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                                                            ABSTRACT 

 DERIVATION OF GENERALIZED LORENZ SYSTEMS TO STUDY THE ONSET   

                                       OF CHAOS   IN   HIGH   DIMENSIONS 

 

                                                   Publication No. ______ 

                                      

                                                   DIPANJAN ROY, M.S. 

                        

                                      The University of Texas at Arlington, 2006 

 

   Supervising Professor:  Dr.Z.E.Musielak 

This thesis provides a new method to derive high dimensional generalized 

Lorenz systems. A Lorenz system is a celebrated nonlinear dynamical dissipative 

system which was originally derived by Lorenz to study chaos in weather patterns. The 

classical two dimensional and dissipative Rayleigh-Benard convection can be 

approximated by Lorenz model, which was originally derived by taking into account 

only the lowest three Fourier modes. Numerous attempts have been made to generalize 

this Lorenz model as the study of this high dimensional model will pave the way to 

better understand the onset of chaos in high dimensional systems of current interest in  
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various disciplines. In this thesis a new method to extend this Lorenz model to 

high dimension is developed and used to construct generalized Lorenz systems. These  

models are constructed by selecting vertical modes, horizontal modes and finally by 

both vertical and horizontal modes.  The principle based on which this construction is 

carried out is the conservation of energy in the dissipationless limit and the requirement 

that the models are bounded.  

Finally the routes to chaos of these constructed models have been studied in 

great detail and an overall comparison is provided. 
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                                              CHAPTER 1 

                                                       INTRODUCTION 

                                    1.1 Historical Background 

Chaos is probably the third revolution of modern physics in the last century. Other two 

are General Relativity and Quantum Mechanics. Low dimensional chaos is well 

explored territory by the beginning of this century and it’s application ranges from 

natural and social sciences to engineering, medicine and others. Over thousands of years 

Man observed many regularities in nature, such as the change in seasons, and based on 

this observations they thought that these regularities could be predicted in a well 

defined manner and eventually be controlled. One of the great mathematicians Pierre 

Laplace who believed that if one knew the mutual positions and forces acting on all 

objects in Nature, one could predict all events past and future. The idea of full 

predictability continued until the work of French mathematician Henry Poincare (1885). 

He was interested in the three body problem was first to publish the observation that the 

future prediction of three gravitating bodies is very sensitive to the choice of initial 

conditions, and that under some circumstances the motion would be completely 

unpredictable. Unfortunately the importance of this work was not recognized for almost 

half a century. Around 1960 when computational facilities were introduced in science 

the importance of these old ideas started emerging at a remarkable speed. John Von 

Neumann (1952) studied how input conditions affected complex dynamical systems. He  
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found that a system could have points of instability. Theses are the points where small 

changes in the input produce enormous changes in the dynamics of the system. As a 

result chaotic systems show complicated behavior in space and time even if they are 

described by a simple physical laws and the input is primarily deterministic.  

Edward Lorenz (1963) a meteorologist at MIT, studied the problem of weather 

prediction. He derived a set of simple nonlinear ordinary differential equations from the 

Saltzman (1962) model describing idealized thermal convection in the Earth’s 

atmosphere. He showed that for a certain range of physical parameters this simple 

model exhibits very complicated behavior and the system is extremely sensitive to 

initial conditions. Therefore, the prediction of the future of the system is impossible. 

Lorenz pointed out that if the future prediction in a simple atmospheric convection 

model is impossible, then long term prediction of a complicated system such as 

weather, would be impossible. 

1.1.1 Lorenz 3D model 

The physical process that is described by Lorenz 3D model is a 2-D thermal 

convection, The model for convection considered by Lorenz can be represented 

schematically as one convective “roll” moving between two plates (see Figure 1.1). The 

driving force is the temperature difference ( T∆ ) between the two plates in the fluid. No 

motion is observed at low value T∆ . The transfer of heat necessary to maintain the 

temperature difference is achieved solely by conduction of heat. For values of T∆  

greater than a critical value the necessary heat transfer cannot be achieved by 
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 conduction alone. Therefore convective motion sets in, and this greatly increases the 

heat transfer. In addition to the temperature difference, the transition from a state of no 

motion to convective motion depends on the relative magnitude of the buoyancy and 

viscous forces in the fluid. One calls such a qualitative change in the flow a bifurcation.    

