose a new estimation algorithm based on

the expectation maximization (EM) algorithm to calculate the maximum likelihood

estimates of the model parameters. Infectious diseases data are often right censored,

and the EM algorithm can be utilized to efficiently determine the maximum likelihood
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estimates of the underlying model. We carry out a detailed Monte Carlo simulation

study to demonstrate the performance of the proposed estimation algorithm. The

flexibility of our proposed model also allows us to carry out a model discrimination,

which we do using both likelihood ratio test and information-based criteria. Finally,

to illustrate our proposed model, we analyze a recently collected infectious data.
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CHAPTER 1

INTRODUCTION

1.1 Cure rate models

The term cure rate model refers to models for survival or lifetime data where a

portion of the studied population are immune to the event of interest. These cure rate

models have become more useful as medicine progresses and finds new treatments

that may cause some patients to become non-susceptible to the disease under study.

For example, some new treatments for cancers such as leukemia and prostate cancer

could cause the patients to be cured of the cancer, also known as going into remission.

In the context of cure rate models, those who are no longer susceptible to the disease

or the event of interest are known as long-term survivors or immunes. Those who

can still be affected by the disease are known as susceptibles. These models represent

time-to-event data more realistically than previous methods of survival analysis such

as the Cox regression model. In the Cox regression model, we must assume no

patients can be cured, and we must only concern ourselves with survival of the patient.

Note that not all applications of cure rate models are medical. These models can

be extended to fields of study such as engineering, criminology, and sociology. For

example, if we wish to apply these cure rate models to the field of criminology, we

can look at prisoner recidivism. Recidivism refers to a prisoner returning to prison

after being released. If we consider recidivism as our event of interest, then we can

consider those who never return to prison as the cured portion of the population

of prisoners who have been released. Clearly, knowing what decreases the chance

of recidivism is of great importance to the criminal justice system. However, while
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the implication of cure rate models may be useful to some non-biological fields, the

Cox regression model still has its uses in fields such as industrial reliability. Most

manufactured goods will fail with time and may need to be replaced. It is therefore

advantageous to use Cox regression models or other models that assume no immunes

portion to study how long a part will last given certain conditions. While these

survival analysis models can be applied to these other fields, most of these models are

applied to biomedical research. In particular, the majority of the work in this field

has been used to study cancer metastasis and the effectiveness of new treatments to

stop the spread of the cancers.

The cause of the event of interest may be due to several factors competing at once.

This is known as a competing cause scenario, Cox and Oakes [20]. For example, in

the study of cancer, the event of interest may be death which may be caused by the

cancer, a stroke, or heart attack brought on by the cancer. In the context of prisoner

recidivism, the event of interest is the prisoner coming back to prison which may be

caused by a parole violation or a new crime. In both examples, the event of interest

is caused by one of the competing causes. A car battery may fail due to cold weather,

corrosion, or the chemical reaction in the battery losing power over time. In all these

competing cause scenarios, only one of the competing causes was the reason for the

event of interest occurring. In fact, only the competing cause which developed first

will be the reason for the time-to-event. For example, a normal person may die of a

heart attack or a stroke, but not both. We only observe the first to occur. This is a

key aspect for competing cause scenarios.

Let M be a random variable denoting the number of competing causes related to the

event of interest. Let M have the probability mass function (p.m.f.) pm = P [M = m]

for m = 0, 1, 2, · · · . It is important to note that this probability mass function must

include 0 in its support. This will allow us to introduce the cured portion. Given
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M = m for m > 0, in other words patient is susceptible, let Wi for i = 1, 2, · · · ,m

be independent random variables, distributed independently of M , with common

distribution function F (y) = 1−S(y), where S(y) denotes the survival function. The

random variable Wi denotes the time taken by the ith competing cause to produce

the event of interest, called progression time. As noted previously, not all of these

progression times will be observed. In fact, only the first to develop the event of

interest will be observed, the rest will be unobserved, or also called latent-variables.

To account for those who are not susceptible to the event of interest, the time-to-event,

or the lifetime, denoted as Y , will be expressed as follows:

Y = min{W0,W1, · · · ,WM}, (1.1)

where P [W0 = ∞] = 1. The infinite lifetime W0 brings in a proportion p0 of the

population who are not susceptible to the event of interest. This proportion is called

the cure rate and its estimation is of great interest.

1.2 A brief literature review

Due to the wide range of applications, cure rate models and survival analysis

have been studied extensively in literature. The first cure rate models were proposed

by Boag [12] and Berkson and Gage[11] in which the authors proposed a mixture cure

rate model which represented a proportion of the population being cured. Farewell

[23] expanded upon this work by considering the mixture model, but employed a

logistic regression for the mixture and used a Weibull regression to address the

latency. Yakolev et al. [60] created a new formulation of the mixture model to more

accurately study cancer metastasis. Yakolev and Tsodikov [59] and later Chen et al.

[17] described the promotion time cure rate model by considering a competing cause

scenario into their model. Sy and Taylor [54] developed new maximum likelihood
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techniques for the joint estimation of the incidence and latency promotion time using

the competing cause scenario. Yin and Ibrahim [61] proposed a new unified approach

to survival analysis with right censored lifetimes. Tucker and Taylor [57] proposed

alternatives to the Poisson model, which they saw as having a high rate of error when

studying the probability of tumor cure, which they named the deterministic-stochastic

(DS), geometric-stochastic (GS), Poisson-stochastic, andenhanced geometric-stochastic

(GS+) models. Rodrigues et al. [48] were the first to develop a flexible cure rate model

where the number of competing causes followed a Conway-Maxwell Poisson (COM-

Poisson) distribution. This model can be looked at as a more flexible alternative to

the Yin and Ibrahim [61] model. Balakrishnan and Pal [4], Balakrishnan and Pal [5],

Balakrishnan and Pal [6], and Balakrishnan and Pal[8] extended the model proposed

by Rodrigues et al. [48] by introducing the EM algorithm to find the maximum

likelihood estimates of the model and study different lifetime distributions such as

the exponential, Weibull, Gamma, and lognormal distributions. This line of research

continued with Balakrishnan and Pal [7] in which the authors used the EM algorithm

to find the maximum likelihood estimates of a model where the number of competing

causes followed the COM-Poisson distribution and the lifetimes were modeled using

the generalized Gamma distribution. This model had a high degree in flexibility to

model both the lifetime data and the number of competing causes. Other works

that expand upon this model include Pal and Balakrishnan [40]. Balakrishnan et al.

[10] proposed a semi parametric approach to the COM-Poisson cure rate model by

using the Cox proportional hazard model with a Weibull baseline hazard function.

Rodrigues et al. [47] developed a flexible cure rate model that included a destructive

process, such as chemotherapy for cancer, to the initial risk factors which added more

biological and medical context to the models. This model was initially extended

by Borges et al. [14] in which the authors used an extension of the generalized
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power series distribution. Again these destructive models were expanded by Cancho

et al. [16] where the authors assumed the number of competing causes followed a

negative binomial distribution. Pal and Balakrishnan [39] expanded the destructive

model using the negative binomial distribution by incorporating the EM algorithm

to find the maximum likelihood estimates. Pal et al. [41] and Majakwara and Pal

[37], then incorporated the COM-Poisson distribution into the destructive cure rate

model using the EM algorithm. While the COM-Poisson distribution is a natural

extension to represent the number of competing causes in most scenarios, there are

other works analyzing the effectiveness of other distributions. Gallardo et al. [25]

used the Yule-Simon distribution to model the number of competing risks. Gallardo

et al. [27] proposed the use of the power series cure rate model. Santos et al. [49]

advocated for the use of the Gompertz distribution to model the number of competing

causes. Gallardo et al. [26] proposed the use of the polyogarithm distribution for the

number of competing causes.

1.3 Lifetime distributions

When studying survival analysis, the researcher must select a distribution to

model the time to the event of interest. Throughout history, several distributions

have been considered as the true model in a parametric framework. Each model

has its advantages and disadvantages when modeling lifetime data. This section will

outline some of the more commonly used lifetime distributions.
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1.3.1 Exponential distribution

The exponential is the most commonly used lifetime distribution and is the

simplest. The probability density function for the exponential distribution is

f(x;λ) = λe−λx, x > 0, λ > 0,

which gives us the survival function as:

S(x;λ) = e−λx, x > 0, λ > 0.

Due to the simplicity of the distribution, the mean and variance are easy to find and

are given by

E(X) =
1

λ
and V ar(X) =

1

λ2
.

While the simplicity of the exponential distribution makes it an easy distribution

to work with, it does have one distinct disadvantage. The hazard function for the

exponential distribution is constant. This makes the exponential distribution less

useful than other distributions in practical applications.

1.3.2 Weibull distribution

The Weibull distribution is a continuous distribution named after Waloddi

Weibull who first detailed the characteristics of his namesake distribution in 1951. It

is one of the most commonly used lifetime models due to its flexibility. The probability

density function for the Weibull distribution is

f(x; γ1, γ2) =
γ2

γ1

( x
γ1

)γ2−1

e(−x/γ1)γ2 , x > 0, γ1 > 0, γ2 > 0.

The parameter γ1 is known as the scale parameter and γ2 is known as the shape

parameter. The survival function for the Weibull distribution is given by

S(x; γ1, γ2) = e(−x/γ1)γ2 , x > 0, γ1 > 0, γ2 > 0.
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Due to the greater complexity of the Weibull distribution, the mean and variance are

more difficult to calculate and are

E(X) = γ1Γ
(

1 +
1

γ2

)
and V ar(X) = γ2

1

[
Γ
(

1 +
2

γ2

)
−
{

Γ
(

1 +
1

γ2

)}2]
,

where Γ(·) is the gamma function defined as

Γ(z) =

∫ ∞
0

xz−1e−xdx. (1.2)

The Weibull distribution is widely used in survival and reliability analyses

due to the flexibility of its hazard function. The hazard function of the Weibull

distribution can be increasing, decreasing, or constant.

1.3.3 Gamma distribution

The gamma distribution is a two parameter probability distribution commonly

used to model lifetime data. An advantage of the gamma distribution is that the

exponential, Erlang, and chi-square distributions are special cases of the gamma

distribution. The gamma distribution has probability density function

f(x; k, θ) =
1

Γ(θ)θk
xk−1e−x/θ, x > 0, k > 0, θ > 0,

where Γ(·) is the gamma function as defined in (1.2). Here, k is the shape parameter

and θ is the scale parameter. The survival function of the gamma distribution is

S(x; k, θ) =
1

Γ(k)
γ
(
k,
x

θ

)
,

where γ(·, ·) represents the lower incomplete gamma function and is defined as

γ(z, x) =

∫ x

0

tz−1e−tdt. (1.3)

The mean and variance of the gamma distribution are

E(X) = kθ and V ar(X) = kθ2.
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1.3.4 Lognormal distribution

Also known as the log-normal or the Galton distribution, is a continuous

distribution whose natural logarithm is a normal distribution. This distribution often

used to model lifetime data has the probability density function

f(x;µ, σ) =
1

xσ
√

2π
exp

(
− (ln(x)− µ)2

2σ2

)
, x > 0, σ > 0,−∞ < µ <∞.

The parameters µ and σ are the mean and standard deviation respectively of the

normal distribution. The survival function of the lognormal distribution is

S(x;µ, σ) = 1− Φ
( ln(x)− µ

σ

)
, x > 0,

where Φ is the distribution function of the standard normal distribution. The mean

and variance of the lognormal distribution are

E(X) = e

(
µ+ 1

2
σ2

)
and V ar(X) = e2(µ+σ2) − e2µ+σ2

.

