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ABSTRACT 

HETEROGENEOUS TRANSCODING FOR NEXT GENERATION MULTIMEDIA VIDEO 

CODECS FOR EFFICIENT COMMUNICATION 

 

Shreyanka Subbarayappa, Ph.D. 

 

The University of Texas at Arlington, 2020 

 

Supervising Professor:  K.R. Rao   

Innovations in the communication systems and technology are growing tremendously and the 

growth seen is unimaginable in the last forty years. In multimedia communication systems, technology 

has transformed from analog television to digital television in the video domain.  Mobile phones are known 

as smart phones as they are used, not only to make voice calls, but also used to send emails, video calls, 

transfer data, GPS, taking pictures and so on. Due to the wide spread user applications, compression on 

data becomes important to save system resources. Video has occupied 75% of major traffic of data 

transfer and is expected to cover 80% by 2021 [4]. Video is also continuously increasing in size from 

standard-definition (SD) to ultra-high definition (UHD - 4K, 8K and 12K) video. More data or size in video 

requires higher transmission bandwidth or more disk space to store, which is very expensive. This drives 

into the betterment in compression and hence a demand for a new codec. Several algorithms are 

implemented to achieve compression of Image or Video with respect to the user’s demand on the quality 

of output as well as application it is used for. These algorithms working together are classified in terms of 

codecs and we use different codecs for different applications. 

Advances in video compression technology are used to reduce the utilization of system resources, 

like processing time, memory use, network bandwidth and battery life. This is possible by reducing the 

complexity of the video codecs without compromising on the output video quality [2][3][5]. There are two 

distinct lines in the future video coding technology development work. EVC driven by MPEG team [126] 

and Versatile Video Codec (VVC) [7][8] driven by Joint Video Exploration Team (JVET). These codecs 
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are the extended versions with advances in compression technologies when compared to the prior video 

codecs or reference codecs HEVC and H.264. 

 This thesis is fundamentally and entirely devoted to the theory and design of different algorithms 

used in present and future video codecs to obtain efficient implementation and reconstruction of codec 

outputs. It also addresses the most recent codecs being developed, i.e. EVC and VVC. Transcoding being 

one of the main applications in video technologies is implemented and studied between these four codecs. 
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CHAPTER 1:  Introduction 

 

 
1.1. Importance of compression 

The uncompressed data in multimedia (graphics, audio, images, video and text) [4] needs a huge amount 

of storage space and the transmission bandwidth availability. In spite of fast progress in the processor 

speeds and system performance in digital communications, the demand in the data transmission usage 

bandwidth and data storage capacity surpasses all the abilities of the available technologies. In the recent 

times, the recent growth in multimedia-based web applications for data intensive contents has achieved 

the requirements for attaining better ways to encode the signals, videos and images but has achieved 

compression of such contents to storage and use in the communication technology. Image/video 

compression reduces the size of the file in bytes without degrading the image quality to an unacceptable 

level. The reduced size of the file permits more images or videos to be stored in a given amount of memory 

space or disk. It also helps in reducing the time taken to transmit the image/video over the Internet or 

download them from Web pages. 

 

1.2. Objective of Image Compression 

Images comprise of large amounts of information which also require a lot of storage space, larger 

transmission bandwidths and longer transmission times. The advantageous factor to compress an image 

is to preserve only the essential information required to reconstruct the image and also takes less storage 

space to store on CDs, DVDs or Blu Ray Discs or less bandwidth to transmit it through any medium. An 

image can be viewed as a matrix of pixel (intensity) values. In order to compress an image, the 

redundancies are exploited, for example, places or areas where there is no change or little change among 

pixel values. Hence the images with large areas of uniform colour have large redundancies. Conversely, 

images having frequent and large colour changes are less redundant and difficult to compress. 

 

1.3. Methods of Data Compression [1] 

Data compression is a technique used for reducing the information or content of the data which is useful 

to be stored easily or reconstructed quicker. There are two methods of data compression we observe in 

our everyday usage. One is lossless compression and the other is lossy compression which differs with 

respect to the reconstructed data quality and the size of data compressed. 
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1.3.1. Lossless Compression [2] 

 
This class of data compression involves algorithms that allow the original data to be obtained or 

reconstructed from the compressed data. The lossless compression is used when the requirement of the 

reconstructed data be identical to the original data, or when no assumptions are required to be made for 

certain deviations which are not critical. Lossless compression is mostly used for medical imaging studios 

and text where every character and data are important. Typical examples for lossless compression are 

executable programs and source codes. The Figure 1.1. shows the comparison of lossless compression 

and lossy compression. 

1.3.2.  Lossy Compression [3] 

This class of data compression is also known as ‘data encoding’ which compresses the data by discarding 

or losing some of it. The algorithms in lossy compression aim at minimizing the amount of data needed 

and to be handled, held or transmitted. This compression is used for all forms of multimedia data (images, 

video, text, graphics and audio), mostly used in applications such as internet telephony and streaming 

media domains where slight data loss is still acceptable. As an example, a picture is converted to a digital 

file by considering its data as an array of dots. These dots are known as pixels and the image has the 

color and brightness of each pixel. If the entire picture has the same color as blue, it can be compressed 

without any loss by considering it as “200 blue dots” instead of taking it as “blue dot, blue dot, (198 more 

times)..”. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Comparison of Lossless and Lossy Compression 

Original Image 

Original Image 

Reconstructed 
Image (same as 
original image) 

Reconstructed 
Image Compressed 

Compressed 

Lossless 
Compression 

Lossy 
Compression 
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1.4.  Significance of Video 

Universal, high quality and seamless video has been the ultimate goal for researchers, standard bodies 

and companies over the last four decades, Few areas like consumer video storage and broadcast 

television, video mail, mobile video and video conferencing have clearly captured the market, while the 

screen content video, 3D video and 360° video with increase in the demand for video quality is increasing 

the market share day by day [5][6]. Nevertheless, there is certainty that digital video will continue to infuse 

the homes, networks and businesses and will remain to be the most important industry globally. The digital 

video industry is constantly evolving and is driven by a lot of commercial and the technical forces. The 

profitable commercial drive is due to the huge revenue of persuading businesses, industry and consumers 

to replace analog systems and older digital systems with efficient, new and high-quality digital products 

and to approve and adopt new entertainment and communication products. Technical drive is due to 

continuous improvements in dealing with performance, the ability for greater capacity storage, 

transmission mechanism along with research and development in the field of image and video processing 

technology. Figure 1.2. is an example of a home media eco system and the importance of video 

transmission. 

 

Figure 1.2. Home media eco-system 

 

1.5.  Implication of video compression and its standardization 

Obtaining a digital video from any source (camera or a saved video clip) and transmitting it to its 

destination (display) require a chain of processes and components. Main key to this chain is the process 

of compression (also known as encoding) and decompression (also known as decoding). These 

processes are used to reduce a bandwidth-intensive digital ‘raw’ video to a manageable size used for 
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transmission in a medium or a storage and then reconstructing it back for display. Having the compression 

and decompression phenomenon ‘right’ can provide a major commercial and technical edge to a product, 

by getting higher image quality, more flexibility and greater reliability than competing solutions. Hence 

there is always a keen interest in continuing development and enhancement of video compression and 

decompression systems and methods. 

 Video compression also comprises of lossy compression. Temporal as well as spatial 

redundancies are video characteristics. Removing these redundancies and some lossy techniques like 

transform, scaling and Human Visual System facilitate very high compression. Table 1.1 gives the detailed 

explanation on compression methods achieved. 

 

INFORMATION TYPE COMPRESSION TOOL 

Spatial Redundancy Intra frame coding 

Temporal Redundancy Inter frame coding 

High Frequency image coefficients Transform and scaling 

Bit-Stream Redundancy Entropy coding 

Human Visual System (HVS) Perceptual coding 

Table 1.1. Compression Methods 

 To calculate a raw uncompressed video, consider a video frame of size 720X486 (Standard 

Definition video). Each frame has 720X486 = 349920 pixels or about 0.3 MPixels. If we display our video 

in color format, we use three color channels (Red-Green-Blue) to represent each pixel. Hence to get the 

size of an uncompressed video frame, we multiply by 3 to the number of pixels of the frame (i.e 0.3 X3 = 

0.9Megabytes). To calculate the size of a video to be played for 1 second, we multiply the frame rate to 

video frame byte size (i.e if number of frames per second (fps) = 30fps, then 30X0.9 Mbytes = 27 MB data 

per second of video). This huge amount of data directs us to the importance of compression since 

bandwidth usage and storage size play a crucial role. 

 Another example for calculating the video size in bits per second for one second video by taking 

QCIF data from Table 1.2. Resolution of QCIF being 176X144, we multiply this to the bitrate that is 30fps 

(i.e. 176X144X30 = 0.7 Kbps). Since each pixel is represented by 8 bits, we multiply 0.7 by 8 which gives 

us nearly 6 Mbps. This video is represented in the YUV format as 4:2:0 as shown in Figure 1.3., which 

tells us that we have 4 parts of Y (Luma), 1 part of U (Chroma) and 1 part of V (Chroma) samples present. 

This tells us that out of 3 channels we have only 1.5 channel, hence dividing this factor to 6Mbps (i.e 
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6Mbps X 1.5 = 9Mbps). A raw video is classified in terms of width and height of each content. This can be 

viewed in the Table 1.2. where each content type has a code and its bitrate is shown for the raw content 

with 30fps frame rate, with bit depth 8 bits/pixel and 4:2:0 video format of the content.   

Code Width Height Description 
Bit rate @ 30 fps, 8 bits/pixel, 4:2:0 

format 

QCIF 176 144 Quarter CIF 9 Mbps 

QVGA 320 240 Quarter Video Graphics Array 27 Mbps 

CIF 352 288 Common Intermediate Format 36 Mbps 

HVGA 640 240 Half Video Graphics Array 55 Mbps 

VGA 640 480 Video Graphics Array 110 Mbps 

SD 720 486 Standard Definition 125 Mbps 

SVGA 800 600 Super Video Graphics Array 172 Mbps 

XGA 1024 768 Extended Graphics Array 283 Mbps 

XGA+ 

1152 768 

Extended Graphics Array plus 

318 Mbps 

1152 864 358 Mbps 

SXGA 1280 1024 Super Extended Graphics Array 471 Mbps 

SXGA+ 1400 1050 
Super Extended Graphics Array 

plus 
529 Mbps 

UXGA 1600 1200 Ultra Extended Graphics Array 691 Mbps 

HD 1920 1080 High definition 746 Mbps 

QXGA 2048 1536 Quad Extended Graphics Array 1.1 Gbps 

UHD 4K 3840 2160 Ultra High Definition 4K Video 2 Gbps 

4K 4096 2160 4K Video 3.2 Gbps 

5K 5120 2700 5K Video 5 Gbps 

6K 6144 3160 6K Video 7Gbps 
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UHD 8K 7680 4320 Ultra High Definition 8K Video 11 Gbps 

8K 8192 4320 8K Video 12.7 Gbps 

Table 1.2.  Raw bitrates of uncompressed video 

 

                                   4:4:4                                         4:2:2                                          4:2:0 

 

Figure 1.3. YUV formats for one macro block of an image 

Multimedia is targeted for a wide range of applications from mobile video broadcast, video on demand, 

video conferencing and medical applications. Having such a wide range of applications, it is essential to 

standardize video compression. Standardization ensures implementation of compression technique from 

different vendors thus enabling end-users to make a choice to access from different video services for 

both software and hardware. Numerous video compression standards are developed for both open source 

and proprietary based depending on the user’s application and end-usage [7][8]. 

 

1.6.  History of Video Codecs 

Multimedia is a blend of many sources like text, images, audio and video. The need and requirement for 

communication in this domain has become essential in today’s fast-moving era. Hence the necessity for 

compression of multimedia sources for better performance and usage by the end-user. Compression of 

data is also known as Encoding or Encoder and decompression of data is known as Decoding or Decoder. 

The system consisting of Encoder and Decoder is known as Codec. There are plenty of algorithms 

LUMA 
(Y) 

CHROMA 
(U) 

CHROMA 
(V) 
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developed in the video and audio domains whereas only some of them are standardized to form Codecs. 

Many audio and video coding standards are developed and still development is ongoing for future 

standards by SDO (Standards Development Organizations) and ISO/IEC (International Standardization 

Organization and the International Electrotechnical Commission). 

 Presently, the main organizations working for standardizing video compression are ITU-T, ISO, 

SMPTE, On2Google and AOMedia as shown in Figure 1.4.   

 

 

Figure 1.4. History of Video Codecs 

ITU-T (Telecommunication Standardization Sector of the International Tele-communication 

Union) organization solely developed the ‘H’ series starting from H.261 in 1990 to H.263 in 2000 

[9][10][11]. During the same time, another organization called ISO developed the MPEG standards. The 

MPEG series ranged from MPEG1 to MPEG4 with their applications similar to ‘H’ series [12][13]. Essential 

Video Coding (EVC) standard which is under development by the MPEG team of ISO/IEC JTC 1/SC 

29/WG 11 is due by end of 2020. SMPTE (Society of Motion Picture and Television Engineers) focused 

mainly on VC-1 codec. Google came up with the ‘VP’ codec series, ranging from VP3 to VP9[14][15]. In 

2005, ITU-T and ISO organizations merged to develop codecs like H.264 in 2005, HEVC [11] in 2014 and 

VVC [16][17] in 2020. AOMedia (Alliance for Open Media) developed AV-1[18][19] in 2015 which is a 

successor of VP9 [19]. There were other codecs developed as AVS China (Audio and Video coding 

Standard of China) [20], DIRAC [20] by BBC and company codecs by Microsoft and Real Networks. Each 

of these codecs use compression techniques depending on the type of application they are designed for. 
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 H.264 Codec Overview 

 
 
 
2.1. Introduction 

One of the most efficient and the most used video coding standard which was introduced in 2003 by the 

Joint Video Team (JVT) was called H.264/MPEG4-Part10 or advanced video coding (AVC) [21]. This 

codec was developed by Video Coding Experts Group (VCEG) of International Telecommunication Union 

– Telecommunication standardization sector (ITU-T) and Moving Picture Experts Group (MPEG) of 

ISO/IEC jointly known as Joint Video Team (JVT). This codec had a wide range of application usages 

from both non-interactive and interactive domains such as video telephony as the interactive and video 

on demand, broadcast, storage and streaming as non-interactive which constitute to network friendly 

video vision. H.264 is the extended video codec of H.263 [23] with a lot of additional tools which gives it 

more compression efficiency and better output quality video. 

The joint video team built many extensions to the existing video codec which was known as FRExt 

or fidelity range extensions. Having these add-ons improved the output video quality along with enabling 

higher sample bit depth precision and color information having higher resolution. FRExt also includes 

higher YUV sampling structures as 4:2:2 and 4:4:4 as shown in Figure 1.3. Additional features such as 

integer transforms switching from 4x4 to 8x8 and vice versa, perceptual based quantization matrix, 

efficient lossless coding technique for inter-picture along with additional color space support were also 

added.  

Scalable video coding (SVC) [23] allows the construction of bitstreams that contain sub-bitstreams 

that conform to H.264/AVC. For temporal bitstream scalability, i.e., the presence of a sub-bitstream with 

a smaller temporal sampling rate than the bitstream, complete access units are removed from the 

bitstream when deriving the sub-bitstream. In this case, high-level syntax and inter prediction reference 

pictures in the bitstream are constructed accordingly. For spatial and quality bitstream scalabilities, i.e. 

the presence of a sub-bitstream with lower spatial resolution or quality than the bitstream, network 

abstraction layer (NAL) units are removed from the bitstream when deriving the sub-bitstream. In this 

case, inter-layer prediction, i.e., the prediction of the higher spatial resolution or quality signal by data of 

the lower spatial resolution or quality signal, is typically used for efficient coding. The scalable video coding 

extension was completed in November 2007 [17]. 

The next major feature added to the standard was Multiview Video Coding (MVC). MVC enables 

the construction of bit streams that represent more than one view of a video scene. An important example 
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of this functionality is stereoscopic 3D video coding. Two profiles were developed in the MVC work: one 

supporting an arbitrary number of views and designed specifically for two-view stereoscopic video. The 

Multiview Video Coding extensions were completed in November 2009 [24].  

Like any other previous motion-based codecs, it uses the following basic principles of video compression 

[1]:  

• Transform for reduction of spatial correlation  

• Quantization for control of bit rate  

• Motion compensated prediction for reduction of temporal correlation  

• Entropy coding for reduction in statistical correlation.  

The improved coding efficiency of H.264 can be attributed to the additional coding tools and the new 

features. Listed below are some of the improved techniques used in H.264 for the first time [25]: 

• Adaptive intra-picture prediction  

• Small block size transform with integer precision  

• Multiple reference pictures and generalized B-frames  

• Quarter pixel precision for motion compensation  

• Variable block size  

• Content adaptive in-loop deblocking filter and  

• Improved entropy coding by introduction of CABAC (context adaptive binary arithmetic coding) 

and CAVLC (context adaptive variable length coding).  

The increase in the coding efficiency and increase in the compression ratio result in a greater complexity 

of the encoder and the decoder algorithms of H.264, as compared to previous coding standards. In 

order to develop error resilience for transmission of information over the network, H.264 supports the 

following techniques [30]:  

• Flexible macroblock ordering (FMO)  

• Switched slice  

• Arbitrary slice order (ASO)  

• Redundant slice (RS)  

• Data partitioning (DP)  

• Parameter setting 
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2.2. Profiles of H.264 

  The H.264/AVC standard is composed of a wide range of coding tools. Also, the standard 

addresses a large range of bit rates, resolutions, qualities, applications and services. Not all the tools and 

all the bit rates are required for any given application at a given point of time. All the various tools of H.264 

are grouped in profiles. 

Profiles are defined as a subset of coding tools. They help to maximize the interoperability while 

limiting the complexity. Also, the various levels define the various parameters like size of decoded 

pictures, bit rate, etc.  

The profiles defined for H.264 can be listed as follows [25]:  

• Constrained baseline profile  

• Baseline profile  

• Main profile  

• Extended profile  

• High profile  

• Progressive high profile  

• Constrained high profile  

• High 10 profile  

• High 4:2:2 profile  

• High 4:4:4 predictive profile  

• High stereo profile  

• High 10 intra profile  

• High 4:2:2 intra profile  

• High 4:4:4 intra profile  

• CAVLC 4:4:4 intra profile  

• Scalable baseline profile  

• Scalable high profile  

• Scalable high intra profile 18  

• Scalable constrained high profile  

• Stereo high profile  

• Multiview high profile  
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Figure 2.1 illustrates the coding tools for the various profiles of H.264. The standard defines 21 sets of 

capabilities, which are referred to as profiles, targeting specific classes of applications. 

 

Figure 2.1. Different profiles in H.264 with distribution of various coding tools among the profiles 

2.2.1. Baseline profile: 

The list of tools included in the baseline profile are I (intra coded) and P (predictive coded) slice coding, 

enhanced error resilience tools of flexible macroblock ordering, arbitrary slices and redundant slices. It 

also supports CAVLC (context-based adaptive variable length coding). The baseline profile is intended 

to be used in low delay applications, applications demanding low processing power, and in high packet 

loss environments. This profile has the least coding efficiency among all the three profiles. 

2.2.2. Main profile: 

The coding tools included in the main profile are I, P, and B (bi directionally predictive coded) slices, 

interlace coding, CAVLC and CABAC (context-based adaptive binary arithmetic coding). The tools not 

supported by main profile are error resilience tools, data partitioning and SI (switched intra coded) and SP 

(switched predictive coded) slices. This profile is aimed to achieve highest possible coding efficiency. 

2.2.3.  Extended profile: 

This profile has all the tools included in the baseline profile. As illustrated in the Figure 2.1 this profile also 

includes B, SP and SI slices, data partitioning, interlaced frame and field coding, picture adaptive 

frame/field coding and macroblock adaptive frame/field coding. This profile provides better coding 

efficiency than baseline profile. The additional tools result in increased complexity. 
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2.2.4. High profile defined in the FRExts amendment: 

In September 2004 the first amendment of H.264/MPEG-4 AVC video coding standard was released [25]. 

A new set of coding tools were introduced as a part of this amendment. These are termed as ―Fidelity 

Range Extensions‖ (FRExts). The aim of releasing FRExts is to be able to achieve significant 

improvement in coding efficiency for higher fidelity material. It also has lossless representation capability: 

I PCM raw sample value macroblocks and entropy coded transform by-pass lossless macroblocks 

(FRExts only). The application areas for the FRExts tools are professional film production, video 

production and high-definition TV/DVD.  

The FRExts amendment defines four new profiles (refer Figure 2.2.) [23]:  

• High (HP)  

• High 10 (Hi10P)  

• High 4:2:2 (Hi422P)  

• High 4:4:4 (Hi444P)  

The other profiles constrained to intra use in H.264 are  

• High 10 intra profile  

• High 4:2:2 intra profile  

• High 4:4:4 intra profile  

Figure 2.2. gives us the specification of High profile in H.264. 

 

Figure 2.2. Tools introduced in FRExts and their classification under the new high profiles [31] 

 
All four of these profiles build further upon the design of the prior main profile. The main aim behind 

introducing 8x8 transform in FRExts is that high fidelity video demands preservation of fine details and 

textures. To achieve this, larger basis functions are required. However, smaller size transform like 4x4 

reduces ringing artifacts and reduces computational complexity. The encoder adaptively chooses 

between 4x4 and 8x8 transforms block sizes.  

The transform selection process is limited by the following conditions  
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• If an inter-coded MB has sub-partition smaller than 8x8 (i.e. 4x8, 8x4, 4x4), then 4x4 transform 

is used. 

• If an intra-coded MB is predicted using 8x8 luma spatial prediction, only 8x8 transform is used.  

• Encoder-specified perceptual-based quantization scaling matrices.  

The encoder can specify a matrix for scaling factor according to the specific frequency associated with 

the transform coefficient for use in inverse quantization scaling by the decoder. This allows optimization 

of the subjective quality according to the sensitivity of the human visual system, less sensitive to the coded 

error in high frequency transform coefficients [32].  

 

2.3. Levels of H.264 

As the term is used in the standard, a "level" is a specified set of constraints that indicate a degree 

of required decoder performance for a profile. For example, a level of support within a profile specifies 

the maximum picture resolution, frame rate, and bit rate that a decoder may use. A decoder that 

conforms to a given level must be able to decode all bitstreams encoded for that level and all lower 

levels. 

Level Maximum 
decoding speed 
(macroblocks/s) 

Maximum 
frame size 

(macroblocks) 

Maximum video 
bit rate for video coding layer (VCL) 

(Constrained Baseline, 
Baseline, Extended 
and Main Profiles) 

(kbits/s) 

Examples for high 
resolution 

@ highest frame rate 

(maximum stored 
frames) 

1 1,485 99 64 
128×96@30.9 (8) 

176×144@15.0 (4) 

1b 1,485 99 128 
128×96@30.9 (8) 

176×144@15.0 (4) 

1.1 3,000 396 192 176×144@30.3 (9) 
320×240@10.0 (3) 
352×288@7.5 (2) 

1.2 6,000 396 384 320×240@20.0 (7) 
352×288@15.2 (6) 

1.3 11,880 396 768 320×240@36.0 (7) 
352×288@30.0 (6) 

2 11,880 396 2,000 320×240@36.0 (7) 
352×288@30.0 (6) 

2.1 19,800 792 4,000 352×480@30.0 (7) 
352×576@25.0 (6) 
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2.2 20,250 1,620 4,000 
352×480@30.7 (12) 
352×576@25.6 (10) 
720×480@15.0 (6) 
720×576@12.5 (5) 

3 40,500 1,620 10,000 
352×480@61.4 (12) 
352×576@51.1 (10) 
720×480@30.0 (6) 
720×576@25.0 (5) 

3.1 108,000 3,600 14,000 720×480@80.0 (13) 
720×576@66.7 (11) 
1,280×720@30.0 (5) 

3.2 216,000 5,120 20,000 1,280×720@60.0 (5) 
1,280×1,024@42.2 (4) 

4 245,760 8,192 20,000 1,280×720@68.3 (9) 
1,920×1,080@30.1 (4) 
2,048×1,024@30.0 (4) 

4.1 245,760 8,192 50,000 1,280×720@68.3 (9) 
1,920×1,080@30.1 (4) 
2,048×1,024@30.0 (4) 

4.2 522,240 8,704 50,000 1,280×720@145.1 (9) 
1,920×1,080@64.0 (4) 
2,048×1,080@60.0 (4) 

Table 2.1. Levels with maximum H.264 property values 

 

2.4. H.264 Encoder 

Figure 2.3 illustrates the schematic of the H.264 encoder. H.264 encoder works on macroblocks and 

motion-compensation like most other previous generation codecs. Video is formed by a series of picture 

frames. Each picture frame is an image which is split down into blocks. The block sizes can vary in H.264. 

The encoder may perform intra-coding or inter-coding for the macroblocks of a given frame. Intra coded 

frames are encoded and decoded independently. They do not need any reference frames. Hence they 

provide access points to the coded sequence where decoding can start. H.264 uses nine spatial prediction 

modes in intra-coding to reduce spatial redundancy in the source signal of the picture as shown in Figure 

2.6. These prediction modes are explained in Figure 2.4. Inter-coding uses inter-prediction of a given 

block from some previously decoded pictures. The aim to use inter-coding is to reduce the temporal 

redundancy by making use of motion vectors. Motion vectors give the direction of motion of a particular 

block from the current frame to the next frame. The prediction residuals are obtained which then undergo 

transformation to remove spatial correlation in the block. The transformed coefficients, thus obtained, 

undergo quantization. The motion vectors (obtained from inter-prediction) or intra-prediction modes are 

combined with the quantized transform coefficient information. They are then encoded using entropy code 

such as context-based adaptive variable length coding (CAVLC) or context-based adaptive binary 

arithmetic coding (CABAC) [25].  
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There is a local decoder within the H.264 encoder. This local decoder performs the operations of inverse 

quantization and inverse transform to obtain the residual signal in the spatial domain. The prediction signal 

is added to the residual signal to reconstruct the input frame. This input frame is fed in the deblocking filter 

to remove blocking artifacts at the block boundaries. The output of the deblocking filter is then fed to 

inter/intra prediction blocks to generate prediction signals. The various coding tools used in the H.264 

encoder are explained in the sections 2.4.1 through 2.4.6. 