Hopf bifurcation is a type of bifurcation which generates periodic solutions. It is 

customary to relate this transition from conduction to convective motion to the Rayleigh 

number, which is a dimensionless relationship between temperature difference in the 

fluid and its physical properties. This need that the state of convection is known if the 

Rayleigh number is specified.  The figure below gives a schematic idea of flow as 

circular convection cells. 

                     

  

 

                                                

 

 

 

 

 

 

                                             1.1 Free and forced convection 
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                              1.2  Cellular convection 

The first systematic investigation of convection in shallow fluid as shown in the figure 

was carried out by Benard. The main result of Benard’s experiment is the discovery of 

the steady-state, regular pattern of hexagonal convection cells. However the mechanism 

of selection of particular geometry is still in dispute, I would like to discuss about it in 

later chapters when I discuss in more detail about the selection of Fourier modes. The 

model in which the temperature difference is applied in the vertical direction is now 

called Rayleigh-Benard convection. The major difference between Benard and 

Rayleigh-Benard convection is that the latter is not affected by surface tension 

gradients. Rayleigh found trigonometric expressions describing the fluid motion and 

temperature departure from a state of no convection for a linearized form of the 

convection equations. He used this expression to investigate the onset of convection and 

found that it occurred when a certain quantity exceeds its critical value. This quantity is 

now known as the Rayleigh number. Fluid motion occurs when the Rayleigh  
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number, 3 / kR g H Tβ ν= ∆ , exceeds the critical Rayleigh number, 4 3 2(1 ) /cR a aπ= + . 

This dimensionless ratio is a parameter used to characterize the driving force T∆  in the 

fluid. The Rayleigh number ratio / cr R R= .Where cR depends on aspect ratio ( / )a L H= , 

where g is gravity, β  is the co-efficient of volume expansion, and /ν µ ρ=  and 

/ pcκ α ρ= are the kinematic viscosity and the co-efficient of thermal expansion 

respectively. For the Rayleigh-Benard convection problem, one must solve for the 

pressure distribution and velocity components as a function of space and time. This 

requires the solution of the continuity and Navier-Stokes equation describing a non –

Newtonian, compressible and viscous flow. A Newtonian fluid has a linear stress-strain 

relationship. Compressible flow may have variation in density. Viscosity refers to the 

resistance to flow that a fluid has when subjected to shear stress. At this stage I would 

like to introduce the mathematical approach of approximating the nonlinear terms of the 

Navier-Stokes equations with Fourier series expansion which was first developed in 

1950. Fourier series expansion is a technique in which a function is approximated in 

terms of a series of sines and cosines. In chapter II, I would like to show how to apply 

this method to original Rayleigh-Benard convection to derive Lorenz 3D model. In an 

effort to account for nonlinear effects in the governing equations Malkus and Veronis 

(1958) treated the nonlinear terms in the governing equations as perturbations of the 

linear convection problem. They sought steady state solutions of these nonlinear 

equations by expressing velocity, temperature and Rayleigh  
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number in the form of a power series. They concluded that the initial heat transport due 

to convection depends linearly on Rayleigh number and that the heat transport at higher 