1.3.5 Generalized Gamma distribution

The generalized gamma distribution is a wider class of distribution which was

introduced by Stacy [52] and later expanded on by Prentice [45]. This distribution

has an additional shape parameter and the probability density function is given by

f(x; a, d, p) =
(p/ad)xd−1e−(x/a)p

Γ(d/p)
, x > 0, a > 0, d > 0, p > 0,

where Γ(·) represents the gamma function as defined in (1.2). The survival function

of this distribution is

S(x; a, d, p) = 1− γ(d/p, (x/a)p)

Γ(d/p)
,

where γ(·, ·) represents the lower incomplete gamma function as defined in (1.3). The

mean and variance of the generalized gamma distribution are given by

E(X) = a
Γ((d+ 1)/p)

Γ(d/p)
and V ar(X) = a2

[Γ((d+ 2)/p)

Γ(d/p)
−
(Γ((d+ 2)/p)

Γ(d/p)

)2]
.
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While this distribution is rather complex, it does have some useful aspects. Namely, the

exponential, Weibull, and gamma distributions are all special cases of the generalized

gamma distribution while the lognormal distribution is a limiting case.

1.4 COM-Poisson cure rate model

The COM-Poisson distribution was introduced by Conway and Maxwell [19] as

a solution to handling queuing systems with state-dependent service rates. It is a

generalization of the Poisson distribution that adds a dispersion parameter to account

for over-dispersed and under-dispersed data relative to the Poisson distribution. We

can view the COM-Poisson distribution as a weighted Poisson distribution. This

dispersion parameter also allows the geometric and Bernoulli distributions to be

special cases of the COM-Poisson distribution. The COM-Poisson distribution was

more thoroughly analyzed in the statistical context by Boatwright et al. [13], Shmueli

et al. [51], Kokonendji et al. [35], and most recently by Li et al. [36]. Let M follow a

COM-Poisson distribution, then:

P [M = m; θ, ν] =
1

Z(θ, ν)

θm

(m!)ν
, m = 0, 1, 2, · · · , (1.4)

where Z(θ, ν) is known as the normalization constant calculated by:

Z(θ, ν) =
∞∑
j=0

θj

(j!)ν
. (1.5)

From (1.5), we can see the cured fraction, in other words the part of the population

that is not susceptible to the event of interest, denoted p0 is given by:

p0 = P [M = 0; θ, ν] =
1

Z(θ, ν)
. (1.6)

The COM-Poisson distribution has three distinct special cases. When ν = 1, then

Z(θ, ν) = eθ, which results in the Poisson distribution with mean θ. As ν → ∞,
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Z(θ, ν)→ 1 + θ, which means the COM-Poisson distribution converges in distribution

to the Bernoulli distribution with P [M = 1; θ, v] = θ
1+θ

. When ν = 0 and θ < 1,

Z(θ, ν) = 1
1−θ , which corresponds to a geometric distribution with parameter 1− θ.

However, if ν = 0 and θ ≥ 1, then Z(θ, ν) does not converge. Therefore, the COM-

Poisson distribution is undefined in this special case. One advantage of the COM-

Poisson distribution is that it allows for both under-dispersion and over-dispersion

of count data relative to the Poisson distribution. When θ > 1, the data is under-

dispersed relative to the Poisson distribution, whereas if θ < 1, the data is over-

dispersed relative to the Poisson distribution. Overdispersion of data occurs when

the data exhibits more variation than would be expected in a Poisson distribution

with parameter θ. Conversely, underdispersion occurs when the data exhibits less

variation than would be expected in a Poisson distribution with parameter θ. This

flexibility provides a distinct advantage when modeling count data for competing

cause scenarios. With this in mind, let us now examine the long term survival function

for the random variable Y in (1.1).

Rodrigues et al. [48] defined the long term survival function of Y as

Spop(y) =
Z(θS(y), ν)

Z(θ, ν)
, (1.7)

where Z(·, ·) is as defined in (1.5). It is important to note that Spop(y) is not a proper

survival function since lim
y→∞

Spop(y) = 1
Z(θ,ν)

. From this long-term survival function,

we can find the long-term density function of the random variable Y as

fpop(y) = −S ′pop(y) =
1

Z(θ, ν)

f(y)

S(y)

∞∑
j=1

j{νS(y)}j

(j!)ν
. (1.8)

In both (1.7) and (1.8), S(y) and f(y) are the proper survival function and probability

density function, respectively, of a lifetime distribution such as those presented in

Section 1.3. By taking advantage of the COM-Poisson’s relationship to the geometric,
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Poisson, and Bernoulli distributions, we can use (1.6), (1.7), and(1.8) to find the

long-term survival function, long-term probability density function, and cure rate,

respectively, for the geometric, Poisson, and Bernoulli models simply by adjusting the

dispersion parameter ν. In Table 1.1 we present these functions for the COM-Poisson

cure rate model and its three special cases.

Table 1.1. Long-term survival function (Spop), long-term density function (fpop), and
cured portion (p0) for the COM-Poisson cure rate model and its three special cases

Model Spop(y) fpop(y) p0

COM-Poisson Z(θS(y),ν)
Z(θ,ν)

1
Z(θ,ν)

f(y)
S(y)

∑∞
j=1

j{νS(y)}j
(j!)ν

1
Z(θ,ν)

Poisson e−θF (y) θf(y)e−θF (y) e−θ

Bernoulli 1+θS(y)
1+θ

θ
1+θ

f(y) 1
1+θ

Geometric 1−θ
1−θS(y)

(1−θ)θf(y)
(1−θS(y))2

1− θ

1.5 Form of data

For this thesis, we consider the situation where the lifetime in (1.1) is not

completely observed and is thus right censored. In a sample size n, let Ci denote

the right censoring time and Yi denote the actual lifetime as described in (1.1) for

i = 1, · · · , n. Let Ti = min{Yi, Ci} denote the observed lifetime for the ith subject.

Let δi denote a censoring indicator such that δi = 1 if Ti = Yi and δi = 0 if Ti = Ci.

In other words, δi = 1 if we observe the true lifetime and δi = 0 if the lifetime is right

censored. This leaves us with an ordered pair of numbers (Ti, δi) for each subject

i = 1, · · · , n to represent their lifetimes.

While most data pertaining to survival analysis and cure rate models are right

censored, there are other forms of censoring. Interval censoring is another common

form of censoring in which the exact time of event is unknown, but it is known that
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the event occurred within some interval of time. This happens when the subjects

are not under continuous observation, but are rather observed at regular intervals of

time. The use of interval censoring in the context of COM-Poisson cure rate models

has been investigated by Pal and Balakrishnan [40] and Wiangnak and Pal [58]).

Another common form of censoring is left censoring in which case the unit has failed

before proper measurements of failure time have begun. Interval and left censoring

are more commonly used in fields such as industrial reliability. Another mechanism of

censoring worth mentioning is informative and non-informative censoring. This type

of censoring is based on whether the lifetime of subjects is dependent or independent

of the censoring mechanism. For example, a patient may withdraw from a clinical

trial because his/her condition is deteriorating and may need a different treatment.

In this case, the patients may expect death to be sooner and as such, the right

censoring is informative. On the other hand, if a patient withdraws from a clinical

trial because he/she moves to a different place, the right censoring does not provide

any information on the patient’s lifetime. Hence, in this case, the right censoring is

non-informative. Examples of all three of these censoring mechanisms can be found in

works such as Kim and Jhun [33] in which the authors considered interval censoring

for cure rate models, Hough et al. [30] in which the authors used left censoring to

apply survival analysis to food shelf life, and Campigotto and Weller [15] in which the

authors analyzed the impact of informative censoring on the Kaplan-Meier estimate

of survival.

1.6 Likelihood inference

The most important aspect of a parametric statistical model is the estimation

of the unknown parameters of the underlying statistical model. In a parametric

framework, we assume the data follows a known distribution and attempt to find the
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parameters of that distribution that best fit the data at hand. The likelihood function

is employed to find these unknown parameters. We use the likelihood function because

the likelihood principle states that all the information of the unknown parameters of

an underlying function is contained when the data is observed. Maximum likelihood

estimation is the most common way to find these unknown parameters. The maximum

likelihood technique finds the unknown parameters of the parametric distribution

by maximizing the likelihood function. This method provides a unified approach

to find the unknown parameters. However, a closed form of this maximization may

not be available or the maximum likelihood estimates (MLE) may not exist at all.

In such a case, we may employ a numerical technique to find the MLE such as the

Newton-Raphson.

An issue that arises with our data is the constant presence of censoring which results

in missing data. As stated previously, our data is right censored, and we must utilize

an approach that takes into account this missing data. The technique we will employ

to address this issue is the expectation maximization (EM) algorithm (Dempster et

al. [22]). The EM algorithm is an iterative algorithm that handles missing data quite

well while finding the unknown parameters.

1.6.1 EM algorithm

We will use the EM algorithm to carry out the maximum likelihood estimation of

model parameters. First, let Fpop and F1 denote the cumulative distribution function

(c.d.f.) of the entire population and susceptible population respectively. Furthermore,

let Spop and S1 denote the survival function of the entire population and susceptible

population respectively. Let J denote the latent cured status variable which takes
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on the value of 0 if the subject is immune and 1 if the subject is susceptible. As a

consequence, we have P [J = 0] = p0 P [J = 1] = 1− p0. Then, we have

Fpop(y) = (1− p0)F1(y),

and

Spop(y) = 1− Fpop(y) = p0 + (1− p0)S1(y).

Using the form of Spop(y) as in (1.7), we can get an expression for S1 as

S1(y) =
Spop(y)− p0

1− p0

.

Let δ denote the censoring indicator such that δ = 1 when the actual lifetime is

observed and δ = 0 when the lifetime is right censored. Let us define two sets I1 and

I0 as I1 = {i : δi = 1} and I0 = {i : δi = 0}. Note that for the set I0, the value of J

is unknown, and this introduces missing data. Let the complete data be denoted by

(yi, δi,xi, Ji) for i = 1, 2, . . . , n, which includes both observed and unobserved Ji ’s

with xi representing a vector of covariates. Let θ denote the parameter vector of our

model. Then, the complete data likelihood function is given by

Lc(θ) =
∏
I1

{fpop(yi)}
∏
I0

{p0i}1−Ji{(1− p0i)S1(yi)}Ji .

Given the above likelihood function, we can write the log-likelihood function as:

lc(θ) =
∑
I1

log{fpop(yi)}+
∑
I0

(1− Ji) log{p0i}

+
∑
I0

Ji log{(1− p0i)S1(yi)}.
(1.9)

Now that we have expressed our log-likelihood function, we can begin discussion

of the EM algorithm; see McLachlan and Krishnan [38]. In the expectation step

(E-step), we calculate the expectation of the complete log-likelihood function with
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respect to the distribution of the unobserved J ′is, given the model parameters and the

observed data. We should note here that J ′is are Bernoulli random variables and are

linear in the complete data log-likelihood function. As such, at the rth iteration step,

we simply need to calculate π
(r)
i = E(Ji|θ(r), data), for i ∈ I0, where θ(r) denotes the

current parameter value at the rth iteration of the EM algorithm. Hence, for the ith

censored observation, we can calculate π
(r)
i as

π
(r)
i = P [Ji = 1|Yi > yi;θ

(r)]

=
P [Yi > yi|Ji = 1]P [Ji = 1]

P [Yi > yi]

∣∣∣
θ=θ(r)

=
(1− p0i)S1(yi)

Spop(yi)

∣∣∣
θ=θ(r)

=
Spop(yi)− p0i

Spop(yi)

∣∣∣
θ=θ(r)

= 1− p0i

Spop(yi)

∣∣∣
θ=θ(r)

.

Therefore, in the E-step, we only replace Ji in (1.9) with π
(r)
i if the ith observation is

censored. As done in McLachlan and Krishnan [38], we will denote the conditional

expectation of the complete data log-likelihood function at the r-th iteration as

Q(θ,π(r)), where π(r) is the vector of π
(r)
i values.

The next step in the EM algorithm is the maximization step (M-step). In this

step, we maximize Q(θ,π(r)) with respect to θ over the parameter space Θ. In other

words, we choose θ(r+1) to be a value of θ ∈ Θ such that

θ(r+1) = arg max
θ∈Θ

Q(θ,π(r)).

