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ABSTRACT

Road map generation and feature extraction algorithms from GPS trajectories and

Trajectories Data warehousing

Tariq Alsahfi, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professor: Ramez Elamsri

Advanced technologies in location acquisition allow us to track the movement

of moving objects (people, planes, vehicles, animals, ships, ..) in geographical space.

These technologies generate a vast amount of trajectory data (TD). Several applica-

tions in different fields can utilize such trajectory data, for example, traffic control

management, social behavior analysis, wildlife migrations and movements, ship tra-

jectories, shoppers behavior in a mall, facial nerve trajectory, location-based services

(LBS) and many others. Fortunately, there are now many trajectory data sets avail-

able that collected from moving objects such as cars with enabled GPS devices. Two

main challenges arise when dealing with TD: 1) storing and analyzing TD data due

to a large amount of data that arrives in a streaming and unpredictable rate. 2)

inaccurate capturing of the exact location of moving objects due to the errors caused

by GPS devices. In order to tackle these two problems and gain useful knowledge

from TD, in this dissertation, we provide a framework called Trajectory Data Ware-

house (TDW). This framework aims to review existing studies on storing, managing,
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and analyzing TD using data warehouse technologies. Furthermore, we provide the

requirements for building the TDW with different applications using the TDW.

Despite the second challenge, in this dissertation also, we utilize the vast amount

of TD by building a digital road map. Because road maps are important in our

personal lives and are widely used in many different applications; therefore, an up-to-

date road map is essential. We propose a novel method to generate road maps using

GPS trajectories that is accurate with good coverage area, has a minimum number

of vertices and edges, and several details of the road network. Besides, our algorithm

extracts road features such as turn restrictions, average speed, road length, road type,

and the number of cars traveling in a specific portion of the road. To demonstrate the

accuracy of our proposed algorithm, we conduct experiments using two real data sets

and compare our results with two baseline methods. The comparisons indicate that

our algorithm is able to achieve higher F-score in terms of accuracy and generates a

detailed road map that is not overly complex.

Lastly, we present a data fusion framework for heterogeneous data Sources

for Intelligent Transportation Systems (ITS). This framework aims to provide data

fusion techniques to integrate and extract features from heterogeneous data sources

to be ready for deep learning training approaches. We also generate preprocessed

real-world traffic datasets that are publicly available to solve ITS-related problems.

The traffic datasets have rich features such as traffic flow, average speed, vehicle

occupancy, weather conditions, incidents information, congestion reports, point of

interest locations, and temporal features. Furthermore, we provide two applications

to show the importance of our data fusion techniques. (1) Traffic datasets analysis and

visualization, where we build a data cube to provide in-depth analysis of the dataset.

Also, a visual-interactive GIS tool that presents the results in different methods. (2)

Traffic flow forecasting using deep learning, we performed a comprehensive study on
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how different features can improve the traffic flow prediction models. The results

show that deep learning approaches achieved better results when extra features are

considered.
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CHAPTER 1

INTRODUCTION

In this chapter, we start with definition and motivation of utilizing the avail-

ability of Trajectory data and other spatio-temporal data in section 1.1. Our research

contributions come next in section 1.2. After that, in Section 1.3, we give an outline

of the remaining chapters of the dissertation and how it is organized.

1.1 Definition and Motivation of Trajectory data

Advanced technologies in location acquisition allow us to track the movement

of moving objects (people, planes, vehicles, animals, ships, ...) in geographical space.

These technologies generate a vast amount of trajectory data (TD). Collections of

objects movement data in term of position with respect to time is called Trajectory

Data.

Fortunately, there are now many trajectory data sets available. These are col-

lected from moving objects; e.g. cars with enabled GPS devices, people with smart

devices, sensors on the road networks, and animals with GPS collars. Studying and

analyzing trajectory data provide useful knowledge for several fields. For example, in

traffic control management applications, the trajectory data collected from moving

objects (cars, buses) moving along the road network can be used to build a road map,

predict traffic flow, detect congestion areas, analyze the pattern of moving objects

in different parts of a city, evaluate the traffic on working days versus the weekend,

and locate the right space for placing advertising billboards on the road that has

the highest number of vehicles. In ship movements applications, the trajectories of

1



ships can be used to determine the paths that are frequently used by different ships,

locate the area that most of the ships use for fishing, and find the safest route to

avoid pirates. Wildlife applications can use the trajectories of animals to study the

animal’s behavior, predict their future location, and how they migrate from one loca-

tion to another. In air traffic management systems, the trajectories of airplanes can

be used to choose the best route. Also, the trajectories collected from users with a

smartphone can be used for social behavior analysis, obtain the most visited places

by different users, and predict the users next location.

Hence, there are several challenges when dealing with trajectory data. First,

trajectory data must be stored and analyzed effectively, which is considered challenges

due to the large amount of data that arrive in a streaming and unpredictable rate

[3, 5]. Second, inaccurate capturing of exact locations due to the errors caused by GPS

devices. Thus, the purpose of this dissertation is to provide a method for effectively

storing and analyzing trajectory data, which deals with the first challenge. Despite the

second challenge, we utilize a huge amount of trajectory data, and we build a digital

road map since many applications such as navigation systems, route planning, self-

driving cars, and traffic control systems required the road map to be up-to-date. These

road maps use only the trajectory data collected from moving objects. In addition,

we provide a data fusion (DF) framework to integrate and extract features from

heterogeneous sptio-temporal data sources to be used in Intelligent Transportation

Systems (ITS) applications. This framework provides several DF techniques to deal

with these data. We also present two applications to utilize the outputs of our DF

framework: traffic datasets analysis and visualization and Traffic flow forecasting

using deep learning.
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1.2 Dissertation Contributions

The contributions of this dissertation can be divide into two parts. In the first

part, we provide a survey of one method of storing and analyzing trajectory data that

is Trajectory Data Warehouse (TDW). In this survey, we propose a framework that is

influenced by the work in [3, 4, 5, 6], which aims to show the required steps to create

a TDW to study the different characteristics of moving objects (specifically moving

points as vehicles, people, animals, and ships). Additionally, the Moving Objects

Database (MOD) is incorporated in the framework to provide more analysis results

to the end users according to the application specifications.

In the second part, we utilize the availability of trajectory data and other spatio-

temporal data. From these data, we build a digital road map using GPS trajectories

collected from cars moving along the road network. We propose a novel method to

generate accurate road maps with a good coverage area, a minimum number of vertices

and edges, and several details of the road network. In addition, the algorithm extracts

road features such as turn restrictions, average speed, road length, road type, and the

number of cars traveling in a specific portion of the road. After that, we provide a

machine learning framework for road network classification that aims to distinguish

the roads based on their types, which either are main roads that expand over multiple

counties or local roads that do not exceed the counties or cities boundaries.

Furthermore, we provide a data fusion framework with different techniques for

ITS applications. This framework deals with heterogeneous data sources with differ-

ent characteristics and generates preprocessed real-world traffic datasets with features.

Then, we present two applications to show the importance of our DF techniques.

3



1.3 Dissertation Organization

In Chapter 2, we review existing studies on storing, managing, and analyzing

TD using data warehouse technologies and we provide a framework to build Trajectory

Data Warehouse. The goal of the framework is to show all the steps of building

the TDW. The framework has five main components that are: 1) Data source, 2)

Extract, Transform, and Load (ETL), 3) TDW, 4) Analysis Tools, and 5) Applications

for TDW. These components are described in section 2.3. Additionally, we provide

several applications that can benefit from the data that in the TDW as traffic control

management, social behavior analysis, ships movements, TDW as a recommendation

system, TDW for building and updating road map network, TDW for location-based

services (LBS) applications, TDW for on-demand transportation services, and TDW

for analyzing the moving objects on Toll Roads. Finally, we provide a discussion on

several open issues and concerns that may become potential for future work in this

field.

In Chapter 3, we describe our algorithm, called Road Map Generation (RMG),

to generate digital road maps using GPS trajectories. The RMG consists of four

main steps that are: 1) Analyzing the GPS data to provide more information such as

direction, speed, time difference, road length, and so on. 2) Identifying the locations

of turns and intersections by adjusting the Douglas-Peucker (DP) [8] algorithm. 3)

Creating road segments between intersections. 4) Connecting road segments to the

nearest valid turns and intersections. In addition, we demonstrate the accuracy of our

algorithm using two real data sets and comparing it with two baseline methods. The

comparisons indicate that our algorithm is able to achieve higher F-score in terms of

accuracy and generates detailed road maps that are not overly complex.

In Chapter 4, we talk about our framework for classifying road maps using

different machine learning algorithms. We applied Logistic Regression, K-Nearest
4



Neighbor, Naïve Bayes, and Support Vector Machine on road map data set to dis-

tinguish the roads based on their types, which either are main roads or local roads.

This work can be used as pre-processing or post-processing to assist in constructing

and updating the road map data set accurately.

In Chapter 5, we provide DF techniques for heterogeneous data sources for

ITS applications. Our DF techniques aim to integrate and extract features from

heterogeneous data sources with different characteristics (such as format and size)

in a uniform representation to be ready for deep learning training approaches. In

addition, we generate preprocessed real-world traffic datasets and we makes them

publicly available for other researchers. These generated traffic datasets can be used

for different ITS applications such as traffic analysis and visualization, traffic forecast

prediction, incident prediction, travel time estimation. The preprocessed data can

be used for benchmarking different prediction approaches that used deep learning.

The traffic datasets provide rich features such as traffic flow, average speed, vehicle

occupancy, weather conditions, incidents information, congestion reports, point of

interest locations. It also provides temporal features such as a month of the year, day

of the week, an hour of a day, weekend vs. weekdays, and other features for different

road network locations. These features can allow researchers in various ITS fields to

gain insight and apply their methods to solve ITS-related problems.

In Chapter 6, we present two applications that utilize the two outputs of our

DF framework in chapter 5. The first application is Traffic datasets analysis and

visualization. We build a data cube that provides an in-depth analysis of the traf-

fic datasets. Furthermore, we design a visual-interactive Geographical Information

Systems (GIS) tool to present the results in different ways such as maps, charts,

and tables according to the user requirements. The second application is Traffic flow

forecasting using deep learning approaches that are Deep Long-Short Term Memory
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networks (LSTM), Deep Gated Recurrent Unit (GRU), and Bidirectional(BDLSTM).

In this application, we check if incorporating traffic features with external factors will

enhance the traffic flow forecasting result or not. Our experiments focus on short-

term traffic flow (e.g., next hour) with multiple features. The experimental results

show that better performance was achieved when extra features were included. Also,

the overall result indicates our data fusion techniques’ advantages.

Finally, Chapter 7 summarizes the contributions made in the dissertation.

1.4 Published Papers

As a result of my research, some articles were published during my Ph.D. study.

The following are the published papers:

• T. Alsahfi, M. Almotairi, and R. Elmasri, “A survey on trajectory data ware-

house,” Spatial Information Research, vol. 28, no. 1, pp. 53–66, Feb 2020.

Available: https://doi.org/10.1007/s41324-019-00269-x

• Tariq Alsahfi, Mousa Almotairi, Ramez Elmasri, and Bader Alshemaimri.

2019. Road Map Generation and Feature Extraction from GPS Trajectories

Data. In Proceedings of the 12th ACM SIGSPATIAL International Workshop

on Computational Transportation Science (IWCTS’19). ACM, New York, NY,

USA, Article 2, 1–10.

• Mousa Almotairi, Tariq Alsahfi, and Ramez Elmasri. 2018. Using Local

and Global Divergence Measures to Identify Road Similarity in Different Road

Network Datasets.In Proceedings of the 11th ACM SIGSPATIAL International

Workshop on Computational Transportation Science (IWCTS’18). ACM, New

York, NY, USA, 21–28.

• Mousa Almotairi, Tariq Alsahfi, and Ramez Elmasri. 2019. Challenges of

comparing and matching roads from different spatial datasets. In Proceedings
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of the 12th ACM International Conference on PErvasive Technologies Related

to Assistive Environments (PETRA ’19). ACM, New York, NY, USA, 164–171.
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CHAPTER 2

A Survey on Trajectory Data Warehouse (Drafted from [1])

2.1 Introduction

The movement of moving objects (people, planes, cars, animals, ships, hur-

ricanes..) in geographical space can be captured nowadays using technologies such

as Global Positioning Systems (GPS), smartphone sensors, Radio Frequency Iden-

tifications (RFID), and so on. These technologies generate a massive amount of

spatio-temporal data (object id, time, position) for these moving objects. Collections

of objects movement data in term of position with respect to time is called trajectory

data (TD) and such data can be used in different domain applications as in traffic

control management applications, ship movements applications, wildlife applications,

social behavior analysis, and others.

In order to benefit from the collected trajectory data and gain knowledge, it

must be stored and analyzed in an effective way, which is considered as challenges

due to the large amount of data that arrive in a streaming and unpredictable rate

[3, 5]. There are several existing methods proposed to deal with the trajectory data.

One way is using moving objects databases (MOD) and another one is using data

warehouses (DW) technologies. In this chapter, we propose a framework that aims

to provide the requirements for building a Trajectory Data Warehouse (TDW) that

is able to receive data from different sources and transform these data into valuable

information. Our framework is based on the frameworks proposed in [3, 4, 5, 6] with

additional methods, dimensions and measures to provide in-depth analysis that have
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not been considered in the previous studies. However, there are many challenges that

need to be considered when designing the TDW.

These challenges according to [5] are: the preprocessing phase that deals with

a stream of observations (object id, time, location) and reconstructs trajectories out

of these observations, storing the trajectories in MOD and apply an efficient extract-

ing, transforming, and loading (ETL) process to pre-compute measures and load the

TDW with appropriate values, providing an interface to allow multidimensional model

analysis for the Online Analytics Processing (OLAP) operations.

To cope with these challenges, the proposed framework is influenced by the

work in [3, 4, 5, 6], which aims to show the required steps to create a TDW to study

the different characteristics of moving objects and provide a comprehensive overview

of each step. In addition, we combine MOD and TDW in one framework so the

same dataset can provide more analysis results to the end users according to the

application specification. This chapter is focusing only on moving points (vehicles,

people, animals, ships). The proposed Trajectory Data Warehouse framework consists

of five layers, which will be discussed in more detail in section 3:

1- Data Sources: TDW data sources can be classified into two classes: one

source is the data arriving from moving objects (spatio-temporal data), another source

is the non-spatio-temporal data that can be used to add more semantic information

to the first data source.

2- ETL:The ETL process stands for Extract, Transform, and Load. ETL is one

of the critical components in the TDW. It performs extracting of heterogeneous data

from different sources, transforming these data into the desired format, and loading

these data to the TWD.

3- TDW: The TDW contains the data in a multidimensional model to allow

the analysis tools to navigate and extract knowledge from the stored data.
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4- Analysis Tools: The OLAP, Data mining (DM), and visualization tech-

niques used to explore the TDW.

5- Applications for TDW: This layer can utilize the trajectory data stored

in TDW and use it in different applications domain.

Furthermore, we provide discussion about different applications using the TDW

such as traffic control management, social behavior analysis, ships movements, recom-

mendation system and how these applications exploit the TDW. Also, we introduce

new applications that can utilize the TDW such as building and updating road map

networks, location-based services (LBS) applications, on-demand transportation ser-

vices, and analyzing the moving objects on toll roads. We address some issues with

existing TDWs and discuss future work in this field.

The rest of this chapter organized as follows: Section 2.2 provides an overview

of the terminologies related to trajectory data and different types of data warehouses.

Section 2.3 introduces the proposed framework with a survey of previous works. Sec-

tion 2.4 provides a comparative study for the TDW and discusses several open issues.

Section 2.5 includes the conclusions of this chapter.

2.2 Definitions and terminologies

2.2.1 Trajectory Data (TD)

In previous studies, the definition of trajectory data varies from one application

to another. We now list some of the definitions of trajectory data from the literature:

Definition 1:[9] (generic definition) "trajectory is the record of the movement of some

objects i.e. the record of the positions of the object at a specific moment in time."

Definition 2:[10] (generic definition)"trajectory is the user defined record of the evolu-

tion of the position (perceived as a point) of an object that is moving in space during
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a given time interval in order to achieve a given goal."

Definition 3:[11] (persons, animals, vehicles movement applications) "A trajectory of

a moving object is a discrete trace that the moving object travels in geographical

space."

Definition 4:[12] (generic definition) "Trajectories are the segments of the object’s

movement track that are of interest for a given application."

The definitions above of trajectory data are also called raw trajectory since it

contains only the object id, time and position information. From these definitions, we

can see that the trajectory of moving objects can be observed as a sequence of tuples

(object id, time, position) where object id refers to the moving object identifier, time

refers to the time when a particular moving object is at a specific position.

Definition 5:[13] (semantic trajectory) "a trajectory that has been enhanced

with annotations and/or one or several complementary segmentations." This defini-

tion of trajectory is called semantic trajectory since it has additional information than

a raw trajectory.

2.2.2 Moving Object Database (MOD)

Moving Object Database (MOD) is an extension of database technology to

support moving objects. Research in the field of MOD started in the late 1990s

and until today the research in this field is ongoing. It receives significant attention

from the database community. MOD deals with the moving objects that change

their location over time, which is also called spatio-temporal database [14]. Research

on MODs has two different approaches; one approach aims to answer queries on

the current positions and the future location of the moving objects, the second one

aims to show complete histories of the moving objects, which is called trajectory

database in [15]. Raw trajectory data can be stored in MOD; however, it will cost
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more in terms of processing and fetching the required data. Even though MOD uses

optimized queries and indexing techniques, still these queries are expensive because

of using many JOIN operators [3]. Due to this drawback in MOD, the alternative

method that can deal with such challenges of handling trajectory data is using Data

Warehouse technologies.

2.2.3 Data Warehouse (DW)

The author of [16] considers a data warehouse as "a subject-oriented, inte-

grated, non-volatile, and time-variant collection of data in support of management’s

decisions." The data come from heterogonous independent sources and DW provides

tools to transform raw data, clean, and integrate them into one common storage

repository for further analysis [17]. Data warehouse uses the concept of a multidi-

mensional model. This multidimensional model is used to organize data as a set

of dimensions with different levels of hierarchies and fact tables [18]. A fact table

includes foreign keys references to each dimension table and quantity information

called measures. Dimensions tables provide details of the measurements in the fact

table. For instance, Figure1 shows an example of the multidimensional model for a

university data warehouse that stores information about students. It has a fact table,

which contains the keys to each dimension and measures such as the students’ major,

GPA, honor status, and graduated status, and four dimensions tables, which store

detailed information about students, departments, graduation, and time (semester).

In addition, the multidimensional model can be represented in a data cube and each

cell includes statistical data [19]. Different analytical tools are available to extract

knowledge from the DW such as the Online Analytical Processing (OLAP) and Data

Mining techniques (DM), which will be discussed in more detail in section 3.4.
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Figure 2.1: Multidimensional model

2.2.4 Spatial Data warehouse (SDW)

The authors of [20] introduce the concept of Spatial Data Warehouse (SDW).

They consider the SDW as "subject-oriented, integrated, time-variant, and non-

volatile collection of both spatial and non-spatial data in support of management’s

decision-making process." The data cube in SDW includes the spatial and non-spatial

dimensions and spatial measures. SDW can manage spatial data and deal with its

geometries, which are considered as a major difference from the traditional data

warehouse. In addition, authors of [20] provide Spatial Online Analytical Processing

(Spatial OLAP) operations to exploit the SDW. Another study [21] proposes different

Spatial OLAP operations. However, the SDW does not consider moving objects in

term of time, which leads to the Trajectory Data Warehouse [22].

2.2.5 Trajectory Data Warehouse (TDW)

Trajectory Data Warehouse (TDW) can be used to organize and analyze tra-

jectory data collected from moving objects and can be exploited using the OLAP and
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Figure 2.2: TDW framework influenced by the work in [3, 4, 5, 6]

data mining techniques [19]. The authors of [22] introduce the notion of TDW by us-

ing traditional DW to store aggregation information about the trajectories of moving

objects and using the OLAP operations over the stored trajectory data. TDW is able

to analyze measures of interest such as the number of moving objects in a specific area,

average speed of vehicles, and acceleration of cars and other measures [6]. The goal

of the TDW is to convert the raw trajectory data into valuable knowledge, which can

be used in different application domains such as traffic manager applications, social

behavior analysis, and recommendation system [4, 5, 23].

2.3 A Framework of Trajectory Data Warehouses

This section will introduce the framework of TDW that summarizes major

steps required to build the TDW. Figure2 shows the overall structure of TDW. We

focus on the most important layers. The framework starts by receiving data from

different data sources (moving objects trajectories, non-spatio-temporal data sources),

then reconstructs the trajectories and integrates them with other data sources. The

reconstructed trajectories either are stored in a spatio-temporal database (i.e, MOD)

or by using specialized software to perform pre-compute of measures before loading
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them to the TDW. After loading the data to the TDW, OLAP, DM, and visualization

techniques can be used to query and extract knowledge from the TDW. The following

sections discuss each layer in more details.

2.3.1 Data sources

The primary data source for the TDW is the data collected from different

moving objects (i.e. cars with enabled GPS devices, people with smartphones, and

animals with tracking devices). These devices will provide the framework with data

about the locations of the moving objects with respect to time. This type of data

arrives in streaming form and at different rates. Other data sources are non-spatio-

temporal data, which can be used to enrich the trajectory data semantically, such

as social media data, weather data, crimes data, and events data. The study in [24]

uses besides the data from moving objects other datasets like activities performed,

and type of transportation to study the behavior of moving objects. Another study

[25] uses seperately created trip log data with the data collected from moving objects

to analyze the pattern of student’s activites during trips. In paper [26], the authors

use the city information that has the location of points of interest (POI) such as

restaurant, company, park, and gas station in order to add semantic information

to the trajectory data. Integration of non-spatio-temporal data sources along with

trajectory data provide more meaning to the movement of the moving objects and

enhances the decision taking by the decisions makers.

