

Heterogeneous Transcoding for Next Generation Multimedia Video Codecs for

Efficient Communication

by

SHREYANKA SUBBARAYAPPA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2020

Heterogeneous Transcoding for Next Generation Multimedia Video Codecs for

Efficient Communication

The members of the Committee approve the doctoral

dissertation of SHREYANKA SUBBARAYAPPA

Supervising Professors:

Dr. K R Rao

rao@uta.edu

Dr. Jonathan W Bredow

jbredow@uta.edu

Dr. Michael T Manry

manry@uta.edu

Dr. Venkat Devarajan

venkat@uta.edu

Dr. B Ramaswamy Karthikeyan

karthikeyan.ec.et@msruas.ac.in

Graduate Advisor:

Dr. William E. Dillon

dillon@uta.edu

mailto:rao@uta.edu
mailto:jbredow@uta.edu
mailto:manry@uta.edu
mailto:venkat@uta.edu
mailto:karthikeyan.ec.et@msruas.ac.in
mailto:dillon@uta.edu

Copyright © by Shreyanka Subbarayappa 2020

All Rights Reserved

iv

ACKNOWLEDGEMENTS

I take this opportunity to offer my gratitude to my supervisor, Dr. K. R. Rao, who invested his

precious time in guiding me and has been a constant and continuous support throughout my thesis with

his patience and profound knowledge. My sincere gratitude and love go to my family and this thesis is

dedicated to my parents, Prof. H. Subbarayappa (father) and Mrs. Anasuya Subbarayappa (mother) who

have been the main source and motivation in pursuing my Doctorate degree. My sincere thanks to my

husband Mr. Adarsh K. and son Ashrith Adarsh for encouraging me and being the emotional and moral

support during the hard times when I had to stay away from home and concentrate towards completion

of my doctoral degree. I love you all and I thank you all whole heartedly for being by my side all the time.

I would extend my thanks to my graduate advisors, Dr. William E. Dillon, Dr. Jonathan W Bredow,

Dr. Michael T Manry, Dr. Venkat Devarajan and Dr. B. Ramaswamy Karthikeyan for taking out their time

to serve in my doctoral committee.

I would also like to extend my appreciation to my university in India, Ramaiah University of Applied

Sciences, where the foundation of my doctoral research developed and would like to thank all my

colleagues from Electronics and Communication Department for supporting me in pursuing my Ph.D. far

away from home.

I am grateful to all the teachers and professors who taught me during the years I spent at school/

university, in India as well as United States. Last but not the least, I would like to thank all my friends and

relatives in India and United States for being my support and encouraging me, especially Spoorthi

Manjunath for her help during my stay at Texas and being a family to me, during the time I was away from

home.

November 5th, 2020

v

ABSTRACT

HETEROGENEOUS TRANSCODING FOR NEXT GENERATION MULTIMEDIA VIDEO

CODECS FOR EFFICIENT COMMUNICATION

Shreyanka Subbarayappa, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professor: K.R. Rao

Innovations in the communication systems and technology are growing tremendously and the

growth seen is unimaginable in the last forty years. In multimedia communication systems, technology

has transformed from analog television to digital television in the video domain. Mobile phones are known

as smart phones as they are used, not only to make voice calls, but also used to send emails, video calls,

transfer data, GPS, taking pictures and so on. Due to the wide spread user applications, compression on

data becomes important to save system resources. Video has occupied 75% of major traffic of data

transfer and is expected to cover 80% by 2021 [4]. Video is also continuously increasing in size from

standard-definition (SD) to ultra-high definition (UHD - 4K, 8K and 12K) video. More data or size in video

requires higher transmission bandwidth or more disk space to store, which is very expensive. This drives

into the betterment in compression and hence a demand for a new codec. Several algorithms are

implemented to achieve compression of Image or Video with respect to the user’s demand on the quality

of output as well as application it is used for. These algorithms working together are classified in terms of

codecs and we use different codecs for different applications.

Advances in video compression technology are used to reduce the utilization of system resources,

like processing time, memory use, network bandwidth and battery life. This is possible by reducing the

complexity of the video codecs without compromising on the output video quality [2][3][5]. There are two

distinct lines in the future video coding technology development work. EVC driven by MPEG team [126]

and Versatile Video Codec (VVC) [7][8] driven by Joint Video Exploration Team (JVET). These codecs

vi

are the extended versions with advances in compression technologies when compared to the prior video

codecs or reference codecs HEVC and H.264.

 This thesis is fundamentally and entirely devoted to the theory and design of different algorithms

used in present and future video codecs to obtain efficient implementation and reconstruction of codec

outputs. It also addresses the most recent codecs being developed, i.e. EVC and VVC. Transcoding being

one of the main applications in video technologies is implemented and studied between these four codecs.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ..iv

ABSTRACT ... v

LIST OF ILLUSTRATIONS .. ix

LIST OF TABLES ... xiii

CHAPTER 1: Introduction .. 16

1.1. Importance of compression .. 16

1.2. Objective of Image Compression .. 16

1.3. Methods of Data Compression [1] .. 16

1.4. Significance of Video ... 18

1.5. Implication of video compression and its standardization ... 18

1.6. History of Video Codecs .. 21

 H.264 Codec Overview ... 23

2.1. Introduction ... 23

2.2. Profiles of H.264 .. 25

2.3. Levels of H.264 .. 28

2.4. H.264 Encoder ... 29

2.5. H.264 Decoder ... 39

2.6. Summary ... 39

 HEVC Codec Overview .. 40

3.1. Introduction: .. 40

3.2. HEVC Coding Design .. 41

3.3. Encoder and Decoder in HEVC .. 55

3.4. Parallel Decoding Syntax and Modified Slice Structuring ... 56

3.5. Summary ... 57

 VVC and EVC Codec Overview .. 58

4.1. Introduction of versatile video coding .. 58

4.2. Introduction to Essential video coding (EVC) .. 62

4.3. Summary ... 69

 Transcoding .. 70

5.1. Introduction to Video Transcoding ... 70

5.2. Transcoding Architectures ... 70

5.3. Choice of Transcoding Architecture .. 72

5.4. Importance of Video Transcoding ... 73

5.5. Criteria to obtain optimal results after transcoding ... 74

viii

5.6. Summary ... 74

 Problem Formation .. 75

6.1. Identification of Research Gap .. 75

6.2. Research Questions ... 75

6.3. Title and aim of the thesis ... 76

6.4. Objectives of the Thesis .. 76

6.5. Methodology for each objective ... 77

6.6. Original Contribution: .. 82

 Results .. 83

7.1. Introduction ... 83

7.2. Video Quality Measures .. 83

7.3. Test Sequence Set ... 85

7.4. Results of Objective 1: Comparative analysis of the codecs ... 87

7.5. Results of Objective 2: Heterogeneous Transcoding architecture for format change 106

7.6. Results of Objective 3: Heterogeneous and Homogeneous Transcoding architecture for bitrate

change by varying quantization parameter and frame rate .. 110

7.7. Results of Objective 4: Develop an automated versatile application of Transcoding H.264,

HEVC, VVC and EVC for format change and bitrate variation (QP and framerate change) 123

 Conclusion and Future Work .. 124

8.1. Conclusion of Objective 1: Codec comparative analysis ... 124

8.2. Conclusion of Objective 2: Heterogeneous Transcoding .. 125

8.3. Conclusion of Objective 3: Bitrate Homogeneous/Heterogeneous Transcoding 126

REFERENCES ... 127

BIOGRAPHICAL STATEMENT ... 137

Appendix -1 .. 138

Appendix - 2 ... 144

ix

LIST OF ILLUSTRATIONS

Figure 1.1. Comparison of Lossless and Lossy Compression ... 17

Figure 1.2. Home media eco-system ... 18

Figure 1.3. YUV formats for one macro block of an image .. 21

Figure 1.4. History of Video Codecs ... 22

Figure 2.1. Different profiles in H.264 with distribution of various coding tools among the profiles 26

Figure 2.2. Tools introduced in FRExts and their classification under the new high profiles [31] 27

Figure 2.3. H.264 Video Coding Encoder Framework [33] .. 30

Figure 2.4. 4x4 Luma prediction (intra-prediction) modes in H.264 [33] .. 31

Figure 2.5. 16X16 Luma prediction (intra-prediction) modes in H.264 [33] ... 31

Figure 2.6. Macroblock portioning in H.264 for inter prediction [33] row1 (L-R) 16x16, 8x16, 16x8, 8x8

blocks and row2 (L-R) 8x8, 4x8, 8x4, 4x4 blocks ... 32

Figure 2.7. Interpolation of luma half-pel positions .. 33

Figure 2.8. Interpolation of luma quarter-pel positions ... 33

Figure 2.9. Motion compensated prediction with multiple reference frames [1] 34

Figure 2.10. H.264 Transformation .. 35

Figure 2.11. Boundaries in a macroblock to be filtered (luma boundaries shown 36

Figure 2.12. Schematic block diagram of CABAC [33] .. 37

Figure 2.13. Partition prediction examples in a B macroblock type: (a) past/future, (b) past, (c) future [33]

 .. 38

Figure 2.14. H.264 Decoder block diagram [33] .. 39

Figure 3.1. Encoder and Decoder coding techniques in HEVC [40] .. 42

Figure 3.2. HEVC Videc Encoder Block Diagram [11] ... 42

Figure 3.3. HEVC Video Decoder Block Diagram .. 43

Figure 3.4. Coding tree unit (CTU) and Coding unit (CU) .. 43

Figure 3.5. Quad Tree CU structure in HEVC .. 44

Figure 3.6. Quad Tree Splitting flags are 1’s and 0’s ... 44

Figure 3.7. Coding structure in HEVC .. 44

Figure 3.8. Flexible CU partitioning .. 45

Figure 3.9. Pictorial representations of various block divisions for HEVC in a frame 45

Figure 3.10. Modes for splitting a CB into PB’s. L=LEFT, R=RIGHT, U=UP, D=DOWN 46

x

Figure 3.11. Subdivision of a CTB into CB’s. Solid line indicate CB boundaries and dotted lines indicate

TB boundaries. (A) CTB with its partitioning (B) Corresponding Quad Tree [11] 47

Figure 3.12. Subdivision of a picture (A) Slices, (B) Tiles and (C) Illustration of wave front parallel

processing [11] ... 49

Figure 3.13. Modes and directional orientations for intrapicture prediction [11] 49

Figure 3.14. Intra and Inter frame prediction modes for HEVC [48] ... 50

Figure 3.15. Integer and Fractional sample position for luma interpolation [11] 51

Figure 4.1. Quadtree partition [72] ... 58

Figure 4.2. Binary Tree Partition [72] ... 59

Figure 4.3. Block Partitioning of QTBT [72] .. 59

Figure 4.4. Intra Prediction modes of VVC [72] .. 60

Figure 4.5. EVC Encoder Block Diagram [67] .. 63

Figure 4.6. Bi/Tri Split modes ... 64

Figure 4.7. QT/TT/BT split coding order ... 64

Figure 4.8. Intra-Block Copy (with a vertical split at 128x128) [67] .. 65

Figure 5.1. Transcoding and communication across various multimedia devices 70

Figure 5.2. Open Loop, partial decoding to DCT coefficients and further re-quantizing [52] 71

Figure 5.3. Closed-loop, drift compensation for re-quantized data [52] ... 71

Figure 5.4. Cascade decoder-encoder architecture [52] .. 71

Figure 5.5. Frame based comparison of open loop, closed loop and cascaded pixel domain architecture

 .. 72

Figure 5.6. General block diagram of the proposed transcoding architecture (cascaded-pixel-domain). 73

Figure 5.7. Video Transcoding functionalities .. 73

Figure 5.8. Transcoding Functions ... 74

Figure 6.1. Heterogeneous Transcoding from H.264 to HEVC, VVC or EVC.. 79

Figure 6.2. Heterogeneous Transcoding from HEVC to H.264, VVC or EVC.. 79

Figure 6.3. Heterogeneous Transcoding from VVC to H.264, HEVC or EVC.. 79

Figure 6.4. Heterogeneous Transcoding from EVC to H.264, HEVC or VVC.. 80

Figure 6.5. Block diagram of heterogeneous transrating of H.264 to VVC, HEVC and EVC using QP

variation .. 80

Figure 6.6. Block diagram of homogeneous transrating of H.264, HEVC, VVC and EVC using QP

variation .. 80

xi

Figure 6.7. Block diagram of homogeneous framerate change of H.264, HEVC, VVC and EVC using

framerate improvisation .. 81

Figure 7.1. Structural Similarity Index Metric (SSIM) measurement system .. 84

Figure 7.2. Test set used for testing [64] [65] ... 86

Figure 7.3. PSNR value for each content and for H.264, HEVC, VVC and EVC 95

Figure 7.4. SSIM value for each content and for H.264, HEVC, VVC and EVC 96

Figure 7.5. Bitrate for each content and for H.264, HEVC, VVC and EVC .. 97

Figure 7.6. Encoding time for each content and for each codec .. 98

Figure 7.7. Decoding time of each content and each codec .. 98

Figure 7.8. Compressed output for each content and codec ... 99

Figure 7.9. Rate distortion graph for shield2 content ... 100

Figure 7.10. Rate distortion graph statistics for shield2 content and QP = 10, 20, 30, 40 and 50 for H.264

codec .. 102

Figure 7.11. Rate distortion graph statistics for shield2 content and QP = 10, 20, 30, 40 and 50 for

HEVC codec ... 103

Figure 7.12. Rate distortion graph statistics for shield2 content and QP = 10, 20, 30, 40 and 50 for VVC

codec .. 104

Figure 7.13. Rate distortion graph statistics for shield2 content and QP = 10, 20, 30, 40 and 50 for EVC

codec .. 105

Figure 7.14. PSNR vs Video Codecs for Heterogeneous transcoding .. 107

Figure 7.15. SSIM vs Video Codecs for Heterogeneous transcoding .. 108

Figure 7.16. Time taken for Heterogeneous transcoding ... 108

Figure 7.17. Subjective quality analysis for Heterogeneous Transcoding ... 109

Figure 7.18. Heterogeneous Bitrate Transcoding from H.264 to HEVC/VVC and EVC using akiyo_qcif

sequence .. 112

Figure 7.19. Time taken for Heterogeneous Bitrate Transcoding from H.264 to HEVC/VVC and EVC

using akiyo_qcif sequence ... 112

Figure 7.20. Heterogeneous Bitrate Transcoding from HEVC to H.264/VVC and EVC using akiyo_qcif

sequence .. 114

Figure 7.21. Time taken for Heterogeneous Bitrate Transcoding from HEVC to H.264/VVC and EVC

using akiyo_qcif sequence ... 114

xii

Figure 7.22. Heterogeneous Bitrate Transcoding from VVC to H.264/HEVC and EVC using akiyo_qcif

sequence .. 116

Figure 7.23. Time taken for Heterogeneous Bitrate Transcoding from VVC to H.264/HEVC and EVC

using akiyo_qcif sequence ... 116

Figure 7.24. Heterogeneous Bitrate Transcoding from EVC to H.264/HEVC and VVC using akiyo_qcif

sequence .. 118

Figure 7.25. Time taken for Heterogeneous Bitrate Transcoding from EVC to H.264/HEVC and VVC

using akiyo_qcif sequence ... 118

Figure 7.26. Homogeneous Bitrate Transcoding for H.264/HEVC/VVC and EVC using akiyo_qcif

sequence .. 121

Figure 7.27. Time taken for Homogeneous Bitrate Transcoding for H.264/HEVC/VVC and EVC using

akiyo_qcif sequence ... 121

Figure 7.28. Homogeneous bitrate change with framerate variation. .. 123

xiii

LIST OF TABLES

Table 1.1. Compression Methods .. 19

Table 1.2. Raw bitrates of uncompressed video ... 21

Table 2.1. Levels with maximum H.264 property values .. 29

Table 3.1. Luma intra prediction modes supported by different PU sizes [46] .. 49

Table 3.2. Total number of modes to be tested [47] .. 50

Table 3.3. Specification of SAO type [50]... 55

Table 4.1. VVC Intra/Inter Transform code selection [72] .. 61

Table 4.2. Coefficient Scan Method [67] .. 67

Table 4.3. Coded Symbols for the coefficients [67] .. 67

Table 7.1. Test sequences description ... 85

Table 7.2. Architectural comparative study of H.264, HEVC, VVC and EVC codecs 90

Table 7.3. H.264 encoder and decoder statistics ... 91

Table 7.4. HEVC encoder and decoder statistics .. 92

Table 7.5. VVC encoder and decoder statistics ... 93

Table 7.6. EVC encoder and decoder statistics ... 94

Table 7.7. Rate Distortion graph statistics for shield2 content ... 100

Table 7.8. Video transcoding for akiyo_qcif content .. 107

Table 7.9. H.264 to HEVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 111

Table 7.10. H.264 to VVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 111

Table 7.11. H.264 to EVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 111

Table 7.12. HEVC to H.264 Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 113

Table 7.13. HEVC to VVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 113

Table 7.14. HEVC to EVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 113

Table 7.15. VVC to H.264 Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 115

Table 7.16. VVC to HEVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 115

Table 7.17. VVC to EVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 115

Table 7.18. EVC to H.264 Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 117

Table 7.19. EVC to HEVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 117

Table 7.20. EVC to VVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 117

Table 7.21. H.264 to H.264 Homogeneous Bitrate Transcoding using akiyo_qcif sequence 119

xiv

Table 7.22. HEVC to HEVC Homogeneous Bitrate Transcoding using akiyo_qcif sequence 119

Table 7.23. VVC to VVC Homogeneous Bitrate Transcoding using akiyo_qcif sequence 120

Table 7.24. EVC to EVC Homogeneous Bitrate Transcoding using akiyo_qcif sequence 120

Table 7.25. Homogeneous Bitrate Transcoding using framerate variation .. 122

xv

LIST OF ACRONYMS

GPS Global positioning system

SD Standard Definition

UHD Ultra High Definition

AOM Alliance for open media

VVC Versatile video coding

JVET Joint video exploration team

HEVC High efficiency video coding

CD Compact disc

DVD Digital versatile disc

3D 3 dimentional

HVS Human visual system

Fps frames per second

QCIF Quarter common intermediate format

SDO Standards development organization

ISO International standardization organization

IEC International electrotechnical commission

ITU-T Telecommunication standardization sector of the international telecommunication union

MPEG Moving picture expert group

EVC Essential video coding

SMPTE Society of motion picture and television engineers

AV1 AOMedia video 1

AVS China Audio video coding standard workgroup of china

BBC British broadcast company

DCT Discrete cosine transform

IDCT Integer discrete cosine transform

PSNR Peak signal to noise ratio

SSIM Structural similarity index metric

MSE Mean square error

BD-PSNR Bjontegaard metric

BD-SSIM Bjontegaard metric

QP Quantization parameter

GOP Group of pictures

BD-Rate Bjontegaard metric

VTM Video test model

IPR Intellectual Property Right

HM Hybrid Model

AVC Advanced Video Coding

JVT Joint Video Team

JM Joint model

xvi

QTBT Quad tree binary tree

TT Ternary tree

CTU Coding tree unit

DC Discrete cosine

SAO Sample adaptive offset

CABAC Context adaptive binary arithmetic coding

CAVLC Context adaptive variable length coding

MC Motion compensation

VLD Variable length decoding

RD Rate distortion

16

CHAPTER 1: Introduction

1.1. Importance of compression

The uncompressed data in multimedia (graphics, audio, images, video and text) [4] needs a huge amount

of storage space and the transmission bandwidth availability. In spite of fast progress in the processor

speeds and system performance in digital communications, the demand in the data transmission usage

bandwidth and data storage capacity surpasses all the abilities of the available technologies. In the recent

times, the recent growth in multimedia-based web applications for data intensive contents has achieved

the requirements for attaining better ways to encode the signals, videos and images but has achieved

compression of such contents to storage and use in the communication technology. Image/video

compression reduces the size of the file in bytes without degrading the image quality to an unacceptable

level. The reduced size of the file permits more images or videos to be stored in a given amount of memory

space or disk. It also helps in reducing the time taken to transmit the image/video over the Internet or

download them from Web pages.

1.2. Objective of Image Compression

Images comprise of large amounts of information which also require a lot of storage space, larger

transmission bandwidths and longer transmission times. The advantageous factor to compress an image

is to preserve only the essential information required to reconstruct the image and also takes less storage

space to store on CDs, DVDs or Blu Ray Discs or less bandwidth to transmit it through any medium. An

image can be viewed as a matrix of pixel (intensity) values. In order to compress an image, the

redundancies are exploited, for example, places or areas where there is no change or little change among

pixel values. Hence the images with large areas of uniform colour have large redundancies. Conversely,

images having frequent and large colour changes are less redundant and difficult to compress.

1.3. Methods of Data Compression [1]

Data compression is a technique used for reducing the information or content of the data which is useful

to be stored easily or reconstructed quicker. There are two methods of data compression we observe in

our everyday usage. One is lossless compression and the other is lossy compression which differs with

respect to the reconstructed data quality and the size of data compressed.

17

1.3.1. Lossless Compression [2]

This class of data compression involves algorithms that allow the original data to be obtained or

reconstructed from the compressed data. The lossless compression is used when the requirement of the

reconstructed data be identical to the original data, or when no assumptions are required to be made for

certain deviations which are not critical. Lossless compression is mostly used for medical imaging studios

and text where every character and data are important. Typical examples for lossless compression are

executable programs and source codes. The Figure 1.1. shows the comparison of lossless compression

and lossy compression.

1.3.2. Lossy Compression [3]

This class of data compression is also known as ‘data encoding’ which compresses the data by discarding

or losing some of it. The algorithms in lossy compression aim at minimizing the amount of data needed

and to be handled, held or transmitted. This compression is used for all forms of multimedia data (images,

video, text, graphics and audio), mostly used in applications such as internet telephony and streaming

media domains where slight data loss is still acceptable. As an example, a picture is converted to a digital

file by considering its data as an array of dots. These dots are known as pixels and the image has the

color and brightness of each pixel. If the entire picture has the same color as blue, it can be compressed

without any loss by considering it as “200 blue dots” instead of taking it as “blue dot, blue dot, (198 more

times)..”.

Figure 1.1. Comparison of Lossless and Lossy Compression

Original Image

Original Image

Reconstructed
Image (same as
original image)

Reconstructed
Image Compressed

Compressed

Lossless
Compression

Lossy
Compression

18

1.4. Significance of Video

Universal, high quality and seamless video has been the ultimate goal for researchers, standard bodies

and companies over the last four decades, Few areas like consumer video storage and broadcast

television, video mail, mobile video and video conferencing have clearly captured the market, while the

screen content video, 3D video and 360° video with increase in the demand for video quality is increasing

the market share day by day [5][6]. Nevertheless, there is certainty that digital video will continue to infuse

the homes, networks and businesses and will remain to be the most important industry globally. The digital

video industry is constantly evolving and is driven by a lot of commercial and the technical forces. The

profitable commercial drive is due to the huge revenue of persuading businesses, industry and consumers

to replace analog systems and older digital systems with efficient, new and high-quality digital products

and to approve and adopt new entertainment and communication products. Technical drive is due to

continuous improvements in dealing with performance, the ability for greater capacity storage,

transmission mechanism along with research and development in the field of image and video processing

technology. Figure 1.2. is an example of a home media eco system and the importance of video

transmission.

Figure 1.2. Home media eco-system

1.5. Implication of video compression and its standardization

Obtaining a digital video from any source (camera or a saved video clip) and transmitting it to its

destination (display) require a chain of processes and components. Main key to this chain is the process

of compression (also known as encoding) and decompression (also known as decoding). These

processes are used to reduce a bandwidth-intensive digital ‘raw’ video to a manageable size used for

19

transmission in a medium or a storage and then reconstructing it back for display. Having the compression

and decompression phenomenon ‘right’ can provide a major commercial and technical edge to a product,

by getting higher image quality, more flexibility and greater reliability than competing solutions. Hence

there is always a keen interest in continuing development and enhancement of video compression and

decompression systems and methods.

 Video compression also comprises of lossy compression. Temporal as well as spatial

redundancies are video characteristics. Removing these redundancies and some lossy techniques like

transform, scaling and Human Visual System facilitate very high compression. Table 1.1 gives the detailed

explanation on compression methods achieved.

INFORMATION TYPE COMPRESSION TOOL

Spatial Redundancy Intra frame coding

Temporal Redundancy Inter frame coding

High Frequency image coefficients Transform and scaling

Bit-Stream Redundancy Entropy coding

Human Visual System (HVS) Perceptual coding

Table 1.1. Compression Methods

 To calculate a raw uncompressed video, consider a video frame of size 720X486 (Standard

Definition video). Each frame has 720X486 = 349920 pixels or about 0.3 MPixels. If we display our video

in color format, we use three color channels (Red-Green-Blue) to represent each pixel. Hence to get the

size of an uncompressed video frame, we multiply by 3 to the number of pixels of the frame (i.e 0.3 X3 =

0.9Megabytes). To calculate the size of a video to be played for 1 second, we multiply the frame rate to

video frame byte size (i.e if number of frames per second (fps) = 30fps, then 30X0.9 Mbytes = 27 MB data

per second of video). This huge amount of data directs us to the importance of compression since

bandwidth usage and storage size play a crucial role.

 Another example for calculating the video size in bits per second for one second video by taking

QCIF data from Table 1.2. Resolution of QCIF being 176X144, we multiply this to the bitrate that is 30fps

(i.e. 176X144X30 = 0.7 Kbps). Since each pixel is represented by 8 bits, we multiply 0.7 by 8 which gives

us nearly 6 Mbps. This video is represented in the YUV format as 4:2:0 as shown in Figure 1.3., which

tells us that we have 4 parts of Y (Luma), 1 part of U (Chroma) and 1 part of V (Chroma) samples present.

This tells us that out of 3 channels we have only 1.5 channel, hence dividing this factor to 6Mbps (i.e

20

6Mbps X 1.5 = 9Mbps). A raw video is classified in terms of width and height of each content. This can be

viewed in the Table 1.2. where each content type has a code and its bitrate is shown for the raw content

with 30fps frame rate, with bit depth 8 bits/pixel and 4:2:0 video format of the content.

Code Width Height Description
Bit rate @ 30 fps, 8 bits/pixel, 4:2:0

format

QCIF 176 144 Quarter CIF 9 Mbps

QVGA 320 240 Quarter Video Graphics Array 27 Mbps

CIF 352 288 Common Intermediate Format 36 Mbps

HVGA 640 240 Half Video Graphics Array 55 Mbps

VGA 640 480 Video Graphics Array 110 Mbps

SD 720 486 Standard Definition 125 Mbps

SVGA 800 600 Super Video Graphics Array 172 Mbps

XGA 1024 768 Extended Graphics Array 283 Mbps

XGA+

1152 768

Extended Graphics Array plus

318 Mbps

1152 864 358 Mbps

SXGA 1280 1024 Super Extended Graphics Array 471 Mbps

SXGA+ 1400 1050
Super Extended Graphics Array

plus
529 Mbps

UXGA 1600 1200 Ultra Extended Graphics Array 691 Mbps

HD 1920 1080 High definition 746 Mbps

QXGA 2048 1536 Quad Extended Graphics Array 1.1 Gbps

UHD 4K 3840 2160 Ultra High Definition 4K Video 2 Gbps

4K 4096 2160 4K Video 3.2 Gbps

5K 5120 2700 5K Video 5 Gbps

6K 6144 3160 6K Video 7Gbps

21

UHD 8K 7680 4320 Ultra High Definition 8K Video 11 Gbps

8K 8192 4320 8K Video 12.7 Gbps

Table 1.2. Raw bitrates of uncompressed video

 4:4:4 4:2:2 4:2:0

Figure 1.3. YUV formats for one macro block of an image

Multimedia is targeted for a wide range of applications from mobile video broadcast, video on demand,

video conferencing and medical applications. Having such a wide range of applications, it is essential to

standardize video compression. Standardization ensures implementation of compression technique from

different vendors thus enabling end-users to make a choice to access from different video services for

both software and hardware. Numerous video compression standards are developed for both open source

and proprietary based depending on the user’s application and end-usage [7][8].

1.6. History of Video Codecs

Multimedia is a blend of many sources like text, images, audio and video. The need and requirement for

communication in this domain has become essential in today’s fast-moving era. Hence the necessity for

compression of multimedia sources for better performance and usage by the end-user. Compression of

data is also known as Encoding or Encoder and decompression of data is known as Decoding or Decoder.

The system consisting of Encoder and Decoder is known as Codec. There are plenty of algorithms

LUMA
(Y)

CHROMA
(U)

CHROMA
(V)

22

developed in the video and audio domains whereas only some of them are standardized to form Codecs.

Many audio and video coding standards are developed and still development is ongoing for future

standards by SDO (Standards Development Organizations) and ISO/IEC (International Standardization

Organization and the International Electrotechnical Commission).

 Presently, the main organizations working for standardizing video compression are ITU-T, ISO,

SMPTE, On2Google and AOMedia as shown in Figure 1.4.

Figure 1.4. History of Video Codecs

ITU-T (Telecommunication Standardization Sector of the International Tele-communication

Union) organization solely developed the ‘H’ series starting from H.261 in 1990 to H.263 in 2000

[9][10][11]. During the same time, another organization called ISO developed the MPEG standards. The

MPEG series ranged from MPEG1 to MPEG4 with their applications similar to ‘H’ series [12][13]. Essential

Video Coding (EVC) standard which is under development by the MPEG team of ISO/IEC JTC 1/SC

29/WG 11 is due by end of 2020. SMPTE (Society of Motion Picture and Television Engineers) focused

mainly on VC-1 codec. Google came up with the ‘VP’ codec series, ranging from VP3 to VP9[14][15]. In

2005, ITU-T and ISO organizations merged to develop codecs like H.264 in 2005, HEVC [11] in 2014 and

VVC [16][17] in 2020. AOMedia (Alliance for Open Media) developed AV-1[18][19] in 2015 which is a

successor of VP9 [19]. There were other codecs developed as AVS China (Audio and Video coding

Standard of China) [20], DIRAC [20] by BBC and company codecs by Microsoft and Real Networks. Each

of these codecs use compression techniques depending on the type of application they are designed for.

23

 H.264 Codec Overview

2.1. Introduction

One of the most efficient and the most used video coding standard which was introduced in 2003 by the

Joint Video Team (JVT) was called H.264/MPEG4-Part10 or advanced video coding (AVC) [21]. This

codec was developed by Video Coding Experts Group (VCEG) of International Telecommunication Union

– Telecommunication standardization sector (ITU-T) and Moving Picture Experts Group (MPEG) of

ISO/IEC jointly known as Joint Video Team (JVT). This codec had a wide range of application usages

from both non-interactive and interactive domains such as video telephony as the interactive and video

on demand, broadcast, storage and streaming as non-interactive which constitute to network friendly

video vision. H.264 is the extended video codec of H.263 [23] with a lot of additional tools which gives it

more compression efficiency and better output quality video.