We continue to repeat this algorithmic process until some convergence criterion is

satisfied, for example, |θ(r+1)−θ(r)

θ(r) | < ε, where ε is some pre-defined tolerance such as

ε = 0.001.
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1.7 Thesis structure

The rest of the thesis will be organized as follows. In Chapter 2, we will explore

the use of cure rate models in the context of infectious diseases. We will also introduce

the concept of multiple discrete exposures and propose a new cure rate model utilizing

the COM-Poisson distribution. In Chapter 3, we will describe in detail the process for

generating data from our proposed model for the purpose of a Monte Carlo simulation

study. In chapter 4, we will present the results of our simulation study to show the

performance of the developed EM algorithm in retrieving the true parameter values of

our proposed model. We will also develop model discrimination and model selection

procedures through the use of likelihood ratio test and information-based criteria.

In chapter 5, we will use our proposed model to analyze a real data pertaining to

patients exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Finally, in Chapter 6 we will present some closing remarks and discuss future research

opportunities in this direction.
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CHAPTER 2

CURE RATE MODELS FOR INFECTIOUS DISEASES

2.1 Previous work

As mentioned in the introduction, cure rate models and survival analysis as a

whole can be applied to multiple fields of study. However, the vast majority of the work

in cure rate models has been devoted to the study of cancer, whether that is studying

possible causes of the disease spreading, evaluating new treatments to slow or stop

the progression, and the effectiveness of drugs for treatment of symptoms and causes.

However, very little work has been done using cure rate models to study infectious

diseases. While the framework of survival analysis is well suited for the study of the

progression and spread of an infectious disease, such as human immunodeficiency

virus (HIV), the research for infectious diseases is not a prevalent as studies involving

cancer. Some of the first work done using survival analysis for infectious diseases was

done by Panjer [43] where the authors studied the survival times of patients with

HIV which eventually progresses into acquired immunodeficiency syndrome (AIDS).

This line of work continued with Green et al. [28] in which the authors studied the

survival times of hemophilia-associated AIDS. For historical context, AIDS was a

main focus of early research of infectious diseases using survival analysis since the

“AIDS Epidemic” began in the 1980’s, around the same time survival analysis was

being more extensively developed. Struthers and Farwell [53] were the first to apply

mixture models to study the chance of contracting HIV or AIDS after an exposure.

The use of survival analysis to study the survival rates of patients with HIV or

AIDS, which are directly linked to each other, continued with works such as Chequer
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et al. [18], Jewell and Kalbfleisch [32], and Faucett et al. [24]. While there has

certainly been a large effort into using survival analysis to study HIV and AIDS, it

is by no means the only infectious disease studied using survival analysis. Hagan et

al. [29] used survival analysis to study the lifetimes of patients with Hepatitis C, a

dangerous infection of the liver. Ravi et al. [46] studied the survival of cats with

feline immunodeficiency virus (FIV) in Canada. All these works have contributed to

the advancement of the field of survival analysis to study infectious diseases.

2.2 Cure rate models with multiple exposures

There is an issue with the previous work in survival analysis in the context of

infectious diseases; previous works have assumed there was a single point of exposure

to the disease, which is not always the case, especially in the context of an infectious

disease. For example, HIV and AIDS are spread by the exchange of bodily fluids.

While it is possible to contract the infection through a single exposure, those who are

sexually active may come into contact with several partners who have the infection,

making the likelihood of contracting the disease far more likely. Another example per-

tains to the 2020 pandemic caused by severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2), also known as COVID-19 or simply coronavirus. This pathogen is

highly contagious and causes flu like symptoms and respiratory distress. Since this

disease is so widespread and does not require physical contact between people to

spread, many people are exposed several times before contracting the disease. While

several researchers were aware of this issue, the first proposed model to study the

spread of an infectious disease from multiple exposures was created by Tournoud

and Ecochard [55]. This new model allowed the authors to study the survival rates

of patients who were exposed to the disease at multiple points in time. This new

two component mixture model created a flexible framework that allowed the authors
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to study models in which there was a single exposure, or multiple. However, the

authors did not assume the distribution representing the number of pathogens that

entered the body at each moment of infection were identically distributed. Rather,

they created a model in which each exposure time is allowed to vary depending on the

moment of infection and the patient being infected. For example, one of situations

examined by the authors involved nosocomial, or hospital acquired, urinary tract

infections (UTI) caused by catheters. The authors considered the initial insertion of

the catheter as one level of exposure, and each day after a different level of exposure.

In other words, the initial insertion of the catheter most likely exposes the patient to

far more bacteria that can cause a UTI than the patient would by just having the

catheter in on a day-to-day basis. This flexibility is a great advantage when modeling

different infectious diseases. The authors considered the event of interest to be the

pathogen promotion time, which refers to the amount of time that passes between a

moment of exposure to the pathogen and the first biological signs of infection caused

by the pathogen. In everyday life, we are exposed to thousands of bacteria and viruses

which try to grow in our body. However, our immune system is able to fight off

most infections and thus will show no signs of the possibly dangerous infection. This

allows the authors to study an important event of interest and naturally introduce

an immune portion of the population. We will now describe the proposed model used

by the authors.

Let n represent the number of subjects in the study. Let t = {t0, ..., tk, ...tT}

denote the multiple and successive moments of infections with t0 denoting the

initial moment of infection. At each moment of infection, let Mi,tk , for 1 ≤ i ≤ n,

t0 ≤ tk ≤ tT , denote the number of pathogens infecting the i-th subject at time tk.

Note that Mi,tk are unobservable variables, and we assume it to follow a discrete
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distribution with mass function pMi,tk
. As mentioned previously, we do not assume

these distributions representing count data to be identically distributed, rather, at each

exposure time, we assume a suitable parameter of the distribution to depend on the

exposure time. Let Zi,j,tk , for 1 ≤ i ≤ n, t0 ≤ tk ≤ tT and 0 ≤ j ≤Mi,tk , be the j-th

pathogen promotion time of the i-th subject at time tk, in other words, the time taken

by the j-th pathogen to produce the event, which in the context of infectious diseases

may represent the first biological sign of infection. For a given Mi,tk , we assume Zi,j,tk

to be distributed with distribution function F (z) = F (z|γ) = 1− S(z|γ), where γ is

the associated vector of parameters and S(·) is the corresponding survival function.

Since this model follows data with multiple exposures, we need to re-parameterize

the time-scale of infection on the original scale. Let sk denote the time between the

initial exposure time t0 and the kth exposure time tk. Let y = z + sk, then we can

re-parameterize the cdf and survival function as follows:

Ftk(y|γ) =


F (y − sk), y − sk > 0

0, y − sk ≤ 0

(2.1)

and

Stk(y|γ) =


S(y − sk), y − sk > 0

1, y − sk ≤ 0.

(2.2)

Given that patients are exposed at different discrete time points and at each

exposure time there are several competing pathogens, the time-to-event, which can

be the first biological sign of infection or time to recovery from an infectious disease,

can be defined as

Yi = min{Zi,j,tk , 0 ≤ j ≤Mi,tk , t0 ≤ tk ≤ tT}, i = 1, 2, · · · , n, (2.3)
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where Zi,0,tk is such that

P (Zi,0,tk =∞) = 1, t0 ≤ tk ≤ tT .

A patient is termed “immune” of an infection if there are no competing pathogens at

each exposure time point, and its probability, termed as cure rate, is defined as

p0i = P (Mi,tk = 0 ∀k ∈ {0, 1, 2..., T}), i = 1, 2, · · · , n.

In their paper, Tournoud and Ecochard [55] assumed pMi,tk
to follow a Poisson

distribution with mean θtk . While the Poisson distribution is commonly used and

certainly has its advantages to model count data, the mean and the variance of the

Poisson distribution are identical, meaning the Poisson distribution is not suited

to handle over- and under- dispersed data. Furthermore, the authors provided no

justification for the suitability of the use of the Poisson distribution to model the

number of pathogens at each moment of infection. To address these issues and to

expand upon their work, Tournoud and Ecochard [56] studied their previous model,

but assumed the number of pathogens the patient is exposed to at each moment of

infection followed different distributions. In this paper, the authors considered the

same framework for their model as described above, but introduced the Bernoulli,

negative binomial, and Compound Poisson distribution to model the number of

pathogens entering the body at time tk. In other words, these new distributions were

used to model pMi,tk
. These new distributions gave their model a new outlook on

the count data, which in turn helped more accurately predict the immune portion of

the sample. The most intriguing of the new distributions considered by the authors
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was the Compound Poisson distribution. The Compound Poisson distribution with

parameters θ ≥ 0, γ1 > 0, and γ2 > 0, is defined as

M =


X1 +X2 + · · ·+XN if N > 0

0 if N = 0,

(2.4)

where N follows a Poisson distribution with mean θ and X1, X2, · · · are independent

and identically distributed random variables from the Gamma distribution with

parameters γ1 and γ2. While this model does allow for far more flexibility with regard

to the count data, the biological interpretation of this model is not clear to see. The

issue with using the Compound Poisson distribution to model biological count data

is the interpretation of a distribution in which a discrete random variable is attained

using the sum of continuous random variables. While this distribution certainly has

its uses for other branches of mathematics, such as stochastics, its uses in a biological

context are limited.

2.3 COM-Poisson cure rate model with multiple exposures

To address the issue with Compound Poisson distribution and add more flexi-

bility to the model, we propose the use of the COM-Poisson distribution to model the

count data of the number of pathogens at each exposure time. Unlike the Compound

Poisson distribution, the COM-Poisson is a true discrete distribution, which eliminates

the issue of interpretation caused by the Compound Poisson distribution. Further-

more, as we stated in Section 1.4, the Poisson, geometric, and Bernoulli distributions

are all special cases of the COM-Poisson distribution, obtained by adjusting the

dispersion parameter ν. Also, by adjusting the dispersion parameter further, we can

account for data that is over-dispersed or under-dispersed relative to the Poisson

distribution. All of these factors lead to a model with more flexibility than those
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previously studied. The COM-Poisson model will allow us to more accurately model

data and allow for a more clear perspective of the true cure rates in a group of

subjects.

In this research, we will use the same framework for studying multiple exposures

as described in the previous sub-section, but we will assume the number of competing

pathogens, pMi,tk
, to follow a COM-Poisson distribution with parameters θtk and

ν at each exposure time tk, for k = 0, 1, 2, . . . , T . Note that the parameter θtk

represents the infection intensity at each exposure time tk and hence carries biological

interpretation. Furthermore, we will assume the dispersion parameter ν to be identical

for all subjects in the study. In a practical scenario, the infection intensity at a given

exposure time will differ across patients. To capture this heterogeneity in patient

population, we propose to link θtk to a set of covariates xtk at each exposure time

tk, for k = 0, 1, 2, . . . , T , using the log-linear link function θtk = exp(x′tkβtk), where

βtk is the corresponding vector of regression coefficients. Note that the log-linear

link function is not a viable option when considering the geometric distribution. As

stated previously in, for the COM-Poisson distribution to converge to the geometric

distribution, we need ν = 0 and 0 < θtk < 1, which is not guaranteed while using

the log-linear link function. As such, we will not study the geometric distribution in

detail as a special case of the COM-Poisson distribution.

Now, let us consider two exposure times, t0 and t1, and derive the survival function

of the random variable Y in (2.3), known as the population survival function or the

long-term survival function.

Theorem 2.3.1. Given two discrete exposure times t0 and t1, let Mt0 and Mt1 denote

the number of pathogens at times t0 and t1. Let Mt0 and Mt1 both follow COM-Poisson

distribution with parameters (θt0 , ν) and (θt1 , ν), respectively. Furthermore, let St0(y)

and St1(y) denote the pathogen promotion time distribution at exposure times t0 and t1,
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respectively, as described in (2.2). Then, the overall survival function of the variable

Y in (2.3), denoted Spop(y), is given by

Spop(y) = P [Y > y] =
Z(θt0St0(y), ν)

Z(θt0 , ν)

Z(θt1St1(y), ν)

Z(θt0 , ν)
. (2.5)

A proof of Theorem 2.3.1 is provided in the Appendix.