2.3.2 ETL

This process is considered as a backbone of the TDW framework since it converts

the raw trajectory data into meaningful information and it also calculates the overall

view of accumulated data sources. It begins with extract heterogeneous data from
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multiple data sources, transforms the data into the desired format by applying a

sequence of processes (cleaning, reconstructing, calculating, and integrating), and

then load these data to the TDW.

2.3.2.1 Extraction of trajectory data

Data from moving objects arrive in a streaming and unpredictable manner.

These data can be seen as a set of tuples (id,x,y,t) where id represents the moving

object identifier, x,y represent the coordinate of moving object location and t rep-

resents the time where the moving object is located. The extraction process aims to

extract the sets of observations to be ready for the transformation process. The data

from non-spatio-temporal data sources as well can be extracted and sent to the next

process.

2.3.2.2 Transformation process

This process will apply on the received observations of the moving objects from

the previous step and integrate the trajectory data with the other data sources.

This process depends on the application specification. Generally, there are two main

functions in this process: Preprocessing in which trajectories are created from the

aggregated received observations that are close to each other based on determined

conditions, and Pre-compute of measures that divide the space into cells (grids) and

compute the measures for each cell based on trajectories inside each cell.

Preprocessing phase: The goal of this phase is to convert the received observa-

tions (id,x,y,t) from moving objects into meaningful and enriched trajectory data. In

order to reconstruct the trajectory from its received observations, one way is using the

local linear interpolation method, which assumes the object is moving between two

observations following specific rules [27, 3, 28, 22, 4, 5]. Figure3 shows an example of
16



Figure 2.3: Raw trajectory - Reconstruct trajectory

Figure 2.4: This is an example showing the trajectory data: a original data received
from GPS and b after applying different methods of preprocessing .The dataset ob-
tained from [7]
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received observations (left - as points) and the results after applying the preprocess-

ing (right - as trajectories). Moreover, the authors of [4] define general parameters

that can be used to decide if the new arrival observations belong to previously stored

trajectory or to create a new trajectory. These parameters could be the temporal gap

between two observations, the spatial gap between two observations, maximum speed,

maximum noise duration, or tolerance distance. In the papers [3, 4, 5], this process is

named as "the reconstructing process", which only required for the spatio-temporal

data that is received from moving objects.

Another way of preprocessing in addition to the existing methods is to receive

the whole trajectory for each moving object from start to end of each trip, which can

be defined according to the application specification. For example, if the TDW is for

analyzing trajectories of a Taxi, each trip will be considered as one trajectory. Also,

when the TDW is used to study the behavior of people, each day can be considered as

one trajectory in order to extract all the movement patterns. This helps to distinguish

between the locations where the moving object is moving or staying.

Furthermore, the raw trajectory data received from each moving object can

be semantically enhanced to extract more information using different methods as in

[29, 30, 31], which can be adopted by the TDW framwork. The study in [29] provides

a model to add more information to the raw trajectory data. Their method first finds

the locations where the moving object is stoping (staying points) and use another

dataset to annotate the stop point with the location information (e.g. home, work,

school). The authors of [26] transform the trajectory data to semantic trajectories by

using other data sources, for example the POI information of a city. Figure4 shows

an example of raw trajectory data from a vehicle moving along the road and the

results after different methods of preprocessing that add details to enrich each trajec-

tory. After the preprocessing phase is finished, the result will be sets of trajectories
18



Figure 2.5: Roadmap divide to cells to compute measures for each cell

with additional information such as duration time at each location, heading/bearing,

speed, and other additional information that will be used in the following step. The

reconstructed and enriched trajectories combine with non-spatio-temporal data can

be either stored in a spatio-temporal database (MOD) as in [3, 4, 5] or directly used

in specialized software as in [27, 22, 28].

Pre-compute of measures: Measures are used to describe some of the properties

for trajectory data of moving objects. As it is mentioned before, the fact table

contains sets of aggregated measures. Most of the TDW and TD studies, such as in

[27, 3, 28, 22, 4, 25], divide the space into cells or zone (Figure5 for example) and

include measures that can be answered from the stored information in each base cell.

The values of measures are stored in an aggregation without storing the identifier of

individual moving objects due to the users’ privacy, and individual user data may

require large space [22]. Aggregation means that computing the measures such as

average speed for all moving objects in a specific cell during a specific time and

storing only the values for the measures without the moving objects details. Different

applications have different sets of measures. In table 2.1 and 2.2, we provide some

of the measures that can be answered from the TDW according to the applications
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Table 2.1: Measures for TDW

Measure

describe in
Measures

aggregation

function

Moving

Object

[28, 22] No. of observation in the cell D Car

[28, 22] No. of T’s starting in the cell D Car, Ships

[27, 28, 22, 3] No. of T’s in the cell – presence H Car

[28, 22, 3] Total distance covered by T’s in cell D Car, Ships

[28] Average speed of T’s in the cell A Car, Ships

[28] Maximum speed of T’s in the cell D Car, Ships

[22, 3] No. of T’s entering,leaving, crossing cell D Car, Ships

[22]
No. of T’s that covered a distance larger

than a given value d in the cell
H Car, Ships

[22]

No of T’s that covered a distance larger

than the average distance covered,

by all the T’s intersecting the cell

H Car, Ships

[4] No. of distinct users H Car, Ships

[22]
No. of T’s that intersect,another T only

in the cell
D Car, Ships

[4] Average traveled distance A Car

[32] No. of Stops by trajectory D Car

[33] NbPath:No. of paths constituting T D Herd

[33] MaxSpeed:find maximum speed of the herd D Herd

[33]
MinSpeed: it corresponds to minimum

speed of the herd
D Herd

[33]

CoveredDistance:corresponds to the

covered distance traveled by the animals

during their displacement

D Herd
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Table 2.2: Measures for TDW

Measure

describe in
Measures

aggregation

function

Moving

Object

[33] During: duration of the trajectory D Herd

[34]
Frequent pattern of trajectories: To

discover different pattern of MO
N/A Car

[25]

Hot Zone: Return the location that

visitors spend more than 3 min

at specific location

N/A People

[35]

Billboard location: This measure will

return the best location

to place ads

N/A N/A

new

measure

Turn location: This measure will return

the point where moving

objects changed location

N/A Any MO

new

measure

No. Visitor: Return the number of

visitors for specific POI
D People

new

measure

Staying duration: This measure return the

total amount of time

user spent at specific POI.

D Any MO

new

measure

Road status: to return the road status

(closed, open) for specific

time and location.

N/A N/A

new

measure

Transportation mode: to find type type of

transportation that used by

the moving objects

N/A People

The table describes the different measures stored in a fact table and can be answered
from the TDW according to the applications type. T: refers to Trajectory. No. refers to
number. D:Distributive, H:Holistic, A:Algebraic
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type. Next, we will explain how the measures are computed before loading them to

the fact table of the TDW.

1. Pre-compute of measures using specialized software: The studies in [27, 28, 22]

use specialized software to deal with the reconstructed trajectories. Their goal

is to use less buffer memory to store received observations and perform pre-

compute of measures. Measures are categorized according to the amount of

pre-computing requires before loading them into the TDW. For instance, mea-

sure Number of trajectories starting in the cell does not require pre-computation

and can be uploaded into the TDW using single observation. Other measures

such as Number of trajectories that intersect another trajectory only in the cell

requires a pre-computation of all the observations for these trajectories.

2. Pre-compute of measures using

spatio-temporal database: The authors in [4, 5] use an engine called HERMES

MOD to compute measures such as average distance travel, average traveled

duration, and average speed for each base cell of the TDW. The motivation

behind using MOD is to utilize the set of operations available in the MOD to

handle trajectory data. Before performing compute of measures, they proposed

two methods to extract part of trajectories that fit in each base cell: cell-oriented

approach (COA) and trajectory-oriented approach (TOA). The COA searches

for the parts of trajectories that reside in each base cell, while the TOA goal is

to exploit the spatio-temporal cells that trajectories lie in. Another study [3]

follows the same approach for computing the measures.

In addition to previous methods, we propose other methods to compute these

measures, which can be adopted by the TDW to support new applications. Since

the trajectory data has been enhanced in the preprocessing phase with other
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semantic information, we can use this information to compute new measures

such as turn location and points of interest (POI). To compute the measure turn

location, which returns the location where the moving objects change direction,

we can check each trajectory and return the points where the direction has

changed [36]. After that, for all points that have been checked, a clustering

algorithm as in [37], DBSCAN [38], or K-means can be applied to find the

location of each specific turn.

For measures such as points of interest (POI) or similar that try to identify

staying points, we can check each moving object trajectory and find the points

that the moving object stays without changing location for some time. Then

by using any of the clustering algorithms as in [39, 40, 41, 42], we can find

the areas where most of the moving objects stay and mark these areas as the

points of interest for further analysis. The study in [25] computes the measure

hot zone by finding the locations where users stayed more than 3 minutes and

within spatial distance 50 meters. Another study [35] uses the TD of moving

objects to determine the best location for placing billboard advertising.

Aggregation over measures for OLAP operations: Since the OLAP is one of the

Figure 2.6: Trajectory will count 4 times during the roll-up
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essential tools to extract knowledge from the TDW, the TDW must support different

types of OLAP operations. For instance, to compute the roll-up operation, which

requires information at the lowest level to determine the values in a higher level,

aggregate functions are needed to be applied [3]. Table 1 shows the type of aggregation

function needed to compute each measure. According to [43], the aggregate functions

are classified into three categorize based on the space complexity to compute the

higher values from the already stored pre-computed values in each base cell:

Distributive: the higher values are calculated using pre-computed values by

applying a simple function such as SUM.

Algebraic: the higher values can be calculated using pre-computed values with

other sets of measures.

Holistic: the higher values cannot be calculated using the pre-computed values

in the base cell.

Holistic measures are difficult to compute in an exact way since no set of tuples

have the pre-computed value that could be used to produce higher values [22, 4]. An

example of a measure of trajectory data that needs a holistic aggregation function

is the presence measure. It returns the number of distinct trajectories occurring in

a given spatio-temporal area. A double count problem can occur when performing

the OLAP roll-up operation since only the aggregation information is stored in the

TDW without identification of each trajectory. This problem is defined according

to [44]: "if an object remains in the query region for several timestamps during the

query interval, it will be counted multiple times in the result." Figure6 shows one

trajectory that spans multiple cells during a specific time and each cell store one

part of the trajectory, during the roll-up if we sum up the value in each base cell

we will end up with four distinct trajectories while it is only one trajectory. To

solve this issue, authors of [27, 5] define two alternative aggregation functions to
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compute the presence measure in an approximate way by defining distributive and

algebraic aggregation functions. They develop an algorithm for each method. From

their experiments, the algebraic aggregate function shows more accurate results with

fewer errors, while the distributive function shows a large number of errors when

the granularity increased. The study in [4] follows the same approach to solve the

double count problem for measures such as count users. The study in [3] introduces

a measure called visited which can be used to estimate the presence measure. On

the contrary of these mentioned studied, the authors of [32] use another approach

to tackle this problem by developing an algorithm to count the number of distinct

trajectories. This is because the object identification is stored in their TDW, so the

algorithm checks the regions in the lowest level that the object is in and returns the

number of trajectory count. Their experiment shows a more accurate result than the

presence measure.

2.3.2.3 Loading data to the TDW

Loading process aims to load the TDW dimensions and fact table with suit-

able aggregation information. The measures that are stored in the fact table can

be loaded with the pre-computed values in the previous process. Studies in [4, 5]

load the pre-computed values to the fact table after using the MOD. On the other

hand, studies in [27, 28, 22] load the aggregation information after pre-computing the

measures without using any spatio-temporal database. From our perspective, using

the MOD provides some advantages over the specialized software. Since the TDW

stores aggregation information, the MOD can store each object trajectories to be used

later in case that some requirements are changed as a new measure is identified, or

to provide data mining capabilities over the trajectory data as in the study of [6].
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Figure 2.7: TDW model using star schema

2.3.3 Trajectory Data Warehouse

The TDW contains the Trajectory Date cube and collection of trajectory data

marts that are generated form the TD cube. The TD cube consists of spatial (i.e.

country, state, road, river,. . . ), temporal (i.e.. minute, hour, day, month, year..)

dimensions to describe where the objects are moving during a specific time, and non-

spatio-temporal dimensions (i.e. type of transportations, events, type of smartphone,

gender, age,. . . ) in order to enrich the trajectory data, and a fact table contains

measures of interest.

In addition, we add a new dimension called Point of Interest that includes

information about the important locations in a specific region that have been visited

by the moving objects. These POIs could be gas station, school, mall or any other

important point according to the user requirements. With this dimension, we will

be able to provide more analysis on the TD such as find the time spent by shoppers

inside a mall, a restaurant that has most visited customers, the location where wildlife

animals stay a long time during a day, and so on. POIs can be categorized as main
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type ( Food, Services, Health) and subtype (restaurant, gas station, hospital). Figure7

shows an example of the TDW model using star schema.

2.3.3.1 Trajectory Data Warehouse models

Most of the previous studies on the TDW consider the logical level with no

interest in the conceptual level, by adapting the well-known models for designing

the traditional data warehouse and adding the spatial and temporal dimensions. The

study in [4, 5] use the multidimensional model for designing the TDW. The trajectory

data cube consists of one fact table includes beside the keys to each dimension mea-

sures over the aggregation information and is three dimensions: Spatial dimension to

describe the geography where the objects are moving; temporal dimension to define

the time; and non-spatial dimension (semantic) which refers to the user information.

The dimensions tables have different sets of attributes that can be used to define dif-

ferent levels of hierarchies to answer OLAP operations such as the roll-up,drill-down

operations.

Similarly to [4, 5], the study in [3] uses the dimensional fact model formalism,

which consists of spatial dimension that can be defined according to the environment

of the moving objects, temporal dimension, and non-spatial dimension. These dimen-

sions provide different levels of hierarchies. Besides, the TDW has two fact classes one

has measures for a specific region and another for two adjacent regions. The studies

in the [27, 28, 22] model the TDW using the star schema model, which consists of

spatial, temporal dimensions with different level of hierarchies, and one fact table.

Furthermore, the studies in [32, 33] use the same model with additional non-spatial

dimensions to provide more analysis details. The study in [13] models a semantic

TDW and aims to provide more knowledge of the moving object’s behaviors. The
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TDW contains six dimensions (Spatial, Time, Trajectory, Transportations, Pattern,

and Trajectory) with different level of hierarchies and a fact table.

2.3.3.2 Trajectory Data Marts

In traditional DW, data marts usually contain one subject area such as data for

a single department "Sale department, Employees Department." It is a small version

of the whole DW. In the same manner, the Trajectory Data Mart (TDM) can be

used to store information for specific use. It builds from the Trajectory Data Cube.

For instance, one data mart can store the information about trajectories of moving

objects in a specific city; another can be used to store the information for any specific

month. However, in previous studies, there is no consideration of using the TDM.

2.3.4 Analysis Tools

To exploit the TDW and reveal knowledge to the end users, different tools are

available for this purpose such as the OLAP, DM, and visualization techniques. The

OLAP provides different types of operations to exploit the multidimensional data

in an efficient way. [18] OLAP operations such as roll-up, which is used for data

aggregations along dimensions (i.e. aggregate data from lower dimensional to higher

dimensional, for example, from day to a week to month..). The drill-down operation

is used to decrease the level of aggregation (i.e. from higher dimensional to lower

dimensional, for example, from state-county-city..). The Slice and Dice operations

are used to select part of the data cube. Pivot operation is used to change the view

of the data cube. In this chapter, we will discuss the three techniques that have been

widely used in the TDW, which are the visualization of TD and OLAP operations,

data mining techniques.
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2.3.4.1 Visualization of TD and OLAP operations for TDW

Traditional OLAP representation of the result such as tables, graphs, and text

is inadequate for decision making for the TDW. If these representations are used

for the TDW; the interpretation of the results is not an easy task [3]. To provide

more in-depth analysis to the end users, the OLAP tools can be integrated with the

Geographical Information Systems (GISs) for utilizing graphical display. Authors in

[3, 5] develop an interface to visualize the OLAP operations on a map. The developed

tools allow the user to investigate the data store in the TDW and visual the results

on a map.

In addition, the trajectory data can be explored by using visualization tech-

niques. This method is either applied to the cleaned trajectory data stored in the

MOD within the TDW without requiring to precompute measures or it can be applied

to several dimensions of the TDW. The authors of [25] study the pattern of moving

objects (students on a field trip) by visualizing the log data using the space-time cube

method.

2.3.4.2 Data Mining

DM techniques are an essential tool in TDW that allow to find hidden infor-

mation and discover useful knowledge. The studies in [6, 34] use a pattern mining

technique for the TDW, which aims to analyze mobility pattern of a moving object or

multiple moving objects together. The authors of [6] focus on detecting the traffic re-

lationships between different road segment in a road network. Their TDW framework

provides DM over trajectory data store in the MOD. They model the road networks

as directed graph G=(E, V) where Edges: represent the road segments, Vertices :

indicate point of interset (POI) locations (school, gas stations,..). The authors use an
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algorithm that defines the relationships between the network edges (traffic propaga-

tion, split, and merge) and provides a clustering algorithm to group each edge with

similar values together.

The study in [34] introduces a new measure for the TDW called:frequent pat-

tern of trajectories. This measure is obtained from the data mining process over the

trajectory data and the patterns are exploited using the OLAP queries. The system

works by receiving raw trajectory data from moving objects (t,x,y) and use the local

linear interpolation to reconstruct the trajectories. Then the trajectory data trans-

form to (t’,r) where t’ represents the time the moving object enters a new region r.

These transformed data then loads to the TDW, to perform the OLAP operations.

One application that can benefit from this measure is a tourist application, which

can be used to find the most visited region by different visitors. The main difference

between [6] and [34] is that in [34] a new measure is added to the TDW, while in [6]

they rely on the MOD to apply the DM.

2.3.5 Applications for TDW

A variety of domains of applications can benefit from the TDW. Examples

of applications using TDW are traffic control management, location-based services,

animals’ movements studies, ships movements, shoppers behavior in a mall, facial

nerve trajectory, and others more. We will mention four applications with some

queries that can be answered from the TDW. In addition to these applications that

were considered in previous studies, we introduce new applications that can utilize

the proposed TDW framework to be used for future applications.
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2.3.5.1 Traffic Control management

One of the primary applications using the TDW is the road traffic application.

The trajectories data collected from moving vehicles along the roads can be used to

make decisions to improve the road services, control traffic, and discover patterns of

moving vehicles. TDW that stores trajectories data of moving vehicles for road traffic

are able to answer queries like: “Which area has the most traffic in the morning?”

“What is the number of vehicles leaving a specific area in the evening?” What is the

road status at 3 pm in the highway I-20?” ” Which region has the most visited vehicles

during the weekdays?” “What is the average speed of vehicles inside the city?”

The study in [3] discusses various properties of the TDW for analyzing the road

traffic such as the number of visited vehicles at a different time for a specific region,

numbers of cars leaving a particular area and entering another area, the difference in

traffic between working and weekend days, and so on. Another study in [4] also utilize

the TDW for traffic control and answers query like: find all the parking stops near

specific areas (restaurant, mall, school,..) and retrieve the number of stops during

a specific time within specific regions. In addition, the study in [5] shows how the

traffic is diverse throughout the week and the movement of cars from one part of a

city to another part.

2.3.5.2 Social Behavior Analysis

TDW can be employed to analyze the behavior of an individual or group (hu-

man, animals, ..) movement to predict their future locations, find patterns in the

activities performed by a specific group, find the locations that have been visited by

many moving objects, and so on. For instance, TDW for shoppers in a mall can

answer queries like: “ what is the most visited store during the weekend?” “ Which
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store has the least shoppers between 12 pm and 3 pm?.” “ how long have the shoppers

stayed at a specific store?"The study in [25] analyzes the TD combined with log data

and find the hot zones that users stayed for a specific amount of time. In addition,

the TDW can be used for tracking the migration and the movement of animals. The

study in [33] uses the TDW to store the trajectories of animals at a different time

in different regions, and allows analysts to explore different behaviors of animals and

predict their next location.

2.3.5.3 Ships Movements

In addition to the previous examples of TDW, it also can be used to analyze the

movement of objects in a different spatial domain. The study in [3] shows how the

TDW is used to analyze the movement of ships in a sea and provide some quires that

can be answered from the TDW: “ Which is the most fishing areas during a specific

week?” “Where is the area with the highest amount of fishing during the day?” “What

is the number of ships in a specific region during the first week of each month?”

2.3.5.4 TDW as a recommendation system

The study in [13] uses the TDW as a recommendation system to create a plan

for visitors of a specific location. The user provides the time and budget to the

TDW. Then the TDW returns a list of recommended places to be visited and the

duration that has been extracted for the trajectories of previous tourists. This appli-

cation utilizes knowledge base information, which is non-spatio-temporal dimensions,

to provide more accurate results based on customers favorites and requirements.
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Figure 2.8: This is as example of using the TDW for bulidng and updating road
map network: a shows the raw trajectories (Black dots) from moving objects - (blue
line-represent the exisiting road map) and b shows the result (Red circle) of the turn
location measure .The dataset obtained from [7]

2.3.5.5 New Applications for TDW

This section will discuss new applications that have not been considered in

previous TDW studies and can be supported by the proposed framework.