Rayleigh number departs slightly from this linear dependence. Kuo (1961) expressed 

the nonlinear terms as Fourier series and the dependent variables by an infinite series of 

orthogonal functions. The amplitude of these functions are given as a parameter that is 

dependent on the Rayleigh number. For free-free boundary conditions (e.g. neglecting 

flow and heat transfer effects at the boundary walls) the function of all modes are sines 

and cosines. Thus the dependent variables can be expressed by Fourier series. Kuo’s 

work provided a quantitative theory for the convective heat transfer as a function of 

temperature difference of laminar flow. Barry Saltzman(1962) generalized the ideas of 

kuo to time dependent finite amplitude convection. He expanded the stream function 

and nonlinear temperature field in terms of double Fourier series and substituted the 

series into the governing fluid dynamics equations, obtaining an infinite system: In this 

approach, the stream function is a scalar function of position and describes a steady, 

incompressible 2D fluid flow. To reduce an infinite system to a finite one he considered 

only a specific set of time dependent functions. In this thesis at later chapters I would 

describe my method of selecting  such Fourier modes which evolve in time. They don’t 

have spatial dependence. Saltzman integrated the system numerically to obtain time 

dependent solutions. Saltzman’s  solutions show the evolution of convection from small 

perturbations to finite amplitude steady-state motions for a variable Rayleigh number. 

He studied this system for  
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Rayleigh number less than ten. Saltzman concluded that for larger Rayleigh 

numbers fluid motion is characterized by oscillatory, overstable cellular motions. (see 

Figure 1.3)  

 

 

                                 1.3   Circulation of rolls 

1.1.2 Lorenz nonlinear convection model 

Lorenz simplified Saltzman’s model to a system of three nonlinear ordinary 

differential equation by retaining only three modes in Fourier series expansion. These 

equations represent a highly truncated two dimensional description of Rayleigh –Benard 

convection. He immediately realized that for a certain parameter values the solutions to 

his system were greatly affected by small change in initial conditions.  

Lorenz’s system attracted little attention until the 1971 work by Ruelle,Takens 

and Newhouse (Ruelle,D., (1971)) who demonstrated that turbulence in fluids would 

appear under few bifurcations unlike the scenario predicted by Landau (L.D.Landau 

(1944)). The Ruelle, Takens and Newhouse route to turbulence is much shorter than the 

popular theory at that time (Landau), which suggested that the chaotic state was 

approached after an infinite number of Hopf bifurcations. Ruelle, Takens and  
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Newhouse showed that only three Hopf bifurcations are required for transitions from 

regular to apparent chaotic behavior. The Lorenz system received enormous interest at 

that time, since it was the first deterministic model of a physical system that followed 

the proposed route to turbulence. In the same year realizing the importance of the low 

dimensional model J.H.Curry(1978) one of the mathematician working with Lorenz at 

MIT followed Saltzman’s approach and extended the Lorenz system to 14 dimensions. 

He concluded that the gross features of the strange attractor in his system are similar to 

that observed in Lorenz system, however the unstable stationary solutions are replaced 

by tori in his system. 

Recently another 6D model extension of the original Lorenz model was carried 

out by Howard and Krishnamurthi (1986). They considered a shearing mode as well. 

Another way of extending the 6D Lorenz system was developed by Humi (2004) and he 

also showed that the routes  to chaos is through the period doubling bifurcation. 

Another way of constructing generalized Lorenz model was recently studied by Chen 

and Price (2006). Among the important work in this area Kennamer (1995) constructed 

4D, 5D and 6D model respectively. In none of the work reported above the principle of 

conservation of energy had been considered. The principle was introduced as a 

mathematical proof for the first time by Theiffault and Horton (1996). They showed that 

one of the modes in 6D Howard model becomes unbounded in time, that is because the 

system do not satisfy the principal of conservation of total energy in the dissipationless 

limit. In this thesis I combine their principle and Saltzman’s  criterion  of selection of  
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Fourier modes to derive generalized Lorenz systems and also study their routes to 

chaos. I discovered in that process that in principle there are three methods to construct 

generalized Lorenz models (1) Method of vertical mode truncation, (2) Method of 

horizontal mode truncation, (3) Method of both horizontal and vertical mode truncation. 