Corollary 2.3.1.1. If we generalize the survival function in Theorem 2.3.1 with

multiple exposure times t = {t0, . . . , tk, . . . tT}, then, we have

Spop(y) =
T∏
k=0

Z(θtkStk(y), ν)

Z(θtk , ν)
. (2.6)

Note that in (2.6), if we just consider one exposure, then, Spop(y) =
Z(θt0St0 (y),ν)

Z(θt0 ,ν)
,

which reduces to the model proposed by Rodrigues et al. [48] and Balakrishnan and

Pal [3]. The density function corresponding to (2.6), known as the long-term density

function, is given by

fpop(y) = −S ′pop(y) =
T∑
k=0

[
1

Z(θtk , ν)

ftk(y)

Stk(y)

∞∑
j=1

j{θtkStk(y)}j

(j!)v

T∏
i 6=k
i=0

Z(θtiSti(y), ν)

Z(θti , ν)

]
,

(2.7)

where ftk(y) is the density function associated with Stk(y). Hence, the cured fraction

is given by

p0 = Spop(∞) = P [Mtk = 0 ∀k ∈ {0, 1, 2..., T}] =
T∏
k=0

1

Z(θtk , ν)
. (2.8)

With this information and the special relationship the COM-Poisson distribution has

with the geometric, Poisson, and Bernoulli distributions, we can adjust the dispersion

parameter ν in (2.6), (2.7), and (2.8) to find the long-term survival function, long-

term density function, and cured proportion, respectively, for the geometric, Poisson,

24



Bernoulli cure rate models with multiple exposures. In Table 2.1, we present the

long-term survival function and the cured proportion for the COM-Poisson cure rate

model and its special cases with discrete multiple exposures. In Table 2.2, we present

the corresponding long-term density functions.

Table 2.1. Expressions of long-term survival function and cured proportion for the
COM-Poisson cure rate model and its special cases with discrete multiple exposures

Model Spop(y) p0

COM-Poisson
∏T

k=0

Z(θtkStk (y),ν)

Z(θtk ,ν)

∏T
k=0

1
Z(θtk ,ν)

Poisson exp
[∑T

k=0{−θtkFtk(y)}
]

exp
[∑T

k=0{−θtk}
]

Bernoulli
∏T

k=0

{
1+θtkStk (y)

1+θtk

} ∏T
k=0

{
1

1+θtk

}
Geometric

∏T
k=0

1−θtk
1−θtkStk (y)

∏T
k=0(1− θtk)

Table 2.2. Expressions of long-term density function for the COM-Poisson cure rate
model and its special cases with discrete multiple exposures

Model fpop(y)

COM-Poisson
∑T

k=0

[
1

Z(θtk ,ν)

ftk (y)

Stk (y)

∑∞
j=1

j{θtkStk (y)}j

(j!)v

∏T
l 6=k
l=0

Z(θtlStl (y),ν)

Z(θtl ,ν)

]
Poisson

∑T
k=0{θtkftk(y)}exp

[∑T
l=0{−θtlFtl(y)

]
Bernoulli

∑T
k=0

[{
θtk

1+θtk
ftk(y)

}∏T
l 6=k
l=0

{
1+θtlStl (y)

1+θtl

}]
Geometric

∑T
k=0

[
(1−θtk )θtkftk (y)

(1−θtkStk (y))2

∏T
l 6=k
l=0

1−θtl
1−θtlStl (y)

]

The above expressions will be required to construct the complete data likelihood

function, which is essential to find the MLEs of the model parameters. By taking

advantage of the COM-Poisson’s relationship to the other three distributions, we
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would only need to model the data using the COM-Poisson distribution and then

adjust ν according to which distribution we are trying to fit to the data.

2.4 Maximum likelihood estimation

We will now discuss our proposed method for the maximum likelihood estimation

of the parameters of our model. To do so, we will employ the EM algorithm. We have

previously discussed the EM algorithm in Section 1.6.1 of Chapter 1. For the sake of

brevity, we will not repeat the information again. We will now present the expressions

for the Q-function, Q(θ,π(r)), which was described in Section 1.6.1. To express the

Q-function fully, we must first discuss the distribution of the pathogen promotion

times, in other words the amount of time it takes for the pathogen to produce the

event, for our model. In our model, we propose the use of the Weibull distribution to

model the pathogen promotion time at each exposure time. Let γ1 denote the shape

parameter of a Weibull distribution. If γ1 < 1, then the failure rate will decrease over

time. If γ1 = 1, the failure rate is constant and the Weibull distribution reduces to

the exponential distribution. If γ1 > 1, the the failure rate will increase with respect

to time. This flexibility in failure rates make the Weibull distribution well suited to

study lifetime data. For our proposed model, we will assume the pathogen promotion

time to follow a Weibull distribution with density function

f(y) =
γ1

γ2

(
y

γ2

)γ1−1

e
−
(
y
γ2

)γ1
, y ≥ 0, γ1 > 0, γ2 > 0. (2.9)

Thus, we now have γ = (γ1, γ2)
′. Note that one can also assume other parametric

lifetime distributions here; see Balakrishnan and Pal [4], Balakrishnan and Pal [6, 7].

One can also model these promotion times assuming a semi-parametric framework

(Balakrishnan et al., 2017) or assuming a completely non-parametric framework

26



(Balakrishnan et al., 2016). We use a completely parametric framework with respect

to the pathogen promotion times. For this purpose, we define the following expressions

based on our parametric Weibull assumption.

Ftk(y|γ1, γ2) =


1− e−((y−sk)/γ2)γ1 , y − sk > 0

0 , y − sk ≤ 0.

ftk(y|γ1, γ2) =


γ1
γ2

(
y−sk
γ2

)γ1−1
e−((y−sk)/γ2)γ1 , y − sk > 0

0 , y − sk ≤ 0.

Stk(y|γ1, γ2) =


exp{−((y − sk)/γ2)γ1} , y − sk > 0

1 , y − sk ≤ 0.

Now, we present the explicit expressions of the Q-functions for the COM-Poisson

model with multiple exposures and its special cases. We should again note that the

Q-function for the COM-Poisson model and the EM algorithm using it will find the

MLE’s for the COM-Poisson model and all three of its special cases. However, due to

the complexity of the COM-Poisson model, if we are just interested in the special

cases, it is advantageous to express and use the corresponding simplified expressions

for the Q-function.

2.4.1 COM-Poisson case

The Q-function, Q(θ,π(r)), for the COM-Poisson model with a fixed dispersion

parameter ν can be expressed as

Q(θ,π(r)) =
∑
i∈I1

log

[ T∑
k=0

{
1

Z(θitk , ν)

ftk(yi)

Stk(yi)

∞∑
j=1

j{θitkStk(yi)}j

(j!)v

T∏
l6=k
l=0

Z(θitlStl(yi), ν)

Z(θitl , ν)

}]

−
∑
i∈I0

(1− π(r)
i ) log

{ T∏
k=0

Z(θitk , ν)

}
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+
∑
i∈I0

π
(r)
i log

{ T∏
k=0

Z(θitkStk(yi), ν)

Z(θitk , ν)
−

T∏
k=0

1

Z(θitk , ν)

}
,

where

π
(r)
i = 1−

T∏
k=0

1

Z(θitkStk(yi), ν)

∣∣∣
θ=θ(r)

.

2.4.2 Poisson case

The Q-function, Q(θ,π(r)), for the Poisson model with mean θtk can be ex-

pressed as

Q(θ,π(r)) =
∑
i∈I1

[
log
{ T∑
k=0

θitkftk(yi)
}
−

T∑
k=0

θitkFtk(yi)
]

−
∑
i∈I0

(1− π(r)
i )
{ T∑
k=0

θitk

}
+
∑
i∈I0

π
(r)
i log

{
e−

∑T
k=0 θitkFtk (yi) − e−

∑T
k=0 θitk

}
,

where

π
(r)
i = 1− e−

∑T
k=0 θitk

e−
∑T
k=0 θitkFtk (yi)

∣∣∣
θ=θ(r)

.

2.4.3 Bernoulli case

The Q-function, Q(θ,π(r)), for the Bernoulli model with probability of success

equal to
θtk

1+θtk
can be expressed as

Q(θ,π(r)) =
∑
i∈I1

log
[ T∑
k=0

[{ θitk
1 + θitk

ftk(yi)
} T∏

l 6=k
l=0

{1 + θitlStl(yi)

1 + θitl

}]]

−
∑
i∈I0

(1− π(r)
i )
{ T∑
k=0

log(1 + θitk)
}

+
∑
i∈I0

π
(r)
i log

[ T∏
k=0

{1 + θitkStk(yi)

1 + θitk

}
−

T∏
k=0

{ 1

1 + θitk

}]
,

where

π
(r)
i = 1−

T∏
k=0

{ 1

1 + θitkStk(yi)

}∣∣∣
θ=θ(r)

.
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2.4.4 Geometric case

The Q-function Q(θ,π(r)), for the geometric model with parameter 1− θtk can

be expressed as

Q(θ,π(r)) =
∑
i∈I1

log
[ T∑
k=0

[(1− θitk)θitkftk(yi)
(1− θitkStk(yi))2

T∏
l 6=k
l=0

1− θitl
1− θitlStl(yi)

]]

+
∑
i∈I0

(1− π(r)
i )
{ T∑
k=0

log(1− θitk)
}

+
∑
i∈I0

π
(r)
i log

[ T∏
k=0

1− θitk
1− θitkStk(yi)

−
T∏
k=0

(1− θitk)
]
,

where

π
(r)
i = 1−

T∏
k=0

(1− θitkStk(yi))
∣∣∣
θ=θ(r)

.

By using these expressions of the Q-function, we can begin to study our model

under different conditions using a simulation study and eventually use this model to

study real data.
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CHAPTER 3

DATA GENERATION

3.1 Introduction

Before a proposed model can be employed to study real data, the ability of an

estimation algorithm to accurately find the maximum likelihood estimates (MLEs)

of the model parameters must be tested. To do this, researchers employ a Monte

Carlo simulation study. Monte Carlo simulations were conceptualized by physicist

Enrico Fermi to study neutron diffusion. However, the modern version of Monte

Carlo methods were developed by Stanislaw Ulam while working on the Manhattan

Project, which developed the world’s first atomic bomb, in Los Alamos National

Laboratory. The name Monte Carlo was taken from a casino in Monaco were Ulam’s

uncle visited often. Monte Carlo methods work by replacing a known parameter

with a probability distribution so researchers can introduce uncertainty into a model.

This allows a researcher to study the effects of different yet similar conditions in

their model. Returning to its original use, the scientists at Los Alamos needed a

way to study the dispersion of neutrons released in the explosion of an atomic bomb.

Knowing how these neutrons would propagate was impossible. So the researchers

instead ran experiments where the initial parameters were randomly chosen from

a specified range of possibilities, and the outcome was measured. This eventually

lead to the development of the atomic bomb and the end of World War II. This new

method of studying inherently random process quickly took off and became widely

popular in the fields of Physics, Chemistry, Operations Research, and Economics.

Most of these fields rely on Statistics, so naturally the practice became a standard
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in statistical research. As technology advances, Monte Carlo simulations become

more accurate and intensive. In the modern era, Monte Carlo methods are used to

develop new and more powerful computers utilizing machine learning and artificial

intelligence.

In biostatistical research, such as this research, Monte Carlo simulations are crucial

to study the effectiveness of a proposed model. To study the new model and the

ability of the estimation algorithm to find the MLEs of the model parameters, we

generate hundreds of data sets with known parameters and see how the new model

handles the data. Is it important to see over different scenarios if the true parameter

values can be accurately retrieved. This section will provide a guide to generate data

for a Monte Carlo simulation study. While any programming language can be used,

we used R version 4.0.0 for this simulation study. Throughout the description of the

data generation, we will use the specific conditions used for our simulation study.