The joint video team built many extensions to the existing video codec which was known as FRExt

or fidelity range extensions. Having these add-ons improved the output video quality along with enabling

higher sample bit depth precision and color information having higher resolution. FRExt also includes

higher YUV sampling structures as 4:2:2 and 4:4:4 as shown in Figure 1.3. Additional features such as

integer transforms switching from 4x4 to 8x8 and vice versa, perceptual based quantization matrix,

efficient lossless coding technique for inter-picture along with additional color space support were also

added.

Scalable video coding (SVC) [23] allows the construction of bitstreams that contain sub-bitstreams

that conform to H.264/AVC. For temporal bitstream scalability, i.e., the presence of a sub-bitstream with

a smaller temporal sampling rate than the bitstream, complete access units are removed from the

bitstream when deriving the sub-bitstream. In this case, high-level syntax and inter prediction reference

pictures in the bitstream are constructed accordingly. For spatial and quality bitstream scalabilities, i.e.

the presence of a sub-bitstream with lower spatial resolution or quality than the bitstream, network

abstraction layer (NAL) units are removed from the bitstream when deriving the sub-bitstream. In this

case, inter-layer prediction, i.e., the prediction of the higher spatial resolution or quality signal by data of

the lower spatial resolution or quality signal, is typically used for efficient coding. The scalable video coding

extension was completed in November 2007 [17].

The next major feature added to the standard was Multiview Video Coding (MVC). MVC enables

the construction of bit streams that represent more than one view of a video scene. An important example

24

of this functionality is stereoscopic 3D video coding. Two profiles were developed in the MVC work: one

supporting an arbitrary number of views and designed specifically for two-view stereoscopic video. The

Multiview Video Coding extensions were completed in November 2009 [24].

Like any other previous motion-based codecs, it uses the following basic principles of video compression

[1]:

• Transform for reduction of spatial correlation

• Quantization for control of bit rate

• Motion compensated prediction for reduction of temporal correlation

• Entropy coding for reduction in statistical correlation.

The improved coding efficiency of H.264 can be attributed to the additional coding tools and the new

features. Listed below are some of the improved techniques used in H.264 for the first time [25]:

• Adaptive intra-picture prediction

• Small block size transform with integer precision

• Multiple reference pictures and generalized B-frames

• Quarter pixel precision for motion compensation

• Variable block size

• Content adaptive in-loop deblocking filter and

• Improved entropy coding by introduction of CABAC (context adaptive binary arithmetic coding)

and CAVLC (context adaptive variable length coding).

The increase in the coding efficiency and increase in the compression ratio result in a greater complexity

of the encoder and the decoder algorithms of H.264, as compared to previous coding standards. In

order to develop error resilience for transmission of information over the network, H.264 supports the

following techniques [30]:

• Flexible macroblock ordering (FMO)

• Switched slice

• Arbitrary slice order (ASO)

• Redundant slice (RS)

• Data partitioning (DP)

• Parameter setting

25

2.2. Profiles of H.264

 The H.264/AVC standard is composed of a wide range of coding tools. Also, the standard

addresses a large range of bit rates, resolutions, qualities, applications and services. Not all the tools and

all the bit rates are required for any given application at a given point of time. All the various tools of H.264

are grouped in profiles.

Profiles are defined as a subset of coding tools. They help to maximize the interoperability while

limiting the complexity. Also, the various levels define the various parameters like size of decoded

pictures, bit rate, etc.

The profiles defined for H.264 can be listed as follows [25]:

• Constrained baseline profile

• Baseline profile

• Main profile

• Extended profile

• High profile

• Progressive high profile

• Constrained high profile

• High 10 profile

• High 4:2:2 profile

• High 4:4:4 predictive profile

• High stereo profile

• High 10 intra profile

• High 4:2:2 intra profile

• High 4:4:4 intra profile

• CAVLC 4:4:4 intra profile

• Scalable baseline profile

• Scalable high profile

• Scalable high intra profile 18

• Scalable constrained high profile

• Stereo high profile

• Multiview high profile

26

Figure 2.1 illustrates the coding tools for the various profiles of H.264. The standard defines 21 sets of

capabilities, which are referred to as profiles, targeting specific classes of applications.

Figure 2.1. Different profiles in H.264 with distribution of various coding tools among the profiles

2.2.1. Baseline profile:

The list of tools included in the baseline profile are I (intra coded) and P (predictive coded) slice coding,

enhanced error resilience tools of flexible macroblock ordering, arbitrary slices and redundant slices. It

also supports CAVLC (context-based adaptive variable length coding). The baseline profile is intended

to be used in low delay applications, applications demanding low processing power, and in high packet

loss environments. This profile has the least coding efficiency among all the three profiles.

2.2.2. Main profile:

The coding tools included in the main profile are I, P, and B (bi directionally predictive coded) slices,

interlace coding, CAVLC and CABAC (context-based adaptive binary arithmetic coding). The tools not

supported by main profile are error resilience tools, data partitioning and SI (switched intra coded) and SP

(switched predictive coded) slices. This profile is aimed to achieve highest possible coding efficiency.

2.2.3. Extended profile:

This profile has all the tools included in the baseline profile. As illustrated in the Figure 2.1 this profile also

includes B, SP and SI slices, data partitioning, interlaced frame and field coding, picture adaptive

frame/field coding and macroblock adaptive frame/field coding. This profile provides better coding

efficiency than baseline profile. The additional tools result in increased complexity.

27

2.2.4. High profile defined in the FRExts amendment:

In September 2004 the first amendment of H.264/MPEG-4 AVC video coding standard was released [25].

A new set of coding tools were introduced as a part of this amendment. These are termed as ―Fidelity

Range Extensions‖ (FRExts). The aim of releasing FRExts is to be able to achieve significant

improvement in coding efficiency for higher fidelity material. It also has lossless representation capability:

I PCM raw sample value macroblocks and entropy coded transform by-pass lossless macroblocks

(FRExts only). The application areas for the FRExts tools are professional film production, video

production and high-definition TV/DVD.

The FRExts amendment defines four new profiles (refer Figure 2.2.) [23]:

• High (HP)

• High 10 (Hi10P)

• High 4:2:2 (Hi422P)

• High 4:4:4 (Hi444P)

The other profiles constrained to intra use in H.264 are

• High 10 intra profile

• High 4:2:2 intra profile

• High 4:4:4 intra profile

Figure 2.2. gives us the specification of High profile in H.264.

Figure 2.2. Tools introduced in FRExts and their classification under the new high profiles [31]

All four of these profiles build further upon the design of the prior main profile. The main aim behind

introducing 8x8 transform in FRExts is that high fidelity video demands preservation of fine details and

textures. To achieve this, larger basis functions are required. However, smaller size transform like 4x4

reduces ringing artifacts and reduces computational complexity. The encoder adaptively chooses

between 4x4 and 8x8 transforms block sizes.

The transform selection process is limited by the following conditions

28

• If an inter-coded MB has sub-partition smaller than 8x8 (i.e. 4x8, 8x4, 4x4), then 4x4 transform

is used.

• If an intra-coded MB is predicted using 8x8 luma spatial prediction, only 8x8 transform is used.

• Encoder-specified perceptual-based quantization scaling matrices.

The encoder can specify a matrix for scaling factor according to the specific frequency associated with

the transform coefficient for use in inverse quantization scaling by the decoder. This allows optimization

of the subjective quality according to the sensitivity of the human visual system, less sensitive to the coded

error in high frequency transform coefficients [32].

2.3. Levels of H.264

As the term is used in the standard, a "level" is a specified set of constraints that indicate a degree

of required decoder performance for a profile. For example, a level of support within a profile specifies

the maximum picture resolution, frame rate, and bit rate that a decoder may use. A decoder that

conforms to a given level must be able to decode all bitstreams encoded for that level and all lower

levels.

Level Maximum
decoding speed
(macroblocks/s)

Maximum
frame size

(macroblocks)

Maximum video
bit rate for video coding layer (VCL)

(Constrained Baseline,
Baseline, Extended
and Main Profiles)

(kbits/s)

Examples for high
resolution

@ highest frame rate

(maximum stored
frames)

1 1,485 99 64
128×96@30.9 (8)

176×144@15.0 (4)

1b 1,485 99 128
128×96@30.9 (8)

176×144@15.0 (4)

1.1 3,000 396 192 176×144@30.3 (9)
320×240@10.0 (3)
352×288@7.5 (2)

1.2 6,000 396 384 320×240@20.0 (7)
352×288@15.2 (6)

1.3 11,880 396 768 320×240@36.0 (7)
352×288@30.0 (6)

2 11,880 396 2,000 320×240@36.0 (7)
352×288@30.0 (6)

2.1 19,800 792 4,000 352×480@30.0 (7)
352×576@25.0 (6)

29

2.2 20,250 1,620 4,000
352×480@30.7 (12)
352×576@25.6 (10)
720×480@15.0 (6)
720×576@12.5 (5)

3 40,500 1,620 10,000
352×480@61.4 (12)
352×576@51.1 (10)
720×480@30.0 (6)
720×576@25.0 (5)

3.1 108,000 3,600 14,000 720×480@80.0 (13)
720×576@66.7 (11)
1,280×720@30.0 (5)

3.2 216,000 5,120 20,000 1,280×720@60.0 (5)
1,280×1,024@42.2 (4)

4 245,760 8,192 20,000 1,280×720@68.3 (9)
1,920×1,080@30.1 (4)
2,048×1,024@30.0 (4)

4.1 245,760 8,192 50,000 1,280×720@68.3 (9)
1,920×1,080@30.1 (4)
2,048×1,024@30.0 (4)

4.2 522,240 8,704 50,000 1,280×720@145.1 (9)
1,920×1,080@64.0 (4)
2,048×1,080@60.0 (4)

Table 2.1. Levels with maximum H.264 property values

2.4. H.264 Encoder

Figure 2.3 illustrates the schematic of the H.264 encoder. H.264 encoder works on macroblocks and

motion-compensation like most other previous generation codecs. Video is formed by a series of picture

frames. Each picture frame is an image which is split down into blocks. The block sizes can vary in H.264.

The encoder may perform intra-coding or inter-coding for the macroblocks of a given frame. Intra coded

frames are encoded and decoded independently. They do not need any reference frames. Hence they

provide access points to the coded sequence where decoding can start. H.264 uses nine spatial prediction

modes in intra-coding to reduce spatial redundancy in the source signal of the picture as shown in Figure

2.6. These prediction modes are explained in Figure 2.4. Inter-coding uses inter-prediction of a given

block from some previously decoded pictures. The aim to use inter-coding is to reduce the temporal

redundancy by making use of motion vectors. Motion vectors give the direction of motion of a particular

block from the current frame to the next frame. The prediction residuals are obtained which then undergo

transformation to remove spatial correlation in the block. The transformed coefficients, thus obtained,

undergo quantization. The motion vectors (obtained from inter-prediction) or intra-prediction modes are

combined with the quantized transform coefficient information. They are then encoded using entropy code

such as context-based adaptive variable length coding (CAVLC) or context-based adaptive binary

arithmetic coding (CABAC) [25].

30

There is a local decoder within the H.264 encoder. This local decoder performs the operations of inverse

quantization and inverse transform to obtain the residual signal in the spatial domain. The prediction signal

is added to the residual signal to reconstruct the input frame. This input frame is fed in the deblocking filter

to remove blocking artifacts at the block boundaries. The output of the deblocking filter is then fed to

inter/intra prediction blocks to generate prediction signals. The various coding tools used in the H.264

encoder are explained in the sections 2.4.1 through 2.4.6.

Figure 2.3. H.264 Video Coding Encoder Framework [33]

2.4.1. Intra-prediction

Intra-prediction uses the macroblocks from the same image for prediction. Two types of prediction

schemes are used for the luminance component. These two schemes can be referred as INTRA_4x4 and

INTRA_16x16 [38]. In INTRA_4x4, a macroblock of size 16x16 pixels are divided into 16 4x4 sub blocks.

Intra prediction scheme is applied individually to these 4x4 sub blocks. There are nine different prediction

modes supported as shown in Figure 2.4. In FRExts profiles alone, there is also 8x8 luma spatial prediction

(similar to 4x4 spatial prediction) and with low-pass filtering of the prediction to improve prediction

performance.

31

Figure 2.4. 4x4 Luma prediction (intra-prediction) modes in H.264 [33]

In Mode 0, the samples of the macroblock are predicted from the neighboring samples on the top.

In Mode 1, the samples of the macroblock are predicted from the neighboring samples from the left. In

Mode 2, the mean of all the neighboring samples is used for prediction. Mode 3 is in diagonally down-left

direction. Mode 4 is in diagonal down-right direction. Mode 5 is in vertical-right direction. Mode 6 is in

horizontal-down direction. Mode 7 is in vertical-left direction. Mode 8 is in horizontal up direction. The

predicted samples are calculated from a weighted average of the previously predicted samples A to M.

For prediction of 16x16 intra prediction of luminance components, four modes are used as shown

in Figure 2.5. The three modes of mode 0 (vertical), mode 1 (horizontal) and mode 2 (DC) are similar to

the prediction modes for 4x4 block. In the fourth mode, the linear plane function is fitted in the neighboring

samples.

Figure 2.5. 16X16 Luma prediction (intra-prediction) modes in H.264 [33]

The chroma macroblock is predicted from neighboring chroma samples. The four prediction

modes used for the chroma blocks are similar to 16x16 luma prediction modes. The number in which the

prediction modes are ordered is different for chroma macroblock: mode 0 is DC, mode 1 is horizontal,

mode 2 is vertical and mode 3 is plane. The block sizes for the chroma prediction depend on the sampling

format. For 4:2:0 format, 8x8 size of chroma block is selected. For 4:2:2 format, 8x16 size of chroma block

is selected. For 4:4:4 format, 16x16 size of chroma block is selected [33].

32

2.4.2. Inter-prediction

Inter-prediction is used to capitalize on the temporal redundancy in a video sequence. The temporal

correlation is reduced by inter prediction through the use of motion estimation and compensation

algorithms [33]. An image is divided into macroblocks; each 16x16 macroblock is further partitioned into

16x16, 16x8, 8x16, 8x8 sized blocks. A 8x8 sub-macroblock can be further partitioned into 8x4, 4x8, 4x4

sized blocks. Figure 2.6 illustrates the partitioning of a macroblock and a sub-macroblock [1]. The input

video characteristics govern the block size. A smaller block size ensures less residual data; however

smaller block sizes also mean more motion vectors and hence more number of bits required to encode

these motion vectors.

Figure 2.6. Macroblock portioning in H.264 for inter prediction [33] row1 (L-R) 16x16, 8x16, 16x8, 8x8

blocks and row2 (L-R) 8x8, 4x8, 8x4, 4x4 blocks

Each partition or sub-macroblock partition in an inter-coded macroblock is predicted from an area

of the same size in a reference picture. The offset between the two areas (the motion vector) has quarter-

sample resolution for the luma component and one-eighth-sample resolution for the chroma components.

The luma and chroma samples at sub-sample positions do not exist in the reference picture and so it is

necessary to create them using interpolation from nearby coded samples. Figures 2.7 and 2.8 illustrate

half and quarter pixel interpolation used in luma pixel interpolation respectively. Six-tap filtering is used

for derivation of half-pel luma sample predictions, for sharper sub pixel motion-compensation. Quarter-

pixel motion is derived by linear interpolation of the half pel values, to save processing power.

33

Figure 2.7. Interpolation of luma half-pel positions

Figure 2.8. Interpolation of luma quarter-pel positions

The reference pictures used for inter prediction are previously decoded frames and are stored in

the picture buffer. H.264 supports the use of multiple frames as reference frames. This is implemented by

the use of an additional picture reference parameter which is transmitted along with the motion vector.

Figure 2.9 illustrates an example with 4 reference pictures.

34

Figure 2.9. Motion compensated prediction with multiple reference frames [1]

2.4.3. Transform coding

There is high spatial redundancy among the prediction error signals. H.264 implements a block-based

transform to reduce this spatial redundancy [33]. The former standards of MPEG-1 and MPEG-2

employed a two dimensional discrete cosine transform (DCT) for the purpose of transform coding of the

size 8x8 [33]. H.264 uses integer transforms instead of the DCT. The size of these transforms is 4x4 [33].

The advantages of using a smaller block size in H.264 are stated as follows:

• The reduction in the transform size enables the encoder to better adapt the prediction error coding

to the boundaries of the moving objects and to match the transform block size with the smallest

block size of motion compensation.

• The smaller block size of the transform leads to a significant reduction in the ringing artifacts.

• The 4x4 integer transform has the benefit for removing the need for multiplications.H.264 employs

a hierarchical transform structure, in which the DC coefficients of neighboring 4x4 transforms for

luma and chroma signals are grouped into 4x4 blocks (blocks -1, 16 and 17) and transformed

again by the Hadamard transform as shown in Figure 2.10 (a), (b), (c), (d) and (e).

As shown in Figure 2.10 (b) the first transform (matrix H1 is applied to all samples of all prediction

error blocks of the luminance component (Y) and for all blocks of chrominance components (Cb and Cr).

For blocks with mostly flat pixel values, there is significant correlation among transform DC coefficients of

neighboring blocks. Hence, the standard specifies the 4x4 Hadamard transform (matrix H2 in figure 2.10

(c)) for luma DC coefficients (Figure 2.10 (c)) for 16x16 intra-mode only, and 2x2 Hadamard transform

as shown in figure 2.10 (d) (matrix H3 in figure 2.10 (e)) for chroma DC coefficients.

35

Figure 2.10. H.264 Transformation

(a) DC coefficients of 16 4x4 luma blocks, 4 4x4 Cb and Cr blocks [1]
(b) Matrix H1 (e) is applied to 4x4 block of luma/chroma coefficients X (a) [34]

(c) Matrix H2 (e) (4x4 Hadamard transform) applied to luma DC coefficients WD [34]
(d) Matrix H3 (e) (2x2 Hadamard transform) applied to chroma DC coefficients WD [34]

(e) Matrices H1, H2 and H3 of the three transforms used in H.264 [34]

36

2.4.4. Deblocking filter:

The deblocking filter is used to remove the blocking artifacts due to the block based encoding pattern.

The transform applied after intra-prediction or inter-prediction is on blocks; the transform coefficients then

undergo quantization. These block based operations are responsible for blocking artifacts which are

removed by the in-loop deblocking filter as shown in Figure 2.11. It reduces the artifacts at the block

boundaries and prevents the propagation of accumulated noise. The presence of the filter however adds

to the complexity of the system [33]. Figure 2.11 illustrates a macroblock with sixteen 4x4 sub blocks

along with their boundaries.

Figure 2.11. Boundaries in a macroblock to be filtered (luma boundaries shown
with solid lines and chroma boundaries shown with dotted lines) [1]

As shown in the Figure 2.11, the luma deblocking filter process is performed on the 16 sample

edges – shown by solid lines. The chroma deblocking filter process is performed on 8 sample edges –

shown in dotted lines.

H.264 employs deblocking process adaptively at the following three levels:

• At slice level – global filtering strength is adjusted to the individual characteristics of the video

sequence.

• At block-edge level – deblocking filter decision is based on inter or intra prediction of the block,

motion differences and presence of coded residuals in the two participating blocks.

• At sample level – it is important to distinguish between the blocking artifact and the true edges

of the image. True edges should not be de blocked. Hence decision for deblocking at a sample

level becomes important.

37

2.4.5. Entropy coding

H.264 uses variable length coding to match a symbol to a code based on the context

characteristics. All the syntax elements except for the residual data are encoded by the Exp- Golomb

codes [33]. The residual data is encoded using CAVLC. The main and the high profiles of H.264 use

CABAC.

• Context-based adaptive variable length coding (CAVLC): After undergoing transform and

quantization the probability that the level of coefficients is zero or +1 is very high [33]. CAVLC

handles these values differently. It codes the number of zeroes and +1. For other values, their

values are coded.

• Context-based adaptive binary arithmetic coding (CABAC): This technique utilizes the arithmetic

encoding to achieve good compression. The schematic for CABAC is shown in Figure 2.12.

Figure 2.12. Schematic block diagram of CABAC [33]

CABAC consists of three steps:

• Step 1: Binarization: A non-binary value is uniquely mapped to a binary sequence

• Step 2: Context modeling: A context model is a probability model for one or more elements of

binarized symbol. The probability model is selected such that corresponding choice may depend

on previously encoded syntax elements.

• Step 3: Binary arithmetic coding: An arithmetic encoder encodes each element according to the

selected probability model.

2.4.6. B-slices and adaptive weighted prediction

Bi-directional prediction which uses both past and future frames for reference can be very useful in

improving the temporal prediction. Bi-directional prediction in H.264 uses multiple reference frames.

Figure 2.13 shows bidirectional prediction from multiple reference frames. The video coding standards,

before H.264, with B pictures use the bidirectional mode, with limitation that it allows the combination of a

38

previous and subsequent prediction signals. In the previous standards, one prediction signal is derived

from subsequent inter-picture, another from a previous picture, the other from a linear averaged signal of

two motion compensated prediction signals.

Figure 2.13. Partition prediction examples in a B macroblock type: (a) past/future, (b) past, (c) future [33]

H.264 supports forward/backward prediction pair and also supports forward/forward and

backward/backward prediction pair [33]. Figure 2.13 (a) and Figure 2.13 (b) describe the scenario where

bidirectional prediction and multiple reference frames respectively are applied and a macroblock is thereby

predicted as a linear combination of multiple reference signals using weights as described in Equation

2.1. Two forward references for prediction are beneficial for motion compensated prediction of a region

just before scene change. Two backward reference frames are beneficial for frames just after scene

change. H.264 also allows bi-directionally predictive-coded slice which may also be used as reference for

inter-coding of other pictures. Except H.264, all the existing standards consider equal weights for

reference pictures. Equal weights of reference signals are averaged and the prediction signal is obtained.

H.264 also uses weighted prediction [33]. It can be used for a macroblock of P slice or B slice. Different

weights can be assigned to the two different reference signals and the prediction signal is calculated as

follows:

𝑝 = w1 ∗ r1 + w2 ∗ r2 Equation 2.1.

In Equation (2.1), p is the prediction signal, r1 and r2 are the reference signals and w1 and w2 are the

prediction weights.

39

2.5. H.264 Decoder

The H.264 [34] decoder works similar in operation to the local decoder of H.264 encoder. An encoded bit

stream is the input to the decoder. Entropy decoding (CABAC or CAVLC) takes place on the bit stream

to obtain the transform coefficients. These coefficients are then inverse scanned and inverse quantized.

This gives residual block data in the transform domain. Inverse transform is performed to obtain the data

in the pixel domain. The resulting output is 4x4 blocks of residual signal. Depending on inter predicted or

intra-predicted, an appropriate prediction signal is added to the residual signal. For an inter-coded block,

a prediction block is constructed depending on the motion vectors, reference frames and previously

decoded pictures. This prediction block is added to the residual block to reconstruct the video frames.

These reconstructed frames then undergo deblocking before they are stored for future use for prediction

or being displayed. Figure 2.14 illustrates the decoder.

Figure 2.14. H.264 Decoder block diagram [33]

2.6. Summary

This chapter outlines the coding tools of H.264 codec. Having had a good understanding of H.264, next

chapter describes the coding tools of High Efficiency Video Coding (HEVC).

40

 HEVC Codec

Overview

3.1. Introduction:

High Efficiency Video Coding (HEVC) is the latest Video Coding format in use in the market which is

second most popular codec after H.264 [11]. It challenges the state-of-the-art H.264/AVC Video Coding

standard by being able to reduce the bit rate by 50%, retaining the same video quality. It came into

existence in the early 2012 although Joint Collaborative Team on Video Coding (JCT-VC) was formed in

January 2001 to carry out developments on HEVC, and ever since then a huge range of development has

been going on. On 13 April 2013, HEVC standard also called H.265 was approved by ITU-T. Joint

Collaborative Team on Video Coding (JCT-VC), is a group of video coding experts from ITU-T Study

Group (VCEG) and ISO/IEC JTC 1/SC 29/WG 11 (MPEG).

HEVC is designed to address existing applications of H.264/MPEG-4 AVC and to focus on two

key issues: increased video resolution and increased use of parallel processing architectures. It primarily

targets consumer applications as pixel formats are limited to 4:2:0 8-bit and 4:2:0 10-bit. Main, Main 10

and Main intra profile (Main Still Picture profile) were finalized in 2013 [11]. The next revision of the

standard, in July 2014 [35], had enabled new use-cases with the support of additional pixel formats such

as 4:2:2 and 4:4:4 and bit depth higher than 10-bit [36], embedded bit-stream scalability and 3D video

[37].

Multimedia consumer applications have a very large market [11] [37]. The revenues involved in

digital TV broadcasting and DVD, Blu-ray distributions are substantial. Thus, standardization of video

coding is essential. Standards simplify inter-operability between encoders and decoders from different

manufacturers, they make it possible for different vendors to build platforms that incorporate video codecs,

audio codecs, security and rights management and they all interact in well-defined and consistent ways.

There are numerous video compression standards, both open source and proprietary, depending on the

applications and end-usage.

An increasing diversity of services, the growing popularity of HD video, and the emergence of

beyond-HD formats (e.g., 4k×2k or 8k×4k resolution) [38] are creating even stronger needs for coding

efficiency superior to H.264/MPEG-4 AVC’s capabilities. The need is even stronger when higher resolution

is accompanied by stereo or multiview capture and display. Moreover, the traffic caused by video

applications targeting mobile devices and tablet PCs, as well as the transmission needs for video-on-

41

demand services, are imposing severe challenges on today’s networks. An increased desire for higher

quality and resolutions is also arising in mobile applications [11]. Storage space and bandwidth are limited.

Even if high bandwidth technology (e.g. fiber-optic cable) was in place, the per-byte-cost of transmission

would have to be very low before it would be feasible to use it for the staggering amounts of data required

by HDTV and ultra HDTV.

3.2. HEVC Coding Design

3.2.1. Encoder and Decoder in HEVC:

Since H.261, all the video compression standards have been employing hybrid approach for the video

coding layer [39]. Similarly, HEVC does the same. Figure 3.1 shows the encoder/decoder block diagram

to create a compressed video bit stream. The compressed bit stream is stored or transmitted. A video

decoder decompresses the bit stream to create a sequence of decoded frames [40]. The video encoder

performs the following process to generate the bitstream yielding to HEVC standard. Figures 3.2. and 3.3.

depict the block diagram of a hybrid video encoder and decoder, respectively. Each picture is partitioned

into block shaped multiple units; the same exact partitioning is conveyed to the decoder. After partitioning

each picture, it is intra or inter predicted. The first picture of a video sequence and the first picture at each

clean random-access point is coded using intra prediction only. The rest of the pictures in a video

sequence is coded using inter prediction. Linear spatial transformation is performed on the residual signal

(the difference between the original picture unit and the prediction). The transform coefficients along with

the prediction information are quantized and entropy encoded. In order to generate identical predictions

for successive data, the encoder clones the decoder processing loop [11]. The loop performs inverse

scaling, inverse transform to construct residual signal which is then added to the prediction. It is further

processed to remove the artifacts induced by block-wide processing and quantization. The decoded

picture buffer stores the final picture representation for prediction of successive data.

The video decoder decodes the encoded bitstream by performing the following steps:

1. Entropy decoding and extracting the elements of the coded sequence.

2. Rescaling and inverting the transform stage.

3. Predicting each unit and adding the prediction.

42

Figure 3.1. Encoder and Decoder coding techniques in HEVC [40]

3.2.2. Coding tree units and coding units:

HEVC supports highly flexible partitioning of a video sequence [11]. Each frame of the sequence is split

into rectangular or square regions (units or blocks). The conventional macroblock is replaced by coding

tree unit (CTU) in HEVC, which has a size selected by encoder and can be larger than a macroblock [11].

Each CTU consists of a luma CTB and the two chroma CTBs and syntax elements. In a CTU, a luma CTB

has a picture area of L × L samples of the luma component and the corresponding chroma CTBs cover

each (L/2) × (L/2) samples of each of the two chroma components. CTBs have always square shapes.

The value of L may be equal to 16, 32, or 64 as determined by an encoded syntax element specified in

the sequence parameter set (SPS). The value of L can be 16, 32 or 64. The larger CTBs are useful when

encoding high-resolution video content and also enable better compression [41] [42].

Figure 3.2. HEVC Videc Encoder Block Diagram [11]

Each CTB is split into one or multiple coding units (CUs). Each CU consists of one luma coding

block (CB), two chroma CBs and associated syntax. Figure 3.4. shows the structure of CTU and CU in a

43

video frame. The minimum luma CB size is computed from L and the maximum depth of a quad-tree and

is always 8×8 or larger (in units of luma samples). Figure 3.5. and Figure 3.6 shows the quad-tree

structure. The coding mode, intra or inter prediction, is selected at the CU level. CBs have always square

shapes. CU has an associated partitioning into prediction units (PUs) and transform units (TUs). A CU is

the root for both prediction unit (PU) and transform unit (TU) as shown in Figure 3.7. Figure 3.8. shows

examples of various CTU sizes and CU sizes suitable for different resolutions and types of content. For

example, for an application using 1080p content that is known to include only simple global motion

activities, a CTU size of 64 (L=64) and maximum depth of 2 may be appropriate choice. For more general

1080p content, which may also include complex motion activities of small regions, a CTU size of 64 and

maximum depth of 4 would be preferable [43]. Pictorial representations of various block divisions for

HEVC in a frame is shown in Figure 3.9.

Figure 3.3. HEVC Video Decoder Block Diagram

Figure 3.4. Coding tree unit (CTU) and Coding unit (CU)

44

Figure 3.5. Quad Tree CU structure in HEVC

Figure 3.6. Quad Tree Splitting flags are 1’s and 0’s

Figure 3.7. Coding structure in HEVC

45

Figure 3.8. Flexible CU partitioning

Figure 3.9. Pictorial representations of various block divisions for HEVC in a frame

3.2.3. Prediction units:

The luma and chroma PBs, together with the associated prediction syntax, form the PU. The luma and

chroma CBs are split into luma and chroma prediction blocks (PBs) based on prediction-type decision

[11]. The prediction mode for the CU is signaled as being intra or inter, according to whether it uses

intrapicture (spatial) prediction or inter-picture (temporal) prediction. The size of PB can vary from 64×64

to 4×4 samples. For the prediction mode intra, except for the smallest CB size all PB size is same as the

CB size that is allowed in the bitstream. Intra prediction can be performed on only square partitions. When

CB has to be split into four PB which have their own intra-picture prediction mode, a flag is enabled. The

reason for allowing this split is to enable distinct intrapicture prediction mode selections for blocks as small

as 4×4 in size. When the luma intrapicture prediction operates with 4×4 blocks, the chroma intrapicture

46

prediction also uses 4×4 blocks (each covering the same picture region as four 4×4 luma blocks). The

actual region size at which the intrapicture prediction operates (which is distinct from the PB size, at which

the intrapicture prediction mode is established) depends on the residual coding partitioning.