1- TDW for building and updating road map network :

The measures stored in the fact table such as turn location and road status can be

combined with other information that is stored in the MOD inside the TDW. They

can be used to create a road map for the area that does not have a map before or

keep an existing road map up-to-date. Figure8 shows the received trajectories from
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vehicles moving along the road, then the result after querying the TDW for turn

location. Furthermore, the measure road status can be used to find the roads that

have been closed recently since no moving objects traveled by or roads that have been

recently opened after construction is finished.

2- TDW for Location-based services (LBS) application:

The proposed TDW can be used as the data source or geodatabase component of

any LBS application. The TDW dimensions and measures that store information

such as the POI, the road status, and transportation mode can assist in locating the

requested services. Examples of LBS can be find the nearest restaurant or mall, find

the best route from my current location to a new location, and so on. The TDW

with the other components of LBS can answer queries like: “List the nearest ATMs

from my current location“, " Find the fastest route from my current location to the

airport”, and “how long does it take by bus to the nearest mall”

If we take the following query: “Provide a list of the five nearest restaurants that

have been visited by at least a hundred customers last month”, the TDW can assist

easily in returning the number of visitors for a specific point since it is already stored

in the fact table. The LBS application will utilize this information and give to the

user a list of restaurants that satisfy the users’ condition.

3- TDW for on-demand transportation services : Since TDW store the history

information of the location and time that customers request service, then we can

utilize the TDW to find the areas with many service request during specific day and

time to predict the location of the next customers and assign several cars at each

location.
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4- TDW for analyzing the moving objects on Toll Roads:

The authorities for toll roads using the toll tag or plate number to record the number

of moving objects (Cars, buses, trucks, and so on) passing each tollbooth, which

is considered as POI. TDW framework can utilize this data and provide detailed

information to the end users. Queries can be answered from the TDW for analyzing

toll roads like:"What is the average speed between two tollbooths?", "What is the

number of vehicles passing specific tollbooth on Saturday between 1 pm and 3 pm?",

" Which part of the toll road has the maximum speed?", " Which part of the toll road

has the lowest speed?"

2.4 Discussion

In this section, we provide a comparative study (see table 2.3) for the TDW

that we have introduced and we discuss several open issues and concerns which may

become potential for future work in this field. We take in consideration five factors

in our comparative study, which are: TDW schema, List of Dimensions in TDW,

Data sources (Real, or Synthetic data sets), Implementation tools and framework,

and Analysis tools.

Even though there are many studies have been done on the TDW, there still are open

issues to be considered as future research work in this field. Below is a list of these

issues:

-Real-Time TDW : To the best of our knowledge, previous studies on the TDWs

follow the traditional ETL process which depends on batch mode and there are no

discussions on how to provide real-time analyses. However, these days, users require

the data to be available and up-to-date in order to make their decisions spontaneously.

For instance, in road traffic application, a police department (user) may want to

predict the traffic (high or low) in a specific location for a given future time and,
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Table 2.3: Comparison of TDW approaches

paper
TDW

Schema
Dimensions Data Sources Tools

Analysis

tool

[27] Star Schema
Spatial,

Temporal

Moving Objects

(School buses) -

R+S

Oracle OLAP

[28] Moving Objects-S
MS SQL

Server
OLAP

[22] N/A OLAP

[32]

Spatial,

Temporal,

non-spatial

Moving Objects

(Cars)-R
St-Toolkit OLAP

[33]
Moving Objects

(Herds)
N/A N/A

[6]
Multidimensional

model

Spatial,

Temporal,

non-spatia

Moving Objects

(Cars)-R
N/A DM

[4] N/A OLAP

[5] N/A
Visual-

OLAP

[3]
Dimensional Fact

Model

Spatial,

Temporal,

non-spatial

Moving Objects

(Cars, Ships),

- R

Oracle and

V-Analytics

Visual-

OLAP

This table compares different frameworks on TDW.
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based on this prediction, locate the proper number of police cars at that locations.

Current TDW is not able to provide this information to make decisions on time; it

becomes a necessity to introduce Real-Time Trajectory Data Warehouse that provides

the capability of a real-time report.

- Integration of non-spatio-temporal data: There are some works on the integration

of trajectory data with other data sources, still there is a potential for enhancement

to integrate more non-spatio-temporal data such as social media data, health data,

weather data, traffic accident data to support the decision makers and add more

meaning to the trajectory data. Furthermore, methods for an efficient integration of

trajectory data with non-spatio-temporal data need to be considered.

- New measures : Introduce new complex measures to the TDW that allow the users

to gain more information about the moving objects and their behaviors. For instance,

a new measure for finding the correlation between the average speed of cars and the

weather condition (clear, rain, fog, cold), a new measure for predicting the traffic

by combining the trajectory with events data in a specific location, a new measure

to find the POI by integrating the social media and trajectory data. Some work on

spatio-temporal prediction has been done [45, 46, 47], which can be used as a basis

for these new measures.

- New DM techniques : Apply the well-studied techniques of DM to take as much as

possible advantages of data provided by TDW. Some of the powerful techniques are

association rules, clustering, and classification.

- Map comstruction: The trajectory data store in the MOD within the TDW can be

used to generate a map for a road network, animals movement map, and ships path

map.
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2.5 Conclusion

Technologies such as Global Positioning Systems (GPS), smartphone sensors,

and Radio Frequency Identifications (RFID), allow capturing the locations of mov-

ing objects in time, which leads to the creation of spatio-temporal datasets called

trajectory data. Dealing with trajectory data raises challenges in many aspects such

as storing, managing and analyzing these data. Many applications could utilize and

benefit from the trajectory data such as traffic management, social behavior analysis,

wildlife migrations and movements, ship trajectories and many others. The MOD

and TDW are mainly used to handle the trajectory data.

In this chapter, we have reviewed the existing studies that have been conducted on

TDW, and we proposed a framework that includes an extensive review of all the

requirements needed to create a TDW. In a nutshell, we explained how the TDW

framework starts working by receiving data from two different sources, which are:

raw trajectory data acquired from moving objects, and non-spatio-temporal data.

Then, the ETL process is used to reconstruct, transform, and integrate trajectory

data with other data sources and pre-computing of different measures. Later, the

pre-computed measures are loaded to the TDW. In addition, we discussed different

analysis tools that have been used in order to exploit the TDW, which are the OLAP

and DM technologies. We presented four types of applications that use the TDW.

Finally, we provided a comparative study on different TDW approaches and we dis-

cussed some open issues related to TDW. We intend in our future work to build

real-time TDW and add more complex measures.
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CHAPTER 3

Road Map Generation and Feature Extraction from GPS Trajectories Data (Drafted

from [2])

3.1 Introduction

Digital road maps are currently essential. A variety of applications depend on

maps such as navigation systems, route planning, self-driving cars, and traffic control

systems. All these applications require the road map to be up-to-date. Usually,

the process of generating an up-to-date road map requires either specialized vehicles

roaming the road network to generate the road data or using satellite imagery to

extract the road maps. Using these methods is expensive in terms of cost and time

since they require specific cars and skilled drivers [48] or maintaining the satellite.

Fortunately, there are now many tracking data sets available. These are col-

lected from moving objects; e.g. cars with enabled GPS devices, and people with

smart devices. Such data sets enables us to infer and generate up-to-date digital road

maps automatically. These generated road maps from GPS trajectories can be used in

areas that have no map or may update an existing road map by discovering new roads

or detecting closed roads. In addition, the GPS trajectories allow us to extract road

features (semantic attributes) such as speed information (average, limit), length of

the road, road type (one-way, two-way, main road, local road), traffic volume at each

portion of the road network, road direction, intersection connections, and restrictions

at each intersection or turn of the road.

Using the GPS trajectories to generate a road map is a challenging task due to:

(1) the errors caused by the GPS devices, (2) different sampling rates on which the
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GPS data is collected, (3) differences in the number of trajectories per road segments

where the main roads have more trajectories than the local roads [49, 50], (4) the

need to determine the road intersection locations and directions.

Several studies aim to generate road maps from GPS trajectories [51, 52, 53,

54, 55]. However, the generated road maps of these studies are either too complex

(in terms of the number of vertices and edges) with good coverage or too simple with

poor coverage [56]. If a map is too complex, then route planning algorithms such as

shortest path requires more time. On the other hand, if a map is too simple, then

good route plans may be missed because of reduced map coverage. In addition, the

focus of these studies were mostly on generating geometric road maps while ignoring

the semantic information of roads, which are essential for many applications such

as routing planning, traffic monitoring, GPS navigation systems, and location-based

service (LBS) applications. In this chapter, we propose a novel method to generate

road maps using GPS trajectories that is accurate with good coverage area, has

a minimum number of vertices and edges, and includes several details of the road

network.

Our contributions in this chapter can be summarized as follows:

• An effective and efficient method for identifying the locations of intersections

and turns. Our method utilizes a line simplification algorithm, which over-

comes the errors caused by (1) GPS noise, (2) points that have been repeatedly

captured while the vehicle is stopped, and (3) different sampling rates.

• Our method generates the road map connectivity information to connect road

segments and identify the shape of intersections and turns.

• Our algorithm extracts road map features such as road direction, road type

(one-way, two-way), average speed, road length, and intersection restrictions.
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• We demonstrate the accuracy of our algorithm using two real data sets and

comparing with two baseline methods. The comparisons indicate that our al-

gorithm is able to achieve higher F-score in terms of accuracy and generates

detailed road maps that are not overly complex.

The remainder of this chapter is organized as follows: Section 3.2 describes re-

lated work for road map generation from GPS trajectories. In Section 3.3, we provide

the terminology used in this chapter and the problem statement. Section 3.4 explains

the steps of our method to generate the road map. Then, Section 3.5 describes the ex-

perimental evaluation that compares our algorithm with baseline algorithms. Finally,

Section 3.6 concludes our work and discusses future work.

3.2 Related Work

Different methods to generate road maps form GPS trajectories have been in-

troduced. Several surveys and comparisons of different approaches are provided in

[56, 57, 58]. According to Ahmed et al. [56], approaches for road map generation from

GPS trajectories can be classified into three categories: Point clustering, Incremental

track insertion, and Intersection linking.

Point clustering methods consider the input as a set of points and use clustering

methods to generate the road segments and connect them to generate the road map,

as in [53, 59, 60].

Incremental track insertion methods, which are similar to map-matching meth-

ods, start with an initial empty map and insert one trajectory at a time until no more

trajectories are found. The road map is built after all the trajectories are inserted.

Examples of this method are the works in [51, 54, 61].

Intersection linking algorithms have two-steps to generate the road map. First,

it detects the locations of intersection. Second, it connects intersections using tra-
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jectories data to build the road segments. The algorithm by Karagiorgou and Pfoser

[52] using the change in direction and speed between two consecutive GPS points to

indicate turns. Then, it clusters these locations to infer intersections. After that, in-

tersections are connected to build the road segments and create the road map. Using

only the direction and speed for detecting turns may lead to detect locations that are

not actual turns or miss actual turns locations. Fathi and Krumm’s algorithm [62]

finds the road intersections using a trained detector model on the ground truth data

and connects the extracted intersections using the trajectories data. Ezzat et al. have

an algorithm [63] that extracts locations of turn by using a line simplification algo-

rithm and clusters these locations to find the intersections. Then, it builds the road

segments by connecting the extracted intersections. Using only the line simplification

algorithm to find turns may introduce locations that are not actual intersections or

turns because the line simplification algorithm is not designed for trajectories data.

Xie et al. introduce an algorithm [64] that detects the location of turns using a dy-

namic programming approach to find the longest common subsequences and divide

it into sub-track to find the locations of intersections.

Our proposed algorithm in this chapter is based on the intersection linking

approach. Our work is different from existing works in that we identify the locations

of intersection by using a line simplification algorithm with spatial-constraints. Then,

we use a grid-based method in order to find the actual locations of intersection despite

the GPS noise, different sampling rates, and the varying numbers of trajectories

traveled by road segments. In addition, we generate a directed road map with fewer

number of vertices and edges that can be used in applications such as route planning,

GPS navigation systems, or maps for devices with low memory.
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3.3 Definitions and problem statement

Definition 1. A Road Map is a representation of a road network. It is represented

as a directed graph G = (V,E), where vertex V correspond to a geographical location

point in the road network and edge E represents the road segment that connects two

vertices.

Definition 2. A Road Network intersection is a location where the driver can change

the vehicle direction in different ways and is shared by different roads.

Definition 3. A Road Network turn is a location where the driver only can make a

change in one direction.

Definition 4. A Road Network segment is an edge of the road network that connects

two adjacent turns or intersections to each other.

Definition 5. A Raw GPS trajectory T is a list of ordered points with location and

time information for a specific traveling path.

T = p0, p1, p2, ...., pn

where pi=(xi,yi,ti); (xi,yi) represents the geographical location (latitude,longitude), (ti)

represents the time, and n represents the number of GPS points in T.

3.3.1 Problem statement

Given a set of GPS trajectories TS=(T1,T2,....,Ti), we want to generate a

directed road map that is similar to the road network in the real world based on the

set of trajectories.

3.4 Road Map Generation Algorithm (RMG)

Our algorithm, called RMG, aims to generate a directed road map that is

accurate with good coverage area, has a minimum number of vertices and edges,
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Figure 3.1: RMG Algorithm overview

and includes road features. It consists of four main steps, as shown in Figure 3.1.

First, the algorithm analyzes the GPS data and provides more information such as

direction, speed, time difference, road length, and so on. In the second step, it

identifies the locations of turns and intersections by adjusting the Douglas-Peucker

(DP)[8] algorithm. This is a line simplification algorithm. We enhance this method

to incorporate spatial-constraints follow this by a grid-based method. After that, our

method creates a road segment between intersections. Finally, it connects each road

segment to the nearest valid turn or intersection using the graph connectivity table

and finds the shape of each turn or intersection. The road features are extracted

in different steps of generating the road map. In the remaining part of this section,

we will explain each step of the algorithm in detail. Although there is a difference

between intersections and turns, as mentioned above in Section 3, we are going to use

the term intersections to indicate both intersections and turns. We will provide the

method to distinguish between them.

3.4.1 Step 1: Trajectory data analysis

The raw GPS data received from vehicles include only the location (latitude,

longitude) and time stamps. Important information (i.e. direction change, speed,

road length,..) can be extracted by analyzing the raw GPS trajectory data, is the

aim of this step.

To calculate the spatial distance d between two consecutive GPS points (P1(lat1,lon1),
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P2(lat2,lon2)), we use the Haversine formula [65], which is an equation to calculate

the great-circle distance between two points using latitudes and longitudes, as follows:

a = (sin2(
lat2� lat1

2
) + cos(lat1) ⇤ cos(lat2) ⇤ ( lon2� lon1

2
)

c = 2.atan2(
p
a,
p
(1� a))

d = R.c (3.1)

Where R is the radius of the earth (mean radius = 6,371 km). From equation 3.1,

we can calculate the speed s between two consecutive GPS points as follows:

s = d/4T (3.2)

Where4T represents the time difference between the two GPS points. For the change

in direction, we measure the bearing rate [66] between two consecutive GPS point as

follows:

x = cos(lat2) ⇤ sin(lat2� lat1)

y = cos(lat1) ⇤ sin(lat2)� sin(lat1) ⇤ cos(lon2) ⇤ cos(lon2� lon1)

bearing = arctan(x, y) (3.3)

This analysis step will help in generating the road map, extracting road features, and

adding semantic information to the output road map. For instance, the direction

information will help in learning the intersection restrictions, road directions, and in

building the road graph. Table 3.1 shows two consecutive GPS points of a trajectory

and Table 3.2 shows the extracted attributes after the analysis step.

3.4.2 Step 2: Locating intersections

In this step, we aim to: (1) locate the road intersections, which are considered

as one of the essential parts of a road network, and (2) identify if they are intersections
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Table 3.1: Sample of raw GPS trajectory data

Pid latitude longitude Time

624029 41.879176 -87.649627 1301806255

624042 41.879172 -87.649875 1301806259

Table 3.2: Extracted attributes after analysis step

Attribute Values

Distance km 0.02059

Direction 268.759

Bearing -91.25

Angle diff 1.004

Date time 4/2/11 23:50

Time diff 4 s

Velocity 18.48 km

Heading angle SW 88.75

or turns. Distinguishing intersections and turns is a necessary step to know the road

network connectivity and length. In order to achieve that, the RMG algorithm starts

by generating the candidate points for an intersection and then uses the grid-based

method to identify the actual location.

3.4.2.1 Candidate points of intersections:

In order to generate candidate points for the locations of an intersection, we use

the DP algorithm that is a generalized technique for line simplification. It preserves

the points that represent the shape of a line and removes all unnecessary points. The

DP algorithm starts by creating a straight line that connecting the start point (ps) and

the end point (pe) of a line. If all points of the line are within distance e, then remove
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all other points and use this new line. Otherwise, if any point of the line has distance

large than e, then the line will be split into two lines, which connect first point (ps)

to this point and from this point to the end point (pe). The algorithm repeats itself

recursively until no more simplification is found. The parameter required for the DP

algorithm is the maximum allowed distance e, which can be estimated as the width

of a road with three-lanes. The remaining points after the simplification process will

be used as initial candidate points for intersections.

However, unlike the study in [63] were the DP algorithm is only used to find

intersection points, we add spatial-constraints to filter the result of candidate points

before considering them as final candidate points for intersections. The reason is that

the DP algorithm is a generalized technique for line simplification and so it is not con-

sidering the special characteristics of trajectory data, which may lead to the removal

of points that have essential information related to the behavior of vehicles [67]. Also,

we distinguish between intersections and turns using the spatial-constraints, which

are:

1. Intersecting with other trajectories in different directions. We check if the points

of a trajectory returned from the DP algorithm are intersecting with other

trajectories having different directions or not.

2. Changing in direction. We also check the difference in direction between the

points returned from the DP algorithm and the successor and predecessor points

of the same trajectory. In case of change in direction, we consider this point as

a candidate point for intersections or turns.

Our RMG algorithm differentiates between intersections and turns as follows: If con-

ditions (1) and (2) are both met, then the candidate point will be considered as

intersection point, otherwise, if only condition (2) is met, then the candidate point

will be considered as a turn point. Figure 3.2a shows the points of one GPS tra-
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jectory and Figure 3.2b shows the candidate points after applying the DP algorithm

with the spatial-constraints. Algorithm 1 shows the steps for generating the candi-

date points. In line 6, the DP algorithm is applied on a single trajectory; then the

spatial-constraints are applied on the returned points (lines 7-15). Using the line

simplification algorithm overcomes various GPS challenges, such as removing points

that were captured while the car is stopped, and dealing with data sets with different

sampling rates. For example, Figure 3.3a shows two trajectories with different sample

rates where the first trajectory has high sample rates and the second 3.3b has low

sample rates. The line simplification algorithm only keep the important points that

are located at or near the road intersection in both cases.
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Algorithm 1 Candidates points for intersections and turns
Input: Set of GPS trajectory Tr

Output: Candidates points for intersections and turns

1: I  � Intersection points

2: T  � Turn points

3: " Thresholds for the DP

4: \ Thresholds for the change in direction

5: while Tr 6= Null do

6: CP  DP (Tr[i], ") *Apply the DP on a single trajectory

7: for P 2 CP(Tr[i]) do

8: intersect Intersects((P (i), T r(i)), T r)

9: dir  IsChangeDirection(P (i),\)

10: if intersect = True and dir = True then

11: I.insert(P (i)) //add this point as intersection point

12: else if intersect = False and dir = True then

13: T.insert(P (i)) //add this point as turn point

14: end if

15: end for

16: end while

3.4.2.2 Identifying the actual locations for intersection using the grid-based method:

After we identified the candidate points, we want to compute the actual loca-

tions for intersections. Many candidate points may not locate at the actual intersec-

tions because of missing GPS signals, different sampling rates, and some points have

been captured before or after the intersection. For example, Figure 3.4a shows that
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(a)

(b)

Figure 3.2: Extraction candidate points.a) GPS trajectory. b) Final candidate points

the cells with the id (Ci-2, Ci-6) include points that are not near the actual location

of intersection. We introduce a grid-based method that aims to compute the actual

location of intersections. It starts by dividing the area covered by the trajectories

into a gird that consists of cells with identical size, Figure 3.4a, for example. Then,

we count the number of candidate points in each cell. After that, we start with the

cell Ci that has the highest number of points and we check the 8-neighborhood cells

around Ci to count all the points inside these cells. The cells that have number of

points above a certain threshold will be chosen to represent one intersection and a

new id is assigned to these cells. Finally, we calculate the centriod of the points
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(a)

(b)

Figure 3.3: The result after applying the DP algorithm on two trajectories:(a-1)
original trajectory with high sample rates (b-1) original trajectory with low sample
rates (a,b-2) candidate points.

inside the chosen cells to represent the actual location of an intersection or turn in

our generated road map. If all the points are marked as intersection points, it will

be an intersection location, otherwise it will be turn location. Therefore, the result

of this step represents the geographical locations of intersections and the candidate

points that contributed to creating these intersections will have the same id as the

intersections. Algorithm 2 and Figure 3.4 summarize the steps of finding the actual

location of intersections. The minimum threshold for number of points in each cell

that is going to be chosen was computed based on training sets and experimental

evaluations.
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Algorithm 2 Actual locations for intersection
Input: I Intersections and T turn points

Output: Actual locations of intersection and turn

1: G Grid of cells C

2: s Cell size

3: NP Numbers of points in each cell

4: sort the cells in ascending order according to NP

5: " Thresholds for number of points in each cell to be chosen

6: while C 6= Null do

7: // iterate over the cells in G

8: CR get the 8-neighborhood cells of C[i]

9: for Cells 2 CR do

10: if Cells[i].NP > " then

11: Cells[i].id= C[i].id

12: end if

13: end for

14: end while

15: FindCentriod(C) //compute the centriod for the cells with the same id to be the

locations of intersection or turn

3.4.3 Step 3: Building road segments

So far we have identified the actual locations for all intersections in the generated

road map. In this step, we build the road segments between intersections in order

to connect them utilizing the trajectories that passed among these intersections. We

start by creating the graph connectivity table (GCT) that lists the combinations of
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(a) (b)

(c) (d)

Figure 3.4: Steps to find the actual location of an intersection: a) Candidate points
of an intersection, red lines represent aground truth map.b) Cells with large numbers
of points. c) The Blue dot represents the extracted intersection location. d)locations
of intersections (red dots) on Google Maps.

all intersections and counts the number of trajectories that pass through each pair of

consecutive intersections. Based on GCT, we extract parts of the trajectories between

each pair of intersections.