The same process will work if the reader decides they wish to use different conditions

such as a different lifetime distribution, number of patients, regression coefficients,

etc.

3.2 Description of conditions

Before we describe the process of data generation, we will first describe the exact

conditions used in our simulation study. To begin, this simulation study considers

the pathogen promotion time of a nosocomial pulmonary infection through the use

of a ventilator. Ventilators are used to help the patient breath and is employed

when there is severe respiratory distress. Many of those infected with COVID-19

are forced to be placed on a ventilator due to the virus’s effect on the respiratory

system. This will allow us to introduce multiple exposures to a pathogen and also

allow for heterogeneity in the mean number of pathogens based on exposure time. As
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noted in Section 2.4, we will be using the log-linear link function to model the first

parameter of the COM-Poisson distribution that is related to the mean number of

pathogens, i.e. θtk . This will allow us to study heterogeneity of the infection intensity

for different exposure times and for different patients. To do this, we will consider two

ways a patient can be exposed to a pulmonary infection causing pathogen: through

intubation and aspiration protocol. Intubation is the process of inserting a tube

through the mouth of a patient and into the airway so that patient can be placed on

a respirator. This is the initial moment of exposure which we will denote by t0. To

incorporate a covariate into the parameter θt0 , we will consider a binary covariate

Ximm which represents the immunological status of the patient at the initial exposure

where Ximm = 0 if the patient has a poor immunological status and =1 otherwise.

Thus, θt0 at the initial exposure time will be modeled using θt0 = exp(β0 +Ximmβ1).

Once the tube is inserted into the patients’ airway, the doctors do not remove it

until the patient has sufficiently recovered or has died. While the patient has the

tube inserted in their airway, there is constant risk of aspiration, meaning the patient

inhaled some foreign object, such as food, into their lungs, which can cause serious

complications such as infection or tears in the airway and lungs. To prevent this, many

aspiration protocols have been considered to prevent this from occurring in intubated

patients. For the sake of this simulation study, we will consider two aspiration

protocols: protocol A and protocol B. Since the intubation tube is not removed, let

T represent the number of days the patient is intubated. Let θtk , for k = 1, 2, · · · , T ,

represent the infection intensity for each day of possible exposure. We can model this

using θtk = exp(β2 + Xprotβ3) where Xprot = 1 for patients undergoing protocol A

and =0 otherwise. This allows us to create four groups of patients to study. Those

four groups are

1. Patients with poor immunological status undergoing aspiration protocol A.
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2. Patients with poor immunological status undergoing aspiration protocol B.

3. Patients with good immunological status undergoing aspiration protocol A.

4. Patients with good immunological status undergoing aspiration protocol B.

While the parameter θtk of the COM-Poisson distribution, which models infection

intensity, is heterogeneous across patients and exposure times, the dispersion parame-

ter of the COM-Poisson distribution ν will remain the same across all patients and

exposure times. Finally, we will assume the pathogen promotion time, the time from

exposure to first biological sign of infection, to follow a Weibull distribution with

parameters (γ1, γ2) as defined in (2.9). Thus, our simulation study aims to find the

maximum likelihood estimate of the parameters (β0, β1, β2, β3, γ1, γ2, ν). With this

understanding, let us now discuss the method to generate artificial data for the Monte

Carlo simulation.

3.3 Data generation

To begin, we must first decide the true values of the parameters used in the

model. First, we need to decide the values for (β0, β1, β2, β3). In this simulation study,

we will assign these values as (β0, β1, β2, β3) = (.5,−1,−3, 2). Next, we must decide

the parameters of the Weibull distribution. We have chosen two different pairs of

parameters for this study: (γ1, γ2) = (2.5, 2.5) and (γ1, γ2) = (1.5, 3.5), where γ1 and

γ2 represent the shape and scale parameters, respectively, for a Weibull distribution

with probability density function

f(y) =
γ1

γ2

(
y

γ2

)γ1−1

e
−
(
y
γ2

)γ1
, y ≥ 0, γ1 > 0, γ2 > 0. (3.1)

Next, we must decide on the number of patients, denoted by n, we will study and

how to divide them into the four groups. We have decided to study two different

scenarios: n = 400 divided into four equal groups of 100 and n = 200 divided into 4
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groups of 50. These choices for sample size allows us to analyze if our model satisfies

the large sample properties. Finally, we must decide the dispersion parameter of

the COM-Poisson distribution. We have chosen to study the Poisson case (ν = 1),

the Bernoulli case (ν → ∞), and the COM-Poisson case (ν = 2). As mentioned

previously, due to our choice of link function between our covariates and θtk , for

k = 0, 1, · · · , T , we are not guaranteed the necessary condition 0 < θtk < 1 for the

geometric distribution. Therefore, we cannot consider the geometric case (ν = 0).

Once these decisions have been made, we may proceed to the data generation. We

will assume the reader is using some programming language such as R to generate

these data sets.

First, we must assign the values of the parameters we have chosen for (β0, β1, β2, β3, γ1, γ2, ν, n).

Once these constants have been assigned, we can generate θtk for k = 0, 1, · · · , T using

the link function we have chosen. We have saved these as a matrix for easier use later

in the data generation, but the reader may wish to save them differently based on

the programming language. Next we must generate random exposure times for each

patient. Obviously, some patients will be intubated longer than others, so we must

take this variability into account. For each patient, we generate a random number of

exposure times T , in our example representing days of intubation, ranging from 2

to 30 using a discrete Uniform distribution. The reader may decide to generate the

number of exposures based on another discrete distribution. Next, we must take into

account the time passing between each moment of exposure. Based on the situation,

this amount of time between moments of exposure may be a constant that is the same

between exposures or it may be based on a continuous random variable. Depending

on the data, this may represent the number of hours, days, or months between each

moment of exposure. We must ensure that the amount of time added represents
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the amount of time from the initial exposure to each subsequent exposure time. For

our purposes, we will assign the time between t0 and tk to be sk, representing the

number of days that have passed since the initial intubation. Now that we have the

values for θtk , number of exposures, and time between exposures, we can generate

the data we will analyze. Next, we must generate censoring times for each patient.

In this simulation study, random censoring times were generated from an exponential

distribution with censoring rate α = .10. Previous work such as Pal and Balakrishnan

[5] have calculated exact values for the rate parameter of the exponential censoring

distribution to control the overall censoring rate for their simulation study. However,

due to the complexity of this model, we did not do this and instead relied solely on

the random censoring rate. With these values generated, we will now describe how to

generate data for each patient group.

For each group in the simulation study, the process for data generation is the

same. Therefore, we will describe the data generation for a single group, which can

be used for every other group. For the generation of data for each patient in a group,

we need to follow these steps:

1. For each exposure time tk, k = 0, 1, · · · , T , we generate Mtk pathogens from

the COM-Poisson distribution with parameters θtk and ν for a fixed value of

the dispersion parameter ν. Recall θtk may be different at the same time tk

depending on the group the patient is in.

2. We now generate random variables from the Weibull distribution to represent

the pathogen promotion times.

(a) If Mtk > 0, we generate {R1,tk , R2,tk , · · · , RMtk
,tk} pathogen promotion

times from the Weibull distribution using equation (3.1) with our chosen

shape and scale parameters.
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(b) If Mtk = 0, then R0,tk =∞.

3. We must account for the time between each moment of exposure.

(a) Let sk denote the time between the initial exposure time, t0, and the kth

exposure time tk.

(b) Let Zi,tk = Ri,tk + sk for k = 1, 2, · · · , T and i = 1, 2, · · · ,Mtk , which

represents the re-parameterized time-scale of infection as covered in Section

2.3.

(c) For k = 0, Zi,t0 = Ri,t0 .

4. Let Wtk = min{Z1,tk , Z2,tk , · · · , ZMtk
,tk}, which represents the time-to-event at

exposure time tk. If Mtk = 0, we let Wtk =∞.

5. Since we have competing pathogens at multiple exposure times, we define

W = min{Wt0 ,Wt1 , · · · ,Wtk , · · · ,WtT } as the true time-to-event. Furthermore,

let Y denote the observed time-to-event.

6. Let C denote the random censoring time generated form an exponential distri-

bution with a suitable rate α to meet a desired censoring proportion.

(a) If W = ∞, that is, the patient is exposed to no pathogens across all

exposure times, meaning the patient is immune to the event of interest,

we set Y = C.

(b) If W <∞, we set Y = min{W,C}.

7. Let δ denote the binary right censoring indicator.

(a) If Y = W , we set δ = 1, meaning the true lifetime is observed.

(b) If Y = C, we set δ = 0, meaning the lifetime is right censored.

We now have the desired ordered pair of values (Y, δ) representing the lifetime and

censoring indicator we need to find the maximum likelihood estimates of the model
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parameters. Next we must create two functions for the simulation study. Recall the

long-term density function for the COM-Poisson distribution is

T∑
k=0

[
1

Z(θtk , ν)

ftk(y)

Stk(y)

∞∑
j=1

j{θtkStk(y)}j

(j!)v

T∏
l 6=k
l=0

Z(θtlStl(y), ν)

Z(θtl , ν)

]
.

Note that Z(·, ·) is the normalizing constant in the COM-Poisson distribution calcu-

lated by

Z(θ, ν) =
∞∑
j=0

θj

(j!)ν
.

We need to create functions to handle the infinite series Z(·, ·) and
∑∞

j=1

j{θtkStk (y)}j

(j!)v
.

For both these infinite series, we create functions that calculate these infinite series

up to 50 terms. While this does not give us the exact value of these functions,

it does give us a good approximation of the true value. After 50 terms, the new

terms are so small, R and many other programming languages cannot calculate

them. Therefore, we truncate the infinite series after 50 terms. Finally, we must

re-parameterize the lifetimes, censored and observed, with the time-scale of infection

on the original scale to use for the re-parameterized survival function Stk(y|γ) and

re-parameterized cumulative distribution function Ftk(y|γ). Let (Yi, δi) denote the

lifetime and censoring indicator as defined previously for the ith patient for i = 1, · · · , n.

Let the ith patient be exposed to Ti many moments of infection. Then, let yi,k be

defined as

yi,k =


Yi − sk, y − sk > 0

0, y − sk ≤ 0.

(3.2)

for k = 1, · · · , Ti. These new re-parameterized lifetimes will be used for as the inputs

for Ftk and Stk . In other words, yi,k will be used as the input for Ftk and Stk for

k = 1, · · · , Ti.
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CHAPTER 4

SIMULATION STUDY

We will now present the results of the simulation study conducted on our

proposed model using the framework for data generation described in Chapter 3.

4.1 Model fitting

4.1.1 Special cases

As described in Chapter 3, we will consider four different combinations of

sample size and model parameters to study during this simulation study

1. (β0, β1, β2, β3, γ1, γ2, n) = (.5,−1,−3, 2, 2.5, 2.5, 400).

2. (β0, β1, β2, β3, γ1, γ2, n) = (.5,−1,−3, 2, 2.5, 2.5, 200).

3. (β0, β1, β2, β3, γ1, γ2, n) = (.5,−1,−3, 2, 1.5, 3.5, 400).

4. (β0, β1, β2, β3, γ1, γ2, n) = (.5,−1,−3, 2, 1.5, 3.5, 200).

Recall we will not be analyzing the geometric special case of the COM-Poisson

distribution, when ν = 0, since our chosen link function does not guarantee 0 < θtk < 1

for all k = 0, 1, · · · , T . To evaluate the performance of the estimates of the parameters,

we calculated the bias and root mean square errors (RMSE) of all the estimates.

Additionally, we calculated the 95% coverage probabilities (CP) of the confidence

intervals based on the asymptotic normality of the MLEs. All of these simulations

were performed using R software version 4.0.0 and the results were based on 200 Monte

Carlo runs. While a typical Monte Carlo simulation study uses more simulations, the

we decided 200 Monte Carlo simulations were sufficient since the complexity of the

model requires a lot of computational power which in turn takes a very long time to
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run.