 

 

Figure 2.3. H.264 Video Coding Encoder Framework [33] 

2.4.1. Intra-prediction  

 
Intra-prediction uses the macroblocks from the same image for prediction. Two types of prediction 

schemes are used for the luminance component. These two schemes can be referred as INTRA_4x4 and 

INTRA_16x16 [38]. In INTRA_4x4, a macroblock of size 16x16 pixels are divided into 16 4x4 sub blocks. 

Intra prediction scheme is applied individually to these 4x4 sub blocks. There are nine different prediction 

modes supported as shown in Figure 2.4. In FRExts profiles alone, there is also 8x8 luma spatial prediction 

(similar to 4x4 spatial prediction) and with low-pass filtering of the prediction to improve prediction 

performance. 
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Figure 2.4. 4x4 Luma prediction (intra-prediction) modes in H.264 [33] 

In Mode 0, the samples of the macroblock are predicted from the neighboring samples on the top. 

In Mode 1, the samples of the macroblock are predicted from the neighboring samples from the left. In 

Mode 2, the mean of all the neighboring samples is used for prediction. Mode 3 is in diagonally down-left 

direction. Mode 4 is in diagonal down-right direction. Mode 5 is in vertical-right direction. Mode 6 is in 

horizontal-down direction. Mode 7 is in vertical-left direction. Mode 8 is in horizontal up direction. The 

predicted samples are calculated from a weighted average of the previously predicted samples A to M. 

For prediction of 16x16 intra prediction of luminance components, four modes are used as shown 

in Figure 2.5. The three modes of mode 0 (vertical), mode 1 (horizontal) and mode 2 (DC) are similar to 

the prediction modes for 4x4 block. In the fourth mode, the linear plane function is fitted in the neighboring 

samples. 

 

Figure 2.5. 16X16 Luma prediction (intra-prediction) modes in H.264 [33] 

The chroma macroblock is predicted from neighboring chroma samples. The four prediction 

modes used for the chroma blocks are similar to 16x16 luma prediction modes. The number in which the 

prediction modes are ordered is different for chroma macroblock: mode 0 is DC, mode 1 is horizontal, 

mode 2 is vertical and mode 3 is plane. The block sizes for the chroma prediction depend on the sampling 

format. For 4:2:0 format, 8x8 size of chroma block is selected. For 4:2:2 format, 8x16 size of chroma block 

is selected. For 4:4:4 format, 16x16 size of chroma block is selected [33].  
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2.4.2. Inter-prediction  

 
Inter-prediction is used to capitalize on the temporal redundancy in a video sequence. The temporal 

correlation is reduced by inter prediction through the use of motion estimation and compensation 

algorithms [33]. An image is divided into macroblocks; each 16x16 macroblock is further partitioned into 

16x16, 16x8, 8x16, 8x8 sized blocks. A 8x8 sub-macroblock can be further partitioned into 8x4, 4x8, 4x4 

sized blocks. Figure 2.6 illustrates the partitioning of a macroblock and a sub-macroblock [1]. The input 

video characteristics govern the block size. A smaller block size ensures less residual data; however 

smaller block sizes also mean more motion vectors and hence more number of bits required to encode 

these motion vectors. 

 

Figure 2.6. Macroblock portioning in H.264 for inter prediction [33] row1 (L-R) 16x16, 8x16, 16x8, 8x8 

blocks and row2 (L-R) 8x8, 4x8, 8x4, 4x4 blocks 

 

Each partition or sub-macroblock partition in an inter-coded macroblock is predicted from an area 

of the same size in a reference picture. The offset between the two areas (the motion vector) has quarter-

sample resolution for the luma component and one-eighth-sample resolution for the chroma components. 

The luma and chroma samples at sub-sample positions do not exist in the reference picture and so it is 

necessary to create them using interpolation from nearby coded samples. Figures 2.7 and 2.8 illustrate 

half and quarter pixel interpolation used in luma pixel interpolation respectively. Six-tap filtering is used 

for derivation of half-pel luma sample predictions, for sharper sub pixel motion-compensation. Quarter-

pixel motion is derived by linear interpolation of the half pel values, to save processing power. 
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Figure 2.7. Interpolation of luma half-pel positions 

 

 

Figure 2.8. Interpolation of luma quarter-pel positions 

 

The reference pictures used for inter prediction are previously decoded frames and are stored in 

the picture buffer. H.264 supports the use of multiple frames as reference frames. This is implemented by 

the use of an additional picture reference parameter which is transmitted along with the motion vector. 

Figure 2.9 illustrates an example with 4 reference pictures. 
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Figure 2.9. Motion compensated prediction with multiple reference frames [1] 

2.4.3. Transform coding 

There is high spatial redundancy among the prediction error signals. H.264 implements a block-based 

transform to reduce this spatial redundancy [33]. The former standards of MPEG-1 and MPEG-2 

employed a two dimensional discrete cosine transform (DCT) for the purpose of transform coding of the 

size 8x8 [33]. H.264 uses integer transforms instead of the DCT. The size of these transforms is 4x4 [33]. 

The advantages of using a smaller block size in H.264 are stated as follows:  

• The reduction in the transform size enables the encoder to better adapt the prediction error coding 

to the boundaries of the moving objects and to match the transform block size with the smallest 

block size of motion compensation.  

• The smaller block size of the transform leads to a significant reduction in the ringing artifacts.  

• The 4x4 integer transform has the benefit for removing the need for multiplications.H.264 employs 

a hierarchical transform structure, in which the DC coefficients of neighboring 4x4 transforms for 

luma and chroma signals are grouped into 4x4 blocks (blocks -1, 16 and 17) and transformed 

again by the Hadamard transform as shown in Figure 2.10 (a), (b), (c), (d) and (e). 

 

As shown in Figure 2.10 (b) the first transform (matrix H1 is applied to all samples of all prediction 

error blocks of the luminance component (Y) and for all blocks of chrominance components (Cb and Cr). 

For blocks with mostly flat pixel values, there is significant correlation among transform DC coefficients of 

neighboring blocks. Hence, the standard specifies the 4x4 Hadamard transform (matrix H2 in figure 2.10 

(c)) for luma DC coefficients ( Figure 2.10 (c)) for 16x16 intra-mode only, and 2x2 Hadamard transform 

as shown in figure 2.10 (d) (matrix H3 in figure 2.10 (e)) for chroma DC coefficients. 
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Figure 2.10. H.264 Transformation 

(a) DC coefficients of 16 4x4 luma blocks, 4 4x4 Cb and Cr blocks [1] 
(b) Matrix H1 (e) is applied to 4x4 block of luma/chroma coefficients X (a) [34] 

(c) Matrix H2 (e) (4x4 Hadamard transform) applied to luma DC coefficients WD [34] 
(d) Matrix H3 (e) (2x2 Hadamard transform) applied to chroma DC coefficients WD [34] 

(e) Matrices H1, H2 and H3 of the three transforms used in H.264 [34] 
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2.4.4. Deblocking filter: 

 
The deblocking filter is used to remove the blocking artifacts due to the block based encoding pattern. 

The transform applied after intra-prediction or inter-prediction is on blocks; the transform coefficients then 

undergo quantization. These block based operations are responsible for blocking artifacts which are 

removed by the in-loop deblocking filter as shown in Figure 2.11. It reduces the artifacts at the block 

boundaries and prevents the propagation of accumulated noise. The presence of the filter however adds 

to the complexity of the system [33]. Figure 2.11 illustrates a macroblock with sixteen 4x4 sub blocks 

along with their boundaries. 

 

Figure 2.11. Boundaries in a macroblock to be filtered (luma boundaries shown 
with solid lines and chroma boundaries shown with dotted lines) [1] 

 

As shown in the Figure 2.11, the luma deblocking filter process is performed on the 16 sample 

edges – shown by solid lines. The chroma deblocking filter process is performed on 8 sample edges – 

shown in dotted lines.  

H.264 employs deblocking process adaptively at the following three levels:  

• At slice level – global filtering strength is adjusted to the individual characteristics of the video 

sequence. 

• At block-edge level – deblocking filter decision is based on inter or intra prediction of the block, 

motion differences and presence of coded residuals in the two participating blocks. 

• At sample level – it is important to distinguish between the blocking artifact and the true edges 

of the image. True edges should not be de blocked. Hence decision for deblocking at a sample 

level becomes important.  
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2.4.5. Entropy coding 

H.264 uses variable length coding to match a symbol to a code based on the context 

characteristics. All the syntax elements except for the residual data are encoded by the Exp- Golomb 

codes [33]. The residual data is encoded using CAVLC. The main and the high profiles of H.264 use 

CABAC.  

• Context-based adaptive variable length coding (CAVLC): After undergoing transform and 

quantization the probability that the level of coefficients is zero or +1 is very high [33]. CAVLC 

handles these values differently. It codes the number of zeroes and +1. For other values, their 

values are coded.  

• Context-based adaptive binary arithmetic coding (CABAC): This technique utilizes the arithmetic 

encoding to achieve good compression. The schematic for CABAC is shown in Figure 2.12. 

 

 

Figure 2.12. Schematic block diagram of CABAC [33] 

 

CABAC consists of three steps:  

• Step 1: Binarization: A non-binary value is uniquely mapped to a binary sequence  

• Step 2: Context modeling: A context model is a probability model for one or more elements of 

binarized symbol. The probability model is selected such that corresponding choice may depend 

on previously encoded syntax elements.  

• Step 3: Binary arithmetic coding: An arithmetic encoder encodes each element according to the 

selected probability model.  

2.4.6. B-slices and adaptive weighted prediction 

Bi-directional prediction which uses both past and future frames for reference can be very useful in 

improving the temporal prediction. Bi-directional prediction in H.264 uses multiple reference frames. 

Figure 2.13 shows bidirectional prediction from multiple reference frames. The video coding standards, 

before H.264, with B pictures use the bidirectional mode, with limitation that it allows the combination of a 



38 

 

previous and subsequent prediction signals. In the previous standards, one prediction signal is derived 

from subsequent inter-picture, another from a previous picture, the other from a linear averaged signal of 

two motion compensated prediction signals. 

 

Figure 2.13. Partition prediction examples in a B macroblock type: (a) past/future, (b) past, (c) future [33] 

 

H.264 supports forward/backward prediction pair and also supports forward/forward and 

backward/backward prediction pair [33]. Figure 2.13 (a) and Figure 2.13 (b) describe the scenario where 

bidirectional prediction and multiple reference frames respectively are applied and a macroblock is thereby 

predicted as a linear combination of multiple reference signals using weights as described in Equation 

2.1. Two forward references for prediction are beneficial for motion compensated prediction of a region 

just before scene change. Two backward reference frames are beneficial for frames just after scene 

change. H.264 also allows bi-directionally predictive-coded slice which may also be used as reference for 

inter-coding of other pictures. Except H.264, all the existing standards consider equal weights for 

reference pictures. Equal weights of reference signals are averaged and the prediction signal is obtained. 

H.264 also uses weighted prediction [33]. It can be used for a macroblock of P slice or B slice. Different 

weights can be assigned to the two different reference signals and the prediction signal is calculated as 

follows: 

𝑝 = w1 ∗  r1 + w2 ∗  r2                    Equation 2.1.                                

 

In Equation (2.1), p is the prediction signal, r1 and r2 are the reference signals and w1 and w2 are the 

prediction weights. 
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2.5. H.264 Decoder 

The H.264 [34] decoder works similar in operation to the local decoder of H.264 encoder. An encoded bit 

stream is the input to the decoder. Entropy decoding (CABAC or CAVLC) takes place on the bit stream 

to obtain the transform coefficients. These coefficients are then inverse scanned and inverse quantized. 

This gives residual block data in the transform domain. Inverse transform is performed to obtain the data 

in the pixel domain. The resulting output is 4x4 blocks of residual signal. Depending on inter predicted or 

intra-predicted, an appropriate prediction signal is added to the residual signal. For an inter-coded block, 

a prediction block is constructed depending on the motion vectors, reference frames and previously 

decoded pictures. This prediction block is added to the residual block to reconstruct the video frames. 

These reconstructed frames then undergo deblocking before they are stored for future use for prediction 

or being displayed. Figure 2.14 illustrates the decoder.  

 

 

Figure 2.14. H.264 Decoder block diagram [33] 

 
2.6. Summary 

This chapter outlines the coding tools of H.264 codec. Having had a good understanding of H.264, next 

chapter describes the coding tools of High Efficiency Video Coding (HEVC). 
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 HEVC Codec 

Overview 

 
 

3.1. Introduction: 

High Efficiency Video Coding (HEVC) is the latest Video Coding format in use in the market which is 

second most popular codec after H.264 [11]. It challenges the state-of-the-art H.264/AVC Video Coding 

standard by being able to reduce the bit rate by 50%, retaining the same video quality. It came into 

existence in the early 2012 although Joint Collaborative Team on Video Coding (JCT-VC) was formed in 

January 2001 to carry out developments on HEVC, and ever since then a huge range of development has 

been going on. On 13 April 2013, HEVC standard also called H.265 was approved by ITU-T. Joint 

Collaborative Team on Video Coding (JCT-VC), is a group of video coding experts from ITU-T Study 

Group (VCEG) and ISO/IEC JTC 1/SC 29/WG 11 (MPEG).  

HEVC is designed to address existing applications of H.264/MPEG-4 AVC and to focus on two 

key issues: increased video resolution and increased use of parallel processing architectures. It primarily 

targets consumer applications as pixel formats are limited to 4:2:0 8-bit and 4:2:0 10-bit. Main, Main 10 

and Main intra profile (Main Still Picture profile) were finalized in 2013 [11]. The next revision of the 

standard, in July 2014 [35], had enabled new use-cases with the support of additional pixel formats such 

as 4:2:2 and 4:4:4 and bit depth higher than 10-bit [36], embedded bit-stream scalability and 3D video 

[37]. 

Multimedia consumer applications have a very large market [11] [37]. The revenues involved in 

digital TV broadcasting and DVD, Blu-ray distributions are substantial. Thus, standardization of video 

coding is essential. Standards simplify inter-operability between encoders and decoders from different 

manufacturers, they make it possible for different vendors to build platforms that incorporate video codecs, 

audio codecs, security and rights management and they all interact in well-defined and consistent ways. 

There are numerous video compression standards, both open source and proprietary, depending on the 

applications and end-usage.  

An increasing diversity of services, the growing popularity of HD video, and the emergence of 

beyond-HD formats (e.g., 4k×2k or 8k×4k resolution) [38] are creating even stronger needs for coding 

efficiency superior to H.264/MPEG-4 AVC’s capabilities. The need is even stronger when higher resolution 

is accompanied by stereo or multiview capture and display. Moreover, the traffic caused by video 

applications targeting mobile devices and tablet PCs, as well as the transmission needs for video-on-
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demand services, are imposing severe challenges on today’s networks. An increased desire for higher 

quality and resolutions is also arising in mobile applications [11]. Storage space and bandwidth are limited. 

Even if high bandwidth technology (e.g. fiber-optic cable) was in place, the per-byte-cost of transmission 

would have to be very low before it would be feasible to use it for the staggering amounts of data required 

by HDTV and ultra HDTV. 

 

3.2. HEVC Coding Design 

3.2.1. Encoder and Decoder in HEVC: 

Since H.261, all the video compression standards have been employing hybrid approach for the video 

coding layer [39]. Similarly, HEVC does the same. Figure 3.1 shows the encoder/decoder block diagram 

to create a compressed video bit stream. The compressed bit stream is stored or transmitted. A video 

decoder decompresses the bit stream to create a sequence of decoded frames [40]. The video encoder 

performs the following process to generate the bitstream yielding to HEVC standard. Figures 3.2. and 3.3. 

depict the block diagram of a hybrid video encoder and decoder, respectively. Each picture is partitioned 

into block shaped multiple units; the same exact partitioning is conveyed to the decoder. After partitioning 

each picture, it is intra or inter predicted. The first picture of a video sequence and the first picture at each 

clean random-access point is coded using intra prediction only. The rest of the pictures in a video 

sequence is coded using inter prediction.   Linear spatial transformation is performed on the residual signal 

(the difference between the original picture unit and the prediction). The transform coefficients along with 

the prediction information are quantized and entropy encoded. In order to generate identical predictions 

for successive data, the encoder clones the decoder processing loop [11]. The loop performs inverse 

scaling, inverse transform to construct residual signal which is then added to the prediction. It is further 

processed to remove the artifacts induced by block-wide processing and quantization. The decoded 

picture buffer stores the final picture representation for prediction of successive data.  

The video decoder decodes the encoded bitstream by performing the following steps:  

1. Entropy decoding and extracting the elements of the coded sequence.  

2. Rescaling and inverting the transform stage.  

3. Predicting each unit and adding the prediction. 
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Figure 3.1. Encoder and Decoder coding techniques in HEVC [40] 

3.2.2. Coding tree units and coding units:  

HEVC supports highly flexible partitioning of a video sequence [11]. Each frame of the sequence is split 

into rectangular or square regions (units or blocks). The conventional macroblock is replaced by coding 

tree unit (CTU) in HEVC, which has a size selected by encoder and can be larger than a macroblock [11]. 

Each CTU consists of a luma CTB and the two chroma CTBs and syntax elements. In a CTU, a luma CTB 

has a picture area of L × L samples of the luma component and the corresponding chroma CTBs cover 

each (L/2) × (L/2) samples of each of the two chroma components. CTBs have always square shapes. 

The value of L may be equal to 16, 32, or 64 as determined by an encoded syntax element specified in 

the sequence parameter set (SPS). The value of L can be 16, 32 or 64. The larger CTBs are useful when 

encoding high-resolution video content and also enable better compression [41] [42].  

 

Figure 3.2. HEVC Videc Encoder Block Diagram [11] 

Each CTB is split into one or multiple coding units (CUs). Each CU consists of one luma coding 

block (CB), two chroma CBs and associated syntax. Figure 3.4. shows the structure of CTU and CU in a 



43 

 

video frame. The minimum luma CB size is computed from L and the maximum depth of a quad-tree and 

is always 8×8 or larger (in units of luma samples). Figure 3.5. and Figure 3.6 shows the quad-tree 

structure. The coding mode, intra or inter prediction, is selected at the CU level. CBs have always square 

shapes. CU has an associated partitioning into prediction units (PUs) and transform units (TUs). A CU is 

the root for both prediction unit (PU) and transform unit (TU) as shown in Figure 3.7. Figure 3.8. shows 

examples of various CTU sizes and CU sizes suitable for different resolutions and types of content. For 

example, for an application using 1080p content that is known to include only simple global motion 

activities, a CTU size of 64 (L=64) and maximum depth of 2 may be appropriate choice. For more general 

1080p content, which may also include complex motion activities of small regions, a CTU size of 64 and 

maximum depth of 4 would be preferable [43]. Pictorial representations of various block divisions for 

HEVC in a frame is shown in Figure 3.9. 

 

 

Figure 3.3. HEVC Video Decoder Block Diagram 

 

 

Figure 3.4. Coding tree unit (CTU) and Coding unit (CU) 
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Figure 3.5. Quad Tree CU structure in HEVC 

 
 

 

Figure 3.6. Quad Tree Splitting flags are 1’s and 0’s 

 

 

 

Figure 3.7. Coding structure in HEVC 
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Figure 3.8. Flexible CU partitioning 

 

 

Figure 3.9. Pictorial representations of various block divisions for HEVC in a frame 

3.2.3. Prediction units:  

The luma and chroma PBs, together with the associated prediction syntax, form the PU. The luma and 

chroma CBs are split into luma and chroma prediction blocks (PBs) based on prediction-type decision 

[11]. The prediction mode for the CU is signaled as being intra or inter, according to whether it uses 

intrapicture (spatial) prediction or inter-picture (temporal) prediction. The size of PB can vary from 64×64 

to 4×4 samples. For the prediction mode intra, except for the smallest CB size all PB size is same as the 

CB size that is allowed in the bitstream. Intra prediction can be performed on only square partitions. When 

CB has to be split into four PB which have their own intra-picture prediction mode, a flag is enabled. The 

reason for allowing this split is to enable distinct intrapicture prediction mode selections for blocks as small 

as 4×4 in size. When the luma intrapicture prediction operates with 4×4 blocks, the chroma intrapicture 
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prediction also uses 4×4 blocks (each covering the same picture region as four 4×4 luma blocks). The 

actual region size at which the intrapicture prediction operates (which is distinct from the PB size, at which 

the intrapicture prediction mode is established) depends on the residual coding partitioning. 

When the prediction mode is signaled as inter, it is specified whether the luma and chroma CBs 

are split into one, two, or four PBs. The splitting into four PBs is allowed only when the CB size is equal 

to the minimum allowed CB size, using an equivalent type of splitting as could otherwise be performed at 

the CB level of the design rather than at the PB level. When a CB is split into four PBs, each PB covers a 

quadrant of the CB. When a CB is split into two PBs, six types of this splitting are possible. The partitioning 

possibilities for interpicture-predicted CBs are depicted in Figure 3.10. The upper partitions illustrate the 

cases of not splitting the CB of size M×M, of splitting the CB into two PBs of size M × (M/2) or (M/2) × M, 

or splitting it into four PBs of size (M/2) × (M/2). The lower four partition types in Figure 3.10. are referred 

to as asymmetric motion partitioning (AMP) and are only allowed when M is 16 or larger for luma. For 

intrapicture-predicted CBs, only M×M and (M/2) × (M/2) are supported. 

To minimize worst-case memory bandwidth, PBs of luma size 4×4 is not allowed for interpicture 

prediction, and PBs of luma sizes 4×8 and 8×4 are restricted to unipredictive coding. 

 

Figure 3.10. Modes for splitting a CB into PB’s. L=LEFT, R=RIGHT, U=UP, D=DOWN 

3.2.4. Transform units:  

The prediction residual is coded using block transforms. A TU tree structure has its root at the CU level 

[11]. The luma CB residual may be identical to the luma transform block (TB) or may be further split into 

smaller luma TBs. The same applies to the chroma TBs. Integer basis functions similar to those of a 

discrete cosine transform (DCT) are defined for the square TB sizes 4×4, 8×8, 16×16, and 32×32. For the 

4×4 transform of luma intrapicture prediction residuals, an integer transform derived from a form of 

discrete sine transform (DST) is alternatively specified. 

Only square CB and TB partitioning is specified, where a block can be recursively split into 

quadrants, as illustrated in Figure 3.11. For a given luma CB of size M×M, a flag signals whether it is split 
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into four blocks of size M/2×M/2. If further splitting is possible, as signaled by a maximum depth of the 

residual quadtree indicated in the SPS, each quadrant is assigned a flag that indicates whether it is split 

into four quadrants. The leaf node blocks resulting from the residual quadtree are the transform blocks 

that are further processed by transform coding. The encoder indicates the maximum and minimum luma 

TB sizes that it will use. Splitting is implicit when the CB size is larger than the maximum TB size. Not 

splitting is implicit when splitting would result in a luma TB size smaller than the indicated minimum. 

The chroma TB size is half the luma TB size in each dimension, except when the luma TB size is 

4×4, in which case a single 4×4 chroma TB is used for the region covered by four 4×4 luma TBs. In the 

case of intrapicture-predicted CUs, the decoded samples of the nearest-neighboring TBs (within or outside 

the CB) are used as reference data for intrapicture prediction. In contrast to previous standards, the HEVC 

design allows a TB to span across multiple PBs for interpicture-predicted CUs to maximize the potential 

coding efficiency benefits of the quadtree-structured TB partitioning. 

 

 

Figure 3.11. Subdivision of a CTB into CB’s. Solid line indicate CB boundaries and dotted lines indicate 

TB boundaries. (A) CTB with its partitioning (B) Corresponding Quad Tree [11] 

3.2.5. Slices and Tiles:  

Slices are processed in the order of a raster scan [11]. A picture may be split into one or several slices as 

shown in Figure 3.12. (A) so that a picture is a collection of one or more slices. Slices are self-contained 

in the sense that, given the availability of the active sequence and picture parameter sets, their syntax 

elements can be parsed from the bitstream and the values of the samples in the area of the picture that 

the slice represents can be correctly decoded without the use of any data from other slices in the same 

picture. Tiles are self-contained and independently decodable rectangular regions of the picture. The main 

purpose of tiles is to enable the use of parallel processing architectures for encoding and decoding. 

Multiple tiles may share header information by being contained in the same slice. Alternatively, a single 

tile may contain multiple group of CTUs as shown in Figure 3.12. (B). 
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3.2.6. Intrapicture Prediction:  

Prediction operates according to the TB size, and previously decoded boundary samples from spatially 

neighboring TBs are used to form the prediction signal [11]. The possible prediction directions are shown 

in Figure 3.13. Directional prediction with 33 different directional orientations is defined for (square) TB 

sizes from 4×4 up to 32×32. Alternatively, planar prediction (assuming an amplitude surface with a 

horizontal and vertical slope derived from the boundaries) and DC prediction (a flat surface with a value 

matching the mean value of the boundary samples) can also be used. For chroma, the horizontal, vertical, 

planar, and DC prediction modes can be explicitly signaled, or the chroma prediction mode can be 

indicated to be the same as the luma prediction mode (and, as a special case to avoid redundant signaling, 

when one of the first four choices is indicated and is the same as the luma prediction mode, the 

Intra_Angular mode is applied instead) [39]. The number of supported prediction modes varies based on 

the PU size (see Table 3.1) [44]. From an encoding perspective, the increased number of prediction 

modes will require good mode selection heuristics to maintain a reasonable search complexity (see Table 

3.2.) [45]. 