3.4.3.1 Generating the graph connectivity table (GCT)

In order to build the directed graph for the road map, we utilize the information

of the cells in the grid from the previous step. That means for each trajectory; we

know the cell id of each point within the grid. Also, we know the location of each

generated intersection inside the grid and the candidate points from each trajectory
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Figure 3.5: Extract the graph connectivity information

Table 3.3: Graph connectivity information example

vertex 1 vertex2 no of trajectories

1 2 286

2 8 129

2 100 80

that contributed to compute the intersections. With this information, we can gener-

ate the GCT. The algorithm checks for each trajectory, if it has points that helped

in creating a specific intersection or passed by a specific intersection. It adds the

intersection id to these points. After that, we go through each trajectory to know the

graph connectivity. Algorithm 3 shows the steps of generating the GCT. For example,

the trajectory, in Figure 3.5, has eight points associated with eight intersections (i.e.

P5:17,P15:12, P20:4,..) and the RMG algorithm produces the graph information as

the example shown in Table 3.3.

3.4.3.2 Creating road segments between intersections:

Based on the GCT information, we extract a portion of each trajectory between

two intersections. Figure 3.6 shows an example of the parts of trajectories between

intersections. We create a cluster that has all portions of trajectories between two

specific intersections in the same direction together. Then, we create a buffer around

each cluster and we pick the middle trajectory to represent the road segments. After

that, we apply the DP algorithm to simplify the line, which will produce a road map
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(a)

(b)

Figure 3.6: Portions of trajectories between intersections. a)Road segment between
intersections. b) The Road segments between two intersections in the red box

with fewer vertices at the end. Since the number of trajectories is different in each

part of the road network, as shown in Figure 3.6a, our algorithm is able to build a

road segment between intersections even if few trajectory segments exist. Figure 3.7

(1-3), shows the steps of creating the road segments between two intersections.

3.4.3.3 Extracting road features:

Using the information from the analysis step and the GCT table, we are able to

extract some of the road features such as type of roads (one-way, two-way,..) directions

of road segments, average speed in each portion of the road, intersections restrictions,

and the number of trajectories passed between two intersections.

3.4.4 Step 4: Building the road map

The goal of this phase is to connect each road segment to the right intersections

in order to build the final road map. From the previous steps, we extract each road

segment between intersections using the GCT. However, most of the portions of tra-

jectories have a length slightly different than the actual length between intersections

because of approximations. Therefore, by using the GCT, we connect the portion
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Algorithm 3 Generate graph connectivity information
Input: Set of GPS trajectory Tr, intersection location I

Output: GCT graph connectivity information

1: GCT  � Graph Connectivity table

2: CP Candidate points

3: while Tr 6= Null do

4: for P 2 Tr[i] do

5: if P [i] is CP or P [i] has same cell id as I then

6: P [i].insert(I.id)

7: end if

8: PI  Get only P of Tr[i] that has I.id

9: for p 2 PI do

10: GCT .insert(p[i].id, p[i+ 1].id, GCT.count+ 1)

11: end for

12: end for

13: end while

of each road segment with its actual intersections locations. For example, after we

reach Figure 3.7 step number 4, we connect the portion of the trajectory segment to

intersection 7 and 17 to create the road segments.

3.4.4.1 Identifying the shape of road map intersections:

The goal of this step is to update the generated road map and add detail to each

intersection (shape and turn restrictions) to be similar to the actual intersections.

We refine the topology of each intersection to find the shape without adding new

segments. By using the direction information of each trajectory that passed through
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Figure 3.7: Steps for extract and create road segments between intersections

a specific intersection, we group all segments in a specific direction to identify all the

allowed turns and refine the intersections accordingly. Figure 3.8a shows different road

segments connected to the intersection and Figure 3.8b shows the different groups of

trajectories where each color represents a direction. Figure 3.8c shows the final shape

of the intersection and the allowed turns after the refinement step.

3.5 EXPERIMENTAL EVALUATION

In this section, we evaluate the accuracy of the proposed algorithm. First, we

describe the two data sets that we used and the baseline methods to compare with

our method. After that, we explain the evaluation methodologies on the generated

road map. We then provide the results of our method as compared to the baseline

algorithms.
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(a) (b) (c)

Figure 3.8: Steps to refine intersections. a) Intersection before the update step.
b) Using the direction to learn the shape and turn restrictions, where each color
represents a directions. c) Final shape and turns allowed.

Table 3.4: Real data sets information

Data set Chicago Athens

No. of trajectories 889 129

Average sampling rate (sec) 3.6 34.7

Average speed (km/h) 33.14 19.55

Length(km) 2863 443

3.5.1 Data sets and comparing algorithms

3.5.1.1 Data sets:

We use two real data sets with different sampling rates and from different cities

to evaluate our algorithm (Table 3.4). These data sets are:

1. Chicago data set [53, 58]: this data set consists of 889 trajectories that were

collected by university shuttle buses, which cover an area of 7km x 4.5 km and

the total length of 2863 km. Each trajectory has between 100 to 363 sample

points. The average sample rate is 3.6 seconds with a range between 1s to 29s,

which makes this data set a high sampling rate data set.
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2. Athens data set: this data set consists of 129 trajectories that were collected by

school buses, which cover an area of 2.6 km x 6 km and total length reaches 443

km. Each trajectory has between 13 to 47 sample points. The average sample

rate is 34.7s with a range between 20s and 30s, so this has low sampling rate.

The OpenStreetMap (OSM)[68] is used as the ground-truth map. Since the trajec-

tories do not cover all the streets in the ground-truth map, we manually remove any

part of the ground-truth map that is not used by at least one trajectory. The data sets

and the ground-truth map are obtained from the website http://mapconstruction.org

by [56].

3.5.1.2 Comparing algorithms:

we compare our algorithm with two baseline methods, Karagiorgou’s method

[52] and Ahmed’s method [51]. Each method follows a different approaches to map

construction from GPS. Karagiorgou’s method [52] is considered as Intersection-

linking method while Ahmed’s method [51] is consider as Incremental Track Insertion

method (as described in Section ??). The implementation of both methods are pub-

licly available by [52, 69] and at the website http://mapconstruction.org by [56], which

we used to compare with our algorithm.

Each algorithm has different parameters settings. Karagiorgou’s method has

the following parameters: angular difference = 12.5°, mean speed = 40km/h, turn

cluster threshold 50 meters, and intersection clustering threshold 25m. For Ahmed’s

method, only one parameter is used to cluster sub-trajectories that is ✏=80m for

Chicago and 90m for Athens. We use the values of the parameters according to [56].

For our algorithm, we conduct different experiments to find the appropriate values for

the parameters. Locating intersection (Section 4.2) has the following parameters: (i)

the line simplification algorithm (DP) that is used to generate the candidate points
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for intersections has the maximum allowed distance parameter, which was set to 40m.

(ii) Cell size was set to 25m * 25m by analyzing the candidate points, which in most

of the cases are within 25m distance from each other; in addition, the average of

intersection area is around 125m2. (iii) The number of points in the cell in order to

be selected should have at least 15% of the total number of points. (iv) change in

direction \ = 35°.

3.5.2 Evaluation methodologies

To determine the accuracy of our generated road map, we use four evaluation

methods. The first method is used to evaluate the geometry and topology of the

generated map (GM), similar to the described method in [58]. In order to do that,

we compute the precision and recall values to find the F-score. Precision (equ. 3.4)

is computed as the matched length from the generated map GM matched to the total

length of the GM. Recall (equ. 3.5) is computed as the ratio of GM matched to

the total length of the ground truth map (GT). To compute the GM matched we

extract two segments from the ground truth map that connect by an intersection and

we check if any part of the GM match to these segments within a specific distance

threshold. In order to ensure the connectivity of the generated road map, we count

only the matched part from GM to the GT if it is in the same direction as the GT.

The F-score (equ. 3.6) is computed as follows:

precision =
GM matched segments

GM all segments
(3.4)

Recall =
GM matched segments

GT segments
(3.5)

F � score = 2 ⇤ precision⇥ Recall
precision + Recall

(3.6)
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The second method is used to check how accurately the location of intersections

in the generated map compares to intersections in the ground truth map within

a specific distance threshold. This measure checks the geometric accuracy of the

extracted intersections. We also compute the F-score for this measure as follows:

precision =
GM Matched intersections

Total number of extracted intersections in GM
(3.7)

Recall =
GM Matched intersections

Total numbers of intersections in GT
(3.8)

GM Matched intersections are counted as the number of intersections that matched

to the ground truth intersections within a specific threshold distance. The third

measure is used to determine the complexity of the generated road map in term of

the number of vertices and edges. A road map with fewer number of vertices and

edges can be useful when it is used in small devices with low memory, low power, and

can produce the results of map searching efficiently. Finally, we use the visualization

method to draw and compare our map with the baseline algorithms’ maps and we

provide detailed information on the generated road map.

3.5.3 Results

3.5.3.1 Accuracy of the generated road map:

The result of this evaluation method for the Chicago data set is shown in Figure

3.9a. It shows a high value of F-Score for our method, which indicates the accuracy of

our algorithm. We can see that the proposed algorithm with varying matching thresh-

olds distance outperforms the two baseline algorithms. In addition, Figure 3.9b and

3.9c show that our algorithm achieves high values of precision and recall values com-

pared to Karagiorgou’s algorithm [52] and Ahmed’s algorithm [51]. Our algorithm

exceeds Ahmed’s algorithm by almost 20% in precision value. Karagiorgou’s algo-
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(a)

(b) (c)

Figure 3.9: Comparison of F-score for the Chicago data set. a)F-score. b)Precision
value. c)Recall value

rithm has high precision value when we compare it with our algorithm. However, it

has lower recall since it does not differentiate roads in a different direction, which

leads to cover a small part of the ground truth map. In addition, Figure 3.10 shows

the F-score for the Athens data set where our algorithm also achieved higher F-score

comparing to other two algorithms. The rank of the F-score on Chicago data set

was higher than Athens due to the different number of trajectories, which is 889

trajectories in Chicago compared to 129 in Athens, and number of points in each tra-

jectory. Overall, the F-score indicates that our algorithm achieves high accuracy on

trajectories from different data sets, sampling rates, and the number of trajectories.
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Figure 3.10: Comparison of F-score for Athens data set

3.5.3.2 Accuracy of the generated road intersections:

For the second evaluation method, we compare the generated road intersections

with the ground-truth road intersections using the Chicago data set because it has

more trajectories and intersections. We only compare with Karagiorgou’s method be-

cause Ahmed’s algorithm does not explicitly identify intersections. The ground-truth

map has a total of 65 intersections and our algorithm extracted 60 intersections while

it missed five. The Karagiorgou’s algorithm extracted 77 locations of intersection,

which results in a high recall value but lower precision and eventually low F-score.

Figure 3.11 shows that our algorithm achieves high accuracy in extracting the road

intersections and identified the actual locations within small distance deviation com-

paring to Karagiorgou’s algorithm. More than 65% of the extracted intersections are

within 10m distance from the actual location of the intersections, which indicates the

accuracy of our algorithm.
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Figure 3.11: F-score for locations of intersections

3.5.3.3 Complexity of the generated road map:

In this evaluation measure, we show the complexity of the generated road map

in terms of the number of vertices, edges, and the total length. Table 3.5 shows a

summary of the generated road map complexity. Our algorithm on the two data sets

generates a road map with lower complexity comparing to the baseline algorithms.

The total length of our generated road map is high since we identify roads in different

directions. From the above evaluation methods, we can see that our algorithm is able

to generate a road map that is accurate with fewer number of vertices and edges.

3.5.3.4 Visualization of the generated road map:

For this method of evaluation, we draw our generated road map and we compare

it with the baseline algorithms. For the Chicago data set, Figure 3.12 shows that

our algorithm produces high quality and detailed map comparing to Karagiorgou’s

algorithm and Ahmed’s algorithm. Our method distinguishes correctly the road type

(one-way, two-way) and direction while other algorithms either generate one solid

line for each segment (i.e. Figures 3.14b,3.14c), multiple lines for one segment (i.e.
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Table 3.5: Generated road map complexity

Athens dataset #Vertices #Edges #Length (Km)

Ahmed 344 378 37

Karagiorgou 660 637 37

Our method 278 305 48

Chicago dataset

Ahmed 1195 1286 43

Karagiorgou 596 558 37

Our method 268 315 49

Figures 3.14g), detect road segments that do not exist (i.e. Figures 3.14f,3.14g), or

misses road segments i.e. Figures 3.14f) . Furthermore, Figure 3.14e shows an area

that has noisy GPS data, high density, and disparity in the number of trajectories in

which our algorithm, Figure 3.14h, provides accurate map results in such an area and

eliminates the trajectories with outliers. Since these trajectories will not be located

within the same cells that have the intersections, this will lead to generating the

final road segments from trajectories that are near to each other and pass by the

intersections. For the Athens data set, Figure 3.13 shows the generated road map.

While Ahmed’s method produces a better map for Athens data set, our algorithm has

high F-score value since we extract accurate intersections’ locations then we choose

the middle trajectory to represent the road segment.

3.5.3.5 Generated road map features:

As one of our work’s aim is to extract detail in the generated road map, in

this section, we show the road map features that we are able to extract from the

trajectories. These features are extracted during the process of generating a road
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(a) (b)

(c) (d)

Figure 3.12: The generated road map for Chicago data set. a) GPS trajectories; b)
Ahmed’s method. c)Karagiorgou’s method. d)RMG proposed

map from the first step of our algorithm Trajectory data analysis and the building

road segments step. The features that we extracted are:

1. Average speed: since we divide the roads into segments where each segment is

located between two intersections, we find the average speed from the trajecto-

ries portion in each road segment.

2. Road segments length: this attribute represents the length of each road seg-

ment between two intersections by computing the trajectory length between

two intersections.

3. Number of cars traveled per road segment: this attribute can be found in the

GCT information. It can be used to differentiate main roads from local roads

and show the roads with heavy traffic.

4. Road type: this feature shows the road type (one-way, two-way) when the

trajectories move in opposite directions. For example, in Figure 3.15, the road
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(c) (d)

Figure 3.13: The generated road map for Athens data set. a) GPS trajectories; b)
Ahmed’s method. c)Karagiorgou’s method. d)RMG proposed
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(a) GPS trajectories (b) Karagiorgou
(c) Ahmed (d) RMG proposed

(e) GPS trajectories (f) Karagiorgou (g) Ahmed (h) RMG proposed

Figure 3.14: Visualization comparison of the road segments on the Chicago data set

Table 3.6: Example of generated road map details

s.id Avg speed (km/h) length(m) No. cars Direction

1 to 19 25 290 46 N to NW

1 to 2 31 257 286 SE to SE

13 to 11 31 213 206 W to W

5 to 18 35 757 153 E to E

35 to 1 25 188 260 N to N

segment between intersection (8,39) is considered two-way road while the road

segment between (23,35) is considered one-way road.

5. Road segments direction: this feature shows the direction of each road segment.

6. Intersections restrictions: using the trajectories’ direction at each intersection

and the GCT information, we find the turns restrictions.

7. Intersection connectivity information: this feature is used to show the intersec-

tion connectivity information with other intersections.

Figure 3.15 and Tables 3.6,3.7 show examples of the extracted features from the

generated road map and the intersection information.
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Figure 3.15: Generated road map with direction and type

3.5.4 Discussion

Our method achieves high accuracy in determining the locations of turns or

intersections and generating accurate road map compared to the baseline algorithms.

In addition, it extracts road features that provide information about the generated

road map. The output map is beneficial to construct a map of an area that has

no map or update an outdated road map. Furthermore, our method generates a

road map with fewer vertices and edges that can be used in small devices with low

memory, low power, and produce the results of map searching efficiently. However,

there is some improvement needed to be done to our method. First, if a trajectory

starts before an intersection and end before the next one, it will not be added to any

road segment, since we only extract part of the trajectories that passed between two

intersections. As a solution, we can check the nearest intersection to the last point

of the trajectory using the direction information and the GCT table and connect

this trajectory to the nearest intersection. Second, part of the road map will not be
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Table 3.7: Generated intersection details

I.id Type Connect to Allowed turns

19 I 1,27 L,R,S

18 T 3 R

23 I 35 S,R
I: intersection. T: turn. R:right. L:left. S:straight

generated if it is before an intersection. Our algorithm only creates road segments

between intersections. To overcome this issue, we can group all the trajectories that

start before a specific intersection and do not pass by any other intersections and

generate road segments for these. Finally, we use the DP algorithm to simplify a

trajectory between two intersections to represent the road segment, which works well

in most cases and leads to a road map with fewer number of vertices and edges. A

different smoothing method can be applied to generate road segments.

3.6 Conclusion

In this chapter, we presented an algorithm for generating a road map and ex-

tracting roads’ features automatically from GPS trajectories. Our algorithm is based

on the intersection linking approach. It detects the location of intersections and turns

of a road network using the DP algorithm with spatial-constraints and the grid-based

method. Then, a directed road segment is created relying on the graph connectivity

information to connect the intersections and build the road map. Furthermore, we

provided a refinement step to indicate the shapes and restrictions of intersections.

Our algorithm also extracted the road map features such as average speed, road type,

number of trajectories per road segment, road segment direction, and intersection

connectivity information. Experimental results showed that our algorithm achieved
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higher F-scores and generated a road map with fewer vertices and edges compared to

the baseline methods. Furthermore, we showed our algorithm is able to extract road

map features that were not considered in previous works.

In our future work, we intend to work on online road map generation from GPS

data to provide a real-time update to the road map. Also, we intend to provide a

machine learning model to better estimate the parameters of our algorithm for each

GPS data set. In addition, we aim to extract more road details such as the locations

of bridges, tunnels, or parking lots as the data sets become available.
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CHAPTER 4

A Framework for Road Map Classification Using Machine Learning

4.1 Introduction

Advancement in technology leads to the availability of different road network

datasets, which offered by organizations such as governments (i.e., Topologically In-

tegrated Geographic Encoding and Referencing system TIGER), Volunteered Geo-

graphic Information (VGI) (i.e., Open Street Map (OSM)), and commercial compa-

nies ( HERE, Google map). It can be utilized by several applications such as in

transportation systems for creating, classifying, and updating the road map, spatial

data integration of two different road map data sets, and location-based applications.

The process of creating maps for roads network is still a challenging task. Pre-

vious studies create the road maps for road network using different approaches such

as using satellite imagery to extract the road maps [70] [71] [72], using Global Po-

sitioning System (GPS) to collect points from the trajectory of moving objects and

create the road network, and remotely sensed data [73] [74] [75]. However, to use

the road map datasets for different applications, it required some pre-processing to

prepare the data. One way of pre-processing is to classify a road map.

Looking at different approaches to creating the road map, we encourage to

assist this process by proposing a framework for road map classification using different

machine learning algorithms. It aims to distinguish the roads based on their types,

which either are main roads that expand over multiple counties or local roads that

do not exceed the counties’ or cities’ boundaries. The data set used in the framework

obtained from the Texas Department of Transportation (TxDOT), which represent
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Figure 4.1: Main roads (dark blue) and local roads (yellow)

the roads in the state of Texas. Figure 4.1 shows the main road (dark blue) and the

local road (yellow). Our framework can be used as pre-processing for any applications

that use the road types among its processes, such as in generating candidates for a

similar road for spatial data integration, post-processing in classifying the extracted

roads from satellite imagery, or any other methods of creating and classifying the

road maps. Besides, it can be used to update information on the already existing

road map database in case new information is available.

To create the framework, we examine different machine learning algorithms

(Logistic Regression, K-Nearest Neighbor (KNN), Naïve Bayes, and Support Vector

Machine (SVM)) to find the best algorithm that solves our problem. The main

contribution of this chapter is to provide a model that can categorize roads of different

types.

The rest of this chapter organized as follows: in section 4.2, we discuss related

work for creating road maps. In section 4.3, we describe the road map classification

framework. Next, in section 4.4, we present the result of the machine learning al-

gorithms using several approaches such as learning curve and accuracy. Section 4.5

provides a discussion on the proposed framework. Finally, in section 4.6, we sum up

with the conclusion and future works of this chapter.
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4.2 Related Work

Different studies on creating and updating road maps have been introduced.

One approach is to use the satellite or aerial images for detecting and extracting

different road map. The study in[76] provides a method to extract the road from

satellite images using the geometry shape of the road. Another study [77] proposes

a method to detect the straight lines in aerial images. In [78], the authors develop

a method to extract the main roads from satellite images. The authors of [79] able

to extract road centerline using a training spectral-spatial classifier. Several surveys

on creating road maps using satellite images are provided in [80, 81, 82]. Another

approach for constructing road maps using the data collected from GPS devices for

moving objects (i.e., car trajectories) along the road network, as discussed in Chapter

3. The study in [79] constructs the road map using GPS data set by by creating the

road segments and identifying junctions then constructing the road map. In paper

[73], the authors able to cluster the trajectories in the same area and generate the

road network accordingly. Several surveys and comparisons of different approaches

are provided in [56, 57, 58]. Besides, the spatial data integration of different road map

data sets can be used to update a digital road map. Comparing those approaches are

out of the scope of this chapter. Our framework can assist both methods when the

classification of the road map is required.