The EM algorithm requires an initial guess of the parameters to begin the iterative

process. To find our initial guess for each parameter, we used a random number from

a uniform distribution whose minimum and maximum values were a 15% deviation

from the true value of the parameter on either side. This ensured different initial

guesses for each Monte Carlo simulation. This randomness allowed us to explore the

efficiency of our model with different generated data and different initial guesses.

To calculate the asymptotic standard error of each parameter, we need to find the

inverse of the Hessian matrix. The asymptotic standard errors can be found by

calculating the inverse of the hessian matrix at the MLE values and taking the square

root of the diagonal values. While it is possible to derive the Hessian matrix by hand,

this is not ideal due to the complexity of the model. Therefore, we have used the R

package “numDeriv” to calculate the standard errors. Within this package, there is

a function “hessmat” which provides an accurate numerical approximation for the

Hessian matrix at the given values. We have taken advantage of this function for

efficient calculation of the asymptotic standard errors. Once these standard errors

have been calculated, we can easily find the coverage probability of each parameter.

Tables 4.1 and 4.2 show the results of our Monte Carlo simulation study for the

Bernoulli and Poisson models, respectively. It is clear to see that the EM algorithm

can accurately retrieve the true parameters of the underlying model. The bias,

standard error, and RMSE are all relatively small which is desired in model fitting.

Furthermore, the 95% coverage probabilities are all close to nominal level. The tables

also show our model obeys the large sample theory since the standard error, bias,

and RMSE all decrease as the sample size increases. While these results show a

great ability of our proposed method to find the true parameters of the model, it

does so with greater accuracy for the models in which (γ1, γ2) = (2.5, 2.5). While the
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estimates for the cases when (γ1, γ2) = (1.5, 3.5) are still good, the estimates for the

other case are certainly better.

4.1.2 General case of COM-Poisson model

Let us now discuss the parameter estimation of the general COM-Poisson model.

While the EM algorithm does a very good job predicting the true parameters for the

covariates and the promotion time distribution parameters, it is not as well equipped

to estimate the dispersion parameter ν of the COM-Poisson distribution. As such, a

separate technique will be needed in conjunction with the EM algorithm. To estimate

ν, we will employ a profile likelihood technique within the EM algorithm, which is

done along the lines of Balakrishnan and Pal [8]. For this purpose, we first select

a set of admissible values for the dispersion parameter ν. Then, for each of these

chosen values, we run the EM algorithm using the chosen value of ν as a constant

in the model to estimate the other parameters in the model. We next calculate the

log-likelihood value at the MLEs. Finally, we select the MLE of ν as the value of ν

that results in the highest log-likelihood value. We use that value of ν and the MLEs

of the other parameters to evaluate the general COM-Poison model. In this simulation

study for the general COM-Poisson model, we will use the same four settings that

were used in the special cases models. We have chosen the true parameter of ν as

2, which simulates data that is under-dispersed relative to the Poisson distribution.

For the admissible values of ν, we have chosen {1.6, 1.7, · · · , 2.3, 2.4} which gives us

eleven possible choices of ν. The results of this simulation study can be found in

Table 4.3. Similar to the results for the Poisson and Bernoulli models, the general EM

algorithm estimates the COM-Poisson model parameters quite accurately. The bias,

standard error, and RMSE are all relatively small. The 95% coverage probabilities
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are all close to the nominal level, and all the large sample properties are satisfied as

well.

Table 4.1. Model fitting results for the Bernoulli cure rate model with multiple
exposures.

n True Value Estimate S.E. Bias RMSE CP
400 (100, 100, 100, 100) β0 = 0.5 0.4770 0.3005 -0.0230 0.2898 0.950

β1 = −1 -1.0438 0.3191 -0.0438 0.3225 0.940
β2 = −3 -2.9912 0.2890 0.0088 0.2619 0.940
β3 = 2 2.0321 0.3336 0.0321 0.2695 0.970
γ1 = 2.5 2.5554 0.2095 0.0554 0.2213 0.935
γ2 = 2.5 2.4398 0.1608 0.0602 0.1457 0.965

200 (50, 50, 50, 50) β0 = 0.5 0.5270 0.4168 0.0270 0.3982 0.940
β1 = −1 -1.0379 0.4649 -0.0379 0.4955 0.935
β2 = −3 -3.1321 0.4935 -0.1321 0.7061 0.960
β3 = 2 2.2151 0.5552 0.2151 0.7774 0.930
γ1 = 2.5 2.5889 0.2852 0.0889 0.3335 0.925
γ2 = 2.5 2.4983 0.2096 0.0017 0.1948 0.940

400 (100, 100, 100, 100) β0 = 0.5 0.4155 0.4383 -0.0845 0.4395 0.950
β1 = −1 -1.0541 0.3935 -0.0541 0.3331 0.975
β2 = −3 -2.9738 0.3831 0.0262 0.3973 0.930
β3 = 2 2.9755 0.4174 -0.0245 0.4588 0.915
γ1 = 1.5 1.5570 0.1274 0.0570 0.1359 0.965
γ2 = 3.5 3.3984 0.3799 -0.1016 0.4136 0.905

200 (50, 50, 50, 50) β0 = 0.5 0.4308 0.6067 -0.0692 0.5680 0.935
β1 = −1 -0.9745 0.5598 0.0255 0.5332 0.950
β2 = −3 -2.9882 0.5582 0.0118 0.4703 0.920
β3 = 2 1.9906 0.6054 -0.0094 0.5151 0.910
γ1 = 1.5 1.5788 0.1911 0.0788 0.2375 0.935
γ2 = 3.5 3.3074 0.5371 -0.1916 0.5426 0.895
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Table 4.2. Model fitting results for the Poisson cure rate model with multiple
exposures.

n True Value Estimate S.E. Bias RMSE CP
400 (100, 100, 100, 100) β0 = 0.5 0.5060 0.1262 0.0060 0.1239 0.955

β1 = −1 -1.0137 0.1605 -0.0137 0.1757 0.935
β2 = −3 -3.0621 0.4553 -0.0621 0.4644 0.960
β3 = 2 2.0614 0.4936 0.0614 0.5037 0.965
γ1 = 2.5 2.5282 0.1654 0.0282 0.1687 0.960
γ2 = 2.5 2.4936 0.1604 -0.0064 0.1577 0.965

200 (50, 50, 50, 50) β0 = 0.5 0.5110 0.1785 0.0110 0.1713 0.970
β1 = −1 -1.0370 0.2303 -0.0370 0.2326 0.965
β2 = −3 -3.0768 0.4916 -0.0768 0.4923 0.965
β3 = 2 2.0866 0.5459 0.0866 0.5317 0.955
γ1 = 2.5 2.5326 0.2329 0.0326 0.3536 0.945
γ2 = 2.5 2.5180 0.2264 0.0180 0.2318 0.930

400 (100, 100, 100, 100) β0 = 0.5 0.5069 0.1867 0.0069 0.1818 0.960
β1 = −1 -1.1014 0.1817 -0.1014 0.1823 0.945
β2 = −3 -3.1269 0.6654 -0.1269 0.6932 0.900
β3 = 2 2.1127 0.6983 0.1127 0.7281 0.910
γ1 = 1.5 1.5155 0.1062 0.0155 0.1033 0.965
γ2 = 3.5 3.6233 0.4127 0.1233 0.4266 0.905

200 (50, 50, 50, 50) β0 = 0.5 0.4729 0.2687 -0.0281 0.2744 0.945
β1 = −1 -1.0477 0.2688 0.0477 0.2653 0.965
β2 = −3 -3.0373 0.7598 -0.0373 0.5923 0.920
β3 = 2 2.0541 0.8183 0.0541 0.6590 0.915
γ1 = 1.5 1.5466 0.1579 0.0466 0.1769 0.930
γ2 = 3.5 3.4580 0.8309 0.0420 0.8945 0.905
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Table 4.3. Model fitting results for the COM-Poisson cure rate model with mul-
tiple exposures (to apply the profile likelihood, the set of values of ν is chosen as
{1.6, 1.7, · · · , 2.4}).

n True Value Estimate S.E. Bias RMSE CP
400 (100, 100, 100, 100) β0 = 0.5 0.4644 0.2259 -0.0356 0.2282 0.945

β1 = −1 -1.0151 0.2345 -0.0151 0.2344 0.940
β2 = −3 -3.0504 0.2121 -0.0504 0.2175 0.960
β3 = 2 2.0522 0.2177 0.0522 0.2233 0.960
γ1 = 2.5 2.5842 0.2575 0.0842 0.2703 0.965
γ2 = 2.5 2.5376 0.2569 0.0376 0.2590 0.955
ν = 2 1.8320 – -0.1680 0.8133 –

200 (50, 50, 50, 50) β0 = 0.5 0.4554 0.5288 -0.0446 0.5280 0.940
β1 = −1 -1.1001 0.4805 -0.1001 0.5149 0.950
β2 = −3 -3.0033 0.3293 -0.0033 0.3277 0.960
β3 = 2 1.9846 0.3507 -0.0126 0.3492 0.960
γ1 = 2.5 2.6991 0.4356 0.1991 0.4770 0.925
γ2 = 2.5 2.5084 0.3260 0.0084 0.3345 0.920
ν = 2 1.7975 – -0.2025 0.8956 –

400 (100, 100, 100, 100) β0 = 0.5 0.4470 0.3462 -0.0630 0.3485 0.950
β1 = −1 -1.0812 0.4155 -0.0812 0.4213 0.945
β2 = −3 -3.0359 0.2481 -0.0359 0.2494 0.910
β3 = 2 2.0275 0.2792 0.0275 0.2791 0.920
γ1 = 1.5 1.5556 0.1629 0.0556 0.1714 0.945
γ2 = 3.5 3.6636 0.5117 0.1636 0.5348 0.950
ν = 2 2.1878 – 0.1878 0.8401 –

200 (50, 50, 50, 50) β0 = 0.5 0.5433 0.5760 0.0433 0.5746 0.925
β1 = −1 -1.1837 0.6957 -0.1837 0.7579 0.945
β2 = −3 -2.9712 0.3775 0.0288 0.3766 0.900
β3 = 2 1.9377 0.3555 -0.0623 0.3591 0.915
γ1 = 1.5 1.5665 0.2647 0.0665 0.2716 0.935
γ2 = 3.5 3.5186 0.7116 0.0186 0.7082 0.940
ν = 2 1.7864 – -0.2136 0.9376 –

4.2 Model discrimination

Due to the flexibility of the multiple exposure COM-Poisson model and its

inclusion of several other multiple exposure models as special cases, we are in a

position to select a simple multiple exposure model within the bigger family of COM-

Poisson multiple exposure model that provides an adequate fit as the COM-Poisson
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model itself in many cases. This motivates us to explore the flexibility of the multiple

exposure COM-Poisson cure rate model to select a parsimonious cure rate model that

provides an adequate fit to the given data. To this end, we conduct two different

model discrimination studies, one using the likelihood ratio test and the other using

the information-based criteria.

4.2.1 Likelihood ratio test

In this model discrimination study, we investigate the performance of the

likelihood ratio test to test the null hypothesis that the distribution of the number of

pathogens at each exposure time can be described by one of the Bernoulli (ν →∞),

Poisson (H0 : ν = 1), COM-Poisson (ν = 0.5), and COM-Poisson (ν = 2) distributions

versus the alternative hypothesis that the number of pathogens can be described by

any other member of the COM-Poisson family besides the one already specified in

the null hypothesis. The likelihood test statistic is defined as Λ = −2(l̂0 − l̂), where

l̂0 denotes the maximized log-likelihood function value under the null hypothesis and

l̂ denotes the unrestricted maximized log-likelihood function value. Note that to

calculate l̂, we fit the multiple exposure COM-Poisson model for which the profile

likelihood technique needs to be employed. For this simulation study, we consider the

following three parameter settings: (i) Setting 1 considers 400 patients with parameters

(β0, β1, β2, β3, γ1, γ2) = (0.5,−1,−3, 2, 2.5, 2.5); (ii) Setting 2 considers 400 patients

with parameters (β0, β1, β2, β3, γ1, γ2) = (0.5,−1,−3, 2, 1.5, 3.5); and (iii) Setting 3

considers 200 patients with parameters (β0, β1, β2, β3, γ1, γ2) = (0.5,−1,−3, 2, 2.5, 2.5).