 

3.2.7. Interpicture Prediction:  

Compared to intrapicture-predicted CBs, HEVC supports more PB partition shapes for interpicture-

predicted CBs [11]. The partitioning modes of PART_2N×2N, PART_2N×N, and PART_N×2N indicate 

the cases when the CB is not split, split into two equal-size PBs horizontally, and split into two equal-size 

PBs vertically, respectively. Figure 3.14. shows Intra and Inter frame prediction modes for HEVC. 

 

3.2.8. Motion vector signalling:  

Advanced motion vector prediction (AMVP) is used, including derivation of several most probable 

candidates based on data from adjacent PBs and the reference picture [11]. A merge mode for MV coding 

can also be used, allowing the inheritance of MVs from temporally or spatially neighbouring PBs. 

Moreover, compared to H.264/MPEG-4 AVC, improved skipped and direct motion inferences are also 

specified. 
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Figure 3.12. Subdivision of a picture (A) Slices, (B) Tiles and (C) Illustration of wave front parallel 

processing [11] 

 

 

Figure 3.13. Modes and directional orientations for intrapicture prediction [11] 

 
PU Size Intraprediction Modes Number of Intra 

Prediction Modes 

6464 0−2, 34 4 

3232 0−34 35 

1616 0−34 35 

88 0−34 35 

44 0−16, 34 18 

Table 3.1. Luma intra prediction modes supported by different PU sizes [46] 
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Size of PB Number of PBs in 

a 6464 CU 

Number of modes to 

be tested in each PB 

Total number of modes 

to be tested at this level 

3232 4 35 140 

1616 16 35 560 

88 64 35 2240 

44 256 18 4608 

Total 7548 

Table 3.2. Total number of modes to be tested [47] 

 

Figure 3.14. Intra and Inter frame prediction modes for HEVC [48] 

3.2.9. Motion compensation:  

Like MPEG-4/AVC, HEVC specifies motion vectors in 1/4-pel, but uses an 8-tap filter for luma (all 

positions), and a 4-tap 1/8-pel filter for chroma as shown in Figure 3.15. Because of the 8-tap filter, any 

given N×M sized block requires extra pixels on all sides (3 left/above, 4 right and below) to provide the 

filter with the data it needs. With small blocks like an 8×4, (8+7) × (4+7) = 15×11 pixels are needed. The 

HEVC standard limits the smallest block to be uni-directional and 4×4 is not supported since more small 

blocks require more memory read, thus increasing more memory access, more time and more power. 

The HEVC standard also supports weighted prediction for both uni- and bi-directional PUs. However, the 

weights are always explicitly transmitted in the slice header; there is no implicit weighted prediction like in 

MPEG-4/AVC. Quarter-sample precision is used for the motion vectors. 7-tap (weights: -1, 4, -10, 58, 17, 

-5, 1) or 8-tap (weights: -1, 4, -11, 40, 40, -11, 4, 1) filters are used for interpolation of fractional-sample 

positions. The 8-tap filter is applied for half sample positions and the 7-tap filter is applied for quarter 
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sample positions. Similar to H.264/MPEG-4 AVC, multiple reference pictures are used as shown in Figure 

2.10. For each PB, either one or two motion vectors can be transmitted, resulting either in unipredictive 

or bipredictive coding, respectively. A scaling and offset operation can be applied to the prediction 

signal/signals in a manner known as weighted prediction. 

 

Figure 3.15. Integer and Fractional sample position for luma interpolation [11] 

3.2.10. Transform, Scaling and Quantization  

HEVC uses transform coding of the prediction error residual in a similar manner as in prior 

standards [11]. The supported transform block sizes are 4×4, 8×8, 16×16, and 32×32. Smaller size 

transform matrices are embedded in larger size transform matrices.  This simplifies implementation, since 

a 32×32 matrix, can do 4×4, 8×8, 16×16, and 32×32 transform [49]. Transform matrices 4×4 through 

32×32 INTDCTs (embedded) are shown. Transform matrices for each size transform are as follows. 

 

nS = 4 

{64, 64, 64, 64} 

{83, 36,-36,-83} 

{64,-64,-64, 64} 

{36,-83, 83,-36} 

 

nS = 8 

{64, 64, 64, 64, 64, 64, 64, 64} 

{89, 75, 50, 18,-18,-50,-75,-89} 

{83, 36,-36,-83,-83,-36, 36, 83} 
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{75,-18,-89,-50, 50, 89, 18,-75} 

{64,-64,-64, 64, 64,-64,-64, 64} 

{50,-89, 18, 75,-75,-18, 89,-50} 

{36,-83, 83,-36,-36, 83,-83, 36} 

{18,-50, 75,-89, 89,-75, 50,-18} 

 

nS = 16 

{64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64} 

{90 87 80 70 57 43 25  9 -9-25-43-57-70-80-87-90} 

{89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 89} 

{87 57  9-43-80-90-70-25 25 70 90 80 43 -9-57-87} 

{83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83} 

{80  9-70-87-25 57 90 43-43-90-57 25 87 70 -9-80} 

{75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75} 

{70-43-87  9 90 25-80-57 57 80-25-90 -9 87 43-70} 

{64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64} 

{57-80-25 90 -9-87 43 70-70-43 87  9-90 25 80-57} 

{50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50} 

{43-90 57 25-87 70  9-80 80 -9-70 87-25-57 90-43} 

{36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36} 

{25-70 90-80 43  9-57 87-87 57 -9-43 80-90 70-25} 

{18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18} 

{ 9-25 43-57 70-80 87-90 90-87 80-70 57-43 25 -9} 

 

nS = 32 

{64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64} 

{90 90 88 85 82 78 73 67 61 54 46 38 31 22 13  4 -4-13-22-31-38-46-54-61-67-73-78-82-85-88-90-90} 

{90 87 80 70 57 43 25  9 -9-25-43-57-70-80-87-90-90-87-80-70-57-43-25 -9  9 25 43 57 70 80 87 90} 

{90 82 67 46 22 -4-31-54-73-85-90-88-78-61-38-13 13 38 61 78 88 90 85 73 54 31  4-22-46-67-82-90} 

{89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 89 89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 89} 

{88 67 31-13-54-82-90-78-46 -4 38 73 90 85 61 22-22-61-85-90-73-38  4 46 78 90 82 54 13-31-67-88} 

{87 57  9-43-80-90-70-25 25 70 90 80 43 -9-57-87-87-57 -9 43 80 90 70 25-25-70-90-80-43  9 57 87} 
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{85 46-13-67-90-73-22 38 82 88 54 -4-61-90-78-31 31 78 90 61  4-54-88-82-38 22 73 90 67 13-46-85} 

{83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83} 

{82 22-54-90-61 13 78 85 31-46-90-67  4 73 88 38-38-88-73 -4 67 90 46-31-85-78-13 61 90 54-22-82} 

{80  9-70-87-25 57 90 43-43-90-57 25 87 70 -9-80-80 -9 70 87 25-57-90-43 43 90 57-25-87-70  9 80} 

{78 -4-82-73 13 85 67-22-88-61 31 90 54-38-90-46 46 90 38-54-90-31 61 88 22-67-85-13 73 82  4-78} 

{75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75 75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75} 

{73-31-90-22 78 67-38-90-13 82 61-46-88 -4 85 54-54-85  4 88 46-61-82 13 90 38-67-78 22 90 31-73} 

{70-43-87  9 90 25-80-57 57 80-25-90 -9 87 43-70-70 43 87 -9-90-25 80 57-57-80 25 90  9-87-43 70} 

{67-54-78 38 85-22-90  4 90 13-88-31 82 46-73-61 61 73-46-82 31 88-13-90 -4 90 22-85-38 78 54-67} 

{64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64} 

{61-73-46 82 31-88-13 90 -4-90 22 85-38-78 54 67-67-54 78 38-85-22 90  4-90 13 88-31-82 46 73-61} 

{57-80-25 90 -9-87 43 70-70-43 87  9-90 25 80-57-57 80 25-90  9 87-43-70 70 43-87 -9 90-25-80 57} 

{54-85 -4 88-46-61 82 13-90 38 67-78-22 90-31-73 73 31-90 22 78-67-38 90-13-82 61 46-88  4 85-54} 

{50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50 50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50} 

{46-90 38 54-90 31 61-88 22 67-85 13 73-82  4 78-78 -4 82-73-13 85-67-22 88-61-31 90-54-38 90-46} 

{43-90 57 25-87 70  9-80 80 -9-70 87-25-57 90-43-43 90-57-25 87-70 -9 80-80  9 70-87 25 57-90 43} 

{38-88 73 -4-67 90-46-31 85-78 13 61-90 54 22-82 82-22-54 90-61-13 78-85 31 46-90 67  4-73 88-38} 

{36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36} 

{31-78 90-61  4 54-88 82-38-22 73-90 67-13-46 85-85 46 13-67 90-73 22 38-82 88-54 -4 61-90 78-31} 

{25-70 90-80 43  9-57 87-87 57 -9-43 80-90 70-25-25 70-90 80-43 -9 57-87 87-57  9 43-80 90-70 25} 

{22-61 85-90 73-38 -4 46-78 90-82 54-13-31 67-88 88-67 31 13-54 82-90 78-46  4 38-73 90-85 61-22} 

{18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18 18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18} 

{13-38 61-78 88-90 85-73 54-31  4 22-46 67-82 90-90 82-67 46-22 -4 31-54 73-85 90-88 78-61 38-13} 

{ 9-25 43-57 70-80 87-90 90-87 80-70 57-43 25 -9 -9 25-43 57-70 80-87 90-90 87-80 70-57 43-25  9} 

{ 4-13 22-31 38-46 54-61 67-73 78-82 85-88 90-90 90-90 88-85 82-78 73-67 61-54 46-38 31-22 13 -4} 

 

Two-dimensional transforms are computed by applying 1-D transforms in the horizontal and vertical 

directions. The elements of the core transform matrices were derived by approximating scaled DCT basis 

functions. For the transform block size of 4×4, an alternative integer transform derived from a DST is 

applied to the luma residual blocks for intrapicture prediction modes. Since the rows of the transform 

matrix are close approximations of values of uniformly scaled basis functions of the orthonormal DCT, the 

prescaling operation that is incorporated in the dequantization of H.264/MPEG-4 AVC is not needed in 
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HEVC. For quantization, HEVC uses essentially the same uniform reconstruction quantizer (URQ) 

scheme controlled by a quantization parameter (QP) as in H.264/MPEG-4 AVC. The range of the QP 

values is defined from 0 to 51, and an increase by 6 doubles the quantization step size such that the 

mapping of QP values to step sizes is approximately logarithmic. Quantization scaling matrices are also 

supported. 

 

3.2.11. Entropy coding 

Context adaptive binary arithmetic coding (CABAC) is used for entropy coding [11]. This is similar to the 

CABAC scheme in H.264/MPEG-4 AVC [30] but has undergone several improvements to improve its 

throughput speed (especially for parallel-processing architectures) and its compression performance, and 

to reduce its context memory requirements. 

 

3.2.12. In-loop deblocking filtering  

A deblocking filter similar to the one used in H.264/MPEG-4 AVC is operated within the interpicture 

prediction loop. However, the design is simplified in regard to its decision-making and filtering processes 

and is made more friendly to parallel processing. 

 

3.2.13. Sample adaptive offset (SAO) 

Sample adaptive offset is applied to the reconstruction signal after the deblocking filter by using the offsets 

given in each CTB [50]. The encoder makes a decision on whether or not the SAO is applied for current 

slice. If SAO is enabled for current slice, the current slice allows each CTB select one of five SAO types 

as shown in Table 3.3. The concept of SAO is to classify pixels into categories and reduces the distortion 

by adding an offset to pixels of each category. SAO operation includes Edge Offset (EO) which uses edge 

properties for pixel classification as SAO type 1-4 and Band Offset (BO) which uses pixel intensity for 

pixel classification as SAO type 5. Each CTB will have its own SAO parameters include 

sao_merge_left_flag, sao_merge_up_flag, SAO type and four offsets. If sao_merge_left_flag is equal to 

1 current CTB will reuse the SAO type and offsets of left CTB, otherwise current CTB will not reuse SAO 

type and offsets of left CTB. If sao_merge_up_flag is equal to 1, current CTB will reuse SAO type and 

offsets of upper CTB, otherwise current CTB will not reuse SAO type and offsets of upper CTB. 
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SAO type Sample adaptive offset type to be 

used 

Number of 

categories 

0 None 0 

1 1-D 0-degree pattern edge offset 4 

2 1-D 90-degree pattern edge offset 4 

3 1-D 135-degree pattern edge offset 4 

4 1-D 45-degree pattern edge offset 4 

5 Band offset 4 

Table 3.3. Specification of SAO type [50] 

3.2.14. Special “Transform Skip” Coding Modes  

For certain types of content (especially screen content with graphics and text elements) more efficient 

compression is sometimes achieved when the transform is skipped (i.e. the residual is directly quantized 

and entropy coded) [37]. Furthermore, it is also possible to skip the quantization and loop filtering 

processes to enable lossless encoding of CUs. 

 

3.3. Encoder and Decoder in HEVC 

A number of design aspects new to the HEVC standard improve flexibility for operation over a variety of 

applications and network environments and improve robustness to data losses [11]. However, the high-

level syntax architecture used in the H.264/MPEG-4 AVC standard [30] has generally been retained, 

including the following features. 

 

1. Parameter set structure: Parameter sets contain information that can be shared for the decoding of 

several regions of the decoded video [11]. The parameter set structure provides a robust mechanism for 

conveying data that are essential to the decoding process. The concepts of sequence and picture 

parameter sets from H.264/MPEG-4 AVC are augmented by a new video parameter set (VPS) structure. 

 

2. NAL unit syntax structure: Each syntax structure is placed into a logical data packet called a network 

abstraction layer (NAL) unit [11]. Using the content of a two-byte NAL unit header, it is possible to readily 

identify the purpose of the associated payload data. 
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3. Slices: A slice is a data structure that can be decoded independently from other slices of the same 

picture, in terms of entropy coding, signal prediction, and residual signal reconstruction [11]. A slice can 

either be an entire picture or a region of a picture. One of the main purposes of slices is resynchronization 

in the event of data losses. In the case of packetized transmission, the maximum number of payload bits 

within a slice is typically restricted, and the number of CTUs in the slice is often varied to minimize the 

packetization overhead while keeping the size of each packet within this bound. 

 

4. Supplemental enhancement information (SEI) and video usability information (VUI) metadata: The 

syntax includes support for various types of metadata known as SEI and VUI [11] [51]. Such data provide 

information about the timing of the video pictures, the proper interpretation of the color space used in the 

video signal, 3-D stereoscopic frame packing information, other display hint information, and so on. 

 

3.4. Parallel Decoding Syntax and Modified Slice Structuring 

Finally, four new features are introduced in the HEVC standard to enhance the parallel processing 

capability or modify the structuring of slice data for packetization purposes. Each of them may have 

benefits in particular application contexts, and it is generally up to the implementer of an encoder or 

decoder to determine whether and how to take advantage of these features. 

 

1. Tiles: The option to partition a picture into rectangular regions called tiles has been specified [11]. The 

main purpose of tiles is to increase the capability for parallel processing rather than provide error 

resilience. Tiles are independently decodable regions of a picture that are encoded with some shared 

header information. Tiles can additionally be used for the purpose of spatial random access to local 

regions of video pictures. A typical tile configuration of a picture consists of segmenting the picture into 

rectangular regions with approximately equal numbers of CTUs in each tile. Tiles provide parallelism at a 

more coarse level of granularity (picture/ subpicture), and no sophisticated synchronization of threads is 

necessary for their use. 

 

2. Wavefront parallel processing: When wavefront parallel processing (WPP) is enabled, a slice is divided 

into rows of CTUs [11] [50]. The first row is processed in an ordinary way, the second row can begin to 

be processed after only two CTUs have been processed in the first row, and the third row can begin to be 

processed after only two CTUs have been processed in the second row, and so on. The context models 

of the entropy coder in each row are inferred from those in the preceding row with a two-CTU processing 
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lag. WPP provides a form of processing parallelism at a rather fine level of granularity, i.e., within a slice. 

WPP may often provide better compression performance than tiles (and avoid some visual artifacts that 

may be induced by using tiles). Figure 3.12 (C) illustrates wavefront parallel processing. 

 

3. Dependent slice segments: A structure called a dependent slice segment allows data associated with 

a particular wavefront entry point or tile to be carried in a separate NAL unit [11], and thus potentially 

makes that data available to a system for fragmented packetization with lower latency than if it were all 

coded together in one slice. A dependent slice segment for a wavefront entry point can only be decoded 

after at least part of the decoding process of another slice segment has been performed. Dependent slice 

segments are mainly useful in low-delay encoding, where other parallel tools might penalize compression 

performance. 

 

3.5. Summary 

This chapter outlines the coding tools of High Efficiency Video Coding (HEVC). Having had a good 

understanding of H.264 and HEVC, next chapter describes the coding tools of next generation video 

codecs, Versatile Video Coding (VVC) and Essential Video Coding (EVC). 
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 VVC and EVC Codec 

Overview 

 
 

4.1. Introduction of versatile video coding 

VVC is a coding standard which was out on July 6th, 2020 by the Joint Video Experts Team (JVET) of ITU-

T and ISO-IEC. VVC is shown to provide an additional bitrate saving of about 35% on top of HEVC for 

equivalent perceptual quality with support for lossless and subjective lossless compression. Versatile 

video coding uses the subset of the tools in Joint Exploration Model (JEM). VVC supports up to 8K 

resolution, 360o videos and High Dynamic Range (HDR) video formats. 

4.1.1. Coding Structure  

The QTBT (Quad Tree – Binary Tree) structure comes to deal with those higher resolutions by enabling 

more flexible partition shapes. Instead of the hierarchical quadtree structure, employed by HEVC, that 

splits a Coding Tree Unit (CTU) into three units: namely, Coding Unit (CU), Prediction Unit (PU) and 

Transform Unit (TU), the QTBT structure as shown in Figure 4.3. uses only one processing unit called 

CU. This latter may have either a square or rectangular shape. The QTBT schemas starts with a quadtree 

partition that divides a CTU into square shapes denoted as leaf nodes. The quadtree leaf nodes can be 

further partitioned by symmetric horizontal splitting or symmetric vertical splitting, which represent the 

binary tree structure. The decision of intra prediction mode is made on the CU level since no further 

splitting of PU or TU is involved. To accommodate the increased number of directional intra modes, an 

intra mode coding method with 6 MPMs is used as shown in Figure 4.1. 

 

 
Figure 4.1. Quadtree partition [72] 
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Figure 4.2. Binary Tree Partition [72] 

 
Figure 4.3. Block Partitioning of QTBT [72] 

4.1.2. Intra Prediction 

Each sub partition is processed in a similar way as any intra predicted block in VVC: first, a prediction and 

a residual signal is generated. Then, the residual is transformed, quantized and entropy coded and finally 

the non-zero coefficients are sent to the decoder. After each sub partition has been processed, its 

reconstructed samples can be used to calculate the prediction signal of the next sub partition, which will 

repeat the same steps until all sub partitions have been coded.  

All sub partitions within a block using ISP utilize the same intra mode, which is hence signaled 

only once for the whole block. Besides, the intra mode will be selected from the most probable modes 

(MPM) list, which implies that the MPM flag is not sent to the decoder (it is inferred to be 1). Furthermore, 

the MPM list has been modified for the ISP case to exclude the DC mode and to prioritize horizontal intra 

modes (angular modes lower than the diagonal mode) if the split is horizontal and vertical intra modes 

(angular mode greater than or equal to the diagonal mode) if it is vertical. Figure 4.4. shows an intra 

prediction modes of VVC. 
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Figure 4.4. Intra Prediction modes of VVC [72] 

4.1.3. Inter Prediction   

In conventional inter prediction mode, only translational motion model is applied. However, zoom-in/out 

and rotation cannot be well fit by the translational model utilized in the previous video coding standards. 

Therefore, the affine motion model, which is capable of representing non-translational motion. The current 

CU is divided into 4×4 subblocks, and the MV of each subblock is calculated. The luma MV precision is 

rounded to 1/16-sample precision.  

When the AMVP mode is selected, an affine_flag is signalled to indicate whether affine prediction 

is used. If the affine prediction is applied, the syntax of inter_dir, ref_idx, mvp_index, and MVDs of the two 

CPs are signalled. In this case, the two CPMVs of the current CU are obtained by applying affine motion 

estimation. An affine MVP pair candidate list containing two affine MVP pairs is generated. The signalled 

mvp_index is used to indicate which one of two MVP pairs is selected for predicting the two CPMVs and 

generating the two MVDs. The MVP pair is generated by two affine candidates. Similar to the affine merge 

mode, one is the spatial inherited affine candidate, and the other is the corner derived affine candidate. If 

the neighboring CUs are coded with affine mode, the spatial inherited affine candidates can be generated. 

The affine motion model of the neighboring affine coded block is used to generate the MVP pair. 

4.1.4. Transform and Quantization  

In the current version of VVC, the Multiple Transform Selection (MTS) scheme uses five different 

transforms pairs (Horizontal Transform, Vertical Transform) comprising the Discrete Cosine Transform 

Type II (DCT-II), the Discrete Sine Transform Type VII (DST-VII) and the Discrete Cosine Transform Type 

VIII (DCT-VIII). Particularly, the pairs can be (DCT-II, DCT-II), (DST-VII, DST-VII), (DST-VII, DCTVIII), 
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(DCT-VIII, DST-VII) and (DCT-VIII, DCT-VIII) as shown in Table 4.1. At the decoder side, the one that is 

used is indicated by a syntax element selected by the encoder. In the ISP case, however, the transform 

pair is implicitly decided according to the intra mode and the original block dimensions. These 

combinations have been extracted with a slight change consisting of using only the DCT-II if the transform 

has a length smaller than 4 or greater than 16. This restriction has been added in order to reduce the 

hardware implementation complexity of the algorithm. Logically, if a sub partition has a width or a height 

equal to 1, the transform is only applied on the dimension with a length greater than 1. 

 

Table 4.1. VVC Intra/Inter Transform code selection [72] 

4.1.5. Coefficient Coding 

The coefficients of the residual signals of the sub partitions are entropy-coded in the same way as regular 

blocks in VVC with the following modifications:  

• The context of the Coded Block Flag (CBF) of each sub partition is the value of the CBF of the 

previously coded sub partition (in the case of the first sub partition a default value of 0 is assumed).  

• At least one CBF of a block using ISP is assumed to be non-zero. Therefore, if a block contains 

n sub partitions and the first n − 1 have a zero CBF, then the n-th CBF is inferred to be zero and 

hence it is not explicitly signaled.  

• The Last Position syntax element only requires one coordinate to be sent if the sub partition is a 

line.  

• Let w and h be the width and height of each sub partition respectively. Then, if w ≥ 8 and h ≤ 2, 

the coefficient sub-blocks used for the significance map [9] will have a 16 h × h shape. 

Analogously, if w ≤ 2 and h ≥ 8, coefficient sub-blocks will have a w × 16 w shape. In all other 

cases, they will have the same 4 × 4 shape used in regular intra-predicted blocks. As a result, all 

coefficient sub-blocks will have 16 samples. 
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4.1.6. Entropy Coding  

In the entropy coder, the context-based adaptive binary arithmetic coding (CABAC) with multi-hypothesis 

probability estimation and context-dependent updating speed is applied. The CABAC core engine is the 

same as that in VTM 4.0. Each context variable has two probabilities, P1 and P2. The average of P1 and 

P2 is used as the final probability for the arithmetic coder engine. The P1 and P2 are updated with different 

speeds, where the faster updating speed is designed for faster convergence of probability and the slower 

updating speed is designed for higher robustness of probability. However, in VTM 4.0 CABAC, a 9-bits∗64-

columns∗ 512-rows look-up-table (LUT) is used for deriving rangeOne and rangeZero.  

4.1.7. In-Loop Filtering  

1. Deblocking Filter – The deblocking filter is similar to that in HEVC with two major extensions added. 

First, in order to handle the blocky artifacts for large blocks, length-adaptive filtering with three new long 

tap filters for HEVC strong filtering cases is introduced. This is due to the observation that HEVC filter 

cannot effectively reduce blocky artifacts at large block boundaries in high resolution video (e.g., UHD). 

Second, the number of samples to be read or modified is limited to support parallel deblocking for 4×N or 

N×4 blocks. 

 

 2.  Sample Adaptive offset – Sample adaptive offset (SAO) is adopted in HEVC. SAO classifies samples 

of one CTU into different groups and applies an offset to samples of the same group to reduce sample 

distortions. In HEVC, SAO supports four classes of classification in edge offset (EO) and 32 different sets 

of selected bands in band offset (BO). In this paper, two SAO modifications are added. One is to add 

three EO classes to improve the sample classification, as shown in Fig. 15, and the other is to remove the 

constraint related to the offset sign of EO. In HEVC, only smooth filtering is allowed for EO because of the 

offset sign constraint. In this paper, the offset signs of EO are explicitly coded to support both smoothing 

and sharpening. Encoder is allowed to choose between them. 

 

4.2. Introduction to Essential video coding (EVC) 

EVC is launched by MPEG and is due mid-2020. The goal of EVC is to provide the same compression 

efficiency as HEVC but with clear licensing conditions like royalty-free baseline profiling and a managed 

IPR in the main profile and consist of individually switchable enhancements. EVC also supports up to 8K 

resolution videos.  
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4.2.1. Coding Structure 

A coding tree unit (CTU) is the basic unit of the proposed coding scheme. Maximal CTU size is 128x128. 