When the prediction mode is signaled as inter, it is specified whether the luma and chroma CBs

are split into one, two, or four PBs. The splitting into four PBs is allowed only when the CB size is equal

to the minimum allowed CB size, using an equivalent type of splitting as could otherwise be performed at

the CB level of the design rather than at the PB level. When a CB is split into four PBs, each PB covers a

quadrant of the CB. When a CB is split into two PBs, six types of this splitting are possible. The partitioning

possibilities for interpicture-predicted CBs are depicted in Figure 3.10. The upper partitions illustrate the

cases of not splitting the CB of size M×M, of splitting the CB into two PBs of size M × (M/2) or (M/2) × M,

or splitting it into four PBs of size (M/2) × (M/2). The lower four partition types in Figure 3.10. are referred

to as asymmetric motion partitioning (AMP) and are only allowed when M is 16 or larger for luma. For

intrapicture-predicted CBs, only M×M and (M/2) × (M/2) are supported.

To minimize worst-case memory bandwidth, PBs of luma size 4×4 is not allowed for interpicture

prediction, and PBs of luma sizes 4×8 and 8×4 are restricted to unipredictive coding.

Figure 3.10. Modes for splitting a CB into PB’s. L=LEFT, R=RIGHT, U=UP, D=DOWN

3.2.4. Transform units:

The prediction residual is coded using block transforms. A TU tree structure has its root at the CU level

[11]. The luma CB residual may be identical to the luma transform block (TB) or may be further split into

smaller luma TBs. The same applies to the chroma TBs. Integer basis functions similar to those of a

discrete cosine transform (DCT) are defined for the square TB sizes 4×4, 8×8, 16×16, and 32×32. For the

4×4 transform of luma intrapicture prediction residuals, an integer transform derived from a form of

discrete sine transform (DST) is alternatively specified.

Only square CB and TB partitioning is specified, where a block can be recursively split into

quadrants, as illustrated in Figure 3.11. For a given luma CB of size M×M, a flag signals whether it is split

47

into four blocks of size M/2×M/2. If further splitting is possible, as signaled by a maximum depth of the

residual quadtree indicated in the SPS, each quadrant is assigned a flag that indicates whether it is split

into four quadrants. The leaf node blocks resulting from the residual quadtree are the transform blocks

that are further processed by transform coding. The encoder indicates the maximum and minimum luma

TB sizes that it will use. Splitting is implicit when the CB size is larger than the maximum TB size. Not

splitting is implicit when splitting would result in a luma TB size smaller than the indicated minimum.

The chroma TB size is half the luma TB size in each dimension, except when the luma TB size is

4×4, in which case a single 4×4 chroma TB is used for the region covered by four 4×4 luma TBs. In the

case of intrapicture-predicted CUs, the decoded samples of the nearest-neighboring TBs (within or outside

the CB) are used as reference data for intrapicture prediction. In contrast to previous standards, the HEVC

design allows a TB to span across multiple PBs for interpicture-predicted CUs to maximize the potential

coding efficiency benefits of the quadtree-structured TB partitioning.

Figure 3.11. Subdivision of a CTB into CB’s. Solid line indicate CB boundaries and dotted lines indicate

TB boundaries. (A) CTB with its partitioning (B) Corresponding Quad Tree [11]

3.2.5. Slices and Tiles:

Slices are processed in the order of a raster scan [11]. A picture may be split into one or several slices as

shown in Figure 3.12. (A) so that a picture is a collection of one or more slices. Slices are self-contained

in the sense that, given the availability of the active sequence and picture parameter sets, their syntax

elements can be parsed from the bitstream and the values of the samples in the area of the picture that

the slice represents can be correctly decoded without the use of any data from other slices in the same

picture. Tiles are self-contained and independently decodable rectangular regions of the picture. The main

purpose of tiles is to enable the use of parallel processing architectures for encoding and decoding.

Multiple tiles may share header information by being contained in the same slice. Alternatively, a single

tile may contain multiple group of CTUs as shown in Figure 3.12. (B).

48

3.2.6. Intrapicture Prediction:

Prediction operates according to the TB size, and previously decoded boundary samples from spatially

neighboring TBs are used to form the prediction signal [11]. The possible prediction directions are shown

in Figure 3.13. Directional prediction with 33 different directional orientations is defined for (square) TB

sizes from 4×4 up to 32×32. Alternatively, planar prediction (assuming an amplitude surface with a

horizontal and vertical slope derived from the boundaries) and DC prediction (a flat surface with a value

matching the mean value of the boundary samples) can also be used. For chroma, the horizontal, vertical,

planar, and DC prediction modes can be explicitly signaled, or the chroma prediction mode can be

indicated to be the same as the luma prediction mode (and, as a special case to avoid redundant signaling,

when one of the first four choices is indicated and is the same as the luma prediction mode, the

Intra_Angular mode is applied instead) [39]. The number of supported prediction modes varies based on

the PU size (see Table 3.1) [44]. From an encoding perspective, the increased number of prediction

modes will require good mode selection heuristics to maintain a reasonable search complexity (see Table

3.2.) [45].

3.2.7. Interpicture Prediction:

Compared to intrapicture-predicted CBs, HEVC supports more PB partition shapes for interpicture-

predicted CBs [11]. The partitioning modes of PART_2N×2N, PART_2N×N, and PART_N×2N indicate

the cases when the CB is not split, split into two equal-size PBs horizontally, and split into two equal-size

PBs vertically, respectively. Figure 3.14. shows Intra and Inter frame prediction modes for HEVC.

3.2.8. Motion vector signalling:

Advanced motion vector prediction (AMVP) is used, including derivation of several most probable

candidates based on data from adjacent PBs and the reference picture [11]. A merge mode for MV coding

can also be used, allowing the inheritance of MVs from temporally or spatially neighbouring PBs.

Moreover, compared to H.264/MPEG-4 AVC, improved skipped and direct motion inferences are also

specified.

49

Figure 3.12. Subdivision of a picture (A) Slices, (B) Tiles and (C) Illustration of wave front parallel

processing [11]

Figure 3.13. Modes and directional orientations for intrapicture prediction [11]

PU Size Intraprediction Modes Number of Intra

Prediction Modes

6464 0−2, 34 4

3232 0−34 35

1616 0−34 35

88 0−34 35

44 0−16, 34 18

Table 3.1. Luma intra prediction modes supported by different PU sizes [46]

50

Size of PB Number of PBs in

a 6464 CU

Number of modes to

be tested in each PB

Total number of modes

to be tested at this level

3232 4 35 140

1616 16 35 560

88 64 35 2240

44 256 18 4608

Total 7548

Table 3.2. Total number of modes to be tested [47]

Figure 3.14. Intra and Inter frame prediction modes for HEVC [48]

3.2.9. Motion compensation:

Like MPEG-4/AVC, HEVC specifies motion vectors in 1/4-pel, but uses an 8-tap filter for luma (all

positions), and a 4-tap 1/8-pel filter for chroma as shown in Figure 3.15. Because of the 8-tap filter, any

given N×M sized block requires extra pixels on all sides (3 left/above, 4 right and below) to provide the

filter with the data it needs. With small blocks like an 8×4, (8+7) × (4+7) = 15×11 pixels are needed. The

HEVC standard limits the smallest block to be uni-directional and 4×4 is not supported since more small

blocks require more memory read, thus increasing more memory access, more time and more power.

The HEVC standard also supports weighted prediction for both uni- and bi-directional PUs. However, the

weights are always explicitly transmitted in the slice header; there is no implicit weighted prediction like in

MPEG-4/AVC. Quarter-sample precision is used for the motion vectors. 7-tap (weights: -1, 4, -10, 58, 17,

-5, 1) or 8-tap (weights: -1, 4, -11, 40, 40, -11, 4, 1) filters are used for interpolation of fractional-sample

positions. The 8-tap filter is applied for half sample positions and the 7-tap filter is applied for quarter

51

sample positions. Similar to H.264/MPEG-4 AVC, multiple reference pictures are used as shown in Figure

2.10. For each PB, either one or two motion vectors can be transmitted, resulting either in unipredictive

or bipredictive coding, respectively. A scaling and offset operation can be applied to the prediction

signal/signals in a manner known as weighted prediction.

Figure 3.15. Integer and Fractional sample position for luma interpolation [11]

3.2.10. Transform, Scaling and Quantization

HEVC uses transform coding of the prediction error residual in a similar manner as in prior

standards [11]. The supported transform block sizes are 4×4, 8×8, 16×16, and 32×32. Smaller size

transform matrices are embedded in larger size transform matrices. This simplifies implementation, since

a 32×32 matrix, can do 4×4, 8×8, 16×16, and 32×32 transform [49]. Transform matrices 4×4 through

32×32 INTDCTs (embedded) are shown. Transform matrices for each size transform are as follows.

nS = 4

{64, 64, 64, 64}

{83, 36,-36,-83}

{64,-64,-64, 64}

{36,-83, 83,-36}

nS = 8

{64, 64, 64, 64, 64, 64, 64, 64}

{89, 75, 50, 18,-18,-50,-75,-89}

{83, 36,-36,-83,-83,-36, 36, 83}

52

{75,-18,-89,-50, 50, 89, 18,-75}

{64,-64,-64, 64, 64,-64,-64, 64}

{50,-89, 18, 75,-75,-18, 89,-50}

{36,-83, 83,-36,-36, 83,-83, 36}

{18,-50, 75,-89, 89,-75, 50,-18}

nS = 16

{64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64}

{90 87 80 70 57 43 25 9 -9-25-43-57-70-80-87-90}

{89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 89}

{87 57 9-43-80-90-70-25 25 70 90 80 43 -9-57-87}

{83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83}

{80 9-70-87-25 57 90 43-43-90-57 25 87 70 -9-80}

{75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75}

{70-43-87 9 90 25-80-57 57 80-25-90 -9 87 43-70}

{64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64}

{57-80-25 90 -9-87 43 70-70-43 87 9-90 25 80-57}

{50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50}

{43-90 57 25-87 70 9-80 80 -9-70 87-25-57 90-43}

{36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36}

{25-70 90-80 43 9-57 87-87 57 -9-43 80-90 70-25}

{18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18}

{ 9-25 43-57 70-80 87-90 90-87 80-70 57-43 25 -9}

nS = 32

{64 64}

{90 90 88 85 82 78 73 67 61 54 46 38 31 22 13 4 -4-13-22-31-38-46-54-61-67-73-78-82-85-88-90-90}

{90 87 80 70 57 43 25 9 -9-25-43-57-70-80-87-90-90-87-80-70-57-43-25 -9 9 25 43 57 70 80 87 90}

{90 82 67 46 22 -4-31-54-73-85-90-88-78-61-38-13 13 38 61 78 88 90 85 73 54 31 4-22-46-67-82-90}

{89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 89 89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 89}

{88 67 31-13-54-82-90-78-46 -4 38 73 90 85 61 22-22-61-85-90-73-38 4 46 78 90 82 54 13-31-67-88}

{87 57 9-43-80-90-70-25 25 70 90 80 43 -9-57-87-87-57 -9 43 80 90 70 25-25-70-90-80-43 9 57 87}

53

{85 46-13-67-90-73-22 38 82 88 54 -4-61-90-78-31 31 78 90 61 4-54-88-82-38 22 73 90 67 13-46-85}

{83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83}

{82 22-54-90-61 13 78 85 31-46-90-67 4 73 88 38-38-88-73 -4 67 90 46-31-85-78-13 61 90 54-22-82}

{80 9-70-87-25 57 90 43-43-90-57 25 87 70 -9-80-80 -9 70 87 25-57-90-43 43 90 57-25-87-70 9 80}

{78 -4-82-73 13 85 67-22-88-61 31 90 54-38-90-46 46 90 38-54-90-31 61 88 22-67-85-13 73 82 4-78}

{75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75 75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75}

{73-31-90-22 78 67-38-90-13 82 61-46-88 -4 85 54-54-85 4 88 46-61-82 13 90 38-67-78 22 90 31-73}

{70-43-87 9 90 25-80-57 57 80-25-90 -9 87 43-70-70 43 87 -9-90-25 80 57-57-80 25 90 9-87-43 70}

{67-54-78 38 85-22-90 4 90 13-88-31 82 46-73-61 61 73-46-82 31 88-13-90 -4 90 22-85-38 78 54-67}

{64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64}

{61-73-46 82 31-88-13 90 -4-90 22 85-38-78 54 67-67-54 78 38-85-22 90 4-90 13 88-31-82 46 73-61}

{57-80-25 90 -9-87 43 70-70-43 87 9-90 25 80-57-57 80 25-90 9 87-43-70 70 43-87 -9 90-25-80 57}

{54-85 -4 88-46-61 82 13-90 38 67-78-22 90-31-73 73 31-90 22 78-67-38 90-13-82 61 46-88 4 85-54}

{50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50 50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50}

{46-90 38 54-90 31 61-88 22 67-85 13 73-82 4 78-78 -4 82-73-13 85-67-22 88-61-31 90-54-38 90-46}

{43-90 57 25-87 70 9-80 80 -9-70 87-25-57 90-43-43 90-57-25 87-70 -9 80-80 9 70-87 25 57-90 43}

{38-88 73 -4-67 90-46-31 85-78 13 61-90 54 22-82 82-22-54 90-61-13 78-85 31 46-90 67 4-73 88-38}

{36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36}

{31-78 90-61 4 54-88 82-38-22 73-90 67-13-46 85-85 46 13-67 90-73 22 38-82 88-54 -4 61-90 78-31}

{25-70 90-80 43 9-57 87-87 57 -9-43 80-90 70-25-25 70-90 80-43 -9 57-87 87-57 9 43-80 90-70 25}

{22-61 85-90 73-38 -4 46-78 90-82 54-13-31 67-88 88-67 31 13-54 82-90 78-46 4 38-73 90-85 61-22}

{18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18 18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18}

{13-38 61-78 88-90 85-73 54-31 4 22-46 67-82 90-90 82-67 46-22 -4 31-54 73-85 90-88 78-61 38-13}

{ 9-25 43-57 70-80 87-90 90-87 80-70 57-43 25 -9 -9 25-43 57-70 80-87 90-90 87-80 70-57 43-25 9}

{ 4-13 22-31 38-46 54-61 67-73 78-82 85-88 90-90 90-90 88-85 82-78 73-67 61-54 46-38 31-22 13 -4}

Two-dimensional transforms are computed by applying 1-D transforms in the horizontal and vertical

directions. The elements of the core transform matrices were derived by approximating scaled DCT basis

functions. For the transform block size of 4×4, an alternative integer transform derived from a DST is

applied to the luma residual blocks for intrapicture prediction modes. Since the rows of the transform

matrix are close approximations of values of uniformly scaled basis functions of the orthonormal DCT, the

prescaling operation that is incorporated in the dequantization of H.264/MPEG-4 AVC is not needed in

54

HEVC. For quantization, HEVC uses essentially the same uniform reconstruction quantizer (URQ)

scheme controlled by a quantization parameter (QP) as in H.264/MPEG-4 AVC. The range of the QP

values is defined from 0 to 51, and an increase by 6 doubles the quantization step size such that the

mapping of QP values to step sizes is approximately logarithmic. Quantization scaling matrices are also

supported.

3.2.11. Entropy coding

Context adaptive binary arithmetic coding (CABAC) is used for entropy coding [11]. This is similar to the

CABAC scheme in H.264/MPEG-4 AVC [30] but has undergone several improvements to improve its

throughput speed (especially for parallel-processing architectures) and its compression performance, and

to reduce its context memory requirements.

3.2.12. In-loop deblocking filtering

A deblocking filter similar to the one used in H.264/MPEG-4 AVC is operated within the interpicture

prediction loop. However, the design is simplified in regard to its decision-making and filtering processes

and is made more friendly to parallel processing.

3.2.13. Sample adaptive offset (SAO)

Sample adaptive offset is applied to the reconstruction signal after the deblocking filter by using the offsets

given in each CTB [50]. The encoder makes a decision on whether or not the SAO is applied for current

slice. If SAO is enabled for current slice, the current slice allows each CTB select one of five SAO types

as shown in Table 3.3. The concept of SAO is to classify pixels into categories and reduces the distortion

by adding an offset to pixels of each category. SAO operation includes Edge Offset (EO) which uses edge

properties for pixel classification as SAO type 1-4 and Band Offset (BO) which uses pixel intensity for

pixel classification as SAO type 5. Each CTB will have its own SAO parameters include

sao_merge_left_flag, sao_merge_up_flag, SAO type and four offsets. If sao_merge_left_flag is equal to

1 current CTB will reuse the SAO type and offsets of left CTB, otherwise current CTB will not reuse SAO

type and offsets of left CTB. If sao_merge_up_flag is equal to 1, current CTB will reuse SAO type and

offsets of upper CTB, otherwise current CTB will not reuse SAO type and offsets of upper CTB.

55

SAO type Sample adaptive offset type to be

used

Number of

categories

0 None 0

1 1-D 0-degree pattern edge offset 4

2 1-D 90-degree pattern edge offset 4

3 1-D 135-degree pattern edge offset 4

4 1-D 45-degree pattern edge offset 4

5 Band offset 4

Table 3.3. Specification of SAO type [50]

3.2.14. Special “Transform Skip” Coding Modes

For certain types of content (especially screen content with graphics and text elements) more efficient

compression is sometimes achieved when the transform is skipped (i.e. the residual is directly quantized

and entropy coded) [37]. Furthermore, it is also possible to skip the quantization and loop filtering

processes to enable lossless encoding of CUs.

3.3. Encoder and Decoder in HEVC

A number of design aspects new to the HEVC standard improve flexibility for operation over a variety of

applications and network environments and improve robustness to data losses [11]. However, the high-

level syntax architecture used in the H.264/MPEG-4 AVC standard [30] has generally been retained,

including the following features.

1. Parameter set structure: Parameter sets contain information that can be shared for the decoding of

several regions of the decoded video [11]. The parameter set structure provides a robust mechanism for

conveying data that are essential to the decoding process. The concepts of sequence and picture

parameter sets from H.264/MPEG-4 AVC are augmented by a new video parameter set (VPS) structure.

2. NAL unit syntax structure: Each syntax structure is placed into a logical data packet called a network

abstraction layer (NAL) unit [11]. Using the content of a two-byte NAL unit header, it is possible to readily

identify the purpose of the associated payload data.

56

3. Slices: A slice is a data structure that can be decoded independently from other slices of the same

picture, in terms of entropy coding, signal prediction, and residual signal reconstruction [11]. A slice can

either be an entire picture or a region of a picture. One of the main purposes of slices is resynchronization

in the event of data losses. In the case of packetized transmission, the maximum number of payload bits

within a slice is typically restricted, and the number of CTUs in the slice is often varied to minimize the

packetization overhead while keeping the size of each packet within this bound.

4. Supplemental enhancement information (SEI) and video usability information (VUI) metadata: The

syntax includes support for various types of metadata known as SEI and VUI [11] [51]. Such data provide

information about the timing of the video pictures, the proper interpretation of the color space used in the

video signal, 3-D stereoscopic frame packing information, other display hint information, and so on.

3.4. Parallel Decoding Syntax and Modified Slice Structuring

Finally, four new features are introduced in the HEVC standard to enhance the parallel processing

capability or modify the structuring of slice data for packetization purposes. Each of them may have

benefits in particular application contexts, and it is generally up to the implementer of an encoder or

decoder to determine whether and how to take advantage of these features.

1. Tiles: The option to partition a picture into rectangular regions called tiles has been specified [11]. The

main purpose of tiles is to increase the capability for parallel processing rather than provide error

resilience. Tiles are independently decodable regions of a picture that are encoded with some shared

header information. Tiles can additionally be used for the purpose of spatial random access to local

regions of video pictures. A typical tile configuration of a picture consists of segmenting the picture into

rectangular regions with approximately equal numbers of CTUs in each tile. Tiles provide parallelism at a

more coarse level of granularity (picture/ subpicture), and no sophisticated synchronization of threads is

necessary for their use.

2. Wavefront parallel processing: When wavefront parallel processing (WPP) is enabled, a slice is divided

into rows of CTUs [11] [50]. The first row is processed in an ordinary way, the second row can begin to

be processed after only two CTUs have been processed in the first row, and the third row can begin to be

processed after only two CTUs have been processed in the second row, and so on. The context models

of the entropy coder in each row are inferred from those in the preceding row with a two-CTU processing

57

lag. WPP provides a form of processing parallelism at a rather fine level of granularity, i.e., within a slice.

WPP may often provide better compression performance than tiles (and avoid some visual artifacts that

may be induced by using tiles). Figure 3.12 (C) illustrates wavefront parallel processing.

3. Dependent slice segments: A structure called a dependent slice segment allows data associated with

a particular wavefront entry point or tile to be carried in a separate NAL unit [11], and thus potentially

makes that data available to a system for fragmented packetization with lower latency than if it were all

coded together in one slice. A dependent slice segment for a wavefront entry point can only be decoded

after at least part of the decoding process of another slice segment has been performed. Dependent slice

segments are mainly useful in low-delay encoding, where other parallel tools might penalize compression

performance.

3.5. Summary

This chapter outlines the coding tools of High Efficiency Video Coding (HEVC). Having had a good

understanding of H.264 and HEVC, next chapter describes the coding tools of next generation video

codecs, Versatile Video Coding (VVC) and Essential Video Coding (EVC).

58

 VVC and EVC Codec

Overview

4.1. Introduction of versatile video coding

VVC is a coding standard which was out on July 6th, 2020 by the Joint Video Experts Team (JVET) of ITU-

T and ISO-IEC. VVC is shown to provide an additional bitrate saving of about 35% on top of HEVC for

equivalent perceptual quality with support for lossless and subjective lossless compression. Versatile

video coding uses the subset of the tools in Joint Exploration Model (JEM). VVC supports up to 8K

resolution, 360o videos and High Dynamic Range (HDR) video formats.

4.1.1. Coding Structure

The QTBT (Quad Tree – Binary Tree) structure comes to deal with those higher resolutions by enabling

more flexible partition shapes. Instead of the hierarchical quadtree structure, employed by HEVC, that

splits a Coding Tree Unit (CTU) into three units: namely, Coding Unit (CU), Prediction Unit (PU) and

Transform Unit (TU), the QTBT structure as shown in Figure 4.3. uses only one processing unit called

CU. This latter may have either a square or rectangular shape. The QTBT schemas starts with a quadtree

partition that divides a CTU into square shapes denoted as leaf nodes. The quadtree leaf nodes can be

further partitioned by symmetric horizontal splitting or symmetric vertical splitting, which represent the

binary tree structure. The decision of intra prediction mode is made on the CU level since no further

splitting of PU or TU is involved. To accommodate the increased number of directional intra modes, an

intra mode coding method with 6 MPMs is used as shown in Figure 4.1.

Figure 4.1. Quadtree partition [72]

59

Figure 4.2. Binary Tree Partition [72]

Figure 4.3. Block Partitioning of QTBT [72]

4.1.2. Intra Prediction

Each sub partition is processed in a similar way as any intra predicted block in VVC: first, a prediction and

a residual signal is generated. Then, the residual is transformed, quantized and entropy coded and finally

the non-zero coefficients are sent to the decoder. After each sub partition has been processed, its

reconstructed samples can be used to calculate the prediction signal of the next sub partition, which will

repeat the same steps until all sub partitions have been coded.

All sub partitions within a block using ISP utilize the same intra mode, which is hence signaled

only once for the whole block. Besides, the intra mode will be selected from the most probable modes

(MPM) list, which implies that the MPM flag is not sent to the decoder (it is inferred to be 1). Furthermore,

the MPM list has been modified for the ISP case to exclude the DC mode and to prioritize horizontal intra

modes (angular modes lower than the diagonal mode) if the split is horizontal and vertical intra modes

(angular mode greater than or equal to the diagonal mode) if it is vertical. Figure 4.4. shows an intra

prediction modes of VVC.

60

Figure 4.4. Intra Prediction modes of VVC [72]

4.1.3. Inter Prediction

In conventional inter prediction mode, only translational motion model is applied. However, zoom-in/out

and rotation cannot be well fit by the translational model utilized in the previous video coding standards.

Therefore, the affine motion model, which is capable of representing non-translational motion. The current

CU is divided into 4×4 subblocks, and the MV of each subblock is calculated. The luma MV precision is

rounded to 1/16-sample precision.

When the AMVP mode is selected, an affine_flag is signalled to indicate whether affine prediction

is used. If the affine prediction is applied, the syntax of inter_dir, ref_idx, mvp_index, and MVDs of the two

CPs are signalled. In this case, the two CPMVs of the current CU are obtained by applying affine motion

estimation. An affine MVP pair candidate list containing two affine MVP pairs is generated. The signalled

mvp_index is used to indicate which one of two MVP pairs is selected for predicting the two CPMVs and

generating the two MVDs. The MVP pair is generated by two affine candidates. Similar to the affine merge

mode, one is the spatial inherited affine candidate, and the other is the corner derived affine candidate. If

the neighboring CUs are coded with affine mode, the spatial inherited affine candidates can be generated.

The affine motion model of the neighboring affine coded block is used to generate the MVP pair.

4.1.4. Transform and Quantization

In the current version of VVC, the Multiple Transform Selection (MTS) scheme uses five different

transforms pairs (Horizontal Transform, Vertical Transform) comprising the Discrete Cosine Transform

Type II (DCT-II), the Discrete Sine Transform Type VII (DST-VII) and the Discrete Cosine Transform Type

VIII (DCT-VIII). Particularly, the pairs can be (DCT-II, DCT-II), (DST-VII, DST-VII), (DST-VII, DCTVIII),

61

(DCT-VIII, DST-VII) and (DCT-VIII, DCT-VIII) as shown in Table 4.1. At the decoder side, the one that is

used is indicated by a syntax element selected by the encoder. In the ISP case, however, the transform

pair is implicitly decided according to the intra mode and the original block dimensions. These

combinations have been extracted with a slight change consisting of using only the DCT-II if the transform

has a length smaller than 4 or greater than 16. This restriction has been added in order to reduce the

hardware implementation complexity of the algorithm. Logically, if a sub partition has a width or a height

equal to 1, the transform is only applied on the dimension with a length greater than 1.

Table 4.1. VVC Intra/Inter Transform code selection [72]

4.1.5. Coefficient Coding

The coefficients of the residual signals of the sub partitions are entropy-coded in the same way as regular

blocks in VVC with the following modifications:

• The context of the Coded Block Flag (CBF) of each sub partition is the value of the CBF of the

previously coded sub partition (in the case of the first sub partition a default value of 0 is assumed).

• At least one CBF of a block using ISP is assumed to be non-zero. Therefore, if a block contains

n sub partitions and the first n − 1 have a zero CBF, then the n-th CBF is inferred to be zero and

hence it is not explicitly signaled.

• The Last Position syntax element only requires one coordinate to be sent if the sub partition is a

line.

• Let w and h be the width and height of each sub partition respectively. Then, if w ≥ 8 and h ≤ 2,

the coefficient sub-blocks used for the significance map [9] will have a 16 h × h shape.

Analogously, if w ≤ 2 and h ≥ 8, coefficient sub-blocks will have a w × 16 w shape. In all other

cases, they will have the same 4 × 4 shape used in regular intra-predicted blocks. As a result, all

coefficient sub-blocks will have 16 samples.

62

4.1.6. Entropy Coding

In the entropy coder, the context-based adaptive binary arithmetic coding (CABAC) with multi-hypothesis

probability estimation and context-dependent updating speed is applied. The CABAC core engine is the

same as that in VTM 4.0. Each context variable has two probabilities, P1 and P2. The average of P1 and

P2 is used as the final probability for the arithmetic coder engine. The P1 and P2 are updated with different

speeds, where the faster updating speed is designed for faster convergence of probability and the slower

updating speed is designed for higher robustness of probability. However, in VTM 4.0 CABAC, a 9-bits∗64-

columns∗ 512-rows look-up-table (LUT) is used for deriving rangeOne and rangeZero.

4.1.7. In-Loop Filtering

1. Deblocking Filter – The deblocking filter is similar to that in HEVC with two major extensions added.

First, in order to handle the blocky artifacts for large blocks, length-adaptive filtering with three new long

tap filters for HEVC strong filtering cases is introduced. This is due to the observation that HEVC filter

cannot effectively reduce blocky artifacts at large block boundaries in high resolution video (e.g., UHD).

Second, the number of samples to be read or modified is limited to support parallel deblocking for 4×N or

N×4 blocks.

 2. Sample Adaptive offset – Sample adaptive offset (SAO) is adopted in HEVC. SAO classifies samples

of one CTU into different groups and applies an offset to samples of the same group to reduce sample

distortions. In HEVC, SAO supports four classes of classification in edge offset (EO) and 32 different sets

of selected bands in band offset (BO). In this paper, two SAO modifications are added. One is to add

three EO classes to improve the sample classification, as shown in Fig. 15, and the other is to remove the

constraint related to the offset sign of EO. In HEVC, only smooth filtering is allowed for EO because of the

offset sign constraint. In this paper, the offset signs of EO are explicitly coded to support both smoothing

and sharpening. Encoder is allowed to choose between them.

4.2. Introduction to Essential video coding (EVC)

EVC is launched by MPEG and is due mid-2020. The goal of EVC is to provide the same compression

efficiency as HEVC but with clear licensing conditions like royalty-free baseline profiling and a managed

IPR in the main profile and consist of individually switchable enhancements. EVC also supports up to 8K

resolution videos.

63

4.2.1. Coding Structure

A coding tree unit (CTU) is the basic unit of the proposed coding scheme. Maximal CTU size is 128x128.

A CTU can be further partitioned recursively by binary and triple tree (BTT) structure. For instance, if width

and height of a block are the same it can be represented as a 1:1 ratio CU or a square CU, and if the

width is equal to 64 and the height is equal to 16 it can be represented as a 1:4 ratio CU. CU partitioning

is conducted based on the allowed CU shapes and their allowed maximum and minimum sizes. In order

to support 64x64 pipeline the ternary tree split and 1:4 or 4:1 ratio CU are disallowed when a CU size is

greater than 64x64.

Figure 4.5. EVC Encoder Block Diagram [67]

The proposed structure has two CU split modes i.e. the binary split and the triple split mode, and

each split mode has two directions, vertical and horizontal. Thus, a CU can be partitioned by four different

split modes: BI_VER_SPLIT, BI_HOR_SPLIT, TRI_VER_SPLIT, and TRI_HOR_SPLIT. These split

modes and the QTBT coding order are shown in the below figures.