4.3 Framework for Road Map Classification

In this section, we describe different parts of our framework for road map clas-

sification, as shown in figure 4.2. We start by explaining the four machine learning

algorithms that we use. Next, we explain the data set. Then, we move to the feature
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Figure 4.2: Overview of Framework for Road Map Classification

selection to do the dimension reduction. After that, we implement machine learning

algorithms and report the result.

4.3.1 Machine learning algorithms

We selected four machine learning algorithms to apply the classification tasks

on our road map data set. 1) K-Nearest Neighbor algorithm (KNN), which considers

a lazy learning algorithm and instance-based algorithms. In KNN, distances between

different points are computed and the points which lack class label are assigned to

the class of the k- nearest neighbor. 2) Support Vector Machine (SVM), which is

designed for binary classification since our data set has only two classes. 3) Naïve

Bayes (NB) which is considered as a generative model. 4) Logistic Regression (LR)

as a discriminative algorithm. We pick four different algorithms and each technique

has different characteristics. These algorithms are simple to implement and the result

can be easily interpreted.

4.3.2 Data description

The data set is from the Texas Department of Transportation (TxDOT) [83],

which is the road map for the State of Texas that has 640124 instances and 152

features. It has many classes besides the main and local roads. Since we are only

interested in those type, we extracted them only and eliminate the rest.
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Table 4.1: Data Pre-processing

Feature Action

Length Sum

Number of lanes Frequency, Varince, Average

Row Average

Surface width Avearge,Mean

Road Width Frequency,Avearge

4.3.2.1 Data pre-processing

The data set has many issues. The main two issues that we deal with are missing

information for some features, and some roads have multiple records. To solve the

first problem, we eliminate the features with missing information before that we try

to fill some of the information. However, we found out it impossible to come with

the right information. For instance, the feature ’Max Speed’ for local road does not

include any information, since the TxDOT does not provide any information. We

had to remove this feature. For the second problem, which violates the Identical

Independent Distribution (I.I.D) property, we aggregate the multiple records for one

road together. Table 4.1 shows the selected features and explain the action we take

to do the aggregation.

4.3.3 Feature Selection

Before we apply any of the machine learning algorithms, we reduce the feature

dimension using two approaches that are domain knowledge and implementation of

76



different algorithms for feature selection. In this process, we aim to reduce the feature

dimension and eliminate unrelated and redundant features.

4.3.3.1 Domain knowledge

We start with the domain knowledge since the data set comes with clear meta-

data that describes each feature. By studying the metadata for the whole data set,

we choose the most relevant features for our framework. For example, the Length

feature provides the notion of distance, which helps the classifier to distinguish be-

tween main and local roads. The number of lanes and width features play a critical

role in identifying main and local roads since some local roads have a greater or lower

number of lanes than main roads or vice versa. In addition, we eliminate more than a

hundred features that have no roll in classifying the road map. Examples of the fea-

tures that we eliminate are the date that specific record added to the database, name

of the administration responsible for maintaining the road, and district id. Later, we

eliminate any feature that has no information, such as minimum speed and maximum

speed.

4.3.3.2 Algorithms for features selection

There are several techniques to automatically select features for training ma-

chine learning algorithms. In our work, we use the wrapper method (forward feature

selection, backward feature selection), which works by selecting a subset of features

and train the model and compare the performance of different combinations of fea-

tures together.

Table 4.2 lists the 10-fold cross-validation accuracy results for forward and back-

ward sequential selection search methods. Backward sequential selection should nor-

mally produce better accuracy results when features rely on each other to predict.
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Table 4.2: 10-fold cross validation accuracy for each search method

Algorithm Forward Backward

LR 93% 93%

KNN 94% 93%

NB 88% 85%

SVM 93.5% 93.6%

Table 4.3: Feature sets for each search method of classification algorithms

Algorithm Forward

LR {rowd_mean,surf_mode row_min_mean}

KNN {row_mean,surf_mode, roadw_mean}

NB {surf_mode, row_mean,surf_mode}

SVM {length,row_mean,surf_mode}

However, when we apply those methods on our road map data set using KNN and

Naïve Bayes algorithms, forward selection produces slightly higher accuracy, but we

get equal accuracy results when we apply a logistic regression algorithm on our data

set. Also, using the SVM algorithm with a backward sequential selection method gives

a marginal increase over the forward method. Table 4.3 and 4.4 show the features

that produce high accuracy after applying the feature selection algorithms. Feature

surfacew_mode appears in all algorithms, which indicates that this is an important

feature.

4.4 Algorithms Evaluation

In order to evaluate the machine learning algorithms, we use the learning curve,

accuracy, and receiver operating characteristic (ROC).
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Table 4.4: Feature sets for each search method of classification algorithms

Algorithm Backward

LR {surf_mode, surf_mean, roadw_mean}

KNN {roadesign, row_min_mean,surf_mode}

NB {avg_lane, surf_mode, row_min_mean}

SVM {row_mean, surf_mean road_mean}

Figure 4.3: Learning Curve

4.4.0.1 Learning curve

Figure 4.3 illustrates the result of the machine learning algorithms that are

evaluated on the road map data set. The data set is randomly partitioned using

a 10-fold cross-validation technique. When the sample size reaches 8000 instances,

SVM outperforms other machine learning algorithms. The accuracy that results from

running KNN is slightly higher than the logistic regression’s accuracy. In addition,

Naïve Bayes works very well when the sample size is small, starting from 100 to 4000.

It is expected from Naïve Bayes as a generative model to derive such results because

it works very well when the size of the data set is small.
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Figure 4.4: Receiver operating characteristic

4.4.0.2 Accuracy

The receiver operating characteristic (ROC) curve for SVM is plotted in figure

4.4, which shows multiple curves for each fold in the 10-fold cross-validation technique.

SVM gives the high area under the curve (AUC) for each fold, which is closer to one.

The average area under the curve is 0.98, with a confidence interval of -0.01 and 0.01.

KNN and Logistic regression generate the same area under the curve, 97%. However,

logistic regression produces a lower area under the curve result, which includes one

fold that causes the average to be lower than other algorithms. The first fold generates

90% area under the curve.

4.5 Discussion

As shown in the algorithms evaluation section, all the algorithms provide good

accuracy for classifying the roads to main and local roads. Our evaluation also shows

that the accuracy is similar even with different algorithms on the same set of features

and training/ testing. Such results show that our framework has a promising output

when it incorporates with other methods such as constructing and updating maps for
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the road map. Furthermore, this model can be used as pre-processing for spatial data

integration of road maps to generate a candidate of the same road type semantically.

Moreover, it can be used as post-processing after extract roads from satellite images.

Nevertheless, there are still some issues with the road map data set. One of the

problems is when some roads have missing feature data that may affect the result of

our framework. Another issue is that there is more than one record representation

for the same road (object), which violates the dependency condition and eventually

impact the accuracy of the results. Hence, this framework can be improved by using

different algorithms for feature selection. Also, the performance of the four machine

learning algorithms needs to test before the features are selected and after on different

data set.

4.6 Conclusion

In this chapter, we propose a framework using machine learning algorithms to

classify the roads based on their types, whether they are main or local roads. It starts

with pre-processing of the input data and then implementing several methods for

feature selection. After that, we train our model by utilizing four different algorithms

(KNN, SVM, Logistic regressions, and Naïve Bayes). The output of the framework

is the roads labeled as main or local roads. The experimental result shows good

accuracy in classifying the road maps. As future work, we intend to use the framework

as an initializing process for generating similar candidate roads to apply spatial data

integration. Also, the framework will be tested using a different dataset and machine

learning algorithms
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CHAPTER 5

Data Fusion of Heterogeneous Data Sources for Intelligent Transportation Systems

5.1 Introduction

Intelligent Transportation Systems (ITS) play a critical role in our daily life

by enhancing road safety, minimizing travel time, reducing fuel consumption, and

detecting incidents [84]. ITS applications can provide, for example, traffic forecast

information, travel time estimation, incident prediction, and other applications. Pro-

viding accurate information for road status is considered as a challenging task due

to the different factors that effect road conditions, which include drivers behaviors,

road network structures, spatio-temporal dependencies, and external factors such as

weather, incidents, traffic congestion, road closings, and nearby events [85, 86].

These days, big data from various sources (government agencies or crowd data

sources) provide valuable information to transportation systems. These data can be

acquired and collected from road network sensors (loop detectors), weather stations,

incidents reports, congestion reports, points of interest locations, temporal informa-

tion (time of day or day of the week), and social events. Relying only on one data

source for ITS applications, such as road network sensors, which provide traffic flow

information, may not be an effective way to provide traffic status [87]. Therefore,

data fusion techniques of heterogeneous data sources may lead to better estimation

of a situation, reduce the uncertainty from one data source, and provide more accu-

rate information [87]. Thus, combining various data sources with traffic information

can improve traffic prediction [84].
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Several approaches and techniques have been studied for ITS applications. In

recent years, data-driven models using deep learning approaches for transportation

systems have achieved better results in traffic flow prediction, incidents prediction,

and travel time estimation when compared to other methods as in [88, 89, 90, 91, 92,

93, 94, 95]. [96, 97] Some of the motivations behind using the deep learning approaches

are utilizing high-performance computational power, which allows processing large

amounts of data with different features. Furthermore, deep learning approaches could

learn features with minimum knowledge of a specific domain. However, to train

deep learning methods, the input data should be in large amounts and in a uniform

representation, which is considered to be a complex and time-consuming task [98].

To benefit from deep learning approaches and utilize the availability of hetero-

geneous data sources for ITS applications, this chapter has two main goals, which

are: (1) providing data fusion techniques to integrate and extract features from het-

erogeneous data sources with different characteristics (such as format and size) in a

uniform representation to be ready for deep learning training approaches, and (2)

generating preprocessed real-world traffic datasets and make them publicly available

for other researchers. These generated traffic datasets can be used for different ITS

applications such as traffic analysis and visualization, traffic forecast prediction, inci-

dent prediction, travel time estimation. The preprocessed data can and also be used

for benchmarking different prediction approaches that used deep learning. We also

describe with details the steps to generate the traffic datasets from heterogeneous

sources to be used as guidance for other researchers.

The generated traffic datasets provide rich features such as traffic flow, aver-

age speed, vehicle occupancy, weather conditions, incidents information, congestion

reports, point of interest locations. It also provides temporal features such as a month

of the year, day of the week, an hour of a day, weekend vs. weekdays, and other

83



features for different road network locations. These features can allow researchers

in different ITS fields to gain insight and apply their methods to solve ITS-related

problems. Our contributions can be summarized as follows:

• Gathering heterogeneous data sources that include traffic information, weather

information, temporal information, road network graph, and point of interest

locations and introducing data fusion techniques that include semantic match-

ing, map matching, spatial matching, temporal matching, and data association

to extract features out of the collected datasets.

• Providing as an output of the data fusion techniques two traffic datasets with

different characteristics that are publicly available.

• Utilizing the two traffic datasets and providing two applications in chapter 6.

(1) Traffic data analysis and visualization where we create a data cube that

provides in-depth analysis of the traffic datasets with a visualization tool to

provide the results in different ways such as charts, maps, and tables. (2) Traffic

flow forecasting using deep learning where we perform a comprehensive study

on how different features can improve the traffic flow prediction models. The

experimental results show that combing features with traffic data achieve lower

Mean Absolute Error (MAE) comparing to using only traffic data for different

deep learning models.

The remainder of this chapter is organized as follows: Section 5.2 describes

related work. In Section 5.3, we provide descriptions of the different data sources.

Section 5.4 explains the steps of our data fusion techniques to generate preprocessed

traffic datasets.
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5.2 Related Work

Data fusion (DF) techniques have been used widely in different domains and

one of these domains is Intelligent transportation systems (ITS) [87]. Several def-

initions have been introduced for data fusion and we mentioned the most common

definitions of them here:

The Joint Directors of Laboratories (JDL) [99] defines data fusion is as"a process

dealing with the association, correlation, and combination of data and information

from single and multiple sources to achieve refined position and identity estimates,

and complete and timely assessments of situations and threats, and their significance.

The process is characterized by continuous refinements of its estimates and assess-

ments, and the evaluation of the need for additional sources, or modification of the

process itself, to achieve improved results."

Castanedo [100] defines data fusion as " a combination of multiple sources to obtain

improved information; in this context, improved information means less expensive,

higher quality, or more relevant information".

Sidek and Quadri [101] define data fusion as "Data fusion deals with the synergistic

combination of information made available by different measurement sensors, infor-

mation sources and decision makers. Thus, sensor fusion is concerned with distributed

detection, sensor registration, data association, state estimation, target identification,

decision fusion, user interface and database management."

Data fusion goals are to combine data from heterogeneous sources to provide a better

understanding of the situation, improve decision making, and provide more reliable

result from many data sources instead of one data source [87, 102, 103]. DF techniques

can be classified and categorized in several ways. One of the well-known classifica-

tions of DF is provided by Dasarathy [104] where the classification is based on the

input and the output data types. It has five categories [100], which are:
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1. Data In–Data Out (DAI-DAO): This is the basic data fusion method. The

result of the data fusion also is raw data. However, the output data will be

more reliable or accurate than the input data.

2. Data In–Feature Out (DAI-FEO): The data fusion methods use the input data

from different sources to extract features and provide more information.

3. Feature In–Feature Out (FEI-FEO): The input and output to the fusion process

are features to extract new features or improve existing features.

4. Feature In–Decision Out (FEI-DEO): The input to the fusion method is sets of

features and the output is sets of decisions.

5. Decision In–Decision Out (DEI-DEO): The input to the fusion method is sets

of decisions and the output is sets of decisions to generate new decisions or

improve existing decisions.

Another classification of DF is developed by the U.S. Department of Defense, which

is called the JDL model [99]. It consists of five levels [84, 100]. Level 0 - Source

prepossessing: This level deals with data prepossessing and preparation from different

sources and reduces the amount of data. Level 1 - Object refinement: This level uses

the processed data from level 0 and fuses them by applying several functions such as

spatio-temporal alignment, association, correlation, clustering, and others techniques.

The fused data can be traffic flow from sensors, toll data, probe information from

vehicles sensors, and weather stations. Level 2 - Situation assessment: This level

combines data from other data sources and provides a higher inference level than

level 1. Data sources can be incident reports, temporal information, events, weather

report, and traffic patterns. Level 3 - Threat assessment: This level evaluates the

impact of fusing different data sources. For example, the impact of incidents on the

traffic flow. Level 4 - Process refinement: This level aims to reevaluate the data fusion

process and improve it and add new data sources.
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Previous paragraphs describe DF techniques in general. We now discuss DF

techniques in ITS. These involve several functions such as temporal and spatial join-

ing of raw data, data association, and data mining [84]. Algorithms that have been

introduced for DF in ITS, for example, include Bayesian inference, Dempster-Shafer

evidential theory, artificial neural network, fuzzy logic, Kalman filter or extended

Kalman filter, Monte Carlo techniques, and particle filters [84]. Most of these al-

gorithms focus on combing different sources of multiple input to provide a single

type of output prediction. Several surveys about data fusion in general and in ITS

applications are provided in [84, 100, 87, 101, 102].

A fusion of heterogeneous data using deep learning approaches to solve ITS

problems has shown promising results by including traffic flow information and ex-

ternal factors such as weather data, incidents, traffic congestion, road closings, and

events. Zhang and Kabuba [105] predicted traffic flow in an urban area by taking

into consideration weather data along with with traffic flow information. A Gated

Recurrent Unit (GRU) is used to predict the traffic flow and the result showed that

the model produced higher accuracy when the weather data is included. Dunne and

Ghosh [106] proposed neurowavelet algorithm to predict traffic forecast with rainfall

information. The model produced better results when using rainfall information with

traffic data during rainfall periods. Koesdwiady et al. [96] proposed a deep belief

network (DBN) to predict traffic flow with weather information. The traffic flow and

weather information are fused at the decision level using DBN to predict the traffic

flow; therefore, better results are obtained with weather information instead of only

traffic information. Jia et al. [107] proposed a long-short term memory (LSTM)

model to predict traffic speed with rainfall information. Their result showed that the

model produced better traffic speed prediction with the rainfall than the prediction

without rainfall information. Yang et al. [108] predicted short-term traffic speed
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and included external factors such as road information, weather condition, and air

quality. Combining these factors led to an improvement in predicting traffic speed.

Essien et al. [85] proposed a Long Short-Term Memory Neural Network (LSTM-NN)

to predict traffic speed by adding weather data with traffic information on an urban

road network. Their experiments indicated the importance of combining the weather

data with traffic information in which the model produced improved results instead

of using traffic data only. Alammari [109] utilized the availability of different data

sources such as traffic information, weather data, traffic jams, traffic incidents, and

temporal information to predict traffic flow using several features. The experiments

indicated that combining the traffic flow, accidents, weather, time information, and

the number of lanes produced the best results comparing to use only traffic flow.

Polson and Sokolov [110] introduced a deep learning approach to predict traffic flow

under two events: Chicago Bears football game and an extreme snowstorm. Their

comparison showed that predicting traffic flow using deep learning under these two

events produces better results than a neural network with one hidden layer. Yu et

al. [111] predicted traffic flow under extreme conditions such as accidents and peak-

hours. Their model utilized LSTM to predict traffic and Mixture Deep LSTM to

predict traffic after accidents. The input to their model is the traffic information

and accident reports. By combining the accident reports with traffic information,

the model provided better performance in forecasting traffic. Moosavi et al. [94]

proposed a Deep Accident Prediction (DAP) model to predict traffic accidents with

heterogeneous data sources such as weather data, POI, and time-information. The

temporal factors, traffic events, and POI have an important contribution for predict-

ing accidents from their experiment.

Motivated by these works, in this chapter, we provide a DF framework on mul-

tiple heterogeneous data sources to extract features and provide processed unified
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datasets to prepare them for deep learning approaches. In addition, these prepro-

cessed and fused data sources provide traffic databases for analyzing and visualizing

traffic data. These datasets will help study and solve ITS-related problems such as

traffic flow prediction, incidents location prediction, and travel time estimation. Our

DF framework follows the Data In–Feature Out (DAI-FEO) model and apply differ-

ent techniques such as map matching, semantic matching, temporal matching, spatial

matching, and data association.

5.3 Datasets descriptions

In this section, we describe the datasets that we used with examples of each

dataset.

5.3.1 Traffic Data

We obtained the traffic data from two sources that are the California De-

partment of Transportation (Caltrans) Performance Measurement System (PeMS)

[112, 113] and Municipal.systems [114]. The PeMS provides historical and real-time

traffic information such as flow, speed, occupancy, and other data using over 39,000

individual detectors (sensors) distributed across the states of California. The Mu-

nicipal.systems provides several types of data and we utilized one of their datasets,

namely the Waze Traffic Jams dataset.

5.3.1.1 PeMS datasets (Traffic flow):

we obtained traffic information of the sensors that are located in PeMS D7

(LA county) and PeMS D4 (Bay area) for the period from 7/1/2019 to 12/31/2019.

Each sensor associated with the sensors type according to their location on the road

network,which can be a main-line, fwy-fwy connector, off ramp, and on ramp, see
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figure 5.1 as is example. Each record provided by the sensors has aggregated data

Figure 5.1: LA sensors location with different type

over 5-min periods with the following information [113]:

• Total Flow : Sum of flows over the 5-min period across all lanes.

• Average Occupancy: The proportion of time in which vehicles are passing over

the sensors.

• Average speed: Flow-weighted average speed over the 5-min period across all

lanes.

Figure 5.2a shows the record information from sensors for one day and figure

5.2b shows the traffic information (flow, speed, and occupancy) from one sensor for

two consecutive days.

5.3.1.2 Traffic incidents:

We obtained traffic incidents from California Highway Patrol (CHP) that are

stored in the PeMS website [112]. Each traffic incident is associated with incident

id, time, location, duration, type, freeway number, and direction. We extracted only

incidents that are located on the same roads where the sensors are. Table 5.1 sum-
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(a) Sample of sensors data for one day
(b) Traffic information (flow, occupancy, speed) for one sen-
sor for two days

Figure 5.2: Traffic information from sensors. a) Raw data from different sensors for
one day. b) Plotted traffic information

Table 5.1: Summery of Incidents

Incident type #D7(LA) #D4(Bay area)

Traffic Hazard 32020 3902

Traffic Collision 24242 3504

Hit and Run 3314 394

Car Fire 567 94

Traffic break 549 72

Closure of a Road 229 3

Wrong way driver 215 65

Total 61136 8034

marizes the types of incidents that occurred in D4 and D7 and figure 5.3 shows an

example of the incidents report.

5.3.1.3 Municipal.systems dataset (Traffic Jams)

Municipal.systems is a website by Stae Inc. that has different types of datasets

for different countries [114]. We obtained the traffic jams data collected by Waze app,

a mobile application that allows users to navigate their roads and report different
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Figure 5.3: Example of traffic incidents report

(a) Example of three traffic jams report (b) Pathway of one traffic jam

Figure 5.4: Traffic jams report. a) Traffic jams report. b) Plotted traffic jams on the
road network

traffic events such as traffic jams, accidents, road closure, and others [115]. Each

report in the traffic jams data is associated with different sets of features such as the

report id, start and end time, start and end street, the severity of traffic jams, and the

path of the traffic jams. Figure 5.4a shows an example of three traffic jams records

and figure 5.4b depicts one traffic jams report on the road network that expanded

over several sensors. We extracted only traffic jams that are located on the same

roads where the sensors are.

5.3.2 Weather Data

We obtained the hourly weather data from the Dark Sky website [116]. It

provides weather forecasting using APIs. The historical hourly weather data has

features that include temperature, precipitation intensity, precipitation probability,

humidity, wind speed, wind gust, cloud cover, and visibility. The raw weather data
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was collected by providing the location (latitude and longitude) of each sensor and

the timestamp. We collected the weather data for each sensor location. Figure 5.5

shows an example of the weather report for different locations and timestamps.