A CTU can be further partitioned recursively by binary and triple tree (BTT) structure. For instance, if width 

and height of a block are the same it can be represented as a 1:1 ratio CU or a square CU, and if the 

width is equal to 64 and the height is equal to 16 it can be represented as a 1:4 ratio CU. CU partitioning 

is conducted based on the allowed CU shapes and their allowed maximum and minimum sizes. In order 

to support 64x64 pipeline the ternary tree split and 1:4 or 4:1 ratio CU are disallowed when a CU size is 

greater than 64x64. 

 

Figure 4.5. EVC Encoder Block Diagram [67] 

 

The proposed structure has two CU split modes i.e. the binary split and the triple split mode, and 

each split mode has two directions, vertical and horizontal. Thus, a CU can be partitioned by four different 

split modes: BI_VER_SPLIT, BI_HOR_SPLIT, TRI_VER_SPLIT, and TRI_HOR_SPLIT. These split 

modes and the QTBT coding order are shown in the below figures. 
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Figure 4.6. Bi/Tri Split modes  

 

Figure 4.7. QT/TT/BT split coding order 

4.2.2. Intra Prediction   

For the Baseline configuration 5 directional prediction modes are employed: DC, horizontal (H), vertical 

(V), diagonal left (DL), diagonal right (DR). A codeword for prediction mode of the current block is 

adaptively assigned by using a mapping table between symbol and prediction mode which is selected 

based on the prediction modes of neighbouring upper and left blocks. To exploit spatial correlation 

efficiently based on flexible coding structure, a total of 33 intra prediction modes for luma component and 

5 modes for chroma component are applied. DC, Bi-linear, Plane, DM modes, and 30 angular modes are 

applied, with straightforward extension for flexible block size. 

Intra Block Copy (IBC) is another mode that is used in order to address requirements for Screen Content 

material. Technical aspects of the proposed IBC implementation are summarized follows  

• IBC mode (IBC flag) is signaled in a CU level. The IBC mode is considered as a prediction mode 

other than intra and inter prediction modes. There is no need to include current picture as one of 

the reference pictures in the reference picture list 0. The motion vector of IBC is derived in integer 

pixel.  

Split Unit BT

TT

QT

L2R
R2L
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• The maximum block size for IBC coded block is signaled in SPS and up to 64 luma samples for 

either size. 

• The coding of block vector (BV) is straightforward without using prediction. The coding engine 

reuses the one used in mvd coding. The BV considered is in integer resolution. 

The whole reference block for IBC mode should be already reconstructed. In addition, some search range 

constraints are imposed such that the allowed search range for IBC mode is the reconstructed part of the 

current CTU plus some areas of the immediate left CTU (given the CTU size is 128x128). According to 

the location of the current block in the current CTU, the available reference areas change in a way that 

when a 64x64 region starts encoding/decoding, the whole region is considered as already coded. 

Therefore, the collocated 64x64 region in the left CTU can no longer be used for IBC reference. 

 

Figure 4.8. Intra-Block Copy (with a vertical split at 128x128) [67] 

4.2.3. Inter Prediction 

The inter prediction for Baseline configuration exploits three neighbouring motion vectors and a motion 

vector of temporally co-located blocks. After choosing one of the candidate motion vectors as a predictor, 

the index of the predictor is coded. Then the difference between the motion vector for the current block 

and the predictor may be coded based on encoder side decision. If the difference between the current 

block and the predictor is relatively small, the motion vector difference and a block residue are not coded, 

which is called the skip mode. Otherwise, the motion vector difference and the block residue are coded 

and signalled in the bitstream. The bi-directional prediction is a linear combination of two motion 

compensated blocks that involve two motion vectors, a forward and backward motion vector. 

Motion model of the video content for each currently coded block is described conventionally 

through two parameters: reference index (refIdx) indicating the picture stored in decoded picture buffer 

(DPB) utilized as a reference for the current block, and the motion vector (MV) – amount of displacement 
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in x and y directions between current block and the spatial position of the reference block in reference 

picture indicated by refIdx. Each current block can be predicted either from a single reference (uni-

direction) or from two references in so called bi-directional prediction mode.  

MV can be signaled either in merge or AMVP mode. Both signaling mechanism utilizes motion 

vector prediction (MVP) list (of different size) constructed from motion information available from spatial 

or temporal neighboring of the currently coded blocks. In the merge mode, an index that specify a certain 

entry in the MVP list is signaled and fully describe motion information for the current block.  

Following are the multiple inter prediction modes that are used – 

1. Merge/Skip Modes  

2. Adaptive Motion Vector Resolution  

3. Merge with Motion Vector Difference  

4. Affine Prediction  

5. Decoder-side Motion Vector Refinement  

6. History-based Motion Vector Prediction 

4.2.4. Transform and Quantization 

Transforms (i.e., DCT2) are applied to a residual block between an original block and the corresponding 

prediction block, as a conventional hybrid video codec does. Since transforms are applied to coding 

blocks, the transform size is equal to the coding block size, i.e. from 2x2 to 64x64. After the transform is 

conducted, scalar quantization is applied to the transformed coefficients. The range of the quantization 

parameter (QP) is from 0 to 51 and a scaling factor (SF) corresponding to each QP is defined by a look-

up table. 

In order to support 64x64 pipeline, the maximum allowed transform size is set to 64. If length of 

a side of CU is greater than the maximum transform size, the side is automatically split into two partitions. 

For intra coded block, a flag is used to signal to the decoder whether ATS applied or not. If encoder selects 

using ATS in a CU as core transform, two more flags are signaled to decoder to indicate which type is 

used, respectively for the horizontal and vertical directions. The value 0 indicate DST-VII is used and 

value 1 indicate DCT-VIII is used. 

 

For an inter-predicted CU that have residuals, it is signaled to indicate whether the whole residual 

block or a sub-part of the residual block should be decoded. When only a sub-part of the residual block 
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coded, the part of the residual block is coded with inferred transform type and the other part of the residual 

block is zeroed out. The sub-part position information and corresponding transform type are illustrated. 

The sub-part that contains residual information can be half or one quarter size of the current CU. ATS is 

allowed for CU with width and height both no larger than 64. The transform type is derived based on the 

position of the sub-block, instead of signaling the transform type as done for intra coded CU. For example, 

the horizontal and vertical transforms position 0 sub-part is DCT-8 and DST-7, respectively. When at least 

one side of the residual TU is greater than 32, transform is set as DCT-2. 

4.2.5. Coefficient Coding 

Transform coefficients of coded block after quantization are scanned in a predefined scan pattern and 

entropy coded. In the baseline configuration of the ETM, a run-length based coefficient coding method is 

used. Visualization of propose method is given. The table below gives an example of coded symbols for 

a chunk of transform coefficients. 

 

 

Table 4.2. Coefficient Scan Method [67] 

 
Position 0 1 2 3 4 5 6 7 8 9 

Coeffs stream 3 0 5 -1 0 -2 0 0 0 0 

Output stream 0,2,0,0   1,4,0,0 0,0,1,0   1,1,1,0         

Position 10 11 12 13 14 15 16 17 18 19 

Coeffs stream 0 0 1 0 0 1 0 0 0 -1 

Output stream     6,0,0,0     2,0,0,0       3,0,1,1 

Table 4.3. Coded Symbols for the coefficients [67] 
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To further employ statistical properties of transform coefficients a bit-plane based coefficient coding 

method, so called Advanced Coefficient Coding (ADCC), is utilized in the Main Profile of EVC instead of 

the run-length coding method currently used. 

ADCC method utilizes the following design elements: 

1. Fixed zig-zag scan pattern. 

2. Signalling coordinates of the last-nonzero transform coefficient in the scan order. 

3. Parsing transform coefficients in chunks of 16. 

4. Signalling coefficients within each processing chunk as a sequence of significance and levels 

flags, sign flag and remaining levels. 

4.2.6. Loop Filter 

Most block-based video coding schemes introduce noticeable blocking artifacts. A loop filter based on 

H.263 was employed to increase objective and subjective image quality for Baseline configuration. 

Following the deblocking Adaptive Loop filter (ALF) with block-based filter adaption is applied. For the 

luma component, one among 25 filters is selected through the classification process for each 4×4 block, 

based on local statistics estimates, such as gradient and directionality. To benefit from symmetrical 

properties of filters, utilized ALF employs filter coefficient transformation process. 

The following loop filters are used in Essential Video Coding –  

1. Deblocking Filter  

2. Adaptive Loop Filter  

3. Hadamard Transform Domain Filter  

4.2.7. Entropy Coding 

The binary arithmetic coding scheme in JPEG is applied as the entropy coding engine of the proposed 

codec. After a binarization process of the given symbol, an arithmetic coding engine encodes each binary 

value with the corresponding context that stores the occurrence probability of a given value. After each 

binary value is encoded, the probability is updated by using a look-up table and the binary value of symbol 

is stored in the corresponding context. To code the transformed and quantized coefficient values, run/level 

symbols are generated after scanning with a zig-zag pattern. Each run or level symbol is binarized by 

unary coding and the binary value is coded with the corresponding run or level contexts. The sign value 
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and the last symbol indicate whether the level is the last one in the block should be followed to each level. 

The sign value is coded with fixed length coding and the last symbol is coded with the arithmetic engine. 

Some entropy coding technical details are summarized below: 

• 9 bits are used for storing current probability of the LPS; 

• 14 bits are used for representing probability range. 

• 10 bits are used for representing context model initialization values.  

 

4.3. Summary 

This chapter outlines the coding tools of Versatile Video Coding (VVC) and Essential Video Coding (EVC). 

Having had a good understanding of H.264, HEVC, VVC and EVC codecs, the next chapter describes 

one of the multimedia applications, Transcoding, and its functionalities in detail. 
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 Transcoding 

 
 

5.1. Introduction to Video Transcoding  

The Video Transcoding is a process of altering a video sequence from one format to another. 

Here, the format conversion means in terms of “range of operations” [52] [53]. That is conversion from 

one compressed format (extension) to another, bitrate change, changing the header information. Other 

than these basic format changes, a transcoder is used for many other applications, like framerate change, 

spatial resolution change, statistical multiplexing, adding information like adding company logo, digital 

watermark or to enhance error resilience [54]. Some of these applications are shown in Figure 5.1. 

 
Figure 5.1. Transcoding and communication across various multimedia devices 

 

5.2. Transcoding Architectures 

There are different standard transcoding architectures for changing bit rate, spatial resolution, format 

conversion [52] [55].  They are 

1. Open Loop Transcoding Architecture 

2. Closed Loop Transcoding Architecture 

3. Cascaded Pixel Domain Architecture 

4. Motion Compensation in the DCT domain. 

Open loop system is considered very simple since we do not store the frame memory and we do not 

need IDCT to achieve reduced rate. For achieving better coding efficiency and improved quality, re-

quantization approach is used followed by the variable-length codes as shown in Figure 5.2. However, in 

the open-loop architectures, we see a drift effect. Drift effect is the loss of high frequency information in 

the bit-stream. 
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Figure 5.2. Open Loop, partial decoding to DCT coefficients and further re-quantizing [52] 

 

In general, Figure 5.3. shows a closed-loop system. This system aims at removing the mismatch between 

residual and predictive components by approximating the cascaded pixel decoder-encoder architecture. 

This simplified scheme requires only one reconstruction loop with one DCT and one IDCT. With the 

exception of this slight inaccuracy, this architecture is mathematically equivalent to a cascaded decoder-

encoder approach. 

 

 

Figure 5.3. Closed-loop, drift compensation for re-quantized data [52] 

Figure 5.4. shows cascaded decoder-encoder architecture. The main difference in the structure 

of cascaded decoder encoder architecture and closed-loop architecture is that the reconstruction of the 

bitstream in the cascaded pixel-domain architecture is done in the spatial domain. Hence it requires two 

reconstruction loops with two IDCTs and one DCT.  

 

Figure 5.4. Cascade decoder-encoder architecture [52] 
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The closed-loop architecture described in the section 5.3. provides an effective transcoding 

structure in which the MB reconstruction is performed in the DCT domain. However, since the memory 

stores spatial domain pixels, the additional DCT/IDCT is still needed. This can be avoided though by 

utilizing the compressed-domain methods for MC proposed by Chang and Messerschmidt. In this way, it 

is possible to reconstruct reference frames without decoding to the spatial domain; several architectures 

describing this reconstruction process in the compressed domain have been proposed. It was found that 

decoding completely in the compressed-domain could yield equivalent quality to spatial-domain decoding. 

However, this was achieved with floating-point matrix multiplication and proved to be quite costly. 

Different transcoding architectures for spatial resolution reduction, temporal resolution reduction 

like Motion Vector Mapping, DCT-Domain Down Conversion, Conversion of MB Type, Motion Vector re-

estimation, Residual re-estimation are discussed in the coming sections. 

 

5.3. Choice of Transcoding Architecture 

The cascaded pixel domain transcoding architecture gives optimum results in terms of complexity, quality 

and cost [52]. The cascaded pixel domain transcoder offers greater flexibility in the sense that it can be 

used for bit rate transcoding, spatial/temporal resolution downscaling and for other coding parameter 

changes as well. Since in the case of standards format transcoding, it is required to take into consideration 

the different coding characteristics of H.264, HEVC and VVC, hence the flexibility of conversion between 

the codec parameters is a key issue. 

 

Figure 5.5. Frame based comparison of open loop, closed loop and cascaded pixel domain architecture 

 

It is evident from Figure 5.5. that the open-loop architecture suffers from severe drift, and the 

quality of the simplified closed-loop architecture is very close to that of the cascaded pixel-domain 

architecture. Cascaded pixel-domain scheme is considered as ideal transcoder since it comprises of one 
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full decoder and one full encoder. Another benefit of this approach is that decoding is usually fast since it 

does not involve motion estimation and predictions can be made for frames based on variable length 

decoding (VLD) of motion vectors from the encoded bitstream. The quality of transcoded video in turn is 

dependent upon the input to encoder stage. So better the input to encoding stage of transcoder, better 

the end video quality. Figure 5.6. denotes a general block diagram of the proposed cascaded-pixel-domain 

approach 

 

Figure 5.6. General block diagram of the proposed transcoding architecture (cascaded-pixel-domain) 

 
5.4. Importance of Video Transcoding 

Video compression standards significance is due to the bandwidth usage, display rate, network 

connectivity, computational capacity and others available to the end user in the most convenient way. For 

reproducing and delivering a video and other multimedia data flexibly according to the end-user’s 

capability and requirement, video content should be dynamically adapted to the user’s environment. 

Figure 5.7. and 5.8. shows the functionalities in video transcoding.  

Need for transcoding: 

a. When the target device does not support the format of the data. 

b. When the target device does not have enough space or bandwidth. 

c. When the format of the data is outdated or obsolete. 

 

   

Figure 5.7. Video Transcoding functionalities 
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Figure 5.8. Transcoding Functions  

 

5.5. Criteria to obtain optimal results after transcoding 

1. The quality obtained by direct decoding and re-encoding of the output bitstream and the quality 

obtained by the transcoded bitstream should be comparable. 

2. To avoid multigeneration deterioration, it is advised to use the information in the input stream as 

much as possible. 

3. This process should be low in complexity, cost efficient and should achieve the best quality 

possible. 

 

5.6. Summary 

Transcoding is one of the main applications in video technology. This chapter covers the different types 

of Transcoding techniques available and the advantages and disadvantages of each type. The 

functionalities of transcoding is also pointed out. The next chapter focuses on formulating the research 

problem and addressing the methodologies of the objectives defined.   



75 

 

 Problem Formation 

 
 

6.1. Identification of Research Gap 

Heterogeneous/Homogeneous video transcoding for video codecs H.264, HEVC, VVC and EVC – 

Transcoding is one of the main process in video communication. This method is always in demand till the 

developments of new video codecs ongoing [55]. The VVC (Versatile Video Coding) and EVC (Essential 

Video Coding) being the next generation video codecs is the main focus point as the codec brings a lot of 

application uses along with its development.  Since VVC and EVC are still not out in the market, there is 

a lot of scope in transcoding other codecs to VVC/EVC and vice versa. All these video codecs are open 

source other than EVC, and used in the industry standards, it is advantages to choose them as the main 

codec. Along with heterogeneous functionality, we can also look at homogeneous properties like bitrate 

change and frame rate change which are the main features for wireless communication. 

 

6.2. Research Questions 

The questions related to research that arise after a thorough literature review are as follows: 

1. What video codecs to use for heterogeneous transcoding and the reason for its choice? 

- H.264 is the most used codec in the market covering more than 80% of video traffic [56]. 

HEVC codec as it is the latest codec out in the market by the ISO-ITU-T organization. VVC 

and EVC codec as they are still not out in the market and have a lot of application uses it 

come with. 

2. Can a comparative study be made to check which codec performs better compression and which 

codec is more efficient with its implementation using open source software’s? 

- Yes. This is the initial stage where the implementation of each of the codecs is done 

separately along with looking at the comparative study with respect to its performance and 

efficiency. 

3. Which transcoding architecture is chosen to obtain optimal results with good quality output and 

coding efficiency? 

- ‘Cascaded Pixel Open Loop Transcoding Architecture’ is looked upon as it has the best output 

video quality after the transcoding application. We also see the drifting effect that exists in the 

other architectures can be ignored in this architecture.  
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4. Can hybridizing heterogeneous and homogeneous transcoding lead to a seamless transcoding 

with improved features like bitrate reduction, framerate reduction? 

- Yes. Hybridizing the transcoding architecture leads to a better video compression. With 

improvised algorithms in the architecture, provide better quality reconstructed video.  

5. What methods are considered to validate the transcoding algorithm? 

- There are a lot of measuring tools for testing the quality and performance of a reconstructed 

video. Here, for the quality of video, PSNR, SSIM, MSE, Bitrate, BD-PSNR, BD-SSIM for the 

quality of the video. Time is calculated for the encoding and decoding process to check the 

performance of the video codec and the transcoder.   

These questions are triggered after looking at a detailed literature review and analyzing many research 

papers and thesis documents in video codec domain. Some of these questions are addressed in the 

following objectives of this thesis. 

 

6.3. Title and aim of the thesis 

The title of the thesis is as stated below: 

“Heterogeneous Transcoding for next generation multimedia video codecs for efficient communication “ 

 

Aim:  The aim of this thesis is to implement the next generation video codecs (i.e. VVC and EVC) along 

with the existing video codecs (i.e. H.264 and HEVC) for seamless video communication. The analysis of 

each block in the video codecs is performed for a comparative study between the four codecs in terms of 

better compression, better output quality video, complexity of codec and time efficiency. Transcoding 

mechanism using cascaded pixel decoder-encoder algorithm is also implemented with heterogeneous 

functionalities between all four video codecs. 

 

6.4. Objectives of the Thesis 

Versatile Video Coding by ISO-ITU-T organization is the emerging video codec with new application 

usages and a lot of avenues in the field of research. This codec will be out in the market in October 2020 

and as of now only the test version of the codec is available as open source [59]. Essential Video Coding 

is the next generation video coding out by the ISO-IEC-MPEG organization having royalty free software 

[60] and enhanced switching options.  Since these video compression codec is still not out in the market, 

a lot of avenues in transcoding, multiplexing and 4K, 8K and 12K content compression is the hot topic of 

research in the coming years. The other two codecs used in the transcoding are H.264 and HEVC along 
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with VVC and EVC. HEVC being the newest codec out in the market by ISO organization and H.264 is 

the most used codec for data transfer communication is the reason for its choice. Based on these 

reasonings, the below objectives are decided for the thesis. 

1. To develop a framework for a comparative analysis between H.264, HEVC, VVC and EVC along 

with the implementation of the codecs. 

2. To develop a hybrid transcoding architecture for format change (Heterogeneous in nature)  

3. To analyze and evaluate a hybrid transcoding architecture for bitrate change using QP variation 

(Homogeneous and Heterogeneous) and frame rate improvisation (Homogeneous). 

4. To develop an automated versatile application to hybridize the transcoding features from H.264, 

HEVC, VVC and EVC. 

 

6.5. Methodology for each objective 

The methodology for all the objectives is explained in detail. The methodology also focusses on the tools 

and techniques used for the development of the models, system, and analysis of the same. The 

methodologies explained in this section are also based on the previously available literature on the same 

topic of interests.  

 

6.5.1. Objective 1 Methodology: To develop a framework for a comparative analysis between H.264, 

HEVC, VVC and EVC along with the implementation of the codecs. 

 

VVC and EVC being the next generation video codecs with a lot of application functionalities along with 

H.264 and HEVC being the existing codecs in the market are the reason for its choice for transcoding. 

The framework for its comparative study is as shown below. 

1. To implement H.264 codec using Joint Model (JM) software. To analyze and evaluate the 

performance of H.264 codec blocks for encoding and decoding standard definition (SD) and high 

definition (HD) video contents. 

2. To implement HEVC codec using Hybrid Model (HM) software. To analyze and evaluate the 

performance of HEVC codec blocks for encoding and decoding standard definition (SD), high 

definition (HD) and 4K video contents. 

3. To implement VVC codec using Video Test Model (VTM) software. To analyze and evaluate the 

performance of VVC codec blocks for encoding and decoding standard definition (SD) high 

definition (HD) and 4K video contents. 
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4. To implement EVC codec using EVC Test Model (ETM) software. To analyze and evaluate the 

performance of EVC codec blocks for encoding and decoding standard definition (SD) high 

definition (HD) and 4K video contents. 

5. The performance for each codec is evaluated using metrics like PSNR, SSIM, Bitrate, 

compression ratio, time taken to encode and decode to provide a graphical comparative 

explanation for each codec.   

6. H.264, HEVC, VVC and EVC codec output values to be obtained by keeping the parameters QP 

= 32; All filters ON, Profile = MAIN, and same GOP size value =16 and Intra period =16 

(IBBBBBBBBBBBBBBBI). This is tested for 5 different contents of different resolutions for all 4 

codecs.  

7. Rate distortion graph obtained for PSNR and bitrate values of a content and each codec for 

different quantization parameter (QP) values. Here we see that all Filters are ON. The profile used 

for all four codecs is main profile. The Group of Picture (GOP) is 16 for all tests. The QP value 

tested for obtaining the curve is 10, 20, 30, 40 and 50. The intra prediction is 16 

(IBBBBBBBBBBBBBBI). 

 

6.5.2. Objective 2 Methodology: To develop a hybrid transcoding architecture for format change 

(Heterogeneous in nature) and bitrate change (Homogeneous and Heterogeneous in nature). 

 

Transcoding can be of two types, Heterogeneous and Homogeneous in nature. Heterogeneous is the 

transcoding feature being implemented between two different video codecs. Homogeneous is the 

transcoding feature being implemented for the same video codec. Format change can be achieved using 

Heterogeneous Transcoding. Bitrate change can be achieved using both Homogeneous and 

Heterogenous Transcoding. Steps to achieve the same are as shown below 

1. Format Change: The below block diagram in Figure 6.1. to 6.4. shows the design of the 

development of heterogeneous transcoding for format change. The cascaded pixel encoder 

decoder algorithm is designed and developed for this. This is for the conversion between H.264 

to VVC, HEVC or EVC. The same flow is repeated for the other codec conversions. 
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Figure 6.1. Heterogeneous Transcoding from H.264 to HEVC, VVC or EVC 

 
 

 

Figure 6.2. Heterogeneous Transcoding from HEVC to H.264, VVC or EVC 

 

 

 

Figure 6.3. Heterogeneous Transcoding from VVC to H.264, HEVC or EVC 
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Figure 6.4. Heterogeneous Transcoding from EVC to H.264, HEVC or VVC 

 

Figure 6.5. Block diagram of heterogeneous transrating of H.264 to VVC, HEVC and EVC using QP 

variation 

 

Figure 6.6. Block diagram of homogeneous transrating of H.264, HEVC, VVC and EVC using QP 

variation 
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Figure 6.7. Block diagram of homogeneous framerate change of H.264, HEVC, VVC and EVC using 

framerate improvisation 

 

6.5.3. Objective 3 Methodology: To analyze and evaluate a homogeneous and heterogeneous 

transrating architecture for QP variation and homogeneous transrating architecture for framerate change. 

1. Bitrate change with QP variation: Changing bitrate is also known as transrating. Homogeneous 

and heterogeneous bitrate change (Figures 6.5. and 6.6.) can be observed by varying the 

quantization parameter in the transcoding block for the reconstructed video frame. The QP is 

changed in such a way that the transcoded output quality video is not distorted. The resolution is 

kept constant. If we increase the QP, the bitrate decreases. If we reduce the QP, the bitrate 

increases. The block diagram in Figure 6.5. and 6.6 shows for both homogeneous and 

heterogeneous transcoding architectures for four codecs H.264, HEVC, VVC and EVC. 

2. Bitrate change with framerate variation: When the framerate decreases, it was observed that 

the bitrate also decreases. This drop in bitrate was even more than the homogeneous bitrate 

change using cascaded pixel decoder-encoder architecture using the same QP as the 

predecessor. This is mostly observed in the homogeneous environment and the block diagram 

for the same is shown in Figure 6.7. 

 

6.5.4. Objective 4 Methodology: To develop an automated versatile application to hybridize the 

transcoding features from H.264, HEVC, VVC and EVC. 
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Developing an automated application to create a video transcoder and including the below features. 

1. Obtain transcoding across these four codecs (H.264, HEVC, VVC and EVC) on the fly. 

2. The parameter choices can be chosen on the fly. 

3. Heterogeneous and homogeneous features being enabled with in the application. 

4. Framerate, bitrate, format change done with just a command line.  

 

6.6. Original Contribution: 

The originality of this thesis tries to cover the research gaps found in the extensive literature review from 

the technical papers and previous theses. They are listed as below. 