64

Figure 4.6. Bi/Tri Split modes

Figure 4.7. QT/TT/BT split coding order

4.2.2. Intra Prediction

For the Baseline configuration 5 directional prediction modes are employed: DC, horizontal (H), vertical

(V), diagonal left (DL), diagonal right (DR). A codeword for prediction mode of the current block is

adaptively assigned by using a mapping table between symbol and prediction mode which is selected

based on the prediction modes of neighbouring upper and left blocks. To exploit spatial correlation

efficiently based on flexible coding structure, a total of 33 intra prediction modes for luma component and

5 modes for chroma component are applied. DC, Bi-linear, Plane, DM modes, and 30 angular modes are

applied, with straightforward extension for flexible block size.

Intra Block Copy (IBC) is another mode that is used in order to address requirements for Screen Content

material. Technical aspects of the proposed IBC implementation are summarized follows

• IBC mode (IBC flag) is signaled in a CU level. The IBC mode is considered as a prediction mode

other than intra and inter prediction modes. There is no need to include current picture as one of

the reference pictures in the reference picture list 0. The motion vector of IBC is derived in integer

pixel.

Split Unit BT

TT

QT

L2R
R2L

65

• The maximum block size for IBC coded block is signaled in SPS and up to 64 luma samples for

either size.

• The coding of block vector (BV) is straightforward without using prediction. The coding engine

reuses the one used in mvd coding. The BV considered is in integer resolution.

The whole reference block for IBC mode should be already reconstructed. In addition, some search range

constraints are imposed such that the allowed search range for IBC mode is the reconstructed part of the

current CTU plus some areas of the immediate left CTU (given the CTU size is 128x128). According to

the location of the current block in the current CTU, the available reference areas change in a way that

when a 64x64 region starts encoding/decoding, the whole region is considered as already coded.

Therefore, the collocated 64x64 region in the left CTU can no longer be used for IBC reference.

Figure 4.8. Intra-Block Copy (with a vertical split at 128x128) [67]

4.2.3. Inter Prediction

The inter prediction for Baseline configuration exploits three neighbouring motion vectors and a motion

vector of temporally co-located blocks. After choosing one of the candidate motion vectors as a predictor,

the index of the predictor is coded. Then the difference between the motion vector for the current block

and the predictor may be coded based on encoder side decision. If the difference between the current

block and the predictor is relatively small, the motion vector difference and a block residue are not coded,

which is called the skip mode. Otherwise, the motion vector difference and the block residue are coded

and signalled in the bitstream. The bi-directional prediction is a linear combination of two motion

compensated blocks that involve two motion vectors, a forward and backward motion vector.

Motion model of the video content for each currently coded block is described conventionally

through two parameters: reference index (refIdx) indicating the picture stored in decoded picture buffer

(DPB) utilized as a reference for the current block, and the motion vector (MV) – amount of displacement

66

in x and y directions between current block and the spatial position of the reference block in reference

picture indicated by refIdx. Each current block can be predicted either from a single reference (uni-

direction) or from two references in so called bi-directional prediction mode.

MV can be signaled either in merge or AMVP mode. Both signaling mechanism utilizes motion

vector prediction (MVP) list (of different size) constructed from motion information available from spatial

or temporal neighboring of the currently coded blocks. In the merge mode, an index that specify a certain

entry in the MVP list is signaled and fully describe motion information for the current block.

Following are the multiple inter prediction modes that are used –

1. Merge/Skip Modes

2. Adaptive Motion Vector Resolution

3. Merge with Motion Vector Difference

4. Affine Prediction

5. Decoder-side Motion Vector Refinement

6. History-based Motion Vector Prediction

4.2.4. Transform and Quantization

Transforms (i.e., DCT2) are applied to a residual block between an original block and the corresponding

prediction block, as a conventional hybrid video codec does. Since transforms are applied to coding

blocks, the transform size is equal to the coding block size, i.e. from 2x2 to 64x64. After the transform is

conducted, scalar quantization is applied to the transformed coefficients. The range of the quantization

parameter (QP) is from 0 to 51 and a scaling factor (SF) corresponding to each QP is defined by a look-

up table.

In order to support 64x64 pipeline, the maximum allowed transform size is set to 64. If length of

a side of CU is greater than the maximum transform size, the side is automatically split into two partitions.

For intra coded block, a flag is used to signal to the decoder whether ATS applied or not. If encoder selects

using ATS in a CU as core transform, two more flags are signaled to decoder to indicate which type is

used, respectively for the horizontal and vertical directions. The value 0 indicate DST-VII is used and

value 1 indicate DCT-VIII is used.

For an inter-predicted CU that have residuals, it is signaled to indicate whether the whole residual

block or a sub-part of the residual block should be decoded. When only a sub-part of the residual block

67

coded, the part of the residual block is coded with inferred transform type and the other part of the residual

block is zeroed out. The sub-part position information and corresponding transform type are illustrated.

The sub-part that contains residual information can be half or one quarter size of the current CU. ATS is

allowed for CU with width and height both no larger than 64. The transform type is derived based on the

position of the sub-block, instead of signaling the transform type as done for intra coded CU. For example,

the horizontal and vertical transforms position 0 sub-part is DCT-8 and DST-7, respectively. When at least

one side of the residual TU is greater than 32, transform is set as DCT-2.

4.2.5. Coefficient Coding

Transform coefficients of coded block after quantization are scanned in a predefined scan pattern and

entropy coded. In the baseline configuration of the ETM, a run-length based coefficient coding method is

used. Visualization of propose method is given. The table below gives an example of coded symbols for

a chunk of transform coefficients.

Table 4.2. Coefficient Scan Method [67]

Position 0 1 2 3 4 5 6 7 8 9

Coeffs stream 3 0 5 -1 0 -2 0 0 0 0

Output stream 0,2,0,0 1,4,0,0 0,0,1,0 1,1,1,0

Position 10 11 12 13 14 15 16 17 18 19

Coeffs stream 0 0 1 0 0 1 0 0 0 -1

Output stream 6,0,0,0 2,0,0,0 3,0,1,1

Table 4.3. Coded Symbols for the coefficients [67]

3 0

5 0

-2 0

0 0

-1 0

0 0

1 0

0 0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 -1 0

0 0 0

68

To further employ statistical properties of transform coefficients a bit-plane based coefficient coding

method, so called Advanced Coefficient Coding (ADCC), is utilized in the Main Profile of EVC instead of

the run-length coding method currently used.

ADCC method utilizes the following design elements:

1. Fixed zig-zag scan pattern.

2. Signalling coordinates of the last-nonzero transform coefficient in the scan order.

3. Parsing transform coefficients in chunks of 16.

4. Signalling coefficients within each processing chunk as a sequence of significance and levels

flags, sign flag and remaining levels.

4.2.6. Loop Filter

Most block-based video coding schemes introduce noticeable blocking artifacts. A loop filter based on

H.263 was employed to increase objective and subjective image quality for Baseline configuration.

Following the deblocking Adaptive Loop filter (ALF) with block-based filter adaption is applied. For the

luma component, one among 25 filters is selected through the classification process for each 4×4 block,

based on local statistics estimates, such as gradient and directionality. To benefit from symmetrical

properties of filters, utilized ALF employs filter coefficient transformation process.

The following loop filters are used in Essential Video Coding –

1. Deblocking Filter

2. Adaptive Loop Filter

3. Hadamard Transform Domain Filter

4.2.7. Entropy Coding

The binary arithmetic coding scheme in JPEG is applied as the entropy coding engine of the proposed

codec. After a binarization process of the given symbol, an arithmetic coding engine encodes each binary

value with the corresponding context that stores the occurrence probability of a given value. After each

binary value is encoded, the probability is updated by using a look-up table and the binary value of symbol

is stored in the corresponding context. To code the transformed and quantized coefficient values, run/level

symbols are generated after scanning with a zig-zag pattern. Each run or level symbol is binarized by

unary coding and the binary value is coded with the corresponding run or level contexts. The sign value

69

and the last symbol indicate whether the level is the last one in the block should be followed to each level.

The sign value is coded with fixed length coding and the last symbol is coded with the arithmetic engine.

Some entropy coding technical details are summarized below:

• 9 bits are used for storing current probability of the LPS;

• 14 bits are used for representing probability range.

• 10 bits are used for representing context model initialization values.

4.3. Summary

This chapter outlines the coding tools of Versatile Video Coding (VVC) and Essential Video Coding (EVC).

Having had a good understanding of H.264, HEVC, VVC and EVC codecs, the next chapter describes

one of the multimedia applications, Transcoding, and its functionalities in detail.

70

 Transcoding

5.1. Introduction to Video Transcoding

The Video Transcoding is a process of altering a video sequence from one format to another.

Here, the format conversion means in terms of “range of operations” [52] [53]. That is conversion from

one compressed format (extension) to another, bitrate change, changing the header information. Other

than these basic format changes, a transcoder is used for many other applications, like framerate change,

spatial resolution change, statistical multiplexing, adding information like adding company logo, digital

watermark or to enhance error resilience [54]. Some of these applications are shown in Figure 5.1.

Figure 5.1. Transcoding and communication across various multimedia devices

5.2. Transcoding Architectures

There are different standard transcoding architectures for changing bit rate, spatial resolution, format

conversion [52] [55]. They are

1. Open Loop Transcoding Architecture

2. Closed Loop Transcoding Architecture

3. Cascaded Pixel Domain Architecture

4. Motion Compensation in the DCT domain.

Open loop system is considered very simple since we do not store the frame memory and we do not

need IDCT to achieve reduced rate. For achieving better coding efficiency and improved quality, re-

quantization approach is used followed by the variable-length codes as shown in Figure 5.2. However, in

the open-loop architectures, we see a drift effect. Drift effect is the loss of high frequency information in

the bit-stream.

71

Figure 5.2. Open Loop, partial decoding to DCT coefficients and further re-quantizing [52]

In general, Figure 5.3. shows a closed-loop system. This system aims at removing the mismatch between

residual and predictive components by approximating the cascaded pixel decoder-encoder architecture.

This simplified scheme requires only one reconstruction loop with one DCT and one IDCT. With the

exception of this slight inaccuracy, this architecture is mathematically equivalent to a cascaded decoder-

encoder approach.

Figure 5.3. Closed-loop, drift compensation for re-quantized data [52]

Figure 5.4. shows cascaded decoder-encoder architecture. The main difference in the structure

of cascaded decoder encoder architecture and closed-loop architecture is that the reconstruction of the

bitstream in the cascaded pixel-domain architecture is done in the spatial domain. Hence it requires two

reconstruction loops with two IDCTs and one DCT.

Figure 5.4. Cascade decoder-encoder architecture [52]

72

The closed-loop architecture described in the section 5.3. provides an effective transcoding

structure in which the MB reconstruction is performed in the DCT domain. However, since the memory

stores spatial domain pixels, the additional DCT/IDCT is still needed. This can be avoided though by

utilizing the compressed-domain methods for MC proposed by Chang and Messerschmidt. In this way, it

is possible to reconstruct reference frames without decoding to the spatial domain; several architectures

describing this reconstruction process in the compressed domain have been proposed. It was found that

decoding completely in the compressed-domain could yield equivalent quality to spatial-domain decoding.

However, this was achieved with floating-point matrix multiplication and proved to be quite costly.

Different transcoding architectures for spatial resolution reduction, temporal resolution reduction

like Motion Vector Mapping, DCT-Domain Down Conversion, Conversion of MB Type, Motion Vector re-

estimation, Residual re-estimation are discussed in the coming sections.

5.3. Choice of Transcoding Architecture

The cascaded pixel domain transcoding architecture gives optimum results in terms of complexity, quality

and cost [52]. The cascaded pixel domain transcoder offers greater flexibility in the sense that it can be

used for bit rate transcoding, spatial/temporal resolution downscaling and for other coding parameter

changes as well. Since in the case of standards format transcoding, it is required to take into consideration

the different coding characteristics of H.264, HEVC and VVC, hence the flexibility of conversion between

the codec parameters is a key issue.

Figure 5.5. Frame based comparison of open loop, closed loop and cascaded pixel domain architecture

It is evident from Figure 5.5. that the open-loop architecture suffers from severe drift, and the

quality of the simplified closed-loop architecture is very close to that of the cascaded pixel-domain

architecture. Cascaded pixel-domain scheme is considered as ideal transcoder since it comprises of one

73

full decoder and one full encoder. Another benefit of this approach is that decoding is usually fast since it

does not involve motion estimation and predictions can be made for frames based on variable length

decoding (VLD) of motion vectors from the encoded bitstream. The quality of transcoded video in turn is

dependent upon the input to encoder stage. So better the input to encoding stage of transcoder, better

the end video quality. Figure 5.6. denotes a general block diagram of the proposed cascaded-pixel-domain

approach

Figure 5.6. General block diagram of the proposed transcoding architecture (cascaded-pixel-domain)

5.4. Importance of Video Transcoding

Video compression standards significance is due to the bandwidth usage, display rate, network

connectivity, computational capacity and others available to the end user in the most convenient way. For

reproducing and delivering a video and other multimedia data flexibly according to the end-user’s

capability and requirement, video content should be dynamically adapted to the user’s environment.

Figure 5.7. and 5.8. shows the functionalities in video transcoding.

Need for transcoding:

a. When the target device does not support the format of the data.

b. When the target device does not have enough space or bandwidth.

c. When the format of the data is outdated or obsolete.

Figure 5.7. Video Transcoding functionalities

74

Figure 5.8. Transcoding Functions

5.5. Criteria to obtain optimal results after transcoding

1. The quality obtained by direct decoding and re-encoding of the output bitstream and the quality

obtained by the transcoded bitstream should be comparable.

2. To avoid multigeneration deterioration, it is advised to use the information in the input stream as

much as possible.

3. This process should be low in complexity, cost efficient and should achieve the best quality

possible.

5.6. Summary

Transcoding is one of the main applications in video technology. This chapter covers the different types

of Transcoding techniques available and the advantages and disadvantages of each type. The

functionalities of transcoding is also pointed out. The next chapter focuses on formulating the research

problem and addressing the methodologies of the objectives defined.

75

 Problem Formation

6.1. Identification of Research Gap

Heterogeneous/Homogeneous video transcoding for video codecs H.264, HEVC, VVC and EVC –

Transcoding is one of the main process in video communication. This method is always in demand till the

developments of new video codecs ongoing [55]. The VVC (Versatile Video Coding) and EVC (Essential

Video Coding) being the next generation video codecs is the main focus point as the codec brings a lot of

application uses along with its development. Since VVC and EVC are still not out in the market, there is

a lot of scope in transcoding other codecs to VVC/EVC and vice versa. All these video codecs are open

source other than EVC, and used in the industry standards, it is advantages to choose them as the main

codec. Along with heterogeneous functionality, we can also look at homogeneous properties like bitrate

change and frame rate change which are the main features for wireless communication.

6.2. Research Questions

The questions related to research that arise after a thorough literature review are as follows:

1. What video codecs to use for heterogeneous transcoding and the reason for its choice?

- H.264 is the most used codec in the market covering more than 80% of video traffic [56].

HEVC codec as it is the latest codec out in the market by the ISO-ITU-T organization. VVC

and EVC codec as they are still not out in the market and have a lot of application uses it

come with.

2. Can a comparative study be made to check which codec performs better compression and which

codec is more efficient with its implementation using open source software’s?

- Yes. This is the initial stage where the implementation of each of the codecs is done

separately along with looking at the comparative study with respect to its performance and

efficiency.

3. Which transcoding architecture is chosen to obtain optimal results with good quality output and

coding efficiency?

- ‘Cascaded Pixel Open Loop Transcoding Architecture’ is looked upon as it has the best output

video quality after the transcoding application. We also see the drifting effect that exists in the

other architectures can be ignored in this architecture.

76

4. Can hybridizing heterogeneous and homogeneous transcoding lead to a seamless transcoding

with improved features like bitrate reduction, framerate reduction?

- Yes. Hybridizing the transcoding architecture leads to a better video compression. With

improvised algorithms in the architecture, provide better quality reconstructed video.

5. What methods are considered to validate the transcoding algorithm?

- There are a lot of measuring tools for testing the quality and performance of a reconstructed

video. Here, for the quality of video, PSNR, SSIM, MSE, Bitrate, BD-PSNR, BD-SSIM for the

quality of the video. Time is calculated for the encoding and decoding process to check the

performance of the video codec and the transcoder.

These questions are triggered after looking at a detailed literature review and analyzing many research

papers and thesis documents in video codec domain. Some of these questions are addressed in the

following objectives of this thesis.

6.3. Title and aim of the thesis

The title of the thesis is as stated below:

“Heterogeneous Transcoding for next generation multimedia video codecs for efficient communication “

Aim: The aim of this thesis is to implement the next generation video codecs (i.e. VVC and EVC) along

with the existing video codecs (i.e. H.264 and HEVC) for seamless video communication. The analysis of

each block in the video codecs is performed for a comparative study between the four codecs in terms of

better compression, better output quality video, complexity of codec and time efficiency. Transcoding

mechanism using cascaded pixel decoder-encoder algorithm is also implemented with heterogeneous

functionalities between all four video codecs.

6.4. Objectives of the Thesis

Versatile Video Coding by ISO-ITU-T organization is the emerging video codec with new application

usages and a lot of avenues in the field of research. This codec will be out in the market in October 2020

and as of now only the test version of the codec is available as open source [59]. Essential Video Coding

is the next generation video coding out by the ISO-IEC-MPEG organization having royalty free software

[60] and enhanced switching options. Since these video compression codec is still not out in the market,

a lot of avenues in transcoding, multiplexing and 4K, 8K and 12K content compression is the hot topic of

research in the coming years. The other two codecs used in the transcoding are H.264 and HEVC along

77

with VVC and EVC. HEVC being the newest codec out in the market by ISO organization and H.264 is

the most used codec for data transfer communication is the reason for its choice. Based on these

reasonings, the below objectives are decided for the thesis.

1. To develop a framework for a comparative analysis between H.264, HEVC, VVC and EVC along

with the implementation of the codecs.

2. To develop a hybrid transcoding architecture for format change (Heterogeneous in nature)

3. To analyze and evaluate a hybrid transcoding architecture for bitrate change using QP variation

(Homogeneous and Heterogeneous) and frame rate improvisation (Homogeneous).

4. To develop an automated versatile application to hybridize the transcoding features from H.264,

HEVC, VVC and EVC.

6.5. Methodology for each objective

The methodology for all the objectives is explained in detail. The methodology also focusses on the tools

and techniques used for the development of the models, system, and analysis of the same. The

methodologies explained in this section are also based on the previously available literature on the same

topic of interests.

6.5.1. Objective 1 Methodology: To develop a framework for a comparative analysis between H.264,

HEVC, VVC and EVC along with the implementation of the codecs.

VVC and EVC being the next generation video codecs with a lot of application functionalities along with

H.264 and HEVC being the existing codecs in the market are the reason for its choice for transcoding.

The framework for its comparative study is as shown below.

1. To implement H.264 codec using Joint Model (JM) software. To analyze and evaluate the

performance of H.264 codec blocks for encoding and decoding standard definition (SD) and high

definition (HD) video contents.

2. To implement HEVC codec using Hybrid Model (HM) software. To analyze and evaluate the

performance of HEVC codec blocks for encoding and decoding standard definition (SD), high

definition (HD) and 4K video contents.

3. To implement VVC codec using Video Test Model (VTM) software. To analyze and evaluate the

performance of VVC codec blocks for encoding and decoding standard definition (SD) high

definition (HD) and 4K video contents.

78

4. To implement EVC codec using EVC Test Model (ETM) software. To analyze and evaluate the

performance of EVC codec blocks for encoding and decoding standard definition (SD) high

definition (HD) and 4K video contents.

5. The performance for each codec is evaluated using metrics like PSNR, SSIM, Bitrate,

compression ratio, time taken to encode and decode to provide a graphical comparative

explanation for each codec.

6. H.264, HEVC, VVC and EVC codec output values to be obtained by keeping the parameters QP

= 32; All filters ON, Profile = MAIN, and same GOP size value =16 and Intra period =16

(IBBBBBBBBBBBBBBBI). This is tested for 5 different contents of different resolutions for all 4

codecs.

7. Rate distortion graph obtained for PSNR and bitrate values of a content and each codec for

different quantization parameter (QP) values. Here we see that all Filters are ON. The profile used

for all four codecs is main profile. The Group of Picture (GOP) is 16 for all tests. The QP value

tested for obtaining the curve is 10, 20, 30, 40 and 50. The intra prediction is 16

(IBBBBBBBBBBBBBBI).

6.5.2. Objective 2 Methodology: To develop a hybrid transcoding architecture for format change

(Heterogeneous in nature) and bitrate change (Homogeneous and Heterogeneous in nature).

Transcoding can be of two types, Heterogeneous and Homogeneous in nature. Heterogeneous is the

transcoding feature being implemented between two different video codecs. Homogeneous is the

transcoding feature being implemented for the same video codec. Format change can be achieved using

Heterogeneous Transcoding. Bitrate change can be achieved using both Homogeneous and

Heterogenous Transcoding. Steps to achieve the same are as shown below

1. Format Change: The below block diagram in Figure 6.1. to 6.4. shows the design of the

development of heterogeneous transcoding for format change. The cascaded pixel encoder

decoder algorithm is designed and developed for this. This is for the conversion between H.264

to VVC, HEVC or EVC. The same flow is repeated for the other codec conversions.

79

Figure 6.1. Heterogeneous Transcoding from H.264 to HEVC, VVC or EVC

Figure 6.2. Heterogeneous Transcoding from HEVC to H.264, VVC or EVC

Figure 6.3. Heterogeneous Transcoding from VVC to H.264, HEVC or EVC

80

Figure 6.4. Heterogeneous Transcoding from EVC to H.264, HEVC or VVC

Figure 6.5. Block diagram of heterogeneous transrating of H.264 to VVC, HEVC and EVC using QP

variation

Figure 6.6. Block diagram of homogeneous transrating of H.264, HEVC, VVC and EVC using QP

variation

81

Figure 6.7. Block diagram of homogeneous framerate change of H.264, HEVC, VVC and EVC using

framerate improvisation

6.5.3. Objective 3 Methodology: To analyze and evaluate a homogeneous and heterogeneous

transrating architecture for QP variation and homogeneous transrating architecture for framerate change.

1. Bitrate change with QP variation: Changing bitrate is also known as transrating. Homogeneous

and heterogeneous bitrate change (Figures 6.5. and 6.6.) can be observed by varying the

quantization parameter in the transcoding block for the reconstructed video frame. The QP is

changed in such a way that the transcoded output quality video is not distorted. The resolution is

kept constant. If we increase the QP, the bitrate decreases. If we reduce the QP, the bitrate

increases. The block diagram in Figure 6.5. and 6.6 shows for both homogeneous and

heterogeneous transcoding architectures for four codecs H.264, HEVC, VVC and EVC.

2. Bitrate change with framerate variation: When the framerate decreases, it was observed that

the bitrate also decreases. This drop in bitrate was even more than the homogeneous bitrate

change using cascaded pixel decoder-encoder architecture using the same QP as the

predecessor. This is mostly observed in the homogeneous environment and the block diagram

for the same is shown in Figure 6.7.

6.5.4. Objective 4 Methodology: To develop an automated versatile application to hybridize the

transcoding features from H.264, HEVC, VVC and EVC.

82

Developing an automated application to create a video transcoder and including the below features.

1. Obtain transcoding across these four codecs (H.264, HEVC, VVC and EVC) on the fly.

2. The parameter choices can be chosen on the fly.

3. Heterogeneous and homogeneous features being enabled with in the application.

4. Framerate, bitrate, format change done with just a command line.

6.6. Original Contribution:

The originality of this thesis tries to cover the research gaps found in the extensive literature review from

the technical papers and previous theses. They are listed as below.

1. Implementation of VVC codec with its encoder and decoder blocks along with its overview study

as this codec is still not out in the market and no overview paper available.

2. Implementation of EVC codec with its encoder and decoder blocks along with its overview study

as this codec is still not out in the market and no overview paper is available.

3. Comparative study of all the 4 codecs (H.264, HEVC, VVC and EVC) in terms of encoding time,

decoding time, PSNR, SSIM, BD-Rate and BD-PSNR measurements.

4. Design and development of heterogeneous format transcoding of VVC to H.264, VVC to HEVC,

VVC to EVC, H.264 to VVC, HEVC to VVC and EVC to VVC using cascaded pixel domain

architecture.

5. Design and development of heterogeneous format transcoding of EVC to H.264, EVC to HEVC,

EVC to VVC, H.264 to EVC, HEVC to EVC, VVC to EVC using cascaded pixel domain

architecture.

6. Design and development of homogeneous transcoding for VVC and EVC codecs in terms of

bitrate change by QP variation and frame rate variation.

83

 Results

7.1. Introduction

A systematic evaluation and a comparative analysis of the codecs with respect to video compression,

coding efficiency and quality of the compressed video is first examined for Advanced video coding

(AVC/H.264), High efficiency video coding (HEVC), Versatile video coding (VVC), and MPEG-5 Essential

Video Coding (EVC). Both subjective and objective quality analysis is obtained for each codec [61]. In the

second part, a transcoder app is developed to covert one form of codec to another with soma parameters

variations.

7.2. Video Quality Measures

The performance of a codec is evaluated using two methods. They are

• Objective quality measures – PSNR, MSE, Bitrate

• Structural quality measure – SSIM [61]

• Subjective quality measures – Human Visual System (HVS) [62]

Lossless and lossy compressions use different methods to evaluate compression quality. Standard criteria

like compression ratio, execution time, etc. are used to evaluate the compression in lossless case, which

is a simple task whereas in lossy compression, it is complex in the sense, it should evaluate both the type

and amount of degradation induced in the reconstructed video .The goal of video quality assessment is

to accurately measure the difference between the original and reconstructed video, the result thus

obtained is used to design optimal image codecs. The objective quality measure like PSNR, measures

the difference between the individual pixels of an original video frame and reconstructed video frame. It is

dependent on the mean square error (MSE) of the reconstructed video.

Here the x is the original video frame and y is the reconstructed video frame. M and N are the width and

height of the video frame. L is the maximum pixel value in NxM pixel video frame.

The SSIM is designed to improve on traditional metrics like PSNR and MSE (which have proved

to be inconsistent with human visual perception) and is highly adapted for extracting structural information.

() ()
= =

−=
M

m

N

n

nmynmx
NM

MSE
1 1

2
,,

*

1

MSE

L
PSNR

2

10log10=

84

The SSIM index is a full reference metric, in other words, the measure of image quality is based on an

initial uncompressed or distortion free video as reference. The SSIM measurement system is shown in

Figure 7.1.

Figure 7.1. Structural Similarity Index Metric (SSIM) measurement system

,
2

),(
1

22

1

C

C
l

yx

yx

++

+
=

yx

,
2

),(
2

22

2

C

C
c

yx

yx

++

+
=

yx

,),(
3

3

C

C
s

yx

xy

+

+
=

yx

where x and y correspond to two different signals that we would like to match, i.e. two different blocks

in two separate images, x ,
2

x , and xy the mean of x , the variance of x , and the covariance of x

and y respectively, while C1, C2, and C3 are constants given by ()2

11 LKC = , ()2

22 LKC = , and

2/23 CC = . L is the dynamic range for the sample data, i.e. L=255 for 8-bit content and K1<<1 and

K2<<1 are two scalar constants. Given the above measures the structural similarity can be computed as

),(),(),(),(yxyxyxyx sclSSIM =

where , and define the different importance given to each measure.

 Bitrate is the number of bits per second. The symbol is bit/s. It determines the size and quality of

a video or audio file. The higher the bitrate, the better the quality and the larger the file size. A human

visual system model (HVS model) [63] is also termed as the subjective analysis which determines the

quality of a video by the naked eye which is explained in detail in the following sections.

85

7.3. Test Sequence Set

The test sequences were chosen keeping in mind the different variations that we can observe

between the frames. The test sequence set have wide range of resolutions (176x1444, 640x360, 720x486,

1280x720, 1920x1080 and 3840x2160) with few frames. The test contents were chosen in such a way

that there were fast movement or slow movement between frames, lot of color variations in the content,

lot of details like edges and sudden change in color and human face or skin. These test sequences were

taken from two main sites Xiph [64] and Ultra video group [65]. Some contents were in y4m format and

had to be converted to yuv since some codecs supported only yuv contents.

Test Sequence Resolution Number
of

frames

Original
Size (kB)

Description Source

Akiyo
176X144

300 11138 Color video with minimal
change between frames

Xiph.org

SpeedBag
640x360

120 40500 Color video with minimal
change between frames

Xiph.org

Shield2
640x360

120 40500 Color video with lot of clolor
variations and movement
between frames

Xiph.org

MobileCalendar
720x486

360 246038 Color video with lots of
details and contains a great
variation of color and a large
amount of texture

Xiph.org

Stockholm
1280x720

604 815400 Color video with smaller
objects moving with each
frame

Xiph.org

FourPeople
1280x720

601 811350 Color video with lots of
detailing.

Xiph.org

Beauty
1920x1080

600 1822500 Color video with many basic
human face and skin

Ultra Video
Group

SunBath
3840x2160

300 3645000 Color video with less color
variation and movement

Ultra Video
Group

Bhosphorus
3840x2160

600 7290000 Color video with sharp
detailing and movement

Ultra Video
Group

Table 7.1. Test sequences description

86

Figure 7.2. Test set used for testing [64] [65]

87

7.4. Results of Objective 1: Comparative analysis of the codecs

There are two distinct lines in the future video coding technology development work. VVC [16][66] driven

by Joint Video Exploration team (JVET) and EVC [67] driven by Moving Picture Expert Group (MPEG).

These two codecs are the future codecs and the extended versions with respect to the advances in

compression technology to HEVC.

Versatile Video Coding (VVC) standard which is under development by the JVET team of ITU-T SG

16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 was out on July 6th, 2020. The latest software version of VVC

available is VTM-10.2 [59]. This codec promises 40% more compression than its predecessor (HEVC)

[16] with having the same perceptual quality of video. VVC supports lossless and subjectively lossless

compression with resolutions varying from 4K to 16K along with 360˚ videos. It supports video contents

of 8 to 16 bit depth with chroma formats ranging from 4:2:0 to 4:4:4. Some applications of VVC are high

dynamic range (HDR) video, multiview coding, still picture coding, panoramic formats. Complexity of the

codec was observed to be 10 times more than that of HEVC [16], but that is waived off with the better

quality of the video output with more compression achieved.

Essential Video Coding (EVC) [67] standard which is under development by the MPEG team of

ISO/IEC JTC 1/SC 29/WG 11 is due by mid-2020. The latest software version of EVC available is ETM-

4.0 [60]. The coding efficiency of EVC is almost like HEVC with slightly better video quality than HEVC

[56]. It is developed with some licensing conditions, i.e. royalty-free for the baseline profile and with IPR

for the main profiles.