For each simulated data from a true model, we calculate the likelihood ratio test

statistic of the fitted Bernoulli, Poisson, COM-Poisson (ν = 0.5), and COM-Poisson

(ν = 2) models versus the fitted COM-Poisson model. Based on 200 data sets for

each true model and for each parameter setting, and using 10% level of significance,
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we report the observed significance levels (in bold) and observed power values of

the likelihood ratio test in Table 4.4. These values are obtained by the rejection

rates of the null hypothesis. From Table 4.4, it is clear that the asymptotic null

distribution of the likelihood ratio test statistic is reasonably approximated with all

observed levels being above the true nominal level of 10%. The approximation only

turns out to be better for the Bernoulli cure rate model, in which case the observed

levels are close to the true level. When the true model is Bernoulli (or COM-Poisson

(ν = 0.5)), the power to reject the COM-Poisson (ν = 0.5) (or Bernoulli) is high. Thus,

the likelihood ratio test can discriminate between the Bernoulli and COM-Poisson

(ν = 0.5) models. In this regard, note that the rejection rate is higher when the true

model is COM-Poisson (ν = 0.5) and the fitted model is Bernoulli. Now, when the

true model is Poisson, the likelihood ratio test still possess adequate power to reject

the Bernoulli model. However, when the true model is Bernoulli, the test has very

low power to reject the Poisson model. Finally, the power of the likelihood ratio test

to discriminate among COM-Poisson (ν = 0.5), Poisson, and COM-Poisson (ν = 2)

models vary from low to medium.

4.2.2 Information-based criteria

In this model discrimination study, we investigate the performance of the

Akaike information criterion (AIC) and the Bayesian information criterion (BIC) in

choosing either the Bernoulli multiple exposure model, Poisson multiple exposure

model, COM-Poisson (ν = 0.5) multiple exposure model or COM-Poisson (ν = 2)

multiple exposure model, for a given true multiple exposure model. Our selected

models cover both over-dispersed and under-dispersed models. We choose to look

into the AIC and BIC since they are they two most widely used model selection

criteria. The AIC was first introduced by Hirotugu Akaike (see Akaike [1]) and is
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Table 4.4. Observed levels and observed power values of the likelihood ratio test.

True multiple exposure model
Fitted model ν = 0.5 ν = 1 ν = 2 ν →∞

Setting 1
ν = 0.5 0.100 0.315 0.465 0.765
ν = 1 0.230 0.095 0.105 0.140
ν = 2 0.425 0.390 0.100 0.095
ν →∞ 0.945 0.745 0.400 0.070

Setting 2
ν = 0.5 0.115 0.250 0.400 0.695
ν = 1 0.205 0.125 0.085 0.155
ν = 2 0.435 0.350 0.160 0.105
ν →∞ 0.885 0.715 0.410 0.085

Setting 3
ν = 0.5 0.145 0.225 0.380 0.680
ν = 1 0.180 0.150 0.075 0.125
ν = 2 0.375 0.355 0.170 0.090
ν →∞ 0.845 0.650 0.395 0.065

defined as AIC = −2l + 2p, where l is the maximized log-likelihood value of the

given model and p is the number of parameters of the fitted model. The BIC, on the

other hand, was developed by Gideon Schwarz (see Schwarz [50]) and is defined as

BIC = −2l + p log(n). Similar to the AIC, l is the maximized log-likelihood value

of the given model, p is the number of parameters of the fitted model, and n is the

sample size. In both AIC and BIC, the preferred model is the fitted model with the

lowest AIC or BIC value.

For each generated true model, we fit all candidate models, i.e., Bernoulli

(ν →∞), Poisson (ν = 1), COM-Poisson (ν = 0.5), and COM-Poisson (ν = 2), and

allow AIC/BIC to select the best model. To generate the true model, we consider

the same parameter settings as in the case of likelihood ratio test. Based on 200

generated data sets for each true model and for each parameter setting, we calculate
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the observed selection rates for both AIC and BIC, and report these values in Table

4.5. Note that the selection rates for BIC turned out to be the same as that for

AIC, and, as such, are not reported. From the results in Table 4.5, it is clear that

the model selection criteria performs well in selecting the correct model. When the

true model is Bernoulli (or COM-Poisson (ν = 0.5)), the selection rate for COM-

Poisson (ν = 0.5) (or Bernoulli) is very low. This suggests that the AIC and BIC

can distinctly discriminate between these two models. Thus, the decision reached

by AIC/BIC is in agreement with that reached by likelihood ratio test earlier. A

similar conclusion can also be drawn when discriminating between Bernoulli and

COM-Poisson (ν = 2) as well as between Bernoulli and Poisson models. However,

the discrimination power of AIC and BIC among COM-Poisson (ν = 0.5), Poisson

and COM-Poisson (ν = 2) models appear to be weak. Note, in this regard, that

when the true model is COM-Poisson (ν = 2), the selection rate for COM-Poisson

(ν = 0.5) is low. These observations suggest that it is worth exploring the flexibility

of the COM-Poisson distribution to select a suitable distribution for the count on the

pathogens at each exposure time. We note the advantage of using AIC/BIC in terms

of speed. Unlike the method of model discrimination using likelihood ratio test, we

do not need to estimate the shape parameter v since we are only attempting to fit

the candidate models for which the values of ν are specified. If we were to estimate

the shape parameter ν, we would need to use a profile likelihood approach, which

would drastically increase the computation time.

From these results, we can see our proposed EM algorithm can accurately

predict the true values of the underlying model with relatively low bias, standard

error, and root mean square error. Furthermore, the likelihood ratio test and the

AIC/BIC are able to distinguish between different cases of the COM-Poisson cure

rate model quite well. As such, we can now apply this model and the estimation
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Table 4.5. Observed selection rates based on AIC

True multiple exposure model
Fitted model ν = 0.5 ν = 1 ν = 2 ν →∞

Setting 1

ν = 0.5 0.405 0.275 0.150 0.035
ν = 1 0.310 0.410 0.315 0.105
ν = 2 0.235 0.215 0.330 0.145
ν →∞ 0.050 0.100 0.205 0.715

Setting 2

ν = 0.5 0.415 0.290 0.165 0.060
ν = 1 0.320 0.425 0.320 0.110
ν = 2 0.215 0.200 0.325 0.125
ν →∞ 0.050 0.085 0.190 0.705

Setting 3

ν = 0.5 0.420 0.285 0.140 0.025
ν = 1 0.300 0.400 0.295 0.140
ν = 2 0.235 0.220 0.340 0.165
ν →∞ 0.045 0.095 0.225 0.670

algorithm to a real data set to study the underlying conditions of the model. This

will allow us to study infectious diseases with more accuracy.
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CHAPTER 5

REAL DATA ANALYSIS

5.1 Description of data

Now that we have demonstrated our proposed algorithm’s ability to accurately

predict the maximum likelihood estimates and find the underlying distribution for the

model, we can use our proposed model and algorithm to study real data. The data

used in this study can be found via the website Kaggle. Kaggle is a free-to-access

online database repository that contains thousands of data sets created by researchers

worldwide. The data we will be evaluating was collected by the World Health

Organization (WHO) in conjunction with John Hopkins University on December 31,

2019. This data tracks patients who have contracted the SARS-CoV-2, also known as

COVID-19 or simply coronavirus, after visiting Wuhan City, Hubei Province of China,

which is believed to the epicenter of the COVID-19 pandemic. In 2020, COVID-19 has

been a focus of medical research due to the virus’ infection rate, world-wide spread,

and mortality rate. The virus is easily spread and causes respiratory distress in some

patients. Some patients experience severe respiratory symptoms which can lead to

death and others are asymptomatic carriers of the virus. This data set contains the

patient data of people who have been in contact with people from Wuhan or someone

who had recently visited Wuhan. The data set has information on variables such

as country of origin, gender, age, date of symptom onset, if the patient died, and

if the patient recovered. Most importantly, the data set contains the day when the

patient started to be exposed to COVID-19 and when the exposure ended, which

is crucial for our model. However, not all patients had this information. As such,
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we had to comb through the data to find patients who had the values we desired,

so we could create a new data set with the information we required. We began by

selecting patients who had a definitive exposure start date and exposure end date.

This left us with 120 patients to study. We decided the event of interest we wanted

to study would be the time to recovery. From these patients, we decided to study the

effects of the covariates age and gender on the recovery time of the patients. Once

we eliminated patients whose age and gender were not available, we were left with 95

patients whose starting exposure time, ending exposure time, age, and gender were

recorded. Of these 95 patients, 15 of them had recovered from the disease and their

date of recovery was also recorded.

5.2 Data preparation for model

Now that we have our desired data set of 95 patients, we can use our proposed

model and algorithm to find the MLEs of the model. To begin, we identify our 2

covariates of interest as age and gender denoted Xage and Xgen, respectively. We

will treat age as a binary covariate where Xgen = 1 if the patient is male (54.7%)

and Xgen = 0 if the patient is female (45.3%). Next, we will let our covariate age be

a categorical covariate. It would be impractical to divide the patients into groups

based on their exact age, so instead we broke the patients into 5 groups that were

representative of the dispersion of the age. Xage = 1 if the patient is between 0 and

24.5 years old (8.4%), Xage = 2 if the patient is between 24.5 and 36.5 years old

(23.2%), Xage = 3 if the patient is between 36.5 and 48.5 years old (29.5%), Xage = 4

if the patient is between 48.5 and 60.5 years old (25.3%), and Xage = 5 if the patient

is older than 60.5 years old (13.7%). Now that we have defined our covariates and

their values, we can use the log linear link function as θtk = exp(β0 +β1Xgen+β2Xage).

Since we have no evidence of heterogeneity of exposure intensity with respect to
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moment of exposure, we will assume θtk is the same for each moment of exposure for

each patient. Since the data records the number of days each patient was exposed to

COVID-19, we will let the number of exposures be the number of days the patient was

exposed. Therefore, the “time jump” between each moment of exposure as explained

previously in this dissertation will be 1. The average number of exposures is 6.24,

with a minimum value of 1 and a maximum value of 29. Furthermore, we will let

the value for the days until recovery, in other words the time to the event of interest,

to be the number of days that have passed from the first day of exposure until the

recovery date. The average time to recovery is 29.125 days, the minimum value is 22

days, and the maximum value is 40 days. If the recovery time of the patient is not

recorded, the patient is censored and we allow the lifetime value to we will discuss to

be 40 days. Next, to begin the iterative process of the EM algorithm, an initial guess

of parameters is needed. To find the initial guess of the parameters in the Weibull

distribution, we found the mean and variance of the recorded lifetimes. We then

used the known expressions for the mean and variance of the Weibull distribution

and solved for the progression time parameters. To get an initial guess for the

regression coefficients, we performed a grid search using the observed likelihood

function. For the purpose of the grid search, we assumed the data to follow the

Poisson distribution. We then set the values for the lifetime parameters as constant.

Finally, we calculated the log-likelihood values using the constant lifetime parameters,

and different combinations of the regression coefficients with values ranging from

[−5, 5]. Once we found the maximum log-likelihood value, we used those chosen

parameters as the initial guess to begin the iterative process of the COM-Poisson

distribution. We used these initial guesses and different values of ν to determine the

correct model for this data. We selected values of ν ranging from 0 to 2, with jumps
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of .1, as well as the Bernoulli case (ν →∞). Now that the data has been prepared,

we can show the results of our study.