1. Implementation of VVC codec with its encoder and decoder blocks along with its overview study 

as this codec is still not out in the market and no overview paper available. 

2. Implementation of EVC codec with its encoder and decoder blocks along with its overview study 

as this codec is still not out in the market and no overview paper is available. 

3. Comparative study of all the 4 codecs (H.264, HEVC, VVC and EVC) in terms of encoding time, 

decoding time, PSNR, SSIM, BD-Rate and BD-PSNR measurements. 

4. Design and development of heterogeneous format transcoding of VVC to H.264, VVC to HEVC, 

VVC to EVC, H.264 to VVC, HEVC to VVC and EVC to VVC using cascaded pixel domain 

architecture. 

5. Design and development of heterogeneous format transcoding of EVC to H.264, EVC to HEVC, 

EVC to VVC, H.264 to EVC, HEVC to EVC, VVC to EVC using cascaded pixel domain 

architecture. 

6. Design and development of homogeneous transcoding for VVC and EVC codecs in terms of 

bitrate change by QP variation and frame rate variation. 
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 Results  

 
 

7.1. Introduction 

A systematic evaluation and a comparative analysis of the codecs with respect to video compression, 

coding efficiency and quality of the compressed video is first examined for Advanced video coding 

(AVC/H.264), High efficiency video coding (HEVC), Versatile video coding (VVC), and MPEG-5 Essential 

Video Coding (EVC). Both subjective and objective quality analysis is obtained for each codec [61]. In the 

second part, a transcoder app is developed to covert one form of codec to another with soma parameters 

variations.  

 

7.2. Video Quality Measures 

The performance of a codec is evaluated using two methods. They are 

• Objective quality measures – PSNR, MSE, Bitrate  

• Structural quality measure – SSIM [61]  

• Subjective quality measures – Human Visual System (HVS) [62] 

Lossless and lossy compressions use different methods to evaluate compression quality. Standard criteria 

like compression ratio, execution time, etc. are used to evaluate the compression in lossless case, which 

is a simple task whereas in lossy compression, it is complex in the sense, it should evaluate both the type 

and amount of degradation induced in the reconstructed video .The goal of video quality assessment is 

to accurately measure the difference between the original and reconstructed video, the result thus 

obtained is used to design optimal image codecs. The objective quality measure like PSNR, measures 

the difference between the individual pixels of an original video frame and reconstructed video frame. It is 

dependent on the mean square error (MSE) of the reconstructed video.  

      

 

Here the x is the original video frame and y is the reconstructed video frame. M and N are the width and 

height of the video frame. L is the maximum pixel value in NxM pixel video frame. 

The SSIM is designed to improve on traditional metrics like PSNR and MSE (which have proved 

to be inconsistent with human visual perception) and is highly adapted for extracting structural information. 
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The SSIM index is a full reference metric, in other words, the measure of image quality is based on an 

initial uncompressed or distortion free video as reference. The SSIM measurement system is shown in 

Figure 7.1. 

 
Figure 7.1. Structural Similarity Index Metric (SSIM) measurement system 

 

,
2

),(
1

22

1

C

C
l

yx

yx

++

+
=




yx

                    

,
2

),(
2

22

2

C

C
c

yx

yx

++

+
=




yx

                  

,),(
3

3

C

C
s

yx

xy

+

+
=




yx

 
 
where x and y  correspond to two different signals that we would like to match, i.e. two different blocks 

in two separate images, x , 
2

x , and xy the mean of x , the variance of x , and the covariance of x

and y respectively, while C1, C2, and C3 are constants given by ( )2

11 LKC = , ( )2

22 LKC = , and 

2/23 CC = .  L is the dynamic range for the sample data, i.e. L=255 for 8-bit content and K1<<1 and 

K2<<1 are two scalar constants. Given the above measures the structural similarity can be computed as  

 

     
),(),(),(),( yxyxyxyx sclSSIM =

 

 

where ,   and  define the different importance given to each measure. 

 Bitrate is the number of bits per second. The symbol is bit/s. It determines the size and quality of 

a video or audio file. The higher the bitrate, the better the quality and the larger the file size. A human 

visual system model (HVS model) [63] is also termed as the subjective analysis which determines the 

quality of a video by the naked eye which is explained in detail in the following sections. 
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7.3. Test Sequence Set 

The test sequences were chosen keeping in mind the different variations that we can observe 

between the frames. The test sequence set have wide range of resolutions (176x1444, 640x360, 720x486, 

1280x720, 1920x1080 and 3840x2160) with few frames. The test contents were chosen in such a way 

that there were fast movement or slow movement between frames, lot of color variations in the content, 

lot of details like edges and sudden change in color and human face or skin. These test sequences were 

taken from two main sites Xiph [64] and Ultra video group [65]. Some contents were in y4m format and 

had to be converted to yuv since some codecs supported only yuv contents. 

 

Test Sequence Resolution Number 
of 

frames 

Original 
Size (kB) 

Description Source 

Akiyo 
176X144 

300 11138 Color video with minimal 
change between frames 

Xiph.org 

SpeedBag 
640x360 

120 40500 Color video with minimal 
change between frames 

Xiph.org 

Shield2 
640x360 

120 40500 Color video with lot of clolor 
variations and movement 
between frames 

Xiph.org 

MobileCalendar 
720x486 

360 246038 Color video with lots of 
details and contains a great 
variation of color and a large 
amount of texture 

Xiph.org 

Stockholm 
1280x720 

604 815400 Color video with smaller 
objects moving with each 
frame 

Xiph.org 

FourPeople 
1280x720 

601 811350 Color video with lots of 
detailing. 

Xiph.org 

Beauty 
1920x1080 

600 1822500 Color video with many basic 
human face and skin 

Ultra Video 
Group 

SunBath 
3840x2160 

300 3645000 Color video with less color 
variation and movement 

Ultra Video 
Group 

Bhosphorus 
3840x2160 

600 7290000 Color video with sharp 
detailing and movement 

Ultra Video 
Group 

 

Table 7.1. Test sequences description 
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Figure 7.2. Test set used for testing [64] [65] 
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7.4. Results of Objective 1: Comparative analysis of the codecs 

There are two distinct lines in the future video coding technology development work. VVC [16][66] driven 

by Joint Video Exploration team (JVET) and EVC [67] driven by Moving Picture Expert Group (MPEG). 

These two codecs are the future codecs and the extended versions with respect to the advances in 

compression technology to HEVC.  

Versatile Video Coding (VVC) standard which is under development by the JVET team of ITU-T SG 

16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 was out on July 6th, 2020. The latest software version of VVC 

available is VTM-10.2 [59]. This codec promises 40% more compression than its predecessor (HEVC) 

[16] with having the same perceptual quality of video. VVC supports lossless and subjectively lossless 

compression with resolutions varying from 4K to 16K along with 360˚ videos. It supports video contents 

of 8 to 16 bit depth with chroma formats ranging from 4:2:0 to 4:4:4. Some applications of VVC are high 

dynamic range (HDR) video, multiview coding, still picture coding, panoramic formats. Complexity of the 

codec was observed to be 10 times more than that of HEVC [16], but that is waived off with the better 

quality of the video output with more compression achieved.  

Essential Video Coding (EVC) [67] standard which is under development by the MPEG team of 

ISO/IEC JTC 1/SC 29/WG 11 is due by mid-2020. The latest software version of EVC available is ETM-

4.0 [60]. The coding efficiency of EVC is almost like HEVC with slightly better video quality than HEVC 

[56]. It is developed with some licensing conditions, i.e. royalty-free for the baseline profile and with IPR 

for the main profiles. 

High Efficiency Video Coding (HEVC) [11] also known as H.265 standard was developed by Joint 

Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP-3 and ISO/IEC JTC1/SC29/WG11 and 

published the first version in June 2013. The next version included applications like range extensions 

(RExt), Multiview extensions (MV-HEVC) and scalability extensions (SHVC) and published in 2015. The 

coming versions applications included extensions in 3D video and screen content coding (SCC) which 

were published in the 1st quarter of 2017. HEVC promised in offering 30%-50% better compression of 

video with respect to H.264 [68] and having the same perceptual quality of the video. It supported video 

contents up to 8K resolution with bit depth from 8 bit to 12 bit. The latest software version of HEVC is HM-

16.0 [58]. 

Advanced Video coding (AVC) also known as H.264 [69] was developed by Joint Video Team (JVT) 

of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6) and published in 

2003. H.264 codec is the first codec to support HD videos and with a very large video compression 

possibility with good perceptual output video quality. In today’s time, it is the most commonly used video 
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format with 91% of the video industries using it for distribution, compression and recording of the video 

content [56]. With the later years of its initial development, some new features were added to the codec, 

i.e. Fidelity range extensions, scalable video coding, Multiview video coding, 3D-AVC and MFC 

stereoscopic coding. H.264 promised 50% better bitrate efficiency when compared to MPEG-2 part 2 [70]. 

It supported contents of bit depth 8 to 14 bits and chroma formats from 4:2:0 initially in baseline profile to 

4:4:4 at the later stage for high profile. This codec is known for its broad application range like digital video 

compression at low-bitrate, internet streaming to broadcasting, and digital cameras for nearly lossless 

coding. The latest software version of AVC is JM-19.0 [57].  

 

Three methods for comparisons are performed for H.264, HEVC, VVC and EVC: 

1. The first method is an objective quality metric comparative study between the codecs in terms of 

PSNR, SSIM, Bitrate, encoding time, decoding time and compression size for each of the contents 

specified in Tables 7.3 through 7.6. keeping the QP constant to 32, GOP=16 

(IBBBBBBBBBBBBBBBI)  

2. The second method is the rate distortion or RD method where the rate distortion graph is obtained 

for a content with different QP values (10,20,30,40 and 50) and same GOP =16 

(IBBBBBBBBBBBBBBBI) for all four codecs. 

3. The third method is the subjective quality analysis where the comparisons of the codecs are 

observed by the visual analysis of the videos. The rate distortion method outputs for QP values 

(10, 20, 30, 40 and 50) are observed for frame by frame and the distortion noted for codecs H.264, 

HEVC, VVC and EVC.   
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Features H.264 HEVC VVC EVC 

Block 

Structure 

Largest block 

size is 16x16.  

Quad Tree 

CTU size upto 64x64 

QTBT + Ternary Tree 

(TT) 

CTU size upto 

256x256 

Quad Tree + 

Ternary Tree   

CTU size upto 

128x128 

Intra 

Prediction 

5 luma 

prediction 

modes, 4 

chroma 

prediction 

modes (9 

Intra 

prediction 

modes) 

35 Intra prediction 

modes 

81 prediction modes 

(in which 65 are 

angular) 

30 prediction 

modes (inc. 

angular, DC, plane, 

and bilinear) 

Inter 

Prediction 

Block based 

motion 

compensation 

and motion 

vector 

prediction 

Hierarchical weighted 

prediction (P, B 

frames) PU level 

motion vector 

prediction. 

Motion vector 

difference ¼ pel MV 

accuracy.  

Block motion 

compensation 

Translation motion 

prediction. 

Hierarchical weighted 

prediction (P, B 

frames). 

Sub-CU based motion 

vector prediction. 

Adaptive motion vector 

precision. 

Affine motion 

prediction. 

Decoder-side motion 

vector refinement. 

Hierarchical 

weighted prediction 

(P, B frames). 

Adaptive motion 

vector resolution. 

Affine motion 

prediction. 

Decoder-side 

motion vector 

refinement. 

Transform 2D-DCT sizes 

4x4 up to 8x8 

DCT-II and DST-VII. 

Transform block size 

8x8, 16x16 and 

32x32 

Adaptive multiple core 

transform. Mode 

dependant non-

separable secondary 

transforms (4x4) 

Transform block sizes 

4x4 upto 64x64 

DCT-II sizes 4x4 

uoto 128x128 

Loop filter + 

Other 

Adaptive in-

loop 

deblocking 

filter 

Deblocking filter, 

SAO 

Deblocking filter, SAO, 

Adaptive loop filter 

Deblocking filter, 

Hadamard 

Transform 
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Entropy 

coding 

CABAC and 

CAVLC 

CABAC Modified CABAC (with 

Context modelling for 

transform coefficient 

levels) 

Multiplier based 

context adaptive 

entropy coding. 

Table 7.2. Architectural comparative study of H.264, HEVC, VVC and EVC codecs 

7.4.1. H.264 Encoder and Decoder Codec Output 

Test Configurations of H.264 [57]: 

• Software Used: Joint Model (JM) – version 19.0 

• Encoder Commandline: lencod.exe -d encoder_main.cfg 

• Decoder Commandline: ldecod.exe 

• System Type: Dell Inspiron with i7 processor/ Windows 10/ 64 bit  

In the encoder commandline, -d indicated the configuration file to be added which is in the directory 

‘JM\bin’. In our testing, we use encoder_main.cfg file and is edited according to our preferences. In the 

‘InputFile’ location, add the destination where the content is available. Content parameters are given in the 

source width/height and accordingly output width/height. QPI/P/BSlice are changed according to the QP 

value we need after each test run. The change in parameters required in the config file is shown below:   

 

#======== File I/O ============================================================= 

InputFile = "C:\Desktop\akiyo_qcif.yuv"       # Input sequence 

InputHeaderLength = 0      # If the inputfile has a header, state it's length in byte here 

StartFrame = 0      # Start frame for encoding. (0-N) 

FramesToBeEncoded = 300      # Number of frames to be coded 

FrameRate = 100.0   # Frame Rate per second (0.1-100.0) 

SourceWidth           = 176    # Source frame width 

SourceHeight          = 144    # Source frame height 

SourceResize          = 0      # Resize source size for output 

OutputWidth           = 176    # Output frame width 

OutputHeight    = 144    # Output frame height 
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TraceFile           = "trace_enc.txt"      # Trace file  

ReconFile          = "test_rec.yuv"       # Recontruction YUV file 

OutputFile         = "test.264"           # Bitstream 

IntraPeriod        = 16   # Period of I-pictures   (0=only first) 

QPISlice            = 10  # Quant. param for I Slices (0-51) 

QPPSlice           = 10  # Quant. param for P Slices (0-51) 

NumberBFrames = 15  # Number of B coded frames inserted (0=not used) 

QPBSlice           = 10 # Quant. param for B slices (0-51) 

After the encoder, the binary file is ‘test.264’. After the decoder, the output file is ‘test.yuv’ which is 

the reconstructed video. For our testing we have used GOP = 16 and QP =32 for all the test contents. Since 

H.264 does not support 4K content, the testing was done only till HD videos i.e. 1280x720. The quality was 

verified with respect to PSNR, SSIM, MSE and Bitrate. The performance was checked with respect to the 

time taken to encode and decode and measured in seconds. The compression size of the encoded bit 

stream was also collected which was measured in kB.  

 

S.No  
INPUT 

VIDEO FILE  
PSNR 
(dB) 

SSIM 
YUV 

MSE 
YUV 

BITRATE 
(kbps) 

ENCODING 
TIME (s) 

DECODING 
TIME(s) 

COMPRESSION 
SIZE (kB) 

1 Akiyo 36.80 0.94 15.55 106.39 323.238 0.093 39 

2 Speedbag 41.05 0.97 5.89 141.63 1873.631 0.451 104 

3 Shields2 34.09 0.88 28.74 862.01 1292.539 0.668 632 

4 
Mobile 

calendar 34.88 0.92 24.45 2486.94 8073.856 
4.539 5465 

5 Stockholm 36.10 0.89 19.90 2027.63 38512.408 10.091 7475 

6 Fourpeople 39.67 0.95 8.67 401.52 27572.912 8.137 1473 

Table 7.3. H.264 encoder and decoder statistics 

7.4.2. HEVC Encoder and Decoder Codec Output 

Test configurations of HEVC [58]: 

• Software: Hybrid Model (HM) – version 16.0 

• Encoder Commandline: TAppEncoder.exe -c encoder_randomaccess_main.cfg -c akiyo.cfg 

• Decoder Commandline: TAppDecoder.exe -b str.bin -o dec.yuv -d 8 

• System Type: Dell Inspiron with i7 processor/ Windows 10/ 64 bit  
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In the encoder commandline, -c indicated the configuration file to be added which is in the directory ‘\cfg’ 

and ‘\cfg\per-sequence’. The cfg file per-sequence needs to be created by the user under any name as the 

content. Since here the content to be used is akiyo, we shall name the content file as ‘akiyo.cfg’ as the 

secondary cofig file. In our testing, we use encoder_randomaccess_main.cfg as the mainfile. In the main 

file, we change the values of ‘IntraPeriod’, ‘GOPSize’ to 16 and ‘QP’ parameter as shown in VVC software. 

The second confile file needs to be added with parameters as below:   

#======== File I/O ============================================================= 

InputFile                    : C:\Desktop\akiyo.yuv 

InputBitDepth            : 8         # Input bitdepth 

InputChromaFormat  : 420     # Ratio of luminance to chrominance samples 

FrameRate                  : 120     # Frame Rate per second 

FrameSkip                  : 0         # Number of frames to be skipped in input 

SourceWidth               : 176     # Input  frame width 

SourceHeight              : 144     # Input  frame height 

FramesToBeEncoded  : 300    # Number of frames to be coded 

Level                            : 4.1 

After the encoder, the binary file is ‘str.bin’. After the decoder, the output file is ‘dec.yuv’ which is 

the reconstructed video. For our testing we have used GOP = 16 and QP =32 for all the contents. Since 

HEVC supports even 4K contents, the testing was done for contents with resolution from qcif i.e. 176x144 

till 4K i.e. 3840x2160. The quality was verified with respect to PSNR, SSIM, MSE and Bitrate. The 

performance was checked with respect to the time taken to encode and decode and measured in seconds. 

The compression size of the encoded bit stream was also collected which was measured in kB.  

Sl. 
No. 

INPUT 
VIDEO FILE 

PSNR 
(dB) 

SSIM 
YUV 

MSE 
YUV 

BITRATE 
(kbps) 

ENCODING 
TIME (s) 

DECODING 
TIME (s) 

COMPRESSION 
SIZE (kB) 

1 Akiyo 39.250 0.98945 7.728 130.922 49.35 0.454 40 

2 Shields2 35.947 0.98599 16.54 347.445 231.14 0.693 255 

3 Stockholm 35.812 0.98276 17.06 4222.370 5501.18 11.149 2595 

4 Beauty 38.6891 0.97482 8.795 2238.458 12172.03 23.354 1367 

5 SunBath 42.921 0.99132 3.319 12965.12 37967.48 54.871 3957 

Table 7.4. HEVC encoder and decoder statistics 
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7.4.3. VVC Encoder and Decoder Codec Output 

Test Configurations of VVC Codec [59]: 

• Software: VVC Test Model (VTM) – version 10.0 

• Encoder Commandline: EncoderApp.exe -c encoder_randomaccess_vtm.cfg -c akiyo.cfg 

• Decoder Commandline: DecoderApp.exe -b str.bin -o dec.yuv -d 8 

• System Type: Dell Inspiron with i7 processor/ Windows 10/ 64 bit  

This software is a test version which is still under development. Here we provide two config files. 

Second file is the content file which is same as the one used in HEVC as ‘akiyo.cfg’. The first config file is 

the main file as ‘encoder_randomaccess_vtm.cfg’ which specifies the parameters to be changed in order 

to get the output as desired as shown below:  

 

#======== File I/O ============================================================= 

IntraPeriod : 16  # Period of I-Frame ( -1 = only first) 

GOPSize     : 16  # GOP Size (number of B slice = GOPSize-1) 

QP               : 10  # Quantization parameter(0-51) 

 

After the encoder, the binary file is ‘str.bin’. After the decoder, the output file is ‘dec.yuv’ which is 

the reconstructed video. Since VVC supports 4K and 8K contents, the testing was done for contents with 

resolution from qcif i.e. 176x144 till 4K i.e. 3840x2160. The quality was verified with respect to PSNR, SSIM, 

MSE and Bitrate. The performance was checked with respect to the time taken to encode and decode and 

measured in seconds. The compression size of the encoded bit stream was also collected which was 

measured in kB. 

Sl. 
No. 

INPUT 
VIDEO FILE 

PSNR 
(dB) 

SSIM 
YUV 

MSE 
YUV 

BITRATE 
(kbps) 

ENCODING 
TIME (s) 

DECODING 
TIME (s) 

COMPRESSION 
SIZE (kB) 

1 Akiyo 40.2677 0.9879 97.8196 83.3984 446.137 1.099 26 

2 Shields2 36.7821 0.9890 218.2678 192.6293 1727.356 1.279 142 

3 Stockholm 36.1117 0.9690 254.7011 2356.0132 22901.051 19.528 1448 

4 Beauty 38.9595 0.9967 132.2072 1691.5568 101368.613 45.738 1033 

5 SunBath 43.8083 0.9990 43.2886 9755.6192 168480.477 104.085 2978 

6  Bhosphorus 42.0861 0.9830 64.3559 890.18 192677.252 202.441 3260 

Table 7.5. VVC encoder and decoder statistics 
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7.4.4. EVC Encoder and Decoder Codec Output 

Test configurations of EVC codec [60]: 

• Software: EVC Test Model (ETM) – version 4.0 

• Encoder Commandline: evca_encoder.exe -i akiyo.yuv -q 10 -w 176 -h 144 -p 16 -f 300 -z 120 -d 

8 -o str.bin –config encoder_randomaccess.cfg 

• Decoder Commandline: evca_decoder.exe -i str.bin -o dec.yuv 

• System Type: Dell Inspiron with i7 processor/ Windows 10/ 64 bit  

EVC software is also a test model and is still under development. It is not open source and requires 

login details to download the software which will be provided by the MPEG team on request for research 

use. In the Encoder commandline the following notations denotes ‘-i’ - the path to the input file, ‘-q’- the 

quantization parameter, ‘-w’ - the source width, ‘-h’ - source height, ‘-p’ - the intra period, ‘-f’ - the number 

of frames to be coded, ‘-z’- the frame rate, ‘-d’- the input bit depth, ‘-o’- output encoded file and ‘-config’- 

encoder configuration file. 

 For every test run, we need to change the ‘-q’ value in the encoder commandline. After the 

encoder, the binary file is ‘str.bin’. After the decoder, the output file is ‘dec.yuv’ which is the reconstructed 

video. Since EVC supports 4K and 8K contents, the testing was done for contents with resolution from 

qcif i.e. 176x144 till 4K i.e. 3840x2160. The quality was verified with respect to PSNR, SSIM, MSE, 

Bitrate. The performance was checked with respect to the time taken to encode and decode and 

measured in seconds. The compression size of the encoded bit stream was also collected which was 

measured in kB. 

 

Sl. 
No. 

INPUT 
VIDEO FILE 

PSNR 
(dB) 

SSIM 
YUV 

BITRATE 
(kbps) 

ENCODING 
TIME (s) 

DECODING 
TIME (s) 

COMPRESSION 
SIZE (kB) 

1 Akiyo 41.43 0.995 21.262 154.576 1.518 39 

2 Shields2 37.92 0.993 348.658 1114.427 1.581 256 

3 Stockholm 38.99 0.983 709.307 17186.5 17.895 2615 

4 Beauty 39.601 0.972 2079.912 40601.449 110.111 1270 

5 SunBath 45.6415 0.999 11141.700 94910.641 98.6 3401 

Table 7.6. EVC encoder and decoder statistics 
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7.4.5. Objective Quality Comparative analysis 

The objective quality analysis for all the four codecs was tabulated from Tables 7.3., 7.4., 7.5. and 7.6. 

These graphs from Figure 7.3. to 7.9. gives us a better understanding on the quality of the encoded 

sequence for each codec (i.e. H.264, HEVC, VVC and EVC) using PSNR, SSIM, encoding time and 

compression size. Testing set was for contents ranging from qcif to 4K resolution from Table 7.1. 

1.  Peak Signal to Noise Ratio (PSNR) analysis: 

 

Figure 7.3. PSNR value for each content and for H.264, HEVC, VVC and EVC 

From Figure 7.3. we observe that the PSNR value is more for EVC followed by VVC, HEVC and H.264. 

Hence the reconstructed video quality was more in EVC in terms of PSNR value. The difference in PSNR 

between VVC and EVC is not much as most of the encoder blocks algorithms are the same between both, 

like motion estimation, entropy coding and block structure. The difference is due to the motion vector 

prediction which effects the quality of the video. More the prediction modes, more the video quality. 

 

2. Structural Similarity Index Metric (SSIM) analysis:  

From Figure 7.4. we see that SSIM value for EVC is more than the other codecs for contents from qcif to 

HD. For ultra HD and 4K, we see VVC preceding in the output quality when compared to other codecs. The 

difference in the output quality SSIM between VVC and EVC for Ultra HD and 4K resolution videos is due 
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to higher profile being selected for VVC for higher resolution videos when compared to EVC which does 

not change the profile and remains constant. This higher profile gives the liberty to choose hierarchical 

motion estimation which is better when compared to EVC motion estimation process. Hence the output 

quality is better for VVC when compared to EVC.  To check the output quality in objective method, SSIM is 

preferred compared to PSNR as it’s a better metric calculation for video quality. 

 

 

Figure 7.4. SSIM value for each content and for H.264, HEVC, VVC and EVC 

 
3. Bitrate analysis: 

Figure 7.5. shows the bitrate analysis for video codecs H.264, HEVC, VVC and EVC for contents from qcif 

to 4K resolution videos. It was observed from the graph that the bitrate required to encode a video for the 

same quality of output was more for HEVC and least for VVC. Hence proved that VVC provided more 

compression when compared to EVC and HEVC. This was coz of the intra prediction modes in VVC which 

is 81 predictions modes when compared to EVC and HEVC which is 30 and 35 modes. Hence it is expected 

that more compression can be achieved by using lesser bitrate in VVC when compared to EVC and HEVC 

for achieving the same output quality video. 
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Figure 7.5. Bitrate for each content and for H.264, HEVC, VVC and EVC 

 

4. Encoding Time analysis: 

From Figure 7.6. it is evident that time taken to encode any video from qcif to 4k resolution, VVC takes 

maximum time (almost twice the time take by EVC). This is expected as the intra frame prediction modes 

are almost double the prediction modes for EVC codec (i.e. VVC prediction modes = 81 and EVC = 30). 