High Efficiency Video Coding (HEVC) [11] also known as H.265 standard was developed by Joint

Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP-3 and ISO/IEC JTC1/SC29/WG11 and

published the first version in June 2013. The next version included applications like range extensions

(RExt), Multiview extensions (MV-HEVC) and scalability extensions (SHVC) and published in 2015. The

coming versions applications included extensions in 3D video and screen content coding (SCC) which

were published in the 1st quarter of 2017. HEVC promised in offering 30%-50% better compression of

video with respect to H.264 [68] and having the same perceptual quality of the video. It supported video

contents up to 8K resolution with bit depth from 8 bit to 12 bit. The latest software version of HEVC is HM-

16.0 [58].

Advanced Video coding (AVC) also known as H.264 [69] was developed by Joint Video Team (JVT)

of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6) and published in

2003. H.264 codec is the first codec to support HD videos and with a very large video compression

possibility with good perceptual output video quality. In today’s time, it is the most commonly used video

88

format with 91% of the video industries using it for distribution, compression and recording of the video

content [56]. With the later years of its initial development, some new features were added to the codec,

i.e. Fidelity range extensions, scalable video coding, Multiview video coding, 3D-AVC and MFC

stereoscopic coding. H.264 promised 50% better bitrate efficiency when compared to MPEG-2 part 2 [70].

It supported contents of bit depth 8 to 14 bits and chroma formats from 4:2:0 initially in baseline profile to

4:4:4 at the later stage for high profile. This codec is known for its broad application range like digital video

compression at low-bitrate, internet streaming to broadcasting, and digital cameras for nearly lossless

coding. The latest software version of AVC is JM-19.0 [57].

Three methods for comparisons are performed for H.264, HEVC, VVC and EVC:

1. The first method is an objective quality metric comparative study between the codecs in terms of

PSNR, SSIM, Bitrate, encoding time, decoding time and compression size for each of the contents

specified in Tables 7.3 through 7.6. keeping the QP constant to 32, GOP=16

(IBBBBBBBBBBBBBBBI)

2. The second method is the rate distortion or RD method where the rate distortion graph is obtained

for a content with different QP values (10,20,30,40 and 50) and same GOP =16

(IBBBBBBBBBBBBBBBI) for all four codecs.

3. The third method is the subjective quality analysis where the comparisons of the codecs are

observed by the visual analysis of the videos. The rate distortion method outputs for QP values

(10, 20, 30, 40 and 50) are observed for frame by frame and the distortion noted for codecs H.264,

HEVC, VVC and EVC.

89

Features H.264 HEVC VVC EVC

Block

Structure

Largest block

size is 16x16.

Quad Tree

CTU size upto 64x64

QTBT + Ternary Tree

(TT)

CTU size upto

256x256

Quad Tree +

Ternary Tree

CTU size upto

128x128

Intra

Prediction

5 luma

prediction

modes, 4

chroma

prediction

modes (9

Intra

prediction

modes)

35 Intra prediction

modes

81 prediction modes

(in which 65 are

angular)

30 prediction

modes (inc.

angular, DC, plane,

and bilinear)

Inter

Prediction

Block based

motion

compensation

and motion

vector

prediction

Hierarchical weighted

prediction (P, B

frames) PU level

motion vector

prediction.

Motion vector

difference ¼ pel MV

accuracy.

Block motion

compensation

Translation motion

prediction.

Hierarchical weighted

prediction (P, B

frames).

Sub-CU based motion

vector prediction.

Adaptive motion vector

precision.

Affine motion

prediction.

Decoder-side motion

vector refinement.

Hierarchical

weighted prediction

(P, B frames).

Adaptive motion

vector resolution.

Affine motion

prediction.

Decoder-side

motion vector

refinement.

Transform 2D-DCT sizes

4x4 up to 8x8

DCT-II and DST-VII.

Transform block size

8x8, 16x16 and

32x32

Adaptive multiple core

transform. Mode

dependant non-

separable secondary

transforms (4x4)

Transform block sizes

4x4 upto 64x64

DCT-II sizes 4x4

uoto 128x128

Loop filter +

Other

Adaptive in-

loop

deblocking

filter

Deblocking filter,

SAO

Deblocking filter, SAO,

Adaptive loop filter

Deblocking filter,

Hadamard

Transform

90

Entropy

coding

CABAC and

CAVLC

CABAC Modified CABAC (with

Context modelling for

transform coefficient

levels)

Multiplier based

context adaptive

entropy coding.

Table 7.2. Architectural comparative study of H.264, HEVC, VVC and EVC codecs

7.4.1. H.264 Encoder and Decoder Codec Output

Test Configurations of H.264 [57]:

• Software Used: Joint Model (JM) – version 19.0

• Encoder Commandline: lencod.exe -d encoder_main.cfg

• Decoder Commandline: ldecod.exe

• System Type: Dell Inspiron with i7 processor/ Windows 10/ 64 bit

In the encoder commandline, -d indicated the configuration file to be added which is in the directory

‘JM\bin’. In our testing, we use encoder_main.cfg file and is edited according to our preferences. In the

‘InputFile’ location, add the destination where the content is available. Content parameters are given in the

source width/height and accordingly output width/height. QPI/P/BSlice are changed according to the QP

value we need after each test run. The change in parameters required in the config file is shown below:

#======== File I/O ===

InputFile = "C:\Desktop\akiyo_qcif.yuv" # Input sequence

InputHeaderLength = 0 # If the inputfile has a header, state it's length in byte here

StartFrame = 0 # Start frame for encoding. (0-N)

FramesToBeEncoded = 300 # Number of frames to be coded

FrameRate = 100.0 # Frame Rate per second (0.1-100.0)

SourceWidth = 176 # Source frame width

SourceHeight = 144 # Source frame height

SourceResize = 0 # Resize source size for output

OutputWidth = 176 # Output frame width

OutputHeight = 144 # Output frame height

91

TraceFile = "trace_enc.txt" # Trace file

ReconFile = "test_rec.yuv" # Recontruction YUV file

OutputFile = "test.264" # Bitstream

IntraPeriod = 16 # Period of I-pictures (0=only first)

QPISlice = 10 # Quant. param for I Slices (0-51)

QPPSlice = 10 # Quant. param for P Slices (0-51)

NumberBFrames = 15 # Number of B coded frames inserted (0=not used)

QPBSlice = 10 # Quant. param for B slices (0-51)

After the encoder, the binary file is ‘test.264’. After the decoder, the output file is ‘test.yuv’ which is

the reconstructed video. For our testing we have used GOP = 16 and QP =32 for all the test contents. Since

H.264 does not support 4K content, the testing was done only till HD videos i.e. 1280x720. The quality was

verified with respect to PSNR, SSIM, MSE and Bitrate. The performance was checked with respect to the

time taken to encode and decode and measured in seconds. The compression size of the encoded bit

stream was also collected which was measured in kB.

S.No
INPUT

VIDEO FILE
PSNR
(dB)

SSIM
YUV

MSE
YUV

BITRATE
(kbps)

ENCODING
TIME (s)

DECODING
TIME(s)

COMPRESSION
SIZE (kB)

1 Akiyo 36.80 0.94 15.55 106.39 323.238 0.093 39

2 Speedbag 41.05 0.97 5.89 141.63 1873.631 0.451 104

3 Shields2 34.09 0.88 28.74 862.01 1292.539 0.668 632

4
Mobile

calendar 34.88 0.92 24.45 2486.94 8073.856
4.539 5465

5 Stockholm 36.10 0.89 19.90 2027.63 38512.408 10.091 7475

6 Fourpeople 39.67 0.95 8.67 401.52 27572.912 8.137 1473

Table 7.3. H.264 encoder and decoder statistics

7.4.2. HEVC Encoder and Decoder Codec Output

Test configurations of HEVC [58]:

• Software: Hybrid Model (HM) – version 16.0

• Encoder Commandline: TAppEncoder.exe -c encoder_randomaccess_main.cfg -c akiyo.cfg

• Decoder Commandline: TAppDecoder.exe -b str.bin -o dec.yuv -d 8

• System Type: Dell Inspiron with i7 processor/ Windows 10/ 64 bit

92

In the encoder commandline, -c indicated the configuration file to be added which is in the directory ‘\cfg’

and ‘\cfg\per-sequence’. The cfg file per-sequence needs to be created by the user under any name as the

content. Since here the content to be used is akiyo, we shall name the content file as ‘akiyo.cfg’ as the

secondary cofig file. In our testing, we use encoder_randomaccess_main.cfg as the mainfile. In the main

file, we change the values of ‘IntraPeriod’, ‘GOPSize’ to 16 and ‘QP’ parameter as shown in VVC software.

The second confile file needs to be added with parameters as below:

#======== File I/O ===

InputFile : C:\Desktop\akiyo.yuv

InputBitDepth : 8 # Input bitdepth

InputChromaFormat : 420 # Ratio of luminance to chrominance samples

FrameRate : 120 # Frame Rate per second

FrameSkip : 0 # Number of frames to be skipped in input

SourceWidth : 176 # Input frame width

SourceHeight : 144 # Input frame height

FramesToBeEncoded : 300 # Number of frames to be coded

Level : 4.1

After the encoder, the binary file is ‘str.bin’. After the decoder, the output file is ‘dec.yuv’ which is

the reconstructed video. For our testing we have used GOP = 16 and QP =32 for all the contents. Since

HEVC supports even 4K contents, the testing was done for contents with resolution from qcif i.e. 176x144

till 4K i.e. 3840x2160. The quality was verified with respect to PSNR, SSIM, MSE and Bitrate. The

performance was checked with respect to the time taken to encode and decode and measured in seconds.

The compression size of the encoded bit stream was also collected which was measured in kB.

Sl.
No.

INPUT
VIDEO FILE

PSNR
(dB)

SSIM
YUV

MSE
YUV

BITRATE
(kbps)

ENCODING
TIME (s)

DECODING
TIME (s)

COMPRESSION
SIZE (kB)

1 Akiyo 39.250 0.98945 7.728 130.922 49.35 0.454 40

2 Shields2 35.947 0.98599 16.54 347.445 231.14 0.693 255

3 Stockholm 35.812 0.98276 17.06 4222.370 5501.18 11.149 2595

4 Beauty 38.6891 0.97482 8.795 2238.458 12172.03 23.354 1367

5 SunBath 42.921 0.99132 3.319 12965.12 37967.48 54.871 3957

Table 7.4. HEVC encoder and decoder statistics

93

7.4.3. VVC Encoder and Decoder Codec Output

Test Configurations of VVC Codec [59]:

• Software: VVC Test Model (VTM) – version 10.0

• Encoder Commandline: EncoderApp.exe -c encoder_randomaccess_vtm.cfg -c akiyo.cfg

• Decoder Commandline: DecoderApp.exe -b str.bin -o dec.yuv -d 8

• System Type: Dell Inspiron with i7 processor/ Windows 10/ 64 bit

This software is a test version which is still under development. Here we provide two config files.

Second file is the content file which is same as the one used in HEVC as ‘akiyo.cfg’. The first config file is

the main file as ‘encoder_randomaccess_vtm.cfg’ which specifies the parameters to be changed in order

to get the output as desired as shown below:

#======== File I/O ===

IntraPeriod : 16 # Period of I-Frame (-1 = only first)

GOPSize : 16 # GOP Size (number of B slice = GOPSize-1)

QP : 10 # Quantization parameter(0-51)

After the encoder, the binary file is ‘str.bin’. After the decoder, the output file is ‘dec.yuv’ which is

the reconstructed video. Since VVC supports 4K and 8K contents, the testing was done for contents with

resolution from qcif i.e. 176x144 till 4K i.e. 3840x2160. The quality was verified with respect to PSNR, SSIM,

MSE and Bitrate. The performance was checked with respect to the time taken to encode and decode and

measured in seconds. The compression size of the encoded bit stream was also collected which was

measured in kB.

Sl.
No.

INPUT
VIDEO FILE

PSNR
(dB)

SSIM
YUV

MSE
YUV

BITRATE
(kbps)

ENCODING
TIME (s)

DECODING
TIME (s)

COMPRESSION
SIZE (kB)

1 Akiyo 40.2677 0.9879 97.8196 83.3984 446.137 1.099 26

2 Shields2 36.7821 0.9890 218.2678 192.6293 1727.356 1.279 142

3 Stockholm 36.1117 0.9690 254.7011 2356.0132 22901.051 19.528 1448

4 Beauty 38.9595 0.9967 132.2072 1691.5568 101368.613 45.738 1033

5 SunBath 43.8083 0.9990 43.2886 9755.6192 168480.477 104.085 2978

6 Bhosphorus 42.0861 0.9830 64.3559 890.18 192677.252 202.441 3260

Table 7.5. VVC encoder and decoder statistics

94

7.4.4. EVC Encoder and Decoder Codec Output

Test configurations of EVC codec [60]:

• Software: EVC Test Model (ETM) – version 4.0

• Encoder Commandline: evca_encoder.exe -i akiyo.yuv -q 10 -w 176 -h 144 -p 16 -f 300 -z 120 -d

8 -o str.bin –config encoder_randomaccess.cfg

• Decoder Commandline: evca_decoder.exe -i str.bin -o dec.yuv

• System Type: Dell Inspiron with i7 processor/ Windows 10/ 64 bit

EVC software is also a test model and is still under development. It is not open source and requires

login details to download the software which will be provided by the MPEG team on request for research

use. In the Encoder commandline the following notations denotes ‘-i’ - the path to the input file, ‘-q’- the

quantization parameter, ‘-w’ - the source width, ‘-h’ - source height, ‘-p’ - the intra period, ‘-f’ - the number

of frames to be coded, ‘-z’- the frame rate, ‘-d’- the input bit depth, ‘-o’- output encoded file and ‘-config’-

encoder configuration file.

 For every test run, we need to change the ‘-q’ value in the encoder commandline. After the

encoder, the binary file is ‘str.bin’. After the decoder, the output file is ‘dec.yuv’ which is the reconstructed

video. Since EVC supports 4K and 8K contents, the testing was done for contents with resolution from

qcif i.e. 176x144 till 4K i.e. 3840x2160. The quality was verified with respect to PSNR, SSIM, MSE,

Bitrate. The performance was checked with respect to the time taken to encode and decode and

measured in seconds. The compression size of the encoded bit stream was also collected which was

measured in kB.

Sl.
No.

INPUT
VIDEO FILE

PSNR
(dB)

SSIM
YUV

BITRATE
(kbps)

ENCODING
TIME (s)

DECODING
TIME (s)

COMPRESSION
SIZE (kB)

1 Akiyo 41.43 0.995 21.262 154.576 1.518 39

2 Shields2 37.92 0.993 348.658 1114.427 1.581 256

3 Stockholm 38.99 0.983 709.307 17186.5 17.895 2615

4 Beauty 39.601 0.972 2079.912 40601.449 110.111 1270

5 SunBath 45.6415 0.999 11141.700 94910.641 98.6 3401

Table 7.6. EVC encoder and decoder statistics

95

7.4.5. Objective Quality Comparative analysis

The objective quality analysis for all the four codecs was tabulated from Tables 7.3., 7.4., 7.5. and 7.6.

These graphs from Figure 7.3. to 7.9. gives us a better understanding on the quality of the encoded

sequence for each codec (i.e. H.264, HEVC, VVC and EVC) using PSNR, SSIM, encoding time and

compression size. Testing set was for contents ranging from qcif to 4K resolution from Table 7.1.

1. Peak Signal to Noise Ratio (PSNR) analysis:

Figure 7.3. PSNR value for each content and for H.264, HEVC, VVC and EVC

From Figure 7.3. we observe that the PSNR value is more for EVC followed by VVC, HEVC and H.264.

Hence the reconstructed video quality was more in EVC in terms of PSNR value. The difference in PSNR

between VVC and EVC is not much as most of the encoder blocks algorithms are the same between both,

like motion estimation, entropy coding and block structure. The difference is due to the motion vector

prediction which effects the quality of the video. More the prediction modes, more the video quality.

2. Structural Similarity Index Metric (SSIM) analysis:

From Figure 7.4. we see that SSIM value for EVC is more than the other codecs for contents from qcif to

HD. For ultra HD and 4K, we see VVC preceding in the output quality when compared to other codecs. The

difference in the output quality SSIM between VVC and EVC for Ultra HD and 4K resolution videos is due

Akiyo Shields2 Stockholm Beauty Sunbath

H.264 36.80433333 34.08966667 36.10133333

HEVC 39.2503 35.9465 35.8116 38.6891 42.921

VVC 40.2677 36.7821 36.1117 38.9595 43.8083

EVC 41.43027 37.9191 38.9895 39.6005 45.6415

0

5

10

15

20

25

30

35

40

45

50

P
SN

R
 (

d
B

)

Test Content

PSNR for each content and for H.264, HEVC, VVC and EVC

H.264

HEVC

VVC

EVC

96

to higher profile being selected for VVC for higher resolution videos when compared to EVC which does

not change the profile and remains constant. This higher profile gives the liberty to choose hierarchical

motion estimation which is better when compared to EVC motion estimation process. Hence the output

quality is better for VVC when compared to EVC. To check the output quality in objective method, SSIM is

preferred compared to PSNR as it’s a better metric calculation for video quality.

Figure 7.4. SSIM value for each content and for H.264, HEVC, VVC and EVC

3. Bitrate analysis:

Figure 7.5. shows the bitrate analysis for video codecs H.264, HEVC, VVC and EVC for contents from qcif

to 4K resolution videos. It was observed from the graph that the bitrate required to encode a video for the

same quality of output was more for HEVC and least for VVC. Hence proved that VVC provided more

compression when compared to EVC and HEVC. This was coz of the intra prediction modes in VVC which

is 81 predictions modes when compared to EVC and HEVC which is 30 and 35 modes. Hence it is expected

that more compression can be achieved by using lesser bitrate in VVC when compared to EVC and HEVC

for achieving the same output quality video.

Akiyo Shields2 Stockholm Beauty Sunbath

H.264 0.940833333 0.8839 0.890433333

HEVC 0.988861 0.984145333 0.980918667 0.974411333 0.991010667

VVC 0.987504667 0.988951 0.96896 0.996671 0.99898

EVC 0.995032 0.99289 0.98289 0.97214 0.98979

0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1
1.02

SS
IM

Test content

SSIM for each content and for H.264, HEVC, VVC and EVC

H.264

HEVC

VVC

EVC

97

Figure 7.5. Bitrate for each content and for H.264, HEVC, VVC and EVC

4. Encoding Time analysis:

From Figure 7.6. it is evident that time taken to encode any video from qcif to 4k resolution, VVC takes

maximum time (almost twice the time take by EVC). This is expected as the intra frame prediction modes

are almost double the prediction modes for EVC codec (i.e. VVC prediction modes = 81 and EVC = 30).

The block structure division by CTU is 256x256 for VVC when compared to 128x128 for EVC hence adding

to doubling the time taken to scan the coefficients being twice in VVC when compared to EVC. The block

structure division for HEVC is 64x64 which is half the structure when compared to EVC which is 128x128.

Due to this, we observed that the time taken to encode the videos for same output quality for EVC is twice

the time taken to encode HEVC.

5. Decoding Time analysis:

From Figure 7.7. it is observed that the time taken to decode the encoded video for all the four codecs is

almost similar with less difference between each of them. It doesn’t matter how long it takes to decode as

all the codecs decode within seconds from qcif to 4k resolution videos.

Akiyo Shields2 Stockholm Beauty Sunbath

H.264 106.39 862.01 2027.63

HEVC 130.9216 347.4453 4222.3693 2238.4576 12965.1904

VVC 83.3984 192.6293 2356.0132 1691.5568 9755.6192

EVC 21.2624 348.6573 709.2964 2079.912 11141.6992

0

2000

4000

6000

8000

10000

12000

14000
B

it
ra

te
 (

kb
p

s)

Test Content

Bitrate for each content and for H.264, HEVC, VVC and EVC

H.264

HEVC

VVC

EVC

98

Figure 7.6. Encoding time for each content and for each codec

Figure 7.7. Decoding time of each content and each codec

Akiyo Shields2 Stockholm Beauty Sunbath

H.264 323.238 1292.539 38512.408

HEVC 49.353 231.136 5501.279 12172.025 37967.48

VVC 446.137 1727.356 22901.051 101368.613 168480.477

EVC 154.576 1114.427 17186.5 40601.449 94910.641

0

20000

40000

60000

80000

100000

120000

140000

160000

180000
En

co
d

in
g

ti
m

e
(s

)

Test Content

Encoding time for each content and for each codec

H.264

HEVC

VVC

EVC

Akiyo Shields2 Stockholm Beauty Sunbath

H.264 0.093 0.668 10.091

HEVC 0.454 0.693 11.149 23.354 54.871

VVC 1.099 1.279 19.528 45.738 104.085

EVC 1.518 1.581 17.895 110.111 98.6

0

20

40

60

80

100

120

D
ec

o
d

in
g

Ti
m

e
(s

)

Test Content

Decoding time of each content and each codec

H.264

HEVC

VVC

EVC

99

Figure 7.8. Compressed output for each content and codec

6. Compression ratio analysis:

The bitrate analysis shown in Figure 7.5. does also portray the amount of compression achieved by each

codec. More the bitrate, less the compressed encoded video and the same was observed in Figure 7.8.

H.264 compressed size was maximum when compared to other codecs, hence it achieved least

compression. VVC compression size was least when compared to other codecs, hence it achieved

maximum compression. The reason for this maximum compression is similar to that of the bitrate reduction

of more intra prediction modes in VVC when compared to other codecs.

7.4.6. Rate Distortion method comparative analysis

Rate distortion method is the graph obtained for PSNR to bitrate for a particular content tested at different

QP values. In Table 7.7. the testing for content ‘shield2’ with resolution 640x360 was tested for codecs

H.264, HEVC, VVC and EVC for QP values 10, 20, 30 and 40. The analysis of this graph is to achieve

maximum output quality (PSNR) for lesser bitrate used. This also points at the codec that offers more

compression with good quality encoded video.

Akiyo Shields2 Stockholm Beauty Sunbath

H.264 39 632 7475

HEVC 40 255 2595 1367 3957

VVC 26 142 1448 1033 2978

EVC 39 256 2615 1270 3401

0

1000

2000

3000

4000

5000

6000

7000

8000
C

o
m

p
re

se
d

 o
u

tp
u

t
si

ze
 (

kB
)

Test content

Compressed output size for each content and codec

H.264

HEVC

VVC

EVC

100

Sl.No. QP RESOLUTION
No.

Frames

PSNR (dB)
Bitrate (kbps)

H.264 HEVC VVC EVC
H.264 HEVC VVC EVC

1 10 640x360 120 51.40233 47.6618 48.3477 48
14951 6955.77 6427 6704

2 20 640x360 120 42.8583 41.9283 42.8424 43.9
3073.8 1224.51 1142.8 1204

3 30 640x360 120 36.91933 37.1581 38.5625 39.1
548.52 429.427 405.73 429

4 40 640x360 120 31.851333 35.3014 32.4476 33.6
144.47 205.173 133.15 130.6

5 50 640x360 120 28.80833 25.6372 26.442 29.5
41.39 30.6813 30.344 28.8

Table 7.7. Rate Distortion graph statistics for shield2 content

Figure 7.9. Rate distortion graph for shield2 content

Rate distortion graph for ‘shield2’ content is as shown in Figure 7.9. This graph shows that the quality of

encoded video is more for VVC followed by EVC and then HEVC and H.264. This also depicts that the

compression is achieved maximum for VVC since the bitrate required for VVC is less to obtain the same

output quality video when compared to the other 3 codecs. The reason for this output is similar to the reason

analysed for the objective quality analysis of the codecs obtained from Figure 7.3 to Figure 7.8.

101

7.4.7. Subjective Quality Comparative analysis:

Subjective video quality is a video quality assessment as experienced by humans. It is concerned with

how video is perceived by a viewer (also called “observer” or “subject”) and designates their opinion on a

particular video sequence and therefore related to field of quality of experience. The measurement of

subjective video quality is necessary as the objective quality assessment algorithms such as PSNR have

been shown to correlate badly with ratings. Subjective ratings may also be used as ground truth to develop

new algorithms.

Subjective video quality tests are psychophysical experiments in which a number of viewers rate a

given set of videos. These tests are quite expensive in terms of time (preparation and running) and human

resources and must therefore be carefully designed.

In our subjective quality test. It is verified by one viewer and the “sources”, i.e. original video sequences

are run through encoder and decoder of their respective codec softwares having the same parameter

changes across all the codecs to generate the processed video sequences.

Figure 7.13 to 7.16 shows the subjective quality analysis using rate distortion statistics outputs obtained

from Table 7.7. The subjective quality analysis is seen for shield2 content for QP’s 10, 20, 30, 40 and 50

for codec H.264, HEVC, VVC and EVC. It was observed that there was no difference observed in the output

video quality for QP = 10 between the codecs but there was a drastic video quality degradation observed

for the four codecs for QP=50. VVC proved to provide a better video quality which was viewed by the naked

eye when compared other codecs. EVC followed VVC in video quality improvements. H.264 and HEVC

showed more video degradation for QP = 50.

The objective quality and subjective quality analysis matched their results with VVC providing better

quality output followed by EVC, HEVC and then H.264. It was also proved that VVC provided more

compression when compared to EVC, followed by HEVC and then H.264 due to more intra prediction

modes and block structure size in VVC.

102

Figure 7.10. Rate distortion graph statistics for shield2 content and QP = 10, 20, 30, 40 and 50 for H.264

codec

103

Figure 7.11. Rate distortion graph statistics for shield2 content and QP = 10, 20, 30, 40 and 50 for HEVC

codec

104

Figure 7.12. Rate distortion graph statistics for shield2 content and QP = 10, 20, 30, 40 and 50 for VVC

codec

105

Figure 7.13. Rate distortion graph statistics for shield2 content and QP = 10, 20, 30, 40 and 50 for EVC

codec

106

7.5. Results of Objective 2: Heterogeneous Transcoding architecture for format change

Heterogeneous Transcoding of H.264, HEVC, VVC and EVC video codecs for format changes

using cascaded decoder-encoder pixel transcoding architecture provides very good PSNR and SSIM output

values for QP=10. Both PSNR and SSIM graphs in Figure 7.17. and Figure 7.18. proves that the

transcoding from HEVC to VVC gives a better PSNR value which is almost equal to 50.5dB and SSIM value

which is almost equal to 0.999863. If we increase the QP from 10 to 20, 30 or 40, we see a degradation in

the quality of output video.

7.5.1. Objective Quality analysis for Heterogeneous Transcoding

Figure 6.1, 6.2, 6.3 and 6.4 shows the architectural format change block diagram for H.264, HEVC, VVC

and EVC. Metrics like PSNR, SSIM and Time taken to encode was tabulated for each format conversion

as shown in Table 7.8 for akiyo_qcif content.

1. Peak Signal to Noise Ratio (PSNR) analysis

Figure 7.17. shows the PSNR graph with respect to Heterogeneous transcoding for format change using

akiyo_qcif content. All the testing scenarios proved to provide very good output quality with PSNR value

being very high for QP =10. In Objective 1, it was proved that VVC and EVC codecs provided better video

quality output due to improvised algorithm in encoder block when compared to HEVC and H.264. Hence

the codec change from HEVC to VVC and H264 to EVC showed best PSNR value which is almost equal

to 50 dB and EVC to H264 least value, almost equal to 49dB.

2. Structural Similarity Index Metric (SSIM) analysis

Figure 7.18. shows the SSIM graph with respect to Heterogeneous transcoding for format change using

akiyo_qcif content. All the testing scenarios proved to provide very good output quality with SSIM value

being very high with a value of 0.999 for QP=10. The output result was similar to PSNR analysis as HEVC

to VVC showed the highest SSIM value when compared to other format changes.

107

3. Time taken to transcode analysis

Figure 7.19. shows the time taken to transcode from one codec to another in heterogeneous form. It is

obvious that any codec conversion involving VVC takes a lot of time as observed in Objective 1, as the time

taken to encode VVC is double the time taken to encode EVC. Due to this analysis, we see maximum time

taken to transcode for QP=10 is VVC to EVC and EVC to VVC.

Video Transcoding
PSNR
(dB) SSIM

Time
Taken(s)

H264_HEVC 50.15354 0.999624 411.977

H264_VVC 50.22658 0.999639 2109.25

H264_EVC 49.88168 0.999608 1102.07

HEVC_H264 49.91432 0.999613 401.235

HEVC_VVC 50.52744 0.999681 1614.09

HEVC_EVC 50.00184 0.999628 759.391

VVC_H264 49.54123 0.999595 2110.5

VVC_HEVC 49.97654 0.999644 2105.07

VVC_EVC 49.47421 0.999612 2449.75

EVC_H264 49.23676 0.999571 1099.86

EVC_HEVC 49.51782 0.999604 857.551

EVC_VVC 49.60185 0.999621 2377.56
Table 7.8. Video transcoding for akiyo_qcif content

Figure 7.14. PSNR vs Video Codecs for Heterogeneous transcoding

H264_
HEVC

H264_
VVC

H264_
EVC

HEVC_
H264

HEVC_
VVC

HEVC_
EVC

VVC_H
264

VVC_H
EVC

VVC_E
VC

EVC_H
264

EVC_H
EVC

EVC_V
VC

PSNR 50.154 50.227 49.882 49.914 50.527 50.002 49.541 49.977 49.474 49.237 49.518 49.602

48.5

49

49.5

50

50.5

51

P
SN

R
 (

d
B

)

Video Codecs

PSNR v/s Video Codecs

108

Figure 7.15. SSIM vs Video Codecs for Heterogeneous transcoding

Figure 7.16. Time taken for Heterogeneous transcoding

7.5.2. Subjective Quality analysis for Heterogeneous Transcoding

Subjective quality analysis for the Heterogeneous Transcoding for codecs H.264, HEVC, VVC and EVC

also proves that the quality for video is the same for QP = 10 as observed in Figure 7.17 and 7.18.

0.9995

0.99952

0.99954

0.99956

0.99958

0.9996

0.99962

0.99964

0.99966

0.99968

0.9997

SS
IM

Video Codecs

SSIM v/s Video Codecs

H264_
HEVC

H264_
VVC

H264_
EVC

HEVC
_H264

HEVC
_VVC

HEVC
_EVC

VVC_
H264

VVC_
HEVC

VVC_
EVC

EVC_
H264

EVC_
HEVC

EVC_
VVC

Time Taken(s) 411.98 2109.3 1102.1 401.24 1614.1 759.39 2110.5 2105.1 2449.8 1099.9 857.55 2377.6

0

500

1000

1500

2000

2500

3000

Ti
m

e
Ta

ke
n

 (
s)

Video Transcoding

Time Taken for Video Transcoding

109

Figure 7.17. Subjective quality analysis for Heterogeneous Transcoding

110

7.6. Results of Objective 3: Heterogeneous and Homogeneous Transcoding architecture for bitrate

change by varying quantization parameter and frame rate

Heterogeneous / Homogeneous Transcoding of H.264, HEVC, VVC and EVC video codecs for

bitrate changes using cascaded decoder-encoder pixel transcoding architecture provides very good PSNR

and SSIM output values for QP=10. Both PSNR and SSIM graphs in Figure 3.23 and Figure 3.24 proves

that the transcoding from HEVC to VVC gives a better PSNR value which is almost equal to 50.5dB and

SSIM value which is almost equal to 0.999863.