5.3 Real data results

Our model was able to converge to values for the regression coefficients and

lifetime parameters very well. The algorithm was able to converge to the same values

of (β0, β1, β2, γ1, γ2) very quickly and under different, yet relatively close, values of

the starting guesses. However, the model was not able to accurately distinguish

between the different values of ν. Figure 5.1 shows the value of the maximized

log-likelihood function using our selected values of ν. As we can clearly see, the values

of the maximized log-likelihood function are very close to each other and almost

indistinguishable. Furthermore, Table 5.1 shows some selected values of ν from the

real data analysis along with the maximized log-likelihood , AIC, and BIC values.

From Table 5.1, we can see there is very little difference between the different values of

ν. Therefore, we can say that any model within the COM-Poisson family is adequate

for this data. Therefore, we can assume our model follows any of our proposed models.

For the remainder of this chapter, we will assume the data follows the geometric

cure rate model since it has the highest log-likelihood value and lowest AIC and BIC

values. Under this assumption, we can look at the Kaplan Meier curves to study

the effect the covariates have on the overall survival of the population. Figure 5.2

shows the Kaplan Meier curve that demonstrates the effect of the covariate “age”

on the survival of the male population. Figure 5.3 shows the Kaplan Meier curve

that demonstrates the effect of the covariate “age” on the survival of the female

population.
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Figure 5.1. This figure shows plots the selected values of ν against the maximized log-
likelihood values. .

Table 5.1. AIC, BIC and maximized log-likelihood function (l̂) values for different
cure rate models.

Model l̂ AIC BIC
COM-Poisson (geometric) -85.7124 183.4247 198.7480
COM-Poisson (ν = 0.5) -85.7175 183.4350 198.7583
COM-Poisson (Poisson) -85.7210 183.4420 198.7653
COM-Poisson (ν = 2) -85.7252 183.4503 198.7736
COM-Poisson (Bernoulli) -85.7294 183.4588 198.7820
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Figure 5.2. This figure shows the Kaplan Meier curve to show the effect of age if the
patient is male .
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Figure 5.3. This figure shows the Kaplan Meier curve to show the effect of age if the
patient is female .
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CHAPTER 6

SUMMARY OF RESEARCH

When studying most infectious diseases, some patients exposed to the disease

of interest will be asymptomatic, show no biological signs of the disease, or may be

all together immune to the disease. Others infected may succumb to the disease more

rapidly than others. It is of upmost importance to those studying the infectious disease

to accurately estimate the proportion of the population immune or asymptomatic to

the disease and to find underlying factors that can accelerate the progression of the

pathogen. Studying both of these populations and understanding the factors that

contribute to both groups are vital in slowing down or stopping the spread of an

infectious disease. In an era where the threat of antibiotic resistant bacteria, so called

“super bugs”, grows, understanding new statistical methods to slow the progression

will become more important.

Tournoud and Ecochard [55] developed a cure rate model for infectious diseases that

allowed for multiple and discrete exposures to the disease. In their model, they

assumed the number of competing causes to follow the Poisson distribution. This

work was later expanded upon by Tournoud and Ecochard [56] in which they used

the Poisson, Bernoulli, negative binomial, and compound Poisson distribution to

model the number of competing pathogens at each moment of exposure. However, as

mentioned in Section 2.3, the compound Poisson distribution proposed by Tournoud

and Ecochard [56] does not have a clear biological interpretation for modeling the

number of competing causes as it is a discrete distribution derived from the sum

of continuous random variables. In this thesis, we have considered the cure rate
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model with multiple exposures developed by Tournoud and Ecochard [55]. The main

contribution of this work is the introduction of the COM-Poisson distribution to

address the issue with the compound Poisson distribution and developing an exact

EM algorithm for estimating the parameters of the COM-Poisson cure rate model

with multiple exposures and its special cases. This introduces a new model with far

more flexibility and natural biological interpretation.

In this thesis, we considered the lifetime distribution modeling the pathogen promotion

times to follow a Weibull distribution. We then developed the necessary steps of

the EM algorithm to find the MLEs of the parameters of our proposed model. Two

studies were carried out with the use of Monte Carlo simulations; one dealing with

the estimation of the parameters and evaluating the performance of the proposed

method of finding the MLEs, and the other demonstrating the flexibility of the COM-

Poisson family to select a proper competing pathogen distribution that provides an

adequate fit to the data. The results shown in Chapter 4 demonstrate our proposed

methodology’s ability to find estimates that converge to the true parameters of the

model quite accurately. Since the likelihood surface turned out to be flat with respect

to the dispersion parameter of the COM-Poisson distribution, a profile likelihood

approach was used to estimate ν. For the model discrimination study, we used the

AIC and BIC as well as the likelihood ratio test. When investigating the ability of

the AIC and BIC to discriminate between models, we have found the results are

the same for both selection criteria. Therefore, we can use either the AIC or the

BIC to determine the true model. The results of our simulation study show the

information based criteria are able to distinguish models quite well. Although it has

greater difficulty distinguishing between models with dispersion parameters close to

each other, it is able to distinguish between the Bernoulli model and COM-Poisson

(ν = 0.5) model with a high degree of accuracy. The same conclusion was reached
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using the likelihood ratio test. Finally, we used our proposed model on a real set of

data pertaining to the SARS-CoV-2 pandemic of 2020. Our analysis shows for this

particular data set, the geometric, Poisson, and Bernoulli distributions are all viable

options for the true competing pathogen distribution.

6.1 Future Works

In this section, we will discuss some future research topics that would be natural

extensions of the work conducted in this thesis.

6.2 Other distributions for the competing cause and lifetime variables

In this thesis, we considered the COM-Poisson and Weibull distributions to

represent the distribution for the number of competing pathogens and the promotion

times of the pathogens, respectively. While our model has clear biological inter-

pretations and demonstrates flexibility, future work may consider the use of other

distributions to represent these random variables. Future work may consider the use

of the generalized gamma distribution to represent the promotion times to allow for

more flexibility. Furthermore, we may consider the generalized power series distri-

bution to model the number of competing pathogens, as done by Borges et al. [14].

The likelihood inference corresponding to these generalized distributions will be of

great interest to develop. Furthermore, future work may wish to investigate different

distributions to model the number of competing pathogens. Such distributions may

include the Gompertz, Yule-Simon, or polyalgorithm distributions.
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6.3 Semi-parametric and non-parametric approaches

While the Weibull distribution is a commonly used distribution to represent

lifetime in a parametric setup, future works may wish to consider a semi-parametric or

non-parametric approach to modeling the promotion time distributions. For example,

Balakrishnan et al. [10] used a Cox proportional hazard model with a Weibull baseline

hazard function for the promotion times of competing malignant cells related to the

occurrence of a tumor. This model reduced to a Weibull distribution with shape

parameter γ0 and scale parameter γ1 exp(−x′cγ2/γ0) where xc = (x1, · · · , xp)′ is a

vector of p covariates and γ2 = (γ21, · · · , γ2p)
′ is the proportional hazards regression

coefficients. By using this model, we can introduce heterogeneity between patients with

respect to the pathogen promotion time, which will have great biological significance.

Furthermore, we may wish in the future to study a non-parametric framework such

as the model proposed by Peng and Dear [44] for a more general form of analysis.

6.4 Other forms of censoring

While the model described in this thesis assumed right censoring for the data,

future research may wish to implement other forms of censoring such as interval

censoring, which is a more general form of censoring and includes both right and left

censoring as special cases. Furthermore, developing the inference under informative

censoring will also be of great interest.

6.5 Destructive cure rate model with multiple exposures

As mentioned in Section 1.2, Pal and Majakwara [41] and Majakwara and Pal

[37] extended the works of Rodrigues et al. [47] by studying a destructive cure rate

model using the COM-Poisson distribution. In a destructive cure rate model, the
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original number of risk factors undergo a destructive process. This has interesting

biological interpretations, especially when discussing infectious diseases, as this model

allows us to study the effects of treatment such as antibiotics or other treatments as

a destructive process to slow or stop the spread of an infection.

6.6 Other methods of maximum likelihood estimation

While the EM algorithm is a useful tool to find the maximum likelihood es-

timates of a model, it does have some issues. As mentioned in Chapter 3, the EM

algorithm has trouble estimating the dispersion parameter of the COM-Poisson distri-

bution, which requires us to employ a profile likelihood approach to find the estimate

for the dispersion parameters. There is a recent research work work by Pal and Roy

[42], where the authors have proposed a non-linear conjugate gradient algorithm that

can simultaneously estimate all model parameters. It will be of great interest to apply

this technique for the M-step of the EM algorithm. Another possibility is to develop

a stochastic version of the EM-algorithm, which can be done along the lines of Davies

et al. [21].

Work on some of these problem are currently under progress and other will

surely be investigated in the future.
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APPENDIX A

PROOF OF THEOREM 2.4.1
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Spop(y) = P [Mt0 = 0,Mt1 = 0]

+P [Z1,t0 > y, ..., ZMt0 ,t0
> y,Mt0 ≥ 1,Mt1 = 0]

+P [Z1,t1 > y, ..., ZMt1 ,t1
> y,Mt1 ≥ 1,Mt0 = 0]

+P [Z1,t0 > y, ..., ZMt0 ,t0
> y,Z1,t1 > y, ..., ZMt1 ,t1

> y,Mt0 ≥ 1,Mt1 ≥ 1]

= P [Mt0 = 0]P [Mt1 = 0]

+P [Z1,t0 > y, ..., ZMt0 ,t0
> y,Mt0 ≥ 1]P [Mt1 = 0]

+P [Z1,t1 > y, ..., ZMt1 ,t1
> y,Mt1 ≥ 1]P [Mt0 = 0]

+P [Z1,t0 > y, ..., ZMt0 ,t0
> y,Mt0 ≥ 1]P [Z1,t1 > y, ..., ZMt1 ,t1

> y,Mt1 ≥ 1]

= P [Mt0 = 0]P [Mt1 = 0]

+P [Mt1 = 0]
∞∑
k=1

P [Z1,t0 > y, ..., Zk,t0 > y]P [Mt0 = k]

+P [Mt0 = 0]
∞∑
j=1

P [Z1,t1 > y, ..., Zj,t1 > y]P [Mt1 = j]

+
∞∑
k=1

P [Z1,t0 > y, ..., Zk,t0 > y]P [Mt0 = k]
∞∑
j=1

P [Z1,t1 > y, ..., Zj,t1 > y]P [Mt1 = j]

= P [Mt0 = 0]P [Mt1 = 0]

+P [Mt1 = 0]
∞∑
k=1

{St0(y)}kP [Mt0 = k]

+P [Mt0 = 0]
∞∑
j=1

{St1(y)}jP [Mt1 = j]

+

{
∞∑
k=1

{St0(y)}kP [Mt0 = k]

}{
∞∑
j=1

{St1(y)}jP [Mt1 = j]

}
.
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If we let

ak = {St0(y)}kP [Mt0 = k] , k = 0, 1, 2, ...

and

bj = {St1(y)}jP [Mt1 = j] , j = 0, 1, 2, ...,

then, we know

∞∑
j=0

∞∑
k=0

akbj = a0b0 + b0

∞∑
k=1

ak + a0

∞∑
j=1

bj +
∞∑
j=1

∞∑
k=1

akbj.

Hence:

Spop(y) =
∞∑
j=0

∞∑
k=0

{St0(y)}kP [Mt0 = k]{St1(y)}jP [Mt1 = j]

=

{
∞∑
k=0

{St0(y)}kP [Mt0 = k]

}{
∞∑
j=0

{St1(y)}jP [Mt1 = j]

}

=

{
∞∑
k=0

{St0(y)}k 1

Z(θt0 , ν)

{θt0}k

(k!)v

}{
∞∑
j=0

{St1(y)}j 1

Z(θt1 , ν)

{θt1}j

(j!)v

}

=
1

Z(θt0 , ν)

1

Z(θt1 , ν)

{
∞∑
k=0

{θt0St0(y)}k

(k!)v

}{
∞∑
j=0

{θt1Stj(y)}j

(j!)v

}

=
Z(θt0St0(y), ν)Z(θt1St1(y), ν)

Z(θt0 , ν)Z(θt1 , ν)

as desired.
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