The block structure division by CTU is 256x256 for VVC when compared to 128x128 for EVC hence adding 

to doubling the time taken to scan the coefficients being twice in VVC when compared to EVC. The block 

structure division for HEVC is 64x64 which is half the structure when compared to EVC which is 128x128. 

Due to this, we observed that the time taken to encode the videos for same output quality for EVC is twice 

the time taken to encode HEVC.     

 

5. Decoding Time analysis: 

From Figure 7.7. it is observed that the time taken to decode the encoded video for all the four codecs is 

almost similar with less difference between each of them. It doesn’t matter how long it takes to decode as 

all the codecs decode within seconds from qcif to 4k resolution videos.  
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Figure 7.6. Encoding time for each content and for each codec 

 

 

 

Figure 7.7. Decoding time of each content and each codec 
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Figure 7.8. Compressed output for each content and codec 

 
6. Compression ratio analysis: 

The bitrate analysis shown in Figure 7.5. does also portray the amount of compression achieved by each 

codec. More the bitrate, less the compressed encoded video and the same was observed in Figure 7.8. 

H.264 compressed size was maximum when compared to other codecs, hence it achieved least 

compression. VVC compression size was least when compared to other codecs, hence it achieved 

maximum compression. The reason for this maximum compression is similar to that of the bitrate reduction 

of more intra prediction modes in VVC when compared to other codecs.  

 

7.4.6. Rate Distortion method comparative analysis 

Rate distortion method is the graph obtained for PSNR to bitrate for a particular content tested at different 

QP values. In Table 7.7. the testing for content ‘shield2’ with resolution 640x360 was tested for codecs 

H.264, HEVC, VVC and EVC for QP values 10, 20, 30 and 40. The analysis of this graph is to achieve 

maximum output quality (PSNR) for lesser bitrate used. This also points at the codec that offers more 

compression with good quality encoded video. 

Akiyo Shields2 Stockholm Beauty Sunbath

H.264 39 632 7475

HEVC 40 255 2595 1367 3957

VVC 26 142 1448 1033 2978

EVC 39 256 2615 1270 3401

0

1000

2000

3000

4000

5000

6000

7000

8000
C

o
m

p
re

se
d

 o
u

tp
u

t 
si

ze
 (

kB
) 

Test content

Compressed output size for each content and codec

H.264

HEVC

VVC

EVC



100 

 

Sl.No.  QP RESOLUTION 
No. 

Frames 

PSNR (dB) 
Bitrate (kbps) 

H.264 HEVC VVC EVC 
H.264 HEVC VVC EVC 

1 10 640x360 120 51.40233 47.6618 48.3477 48 
14951 6955.77 6427 6704 

2 20 640x360 120 42.8583 41.9283 42.8424 43.9 
3073.8 1224.51 1142.8 1204 

3 30 640x360 120 36.91933 37.1581 38.5625 39.1 
548.52 429.427 405.73 429 

4 40 640x360 120 31.851333 35.3014 32.4476 33.6 
144.47 205.173 133.15 130.6 

5 50 640x360 120 28.80833 25.6372 26.442 29.5 
41.39 30.6813 30.344 28.8 

Table 7.7. Rate Distortion graph statistics for shield2 content 

 

 

 

Figure 7.9. Rate distortion graph for shield2 content 

 
Rate distortion graph for ‘shield2’ content is as shown in Figure 7.9. This graph shows that the quality of 

encoded video is more for VVC followed by EVC and then HEVC and H.264. This also depicts that the 

compression is achieved maximum for VVC since the bitrate required for VVC is less to obtain the same 

output quality video when compared to the other 3 codecs. The reason for this output is similar to the reason 

analysed for the objective quality analysis of the codecs obtained from Figure 7.3 to Figure 7.8. 
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7.4.7. Subjective Quality Comparative analysis: 

Subjective video quality is a video quality assessment as experienced by humans. It is concerned with 

how video is perceived by a viewer (also called “observer” or “subject”) and designates their opinion on a 

particular video sequence and therefore related to field of quality of experience. The measurement of 

subjective video quality is necessary as the objective quality assessment algorithms such as PSNR have 

been shown to correlate badly with ratings. Subjective ratings may also be used as ground truth to develop 

new algorithms.  

Subjective video quality tests are psychophysical experiments in which a number of viewers rate a 

given set of videos. These tests are quite expensive in terms of time (preparation and running) and human 

resources and must therefore be carefully designed. 

In our subjective quality test. It is verified by one viewer and the “sources”, i.e. original video sequences 

are run through encoder and decoder of their respective codec softwares having the same parameter 

changes across all the codecs to generate the processed video sequences. 

Figure 7.13 to 7.16 shows the subjective quality analysis using rate distortion statistics outputs obtained 

from Table 7.7. The subjective quality analysis is seen for shield2 content for QP’s 10, 20, 30, 40 and 50 

for codec H.264, HEVC, VVC and EVC. It was observed that there was no difference observed in the output 

video quality for QP = 10 between the codecs but there was a drastic video quality degradation observed 

for the four codecs for QP=50. VVC proved to provide a better video quality which was viewed by the naked 

eye when compared other codecs. EVC followed VVC in video quality improvements. H.264 and HEVC 

showed more video degradation for QP = 50.  

The objective quality and subjective quality analysis matched their results with VVC providing better 

quality output followed by EVC, HEVC and then H.264. It was also proved that VVC provided more 

compression when compared to EVC, followed by HEVC and then H.264 due to more intra prediction 

modes and block structure size in VVC.   
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Figure 7.10. Rate distortion graph statistics for shield2 content and QP = 10, 20, 30, 40 and 50 for H.264 

codec 
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Figure 7.11. Rate distortion graph statistics for shield2 content and QP = 10, 20, 30, 40 and 50 for HEVC 

codec 
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Figure 7.12. Rate distortion graph statistics for shield2 content and QP = 10, 20, 30, 40 and 50 for VVC 

codec 
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Figure 7.13. Rate distortion graph statistics for shield2 content and QP = 10, 20, 30, 40 and 50 for EVC 

codec 
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7.5. Results of Objective 2: Heterogeneous Transcoding architecture for format change 

Heterogeneous Transcoding of H.264, HEVC, VVC and EVC video codecs for format changes 

using cascaded decoder-encoder pixel transcoding architecture provides very good PSNR and SSIM output 

values for QP=10. Both PSNR and SSIM graphs in Figure 7.17. and Figure 7.18. proves that the 

transcoding from HEVC to VVC gives a better PSNR value which is almost equal to 50.5dB and SSIM value 

which is almost equal to 0.999863. If we increase the QP from 10 to 20, 30 or 40, we see a degradation in 

the quality of output video. 

 

7.5.1. Objective Quality analysis for Heterogeneous Transcoding 

Figure 6.1, 6.2, 6.3 and 6.4 shows the architectural format change block diagram for H.264, HEVC, VVC 

and EVC. Metrics like PSNR, SSIM and Time taken to encode was tabulated for each format conversion 

as shown in Table 7.8 for akiyo_qcif content. 

 

1. Peak Signal to Noise Ratio (PSNR) analysis 

Figure 7.17. shows the PSNR graph with respect to Heterogeneous transcoding for format change using 

akiyo_qcif content. All the testing scenarios proved to provide very good output quality with PSNR value 

being very high for QP =10. In Objective 1, it was proved that VVC and EVC codecs provided better video 

quality output due to improvised algorithm in encoder block when compared to HEVC and H.264. Hence 

the codec change from HEVC to VVC and H264 to EVC showed best PSNR value which is almost equal 

to 50 dB and EVC to H264 least value, almost equal to 49dB.   

 

2. Structural Similarity Index Metric (SSIM) analysis 

Figure 7.18. shows the SSIM graph with respect to Heterogeneous transcoding for format change using 

akiyo_qcif content. All the testing scenarios proved to provide very good output quality with SSIM value 

being very high with a value of 0.999 for QP=10. The output result was similar to PSNR analysis as HEVC 

to VVC showed the highest SSIM value when compared to other format changes.   
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3. Time taken to transcode analysis 

Figure 7.19. shows the time taken to transcode from one codec to another in heterogeneous form. It is 

obvious that any codec conversion involving VVC takes a lot of time as observed in Objective 1, as the time 

taken to encode VVC is double the time taken to encode EVC. Due to this analysis, we see maximum time 

taken to transcode for QP=10 is VVC to EVC and EVC to VVC. 

Video Transcoding 
PSNR 
(dB) SSIM 

Time 
Taken(s) 

H264_HEVC 50.15354 0.999624 411.977 

H264_VVC 50.22658 0.999639 2109.25 

H264_EVC 49.88168 0.999608 1102.07 

HEVC_H264 49.91432 0.999613 401.235 

HEVC_VVC 50.52744 0.999681 1614.09 

HEVC_EVC 50.00184 0.999628 759.391 

VVC_H264 49.54123 0.999595 2110.5 

VVC_HEVC 49.97654 0.999644 2105.07 

VVC_EVC 49.47421 0.999612 2449.75 

EVC_H264 49.23676 0.999571 1099.86 

EVC_HEVC 49.51782 0.999604 857.551 

EVC_VVC 49.60185 0.999621 2377.56 
Table 7.8. Video transcoding for akiyo_qcif content 

 

 
 

Figure 7.14. PSNR vs Video Codecs for Heterogeneous transcoding 
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Figure 7.15. SSIM vs Video Codecs for Heterogeneous transcoding 

 
Figure 7.16. Time taken for Heterogeneous transcoding 

7.5.2. Subjective Quality analysis for Heterogeneous Transcoding 

Subjective quality analysis for the Heterogeneous Transcoding for codecs H.264, HEVC, VVC and EVC 

also proves that the quality for video is the same for QP = 10 as observed in Figure 7.17 and 7.18. 
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Figure 7.17. Subjective quality analysis for Heterogeneous Transcoding 
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7.6. Results of Objective 3: Heterogeneous and Homogeneous Transcoding architecture for bitrate 

change by varying quantization parameter and frame rate 

Heterogeneous / Homogeneous Transcoding of H.264, HEVC, VVC and EVC video codecs for 

bitrate changes using cascaded decoder-encoder pixel transcoding architecture provides very good PSNR 

and SSIM output values for QP=10. Both PSNR and SSIM graphs in Figure 3.23 and Figure 3.24 proves 

that the transcoding from HEVC to VVC gives a better PSNR value which is almost equal to 50.5dB and 

SSIM value which is almost equal to 0.999863. 

 

7.6.1. Objective Quality analysis for Heterogeneous Bitrate Transcoding – QP variation 

From Figure 6.5 and Figure 6.6, for a video sequence akiyo_qcif.yuv (raw video), quantization parameter 

is kept constant (QP1= 10) at the first codec level. The bitrate is noted as Bitrate1 at first encoded stage. 

Heterogeneous transcoding at second stage for different QP values (QP2 = 10, 15, 20, 25, 30, 35, 40, 45 

and 50) are tested and corresponding Bitrate2 values are noted. I was observed that for a constant Bitrate1 

at stage 1, the Bitrate2 reduced with increase in QP value and Bitrate2 increased with decrease in QP value 

at stage 2. Values of Encoding time, Bitrate2, PSNR, MSSIM and Transcoding time are tabulated for 

different heterogeneous transcoding combinations which can be seen from Table 7.9 to 7.24. The graph 

for Bitrate variation with respect to QP2 and Time taken for transcoding is observed from Figure 7.21. to 

7.28. 

 It was also observed from the graphs (Figure 7.22, 7.24, 7.26. and 7.28.) that the Time taken for 

bitrate transcoding was more for codecs pertaining to VVC and EVC and less for H.264 and HEVC. This is 

due to the fact that for Objective1 implementation, it was proved that VVC and EVC takes more time to 

encode when compared to other 2 codecs. Transcoding time was directly proportional to the Bitrate2 and 

inversely proportional to QP2 value. It was also observed from the graphs (Figure 7.23, 7.25, 7.27 and 

7.29) that the Bitrate2 at second stage was also observed to be inversely proportional to QP2.  
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 H.264 HEVC  

Sl.No QP1 
Encoding 
time (s) 

Bitrate1 
(kbits/sec) QP2 

Encoding 
time (s) 

Bitrate2 
(kbits/sec) 

PSNR 
(YUV) 

MSSIM 
(YUV) 

Transcoding 
Time (s)  

1 

10 318.516 2053.05 

10 98.675 1095.216 52.5558 0.9995 419.55 
 

2 15 84 601.776 49.5037 0.9991 431.73 
 

3 20 67.516 365.5744 46.7981 0.9982 389.96 
 

4 25 62.47 234.976 43.897 0.9964 395.06 
 

5 30 57.491 154.14 40.6667 0.9925 385.35 
 

6 35 53.883 102.49 37.3533 0.9859 376 
 

7 40 53.735 68.53 34.052 0.9751 380.722 
 

8 45 52.86 48.1952 31.0577 0.9596 413.656 
 

9 50 53.29 35.3248 28.2751 0.9247 381.218 
 

Table 7.9. H.264 to HEVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 

 H.264 VVC  

Sl.No QP1 
Encoding 
time (s) 

Bitrate1 
(kbits/sec) QP2 

Encoding 
time (s) 

Bitrate2 
(kbits/sec) 

PSNR 
(YUV) MSE (YUV) 

Transcoding 
Time (s)  

1 

10 318.516 2053.05 

10 1871.004 1011.584 53.0226 5.1873 2196.73 
 

2 15 1388.58 566.179 50.359 9.579 1711.84 
 

3 20 998.31 347.206 47.763 17.415 1335.98 
 

4 25 740.033 225.91 45.0186 32.76 1079.62 
 

5 30 549.995 150.471 41.961 66.24 865.251 
 

6 35 450.73 102.84 38.807 136.92 770.861 
 

7 40 368.221 71.87 35.669 282.045 697.679 
 

8 45 302.965 51.65 32.374 602.26 625.385 
 

9 50 304.515 39.514 29.35 1208.33 632.617 
 

Table 7.10. H.264 to VVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 

 H.264 EVC  

Sl.No QP1 
Encoding 
time (s) 

Bitrate1 
(kbits/sec) QP2 

Encoding 
time (s) 

Bitrate2 
(kbits/sec) 

PSNR 
(YUV) 

MSSIM 
(YUV) 

Transcoding 
Time (s)  

1 

10 318.516 2053.05 

10 819.88 169.07 52.95 0.99941 1143.2 
 

2 15 657.548 96.179 50.685 0.99914 994.905 
 

3 20 514.925 59.55 48.3051 0.99877 870.908 
 

4 25 538.785 38.5808 45.722 0.99805 875.325 
 

5 30 450.015 25.236 42.8017 0.99637 808.54 
 

6 35 321.856 16.6864 40.107 0.99224 737.499 
 

7 40 267.882 10.8907 37.1163 0.98282 690.746 
 

8 45 238.039 7.2773 34.1269 0.96044 680.347 
 

9 50 157.036 4.9077 31.451 0.9161 667.908 
 

Table 7.11. H.264 to EVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 
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Figure 7.18. Heterogeneous Bitrate Transcoding from H.264 to HEVC/VVC and EVC using akiyo_qcif 

sequence 

 

Figure 7.19. Time taken for Heterogeneous Bitrate Transcoding from H.264 to HEVC/VVC and EVC using 

akiyo_qcif sequence 
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 HEVC H.264  

Sl.No QP1 
Encoding 
time (s) 

Bitrate1 
(kbits/sec) QP2 

Encoding 
time (s) 

Bitrate2 
(kbits/sec) 

PSNR 
(YUV) 

MSSIM 
(YUV) 

Transcoding 
Time (s)  

1 

10 88.562 1051.2256 

10 341.65 348.18 53.271 0.9992 432.437 
 

2 15 353.458 195.91 49.94 0.9988 446.621 
 

3 20 339.424 109.25 46.66 0.9982 432.806 
 

4 25 339.299 59.77 43.381 0.9968 430.8 
 

5 30 340.024 31.47 40.066 0.9936 430.196 
 

6 35 330.914 18.36 37.252 0.9883 416.826 
 

7 40 357.275 11.45 34.802 0.9772 444.402 
 

8 45 388.229 7.29 33.037 0.9652 475.437 
 

9 50 386.13 5.17 31.576 0.9398 470.889 
 

Table 7.12. HEVC to H.264 Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 

 HEVC VVC  

Sl.No QP1 
Encoding 
time (s) 

Bitrate1 
(kbits/sec) QP2 

Encoding 
time (s) 

Bitrate2 
(kbits/sec) 

PSNR 
(YUV) MSE (YUV) 

Transcoding 
Time (s)  

1 

10 88.562 1051.2256 

10 1545.137 958.797 55.2698 3.0919 1636.41 
 

2 15 2586.943 550.1952 51.2629 7.7788 1489.59 
 

3 20 1625.48 345.5616 48.2874 15.4335 1075.39 
 

4 25 731.523 225.6544 45.3038 30.6776 822.918 
 

5 30 567.03 150.2912 42.0815 64.4249 657.081 
 

6 35 460.478 102.9952 38.8749 134.8068 552.959 
 

7 40 458.745 72.1824 35.6452 283.5856 458.745 
 

8 45 320.137 51.584 32.3876 600.3978 408.594 
 

9 50 306.003 39.552 29.3599 1205.6127 398.895 
 

Table 7.13. HEVC to VVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 

 HEVC EVC  

Sl.No QP1 
Encoding 
time (s) 

Bitrate1 
(kbits/sec) QP2 

Encoding 
time (s) 

Bitrate2 
(kbits/sec) 

PSNR 
(YUV) 

MSSIM 
(YUV) 

Transcoding 
Time (s)  

1 

10 88.562 1051.2256 

10 710.448 154.95 53.82 0.999479 803.685 
 

2 15 615.384 93.8453 51.1042 0.9992196 715.142 
 

3 20 445.314 59.3237 48.672 0.9988611 542.941 
 

4 25 294.824 38.6859 45.9395 0.9981421 389.856 
 

5 30 202.483 25.3829 42.8806 0.9965052 293.051 
 

6 35 152.446 16.7563 40.1382 0.9924018 246.169 
 

7 40 126.703 10.9717 37.0582 0.983137 220.569 
 

8 45 111.609 7.2635 34.1254 0.9608622 206.637 
 

9 50 114.873 4.8704 31.4754 0.9156842 207.199 
 

Table 7.14. HEVC to EVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 
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Figure 7.20. Heterogeneous Bitrate Transcoding from HEVC to H.264/VVC and EVC using akiyo_qcif 

sequence 

 

 

Figure 7.21. Time taken for Heterogeneous Bitrate Transcoding from HEVC to H.264/VVC and EVC using 

akiyo_qcif sequence 
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 VVC H.264  

Sl.No QP1 
Encoding 
time (s) 

Bitrate1 
(kbits/sec) QP2 

Encoding 
time (s) 

Bitrate2 
(kbits/sec) 

PSNR 
(YUV) 

MSSIM 
(YUV) 

Transcoding 
Time (s)  

1 

10 1936.459 939.0048 

10 387.597 362.25 52.725 0.9992 2326.28 
 

2 15 349.96 200.45 49.845 0.9988 2192.77 
 

3 20 328.039 111.22 46.663 0.9982 2052.32 
 

4 25 341.26 60.61 43.365 0.9969 2054.69 
 

5 30 318.798 31.47 40.065 0.9936 2025.83 
 

6 35 330.696 18.45 37.313 0.98847 1988.27 
 

7 40 350.143 11.46 34.781 0.9772 2031.91 
 

8 45 407.88 7.28 33.072 0.9653 2308.83 
 

9 50 382.229 5.15 43.584 0.9399 2074.24 
 

Table 7.15. VVC to H.264 Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 

 VVC HEVC  

Sl.No QP1 
Encoding 
time (s) 

Bitrate1 
(kbits/sec) QP2 

Encoding 
time (s) 

Bitrate2 
(kbits/sec) 

PSNR 
(YUV) 

MSSIM 
(YUV) 

Transcoding 
Time (s)  

1 

10 1936.459 939.0048 

10 89.423 1007.3056 53.489 0.999613 1789.17 
 

2 15 73.637 582.6464 50.0427 0.9992043 1772.79 
 

3 20 65.271 364.3168 47.1767 0.998388 1752.46 
 

4 25 59.795 235.984 44.1106 0.996669 1762.66 
 

5 30 53.313 154.1088 40.7168 0.992673 1740.58 
 

6 35 53.022 102.4064 37.3881 0.98617 1730.01 
 

7 40 52.173 69.0496 34.1142 0.975577 1744.83 
 

8 45 51.521 48.1728 31.0671 0.959009 1752.32 
 

9 50 55.023 35.3376 28.2841 0.924517 1795.05 
 

Table 7.16. VVC to HEVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 

 VVC EVC  

Sl.No QP1 
Encoding 
time (s) 

Bitrate1 
(kbits/sec) QP2 

Encoding 
time (s) 

Bitrate2 
(kbits/sec) 

PSNR 
(YUV) 

MSSIM 
(YUV) 

Transcoding 
Time (s)  

1 

10 1936.459 939.0048 

10 731.388 154.1995 53.4656 0.999462 2415.34 
 

2 15 530.338 93.5819 51.05207 0.99922 2183.78 
 

3 20 378.178 59.4811 48.6654 0.99888 2034.03 
 

4 25 377.845 38.6624 45.93787 0.998151 2000.647 
 

5 30 182.813 25.3115 42.89023 0.99649 1912.49 
 

6 35 140.33 16.6661 40.10603 0.992418 1791.84 
 

7 40 112.493 10.9157 37.02683 0.982868 1748.11 
 

8 45 104.261 7.2384 34.17297 0.96048 1728.65 
 

9 50 105.44 4.8635 31.3204 0.914966 1727.69 
 

Table 7.17. VVC to EVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 
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Figure 7.22. Heterogeneous Bitrate Transcoding from VVC to H.264/HEVC and EVC using akiyo_qcif 

sequence 

 

Figure 7.23. Time taken for Heterogeneous Bitrate Transcoding from VVC to H.264/HEVC and EVC using 

akiyo_qcif sequence 
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 EVC H.264  

Sl.No QP1 
Encoding 
time (s) 

Bitrate1 
(kbits/sec) QP2 

Encoding 
time (s) 

Bitrate2 
(kbits/sec) 

PSNR 
(YUV) 

MSSIM 
(YUV) 

Transcoding 
Time (s)  

1 

10 715.152 157.9253 

10 309.116 351.2 53.1797 0.99923 1027.28 
 

2 15 309.384 196.34 50.091 0.9989 1034.17 
 

3 20 305.765 109.43 46.7753 0.9982 1022.64 
 

4 25 308.913 59.66 43.4373 0.9968 1024.58 
 

5 30 309.585 31.37 40.0933 0.9935 1026.53 
 

6 35 317.415 18.42 37.255 0.9882 1028.36 
 

7 40 334.878 11.44 34.7977 0.977133 1050.23 
 

8 45 384.146 7.26 33.0757 0.966166 1094.6 
 

9 50 382.997 5.16 31.6463 0.94037 1129.24 
 

Table 7.18. EVC to H.264 Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 

 EVC HEVC  

Sl.No QP1 
Encoding 
time (s) 

Bitrate1 
(kbits/sec) QP2 

Encoding 
time (s) 

Bitrate2 
(kbits/sec) 

PSNR 
(YUV) 

MSSIM 
(YUV) 

Transcoding 
Time (s)  

1 

10 715.152 157.9253 

10 85.744 964.9088 53.7351 0.999643 819.79 
 

2 15 72.567 580.8416 50.3782 0.999259 810.668 
 

3 20 59.158 363.4976 47.3547 0.998433 815.84 
 

4 25 59.501 235.3408 44.2211 0.996703 820.294 
 

5 30 54.989 154.2592 40.8138 0.992761 812.536 
 

6 35 51.527 102.3648 37.422 0.98645 937.475 
 

7 40 50.188 68.9056 34.105 0.97498 778.597 
 

8 45 49.362 48.304 31.0905 0.959838 772.678 
 

9 50 48.678 35.2768 28.2904 0.923841 762.15 
 

Table 7.19. EVC to HEVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 

 EVC VVC  

Sl.No QP1 
Encoding 
time (s) 

Bitrate1 
(kbits/sec) QP2 

Encoding 
time (s) 

Bitrate2 
(kbits/sec) 

PSNR 
(YUV) MSE (YUV) 

Transcoding 
Time (s)  

1 

10 1936.459 939.0048 

10 2120.023 922.6432 55.2343 3.1172 2929.03 
 

2 15 1185.33 550.3808 51.651 7.1138 1908.98 
 

3 20 943.138 343.8592 48.5156 14.6434 1691.18 
 

4 25 710.216 225.8656 45.4637 29.5684 1496.42 
 

5 30 552.37 150.7712 42.1973 62.7299 1388.42 
 

6 35 438.974 102.9216 38.9434 132.6956 1200.39 
 

7 40 360.072 72.0384 35.7039 279.7759 1127.13 
 

8 45 281.243 51.6192 32.4376 593.5231 1031.08 
 

9 50 296.761 39.5616 29.3703 1202.7429 1034.19 
 

Table 7.20. EVC to VVC Heterogeneous Bitrate Transcoding using akiyo_qcif sequence 
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Figure 7.24. Heterogeneous Bitrate Transcoding from EVC to H.264/HEVC and VVC using akiyo_qcif 

sequence 

 

 

Figure 7.25. Time taken for Heterogeneous Bitrate Transcoding from EVC to H.264/HEVC and VVC using 

akiyo_qcif sequence 
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7.6.2. Objective Quality analysis for Homogeneous Bitrate Transcoding – QP variation 

Homogeneous bitrate change with QP variation is coded as in Figure 6.6. and results tabulated from Table 

7.21. to Table 7.24 and analyzed in Figure 7.26 and Figure 7.27. for a video sequence akiyo_qcif.yuv (raw 

video), quantization parameter is kept constant (QP1= 10) at the first codec level. Homogeneous 

transcoding at second stage for different QP values (QP2 = 10, 15, 20, 25, 30, 35, 40, 45 and 50) are tested 

and corresponding Bitrate2 values are noted. I was observed that for a constant Bitrate1 at stage 1, the 

Bitrate2 decreased with increase in QP value and Bitrate2 increased with decrease in QP value at stage 2.  