7.6.1. Objective Quality analysis for Heterogeneous Bitrate Transcoding – QP variation

From Figure 6.5 and Figure 6.6, for a video sequence akiyo_qcif.yuv (raw video), quantization parameter

is kept constant (QP1= 10) at the first codec level. The bitrate is noted as Bitrate1 at first encoded stage.

Heterogeneous transcoding at second stage for different QP values (QP2 = 10, 15, 20, 25, 30, 35, 40, 45

and 50) are tested and corresponding Bitrate2 values are noted. I was observed that for a constant Bitrate1

at stage 1, the Bitrate2 reduced with increase in QP value and Bitrate2 increased with decrease in QP value

at stage 2. Values of Encoding time, Bitrate2, PSNR, MSSIM and Transcoding time are tabulated for

different heterogeneous transcoding combinations which can be seen from Table 7.9 to 7.24. The graph

for Bitrate variation with respect to QP2 and Time taken for transcoding is observed from Figure 7.21. to

7.28.

 It was also observed from the graphs (Figure 7.22, 7.24, 7.26. and 7.28.) that the Time taken for

bitrate transcoding was more for codecs pertaining to VVC and EVC and less for H.264 and HEVC. This is

due to the fact that for Objective1 implementation, it was proved that VVC and EVC takes more time to

encode when compared to other 2 codecs. Transcoding time was directly proportional to the Bitrate2 and

inversely proportional to QP2 value. It was also observed from the graphs (Figure 7.23, 7.25, 7.27 and

7.29) that the Bitrate2 at second stage was also observed to be inversely proportional to QP2.

111

 H.264 HEVC

Sl.No QP1
Encoding
time (s)

Bitrate1
(kbits/sec) QP2

Encoding
time (s)

Bitrate2
(kbits/sec)

PSNR
(YUV)

MSSIM
(YUV)

Transcoding
Time (s)

1

10 318.516 2053.05

10 98.675 1095.216 52.5558 0.9995 419.55

2 15 84 601.776 49.5037 0.9991 431.73

3 20 67.516 365.5744 46.7981 0.9982 389.96

4 25 62.47 234.976 43.897 0.9964 395.06

5 30 57.491 154.14 40.6667 0.9925 385.35

6 35 53.883 102.49 37.3533 0.9859 376

7 40 53.735 68.53 34.052 0.9751 380.722

8 45 52.86 48.1952 31.0577 0.9596 413.656

9 50 53.29 35.3248 28.2751 0.9247 381.218

Table 7.9. H.264 to HEVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence

 H.264 VVC

Sl.No QP1
Encoding
time (s)

Bitrate1
(kbits/sec) QP2

Encoding
time (s)

Bitrate2
(kbits/sec)

PSNR
(YUV) MSE (YUV)

Transcoding
Time (s)

1

10 318.516 2053.05

10 1871.004 1011.584 53.0226 5.1873 2196.73

2 15 1388.58 566.179 50.359 9.579 1711.84

3 20 998.31 347.206 47.763 17.415 1335.98

4 25 740.033 225.91 45.0186 32.76 1079.62

5 30 549.995 150.471 41.961 66.24 865.251

6 35 450.73 102.84 38.807 136.92 770.861

7 40 368.221 71.87 35.669 282.045 697.679

8 45 302.965 51.65 32.374 602.26 625.385

9 50 304.515 39.514 29.35 1208.33 632.617

Table 7.10. H.264 to VVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence

 H.264 EVC

Sl.No QP1
Encoding
time (s)

Bitrate1
(kbits/sec) QP2

Encoding
time (s)

Bitrate2
(kbits/sec)

PSNR
(YUV)

MSSIM
(YUV)

Transcoding
Time (s)

1

10 318.516 2053.05

10 819.88 169.07 52.95 0.99941 1143.2

2 15 657.548 96.179 50.685 0.99914 994.905

3 20 514.925 59.55 48.3051 0.99877 870.908

4 25 538.785 38.5808 45.722 0.99805 875.325

5 30 450.015 25.236 42.8017 0.99637 808.54

6 35 321.856 16.6864 40.107 0.99224 737.499

7 40 267.882 10.8907 37.1163 0.98282 690.746

8 45 238.039 7.2773 34.1269 0.96044 680.347

9 50 157.036 4.9077 31.451 0.9161 667.908

Table 7.11. H.264 to EVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence

112

Figure 7.18. Heterogeneous Bitrate Transcoding from H.264 to HEVC/VVC and EVC using akiyo_qcif

sequence

Figure 7.19. Time taken for Heterogeneous Bitrate Transcoding from H.264 to HEVC/VVC and EVC using

akiyo_qcif sequence

10 15 20 25 30 35 40 45 50

H.264_Bitrate1 2053.05 2053.05 2053.05 2053.05 2053.05 2053.05 2053.05 2053.05 2053.05

HEVC_Bitrate2 1095.216 601.776 365.5744 234.976 154.14 102.49 68.53 48.1952 35.3248

VVC_Bitrate 1011.584 566.179 347.206 225.91 150.471 102.84 71.87 51.65 39.514

EVC_Bitrate 169.07 96.179 59.55 38.5808 25.236 16.6864 10.8907 7.2773 4.9077

0

500

1000

1500

2000

2500

B
it

ra
te

 (
kb

it
s/

s)

QP

Bitrate Transcoding from H.264 to HEVC/VVC and
EVC

H.264_Bitrate1 HEVC_Bitrate2 VVC_Bitrate EVC_Bitrate

10 15 20 25 30 35 40 45 50

H.264_HEVC 419.55 431.73 389.96 395.06 385.35 376 380.722 413.656 381.218

H.264_VVC 2196.73 1711.84 1335.98 1079.62 865.251 770.861 697.679 625.385 632.617

H.264_EVC 1143.2 994.905 870.908 875.325 808.54 737.499 690.746 680.347 667.908

0

500

1000

1500

2000

2500

Ti
m

e
 T

ak
e

n
 (

s)

QP

Time Taken (s) for Bitrate Transcoding from
H.264 to HEVC/VVC and EVC

H.264_HEVC H.264_VVC H.264_EVC

113

 HEVC H.264

Sl.No QP1
Encoding
time (s)

Bitrate1
(kbits/sec) QP2

Encoding
time (s)

Bitrate2
(kbits/sec)

PSNR
(YUV)

MSSIM
(YUV)

Transcoding
Time (s)

1

10 88.562 1051.2256

10 341.65 348.18 53.271 0.9992 432.437

2 15 353.458 195.91 49.94 0.9988 446.621

3 20 339.424 109.25 46.66 0.9982 432.806

4 25 339.299 59.77 43.381 0.9968 430.8

5 30 340.024 31.47 40.066 0.9936 430.196

6 35 330.914 18.36 37.252 0.9883 416.826

7 40 357.275 11.45 34.802 0.9772 444.402

8 45 388.229 7.29 33.037 0.9652 475.437

9 50 386.13 5.17 31.576 0.9398 470.889

Table 7.12. HEVC to H.264 Heterogeneous Bitrate Transcoding using akiyo_qcif sequence

 HEVC VVC

Sl.No QP1
Encoding
time (s)

Bitrate1
(kbits/sec) QP2

Encoding
time (s)

Bitrate2
(kbits/sec)

PSNR
(YUV) MSE (YUV)

Transcoding
Time (s)

1

10 88.562 1051.2256

10 1545.137 958.797 55.2698 3.0919 1636.41

2 15 2586.943 550.1952 51.2629 7.7788 1489.59

3 20 1625.48 345.5616 48.2874 15.4335 1075.39

4 25 731.523 225.6544 45.3038 30.6776 822.918

5 30 567.03 150.2912 42.0815 64.4249 657.081

6 35 460.478 102.9952 38.8749 134.8068 552.959

7 40 458.745 72.1824 35.6452 283.5856 458.745

8 45 320.137 51.584 32.3876 600.3978 408.594

9 50 306.003 39.552 29.3599 1205.6127 398.895

Table 7.13. HEVC to VVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence

 HEVC EVC

Sl.No QP1
Encoding
time (s)

Bitrate1
(kbits/sec) QP2

Encoding
time (s)

Bitrate2
(kbits/sec)

PSNR
(YUV)

MSSIM
(YUV)

Transcoding
Time (s)

1

10 88.562 1051.2256

10 710.448 154.95 53.82 0.999479 803.685

2 15 615.384 93.8453 51.1042 0.9992196 715.142

3 20 445.314 59.3237 48.672 0.9988611 542.941

4 25 294.824 38.6859 45.9395 0.9981421 389.856

5 30 202.483 25.3829 42.8806 0.9965052 293.051

6 35 152.446 16.7563 40.1382 0.9924018 246.169

7 40 126.703 10.9717 37.0582 0.983137 220.569

8 45 111.609 7.2635 34.1254 0.9608622 206.637

9 50 114.873 4.8704 31.4754 0.9156842 207.199

Table 7.14. HEVC to EVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence

114

Figure 7.20. Heterogeneous Bitrate Transcoding from HEVC to H.264/VVC and EVC using akiyo_qcif

sequence

Figure 7.21. Time taken for Heterogeneous Bitrate Transcoding from HEVC to H.264/VVC and EVC using

akiyo_qcif sequence

10 15 20 25 30 35 40 45 50

HEVC_Bitrate1 1051.2261051.2261051.2261051.2261051.2261051.2261051.2261051.2261051.226

H.264_Bitrate2 348.18 195.91 109.25 59.77 31.47 18.36 11.45 7.29 5.17

VVC_Bitrate2 958.797 550.1952345.5616225.6544150.2912102.9952 72.1824 51.584 39.552

EVC_Bitrate2 154.95 93.8453 59.3237 38.6859 25.3829 16.7563 10.9717 7.2635 4.8704

0

200

400

600

800

1000

1200
B

it
ra

te
 (

kb
/s

)

QP

HEVC to H.264/VVC/EVC Bitrate Transcoding

HEVC_Bitrate1 H.264_Bitrate2 VVC_Bitrate2 EVC_Bitrate2

10 15 20 25 30 35 40 45 50

HEVC_H.264 432.437 446.621 432.806 430.8 430.196 416.826 444.402 475.437 470.889

HEVC_VVC 1636.41 1489.59 1075.39 822.918 657.081 552.959 458.745 408.594 398.895

HEVC_EVC 803.685 715.142 542.941 389.856 293.051 246.169 220.569 206.637 207.199

0
200
400
600
800

1000
1200
1400
1600
1800

Ti
m

e
 T

ak
e

n
 (

s)

QP

Time taken (s) for Bitrate Transcoding from HEVC
to H.264/VVC/EVC

HEVC_H.264 HEVC_VVC HEVC_EVC

115

 VVC H.264

Sl.No QP1
Encoding
time (s)

Bitrate1
(kbits/sec) QP2

Encoding
time (s)

Bitrate2
(kbits/sec)

PSNR
(YUV)

MSSIM
(YUV)

Transcoding
Time (s)

1

10 1936.459 939.0048

10 387.597 362.25 52.725 0.9992 2326.28

2 15 349.96 200.45 49.845 0.9988 2192.77

3 20 328.039 111.22 46.663 0.9982 2052.32

4 25 341.26 60.61 43.365 0.9969 2054.69

5 30 318.798 31.47 40.065 0.9936 2025.83

6 35 330.696 18.45 37.313 0.98847 1988.27

7 40 350.143 11.46 34.781 0.9772 2031.91

8 45 407.88 7.28 33.072 0.9653 2308.83

9 50 382.229 5.15 43.584 0.9399 2074.24

Table 7.15. VVC to H.264 Heterogeneous Bitrate Transcoding using akiyo_qcif sequence

 VVC HEVC

Sl.No QP1
Encoding
time (s)

Bitrate1
(kbits/sec) QP2

Encoding
time (s)

Bitrate2
(kbits/sec)

PSNR
(YUV)

MSSIM
(YUV)

Transcoding
Time (s)

1

10 1936.459 939.0048

10 89.423 1007.3056 53.489 0.999613 1789.17

2 15 73.637 582.6464 50.0427 0.9992043 1772.79

3 20 65.271 364.3168 47.1767 0.998388 1752.46

4 25 59.795 235.984 44.1106 0.996669 1762.66

5 30 53.313 154.1088 40.7168 0.992673 1740.58

6 35 53.022 102.4064 37.3881 0.98617 1730.01

7 40 52.173 69.0496 34.1142 0.975577 1744.83

8 45 51.521 48.1728 31.0671 0.959009 1752.32

9 50 55.023 35.3376 28.2841 0.924517 1795.05

Table 7.16. VVC to HEVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence

 VVC EVC

Sl.No QP1
Encoding
time (s)

Bitrate1
(kbits/sec) QP2

Encoding
time (s)

Bitrate2
(kbits/sec)

PSNR
(YUV)

MSSIM
(YUV)

Transcoding
Time (s)

1

10 1936.459 939.0048

10 731.388 154.1995 53.4656 0.999462 2415.34

2 15 530.338 93.5819 51.05207 0.99922 2183.78

3 20 378.178 59.4811 48.6654 0.99888 2034.03

4 25 377.845 38.6624 45.93787 0.998151 2000.647

5 30 182.813 25.3115 42.89023 0.99649 1912.49

6 35 140.33 16.6661 40.10603 0.992418 1791.84

7 40 112.493 10.9157 37.02683 0.982868 1748.11

8 45 104.261 7.2384 34.17297 0.96048 1728.65

9 50 105.44 4.8635 31.3204 0.914966 1727.69

Table 7.17. VVC to EVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence

116

Figure 7.22. Heterogeneous Bitrate Transcoding from VVC to H.264/HEVC and EVC using akiyo_qcif

sequence

Figure 7.23. Time taken for Heterogeneous Bitrate Transcoding from VVC to H.264/HEVC and EVC using

akiyo_qcif sequence

10 15 20 25 30 35 40 45 50

VVC_Bitrate1 939.0048 939.0048 939.0048 939.0048 939.0048 939.0048 939.0048 939.0048 939.0048

H.264_Bitrate2 362.25 200.45 111.22 60.61 31.47 18.45 11.46 7.28 5.15

HEVC_Bitrate2 1007.3056582.6464 364.3168 235.984 154.1088 102.4064 69.0496 48.1728 35.3376

EVC_Bitrate2 154.1995 93.5819 59.4811 38.6624 25.3115 16.6661 10.9157 7.2384 4.8635

0

200

400

600

800

1000

1200
B

it
ra

te
 (

kb
/s

)

QP

VVC to H.264/HEVC/EVC Bitrate Transcoding

VVC_Bitrate1 H.264_Bitrate2 HEVC_Bitrate2 EVC_Bitrate2

10 15 20 25 30 35 40 45 50

VVC_H.264 2326.28 2192.77 2052.32 2054.69 2025.83 1988.27 2031.91 2308.83 2074.24

VVC_HEVC 1789.17 1772.79 1752.46 1762.66 1740.58 1730.01 1744.83 1752.32 1795.05

VVC_EVC 2415.34 2183.78 2034.03 2000.647 1912.49 1791.84 1748.11 1728.65 1727.69

0

500

1000

1500

2000

2500

3000

Ti
m

e
 T

ak
e

n
 (

s)

QP

Time taken (s) for Bitrate Transcoding from
VVC to H.264/VVC/EVC

VVC_H.264 VVC_HEVC VVC_EVC

117

 EVC H.264

Sl.No QP1
Encoding
time (s)

Bitrate1
(kbits/sec) QP2

Encoding
time (s)

Bitrate2
(kbits/sec)

PSNR
(YUV)

MSSIM
(YUV)

Transcoding
Time (s)

1

10 715.152 157.9253

10 309.116 351.2 53.1797 0.99923 1027.28

2 15 309.384 196.34 50.091 0.9989 1034.17

3 20 305.765 109.43 46.7753 0.9982 1022.64

4 25 308.913 59.66 43.4373 0.9968 1024.58

5 30 309.585 31.37 40.0933 0.9935 1026.53

6 35 317.415 18.42 37.255 0.9882 1028.36

7 40 334.878 11.44 34.7977 0.977133 1050.23

8 45 384.146 7.26 33.0757 0.966166 1094.6

9 50 382.997 5.16 31.6463 0.94037 1129.24

Table 7.18. EVC to H.264 Heterogeneous Bitrate Transcoding using akiyo_qcif sequence

 EVC HEVC

Sl.No QP1
Encoding
time (s)

Bitrate1
(kbits/sec) QP2

Encoding
time (s)

Bitrate2
(kbits/sec)

PSNR
(YUV)

MSSIM
(YUV)

Transcoding
Time (s)

1

10 715.152 157.9253

10 85.744 964.9088 53.7351 0.999643 819.79

2 15 72.567 580.8416 50.3782 0.999259 810.668

3 20 59.158 363.4976 47.3547 0.998433 815.84

4 25 59.501 235.3408 44.2211 0.996703 820.294

5 30 54.989 154.2592 40.8138 0.992761 812.536

6 35 51.527 102.3648 37.422 0.98645 937.475

7 40 50.188 68.9056 34.105 0.97498 778.597

8 45 49.362 48.304 31.0905 0.959838 772.678

9 50 48.678 35.2768 28.2904 0.923841 762.15

Table 7.19. EVC to HEVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence

 EVC VVC

Sl.No QP1
Encoding
time (s)

Bitrate1
(kbits/sec) QP2

Encoding
time (s)

Bitrate2
(kbits/sec)

PSNR
(YUV) MSE (YUV)

Transcoding
Time (s)

1

10 1936.459 939.0048

10 2120.023 922.6432 55.2343 3.1172 2929.03

2 15 1185.33 550.3808 51.651 7.1138 1908.98

3 20 943.138 343.8592 48.5156 14.6434 1691.18

4 25 710.216 225.8656 45.4637 29.5684 1496.42

5 30 552.37 150.7712 42.1973 62.7299 1388.42

6 35 438.974 102.9216 38.9434 132.6956 1200.39

7 40 360.072 72.0384 35.7039 279.7759 1127.13

8 45 281.243 51.6192 32.4376 593.5231 1031.08

9 50 296.761 39.5616 29.3703 1202.7429 1034.19

Table 7.20. EVC to VVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence

118

Figure 7.24. Heterogeneous Bitrate Transcoding from EVC to H.264/HEVC and VVC using akiyo_qcif

sequence

Figure 7.25. Time taken for Heterogeneous Bitrate Transcoding from EVC to H.264/HEVC and VVC using

akiyo_qcif sequence

10 15 20 25 30 35 40 45 50

EVC_Bitrate1 157.9253 157.9253 157.9253 157.9253 157.9253 157.9253 157.9253 157.9253 157.9253

H.264_Bitrate2 351.2 196.34 109.43 59.66 31.37 18.42 11.44 7.26 5.16

HEVC_Bitrate2 964.9088 580.8416 363.4976 235.3408 154.2592 102.3648 68.9056 48.304 35.2768

VVC_Bitrate2 922.6432 550.3808 343.8592 225.8656 150.7712 102.9216 72.0384 51.6192 39.5616

0

200

400

600

800

1000

1200

B
it

ra
te

 (
kb

/s
)

QP

EVC to H.264/HEVC/VVC Bitrate Transcoding

EVC_Bitrate1 H.264_Bitrate2 HEVC_Bitrate2 VVC_Bitrate2

10 15 20 25 30 35 40 45 50

EVC_H.264 1027.28 1034.17 1022.64 1024.58 1026.53 1028.36 1050.23 1094.6 1129.24

EVC_HEVC 819.79 810.668 815.546 820.294 812.536 937.475 778.597 772.678 762.15

EVC_VVC 2929.03 1908.98 1691.18 1496.42 1388.42 1200.39 1127.13 1031.08 1034.19

0
1000
2000
3000
4000

Ti
m

e
 T

ak
e

n
 (

s)

QP

Time taken (s) for Bitrate Transcoding from EVC
to H.264/HEVC/VVC

EVC_H.264 EVC_HEVC EVC_VVC

119

7.6.2. Objective Quality analysis for Homogeneous Bitrate Transcoding – QP variation

Homogeneous bitrate change with QP variation is coded as in Figure 6.6. and results tabulated from Table

7.21. to Table 7.24 and analyzed in Figure 7.26 and Figure 7.27. for a video sequence akiyo_qcif.yuv (raw

video), quantization parameter is kept constant (QP1= 10) at the first codec level. Homogeneous

transcoding at second stage for different QP values (QP2 = 10, 15, 20, 25, 30, 35, 40, 45 and 50) are tested

and corresponding Bitrate2 values are noted. I was observed that for a constant Bitrate1 at stage 1, the

Bitrate2 decreased with increase in QP value and Bitrate2 increased with decrease in QP value at stage 2.

H.264 H.264

QP1
Bitrate1

(kbits/sec) QP2
Bitrate2

(kbits/sec)
PSNR
(YUV)

Transcoding
Time (s)

10 2053.05

10 404 61.053 1091.87

15 213 49.791 1052.56

20 111.57 46.549 993.15

25 59.93 43.333 729.31

30 31.38 40.067 650.492

35 18.37 37.251 672.188

40 11.48 34.831 707.719

45 7.25 32.992 668.476

50 5.18 31.638 688.549

Table 7.21. H.264 to H.264 Homogeneous Bitrate Transcoding using akiyo_qcif sequence

HEVC HEVC

QP1
Bitrate1

(kbits/sec) QP2
Bitrate2

(kbits/sec)
PSNR
(YUV)

Transcoding
Time (s)

10 1051.2256

10 1032.95 61.43 179.703

15 583.39 50.3749 162.037

20 364.2752 47.2429 150.237

25 235.1072 44.1169 145.669

30 154.6912 40.7603 141.493

35 102.672 37.4108 140.926

40 69.248 34.1173 140.361

45 48.179 31.0407 139.3

50 35.408 28.3067 138.546

Table 7.22. HEVC to HEVC Homogeneous Bitrate Transcoding using akiyo_qcif sequence

120

VVC VVC

QP1
Bitrate1

(kbits/sec) QP2
Bitrate2

(kbits/sec)
PSNR
(YUV)

Transcoding
Time (s)

10 939.005

10 917.129 56.4621 3223.4

15 543.107 51.6116 2901.31

20 344.5728 48.4937 2572.79

25 225.3184 45.4283 2373.23

30 151.0304 42.1947 2201.96

35 103.1392 38.9641 2096.95

40 72.1312 35.732 2181.26

45 51.7056 32.4129 1988.83

50 39.5424 29.3488 2012.41

Table 7.23. VVC to VVC Homogeneous Bitrate Transcoding using akiyo_qcif sequence

EVC EVC

QP1
Bitrate1

(kbits/sec) QP2
Bitrate2

(kbits/sec)
PSNR
(YUV)

Transcoding
Time (s)

10 157.9253

10 152.7099 55.2274 1398.73

15 94.0133 51.6547 1308.9

20 59.3957 48.91743 1159.42

25 38.5867 46.04373 1058.91

30 25.2635 42.94913 959.242

35 16.6693 40.1439 916.423

40 10.8901 37.124466 887.878

45 7.2821 34.249833 881.735

50 4.8683 31.438 861.95

Table 7.24. EVC to EVC Homogeneous Bitrate Transcoding using akiyo_qcif sequence

From Figure 7.26, it was observed that the bitrate2 at second stage of the transcoding pipeline

reduced with increase in QP value from 10 to 50. This characteristic was observed for all the four codec

(H.264, HEVC, VVC and EVC) homogeneous bitrate change for QP variation using akiyo_qcif content.

Figure 7.27 showed the time taken for homogeneous bitrate transcoding using QP variation. It was evident

from the graph that VVC took more time to transcode followed by EVC, H.264 and then HEVC.

121

Figure 7.26. Homogeneous Bitrate Transcoding for H.264/HEVC/VVC and EVC using akiyo_qcif

sequence

Figure 7.27. Time taken for Homogeneous Bitrate Transcoding for H.264/HEVC/VVC and EVC using

akiyo_qcif sequence

10 15 20 25 30 35 40 45 50

H.264_H.264 404 213 111.57 59.93 31.38 18.37 11.48 7.25 5.18

HEVC_HEVC 1032.95 583.39 364.2752 235.1072 154.6912 102.672 69.248 48.179 35.408

VVC_VVC 917.129 543.107 344.5728 225.3184 151.0304 103.1392 72.1312 51.7056 39.5424

EVC_EVC 152.7099 94.0133 59.3957 38.5867 25.2635 16.6693 10.8901 7.2821 4.8683

0

200

400

600

800

1000

1200

B
it

ra
te

 (
kb

/s
)

QP

H.264/HEVC/VVC and EVC Homogeneous
Bitrate Transcoding

10 15 20 25 30 35 40 45 50

H264_H264 1091.87 1052.56 993.15 729.31 650.492 672.188 707.719 668.476 688.549

HEVC_HEVC 179.703 162.037 150.237 145.669 141.493 140.926 140.361 139.3 138.546

VVC_VVC 3223.4 2901.31 2572.79 2373.23 2201.96 2096.95 2181.26 1988.83 2012.41

EVC_EVC 1398.73 1308.9 1159.42 1058.91 959.242 916.423 887.878 881.735 861.95

0
500

1000
1500
2000
2500
3000
3500

Ti
m

e
 T

ak
e

n
 (

s)

QP

Time taken (s) for Homogeneous Bitrate
Transcoding for H.264, HEVC, VVC and EVC

122

7.6.3. Objective Quality analysis for Homogeneous Bitrate Transcoding – Framerate variation

Homogeneous bitrate change with frame rate variation is coded as in Figure 6.7. and results tabulated in

Table 7.25. Here the framerate at the first block is Framerate1 and second block is Framerate2.

Simultaneously, the Bitrate at the first block of transcoding is Bitrate1 and second block is Bitrate2. The

compressed output at the first block is Compressed output1 and second block is Compressed output2.

Video
Transcoding

Frame
Rate1

Frame
Rate2

Bitrate 1
(kb/s)

Bitrate 2
(kb/s)

PSNR
(dB)

SSIM

Time
taken

to
encode

(s)

Compressed
Output1

(kB)

Compressed
Output2

(kB)

H264_H264

20

20 418.61 694.39 72.591 1 1748.86 752 1272

40 418.61 1388.79 72.591 1 1682.81 752 1272

60 418.61 2083.18 72.591 1 634.699 752 1272

80 418.61 2777.58 72.591 1 730.182 752 1272

100

20 2053.05 694.39 72.591 1 665.928 752 1272

40 2053.05 1388.79 72.591 1 914.408 752 1272

60 2053.05 2083.18 72.591 1 1013.93 752 1272

80 2053.05 2777.58 72.591 1 720.419 752 1272

HEVC_HEVC

20

20 658.1024 654.2 75.03 1 381.034 1206 1198

40 658.1024 1308.41 75.03 1 359.705 1206 1198

60 658.1024 1962.614 75.03 1 356.496 1206 1198

80 658.1024 2616.82 75.03 1 391.468 1206 1198

100

20 3290.512 654.2 75.03 1 350.726 1206 1198

40 3290.512 1308.41 75.03 1 352.791 1206 1198

60 3290.512 1962.614 75.03 1 352.572 1206 1198

80 3290.512 2616.82 75.03 1 356.176 1206 1198

VVC_VVC

20

20 576.54 567.27 61.34 1 7045.8 1056 1039

40 576.54 1134.55 61.34 1 6805.6 1056 1039

60 576.54 1701.82 61.34 1 6764.47 1056 1039

80 576.54 2269.1 61.34 1 6885.53 1056 1039

100

20 2882.704 567.2736 61.34 1 6899.39 1056 1039

40 2882.704 1134.55 61.34 1 6999.85 1056 1039

60 2882.704 1701.82 61.34 1 6933.82 1056 1039

80 2882.704 2269.09 61.34 1 6933.36 1056 1039

EVC_EVC

20

20 499.0133 505.72 57.34 1 3625.72 914 926

40 499.0133 1011.44 57.34 1 3548.55 914 926

60 499.0133 1517.15 57.34 1 3611.6 914 926

80 499.0133 2022.87 57.34 1 3600.76 914 926

100

20 2495.07 505.72 57.34 1 3621.16 914 926

40 2495.07 1011.44 57.34 1 3598.93 914 926

60 2495.07 1517.15 57.34 1 3830.2 914 926

80 2495.07 2022.87 57.34 1 3736.53 914 926

Table 7.25. Homogeneous Bitrate Transcoding using framerate variation

123

Figure 7.28. Homogeneous bitrate change with framerate variation.

 It is very evident from the graph in Figure 7.28. that the bitrate2 increases with increase in

framerate. The compression size of the output video remains the same with increase in framerate but the

time taken to encode reduces with increase in framerate. This is one of the main characteristics of framerate

variation. We also observe that the PSNR and SSIM remains same and is maximum as quantization

parameter here is kept to zero. This same characteristic is observed for all four codec (H.264, HEVC, VVC

and EVC) change.

7.7. Results of Objective 4: Develop an automated versatile application of Transcoding H.264, HEVC,

VVC and EVC for format change and bitrate variation (QP and framerate change)

The automated application was coded and tested accordingly as seen in Appendix 1 and Appendix 2.

20 40 60 80

H264_H264_Bitrate2 694.39 1388.79 2083.18 2777.58

HEVC_HEVC_Bitrate2 654.2 1308.41 1962.614 2616.82

VVC_VVC_Bitrate2 567.27 1134.55 1701.82 2269.1

EVC_EVC_Bitrate2 505.72 1011.44 1517.15 2022.87

0

500

1000

1500

2000

2500

3000
B

it
ra

te
2

 (
kb

/s
)

Framerate (frames/s)

Homogeneous bitrate change

H264_H264_Bitrate2 HEVC_HEVC_Bitrate2

VVC_VVC_Bitrate2 EVC_EVC_Bitrate2

124

 Conclusion and Future

Work

Transcoding is one of the main applications in wireless and video communication. This application is always

in demand untill there is code developments of new video codecs ongoing. The VVC (Versatile Video

Coding) and EVC (Essential Video Coding) being the next generation video codecs was the main focus

point as the codecs brings in a lot of application uses along with its additional algorithmic development.

Since VVC and EVC are still not out in the market, there is a lot of scope in transcoding other codecs to

VVC/EVC and vice versa. All these video codecs are open source other than EVC, and used by the industry

standards, it is advantages to choose them as the main codec. The complexity of VVC and EVC were also

proved to be high, hence opens up avenues for research in reducing the complexity of the codec algorithms.