Figure 5.5: Example of weather data

5.3.3 Points of Interest (POI)

We obtained Points of Interest (POI) using OpenStreetMap API [68] in D4 and

D7 located within a specific distance (within 200 m) from each sensor. Each POI

is associated with POI’s type and location. We choose the following POI’s types:

Hospital, Parking, Fuel, Fast Food Restaurant, Restaurant, school, and university.

Figure 5.6 shows an example of POI’s that are near the sensors.

Figure 5.6: Example of point of interest located near the freeways
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5.3.4 Temporal data

The temporal data such as an hour of the day, day of the week, the month

of the year, and weekend indicator can be generated from each traffic flow record’s

timestamp.

5.4 Traffic Datasets Fusion Process

Figure 5.7: Data Fusion Framework for heterogeneous data sources

This section describes the pairwise data fusion process. We fuse each data source

individually with traffic flow to integrate and extract features from heterogeneous data

sources with details of each step. Figure 5.7 shows the framework for our DF process

that receives raw data from different sources and applies the pairwise fusion process

to provides the two outputs.
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5.4.1 Traffic Data fusion

5.4.1.1 Traffic flow preparation:

The obtained data from PeMS has a separate file for each day with the traffic

information from all sensors, figure 5.8a, for example. In total, we have 184 files for

the period from 7/1/2019 to 12/31/2019 for each district. The number of observed

traffic records for D4 is 126891250 and D7 is 100313856. The steps for the traffic

(a) Sample of one day traffic data of sensors in
PeMSD4 (b) Example of the remaining sensors (black dots)

Figure 5.8: Traffic flow preparation. a) Sample of one day traffic data. b) Remaining
sensors.

flow preparation as fallow:

1. Choose only the sensors with type ML (Mainline). These sensors are located

on major freeways.

2. Create a grid with identical cell size (2*2 miles) and apply spatial join between

the grid and the sensors. For each cell in the grid, keep only one sensor for each

freeway and each direction. This method eliminates possible duplicate reading

of sensors located in the same cell and provides good road network coverage.

Figure 5.8b shows a grid and the remaining sensors in each cell.
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3. Remove the sensors with more than 10% null-values due to the sensors being

faulty and use the linear interpolation method to fill missing values.

After this process, the total number of remaining sensors for D4 is 189 sensors and

the numbers of observed traffic records are 10015488, where each sensor has 52992

record points. For D7, the remaining sensors are 378 and the numbers of observed

traffic records are 20507904. The extracted features for each sensor in this step are:

sensor_ID, flow, speed, and average occupancy.

5.4.1.2 Traffic incidents fusion:

The incident reports, as the traffic flow, are gathered in one file per day. How-

ever, the traffic flow information is evenly spaced, where we have a record for each

5-min interval. The incidents report is not evenly spaced and incidents can occur at

any time. Therefore, the incidents fusion process requires a temporal aggregation for

incidents that occur near each other and within a 5-min window. In addition, each

incident report needs to be spatially associated with the nearest sensor on the same

road and direction. Using the information associated with each incidents report, the

traffic incidents fusion with the traffic flow is as follows:

1. Semantic matching: Extract all incidents and sensors for each road and direc-

tion, for example, all incidents and sensors that are located on freeway 5 and

direction N.

2. Spatial matching: For each incident, compute the Euclidean distance to the

nearest sensor and add the sensor id to the incident.

3. Temporal matching: Round the timestamp of each incident to the nearest 5-min

interval. Then, fuse the incident report with the traffic flow using the sensors

ID and timestamp. In case two incidents happened at the same time window

(within 5-min) and at the same sensor, we aggregate the number of incidents
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and duration. Also, we create a feature for each incident type and duration.

Figure 5.9c shows an example of aggregated incidents from figure 5.9a that

happened at the same time and location.

Algorithm 5 summarizes the steps for traffic incidents fusion. After this process, the

following features will be merged with traffic flow as a vector of [0 and 1], where

zero indicates no incident and one indicates there is an incident:Traffic Collision, Car

Fire, Traffic Hazard, Wrong-way driver, Traffic break, Closure of a Road, Hit and

Run, total incidents, and duration of each incident.

(a) Example of two incidents report associated with one sensor at the
same time

(b) Create a feature for each incident type

(c) Adding the incidents information to the traffic flow with aggregated
incidents report

Figure 5.9: Associated incidents to sensor. a) Two incidents report. b Create feature
for each incident type. c) Fuse the incidents report with the traffic flow.

5.4.1.3 Traffic jams fusion:

The traffic jam reports are similar to the traffic incidents in which we must

semantically, spatially, and temporally associate each report with the nearest sensors.

However, each traffic jam is represented as a line, which is the part of the road where

the traffic jam occurred, while the incident report is represented as a point. Before

we spatially match each traffic jam, we create the road network graph. It represents
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Algorithm 4 Traffic incidents Fusion
Input: IncidentsReport, TrafficFlow

Output: Incidents Features fused with traffic flow

1: FwyDir  List of unique FwyNumber and Direction from TrafficFlow

2: Sid List of unique sensors id from TrafficFlow

3: // Extract Incidents and Sensors in the same Fwy and dir and compute the

distance

4: for F 2 FwyDir do

5: // Semantic matching

6: Incidents  List of all incidents from IncidentsReport that occurred at

FwyDir[F]

7: Sensor  List of all sensors from TrafficFlow located at FwyDir[F]

8: for I 2 Incidents do

9: // Spatial matching

10: senosorid compute the Euclidean distance of I to the nearest Sensor

11: Add the senosorid to incident I in the IncidentsReport

12: end for

13: end for

14: // Fuse the incidents with the traffic flow

15: // Temporal matching

16: Round the timestamp of each incident to the nearest 5-min

17: From the type of incident, create feature of each type and add the duration
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Algorithm 5 Continue Traffic incidents Fusion
18: for i 2 Sid do

19: // Get list of all incidents with the same sensor id

20: Incidents[i]  List of all incidents from IncidentsReport where senosorid 2

Sid[i]

21: if two Incidents[i] occurred at same timestamp then

22: Aggregate the incidents and duration

23: end if

24: // Update the traffic flow

25: TrafficF low  Fused Incidents[i] features with TrafficF low using

senosorid and timestamp

26: end for

each sensor and the previous and following sensors; since the traffic jam may pass

over several sensors, as in figure 5.4b. The traffic jams fusion steps are as follows:

1. Semantic matching: Extract all traffic jams and sensors for each road and

direction.

2. Create the road network graph and add to each sensor the ids of the previous

and following senors.

3. Spatial matching: For each traffic jam report, get the start and endpoint to

compute the Euclidean distance to the nearest sensor of each point. If the

nearest distance of the start and endpoint is associated with one sensor, add

the sensor id to the traffic jam report. Otherwise, if the nearest sensor to the

start point of a traffic jam is different from the endpoint, we check using the

road network graph and return all sensors between the traffic jam’s start and

endpoint. We add ids of these sensors to the traffic jam report.
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4. Temporal matching: Round the timestamp of each traffic jam report to the

nearest 5-min interval and fuse the traffic jam report with the traffic flow using

the traffic jam Id, sensors Id, and the timestamp.

Algorithm 7 summarizes the traffic jams fusion steps with traffic flow. After

this process, the following features merge with the traffic flow:delay, severity, and

duration of traffic jam that we compute using the start and end time.

5.4.2 Weather Data fusion

The obtained weather data for each sensor’s location from the Dark Sky API are

sampled each hour while the traffic flow is sampled each 5-min. Thus, before we fuse

the weather data with the traffic flow, we repeated each record of the weather data

(12 times) to match the traffic flow data. Then, the weather data is merged with the

traffic flow using the timestamp of each sensor. The weather features are represented

as a one-dimensional vector of real numbers, which are temperature, precipitation

intensity, precipitation probability, humidity, wind speed, wind gust, cloud cover, and

visibility.

5.4.3 Point-of-Interest fusion

The obtained POI’s are fused with the traffic flow by spatially joining to the

nearest sensors. Each POI will be represented as a vector of [0 and 1] within the

traffic flow data. For example, if sensor a has a school nearby, the school feature will

be one.
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Algorithm 6 Traffic Jams Fusion
Input: TrafficJamsReport, TrafficFlow

Output: Traffic Jams Features fused with traffic flow

1: FwyDir  List of unique FwyNumber and Direction from TrafficFlow

2: RoadGraph  Create road network graph where each sensor associated with

previous and following sensors

3: Sid List of unique sensors id from TrafficFlow

4: // Extract Traffic Jams and Sensors in the same Fwy and dir and compute the

distance

5: for F 2 FwyDir do

6: // Semantic matching

7: TrafficJams List of all Traffic Jams from TrafficJamsReport that occurred

at FwyDir[F]

8: Sensor  List of all sensors from TrafficFlow located at FwyDir[F]

9: for I 2 TrafficJams do

10: // Spatial matching

11: Extract the start and endpoint of traffic jams I

12: startsenosorid  compute the Euclidean distance of start point of traffic

jams I to the nearest Sensor

13: endpointsenosorid  compute the Euclidean distance of the endpoint of

traffic jams I to the nearest Sensor

14: if startsenosorid = endpointsenosorid then

15: Add the senosorid to traffic jam I in the TrafficJamsReport
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Algorithm 7 Continue Traffic Jams Fusion
16: else

17: sensorsbetween  Check RoadGraph and return all sensors id between

startsenosorid and endpointsenosorid

18: Add sensorsbetween to the traffic jam I in the TrafficJamsReport

19: end if

20: end for

21: end for

22: // Fuse the traffic jams with the traffic flow

23: // Temporal matching

24: Round the timestamp of each traffic jam to the nearest 5-min

25: for i 2 Sid do

26: // Get list of all traffic jams with the same sensor id and update the traffic flow

27: TrafficF low  Fused TrafficJam[i] features with TrafficF low using

senosorid and timestamp

28: end for

5.4.4 Temporal Data fusion

Using the timestamp of each record in the traffic flow, we generate the following

temporal data: hour of day, day of the week, month of the year, and weekend indicator.

Each feature is represented as one-hot encoded vectors.

5.4.5 Summary of the traffic datasets fusion process

After we fused each dataset with the traffic flow, we have the following features,

which are summarized in figure 5.10:

• Traffic features: Sensor_ID, flow, speed, and average occupancy.
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• Traffic Incidents features: Traffic Collision, Car Fire, Traffic Hazard, Wrong-

way driver, Traffic break, Closure of a Road, Hit and Run, total incidents, and

duration of each incident.

• Traffic Jams features: Delay, severity, and duration of traffic jam

• Temporal features: Hour of day, day of the week, month of the year, and week-

end indicator

• Weather features: Temperature, precipitation intensity, precipitation probabil-

ity, humidity, wind speed, wind gust, cloud cover, and visibility

• POI features: Hospital, Parking, Fuel, Fast Food Restaurant, Restaurant, school,

and university.

Figure 5.11 shows a sample of the output of the data fusion process for one

traffic flow record.

Figure 5.10: Summary of the extracted features by type
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Figure 5.11: Sample record of one timestamp after the DF process where each color
represents a set of features
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CHAPTER 6

Application for data fusion of traffic dataset

The generated traffic datasets have rich features that can be employed in dif-

ferent ITS applications. In this chapter, we provide two applications that utilize each

output of our DF framework.

6.1 Traffic Datasets analysis and visualization

This section utilizes one of the DF framework’s output by creating a data cube

that provides in-depth analysis of the traffic datasets. Furthermore, we design a

visual-interactive Geographical Information Systems (GIS) tool to present the results

in different ways such as maps, charts, and tables according to the user requirements.

We present some of the analysis results that show the importance of fusing heteroge-

neous data sources.

6.1.1 Traffic Datasets cube

To explore the traffic dataset, we store the traffic dataset in data cube with

dimensions similar to a data cube in a trajectory data warehouse [1], as in figure 6.1.

With this method, we can have 3D analysis view to analyze and explore the dataset,

as follows:

• Spatial analysis: This dimension offers an analysis related to the locations of

sensors, freeways, and POI’s. Queries can be answered, such as: What is the

location of sensors with a large number of cars? Which freeway has the least
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traffic? What is the difference between traffic on the same freeway in a different

direction? What is the average speed on freeway I-405?

• Temporal analysis: From this dimension, we can explore the data with time

information. For example, Which freeway has the most traffic in the morning?

What is the freeways status during weekends in July? Which freeway has the

most number of cars during the last week of December? What is the average

speed on freeway I-5 during the afternoon period?

• Spatio-temporal analysis: This dimension offers spatial and temporal analysis

for traffic flow, incidents, traffic jams, and weather. Queries can be answered:

What is the total number of incidents during July on freeway I-405? Which

sensor has the largest number of traffic jams report during the weekdays in the

afternoon? What is the total number of traffic jams reports during a rainy day?

[18, 1] The data stored in aggregation form and we can apply the Online Analytical

Processing (OLAP) operations such as roll-up, which is used for data aggregations

along with dimensions (e.g., aggregate data from lower dimensional to higher di-

mensional, for example, from hour to a day to a week to month...). The drill-down

operation is used to decrease the level of aggregation (e.g., from higher dimensional

to lower-dimensional, for example, from the city to freeways to individual sensor lo-

cation.). The Slice and Dice operations are used to select part of the data cube.

Pivot operation is used to change the view of the data cube. Besides the OLAP,

data mining techniques can be applied to extract hidden information and discover

useful knowledge. For example: discovering the different patterns of traffic flow with

incidents in different freeways, detecting the traffic jams between different hours of a

day and days of the week, discovering the traffic pattern during days with different

weather patterns (low visibility, rainy days, clear days,..), comparing the traffic flow

during normal and rush hours.
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Figure 6.1: Traffic dataset analysis

6.1.2 Traffic Datasets Visualization

This section presents our visual-interactive GIS tool to show the results on the

traffic dataset cube. It is designed using Python [117] as a programming language

with ipywidgets, ipyleaflet, Pandas [118], folium libraries. The interface allows users

to see the results on maps, charts, and tables. The following are examples of different

type of analysis that can be done on the traffic datasets:

Visualization of the sensors distributed over the road network: The interface

allow users to see locations of sensors over a map with summary information of each

senor such as the flow, freeway number and direction, average speed, total incidents,

and total traffic jams report. Figure 6.2a shows an example of the sensors in D4 and

figure 6.2b shows details of one sensor.
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(a) Senors locations in D4 (b) One sensor with information

Figure 6.2: Sensors locations over the map in D4

Analysis of different freeways: Since the sensors located on freeways, we aggre-

gated each freeway’s sensors to provide an overview of the traffic on each freeway. To

provide the results, we used two OLAP operations: roll-up and drill-down. Figure 6.3

shows how the user can retrieve the information by choosing the location (Bay area

D4 or LA D7 ), freeway number, month, day, then an hour. Then, the result will be

presented in a table and chart. Figure 6.4 shows the user interface to choose and the

presented result for all freeways in D7 over the six months. This figure shows that

freeways with high traffic flow volumes have large numbers of traffic incidents and

traffic jams. Figure 6.5 shows the result of a specific freeway and a specific month.
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(a) User options to choose (b) Sample of the result in a table

(c) Chart result

Figure 6.4: Result of traffic flow,incidents, and traffic jams report in different freeways
in D7 over the six months

Figure 6.3: Ways to retrieve the data from the traffic database
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(a) User options to choose (b) Table and chart result

Figure 6.5: Result of traffic flow,incidents, and traffic jams report for a specific freeway
and month

(a) User options to choose and the
result in a table (b) The result in a chart.

Figure 6.6: Result of traffic flow,incidents, and traffic jams report for days of the week
of the six month

Analysis of different days of the week: To study the traffic patterns during the

weekdays and weekends, we compare the traffic flow with incidents and traffic jams

reports during the weekdays and weekends, as in figure 6.6. The user also can have

the option to choose a specific day of the week.

Incidents analysis: To analyze the different types of incidents, our interface will

allow users to see the aggregated result over the six months or detailed. The result

will be on a map with each incident information, as in figure 6.7.

Another type of incident analysis that we added is the heatmap visualization of

incidents. We aggregated the incidents by an hour of a day such as figure 6.8 that

shows the result at different times. From this figure, we can see that most of the

incidents happened during rush hours.
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(a) User options to choose and result on a map (b) Table result of all freeways

(c) Result of specific incidents on a specific freeways (d) Table result of a specific freeway

Figure 6.7: Result of incidents report on all freeway and on a specific freeway and
time
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(a) Incidents at 12 am (1108) (b) Incidents at 6 am (2534) (c) Incidents at 10 am (3302)

(d) Incidents at 2 pm (4077) (e) Incidents at 5 pm (4174) (f) Incidents at 8 pm (2097)

Figure 6.8: Heat map visualization of incidents that happened in LA during the six
month aggregated by hour of a day with total incidents in each hour

Analysis of Traffic Jams: We analyze the traffic jams by aggregated all traffic

jam reports for each freeway and direction. Figure 6.9 shows the heatmap for traffic

jams that were occurred in D7 over the six months with the total of traffic jams

for each freeway. Figures 6.8 and 6.9 indicate that freeways with large number of

incidents have large numbers of traffic jams report.

(a) Heatmap shows the total of traffic
jams reports in LA over the six months

(b) Heatmap of a specific freeway with
total number of traffic jams report

Figure 6.9: Heat map visualization of traffic jams reports in LA over the six months
for all freeways and a specific freeway
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Traffic dataset as recommendation systems: Due to the rich features in the

traffic dataset, we can use it for different purposes. For example, we can analyze the

locations with a large number of cars and find the best location to place a billboard

(Ads), as in figure 6.10.

(a) Sensors with high traffic flow at 12 pm (b) Sensors with high traffic flow at 4 pm

Figure 6.10: Best location for placing billboard according the number of cars for each
sensors

6.2 Traffic flow forecasting using deep learning

One of the essential parts of ITS applications is traffic flow forecasting, where it

estimates numbers of vehicles on each roads for different time-intervals in the future

[119]. This task is important for several ITS services, such as flow control systems,

route planning, navigation systems, and so on. There are some factors that can

impact the traffic conditions [120], such as: (1) Spatial dependencies on a directed

road network. Sensors on the same road and direction are influenced by each other

more than sensors in the opposite direction. Figure 6.11 shows three sensors a,b,c,

where sensors a,b are in the same direction and sensor c is in the opposite direction.

Even if c is closer in Euclidean distance to a, it may not affect the traffic flow in

a since they are far away in the directed network distance. (2) Multiple temporal

dependencies, as in figures 5.2b and 6.6b, where the traffic flow varies by hour of
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the day, day of the week, and during incidents and traffic jams. (3) External factors

such as incidents, weather conditions, road closings, and social events. These factors

may need to be considered when designing a model to predict traffic flow. Recently,

deep learning approaches have been applied to traffic flow forecasting and achieved

promising results [88, 89, 90, 91, 92, 93, 94, 95].

In this section, the goal is to examine the second output of our DF framework,

which is Traffic datasets with features for deep learning approaches, and to check

if incorporating traffic features with external factors will enhance the traffic flow

forecasting results or not. Our experiments focus on short-term traffic flow (e.g., next

hour) with multiple features.

Figure 6.11: Spatial correlation between sensors on same and opposite direction

6.2.1 Deep learning approaches:

Among several deep learning approaches, in our experiments, we chose the

recurrent neural network (RNN) specifically:

• Long Short-Term Memory networks (LSTM) [121]: The goal of LSTM NN is to

deal with long-term dependencies, which is required for traffic flow forecasting,

and to handle the vanishing gradient problem [122]. LSTM is similar to RNN

with different in the hidden layer that is treated as memory blocks. [122] Each

memory block contains one or more self-connected memory cells and three mul-

tiplicative called: the input, output, and forget gates that provide continuous
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write, read and reset operations on the cells. These gates allow LSTM to store

and access information for long periods, which reduces the vanishing gradient

problem, and to keep relevant information for making predictions.

• Gated Recurrent Unit (GRU) [123]: GRU is similar to LSTM with less com-

puting complexity and faster to train. [97] Each GRU unit has an update gate

to decide which information to be kept and the rest gate to decide which infor-

mation will be added to the previous state.

• Bidirectional (BDLSTM): [124] BDLSTM processes sequence data in both for-

ward and backward directions with two separate hidden layers and connect

them to the same output layer. The difference between LSTM and BDLSTM

is that LSTM stores information from the past only to make prediction while

BDLSTM stores information from the past and future.

6.2.2 Evaluation metrics:

We use two well-known evaluation metrics for traffic flow forecasting [109]:

• Mean absolute error (MAE): This metric measures the average absolute differ-

ence between predicted and actual values.

MAE =

Pn
t=1 |At � Pt|

n
(6.1)

Where n is the number of data points, At is the actual value, Pt is the forecast

value at time t.

• Root mean square error (RMSE): This metric measures the square root of the

mean of the square difference between actual and predicted values.

RMSE =

rPn
t=1(At � Pt)2

n
(6.2)

Where n is the number of data points, At is the actual value, Pt is the forecast

value at time t.
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6.2.3 Experimental setting:

Figure 6.12a shows the architectures for the deep learning approaches. We

design a deep LSTM, deep GRU, and deep BDLSTM neural network where each

model has stacked hidden layers. Each model’s input is the previous hour (12-time

steps - since the traffic data divide per 5-min interval). Figure 6.12b shows a sample

input at different time-stamp with three traffic features only. The hidden layers’

output is connected with a fully time-distributed layer to forecast the traffic flow for

the next hour. Each model was designed with two hidden layers (300,100 units) and

was trained for around 100 epochs, with Adam optimizer [125]. The learning rate is

0.00001 and the activation function is ReLu. The batch size is 128. The mentioned

setting has been chosen using a grid search method since they provide the best result.