 

H.264 H.264 

QP1 
Bitrate1 

(kbits/sec) QP2 
Bitrate2 

(kbits/sec) 
PSNR 
(YUV) 

Transcoding 
Time (s)  

10 2053.05 

10 404 61.053 1091.87 
 

15 213 49.791 1052.56 
 

20 111.57 46.549 993.15 
 

25 59.93 43.333 729.31 
 

30 31.38 40.067 650.492 
 

35 18.37 37.251 672.188 
 

40 11.48 34.831 707.719 
 

45 7.25 32.992 668.476 
 

50 5.18 31.638 688.549 
 

Table 7.21. H.264 to H.264 Homogeneous Bitrate Transcoding using akiyo_qcif sequence 

 

HEVC HEVC 

QP1 
Bitrate1 

(kbits/sec) QP2 
Bitrate2 

(kbits/sec) 
PSNR 
(YUV) 

Transcoding 
Time (s)  

10 1051.2256 

10 1032.95 61.43 179.703 
 

15 583.39 50.3749 162.037 
 

20 364.2752 47.2429 150.237 
 

25 235.1072 44.1169 145.669 
 

30 154.6912 40.7603 141.493 
 

35 102.672 37.4108 140.926 
 

40 69.248 34.1173 140.361 
 

45 48.179 31.0407 139.3 
 

50 35.408 28.3067 138.546 
 

Table 7.22. HEVC to HEVC Homogeneous Bitrate Transcoding using akiyo_qcif sequence 
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VVC VVC 

QP1 
Bitrate1 

(kbits/sec) QP2 
Bitrate2 

(kbits/sec) 
PSNR 
(YUV) 

Transcoding 
Time (s)  

10 939.005 

10 917.129 56.4621 3223.4 
 

15 543.107 51.6116 2901.31 
 

20 344.5728 48.4937 2572.79 
 

25 225.3184 45.4283 2373.23 
 

30 151.0304 42.1947 2201.96 
 

35 103.1392 38.9641 2096.95 
 

40 72.1312 35.732 2181.26 
 

45 51.7056 32.4129 1988.83 
 

50 39.5424 29.3488 2012.41 
 

Table 7.23. VVC to VVC Homogeneous Bitrate Transcoding using akiyo_qcif sequence 

 

 

EVC EVC 

QP1 
Bitrate1 

(kbits/sec) QP2 
Bitrate2 

(kbits/sec) 
PSNR 
(YUV) 

Transcoding 
Time (s)  

10 157.9253 

10 152.7099 55.2274 1398.73 
 

15 94.0133 51.6547 1308.9 
 

20 59.3957 48.91743 1159.42 
 

25 38.5867 46.04373 1058.91 
 

30 25.2635 42.94913 959.242 
 

35 16.6693 40.1439 916.423 
 

40 10.8901 37.124466 887.878 
 

45 7.2821 34.249833 881.735 
 

50 4.8683 31.438 861.95 
 

Table 7.24. EVC to EVC Homogeneous Bitrate Transcoding using akiyo_qcif sequence 

 
From Figure 7.26, it was observed that the bitrate2 at second stage of the transcoding pipeline 

reduced with increase in QP value from 10 to 50. This characteristic was observed for all the four codec 

(H.264, HEVC, VVC and EVC) homogeneous bitrate change for QP variation using akiyo_qcif content. 

Figure 7.27 showed the time taken for homogeneous bitrate transcoding using QP variation. It was evident 

from the graph that VVC took more time to transcode followed by EVC, H.264 and then HEVC. 
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Figure 7.26. Homogeneous Bitrate Transcoding for H.264/HEVC/VVC and EVC using akiyo_qcif 

sequence 

 

 
Figure 7.27. Time taken for Homogeneous Bitrate Transcoding for H.264/HEVC/VVC and EVC using 

akiyo_qcif sequence 

10 15 20 25 30 35 40 45 50

H.264_H.264 404 213 111.57 59.93 31.38 18.37 11.48 7.25 5.18

HEVC_HEVC 1032.95 583.39 364.2752 235.1072 154.6912 102.672 69.248 48.179 35.408

VVC_VVC 917.129 543.107 344.5728 225.3184 151.0304 103.1392 72.1312 51.7056 39.5424

EVC_EVC 152.7099 94.0133 59.3957 38.5867 25.2635 16.6693 10.8901 7.2821 4.8683
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7.6.3. Objective Quality analysis for Homogeneous Bitrate Transcoding – Framerate variation 

Homogeneous bitrate change with frame rate variation is coded as in Figure 6.7. and results tabulated in 

Table 7.25. Here the framerate at the first block is Framerate1 and second block is Framerate2. 

Simultaneously, the Bitrate at the first block of transcoding is Bitrate1 and second block is Bitrate2. The 

compressed output at the first block is Compressed output1 and second block is Compressed output2. 

 

Video 
Transcoding 

Frame 
Rate1 

Frame 
Rate2 

Bitrate 1 
(kb/s) 

Bitrate 2 
(kb/s) 

PSNR 
(dB) 

SSIM 

Time 
taken 

to 
encode 

(s) 

Compressed 
Output1 

(kB) 

Compressed 
Output2 

(kB) 

H264_H264 

20 

20 418.61 694.39 72.591 1 1748.86 752 1272 

40 418.61 1388.79 72.591 1 1682.81 752 1272 

60 418.61 2083.18 72.591 1 634.699 752 1272 

80 418.61 2777.58 72.591 1 730.182 752 1272 

100 

20 2053.05 694.39 72.591 1 665.928 752 1272 

40 2053.05 1388.79 72.591 1 914.408 752 1272 

60 2053.05 2083.18 72.591 1 1013.93 752 1272 

80 2053.05 2777.58 72.591 1 720.419 752 1272 

HEVC_HEVC 

20 

20 658.1024 654.2 75.03 1 381.034 1206 1198 

40 658.1024 1308.41 75.03 1 359.705 1206 1198 

60 658.1024 1962.614 75.03 1 356.496 1206 1198 

80 658.1024 2616.82 75.03 1 391.468 1206 1198 

100 

20 3290.512 654.2 75.03 1 350.726 1206 1198 

40 3290.512 1308.41 75.03 1 352.791 1206 1198 

60 3290.512 1962.614 75.03 1 352.572 1206 1198 

80 3290.512 2616.82 75.03 1 356.176 1206 1198 

VVC_VVC 

20 

20 576.54 567.27 61.34 1 7045.8 1056 1039 

40 576.54 1134.55 61.34 1 6805.6 1056 1039 

60 576.54 1701.82 61.34 1 6764.47 1056 1039 

80 576.54 2269.1 61.34 1 6885.53 1056 1039 

100 

20 2882.704 567.2736 61.34 1 6899.39 1056 1039 

40 2882.704 1134.55 61.34 1 6999.85 1056 1039 

60 2882.704 1701.82 61.34 1 6933.82 1056 1039 

80 2882.704 2269.09 61.34 1 6933.36 1056 1039 

EVC_EVC 

20 

20 499.0133 505.72 57.34 1 3625.72 914 926 

40 499.0133 1011.44 57.34 1 3548.55 914 926 

60 499.0133 1517.15 57.34 1 3611.6 914 926 

80 499.0133 2022.87 57.34 1 3600.76 914 926 

100 

20 2495.07 505.72 57.34 1 3621.16 914 926 

40 2495.07 1011.44 57.34 1 3598.93 914 926 

60 2495.07 1517.15 57.34 1 3830.2 914 926 

80 2495.07 2022.87 57.34 1 3736.53 914 926 

Table 7.25. Homogeneous Bitrate Transcoding using framerate variation 
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Figure 7.28. Homogeneous bitrate change with framerate variation. 

 It is very evident from the graph in Figure 7.28. that the bitrate2 increases with increase in 

framerate. The compression size of the output video remains the same with increase in framerate but the 

time taken to encode reduces with increase in framerate. This is one of the main characteristics of framerate 

variation. We also observe that the PSNR and SSIM remains same and is maximum as quantization 

parameter here is kept to zero. This same characteristic is observed for all four codec (H.264, HEVC, VVC 

and EVC) change. 

 

7.7. Results of Objective 4: Develop an automated versatile application of Transcoding H.264, HEVC, 

VVC and EVC for format change and bitrate variation (QP and framerate change) 

The automated application was coded and tested accordingly as seen in Appendix 1 and Appendix 2. 
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 Conclusion and Future 

Work 

 

 
Transcoding is one of the main applications in wireless and video communication. This application is always 

in demand untill there is code developments of new video codecs ongoing. The VVC (Versatile Video 

Coding) and EVC (Essential Video Coding) being the next generation video codecs was the main focus 

point as the codecs brings in a lot of application uses along with its additional algorithmic development. 

Since VVC and EVC are still not out in the market, there is a lot of scope in transcoding other codecs to 

VVC/EVC and vice versa. All these video codecs are open source other than EVC, and used by the industry 

standards, it is advantages to choose them as the main codec. The complexity of VVC and EVC were also 

proved to be high, hence opens up avenues for research in reducing the complexity of the codec algorithms. 

Other applications like multiplexing, video on demand, internet video can also be developed using these 

new codecs. Along with heterogeneous functionality, homogeneous properties like bitrate change and 

frame rate changes were also tested which are the main features for wireless communication. Each of these 

functionalities were divided into 3 different objectives and the conclusion for the same is provided in the 

next session. The objective 4 gives the automated application which is presented during the demonstration 

of the thesis. 

 
8.1. Conclusion of Objective 1: Codec comparative analysis  

The codec analysis using the three methods of verification (Objective analysis, RD method and Subjective 

analysis) concluded by providing the same results in terms of codec performance with respect to four codec 

software implementations. The testing verified that VVC showed better bitrate savings for the encoded bit 

sequence, that is 30% – 50% better when compared to HEVC codecs keeping the video quality constant. 

This is due to the VVC having progressive block implementations when compared to the other codecs, like 

having twice the block structure when compared to EVC which increases the compression rate, hence 

reduces the bitrate for the same QP. EVC showed 10% – 30% better bitrate savings when compared to 

HEVC keeping the video quality constant. This is because of EVC having twice the maximum block size 
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when compared to HEVC. HEVC providing 50% better bitrate savings than H.264 for same output video 

quality was already proved in the research papers [68] and hence was also verified in this thesis. 

Complexity of the codec is another domain which opens for research to improve the codec time 

performance. VVC as the codec with software version 10.0 showed more time to encode the sequence 

when compared to EVC, HEVC and H.264. The time taken was almost double the time taken for EVC to 

encode a 4K resolution video. This is also due to the intra prediction modes in VVC being maximum which 

is 89 when compared to EVC which is 30, HEVC which is 35 and H.264 which is 9. This opens for avenues 

in research in reducing the complexity of the codec.  

 
8.2. Conclusion of Objective 2: Heterogeneous Transcoding 

Format change between H.264, HEVC, VVC and EVC is known as heterogeneous transcoding which was 

developed and tested for QP = 10 and GOP=15. The transcoded bitstream of the transcoder for VVC to 

HEVC and HEVC to VVC showed better PSNR and SSIM value, as it was proved in objective 1, as VVC 

was a better codec with better output results when compared to EVC, HEVC and H.264. So, any codec 

shift which involved VVC showed better output results and more compression size. It was also noted in 

objective 1 that time taken to encode VVC and EVC was maximum, like VVC taking two times more time 

than EVC and EVC 1/3 time more than HEVC for its encoding. The same was observed in heterogeneous 

transcoding with time taken for VVC and EVC was maximum, hence its combination in transcoding showed 

maximum time. Any transcoding combination with respect to H.264 showed least time to transcode. This is 

due to the complexity increment in codec in the ascending order as H.264, HEVC, EVC and VVC. Hence 

when the codec is more complex, more time is taken to encode a sequence using that codec.    

Hence can be concluded that any video communication application required to transmit any data 

with more compression having less bandwidth availability can use heterogeneous transcoding from any 

codec to VVC. The time taken for transcoding this combination is also more but can be ignored if the output 

video quality is important along with more compression rate. This is more effective for higher data videos 

like 4K and 8K videos. 
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8.3. Conclusion of Objective 3: Bitrate Homogeneous/Heterogeneous Transcoding 

Heterogeneous / Homogeneous Transcoding of H.264, HEVC, VVC and EVC video codecs for bitrate 

changes using cascaded decoder-encoder pixel transcoding architecture for QP variation and frame rate 

variation, results showed very good output quality video. Heterogeneous transcoding for bitrate change 

using QP variation in the second codec in the transcoding pipeline, showed very good PSNR and SSIM 

output values for the first codec QP =10 in the transcoding pipeline. The PSNR value was almost equal to 

50.5dB and SSIM value equal to 0.999863 which is almost lossless output values. It was also observed 

that when QP increases in the second codec in the pipeline, the bitrate decreases, hence achieving better 

compression rate with good PSNR and SSIM value. It was also observed that when QP decreases in the 

second codec in the pipeline, the bitrate increases, hence reducing the compression rate but the PSNR 

and SSIM value remained good.  

 Homogeneous transcoding for bitrate change using framerate variation in the second codec in the 

transcoding pipeline, showed stable PSNR and SSIM value with variation in the bitrate for the first and 

second codec QP = 0 in the transcoding pipeline. It was observed that when frame rate increases in the 

second codec in the pipeline, bitrate decreases and when framerate decreases in the second codec in the 

pipeline, bitrate increases. Here compression rate remained constant for framerate variation. Bitrate 

variable is directly proportional to time taken to transcode, hence it was observed that when bitrate reduces, 

time taken for bitrate transcoding decreases and when bitrate increases, time taken for bitrate transcoding 

increases. 

Hence can be concluded that any video communication application required to transmit any data 

quick with less bitrate, can use heterogeneous transcoding with QP variation, for higher QP value, as time 

taken is low and homogeneous transcoding with framerate variation, for lower framerate value, as time 

taken for transcoding is less.  
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Appendix -1 

 
/*Heterogeneous Transcoding for format change for 
H.264, HEVC, VVC and EVC codecs*/ 
 
#include <iostream> 
#include <stdio.h> 
#include <time.h> 
#include <ctime> 
  
void H264_HEVC(void) { 
 /*H264 Encoder Commandline*/ 

std::string cmd = "<path_to_executable>lencod.exe -
d "<path_to_config_file>encoder_main_H264_H264toHEVC.cfg"; 

 std::system(cmd.c_str()); 
 /*H264 Decoder Commandline*/ 
 cmd = "<path_to_executable>ldecod.exe"; 
 std::system(cmd.c_str()); 
 /*HEVC Encoder Commandline*/ 

cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_H264toHEVC.cfg -
c <path_to_config_file>akiyo_H264toHEVCnVVC.cfg"; 

 std::system(cmd.c_str()); 
 /*HEVC Decoder Commandline*/ 
 cmd = "<path_to_executable>TAppDecoder.exe -b str_HEVC.bin -o dec_HEVC.yuv -d 8"; 
 std::system(cmd.c_str()); 
} 
  
void H264_VVC(void) { 
 /*H264 Encoder Commandline*/ 

std::string cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264_H264toHEVC.cfg"; 

 std::system(cmd.c_str()); 
 /*H264 Decoder Commandline*/ 
 cmd = "<path_to_executable>ldecod.exe"; 
 std::system(cmd.c_str()); 
 /*VVC Encoder Commandline*/ 

cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_H264toVVC.cfg -
c <path_to_config_file>akiyo_H264toHEVCnVVC.cfg"; 

 std::system(cmd.c_str()); 
 /*VVC Decoder Commandline*/ 
 cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VCC.yuv -d 8"; 
 std::system(cmd.c_str()); 
} 
  
void H264_EVC(void) { 
 /*H264 Encoder Commandline*/ 

std::string cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264_H264toHEVC.cfg"; 

 std::system(cmd.c_str()); 
 /*H264 Decoder Commandline*/ 
 cmd = "<path_to_executable>ldecod.exe"; 
 std::system(cmd.c_str()); 
 /*EVC Encoder Commandline*/ 

cmd = "<path_to_executable>evca_encoder.exe -i <path_to_input_file>test_dec.yuv -
q 10 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -o str_EVC.bin --
config <path_to_config_file>encoder_randomaccess_EVC_H264toEVC.cfg"; 

 std::system(cmd.c_str()); 
 /*EVC Decoder Commandline*/ 
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 cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -o dec_EVC.yuv"; 
 std::system(cmd.c_str()); 
} 
  
void HEVC_H264(void) { 
 /*HEVC Encoder Commandline*/ 

std::string cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_HEVCtoH264_VVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg 

 std::system(cmd.c_str()); 
 /*HEVC Decoder Commandline*/ 
 cmd = "<path_to_executable>TAppDecoder.exe -b str_HEVC.bin -o dec_HEVC.yuv -d 8 "; 
 std::system(cmd.c_str()); 
 /*H.264 Encoder Commandline*/ 

cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264_HEVCtoH264.cfg"; 

 std::system(cmd.c_str()); 
 /*H.264 Decoder Commandline*/ 
 cmd = "<path_to_executable>ldecod.exe"; 
 std::system(cmd.c_str()); 
} 
  
void HEVC_VVC(void) { 
 /*HEVC Encoder Commandline*/ 

std::string cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_HEVCtoH264_VVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg"; 

 std::system(cmd.c_str()); 
 /*HEVC Decoder Commandline*/ 
 cmd = "<path_to_executable>TAppDecoder.exe -b str_HEVC.bin -o dec_HEVC.yuv -d 8 "; 
 std::system(cmd.c_str()); 
 /*VVC Encoder Commandline*/ 

cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_HEVCtoVVC.cfg -
c <path_to_config_file>akiyo_VVC_HEVCtoVVC.cfg"; 

 std::system(cmd.c_str()); 
 /*VVC Decoder Commandline*/ 
 cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VCC.yuv -d 8"; 
 std::system(cmd.c_str()); 
} 
  
void HEVC_EVC(void) { 
 /*HEVC Encoder Commandline*/ 

std::string cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_HEVCtoH264_VVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg"; 

 std::system(cmd.c_str()); 
 /*HEVC Decoder Commandline*/ 
 cmd = "<path_to_executable>TAppDecoder.exe -b str_HEVC.bin -o dec_HEVC.yuv -d 8 "; 
 std::system(cmd.c_str()); 
 /*EVC Encoder Commandline*/ 

cmd = "<path_to_executable>evca_encoder.exe -i dec_HEVC.yuv -q 10 -w 176 -h 144 -
p 16 -f 300 -z 20 -d 8 -o str_EVC.bin --
config <path_to_config_file>encoder_randomaccess_EVC_HEVCtoEVC.cfg"; 

 std::system(cmd.c_str()); 
 /*EVC Decoder Commandline*/ 
 cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -o dec_EVC.yuv"; 
 std::system(cmd.c_str()); 
} 
  
void VVC_H264(void) { 
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 /*VVC Encoder Commandline*/ 
std::string cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_VVCtoH264_HEVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg"; 

 std::system(cmd.c_str()); 
 /*VVC Decoder Commandline*/ 
 cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VVC.yuv -d 8"; 
 std::system(cmd.c_str()); 
 /*H.264 Encoder Commandline*/ 

cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264_VVCtoH264.cfg"; 

 std::system(cmd.c_str()); 
 /*H.264 Decoder Commandline*/ 
 cmd = "<path_to_executable>ldecod.exe"; 
 std::system(cmd.c_str()); 
} 
  
void VVC_HEVC(void) { 
 /*VVC Encoder Commandline*/ 

std::string cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_VVCtoH264_HEVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg"; 

 std::system(cmd.c_str()); 
 /*VVC Decoder Commandline*/ 
 cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VVC.yuv -d 8"; 
 std::system(cmd.c_str()); 
 /*HEVC Encoder Commandline*/ 

cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_VVCtoHEVC.cfg -
c <path_to_config_file>akiyo_HEVC_VVCtoHEVC.cfg"; 

 std::system(cmd.c_str()); 
 /*HEVC Decoder Commandline*/ 
 cmd = "<path_to_executable>TAppDecoder.exe -b str_HEVC.bin -o dec_HEVC.yuv -d 8"; 
 std::system(cmd.c_str()); 
} 
  
void VVC_EVC(void) { 
 /*VVC Encoder Commandline:*/ 

std::string cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_VVCtoH264_HEVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg"; 

 std::system(cmd.c_str()); 
 /*VVC Decoder Commandline*/ 
 cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VVC.yuv -d 8"; 
 std::system(cmd.c_str()); 
 /*EVC Encoder Commandline*/ 

cmd = "<path_to_executable>evca_encoder.exe -i dec_VVC.yuv -q 10 -w 176 -h 144 -
p 16 -f 300 -z 20 -d 8 -o str_EVC.bin --
config <path_to_config_file>encoder_randomaccess_EVC_VVCtoEVC.cfg"; 

 std::system(cmd.c_str()); 
 /*EVC Decoder Commandline*/ 
 cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -o dec_EVC.yuv"; 
 std::system(cmd.c_str()); 
} 
  
void EVC_H264(void) { 
 /*EVC Encoder Commandline*/ 

std::string cmd = "<path_to_executable>evca_encoder.exe -
i <path_to_config_file>akiyo_qcif.yuv -q 10 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -
o str_EVC.bin --config <path_to_config_file>encoder_randomaccess_EVC_H264toEVC.cfg"; 

 std::system(cmd.c_str()); 
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 /*EVC Decoder Commandline*/ 
 cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -o dec_EVC.yuv"; 
 std::system(cmd.c_str()); 
 /*H.264 Encoder Commandline*/ 

 cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264_EVCtoH264.cfg"; 

 std::system(cmd.c_str()); 
 /*H.264 Decoder Commandline*/ 
 cmd = "<path_to_executable>ldecod.exe"; 
 std::system(cmd.c_str()); 
} 
  
void EVC_HEVC(void) { 
 /*EVC Encoder Commandline*/ 

std::string cmd = "<path_to_executable>evca_encoder.exe -
i <path_to_config_file>akiyo_qcif.yuv -q 10 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -
o str_EVC.bin --config <path_to_config_file>encoder_randomaccess_EVC_H264toEVC.cfg"; 

 std::system(cmd.c_str()); 
 /*EVC Decoder Commandline*/ 
 cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -o dec_EVC.yuv"; 
 std::system(cmd.c_str()); 
 /*HEVC Encoder Commandline*/ 

cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_EVCtoHEVC.cfg -
c <path_to_config_file>akiyo_EVC_EVCtoHEVC.cfg"; 

 std::system(cmd.c_str()); 
 /*HEVC Decoder Commandline*/ 
 cmd = "<path_to_executable>TAppDecoder.exe -b str_HEVC.bin -o dec_HEVC.yuv -d 8"; 
 std::system(cmd.c_str()); 
} 
  
void EVC_VVC(void) { 
 /*EVC Encoder Commandline*/ 

std::string cmd = "<path_to_executable>evca_encoder.exe -
i <path_to_config_file>akiyo_qcif.yuv -q 10 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -
o str_EVC.bin --config <path_to_config_file>encoder_randomaccess_EVC_H264toEVC.cfg"; 

 std::system(cmd.c_str()); 
 /*EVC Decoder Commandline*/ 
 cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -o dec_EVC.yuv"; 
 std::system(cmd.c_str()); 
 /*VVC Encoder Commandline:*/ 

cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_EVCtoVVC.cfg -
c <path_to_config_file>akiyo_EVC_EVCtoVVC.cfg"; 

 std::system(cmd.c_str()); 
 /*VVC Decoder Commandline*/ 
 cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VVC.yuv -d 8"; 
 std::system(cmd.c_str()); 
} 
  