Other applications like multiplexing, video on demand, internet video can also be developed using these

new codecs. Along with heterogeneous functionality, homogeneous properties like bitrate change and

frame rate changes were also tested which are the main features for wireless communication. Each of these

functionalities were divided into 3 different objectives and the conclusion for the same is provided in the

next session. The objective 4 gives the automated application which is presented during the demonstration

of the thesis.

8.1. Conclusion of Objective 1: Codec comparative analysis

The codec analysis using the three methods of verification (Objective analysis, RD method and Subjective

analysis) concluded by providing the same results in terms of codec performance with respect to four codec

software implementations. The testing verified that VVC showed better bitrate savings for the encoded bit

sequence, that is 30% – 50% better when compared to HEVC codecs keeping the video quality constant.

This is due to the VVC having progressive block implementations when compared to the other codecs, like

having twice the block structure when compared to EVC which increases the compression rate, hence

reduces the bitrate for the same QP. EVC showed 10% – 30% better bitrate savings when compared to

HEVC keeping the video quality constant. This is because of EVC having twice the maximum block size

125

when compared to HEVC. HEVC providing 50% better bitrate savings than H.264 for same output video

quality was already proved in the research papers [68] and hence was also verified in this thesis.

Complexity of the codec is another domain which opens for research to improve the codec time

performance. VVC as the codec with software version 10.0 showed more time to encode the sequence

when compared to EVC, HEVC and H.264. The time taken was almost double the time taken for EVC to

encode a 4K resolution video. This is also due to the intra prediction modes in VVC being maximum which

is 89 when compared to EVC which is 30, HEVC which is 35 and H.264 which is 9. This opens for avenues

in research in reducing the complexity of the codec.

8.2. Conclusion of Objective 2: Heterogeneous Transcoding

Format change between H.264, HEVC, VVC and EVC is known as heterogeneous transcoding which was

developed and tested for QP = 10 and GOP=15. The transcoded bitstream of the transcoder for VVC to

HEVC and HEVC to VVC showed better PSNR and SSIM value, as it was proved in objective 1, as VVC

was a better codec with better output results when compared to EVC, HEVC and H.264. So, any codec

shift which involved VVC showed better output results and more compression size. It was also noted in

objective 1 that time taken to encode VVC and EVC was maximum, like VVC taking two times more time

than EVC and EVC 1/3 time more than HEVC for its encoding. The same was observed in heterogeneous

transcoding with time taken for VVC and EVC was maximum, hence its combination in transcoding showed

maximum time. Any transcoding combination with respect to H.264 showed least time to transcode. This is

due to the complexity increment in codec in the ascending order as H.264, HEVC, EVC and VVC. Hence

when the codec is more complex, more time is taken to encode a sequence using that codec.

Hence can be concluded that any video communication application required to transmit any data

with more compression having less bandwidth availability can use heterogeneous transcoding from any

codec to VVC. The time taken for transcoding this combination is also more but can be ignored if the output

video quality is important along with more compression rate. This is more effective for higher data videos

like 4K and 8K videos.

126

8.3. Conclusion of Objective 3: Bitrate Homogeneous/Heterogeneous Transcoding

Heterogeneous / Homogeneous Transcoding of H.264, HEVC, VVC and EVC video codecs for bitrate

changes using cascaded decoder-encoder pixel transcoding architecture for QP variation and frame rate

variation, results showed very good output quality video. Heterogeneous transcoding for bitrate change

using QP variation in the second codec in the transcoding pipeline, showed very good PSNR and SSIM

output values for the first codec QP =10 in the transcoding pipeline. The PSNR value was almost equal to

50.5dB and SSIM value equal to 0.999863 which is almost lossless output values. It was also observed

that when QP increases in the second codec in the pipeline, the bitrate decreases, hence achieving better

compression rate with good PSNR and SSIM value. It was also observed that when QP decreases in the

second codec in the pipeline, the bitrate increases, hence reducing the compression rate but the PSNR

and SSIM value remained good.

 Homogeneous transcoding for bitrate change using framerate variation in the second codec in the

transcoding pipeline, showed stable PSNR and SSIM value with variation in the bitrate for the first and

second codec QP = 0 in the transcoding pipeline. It was observed that when frame rate increases in the

second codec in the pipeline, bitrate decreases and when framerate decreases in the second codec in the

pipeline, bitrate increases. Here compression rate remained constant for framerate variation. Bitrate

variable is directly proportional to time taken to transcode, hence it was observed that when bitrate reduces,

time taken for bitrate transcoding decreases and when bitrate increases, time taken for bitrate transcoding

increases.

Hence can be concluded that any video communication application required to transmit any data

quick with less bitrate, can use heterogeneous transcoding with QP variation, for higher QP value, as time

taken is low and homogeneous transcoding with framerate variation, for lower framerate value, as time

taken for transcoding is less.

127

REFERENCES

[1] Sayood, K., 2002. Lossless compression handbook. Elsevier.

[2] Goyal, V.K., Fletcher, A.K. and Rangan, S., 2008. Compressive sampling and lossy

compression. IEEE Signal Processing Magazine, 25(2), pp.48-56.

[3] Pan, Z., Qin, H., Yi, X., Zheng, Y. and Khan, A., 2019. Low complexity versatile video coding for

traffic surveillance system. International Journal of Sensor Networks, 30(2), pp.116-125.

[4] Mayer, R.E., 2002. Multimedia learning. In Psychology of learning and motivation (Vol. 41, pp. 85-

139). Academic Press.

[5] Ebrahimi, T. and Kunt, M., 1998. Visual data compression for multimedia applications. Proceedings

of the IEEE, 86(6), pp.1109-1125.

[6] Wu, T.B. and Rao, K.R., 1982. Digital TV Receiver for NTSC Color TV Signals with Dual Word-

Length DPCM Coding. IEEE Transactions on Broadcasting, (1), pp.20-24.

[7] Wu, T.B. and Rao, K.R., 1982. Digital TV Receiver for NTSC Color TV Signals with Dual Word-

Length DPCM Coding. IEEE Transactions on Broadcasting, (1), pp.20-24.

[8] Bankoski, J., Wilkins, P. and Xu, Y., 2011, July. Technical overview of VP8, an open source video

codec for the web. In 2011 IEEE International Conference on Multimedia and Expo(pp. 1-6). IEEE.

[9] Ghanbari, M., 1992. An adapted H. 261 two-layer video codec for ATM networks. IEEE

Transactions on Communications, 40(9), pp.1481-1490.

[10] Hanzo, L., Cherriman, P. and Streit, J., 2007. Video Compression and Communications.: From

Basics to H. 261, H. 263, H. 264, MPEG4 for DVB and HSDPA-Style Adaptive Turbo-Transceivers.

John Wiley & Sons.

[11] Sullivan, G.J., Ohm, J.R., Han, W.J. and Wiegand, T., 2012. Overview of the high efficiency video

coding (HEVC) standard. IEEE Transactions on circuits and systems for video technology, 22(12),

pp.1649-1668.

[12] Chang, H.C., Chen, L.G., Hsu, M.Y. and Chang, Y.C., 2000, May. Performance analysis and

architecture evaluation of MPEG-4 video codec system. In 2000 IEEE International Symposium on

128

Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.

00CH36353)(Vol. 2, pp. 449-452). IEEE.

[13] Shi, C. and Bhargava, B., 1998, October. An efficient MPEG video encryption algorithm.

In Proceedings Seventeenth IEEE Symposium on Reliable Distributed Systems (Cat. No.

98CB36281) (pp. 381-386). IEEE.

[14] Mukherjee, D., Han, J., Bankoski, J., Bultje, R., Grange, A., Koleszar, J., Wilkins, P. and Xu, Y.,

2013, October. A technical overview of vp9–the latest open-source video codec. In SMPTE 2013

Annual Technical Conference & Exhibition (pp. 1-17). SMPTE.

[15] Kufa, J. and Kratochvil, T., 2015, April. Comparison of H. 265 and VP9 coding efficiency for full

HDTV and ultra HDTV applications. In 2015 25th International Conference Radioelektronika

(RADIOELEKTRONIKA) (pp. 168-171). IEEE.

[16] Topiwala, P., Krishnan, M. and Dai, W., 2018, September. Performance comparison of VVC, AV1,

and HEVC on 8-bit and 10-bit content. In Applications of Digital Image Processing XLI (Vol. 10752,

p. 107520V). International Society for Optics and Photonics.

[17] Abdoli, M., Henry, F., Brault, P., Duhamel, P. and Dufaux, F., 2018. Short-distance intra prediction

of screen content in versatile video coding (VVC). IEEE Signal Processing Letters, 25(11),

pp.1690-1694.

[18] Chen, Y., Murherjee, D., Han, J., Grange, A., Xu, Y., Liu, Z., Parker, S., Chen, C., Su, H., Joshi, U.

and Chiang, C.H., 2018, June. An overview of core coding tools in the AV1 video codec. In 2018

Picture Coding Symposium (PCS) (pp. 41-45). IEEE.

[19] Grois, D., Nguyen, T. and Marpe, D., 2018, February. Performance comparison of AV1, JEM, VP9,

and HEVC encoders. In Applications of Digital Image Processing XL (Vol. 10396, p. 103960L).

International Society for Optics and Photonics.

[20] D.N. Kim and K.R. Rao, “Current Video Coding Standards: H.264/AVC, Dirac, AVS China and VC-

1’, Current developments in theory and applications of computer science, engineering and

technology, vol. 1, pp. 67-94, 2010.

[21] Advanced video coding for generic audiovisual services, ITU-T Rec. H.264 / ISO / IEC 14496-10,

Nov. 2009.

129

[22] H.263 basics Website link : http://en.wikipedia.org/wiki/H.263

[23] G. Sullivan, P. Topiwala and A. Luthra, ―The H.264/AVC advanced video coding standard:

Overview and introduction to the fidelity range extensions‖, SPIE conference on Applications of

Digital Image Processing XXVII, vol. 5558, pp. 53-74, Aug. 2004.

[24] Open source article, ―H.264/MPEG-4 AVC,‖ Wikipedia Foundation,

http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC

[25] T. Wiegand and G. J. Sullivan, ―The H.264 video coding standard‖, IEEE Signal Processing

Magazine, vol. 24, pp. 148-153, March 2007.

[26] Ramzan, N., Pervez, Z. and Amira, A., 2014, December. Quality of experience evaluation of H.

265/MPEG-HEVC and VP9 comparison efficiency. In 2014 26th International Conference on

Microelectronics (ICM) (pp. 220-223). IEEE.

[27] Bankoski, J., Bultje, R.S., Grange, A., Gu, Q., Han, J., Koleszar, J., Mukherjee, D., Wilkins, P. and

Xu, Y., 2013, February. Towards a next generation open-source video codec. In Visual Information

Processing and Communication IV (Vol. 8666, p. 866606). International Society for Optics and

Photonics.

[28] Kim, I.K., Lee, S., Piao, Y. and Chen, J., 2014, July. Coding efficiency comparison of new video

coding standards: HEVC vs VP9 vs AVS2 video. In 2014 IEEE International Conference on

Multimedia and Expo Workshops (ICMEW) (pp. 1-6). IEEE.

[29] Chen, Y., Murherjee, D., Han, J., Grange, A., Xu, Y., Liu, Z., Parker, S., Chen, C., Su, H., Joshi, U.

and Chiang, C.H., 2018, June. An overview of core coding tools in the AV1 video codec. In 2018

Picture Coding Symposium (PCS) (pp. 41-45). IEEE.

[30] T. Wiegand et al, ―Overview of the H.264/AVC video coding standard‖, IEEE Trans. on Circuits

and Systems for Video Technology, vol. 13, pp. 560-576, Jul. 2003.

[31] C. Deng et al, ―Performance analysis, parameter selection and extensions to H.264/AVC FRExt

for high resolution video coding‖, J. Vis. Commun. Image R., vol. 22 (In Press), Available on line,

Feb. 2011.

http://en.wikipedia.org/wiki/H.263

130

[32] Z.Wang, E.P.Simoncelli and A.C.Bovik, ―Multi-scale structural similarity for image quality

assessment‖, Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, vol. 2,

Nov. 2003.

[33] I. E.G. Richardson, ―H.264 and MPEG-4 video compression: video coding for next-generation

multimedia‖, Wiley, 2003.

[34] D. Marpe, T. Wiegand and G. J. Sullivan, ―The H.264/MPEG-4 AVC standard and its

applications‖, IEEE Communications Magazine, vol. 44, pp. 134-143, Aug. 2006.

[35] J. Boyce et al. "Draft high efficiency video coding (HEVC) version 2, combined format range

extensions (RExt), scalability (SHVC), and multi-view (MV-HEVC) extensions", JCT-VC, July 11,

2014.

[36] HEVC white paper: http://www.ateme.com/an-introduction-to-uhdtv-and-hevc

[37] G.J. Sullivan et al, ―Standardized Extensions of High Efficiency Video Coding (HEVC)‖, IEEE

Journal of selected topics in Signal Processing, vol. 7, no. 6, pp. 1001-1016, Dec. 2013.

[38] K. Iguchi et al, ―HEVC Encoder for Super Hi-Vision‖, 2014 IEEE International conference on

Consumer Electronics (ICCE), pp. 61-62, 2014.

[39] K.R. Rao and J.J. Hwang, ―Techniques and standards for image/video/audio coding,‖ Prentice-

Hall, 1996.

[40] HEVC tutorial by I.E.G. Richardson: http://www.vcodex.com/h265.html

[41] Moto, ―HEVC - What are CTU, CU, CTB, CB, PB and TB?‖ CODE: Sequoia, worgpress.com site,

blog. [online]. Available: http://codesequoia.wordpress.com/2012/10/28/hevc-ctu-cu-ctb-cb-pb-

and-tb/ (accessed on August 9th 2020).

[42] S. Riabstev, ― Detailed overview of HEVC/H.265‖, [online]. Available:

https://app.box.com/s/rxxxzr1a1lnh7709yvih (accessed on August 9th 2020).

[43] I.K. Kim et al, ―Block partitioning structure in the HEVC standard, IEEE Trans. on Circuits and

Systems for Video Technology, vol. 22, pp. 1697-1706, Dec. 2012.

[44] M.T. Pourazad et al, ―HEVC: The new gold standard for video compression,‖ IEEE CE Magazine,

pp. 36-46, vol. 1, issue 3, July 2012.

131

[45] F. Bossen et al, ―HEVC Complexity and Implementation Analysis‖, IEEE Trans. on Circuits and

Systems for Video Technology, vol. 22, no. 12, pp. 1685-1696, Dec. 2012.

[46] M.T. Pourazad et al, ―HEVC: The new gold standard for video compression,‖ IEEE CE Magazine,

pp. 36-46, vol. 1, issue 3, July 2012.

[47] S. Vasudevan and K.R. Rao, ―Combination method of fast HEVC encoding,‖ IEEE ECTICON

2014, Korat, Thailand, May 2014.

[48] S. Lui et al, ―Video Prediction Block Structure and the Emerging High Efficiency Video Coding

Standard‖, IEEE proceedings on Signal & Information Processing Association Annual Summit and

Conference (APSIPA ASC), 2012 Asia-Pacific, pp. 1-4, 2012.

[49] I.G. Kim et al., High Efficiency Video Coding (HEVC) Test Model 15 (HM15) Encoder Description,

JCTVC-Q1002, April 2014.

[50] K. McCann et al, ―HM9: High Efficiency Video Coding (HEVC) Test Model 9 Encoder Description‖,

ITU-T/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC) document JCTVC-K1002v2,

Oct. 2012.

[51] J. Chen, J. Boyce, Y. Ye, and M. M. Hannuksela, ―Scalable high efficiency video coding draft 3,‖

in Joint Collaborative Team on Video Coding (JCT-VC) Document JCTVC-N1008, 14th Meeting:

Vienna, Austria, July 25–Aug. 2 2013.

[52] Vetro, A., Christopoulos, C. and Sun, H., 2003. Video transcoding architectures and techniques:

an overview. IEEE Signal processing magazine, 20(2), pp.18-29.

[53] Xin, J., Lin, C.W. and Sun, M.T., 2005. Digital video transcoding. Proceedings of the IEEE, 93(1),

pp.84-97.

[54] Sharma, S. and Rao, K.R., 2007, October. Transcoding of H. 264 bitstream to MPEG-2 bitstream.

In 2007 Asia-Pacific Conference on Communications (pp. 391-396). IEEE.

[55] Ahmad, I., Wei, X., Sun, Y. and Zhang, Y.Q., 2005. Video transcoding: an overview of various

techniques and research issues. IEEE Transactions on multimedia, 7(5), pp.793-804.

[56] Topiwala, P., Krishnan, M. and Dai, W., 2019, September. Performance comparison of VVC, AV1

and EVC. In Applications of Digital Image Processing XLII (Vol. 11137, p. 1113715). International

Society for Optics and Photonics.

132

[57] JM Software: https://github.com/shihuade/JM.git

[58] HM Software: https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/trunk/

[59] VTM Software: https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM.git

[60] ETM Software: https://gitlab.com/MPEG-5/ETM

[61] Hore, A. and Ziou, D., 2010, August. Image quality metrics: PSNR vs. SSIM. In 2010 20th

International Conference on Pattern Recognition (pp. 2366-2369). IEEE.

[62] Thorpe, S., Fize, D. and Marlot, C., 1996. Speed of processing in the human visual

system. nature, 381(6582), pp.520-522.

[63] Panetta, K.A., Wharton, E.J. and Agaian, S.S., 2008. Human visual system-based image

enhancement and logarithmic contrast measure. IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), 38(1), pp.174-188.

[64] Test videos found at: https://media.xiph.org/video/derf/

[65] Test videos found at: http://ultravideo.cs.tut.fi/#testsequences

[66] Abdoli, M., Henry, F., Brault, P., Dufaux, F. and Duhamel, P., 2019, May. Transform Coefficient

Coding for Screen Content in Versatile Video Coding (VVC). In ICASSP 2019-2019 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1792-1796).

IEEE.

[67] Choi, K., Park, M.W., Choi, K.P., Park, J., Chen, J., Wang, Y.K., Chernyak, R., Ikonin, S.,

Rusanovskyy, D., Chien, W.J. and Seregin, V., 2019, September. MPEG-5: essential video coding

standard. In Applications of Digital Image Processing XLII (Vol. 11137, p. 1113710). International

Society for Optics and Photonics.

[68] Ohm, J.R., Sullivan, G.J., Schwarz, H., Tan, T.K. and Wiegand, T., 2012. Comparison of the coding

efficiency of video coding standards—including high efficiency video coding (HEVC). IEEE

Transactions on circuits and systems for video technology, 22(12), pp.1669-1684.

[69] Wiegand, T., Sullivan, G.J., Bjontegaard, G. and Luthra, A., 2003. Overview of the H. 264/AVC

video coding standard. IEEE Transactions on circuits and systems for video technology, 13(7),

pp.560-576.

[70] H.264/MPEG-4 AVC: https://en.wikipedia.org/wiki/H.264%2FMPEG-4_AVC

https://github.com/shihuade/JM.git
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/trunk/
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM.git
https://gitlab.com/MPEG-5/ETM
https://media.xiph.org/video/derf/
http://ultravideo.cs.tut.fi/#testsequences
https://en.wikipedia.org/wiki/H.264%2FMPEG-4_AVC

133

[71] Wang, S., Zhang, X., Wang, S., Ma, S. and Gao, W., 2019, March. Adaptive Wavelet Domain Filter

for Versatile Video Coding (VVC). In 2019 Data Compression Conference (DCC) (pp. 73-82). IEEE.

[72] Fu, T., Zhang, H., Mu, F. and Chen, H., 2019, July. Fast CU Partitioning Algorithm for H. 266/VVC

Intra-Frame Coding. In 2019 IEEE International Conference on Multimedia and Expo (ICME) (pp.

55-60). IEEE.

[73] Do, J., Park, D., Kim, J.G. and Jeong, D.G., 2018, October. Block-shape adaptive inter prediction

candidate list in Versatile Video Coding. In TENCON 2018-2018 IEEE Region 10 Conference (pp.

0215-0218). IEEE.

[74] Sun, Y.C., Lou, J., Chao, Y.H., Wang, H., Seregin, V. and Karczewicz, M., 2019, March. Analysis

of Palette Mode on Versatile Video Coding. In 2019 IEEE Conference on Multimedia Information

Processing and Retrieval (MIPR) (pp. 455-458). IEEE.

[75] Zhang, F., Feng, C. and Bull, D.R., 2020, July. Enhancing VVC through CNN-based Post-

Processing. In 2020 IEEE International Conference on Multimedia and Expo (ICME) (pp. 1-6).

IEEE.

[76] Cho, S., Kim, D.W. and Jung, S.W., 2020. Quality enhancement of VVC intra-frame coding for

multimedia services over the Internet. International Journal of Distributed Sensor Networks, 16(5),

p.1550147720917647.

[77] Li, T., Xu, M. and Tang, R., 2020. DeepQTMT: A Deep Learning Approach for Fast QTMT-based

CU Partition of Intra-mode VVC. arXiv preprint arXiv:2006.13125.

[78] Tang, M., Chen, X., Wen, J. and Han, Y., 2018. Hadamard Transform-Based Optimized HEVC

Video Coding. IEEE Transactions on Circuits and Systems for Video Technology, 29(3), pp.827-

839.

[79] Nakamura, K., Omori, Y., Kobayashi, D., Osawa, T., Onishi, T., Nitta, K., Iwasaki, H. and Shimizu,

A., 2019, April. Low Delay 4K 120fps HEVC Decoder with Parallel Processing Architecture. In 2019

IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS) (pp. 1-3). IEEE.

[80] Abolfathi, R., Roodaki, H. and Shirmohammadi, S., 2019, February. A Novel Rate Control Method

for Free-viewpoint Video in MV-HEVC. In 2019 International Conference on Computing,

Networking and Communications (ICNC) (pp. 582-587). IEEE.

134

[81] Chen, Y., Yu, L., Li, T., Wang, H. and Wang, S., 2019, March. Fast CU Size Decision Based on

AQ-CNN for Depth Intra Coding in 3D-HEVC. In 2019 Data Compression Conference (DCC) (pp.

561-561). IEEE.

[82] Sakamoto, Y., Yokoyama, R., Takeuchi, M., Matsuo, Y. and Katto, J., 2019, January. Improvement

of H. 265/HEVC Encoding for 8K UHDTV by GOP Size and Prediction Mode Selection. In 2019

IEEE International Conference on Consumer Electronics (ICCE) (pp. 1-2).

[83] Guan, X., Dong, X., Zhang, M. and Liu, Z., 2019, March. Fast Early Termination of CU Partition

and Mode Selection Algorithm for Virtual Reality Video in HEVC. In 2019 Data Compression

Conference (DCC) (pp. 576-576). IEEE.

[84] Xu, J., Xu, M., Wei, Y., Wang, Z. and Guan, Z., 2018. Fast H. 264 to HEVC Transcoding: A Deep

Learning Method. (pp. 1633 – 1645), Vol.21, IEEE Transactions on Multimedia.

[85] Ochoa-Dominguez H. and K. R. Rao, 2019: Versatile video coding, River publishers.

[86] Azgin, H., Mert, A.C., Kalali, E. and Hamzaoglu, I., 2018, August. A Reconfigurable Fractional

Interpolation Hardware for VVC Motion Compensation. In 2018 21st Euromicro Conference on

Digital System Design (DSD) (pp. 99-103). IEEE.

[87] CanMert, A., Kalali, E. and Hamzaoglu, I., 2018, October. A Low Power Versatile Video Coding

(VVC) Fractional Interpolation Hardware. In 2018 Conference on Design and Architectures for

Signal and Image Processing (DASIP) (pp. 43-47). IEEE.

[88] Fu, T., Zhang, H., Mu, F. and Chen, H., 2019, July. Two-Stage Fast Multiple Transform Selection

Algorithm for VVC Intra Coding. In 2019 IEEE International Conference on Multimedia and Expo

(ICME) (pp. 61-66). IEEE.

[89] Venugopal, G., Helle, P., Mueller, K., Marpe, D. and Wiegand, T., 2019, March. Hardware-Friendly

Intra Region-Based Template Matching for VVC. In 2019 Data Compression Conference

(DCC) (pp. 606-606). IEEE.

[90] Fan, K., Wang, R., Lin, W., Hou, J.U., Duan, L., Li, G. and Gao, W., 2019, March. Separable KLT

for Intra Coding in Versatile Video Coding (VVC). In 2019 Data Compression Conference

(DCC) (pp. 571-571). IEEE.

135

[91] Abdoli, M., Henry, F., Brault, P., Dufaux, F. and Duhamel, P., 2019, May. Transform Coefficient

Coding for Screen Content in Versatile Video Coding (VVC). In ICASSP 2019-2019 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1792-1796).

IEEE.

[92] Azgin, H., Mert, A.C., Kalali, E. and Hamzaoglu, I., 2018, August. A Reconfigurable Fractional

Interpolation Hardware for VVC Motion Compensation. In 2018 21st Euromicro Conference on

Digital System Design (DSD) (pp. 99-103). IEEE.

[93] S. Park and K.R. Rao, “Bit-Depth Scalable Video Coding Based on H.264/AVC”, IEICE Trans. vol.

E91-A, pp.1541-1544, June 2008.

[94] S. Park and K.R. Rao, “Hybrid scalable video codec for bit-depth scalability”, J. of Optical

Engineering, vol. 48, No.1, Jan. 2009.

[95] Rao, K.R., 2007. Sequence mirroring properties of orthogonal transforms having even and odd

symmetric vectors.

[96] Kim, D.N. and Rao, K.R., 2008. Two-dimensional discrete sine transform scheme for image

mirroring and rotation. Journal of Electronic Imaging, 17(1), p.013011.

[97] Yadav, H. and Rao, K.R., 2006, October. Optimization of the deblocking filter in H. 264 codec for

real time implementation. In 2006 International Symposium on Communications and Information

Technologies (pp. 932-936). IEEE.

[98] R. Pereira, K.R. Rao and A. Kruafak, “Efficient transcoding of an MPEG-2 bit stream to an H.264

bit stream”, University Scientific Journal series, Telecommunications and Electronics, Poland, pp.

5-38, 2008.

[99] FFmpeg software and official website: www.ffmpeg.org

[100] Zeng, B. and Fu, J., 2008. Directional discrete cosine transforms—A new framework for image

coding. IEEE transactions on circuits and systems for video technology, 18(3), pp.305-313.

[101] Li, R., Zeng, B. and Liou, M.L., 1994. A new three-step search algorithm for block motion

estimation. IEEE transactions on circuits and systems for video technology, 4(4), pp.438-442.

[102] Said, A. and Pearlman, W.A., 1996. An image multiresolution representation for lossless and

lossy compression. methods, 1, p.20.

http://www.ffmpeg.org/

136

[103] Richardson, I.E., 2004. H. 264 and MPEG-4 video compression: video coding for next-

generation multimedia. John Wiley & Sons.

[104] ISO Website: https://www.iso.org/home.html

[105] ITU-T Website: https://www.itu.int/en/ITU-T/Pages/default.aspx

[106] IEC Website: https://www.iec.ch/

https://www.iso.org/home.html
https://www.itu.int/en/ITU-T/Pages/default.aspx
https://www.iec.ch/

137

BIOGRAPHICAL STATEMENT

Ms. Shreyanka Subbarayappa is currently working as an Assistant Professor in the

Department of Electronics and Communication Engineering at one of the reputed

universities in India, Ramaiah University of Applied Sciences, Bangalore from 2018. Prior

to this, she has had 9+ years of research and industry experience, working for Intel

Corporation in US, UK and India as a Team Lead in the graphics driver development for

Windows, Linux and Android operating systems. She was appointed as an ‘expert

consultant’ for patent litigation cases by Google LLC team, U.S.A. from September 2019

to December 2019.

Shreyanka Subbarayappa received B.E. degree in Telecommunication

Engineering from Ramaiah Institute of Technology, Bangalore, India in 2009. She received

M.S. degree in Electrical Engineering from The University of Texas at Arlington, Texas,

U.S.A. in 2012. She is currently working towards her Ph.D. degree from University of Texas

at Arlington, Texas, U.S.A. and Ramaiah University of Applied Sciences, Bangalore, India.

Her passion and research interests are in the field of Multimedia Processing, Video Pre-

Post Processing, Video Codecs, Image Pre-Post Processing, Image Codecs and Audio

Codecs.