We run other experiments with adding a dropout layer but the performance was not

improved.

(a) Architectures for the deep learning
approaches (b) Input sample to the deep learning models

Figure 6.12: Designed models and sample input

From the traffic datasets for PeMSD4 and PeMSD7, we select the first two

months as a training set from 7/1/2019 to 8/31/2019. For the validation set, we

select from 9/1/2019 to 9/20/2019, and for the testing set, we select from 9/21/2019
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to 9/27/2019. The number of sensors to forecast traffic flow for PeMSD4 are 189 and

for PeMSD7 are 378. All the models are implemented using Kears [126]. We model

and train each sensor with its features independently. Before providing the data to

each model, the traffic features (flow, speed, occupancy), incidents duration, traffic

jams duration, weather features are normalized between 0 and 1 using the equation

in 6.3. For the temporal features, we use a one-hot encoding. For the evaluation, we

re-scale the traffic flow forecast value to the normal values and we compare with the

actual value.

N =
x- min(x)

max(x)-min(x)
(6.3)

6.2.4 Experimental Results

Our experiments evaluated the traffic flow forecasting performance using traffic

features without and with extra features. The features that we examine are: Traffic

features (flow, speed, and average occupancy), Temporal features (hour of the day,

day of the week, and weekend indicator), Incidents features (Incident indicator and

Incident Duration), Weather features (temperatures, wind speed, wind gust, and visi-

bility), and Traffic jams features (severity, delay, speed during a traffic jam, duration).

As a baseline, we used the traditional method called Historical Average (HA) [127],

where the average value of the last hour (12-time steps) is the prediction for the next

hour and traffic features for each model.

Table 6.1 shows the average results of the traffic flow forecasting performance

of the next hour for two traffic datasets on different models. The results indicate

that better performance was achieved when extra features were included. The deep

learning approaches achieve better results compared to HA. The BDLSTM achieves

the best performance result comparing to LSTM and GRU. The traffic features with
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temporal and incidents features provide the best result comparing to other features.

Figure 6.13 shows samples of the forecast result for one sensor in D7 of different

models for traffic features only and with adding extra features. From these figures, we

can see that using extra features with traffic features provide better prediction result.

The overall results indicate our data fusion techniques’ advantages, even with a simple

design of a deep neural network. In our experiments, we train each sensor individually

and only consider the features for each location. This method’s advantage is that we

can analyze all sensors and group sensors with similar behavior. Then, we can train

one sensor of each group and use transfer learning to other sensors, which would

reduce the training time for the whole network. Additionally, ways may improve the

result of the deep learning approaches when using extra features such as:

• Considering the spatial correlation between sensors on the same road and di-

rection by utilizing the previous and follower senors’ information. In this way,

we can model the deep learning by creating a graph for the road network and

consider the spatio-temporal dependencies between sensors.

• Designing a hybrid deep learning model with several pipelines to learn different

traffic patterns. For example, we can split the data according to traffic patterns

such as normal hours, rush hours, incidents duration, traffic jams duration,

rainy days, and train the deep learning model according to each pattern.

6.3 Conclusion

In chapter 5 and 6, we utilized the availability of heterogeneous data sources for

ITS applications and provided a data fusion framework with semantic matching, map

matching, spatial matching, temporal matching, and data association techniques. The

DF techniques aimed to integrate and extract features from multiple data sources to

be ready for deep learning training approaches. In addition, it generated preprocessed
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PeMSD7 PeMSD4

Model Features MAE RMSE MAE RMSE

HA Traffic 48.797 68.636 44.114 61.680

LSTM

Traffic 47.775 66.926 44.640 62.250

Traffic+Temporal(H) 30.200 42.938 28.041 40.694

Traffic+Temporal+Incidents 26.880 38.043 25.246 37.045

Traffic+Temporal+Weather 27.189 38.394 25.362 37.150

Traffic+Temporal+Traffic Jams 26.921 38.067 25.241 37.046

Traffic+Temporal+Incidents+T Jams+Weather 27.186 38.367 25.391 37.173

GRU

Traffic 44.725 63.653 42.174 59.997

Traffic+Temporal(H) 28.732 40.649 26.884 39.266

Traffic+Temporal+Incidents 26.224 37.165 24.775 36.540

Traffic+Temporal+Weather 26.593 37.542 24.883 36.617

Traffic+Temporal+Traffic Jams 26.258 37.189 24.825 36.581

Traffic+Temporal+Incidents+T Jams+Weather 26.600 37.557 24.871 36.588

BDLSTM

Traffic 29.954 41.835 28.999 41.871

Traffic+Temporal(H) 24.262 34.520 23.022 34.205

Traffic+Temporal+Incidents 23.576 33.524 22.370 33.375

Traffic+Temporal+Weather 24.103 34.224 22.531 33.511

Traffic+Temporal+Traffic Jams 23.638 33.582 22.408 33.395

Traffic+Temporal+Incidents+T Jams+Weather 24.158 34.267 22.570 33.556

Table 6.1: Average performance comparison of different deep learning approaches
with different features on PeMSD7 and PeMSD4.
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(a) Forecast result using traffic fea-
tures only

(b) Forecast result using traffic and
extra features

(c) Forecast result for next hour
from (5 pm to 6 pm) with extra fea-
tures

(d) Forecast result for two days for all models with
extra features

(e) Forecast result for two days for BDLSTM with
extra features

Figure 6.13: Comparison of traffic flow forecasting between actual and predicted
values where using traffic only features vs. each model with extra features.

real-world traffic datasets that are publicly available. These datasets had several

features as traffic flow, average speed, vehicle occupancy, weather conditions, incident

information, congestion reports, point of interest locations, and temporal features.

ITS applications such as traffic analysis and visualization, traffic forecast prediction,

incident prediction, and travel time estimation can use these datasets.

Furthermore, we provided two applications that utilize each output of our DF

framework. The first application is Traffic datasets analysis and visualization, where

we built a data cube to provide in-depth analysis of the dataset and designed a

visual-interactive GIS tool. The second application is Traffic flow forecasting using

deep learning, where we performed a comprehensive study on how different features

can improve the traffic flow prediction models. The results of these models showed

that deep learning approaches achieved better results when extra features are con-

sidered. These results can encourage researchers to build and design more complex

deep learning models to utilize the datasets’ different features.
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CHAPTER 7

CONCLUSION

7.1 Summary of Contributions

This dissertation utilized the availability of different types of spatio-temporal

such as GPS data, road network sensors, incidents reports, traffic jams report, weather

information, points of interest locations, and temporal information and provided

methods and applications to deal with them. In chapter 2, we presented a framework

called Trajectory Data Warehouse (TDW) in which we reviewed existing studies on

storing, managing, and analyzing TD using data warehouse technologies. Further-

more, we provided the requirements for building the TDW with different applications

using the TDW. After that, in chapter 3, we proposed a novel method to generate

road maps using GPS trajectories. In chapter 4, we provided a machine learning

framework for road network classification that aims to distinguish the roads based

on their types. Then, in the last two chapters 5 and 6, we presented our data fusion

framework with different techniques for ITS applications. Then, we introduced two

applications to show the importance of the DF techniques. Figure 7.1 summarizes

our contribution.

7.2 Future work

In our future work, we intend to:

• Study the impact of incidents and traffic jams on traffic speed for longer time

forecasting (e.g., next three hours after incidents or traffic jams occurred).
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Figure 7.1: Summary of contribution

• Study the role of extra features on traffic forecasting for different time predic-

tions (e.g., next 15,30,45 minutes using the previous two or three hours instead

of one hour only).

• Build a model that can predict traffic flow, incidents locations, and traffic jams

simultaneously since this information is already included in the traffic datasets.

• DF techniques and steps can be reevaluated and changed according to the deep

learning models’ results. For example, when we choose the sensor’s location,

we picked a sensor every 2 miles. Finding the optimal distance to keep sensors

can be reevaluated. Also, we added all incidents and traffic jams to the deep

learning models. An analysis step can be added to pick the types of incidents

and traffic jams with the most impact on traffic flow before training the deep

learning models.

• Enhance the traffic dataset with other information such as social events, holi-

days, and road work zones.
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• Examine different data fusion levels such as Feature In–Feature Out or Feature

In–Decision Out and find out the best level that produces the best performance

accuracy result.

123



Bibliography

[1] T. Alsahfi, M. Almotairi, and R. Elmasri, “A survey on trajectory data ware-

house,” Spatial Information Research, vol. 28, no. 1, pp. 53–66, 2020.

[2] T. Alsahfi, M. Almotairi, R. Elmasri, and B. Alshemaimri, “Road

map generation and feature extraction from gps trajectories data,” in

Proceedings of the 12th ACM SIGSPATIAL International Workshop on

Computational Transportation Science, ser. IWCTS’19. New York, NY,

USA: Association for Computing Machinery, 2019. [Online]. Available:

https://doi.org/10.1145/3357000.3366140

[3] L. Leonardi, S. Orlando, A. Raffaetà, A. Roncato, C. Silvestri, G. Andrienko,

and N. Andrienko, “A general framework for trajectory data warehousing and

visual olap,” GeoInformatica, vol. 18, no. 2, pp. 273–312, 2014.

[4] G. Marketos, E. Frentzos, I. Ntoutsi, N. Pelekis, A. Raffaetà, and Y. Theodor-

idis, “Building real-world trajectory warehouses,” in Proceedings of the Seventh

ACM International Workshop on Data Engineering for Wireless and Mobile

Access, ser. MobiDE ’08. New York, NY, USA: ACM, 2008, pp. 8–15.

[5] L. Leonardi, G. Marketos, E. Frentzos, N. Giatrakos, S. Orlando, N. Pelekis,

A. Raffaetà, A. Roncato, C. Silvestri, and Y. Theodoridis, “T-warehouse: Visual

olap analysis on trajectory data,” in 2010 IEEE 26th International Conference

on Data Engineering (ICDE 2010), March 2010, pp. 1141–1144.

124

https://doi.org/10.1145/3357000.3366140


[6] G. Marketos and Y. Theodoridis, “Mobility data warehousing and mining,” in

Proceedings the 35th International Conference on Very Large Data Bases PhD

Workshop, 2009.

[7] J. Biagioni and J. Eriksson, “Map inference in the face of noise and disparity,”

in Proceedings of the 20th International Conference on Advances in Geographic

Information Systems, ser. SIGSPATIAL ’12. New York, NY, USA: ACM, 2012,

pp. 79–88.

[8] Douglas, D. H, Peucker, and T. K, “Algorithms for the reduction of the number

of points required to represent a digitized line or its caricature,” Cartographica:

the international journal for geographic information and geovisualization,

vol. 10, no. 2, pp. 112–122, 1973.

[9] J. Macedo, C. Vangenot, W. Othman, N. Pelekis, E. Frentzos, B. Kuijpers,

I. Ntoutsi, S. Spaccapietra, and Y. Theodoridis, Trajectory Data Models.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 123–150.

[10] S. Spaccapietra, C. Parent, M. L. Damiani, J. A. de Macedo, F. Porto, and

C. Vangenot, “A conceptual view on trajectories,” Data Knowl. Eng., vol. 65,

no. 1, pp. 126–146, Apr. 2008.

[11] Z. Feng and Y. Zhu, “A survey on trajectory data mining: Techniques and

applications,” IEEE Access, vol. 4, pp. 2056–2067, 2016.

[12] C. Parent, S. Spaccapietra, C. Renso, G. Andrienko, N. Andrienko, V. Bo-

gorny, M. L. Damiani, A. Gkoulalas-Divanis, J. Macedo, N. Pelekis, Y. Theodor-

idis, and Z. Yan, “Semantic trajectories modeling and analysis,” ACM Comput.

Surv., vol. 45, no. 4, pp. 42:1–42:32, Aug. 2013.

125



[13] F. M. Nardini, S. Orlando, R. Perego, A. Raffaetà, C. Renso, and C. Sil-

vestri, Analysing Trajectories of Mobile Users: From Data Warehouses to

Recommender Systems. Cham: Springer International Publishing, 2018, pp.

407–421.

[14] R. H. Güting and M. Schneider, Moving objects databases. Elsevier, 2005.

[15] C. Düntgen, T. Behr, and R. H. Güting, “Berlinmod: a benchmark for moving

object databases,” The VLDB Journal, vol. 18, no. 6, p. 1335, Apr 2009.

[16] W. H. Inmon, Building the Data Warehouse, 3rd ed. New York, NY, USA:

John Wiley & Sons, Inc., 2002.

[17] I. S. Mumick, D. Quass, and B. S. Mumick, “Maintenance of data cubes and

summary tables in a warehouse,” SIGMOD Rec., vol. 26, no. 2, pp. 100–111,

Jun. 1997.

[18] S. Chaudhuri and U. Dayal, “An overview of data warehousing and olap tech-

nology,” SIGMOD Rec., vol. 26, no. 1, pp. 65–74, Mar. 1997.

[19] A. Vaismane and E. Zimányi, Data Warehouses: Next Challenges. Springer

Berlin Heidelberg, 2012, pp. 1–26.

[20] J. Han, N. Stefanovic, and K. Koperski, “Selective materialization: An effi-

cient method for spatial data cube construction,” in Proceedings of the Second

Pacific-Asia Conference on Research and Development in Knowledge Discovery

and Data Mining, ser. PAKDD ’98. London, UK, UK: Springer-Verlag, 1998,

pp. 144–158.

126



[21] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao, Efficient OLAP Operations in

Spatial Data Warehouses. Berlin, Heidelberg: Springer Berlin Heidelberg,

2001, pp. 443–459.

[22] F. Braz, S. Orlando, R. Orsini, A. Raffaeta, A. Roncato, and C. Silvestri,

“Approximate aggregations in trajectory data warehouses,” in IEEE 23rd

International Conference on Data Engineering Workshop, April 2007, pp. 536–

545.

[23] N. Pelekis, A. Raffaetà, M. L. Damiani, C. Vangenot, G. Marketos, E. Frentzos,

I. Ntoutsi, and Y. Theodoridis, Towards Trajectory Data Warehouses. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2008, pp. 189–211.

[24] R. Wagner, J. A. F. de Macedo, A. Raffaetà, C. Renso, A. Roncato, and

R. Trasarti, Mob-Warehouse: A Semantic Approach for Mobility Analysis with

a Trajectory Data Warehouse. Cham: Springer International Publishing, 2014,

pp. 127–136.

[25] N. Cho and Y. Kang, “Space-time density of field trip trajectory: exploring

spatio-temporal patterns in movement data,” Spatial Information Research,

vol. 25, no. 1, pp. 141–150, Feb 2017.

[26] L. Guo, G. Huang, X. Gao, J. He, B. Wu, and H. Guo, “Dostra: discovering

common behaviors of objects using the duration of staying on each location of

trajectories,” in Workshops at the Twenty-Ninth AAAI Conference on Artificial

Intelligence, 2015.

[27] S. Orlando, R. Orsini, A. Raffaeta, and A. Roncato, “Trajectory data ware-

houses: Design and implementation issues,” Journal of Computing Science and

Engineering, vol. 1, no. 2, pp. 211–232, 2007.
127



[28] F. J. Braz, “Trajectory data warehouses: Proposal of design and application to

exploit data.” in IX Brazilian Symposium on Geoinformatics, 2007, pp. 61–72.

[29] Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer, “Semantic

trajectories: Mobility data computation and annotation,” ACM Trans. Intell.

Syst. Technol., vol. 4, no. 3, pp. 49:1–49:38, Jul. 2013.

[30] C. Zhou, D. Frankowski, P. Ludford, S. Shekhar, and L. Terveen, “Discovering

personally meaningful places: An interactive clustering approach,” ACM Trans.

Inf. Syst., vol. 25, no. 3, Jul. 2007.

[31] A. T. Palma, V. Bogorny, B. Kuijpers, and L. O. Alvares, “A clustering-based

approach for discovering interesting places in trajectories,” in Proceedings of

the 2008 ACM Symposium on Applied Computing, ser. SAC ’08. New York,

NY, USA: ACM, 2008, pp. 863–868.

[32] S. Campora, J. A. F. de Macedo, and L. Spinsanti, “St-toolkit: A framework for

trajectory data warehousing,” in AGILE Conf. Lecture Notes in Geoinformation

and Cartography, 2011.

[33] N. Arfaoui and J. Akaichi, “Modeling herd trajectory data warehouse,”

International Journal of Engineering Trends and Technology, vol. 1, pp. 1–9,

2011.

[34] L. Leonardi, S. Orlando, A. Raffaetà, A. Roncato, and C. Silvestri, “Frequent

spatio-temporal patterns in trajectory data warehouses,” in Proceedings of the

2009 ACM Symposium on Applied Computing, ser. SAC ’09. New York, NY,

USA: ACM, 2009, pp. 1433–1440.

128



[35] L. Wang, Z. Yu, D. Yang, H. Ma, and H. Sheng, “Efficiently targeted billboard

advertising using crowdsensing vehicle trajectory data,” IEEE Transactions on

Industrial Informatics, pp. 1–1, 2019.

[36] S. Karagiorgou and D. Pfoser, “On vehicle tracking data-based road network

generation,” in Proceedings of the 20th International Conference on Advances

in Geographic Information Systems, ser. SIGSPATIAL ’12. New York, NY,

USA: ACM, 2012, pp. 89–98.

[37] L. Gong, H. Sato, T. Yamamoto, T. Miwa, and T. Morikawa, “Identification of

activity stop locations in gps trajectories by density-based clustering method

combined with support vector machines,” Journal of Modern Transportation,

vol. 23, no. 3, pp. 202–213, 2015.

[38] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm

for discovering clusters a density-based algorithm for discovering clusters in

large spatial databases with noise,” in Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining, ser. KDD’96. AAAI

Press, 1996, pp. 226–231.

[39] G. Huang, J. He, W. Zhou, G.-L. Huang, L. Guo, X. Zhou, and F. Tang,

“Discovery of stop regions for understanding repeat travel behaviors of moving

objects,” Journal of Computer and System Sciences, vol. 82, no. 4, pp. 582 –

593, 2016, trajectory-based Behaviour Analytics.

[40] D. Wang, Q. Liu, Z. Xiao, J. Chen, Y. Huang, and W. Chen, “Understand-

ing travel behavior of private cars via trajectory big data analysis in urban

environments,” in 2017 IEEE 15th Intl Conf on Dependable, Autonomic and

Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing,
129



3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and

Technology Congress, Nov 2017, pp. 917–924.

[41] L. Zhao and G. Shi, “A trajectory clustering method based on douglas-

peucker compression and density for marine traffic pattern recognition,” Ocean

Engineering, vol. 172, pp. 456 – 467, 2019.

[42] Y. Han, R. Tse, and M. Campbell, “Pedestrian motion model using non-

parametric trajectory clustering and discrete transition points,” IEEE Robotics

and Automation Letters, pp. 1–1, 2019.

[43] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao,

F. Pellow, and H. Pirahesh, “Data cube: A relational aggregation operator

generalizing group-by, cross-tab, and sub-totals,” Data Mining and Knowledge

Discovery, vol. 1, no. 1, pp. 29–53, Mar 1997.

[44] Y. Tao, G. Kollios, J. Considine, F. Li, and D. Papadias, “Spatio-temporal

aggregation using sketches,” in Proceedings. 20th International Conference on

Data Engineering, April 2004, pp. 214–225.

[45] A. M. Hendawi and M. F. Mokbel, “Predictive spatio-temporal queries: A

comprehensive survey and future directions,” in Proceedings of the First

ACM SIGSPATIAL International Workshop on Mobile Geographic Information

Systems, ser. MobiGIS ’12. New York, NY, USA: ACM, 2012, pp. 97–104.

[46] S. Lee, J. Lim, J. Park, and K. Kim, “Next place prediction based on spatiotem-

poral pattern mining of mobile device logs,” Sensors, vol. 16, no. 2, 2016.

130



[47] W. Yang and T. Ai, “Poi information enhancement using crowdsourcing ve-

hicle trace data and social media data: A case study of gas station,” ISPRS

International Journal of Geo-Information, vol. 7, no. 5, 2018.

[48] H. Li, L. Kulik, and K. Ramamohanarao, “Automatic generation and validation

of road maps from gps trajectory data sets,” in Proceedings of the 25th ACM

International on Conference on Information and Knowledge Management, ser.

CIKM ’16. New York, NY, USA: ACM, 2016, pp. 1523–1532.

[49] C. Chen, C. Lu, Q. Huang, Q. Yang, D. Gunopulos, and L. Guibas, “City-scale

map creation and updating using gps collections,” in Proceedings of the 22Nd

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, ser. KDD ’16. New York, NY, USA: ACM, 2016, pp. 1465–1474.

[50] J. Huang, M. Deng, J. Tang, S. Hu, H. Liu, S. Wariyo, and J. He, “Automatic

generation of road maps from low quality gps trajectory data via structure

learning,” IEEE Access, vol. 6, pp. 71 965–71 975, 2018.

[51] M. Ahmed and C. Wenk, “Constructing street networks from gps trajectories,”

in Proceedings of the 20th Annual European Conference on Algorithms, ser.

ESA’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 60–71. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-33090-2_7

[52] S. Karagiorgou and D. Pfoser, “On vehicle tracking data-based road

network generation,” in Proceedings of the 20th International Conference

on Advances in Geographic Information Systems, ser. SIGSPATIAL ’12.