 
/*Transcoder.exe application main() function*/ 
int main(int argc, const int* argv[]) 
{ 
 clock_t t; 
 /*Choosing the transcoding option on the fly from 12 format change  
 possibilities between H.264, HEVC, VVC and EVC*/ 
 std::cout << "Available options:" << std::endl; 
 std::cout << "1. Transcoding from H.264 to HEVC" << std::endl; 
 std::cout << "2. Transcoding from H.264 to VVC" << std::endl; 
 std::cout << "3. Transcoding from H.264 to EVC" << std::endl; 
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 std::cout << "4. Transcoding from HEVC to H.264" << std::endl; 
 std::cout << "5. Transcoding from HEVC to VVC" << std::endl; 
 std::cout << "6. Transcoding from HEVC to EVC" << std::endl; 
 std::cout << "7. Transcoding from VVC to H.264" << std::endl; 
 std::cout << "8. Transcoding from VVC to HEVC" << std::endl; 
 std::cout << "9. Transcoding from VVC to EVC" << std::endl; 
 std::cout << "10. Transcoding from EVC to H.264" << std::endl; 
 std::cout << "11. Transcoding from EVC to HEVC" << std::endl; 
 std::cout << "12. Transcoding from EVC to VVC" << std::endl; 
 std::cout << "Type your options(1-12):" << std::endl; 
 int opt; 
 std::cin >> opt; 
  
 switch (opt) { 
 case 1: 
  t = clock(); 
              std::cout << "Testing Program for Transcoding from H.264 to HEVC" << std::endl; 
  H264_HEVC(); 
  t = clock() - t; 
  break; 
  case 2: 
  t = clock(); 
       std::cout << "Testing Program for Transcoding from H.264 to VVC" << std::endl; 
  H264_VVC(); 
  t = clock() - t; 
  break; 
  case 3: 
  t = clock(); 
       std::cout << "Testing Program for Transcoding from H.264 to EVC" << std::endl; 
  H264_EVC(); 
  t = clock() - t; 
  break; 
  case 4: 
  t = clock(); 
              std::cout << "Testing Program for Transcoding from HEVC to H.264" << std::endl; 
  HEVC_H264(); 
  t = clock() - t; 
  break; 
  case 5: 
  t = clock(); 
                std::cout << "Testing Program for Transcoding from HEVC to VVC" << std::endl; 
  HEVC_VVC(); 
  t = clock() - t; 
  break; 
  case 6: 
  t = clock(); 
        std::cout << "Testing Program for Transcoding from HEVC to EVC" << std::endl; 
  HEVC_EVC(); 
  t = clock() - t; 
  break; 
  case 7: 
  t = clock(); 
       std::cout << "Testing Program for Transcoding from VVC to H.264" << std::endl; 
  VVC_H264(); 
  t = clock() - t; 
  break; 
  case 8: 
  t = clock(); 
        std::cout << "Testing Program for Transcoding from VVC to HEVC" << std::endl; 
  VVC_HEVC(); 
  t = clock() - t; 
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  break; 
  case 9: 
  t = clock(); 
         std::cout << "Testing Program for Transcoding from VVC to EVC" << std::endl; 
  VVC_EVC(); 
  t = clock() - t; 
  break; 
  case 10: 
  t = clock(); 
       std::cout << "Testing Program for Transcoding from EVC to H.264" << std::endl; 
  EVC_H264(); 
  t = clock() - t; 
  break; 
  case 11: 
  t = clock(); 
                std::cout << "Testing Program for Transcoding from EVC to HEVC" << std::endl; 
  EVC_HEVC(); 
  t = clock() - t; 
  break; 
  case 12: 
  t = clock(); 
         std::cout << "Testing Program for Transcoding from EVC to VVC" << std::endl; 
  EVC_VVC(); 
  t = clock() - t; 
  break; 
  } 
 /*Time taken to Transcode is calculated in each ‘case’  
 statement and printed on the console*/ 
 double time_taken = ((double)t) / CLOCKS_PER_SEC; 
 std::cout << "Time taken to finish transcoding is :" << time_taken << " sec" << std::
endl; 
} 
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Appendix - 2 

/*Heterogeneous and Homogeneous Transcoding for  
Bitrate and Frame-rate change for 
H.264, HEVC, VVC and EVC codecs*/ 

 
#include <iostream> 
#include <stdio.h> 
#include <time.h> 
#include <ctime> 
  
void H264_HEVC(void) { 
 /*H264 Encoder Commandline*/ 

std::string cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264_H264toHEVC.cfg > <path_to_output_file>output
1.txt"; 

 std::system(cmd.c_str()); 
 /*H264 Decoder Commandline*/ 
 cmd = "<path_to_executable>ldecod.exe > <path_to_output_file>output2.txt"; 
 std::system(cmd.c_str()); 
 /*HEVC Encoder Commandline*/ 

cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_H264toHEVC.cfg -
c <path_to_config_file>/akiyo_H264toHEVCnVVC.cfg > <path_to_output_file>output3.txt"; 

 std::system(cmd.c_str()); 
 /*HEVC Decoder Commandline*/ 

cmd = "<path_to_executable>TAppDecoder.exe -b str_HEVC.bin -o dec_HEVC.yuv -
d 8 > <path_to_output_file>output4.txt"; 

 std::system(cmd.c_str()); 
} 
  
void H264_VVC(void) { 
 /*H264 Encoder Commandline*/ 

std::string cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264_H264toHEVC.cfg > <path_to_output_file>output
1.txt"; 

 std::system(cmd.c_str()); 
 /*H264 Decoder Commandline*/ 
 cmd = "<path_to_executable>ldecod.exe > <path_to_output_file>output2.txt"; 
 std::system(cmd.c_str()); 
 /*VVC Encoder Commandline*/ 

cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_H264toVVC.cfg -
c <path_to_config_file>akiyo_H264toHEVCnVVC.cfg > <path_to_output_file>output3.txt"; 

 std::system(cmd.c_str()); 
 /*VVC Decoder Commandline*/ 

cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VCC.yuv -
d 8 > <path_to_output_file>output4.txt"; 

 std::system(cmd.c_str()); 
} 
  
void H264_EVC(void) { 
 /*H264 Encoder Commandline*/ 

std::string cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264_H264toHEVC.cfg > <path_to_output_file>output
1.txt"; 

 std::system(cmd.c_str()); 
 /*H264 Decoder Commandline*/ 
 cmd = "<path_to_executable>ldecod.exe > <path_to_output_file>output2.txt"; 
 std::system(cmd.c_str()); 
 /*EVC Encoder Commandline*/ 
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cmd = "<path_to_executable>evca_encoder.exe -i <path_to_input_file>test_dec.yuv -
q 10 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -o str_EVC.bin --
config <path_to_config_file>encoder_randomaccess_EVC_H264toEVC.cfg > <path_to_output_
file>output3.txt"; 

 std::system(cmd.c_str()); 
 /*EVC Decoder Commandline*/ 

cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -
o dec_EVC.yuv > <path_to_output_file>output4.txt"; 

 std::system(cmd.c_str()); 
} 
  
void HEVC_H264(void) { 
 /*HEVC Encoder Commandline*/ 

std::string cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_HEVCtoH264_VVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg > <path_to_output_file>output1.txt"; 

 std::system(cmd.c_str()); 
 /*HEVC Decoder Commandline*/ 

cmd = "<path_to_executable>TAppDecoder.exe -b <path_to_input_file>str_HEVC.bin -
o dec_HEVC.yuv -d 8 > <path_to_output_file>output2.txt"; 

 std::system(cmd.c_str()); 
 /*H.264 Encoder Commandline*/ 

cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264_HEVCtoH264.cfg > <path_to_output_file>output
3.txt"; 

 std::system(cmd.c_str()); 
 /*H.264 Decoder Commandline*/ 
 cmd = "<path_to_executable>ldecod.exe > <path_to_output_file>output4.txt"; 
 std::system(cmd.c_str()); 
} 
  
void HEVC_VVC(void) { 
 /*HEVC Encoder Commandline*/ 

std::string cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_HEVCtoH264_VVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg > <path_to_output_file>output1.txt"; 

 std::system(cmd.c_str()); 
 /*HEVC Decoder Commandline*/ 

cmd = "<path_to_executable>TAppDecoder.exe -b <path_to_input_file>str_HEVC.bin -
o dec_HEVC.yuv -d 8 > <path_to_output_file>output2.txt"; 

 std::system(cmd.c_str()); 
 /*VVC Encoder Commandline*/ 

cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_HEVCtoVVC.cfg -
c <path_to_config_file>akiyo_VVC_HEVCtoVVC.cfg > <path_to_output_file>output3.txt"; 

 std::system(cmd.c_str()); 
 /*VVC Decoder Commandline*/ 

cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VCC.yuv -
d 8 > <path_to_output_file>output4.txt"; 

 std::system(cmd.c_str()); 
} 
  
void HEVC_EVC(void) { 
 /*HEVC Encoder Commandline*/ 

std::string cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_HEVCtoH264_VVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg > <path_to_output_file>output1.txt"; 

 std::system(cmd.c_str()); 
 /*HEVC Decoder Commandline*/ 

cmd = "<path_to_executable>TAppDecoder.exe -b <path_to_input_file>str_HEVC.bin -
o dec_HEVC.yuv -d 8 > <path_to_output_file>output2.txt"; 
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 std::system(cmd.c_str()); 
 /*EVC Encoder Commandline*/ 

cmd = "<path_to_executable>evca_encoder.exe -i <path_to_input_file>dec_HEVC.yuv -
q 50 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -o str_EVC.bin --
config <path_to_config_file>encoder_randomaccess_EVC_HEVCtoEVC.cfg > <path_to_output_
file>output3.txt"; 

 std::system(cmd.c_str()); 
 /*EVC Decoder Commandline*/ 

cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -
o dec_EVC.yuv > <path_to_output_file>output4.txt"; 

 std::system(cmd.c_str()); 
  
} 
  
void VVC_H264(void) { 
 /*VVC Encoder Commandline*/ 

std::string cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_executable>encoder_randomaccess_vtm_RD_VVC_VVCtoH264_HEVC_EVC.cfg -
c C:/\Users/\shrey/\Desktop/\TranscodingBitrate/\Transcoder/\/x64/\Release/\cfg/\/aki
yo_qcif.cfg > C:/\Users/\shrey/\Desktop/\TranscodingBitrate/\Transcoder/\output1.txt"
; 

 std::system(cmd.c_str()); 
 /*VVC Decoder Commandline*/ 

cmd = "C:/\Users/\shrey/\Desktop/\TranscodingBitrate/\Transcoder/\/x64/\Release/\Deco
derApp.exe -b str_VVC.bin -o dec_VVC.yuv -
d 8 > C:/\Users/\shrey/\Desktop/\TranscodingBitrate/\Transcoder/\output2.txt"; 

 std::system(cmd.c_str()); 
 /*H.264 Encoder Commandline*/ 

cmd = "C:/\Users/\shrey/\Desktop/\TranscodingBitrate/\Transcoder/\/x64/\Release/\lenc
od.exe -
d C:/\Users/\shrey/\Desktop/\TranscodingBitrate/\Transcoder/\/x64/\Release/\cfg/encod
er_main_H264_VVCtoH264.cfg > C:/\Users/\shrey/\Desktop/\TranscodingBitrate/\Transcode
r/\output3.txt"; 

 std::system(cmd.c_str()); 
 /*H.264 Decoder Commandline*/ 

cmd = "C:/\Users/\shrey/\Desktop/\TranscodingBitrate/\Transcoder/\/x64/\Release/\ldec
od.exe > C:/\Users/\shrey/\Desktop/\TranscodingBitrate/\Transcoder/\output4.txt"; 

 std::system(cmd.c_str()); 
} 
  
void VVC_HEVC(void) { 
 /*VVC Encoder Commandline*/ 

std::string cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_VVCtoH264_HEVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg > <path_to_output_file>output1.txt"; 

 std::system(cmd.c_str()); 
 /*VVC Decoder Commandline*/ 

cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VVC.yuv -
d 8 > <path_to_output_file>output2.txt"; 

 std::system(cmd.c_str()); 
 /*HEVC Encoder Commandline*/ 

cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_VVCtoHEVC.cfg -
c <path_to_config_file>akiyo_HEVC_VVCtoHEVC.cfg > <path_to_output_file>output3.txt"; 

 std::system(cmd.c_str()); 
 /*HEVC Decoder Commandline*/ 

cmd = "<path_to_executable>TAppDecoder.exe -b str_HEVC.bin -o dec_HEVC.yuv -
d 8 > <path_to_output_file>output4.txt"; 

 std::system(cmd.c_str()); 
} 
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void VVC_EVC(void) { 
 /*VVC Encoder Commandline*/ 

std::string cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_VVCtoH264_HEVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg > <path_to_output_file>output1.txt"; 

 std::system(cmd.c_str()); 
 /*VVC Decoder Commandline*/ 

cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VVC.yuv -
d 8 > <path_to_output_file>output2.txt"; 

 std::system(cmd.c_str()); 
 /*EVC Encoder Commandline*/ 

cmd = "<path_to_executable>evca_encoder.exe -i <path_to_input_file>dec_VVC.yuv -
q 50 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -o str_EVC.bin --
config <path_to_config_file>encoder_randomaccess_EVC_VVCtoEVC.cfg > <path_to_output_f
ile>output3.txt"; 

 std::system(cmd.c_str()); 
 /*EVC Decoder Commandline*/ 

cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -
o dec_EVC.yuv > <path_to_output_file>output4.txt"; 

 std::system(cmd.c_str()); 
} 
  
void EVC_H264(void) { 
 /*EVC Encoder Commandline*/ 

std::string cmd = "<path_to_executable>evca_encoder.exe -
i <path_to_input_file>akiyo_qcif.yuv -q 10 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -
o str_EVC.bin --
config <path_to_config_file>encoder_randomaccess_EVC_H264toEVC.cfg <path_to_output_fi
le>output1.txt"; 

 std::system(cmd.c_str()); 
 /*EVC Decoder Commandline*/ 

cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -
o dec_EVC.yuv > <path_to_executable>output2.txt"; 

 std::system(cmd.c_str()); 
 /*H.264 Encoder Commandline*/ 

cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264_EVCtoH264.cfg > <path_to_output_file>output3
.txt"; 

 std::system(cmd.c_str()); 
 /*H.264 Decoder Commandline*/ 
 cmd = "<path_to_executable>ldecod.exe > <path_to_output_file>output4.txt"; 
 std::system(cmd.c_str()); 
} 
  
void EVC_HEVC(void) { 
 /*EVC Encoder Commandline*/ 

std::string cmd = "<path_to_executable>evca_encoder.exe -
i <path_to_input_file>akiyo_qcif.yuv -q 10 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -
o str_EVC.bin --
config <path_to_config_file>encoder_randomaccess_EVC_H264toEVC.cfg > <path_to_output_
file>output1.txt"; 

 std::system(cmd.c_str()); 
 /*EVC Decoder Commandline*/ 

cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -
o dec_EVC.yuv > <path_to_output_file>output2.txt"; 

 std::system(cmd.c_str()); 
 /*HEVC Encoder Commandline*/ 

cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC_EVCtoHEVC.cfg -
c <path_to_config_file>akiyo_EVC_EVCtoHEVC.cfg > <path_to_output_file>output3.txt"; 

 std::system(cmd.c_str()); 
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 /*HEVC Decoder Commandline*/ 
cmd = "<path_to_executable>TAppDecoder.exe -b str_HEVC.bin -o dec_HEVC.yuv -
d 8 > <path_to_output_file>output4.txt"; 

 std::system(cmd.c_str()); 
} 
  
void EVC_VVC(void) { 
 /*EVC Encoder Commandline*/ 

std::string cmd = "<path_to_executable>evca_encoder.exe -
i <path_to_input_file>akiyo_qcif.yuv -q 10 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -
o str_EVC.bin --
config <path_to_config_file>encoder_randomaccess_EVC_H264toEVC.cfg > <path_to_output_
file>output1.txt"; 

 std::system(cmd.c_str()); 
 /*EVC Decoder Commandline*/ 

cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -
o dec_EVC.yuv > <path_to_output_file>output2.txt"; 

 std::system(cmd.c_str()); 
 /*VVC Encoder Commandline:*/ 

cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_EVCtoVVC.cfg -
c <path_to_config_file>akiyo_EVC_EVCtoVVC.cfg > <path_to_output_file>output3.txt"; 

 std::system(cmd.c_str()); 
 /*VVC Decoder Commandline*/ 

cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VVC.yuv -
d 8 > <path_to_output_file>output4.txt"; 

 std::system(cmd.c_str()); 
} 
  
void H264_H264(void) { 
 /*H264 Encoder Commandline*/ 

std::string cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264.cfg > <path_to_output_file>output1.txt"; 

 std::system(cmd.c_str()); 
 /*H264 Decoder Commandline*/ 
 cmd = "<path_to_executable>ldecod.exe > <path_to_executable>output2.txt"; 
 std::system(cmd.c_str()); 
 /*H.264 Encoder Commandline*/ 

cmd = "<path_to_executable>lencod.exe -
d <path_to_config_file>encoder_main_H264toH264.cfg > <path_to_output_file>output3.txt
"; 

 std::system(cmd.c_str()); 
 /*H.264 Decoder Commandline*/ 

cmd = "<path_to_executable>ldecod.exe -
o test_dec1.yuv > <path_to_output_file>output4.txt"; 

 std::system(cmd.c_str()); 
} 
  
void HEVC_HEVC(void) { 
 /*HEVC Encoder Commandline*/ 

std::string cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg > <path_to_output_file>output1.txt"; 

 std::system(cmd.c_str()); 
 /*HEVC Decoder Commandline*/ 

cmd = "<path_to_executable>Decoder.exe -b <path_to_input_file>str_HEVC.bin -
o dec_HEVC.yuv -d 8 > <path_to_output_file>output2.txt"; 

 std::system(cmd.c_str()); 
 /*HEVC Encoder Commandline*/ 
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cmd = "<path_to_executable>TAppEncoder.exe -
c <path_to_config_file>encoder_randomaccess_main_HEVCtoHEVC.cfg -
c <path_to_config_file>akiyo_HEVCtoHEVC.cfg > <path_to_output_file>output3.txt"; 

 std::system(cmd.c_str()); 
 /*HEVC Decoder Commandline*/ 

cmd = "<path_to_executable>Decoder.exe -b <path_to_input_file>str_HEVC1.bin -
o dec_HEVC1.yuv -d 8 > <path_to_output_file>output4.txt"; 

 std::system(cmd.c_str()); 
} 
  
void VVC_VVC(void) { 
 /*VVC Encoder Commandline*/ 

std::string cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVC_VVCtoH264_HEVC_EVC.cfg -
c <path_to_config_file>akiyo_qcif.cfg > <path_to_output_file>output1.txt"; 

 std::system(cmd.c_str()); 
 /*VVC Decoder Commandline*/ 

cmd = "<path_to_executable>DecoderApp.exe -b str_VVC.bin -o dec_VVC.yuv -
d 8 > <path_to_output_file>output2.txt"; 

 std::system(cmd.c_str()); 
 /*VVC Encoder Commandline:*/ 

cmd = "<path_to_executable>EncoderApp.exe -
c <path_to_config_file>encoder_randomaccess_vtm_RD_VVCtoVVC.cfg -
c <path_to_config_file>akiyo_VVCtoVVC.cfg > <path_to_output_file>output3.txt"; 

 std::system(cmd.c_str()); 
 /*VVC Decoder Commandline*/ 
 cmd = "<path_to_executable>DecoderApp.exe -b str_VVC1.bin -o dec_VVC1.yuv -
d 8 > <path_to_output_file>output4.txt"; 
 std::system(cmd.c_str()); 
} 
  
void EVC_EVC(void) { 
 /*EVC Encoder Commandline*/ 

std::string cmd = "<path_to_executable>evca_encoder.exe -
i <path_to_executable>akiyo_qcif.yuv -q 10 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -
o str_EVC.bin --
config <path_to_executable>encoder_randomaccess_EVC.cfg > <path_to_output_file>output
1.txt"; 

 std::system(cmd.c_str()); 
 /*EVC Decoder Commandline*/ 

cmd = "<path_to_executable>evca_decoder.exe -i str_EVC.bin -
o dec_EVC.yuv > <path_to_output_file>output2.txt"; 

 std::system(cmd.c_str()); 
 /*EVC Encoder Commandline*/ 

cmd = "<path_to_executable>evca_encoder.exe -i <path_to_input_file>dec_EVC.yuv -
q 50 -w 176 -h 144 -p 16 -f 300 -z 20 -d 8 -o str_EVC1.bin --
config <path_to_config_file>encoder_randomaccess_EVCtoEVC.cfg > <path_to_output_file>
output3.txt"; 

 std::system(cmd.c_str()); 
 /*EVC Decoder Commandline*/ 

cmd = "<path_to_executable>evca_decoder.exe -i str_EVC1.bin -
o dec_EVC1.yuv > <path_to_output_file>output4.txt"; 

 std::system(cmd.c_str()); 
} 
  
int main(int argc, const int* argv[]) 
{ 
 clock_t t; 
 std::cout << "Available options:" << std::endl; 
 std::cout << "1. Heterogeneous Bitrate change" << std::endl; 
 std::cout << "2. Homogeneous Bitrate change" << std::endl; 
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 std::cout << "Type your options as 1 or 2: " << std::endl; 
 int choice; 
 int opt; 
 std::cin >> choice; 
 if (choice == 1) 
 { 
 
 std::cout << "1. Transcoding from H.264 to HEVC for bitrate change" << std::endl; 
 
 std::cout << "2. Transcoding from H.264 to VVC for bitrate change" << std::endl; 
 
 std::cout << "3. Transcoding from H.264 to EVC for bitrate change" << std::endl; 
 
 std::cout << "4. Transcoding from HEVC to H.264 for bitrate change" << std::endl; 
 
 std::cout << "5. Transcoding from HEVC to VVC for bitrate change" << std::endl; 
 
 std::cout << "6. Transcoding from HEVC to EVC for bitrate change" << std::endl; 
 
 std::cout << "7. Transcoding from VVC to H.264 for bitrate change" << std::endl; 
 
 std::cout << "8. Transcoding from VVC to HEVC for bitrate change" << std::endl; 
 
 std::cout << "9. Transcoding from VVC to EVC for bitrate change" << std::endl; 
 
 std::cout << "10. Transcoding from EVC to H.264 for bitrate change" << std::endl; 
 
 std::cout << "11. Transcoding from EVC to HEVC for bitrate change" << std::endl; 
 
 std::cout << "12. Transcoding from EVC to VVC for bitrate change" << std::endl; 
  std::cout << "Type your options(1-12):" << std::endl; 
  std::cin >> opt; 
 } 
 else if (choice == 2) 
 { 
 
 std::cout << "13. Transcoding from H.264 to H.264 for bitrate change " << std::endl; 
 
 std::cout << "14. Transcoding from HEVC to HEVC for bitrate change" << std::endl; 
 
 std::cout << "15. Transcoding from VVC to VVC for bitrate change" << std::endl; 
 
 std::cout << "16. Transcoding from EVC to EVC for bitrate change" << std::endl; 
  std::cout << "Type your options(13-16):" << std::endl; 
  std::cin >> opt; 
 } 
 else 
 { 
  std::cout << "Check your option!!! " << std::endl; 
 } 
  switch (opt) { 
 case 1: 
  t = clock(); 

 std::cout << "Testing Program for Transcoding from H.264 to HEVC for bitrate
  change" << std::endl; 

  H264_HEVC(); 
  t = clock() - t; 
  break; 
  
 case 2: 
  t = clock(); 
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std::cout << "Testing Program for Transcoding from H.264 to VVC for bitrate 
change" << std::endl; 

  H264_VVC(); 
  t = clock() - t; 
  break; 
  
 case 3: 
  t = clock(); 

std::cout << "Testing Program for Transcoding from H.264 to EVC for bitrate 
change" << std::endl; 

  H264_EVC(); 
  t = clock() - t; 
  break; 
  
 case 4: 
  t = clock(); 

 std::cout << "Testing Program for Transcoding from HEVC to H.264 for bitrate
  change" << std::endl; 

  HEVC_H264(); 
  t = clock() - t; 
  break; 
  
 case 5: 
  t = clock(); 

std::cout << "Testing Program for Transcoding from HEVC to VVC for bitrate c
hange" << std::endl; 

  HEVC_VVC(); 
  t = clock() - t; 
  break; 
  
 case 6: 
  t = clock(); 

std::cout << "Testing Program for Transcoding from HEVC to EVC for bitrate c
hange" << std::endl; 

  HEVC_EVC(); 
  t = clock() - t; 
  break; 
  
 case 7: 
  t = clock(); 

std::cout << "Testing Program for Transcoding from VVC to H.264 for bitrate 
change" << std::endl; 

  VVC_H264(); 
  t = clock() - t; 
  break; 
  
 case 8: 
  t = clock(); 

std::cout << "Testing Program for Transcoding from VVC to HEVC for bitrate c
hange" << std::endl; 

  VVC_HEVC(); 
  t = clock() - t; 
  break; 
  
 case 9: 
  t = clock(); 

std::cout << "Testing Program for Transcoding from VVC to EVC for bitrate ch
ange" << std::endl; 

  VVC_EVC(); 
  t = clock() - t; 
  break; 
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 case 10: 
  t = clock(); 

std::cout << "Testing Program for Transcoding from EVC to H.264 for bitrate 
change" << std::endl; 

  EVC_H264(); 
  t = clock() - t; 
  break; 
  
 case 11: 
  t = clock(); 

std::cout << "Testing Program for Transcoding from EVC to HEVC for bitrate c
hange" << std::endl; 

  EVC_HEVC(); 
  t = clock() - t; 
  break; 
  
 case 12: 
  t = clock(); 

std::cout << "Testing Program for Transcoding from EVC to VVC for bitrate ch
ange" << std::endl; 

  EVC_VVC(); 
  t = clock() - t; 
  break; 
  
 case 13: 
  t = clock(); 

std::cout << "Testing Program for Transcoding from H.264 to H.264 for bitrat
e change:" << std::endl; 

  H264_H264(); 
  t = clock() - t; 
  break; 
  
 case 14: 
  t = clock(); 

std::cout << "Testing Program for Transcoding from HEVC to HEVC for bitrate 
change:" << std::endl; 

  HEVC_HEVC(); 
  t = clock() - t; 
  break; 
  
 case 15: 
  t = clock();  

std::count << "Testing Program for Transcoding from VVC to VVC for bitrate 
change: " << std::endl; 

  VVC_VVC(); 
  t = clock() - t; 
  break; 
  
 case 16: 
  t = clock(); 

std::cout << "Testing Program for Transcoding from EVC to EVC for bitrate 
change:" << std::endl; 

  EVC_EVC(); 
  t = clock() - t; 
  break; 
 } 
 double time_taken = ((double)t) / CLOCKS_PER_SEC; 
 std::cout << "Time taken to finish transcoding is :" << time_taken << " sec" << std::
endl; 
} 