138

Appendix -1

/*Heterogeneous Transcoding for format change for
H.264, HEVC, VVC and EVC codecs*/

#include <iostream>
#include <stdio.h>
#include <time.h>
#include <ctime>

void H264_HEVC(void) {
 /*H264 Encoder Commandline*/

std::string cmd = "<path_to_executable>lencod.exe -
d "<path_to_config_file>encoder_main_H264_H264toHEVC.cfg";

 std::system(cmd.c_str());
 /*H264 Decoder Commandline*/
 cmd = "<path_to_executable>ldecod.exe";
 std::system(cmd.c_str());
 /*HEVC Encoder Commandline*/

cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_H264toHEVC.cfg -
c <path_to_config_file>akiyo_H264toHEVCnVVC.cfg";

 std::system(cmd.c_str());
 /*HEVC Decoder Commandline*/
 cmd = "<path_to_executable>TAppDecoder.exe -b str_HEVC.bin -o dec_HEVC.yuv -d 8";
 std::system(cmd.c_str());
}

void H264_VVC(void) {
 /*H264 Encoder Commandline*/

std::string cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264_H264toHEVC.cfg";

 std::system(cmd.c_str());
 /*H264 Decoder Commandline*/
 cmd = "<path_to_executable>ldecod.exe";
 std::system(cmd.c_str());
 /*VVC Encoder Commandline*/

cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_H264toVVC.cfg -
c <path_to_config_file>akiyo_H264toHEVCnVVC.cfg";

 std::system(cmd.c_str());
 /*VVC Decoder Commandline*/
 cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VCC.yuv -d 8";
 std::system(cmd.c_str());
}

void H264_EVC(void) {
 /*H264 Encoder Commandline*/

std::string cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264_H264toHEVC.cfg";

 std::system(cmd.c_str());
 /*H264 Decoder Commandline*/
 cmd = "<path_to_executable>ldecod.exe";
 std::system(cmd.c_str());
 /*EVC Encoder Commandline*/

cmd = "<path_to_executable>evca_encoder.exe -i <path_to_input_file>test_dec.yuv -
q 10 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -o str_EVC.bin --
config <path_to_config_file>encoder_randomaccess_EVC_H264toEVC.cfg";

 std::system(cmd.c_str());
 /*EVC Decoder Commandline*/

139

 cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -o dec_EVC.yuv";
 std::system(cmd.c_str());
}

void HEVC_H264(void) {
 /*HEVC Encoder Commandline*/

std::string cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_HEVCtoH264_VVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg

 std::system(cmd.c_str());
 /*HEVC Decoder Commandline*/
 cmd = "<path_to_executable>TAppDecoder.exe -b str_HEVC.bin -o dec_HEVC.yuv -d 8 ";
 std::system(cmd.c_str());
 /*H.264 Encoder Commandline*/

cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264_HEVCtoH264.cfg";

 std::system(cmd.c_str());
 /*H.264 Decoder Commandline*/
 cmd = "<path_to_executable>ldecod.exe";
 std::system(cmd.c_str());
}

void HEVC_VVC(void) {
 /*HEVC Encoder Commandline*/

std::string cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_HEVCtoH264_VVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg";

 std::system(cmd.c_str());
 /*HEVC Decoder Commandline*/
 cmd = "<path_to_executable>TAppDecoder.exe -b str_HEVC.bin -o dec_HEVC.yuv -d 8 ";
 std::system(cmd.c_str());
 /*VVC Encoder Commandline*/

cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_HEVCtoVVC.cfg -
c <path_to_config_file>akiyo_VVC_HEVCtoVVC.cfg";

 std::system(cmd.c_str());
 /*VVC Decoder Commandline*/
 cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VCC.yuv -d 8";
 std::system(cmd.c_str());
}

void HEVC_EVC(void) {
 /*HEVC Encoder Commandline*/

std::string cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_HEVCtoH264_VVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg";

 std::system(cmd.c_str());
 /*HEVC Decoder Commandline*/
 cmd = "<path_to_executable>TAppDecoder.exe -b str_HEVC.bin -o dec_HEVC.yuv -d 8 ";
 std::system(cmd.c_str());
 /*EVC Encoder Commandline*/

cmd = "<path_to_executable>evca_encoder.exe -i dec_HEVC.yuv -q 10 -w 176 -h 144 -
p 16 -f 300 -z 20 -d 8 -o str_EVC.bin --
config <path_to_config_file>encoder_randomaccess_EVC_HEVCtoEVC.cfg";

 std::system(cmd.c_str());
 /*EVC Decoder Commandline*/
 cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -o dec_EVC.yuv";
 std::system(cmd.c_str());
}

void VVC_H264(void) {

140

 /*VVC Encoder Commandline*/
std::string cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_VVCtoH264_HEVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg";

 std::system(cmd.c_str());
 /*VVC Decoder Commandline*/
 cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VVC.yuv -d 8";
 std::system(cmd.c_str());
 /*H.264 Encoder Commandline*/

cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264_VVCtoH264.cfg";

 std::system(cmd.c_str());
 /*H.264 Decoder Commandline*/
 cmd = "<path_to_executable>ldecod.exe";
 std::system(cmd.c_str());
}

void VVC_HEVC(void) {
 /*VVC Encoder Commandline*/

std::string cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_VVCtoH264_HEVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg";

 std::system(cmd.c_str());
 /*VVC Decoder Commandline*/
 cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VVC.yuv -d 8";
 std::system(cmd.c_str());
 /*HEVC Encoder Commandline*/

cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_VVCtoHEVC.cfg -
c <path_to_config_file>akiyo_HEVC_VVCtoHEVC.cfg";

 std::system(cmd.c_str());
 /*HEVC Decoder Commandline*/
 cmd = "<path_to_executable>TAppDecoder.exe -b str_HEVC.bin -o dec_HEVC.yuv -d 8";
 std::system(cmd.c_str());
}

void VVC_EVC(void) {
 /*VVC Encoder Commandline:*/

std::string cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_VVCtoH264_HEVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg";

 std::system(cmd.c_str());
 /*VVC Decoder Commandline*/
 cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VVC.yuv -d 8";
 std::system(cmd.c_str());
 /*EVC Encoder Commandline*/

cmd = "<path_to_executable>evca_encoder.exe -i dec_VVC.yuv -q 10 -w 176 -h 144 -
p 16 -f 300 -z 20 -d 8 -o str_EVC.bin --
config <path_to_config_file>encoder_randomaccess_EVC_VVCtoEVC.cfg";

 std::system(cmd.c_str());
 /*EVC Decoder Commandline*/
 cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -o dec_EVC.yuv";
 std::system(cmd.c_str());
}

void EVC_H264(void) {
 /*EVC Encoder Commandline*/

std::string cmd = "<path_to_executable>evca_encoder.exe -
i <path_to_config_file>akiyo_qcif.yuv -q 10 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -
o str_EVC.bin --config <path_to_config_file>encoder_randomaccess_EVC_H264toEVC.cfg";

 std::system(cmd.c_str());

141

 /*EVC Decoder Commandline*/
 cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -o dec_EVC.yuv";
 std::system(cmd.c_str());
 /*H.264 Encoder Commandline*/

 cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264_EVCtoH264.cfg";

 std::system(cmd.c_str());
 /*H.264 Decoder Commandline*/
 cmd = "<path_to_executable>ldecod.exe";
 std::system(cmd.c_str());
}

void EVC_HEVC(void) {
 /*EVC Encoder Commandline*/

std::string cmd = "<path_to_executable>evca_encoder.exe -
i <path_to_config_file>akiyo_qcif.yuv -q 10 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -
o str_EVC.bin --config <path_to_config_file>encoder_randomaccess_EVC_H264toEVC.cfg";

 std::system(cmd.c_str());
 /*EVC Decoder Commandline*/
 cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -o dec_EVC.yuv";
 std::system(cmd.c_str());
 /*HEVC Encoder Commandline*/

cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_EVCtoHEVC.cfg -
c <path_to_config_file>akiyo_EVC_EVCtoHEVC.cfg";

 std::system(cmd.c_str());
 /*HEVC Decoder Commandline*/
 cmd = "<path_to_executable>TAppDecoder.exe -b str_HEVC.bin -o dec_HEVC.yuv -d 8";
 std::system(cmd.c_str());
}

void EVC_VVC(void) {
 /*EVC Encoder Commandline*/

std::string cmd = "<path_to_executable>evca_encoder.exe -
i <path_to_config_file>akiyo_qcif.yuv -q 10 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -
o str_EVC.bin --config <path_to_config_file>encoder_randomaccess_EVC_H264toEVC.cfg";

 std::system(cmd.c_str());
 /*EVC Decoder Commandline*/
 cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -o dec_EVC.yuv";
 std::system(cmd.c_str());
 /*VVC Encoder Commandline:*/

cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_EVCtoVVC.cfg -
c <path_to_config_file>akiyo_EVC_EVCtoVVC.cfg";

 std::system(cmd.c_str());
 /*VVC Decoder Commandline*/
 cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VVC.yuv -d 8";
 std::system(cmd.c_str());
}

/*Transcoder.exe application main() function*/
int main(int argc, const int* argv[])
{
 clock_t t;
 /*Choosing the transcoding option on the fly from 12 format change
 possibilities between H.264, HEVC, VVC and EVC*/
 std::cout << "Available options:" << std::endl;
 std::cout << "1. Transcoding from H.264 to HEVC" << std::endl;
 std::cout << "2. Transcoding from H.264 to VVC" << std::endl;
 std::cout << "3. Transcoding from H.264 to EVC" << std::endl;

142

 std::cout << "4. Transcoding from HEVC to H.264" << std::endl;
 std::cout << "5. Transcoding from HEVC to VVC" << std::endl;
 std::cout << "6. Transcoding from HEVC to EVC" << std::endl;
 std::cout << "7. Transcoding from VVC to H.264" << std::endl;
 std::cout << "8. Transcoding from VVC to HEVC" << std::endl;
 std::cout << "9. Transcoding from VVC to EVC" << std::endl;
 std::cout << "10. Transcoding from EVC to H.264" << std::endl;
 std::cout << "11. Transcoding from EVC to HEVC" << std::endl;
 std::cout << "12. Transcoding from EVC to VVC" << std::endl;
 std::cout << "Type your options(1-12):" << std::endl;
 int opt;
 std::cin >> opt;

 switch (opt) {
 case 1:
 t = clock();
 std::cout << "Testing Program for Transcoding from H.264 to HEVC" << std::endl;
 H264_HEVC();
 t = clock() - t;
 break;
 case 2:
 t = clock();
 std::cout << "Testing Program for Transcoding from H.264 to VVC" << std::endl;
 H264_VVC();
 t = clock() - t;
 break;
 case 3:
 t = clock();
 std::cout << "Testing Program for Transcoding from H.264 to EVC" << std::endl;
 H264_EVC();
 t = clock() - t;
 break;
 case 4:
 t = clock();
 std::cout << "Testing Program for Transcoding from HEVC to H.264" << std::endl;
 HEVC_H264();
 t = clock() - t;
 break;
 case 5:
 t = clock();
 std::cout << "Testing Program for Transcoding from HEVC to VVC" << std::endl;
 HEVC_VVC();
 t = clock() - t;
 break;
 case 6:
 t = clock();
 std::cout << "Testing Program for Transcoding from HEVC to EVC" << std::endl;
 HEVC_EVC();
 t = clock() - t;
 break;
 case 7:
 t = clock();
 std::cout << "Testing Program for Transcoding from VVC to H.264" << std::endl;
 VVC_H264();
 t = clock() - t;
 break;
 case 8:
 t = clock();
 std::cout << "Testing Program for Transcoding from VVC to HEVC" << std::endl;
 VVC_HEVC();
 t = clock() - t;

143

 break;
 case 9:
 t = clock();
 std::cout << "Testing Program for Transcoding from VVC to EVC" << std::endl;
 VVC_EVC();
 t = clock() - t;
 break;
 case 10:
 t = clock();
 std::cout << "Testing Program for Transcoding from EVC to H.264" << std::endl;
 EVC_H264();
 t = clock() - t;
 break;
 case 11:
 t = clock();
 std::cout << "Testing Program for Transcoding from EVC to HEVC" << std::endl;
 EVC_HEVC();
 t = clock() - t;
 break;
 case 12:
 t = clock();
 std::cout << "Testing Program for Transcoding from EVC to VVC" << std::endl;
 EVC_VVC();
 t = clock() - t;
 break;
 }
 /*Time taken to Transcode is calculated in each ‘case’
 statement and printed on the console*/
 double time_taken = ((double)t) / CLOCKS_PER_SEC;
 std::cout << "Time taken to finish transcoding is :" << time_taken << " sec" << std::
endl;
}

144

Appendix - 2

/*Heterogeneous and Homogeneous Transcoding for
Bitrate and Frame-rate change for
H.264, HEVC, VVC and EVC codecs*/

#include <iostream>
#include <stdio.h>
#include <time.h>
#include <ctime>

void H264_HEVC(void) {
 /*H264 Encoder Commandline*/

std::string cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264_H264toHEVC.cfg > <path_to_output_file>output
1.txt";

 std::system(cmd.c_str());
 /*H264 Decoder Commandline*/
 cmd = "<path_to_executable>ldecod.exe > <path_to_output_file>output2.txt";
 std::system(cmd.c_str());
 /*HEVC Encoder Commandline*/

cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_H264toHEVC.cfg -
c <path_to_config_file>/akiyo_H264toHEVCnVVC.cfg > <path_to_output_file>output3.txt";

 std::system(cmd.c_str());
 /*HEVC Decoder Commandline*/

cmd = "<path_to_executable>TAppDecoder.exe -b str_HEVC.bin -o dec_HEVC.yuv -
d 8 > <path_to_output_file>output4.txt";

 std::system(cmd.c_str());
}

void H264_VVC(void) {
 /*H264 Encoder Commandline*/

std::string cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264_H264toHEVC.cfg > <path_to_output_file>output
1.txt";

 std::system(cmd.c_str());
 /*H264 Decoder Commandline*/
 cmd = "<path_to_executable>ldecod.exe > <path_to_output_file>output2.txt";
 std::system(cmd.c_str());
 /*VVC Encoder Commandline*/

cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_H264toVVC.cfg -
c <path_to_config_file>akiyo_H264toHEVCnVVC.cfg > <path_to_output_file>output3.txt";

 std::system(cmd.c_str());
 /*VVC Decoder Commandline*/

cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VCC.yuv -
d 8 > <path_to_output_file>output4.txt";

 std::system(cmd.c_str());
}

void H264_EVC(void) {
 /*H264 Encoder Commandline*/

std::string cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264_H264toHEVC.cfg > <path_to_output_file>output
1.txt";

 std::system(cmd.c_str());
 /*H264 Decoder Commandline*/
 cmd = "<path_to_executable>ldecod.exe > <path_to_output_file>output2.txt";
 std::system(cmd.c_str());
 /*EVC Encoder Commandline*/

145

cmd = "<path_to_executable>evca_encoder.exe -i <path_to_input_file>test_dec.yuv -
q 10 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -o str_EVC.bin --
config <path_to_config_file>encoder_randomaccess_EVC_H264toEVC.cfg > <path_to_output_
file>output3.txt";

 std::system(cmd.c_str());
 /*EVC Decoder Commandline*/

cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -
o dec_EVC.yuv > <path_to_output_file>output4.txt";

 std::system(cmd.c_str());
}

void HEVC_H264(void) {
 /*HEVC Encoder Commandline*/

std::string cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_HEVCtoH264_VVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg > <path_to_output_file>output1.txt";

 std::system(cmd.c_str());
 /*HEVC Decoder Commandline*/

cmd = "<path_to_executable>TAppDecoder.exe -b <path_to_input_file>str_HEVC.bin -
o dec_HEVC.yuv -d 8 > <path_to_output_file>output2.txt";

 std::system(cmd.c_str());
 /*H.264 Encoder Commandline*/

cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264_HEVCtoH264.cfg > <path_to_output_file>output
3.txt";

 std::system(cmd.c_str());
 /*H.264 Decoder Commandline*/
 cmd = "<path_to_executable>ldecod.exe > <path_to_output_file>output4.txt";
 std::system(cmd.c_str());
}

void HEVC_VVC(void) {
 /*HEVC Encoder Commandline*/

std::string cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_HEVCtoH264_VVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg > <path_to_output_file>output1.txt";

 std::system(cmd.c_str());
 /*HEVC Decoder Commandline*/

cmd = "<path_to_executable>TAppDecoder.exe -b <path_to_input_file>str_HEVC.bin -
o dec_HEVC.yuv -d 8 > <path_to_output_file>output2.txt";

 std::system(cmd.c_str());
 /*VVC Encoder Commandline*/

cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_HEVCtoVVC.cfg -
c <path_to_config_file>akiyo_VVC_HEVCtoVVC.cfg > <path_to_output_file>output3.txt";

 std::system(cmd.c_str());
 /*VVC Decoder Commandline*/

cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VCC.yuv -
d 8 > <path_to_output_file>output4.txt";

 std::system(cmd.c_str());
}

void HEVC_EVC(void) {
 /*HEVC Encoder Commandline*/

std::string cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_HEVCtoH264_VVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg > <path_to_output_file>output1.txt";

 std::system(cmd.c_str());
 /*HEVC Decoder Commandline*/

cmd = "<path_to_executable>TAppDecoder.exe -b <path_to_input_file>str_HEVC.bin -
o dec_HEVC.yuv -d 8 > <path_to_output_file>output2.txt";

146

 std::system(cmd.c_str());
 /*EVC Encoder Commandline*/

cmd = "<path_to_executable>evca_encoder.exe -i <path_to_input_file>dec_HEVC.yuv -
q 50 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -o str_EVC.bin --
config <path_to_config_file>encoder_randomaccess_EVC_HEVCtoEVC.cfg > <path_to_output_
file>output3.txt";

 std::system(cmd.c_str());
 /*EVC Decoder Commandline*/

cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -
o dec_EVC.yuv > <path_to_output_file>output4.txt";

 std::system(cmd.c_str());

}

void VVC_H264(void) {
 /*VVC Encoder Commandline*/

std::string cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_executable>encoder_randomaccess_vtm_RD_VVC_VVCtoH264_HEVC_EVC.cfg -
c C:/\Users/\shrey/\Desktop/\TranscodingBitrate/\Transcoder/\/x64/\Release/\cfg/\/aki
yo_qcif.cfg > C:/\Users/\shrey/\Desktop/\TranscodingBitrate/\Transcoder/\output1.txt"
;

 std::system(cmd.c_str());
 /*VVC Decoder Commandline*/

cmd = "C:/\Users/\shrey/\Desktop/\TranscodingBitrate/\Transcoder/\/x64/\Release/\Deco
derApp.exe -b str_VVC.bin -o dec_VVC.yuv -
d 8 > C:/\Users/\shrey/\Desktop/\TranscodingBitrate/\Transcoder/\output2.txt";

 std::system(cmd.c_str());
 /*H.264 Encoder Commandline*/

cmd = "C:/\Users/\shrey/\Desktop/\TranscodingBitrate/\Transcoder/\/x64/\Release/\lenc
od.exe -
d C:/\Users/\shrey/\Desktop/\TranscodingBitrate/\Transcoder/\/x64/\Release/\cfg/encod
er_main_H264_VVCtoH264.cfg > C:/\Users/\shrey/\Desktop/\TranscodingBitrate/\Transcode
r/\output3.txt";

 std::system(cmd.c_str());
 /*H.264 Decoder Commandline*/

cmd = "C:/\Users/\shrey/\Desktop/\TranscodingBitrate/\Transcoder/\/x64/\Release/\ldec
od.exe > C:/\Users/\shrey/\Desktop/\TranscodingBitrate/\Transcoder/\output4.txt";

 std::system(cmd.c_str());
}

void VVC_HEVC(void) {
 /*VVC Encoder Commandline*/

std::string cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_VVCtoH264_HEVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg > <path_to_output_file>output1.txt";

 std::system(cmd.c_str());
 /*VVC Decoder Commandline*/

cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VVC.yuv -
d 8 > <path_to_output_file>output2.txt";

 std::system(cmd.c_str());
 /*HEVC Encoder Commandline*/

cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_VVCtoHEVC.cfg -
c <path_to_config_file>akiyo_HEVC_VVCtoHEVC.cfg > <path_to_output_file>output3.txt";

 std::system(cmd.c_str());
 /*HEVC Decoder Commandline*/

cmd = "<path_to_executable>TAppDecoder.exe -b str_HEVC.bin -o dec_HEVC.yuv -
d 8 > <path_to_output_file>output4.txt";

 std::system(cmd.c_str());
}

147

void VVC_EVC(void) {
 /*VVC Encoder Commandline*/

std::string cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_VVCtoH264_HEVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg > <path_to_output_file>output1.txt";

 std::system(cmd.c_str());
 /*VVC Decoder Commandline*/

cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VVC.yuv -
d 8 > <path_to_output_file>output2.txt";

 std::system(cmd.c_str());
 /*EVC Encoder Commandline*/

cmd = "<path_to_executable>evca_encoder.exe -i <path_to_input_file>dec_VVC.yuv -
q 50 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -o str_EVC.bin --
config <path_to_config_file>encoder_randomaccess_EVC_VVCtoEVC.cfg > <path_to_output_f
ile>output3.txt";

 std::system(cmd.c_str());
 /*EVC Decoder Commandline*/

cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -
o dec_EVC.yuv > <path_to_output_file>output4.txt";

 std::system(cmd.c_str());
}

void EVC_H264(void) {
 /*EVC Encoder Commandline*/

std::string cmd = "<path_to_executable>evca_encoder.exe -
i <path_to_input_file>akiyo_qcif.yuv -q 10 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -
o str_EVC.bin --
config <path_to_config_file>encoder_randomaccess_EVC_H264toEVC.cfg <path_to_output_fi
le>output1.txt";

 std::system(cmd.c_str());
 /*EVC Decoder Commandline*/

cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -
o dec_EVC.yuv > <path_to_executable>output2.txt";

 std::system(cmd.c_str());
 /*H.264 Encoder Commandline*/

cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264_EVCtoH264.cfg > <path_to_output_file>output3
.txt";

 std::system(cmd.c_str());
 /*H.264 Decoder Commandline*/
 cmd = "<path_to_executable>ldecod.exe > <path_to_output_file>output4.txt";
 std::system(cmd.c_str());
}

void EVC_HEVC(void) {
 /*EVC Encoder Commandline*/

std::string cmd = "<path_to_executable>evca_encoder.exe -
i <path_to_input_file>akiyo_qcif.yuv -q 10 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -
o str_EVC.bin --
config <path_to_config_file>encoder_randomaccess_EVC_H264toEVC.cfg > <path_to_output_
file>output1.txt";

 std::system(cmd.c_str());
 /*EVC Decoder Commandline*/

cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -
o dec_EVC.yuv > <path_to_output_file>output2.txt";

 std::system(cmd.c_str());
 /*HEVC Encoder Commandline*/

cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_EVCtoHEVC.cfg -
c <path_to_config_file>akiyo_EVC_EVCtoHEVC.cfg > <path_to_output_file>output3.txt";

 std::system(cmd.c_str());

148

 /*HEVC Decoder Commandline*/
cmd = "<path_to_executable>TAppDecoder.exe -b str_HEVC.bin -o dec_HEVC.yuv -
d 8 > <path_to_output_file>output4.txt";

 std::system(cmd.c_str());
}

void EVC_VVC(void) {
 /*EVC Encoder Commandline*/

std::string cmd = "<path_to_executable>evca_encoder.exe -
i <path_to_input_file>akiyo_qcif.yuv -q 10 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -
o str_EVC.bin --
config <path_to_config_file>encoder_randomaccess_EVC_H264toEVC.cfg > <path_to_output_
file>output1.txt";

 std::system(cmd.c_str());
 /*EVC Decoder Commandline*/

cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -
o dec_EVC.yuv > <path_to_output_file>output2.txt";

 std::system(cmd.c_str());
 /*VVC Encoder Commandline:*/

cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_EVCtoVVC.cfg -
c <path_to_config_file>akiyo_EVC_EVCtoVVC.cfg > <path_to_output_file>output3.txt";

 std::system(cmd.c_str());
 /*VVC Decoder Commandline*/

cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VVC.yuv -
d 8 > <path_to_output_file>output4.txt";

 std::system(cmd.c_str());
}

void H264_H264(void) {
 /*H264 Encoder Commandline*/

std::string cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264.cfg > <path_to_output_file>output1.txt";

 std::system(cmd.c_str());
 /*H264 Decoder Commandline*/
 cmd = "<path_to_executable>ldecod.exe > <path_to_executable>output2.txt";
 std::system(cmd.c_str());
 /*H.264 Encoder Commandline*/

cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264toH264.cfg > <path_to_output_file>output3.txt
";

 std::system(cmd.c_str());
 /*H.264 Decoder Commandline*/

cmd = "<path_to_executable>ldecod.exe -
o test_dec1.yuv > <path_to_output_file>output4.txt";

 std::system(cmd.c_str());
}

void HEVC_HEVC(void) {
 /*HEVC Encoder Commandline*/

std::string cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg > <path_to_output_file>output1.txt";

 std::system(cmd.c_str());
 /*HEVC Decoder Commandline*/

cmd = "<path_to_executable>Decoder.exe -b <path_to_input_file>str_HEVC.bin -
o dec_HEVC.yuv -d 8 > <path_to_output_file>output2.txt";

 std::system(cmd.c_str());
 /*HEVC Encoder Commandline*/

149

cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVCtoHEVC.cfg -
c <path_to_config_file>akiyo_HEVCtoHEVC.cfg > <path_to_output_file>output3.txt";

 std::system(cmd.c_str());
 /*HEVC Decoder Commandline*/

cmd = "<path_to_executable>Decoder.exe -b <path_to_input_file>str_HEVC1.bin -
o dec_HEVC1.yuv -d 8 > <path_to_output_file>output4.txt";

 std::system(cmd.c_str());
}

void VVC_VVC(void) {
 /*VVC Encoder Commandline*/

std::string cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_VVCtoH264_HEVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg > <path_to_output_file>output1.txt";

 std::system(cmd.c_str());
 /*VVC Decoder Commandline*/

cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VVC.yuv -
d 8 > <path_to_output_file>output2.txt";

 std::system(cmd.c_str());
 /*VVC Encoder Commandline:*/

cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVCtoVVC.cfg -
c <path_to_config_file>akiyo_VVCtoVVC.cfg > <path_to_output_file>output3.txt";

 std::system(cmd.c_str());
 /*VVC Decoder Commandline*/
 cmd = "<path_to_executable>DecoderApp.exe -b str_VVC1.bin -o dec_VVC1.yuv -
d 8 > <path_to_output_file>output4.txt";
 std::system(cmd.c_str());
}

void EVC_EVC(void) {
 /*EVC Encoder Commandline*/

std::string cmd = "<path_to_executable>evca_encoder.exe -
i <path_to_executable>akiyo_qcif.yuv -q 10 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -
o str_EVC.bin --
config <path_to_executable>encoder_randomaccess_EVC.cfg > <path_to_output_file>output
1.txt";

 std::system(cmd.c_str());
 /*EVC Decoder Commandline*/

cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -
o dec_EVC.yuv > <path_to_output_file>output2.txt";

 std::system(cmd.c_str());
 /*EVC Encoder Commandline*/

cmd = "<path_to_executable>evca_encoder.exe -i <path_to_input_file>dec_EVC.yuv -
q 50 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -o str_EVC1.bin --
config <path_to_config_file>encoder_randomaccess_EVCtoEVC.cfg > <path_to_output_file>
output3.txt";

 std::system(cmd.c_str());
 /*EVC Decoder Commandline*/

cmd = "<path_to_executable>evca_decoder.exe -i str_EVC1.bin -
o dec_EVC1.yuv > <path_to_output_file>output4.txt";

 std::system(cmd.c_str());
}

int main(int argc, const int* argv[])
{
 clock_t t;
 std::cout << "Available options:" << std::endl;
 std::cout << "1. Heterogeneous Bitrate change" << std::endl;
 std::cout << "2. Homogeneous Bitrate change" << std::endl;

150

 std::cout << "Type your options as 1 or 2: " << std::endl;
 int choice;
 int opt;
 std::cin >> choice;
 if (choice == 1)
 {

 std::cout << "1. Transcoding from H.264 to HEVC for bitrate change" << std::endl;

 std::cout << "2. Transcoding from H.264 to VVC for bitrate change" << std::endl;

 std::cout << "3. Transcoding from H.264 to EVC for bitrate change" << std::endl;

 std::cout << "4. Transcoding from HEVC to H.264 for bitrate change" << std::endl;

 std::cout << "5. Transcoding from HEVC to VVC for bitrate change" << std::endl;

 std::cout << "6. Transcoding from HEVC to EVC for bitrate change" << std::endl;

 std::cout << "7. Transcoding from VVC to H.264 for bitrate change" << std::endl;

 std::cout << "8. Transcoding from VVC to HEVC for bitrate change" << std::endl;

 std::cout << "9. Transcoding from VVC to EVC for bitrate change" << std::endl;

 std::cout << "10. Transcoding from EVC to H.264 for bitrate change" << std::endl;

 std::cout << "11. Transcoding from EVC to HEVC for bitrate change" << std::endl;

 std::cout << "12. Transcoding from EVC to VVC for bitrate change" << std::endl;
 std::cout << "Type your options(1-12):" << std::endl;
 std::cin >> opt;
 }
 else if (choice == 2)
 {

 std::cout << "13. Transcoding from H.264 to H.264 for bitrate change " << std::endl;

 std::cout << "14. Transcoding from HEVC to HEVC for bitrate change" << std::endl;

 std::cout << "15. Transcoding from VVC to VVC for bitrate change" << std::endl;

 std::cout << "16. Transcoding from EVC to EVC for bitrate change" << std::endl;
 std::cout << "Type your options(13-16):" << std::endl;
 std::cin >> opt;
 }
 else
 {
 std::cout << "Check your option!!! " << std::endl;
 }
 switch (opt) {
 case 1:
 t = clock();

 std::cout << "Testing Program for Transcoding from H.264 to HEVC for bitrate
 change" << std::endl;

 H264_HEVC();
 t = clock() - t;
 break;

 case 2:
 t = clock();

151

std::cout << "Testing Program for Transcoding from H.264 to VVC for bitrate
change" << std::endl;

 H264_VVC();
 t = clock() - t;
 break;

 case 3:
 t = clock();

std::cout << "Testing Program for Transcoding from H.264 to EVC for bitrate
change" << std::endl;

 H264_EVC();
 t = clock() - t;
 break;

 case 4:
 t = clock();

 std::cout << "Testing Program for Transcoding from HEVC to H.264 for bitrate
 change" << std::endl;

 HEVC_H264();
 t = clock() - t;
 break;

 case 5:
 t = clock();

std::cout << "Testing Program for Transcoding from HEVC to VVC for bitrate c
hange" << std::endl;

 HEVC_VVC();
 t = clock() - t;
 break;

 case 6:
 t = clock();

std::cout << "Testing Program for Transcoding from HEVC to EVC for bitrate c
hange" << std::endl;

 HEVC_EVC();
 t = clock() - t;
 break;

 case 7:
 t = clock();

std::cout << "Testing Program for Transcoding from VVC to H.264 for bitrate
change" << std::endl;

 VVC_H264();
 t = clock() - t;
 break;

 case 8:
 t = clock();

std::cout << "Testing Program for Transcoding from VVC to HEVC for bitrate c
hange" << std::endl;

 VVC_HEVC();
 t = clock() - t;
 break;

 case 9:
 t = clock();

std::cout << "Testing Program for Transcoding from VVC to EVC for bitrate ch
ange" << std::endl;

 VVC_EVC();
 t = clock() - t;
 break;

152

 case 10:
 t = clock();

std::cout << "Testing Program for Transcoding from EVC to H.264 for bitrate
change" << std::endl;

 EVC_H264();
 t = clock() - t;
 break;

 case 11:
 t = clock();

std::cout << "Testing Program for Transcoding from EVC to HEVC for bitrate c
hange" << std::endl;

 EVC_HEVC();
 t = clock() - t;
 break;

 case 12:
 t = clock();

std::cout << "Testing Program for Transcoding from EVC to VVC for bitrate ch
ange" << std::endl;

 EVC_VVC();
 t = clock() - t;
 break;

 case 13:
 t = clock();

std::cout << "Testing Program for Transcoding from H.264 to H.264 for bitrat
e change:" << std::endl;

 H264_H264();
 t = clock() - t;
 break;

 case 14:
 t = clock();

std::cout << "Testing Program for Transcoding from HEVC to HEVC for bitrate
change:" << std::endl;

 HEVC_HEVC();
 t = clock() - t;
 break;

 case 15:
 t = clock();

std::count << "Testing Program for Transcoding from VVC to VVC for bitrate
change: " << std::endl;

 VVC_VVC();
 t = clock() - t;
 break;

 case 16:
 t = clock();

std::cout << "Testing Program for Transcoding from EVC to EVC for bitrate
change:" << std::endl;

 EVC_EVC();
 t = clock() - t;
 break;
 }
 double time_taken = ((double)t) / CLOCKS_PER_SEC;
 std::cout << "Time taken to finish transcoding is :" << time_taken << " sec" << std::
endl;
}