New York, NY, USA: ACM, 2012, pp. 89–98. [Online]. Available:

http://doi.acm.org/10.1145/2424321.2424334

131

http://dx.doi.org/10.1007/978-3-642-33090-2_7
http://doi.acm.org/10.1145/2424321.2424334


[53] J. Biagioni and J. Eriksson, “Map inference in the face of noise and disparity,”

in Proceedings of the 20th International Conference on Advances in Geographic

Information Systems, ser. SIGSPATIAL ’12. New York, NY, USA: ACM, 2012,

pp. 79–88. [Online]. Available: http://doi.acm.org/10.1145/2424321.2424333

[54] L. Cao and J. Krumm, “From gps traces to a routable road map,”

in Proceedings of the 17th ACM SIGSPATIAL International Conference

on Advances in Geographic Information Systems, ser. GIS ’09. New

York, NY, USA: ACM, 2009, pp. 3–12. [Online]. Available: http:

//doi.acm.org/10.1145/1653771.1653776

[55] K. Buchin, M. Buchin, D. Duran, B. T. Fasy, R. Jacobs, V. Sacristan,

R. I. Silveira, F. Staals, and C. Wenk, “Clustering trajectories for map

construction,” in Proceedings of the 25th ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems, ser. SIGSPATIAL

’17. New York, NY, USA: ACM, 2017, pp. 14:1–14:10. [Online]. Available:

http://doi.acm.org/10.1145/3139958.3139964

[56] M. Ahmed, S. Karagiorgou, D. Pfoser, and C. Wenk, “A comparison and

evaluation of map construction algorithms using vehicle tracking data,”

GeoInformatica, vol. 19, no. 3, pp. 601–632, Jul 2015. [Online]. Available:

https://doi.org/10.1007/s10707-014-0222-6

[57] X. Liu, J. Biagioni, J. Eriksson, Y. Wang, G. Forman, and Y. Zhu, “Mining

large-scale, sparse gps traces for map inference: Comparison of approaches,” in

Proceedings of the 18th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, ser. KDD ’12. New York, NY, USA: ACM, 2012,

pp. 669–677. [Online]. Available: http://doi.acm.org/10.1145/2339530.2339637

132

http://doi.acm.org/10.1145/2424321.2424333
http://doi.acm.org/10.1145/1653771.1653776
http://doi.acm.org/10.1145/1653771.1653776
http://doi.acm.org/10.1145/3139958.3139964
https://doi.org/10.1007/s10707-014-0222-6
http://doi.acm.org/10.1145/2339530.2339637


[58] J. Biagioni and J. Eriksson, “Inferring road maps from global positioning

system traces: Survey and comparative evaluation,” Transportation

Research Record, vol. 2291, no. 1, pp. 61–71, 2012. [Online]. Available:

https://doi.org/10.3141/2291-08

[59] A. Steiner and A. Leonhardt, “Map generation algorithm using low-frequency

vehicle position data,” in TRB 90th Annual Meeting of the Transportation

Research Board. Transportation Research Board, 2011, pp. 1–17.

[60] S. Worrall and E. Nebot, “Automated process for generating digitised maps

through gps data compression,” 01 2007.

[61] B. Niehöfer, R. Burda, C. Wietfeld, F. Bauer, and O. Lueert, “Gps community

map generation for enhanced routing methods based on trace-collection by mo-

bile phones,” in 2009 First International Conference on Advances in Satellite

and Space Communications, July 2009, pp. 156–161.

[62] A. Fathi and J. Krumm, “Detecting road intersections from gps traces,” in

Geographic Information Science, S. I. Fabrikant, T. Reichenbacher, M. van

Kreveld, and C. Schlieder, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

2010, pp. 56–69.

[63] M. Ezzat, M. Sakr, R. Elgohary, and M. E. Khalifa, “Building road segments

and detecting turns from gps tracks,” Journal of Computational Science,

vol. 29, pp. 81 – 93, 2018. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S1877750318302813

[64] X. Xie, W. Liao, H. Aghajan, P. Veelaert, and W. Philips, “Detecting road

intersections from gps traces using longest common subsequence algorithm,”

133

https://doi.org/10.3141/2291-08
http://www.sciencedirect.com/science/article/pii/S1877750318302813
http://www.sciencedirect.com/science/article/pii/S1877750318302813


ISPRS International Journal of Geo-Information, vol. 6, no. 1, 2017. [Online].

Available: http://www.mdpi.com/2220-9964/6/1/1

[65] R. W. Sinnott, “Virtues of the haversine,” Sky and Telescope, vol. 68, p. 159,

1984.

[66] S. Dabiri and K. Heaslip, “Inferring transportation modes from gps trajectories

using a convolutional neural network,” Transportation Research Part C:

Emerging Technologies, vol. 86, pp. 360 – 371, 2018. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0968090X17303509

[67] H. Qian and Y. Lu, “Simplifying gps trajectory data with enhanced spatial-

temporal constraints,” ISPRS International Journal of Geo-Information, vol. 6,

no. 11, 2017. [Online]. Available: http://www.mdpi.com/2220-9964/6/11/329

[68] OpenStreetMap. (2013). [Online]. Available: http://www.openstreetmap.org

[69] S. Karagiorgou, D. Pfoser, and D. Skoutas, “Segmentation-based road network

construction,” in Proceedings of the 21st ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems, ser. SIGSPA-

TIAL’13. New York, NY, USA: ACM, 2013, pp. 460–463.

[70] Z. Wang, X. Liu, L. Liu, and J. Shi, “A method of road extraction from high

resolution remote image based on delaunay algorithms,” in 2018 International

Conference on Robots Intelligent System (ICRIS), May 2018, pp. 127–130.

[71] H. M. Uwe Bacher, “Automatic road extraction from multispectral high resolu-

tion satellite images,” IAPRS, vol. XXXVI, no. 16, pp. 29–34, 2005.

134

http://www.mdpi.com/2220-9964/6/1/1
http://www.sciencedirect.com/science/article/pii/S0968090X17303509
http://www.mdpi.com/2220-9964/6/11/329
http://www.openstreetmap.org


[72] Y. Zang, C. Wang, Y. Yu, L. Luo, K. Yang, and J. Li, “Joint enhancing filtering

for road network extraction,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 55, no. 3, pp. 1511–1525, March 2017.

[73] K. Buchin, M. Buchin, D. Duran, B. T. Fasy, R. Jacobs, V. Sacristán, R. I.

Silveira, F. Staals, and C. Wenk, “Clustering trajectories for map construction,”

in Proceedings of the 25th ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems, GIS 2017, Redondo Beach,

CA, USA, November 7-10, 2017, 2017, pp. 14:1–14:10. [Online]. Available:

http://doi.acm.org/10.1145/3139958.3139964

[74] C. Chen, C. Lu, Q. Huang, Q. Yang, D. Gunopulos, and L. J. Guibas,

“City-scale map creation and updating using GPS collections,” in Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, San Francisco, CA, USA, August 13-17, 2016, 2016, pp.

1465–1474. [Online]. Available: http://doi.acm.org/10.1145/2939672.2939833

[75] S. Karagiorgou and D. Pfoser, “On vehicle tracking data-based road network

generation,” in SIGSPATIAL 2012 International Conference on Advances in

Geographic Information Systems (formerly known as GIS), SIGSPATIAL’12,

Redondo Beach, CA, USA, November 7-9, 2012, 2012, pp. 89–98. [Online].

Available: http://doi.acm.org/10.1145/2424321.2424334

[76] C. Poullis and S. You, “Delineation and geometric modeling of road

networks,” ISPRS Journal of Photogrammetry and Remote Sensing,

vol. 65, no. 2, pp. 165 – 181, 2010. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0924271609001233

135

http://doi.acm.org/10.1145/3139958.3139964
http://doi.acm.org/10.1145/2939672.2939833
http://doi.acm.org/10.1145/2424321.2424334
http://www.sciencedirect.com/science/article/pii/S0924271609001233
http://www.sciencedirect.com/science/article/pii/S0924271609001233


[77] A. Katartzis, H. Sahli, V. Pizurica, and J. Cornelis, “A model-based approach

to the automatic extraction of linear features from airborne images,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 39, no. 9, pp. 2073–2079,

Sept 2001.

[78] J. Yang and R. S. Wang, “Classified road detection from satellite images based

on perceptual organization,” Int. J. Remote Sens., vol. 28, no. 20, pp. 4653–4669,

Jan. 2007. [Online]. Available: http://dx.doi.org/10.1080/01431160701250382

[79] W. Shi, Z. Miao, and J. Debayle, “An integrated method for urban main-road

centerline extraction from optical remotely sensed imagery,” IEEE Transactions

on Geoscience and Remote Sensing, vol. 52, no. 6, pp. 3359–3372, June 2014.

[80] J. B. Mena, “State of the art on automatic road extraction for gis update: A

novel classification,” Pattern Recogn. Lett., vol. 24, no. 16, pp. 3037–3058, Dec.

2003. [Online]. Available: http://dx.doi.org/10.1016/S0167-8655(03)00164-8

[81] Y. Z. F. W. T. C. Weixing Wang, NanYang and P. Eklund, “A review of road

extraction from remote sensing images,” Journal of Traffic and Transportation

Engineering, vol. 3, pp. 271–282, June 2016.

[82] H. Y.-A. WU Liang, “A survey of automatic road extraction from remote

sensing images,” Acta Automatica Sinica, vol. 36, no. 7, p. 912, 2010. [Online].

Available: http://www.aas.net.cn/EN/abstract/article_13651.shtml

[83] TxDOT, “Texas department of transportation,” 2016. [Online]. Available:

https://www.txdot.gov

[84] N.-E. E. Faouzi and L. A. Klein, “Data fusion for its: Techniques

and research needs,” Transportation Research Procedia, vol. 15, pp.

136

http://dx.doi.org/10.1080/01431160701250382
http://dx.doi.org/10.1016/S0167-8655(03)00164-8
http://www.aas.net.cn/EN/abstract/article_13651.shtml
https://www.txdot.gov


495 – 512, 2016, international Symposium on Enhancing Highway

Performance (ISEHP), June 14-16, 2016, Berlin. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S2352146516305749

[85] A. Essien, I. Petrounias, P. Sampaio, and S. Sampaio, “Improving urban traffic

speed prediction using data source fusion and deep learning,” in 2019 IEEE

International Conference on Big Data and Smart Computing (BigComp), 2019,

pp. 1–8.

[86] H. Nguyen, L. Kieu, T. Wen, and C. Cai, “Deep learning methods in trans-

portation domain: a review,” IET Intelligent Transport Systems, vol. 12, no. 9,

pp. 998–1004, 2018.

[87] N.-E. E. Faouzi, H. Leung, and A. Kurian, “Data fusion in intelligent

transportation systems: Progress and challenges - a survey,” Inf. Fusion,

vol. 12, no. 1, p. 4–10, Jan. 2011. [Online]. Available: https://doi.org/10.1016/

j.inffus.2010.06.001

[88] W. Chen, J. An, R. Li, L. Fu, G. Xie, M. Z. A. Bhuiyan,

and K. Li, “A novel fuzzy deep-learning approach to traffic flow

prediction with uncertain spatial–temporal data features,” Future Generation

Computer Systems, vol. 89, pp. 78 – 88, 2018. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167739X18307398

[89] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural

network: Data-driven traffic forecasting,” 2017.

[90] X. Luo, D. Li, Y. Yang, and S. Zhang, “Spatiotemporal traffic flow prediction

with knn and lstm,” Journal of Advanced Transportation, vol. 2019, pp. 1–10,

02 2019.
137

http://www.sciencedirect.com/science/article/pii/S2352146516305749
https://doi.org/10.1016/j.inffus.2010.06.001
https://doi.org/10.1016/j.inffus.2010.06.001
http://www.sciencedirect.com/science/article/pii/S0167739X18307398


[91] T. Bogaerts, A. Masegosa, J. Angarita-Zapata, E. Onieva, and P. Hellinckx, “A

graph cnn-lstm neural network for short and long-term traffic forecasting based

on trajectory data,” Transportation Research Part C Emerging Technologies,

vol. 112, pp. 62–77, 03 2020.

[92] S. Moosavi, M. H. Samavatian, S. Parthasarathy, R. Teodorescu, and

R. Ramnath, “Accident risk prediction based on heterogeneous sparse data,”

Proceedings of the 27th ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems, Nov 2019. [Online]. Available:

http://dx.doi.org/10.1145/3347146.3359078

[93] Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen, and J. Liu, “Lstm network: a deep

learning approach for short-term traffic forecast,” IET Intelligent Transport

Systems, vol. 11, no. 2, pp. 68–75, 2017.

[94] X. Dai, R. Fu, Y. Lin, L. Li, and F.-Y. Wang, “Deeptrend: A deep hierarchical

neural network for traffic flow prediction,” 2017.

[95] M. Fouladgar, M. Parchami, R. Elmasri, and A. Ghaderi, “Scalable deep

traffic flow neural networks for urban traffic congestion prediction,” in 2017

International Joint Conference on Neural Networks, IJCNN 2017, Anchorage,

AK, USA, May 14-19, 2017. IEEE, 2017, pp. 2251–2258. [Online]. Available:

https://doi.org/10.1109/IJCNN.2017.7966128

[96] A. Koesdwiady, R. Soua, and F. Karray, “Improving traffic flow prediction

with weather information in connected cars: A deep learning approach,” IEEE

Transactions on Vehicular Technology, vol. 65, no. 12, pp. 9508–9517, 2016.

[97] L. N. N. Do, N. Taherifar, and H. L. Vu, “Survey of neural network-based

models for short-term traffic state prediction,” WIREs Data Mining and
138

http://dx.doi.org/10.1145/3347146.3359078
https://doi.org/10.1109/IJCNN.2017.7966128


Knowledge Discovery, vol. 9, no. 1, p. e1285, 2019. [Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1285

[98] K. Guo, T. Xu, X. Kui, R. Zhang, and T. Chi, “ifusion: Towards

efficient intelligence fusion for deep learning from real-time and heterogeneous

data,” Information Fusion, vol. 51, pp. 215 – 223, 2019. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1566253518304834

[99] F. E. White, “Data fusion subpanel of the joint directos of laboratories technical

panel for c3,” San Diego: Californie, 1991.

[100] F. Castanedo, “A review of data fusion techniques,” The Scientific World

Journal, vol. 2013.

[101] O. Sidek and S. Quadri, “A review of data fusion models and systems,”

International Journal of Image and Data Fusion, vol. 3, no. 1, pp. 3–21, 2012.

[Online]. Available: https://doi.org/10.1080/19479832.2011.645888

[102] S. Ben Ayed, H. Trichili, and A. M. Alimi, “Data fusion architectures: A survey

and comparison,” in 2015 15th International Conference on Intelligent Systems

Design and Applications (ISDA), 2015, pp. 277–282.

[103] F. Mastrogiovanni, A. Sgorbissa, and R. Zaccaria, “A distributed architecture

for symbolic data fusion.” 01 2007, pp. 2153–2158.

[104] B. V. Dasarathy, “Sensor fusion potential exploitation-innovative architectures

and illustrative applications,” Proceedings of the IEEE, vol. 85, no. 1, pp. 24–38,

1997.

[105] D. Zhang and M. R. Kabuka, “Combining weather condition data to pre-

dict traffic flow: A gru based deep learning approach,” in 2017 IEEE
139

https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1285
http://www.sciencedirect.com/science/article/pii/S1566253518304834
https://doi.org/10.1080/19479832.2011.645888


15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th

Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on

Big Data Intelligence and Computing and Cyber Science and Technology

Congress(DASC/PiCom/DataCom/CyberSciTech), 2017, pp. 1216–1219.

[106] S. Dunne and B. Ghosh, “Weather adaptive traffic prediction using neurowavelet

models,” IEEE Transactions on Intelligent Transportation Systems, vol. 14,

no. 1, pp. 370–379, 2013.

[107] Y. Jia, J. Wu, M. Ben-Akiva, R. Seshadri, and Y. Du, “Rainfall-integrated

traffic speed prediction using deep learning method,” IET Intelligent Transport

Systems, vol. 11, no. 9, pp. 531–536, 2017.

[108] X. Yang, Y. Yuan, and Z. Liu, “Short-term traffic speed prediction of urban

road with multi-source data,” IEEE Access, vol. 8, pp. 87 541–87 551, 2020.

[109] A. Ali, “Traffic forecasting applications using crowdsourced traffic reports and

deep learning,” Ph.D. dissertation, University of North Texas, 2020.

[110] N. G. Polson and V. O. Sokolov, “Deep learning for short-term traffic flow

prediction,” Transportation Research Part C: Emerging Technologies, vol. 79,

pp. 1 – 17, 2017. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S0968090X17300633

[111] R. Yu, Y. Li, C. Shahabi, U. Demiryurek, and Y. Liu, “Deep learning: A generic

approach for extreme condition traffic forecasting,” in SDM, 2017.

[112] C. D. of Transportation (Caltrans). Caltrans Peformance Measurement

System (PeMS). (2020). [Online]. Available: http://pems.dot.ca.gov

[113] C. Chen, “Freeway performance measurement system (pems),” 2003.
140

http://www.sciencedirect.com/science/article/pii/S0968090X17300633
http://www.sciencedirect.com/science/article/pii/S0968090X17300633
http://pems.dot.ca.gov


[114] M. Stae Inc. (2020). [Online]. Available: https://municipal.systems/explore

[115] Waze. (2020). [Online]. Available: https://www.waze.com

[116] D. Sky. (2020). [Online]. Available: https://darksky.net/

[117] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley,

CA: CreateSpace, 2009.

[118] W. McKinney et al., “Data structures for statistical computing in python,” in

Proceedings of the 9th Python in Science Conference, vol. 445. Austin, TX,

2010, pp. 51–56.

[119] M. Lippi, M. Bertini, and P. Frasconi, “Short-term traffic flow forecasting: An

experimental comparison of time-series analysis and supervised learning,” IEEE

Transactions on Intelligent Transportation Systems, vol. 14, no. 2, pp. 871–882,

2013.

[120] C. Chen, K. Li, S. G. Teo, X. Zou, K. Wang, J. Wang, and Z. Zeng, “Gated

residual recurrent graph neural networks for traffic prediction,” in Proceedings

of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 485–492.

[121] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[122] Y. Tian and L. Pan, “Predicting short-term traffic flow by long short-term

memory recurrent neural network,” in 2015 IEEE International Conference on

Smart City/SocialCom/SustainCom (SmartCity), 2015, pp. 153–158.

[123] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and

Y. Bengio, “Learning phrase representations using RNN encoder-decoder for

141

https://municipal.systems/explore
https://www.waze.com
https://darksky.net/


statistical machine translation,” CoRR, vol. abs/1406.1078, 2014. [Online].

Available: http://arxiv.org/abs/1406.1078

[124] Z. Cui, R. Ke, and Y. Wang, “Deep bidirectional and unidirectional LSTM

recurrent neural network for network-wide traffic speed prediction,” CoRR, vol.

abs/1801.02143, 2018. [Online]. Available: http://arxiv.org/abs/1801.02143

[125] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[126] F. Chollet. (2015) Keras. [Online]. Available: https://github.com/fchollet/keras

[127] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based

spatial-temporal graph convolutional networks for traffic flow forecasting,” in

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019,

pp. 922–929.

142

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1801.02143
https://github.com/fchollet/keras


BIOGRAPHICAL STATEMENT

Tariq Alsahfi is a PhD candidate in the Department of Computer Science and

Engineering, at the University of Texas at Arlington and a lecturer at the Depart-

ments of Information System at the University of Jeddah. He completed his Bachelor

in 2011 and his Master’s in 2015 in Computer Science. His research interest is the

geographical information systems, trajectory data, deep learning for transportation

systems. Currently, he is working develop deep learning models for traffic flow fore-

casting.

143


	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	INTRODUCTION
	Definition and Motivation of Trajectory data
	Dissertation Contributions
	Dissertation Organization
	Published Papers

	A Survey on Trajectory Data Warehouse (Drafted from alsahfi2020survey)
	Introduction
	Definitions and terminologies
	Trajectory Data (TD)
	 Moving Object Database (MOD)
	Data Warehouse (DW)
	Spatial Data warehouse (SDW) 
	Trajectory Data Warehouse (TDW)

	 A Framework of Trajectory Data Warehouses
	Data sources
	ETL
	Trajectory Data Warehouse
	Analysis Tools
	Applications for TDW

	Discussion
	Conclusion

	Road Map Generation and Feature Extraction from GPS Trajectories Data (Drafted from alsahfiroad)
	Introduction
	Related Work
	Definitions and problem statement
	Problem statement

	Road Map Generation Algorithm (RMG)
	Step 1: Trajectory data analysis
	Step 2: Locating intersections
	Step 3: Building road segments
	Step 4: Building the road map

	EXPERIMENTAL EVALUATION
	Data sets and comparing algorithms
	Evaluation methodologies
	Results
	Discussion

	Conclusion

	A Framework for Road Map Classification Using Machine Learning
	Introduction
	Related Work
	Framework for Road Map Classification
	Machine learning algorithms
	Data description
	Feature Selection

	Algorithms Evaluation
	Discussion
	Conclusion

	Data Fusion of Heterogeneous Data Sources for Intelligent Transportation Systems
	Introduction
	Related Work
	Datasets descriptions
	Traffic Data
	Weather Data
	Points of Interest (POI)
	Temporal data

	Traffic Datasets Fusion Process
	Traffic Data fusion
	Weather Data fusion
	Point-of-Interest fusion
	Temporal Data fusion
	Summary of the traffic datasets fusion process 


	Application for data fusion of traffic dataset
	Traffic Datasets analysis and visualization
	Traffic Datasets cube
	Traffic Datasets Visualization

	Traffic flow forecasting using deep learning
	Deep learning approaches:
	Evaluation metrics:
	Experimental setting:
	Experimental Results

	Conclusion

	CONCLUSION
	Summary of Contributions
	Future work

	Bibliography
	BIOGRAPHICAL STATEMENT