The previous work described above has concerned 2D Rayleigh-Benard 

convection. However, there are also many published papers dealing with 3D Rayleigh-

Benard convection; full reference to theoretical and experimental papers are given by 

Tong and Gluhovsky (2003) who claimed that with exception of their model and that 

described by Thieffault (1996) all other models cited by them did not conserve energy 

in the dissipationless limit. Another model that has not been discussed by Tong is a 9D 

model of 3D convection developed by Reiterer (1998), who showed that period 

doubling is the route to chaos in his model. Because of some relevance of this model to 

my results I will discuss this model in my thesis in later chapters.  

1.2 Organization and goals of the thesis 

The goals of the thesis are (1) derive generalized Lorenz systems by identifying 

energy conserving Fourier modes in Saltzman’s truncation of the original nonlinear 

equations describing convection, (2) investigate the routes to chaos in these systems and 

explain the apparent inconsistency regarding the routes to chaos in previously 

developed generalized Lorenz systems, (3)  show that the system requires higher order 

modes in order to get coupled with the original Lorenz modes for Method1 but on the  
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other hand it can get easily coupled to the original Lorenz modes for Method 2, 

(4) explain quantitatively the difference between these two coupling, (5) demonstrate 

how to develop high dimensional generalized Lorenz model using this procedure, (6)  

show that all these systems has bounded solutions.  

In Chapter II a generalized Lorenz model is constructed using Method 1and its 

routes to chaos are investigated and compared with the original Lorenz 3D model. The 

numerical analysis is based on standard methods used in dynamical systems study such 

as Fourier power spectra, Lyapunov spectra and phase portraits. 

In Chapter III a generalized Lorenz model is derived based on our Method 2 and 

a short proof is introduced to show how the modes follow a certain rule in order to get 

coupled with the original Lorenz modes. The routes to chaos are investigated 

numerically and compared with the routes to chaos obtained in the previous model. 

In Chapter IV the final method to derive a generalized Lorenz model is 

introduced and the energy conserving modes are used to derive yet another generalized 

Lorenz model and boundedness of solutions is studied. The routes to chaos are 

investigated using the methods already developed in chapter I and chapter II. This 

chapter also gives a recipe to add higher order modes to the original model derived by 

using method III and to construct high dimensional systems. 

In Chapter V a full summary of the work is provided including recommended 

areas for further research and general remarks. The appendices consist of FORTRAN 

and MATLAB programs that calculate the following: integration of differential    
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equations, Lyapunov exponents and Fourier  power spectral plot. Also it 

contains the mathematical proof for selection of energy conserving modes and 

boundedness criterion.  
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                                                    CHAPTER 2 

                                 GENERALIZED LORENZ MODEL I 

                                       2.1 Vertical mode truncation 

A two dimensional and dissipative Rayleigh-Benard convection can be 

approximated using Lorenz model (1963), which was originally derived by taking into 

account only three Fourier modes. Numerous attempts have been made to generalize 

this 3D model to higher dimensions and several different methods of selecting Fourier 

modes have been proposed. In this chapter generalized Lorenz models with dimension 

ranging from four to nine are constructed by selecting vertical modes which conserve 

energy in the dissipationless limit and lead to the systems that have bounded solutions. 

An interesting result is that lowest order generalized Lorenz model, which satisfies this 

criteria is a 9D model and that its routes to chaos are the same as that observed in the 

3D Lorenz model. Generalized Lorenz system constructed in this chapter are based 

exclusively on our first method which is stated in the first chapter. The selection of the 

vertical modes has been done by applying two basic criteria, namely, the conservation 

of energy in the dissipationless limit and the existence of bounded solutions. I 

investigate the routes to chaos in these systems and explain the apparent inconsistency 

in the routes to chaos in the previously developed Lorenz models. My choice of the 

vertical mode truncation to select the higher order Fourier modes can be physically 

justified by the fact that the fluid motions in thermal convection are primarily in the  
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vertical direction and, therefore vertical modes should play dominant role in this 

description. I will explore generalized Lorenz models constructed using method 2 and 3 

in Chapter III and IV respectively.   

2.1.1 Derivation of general equations 

To describe the method of constructing generalized Lorenz systems, let me 

consider a 2D model of Rayleigh-Benard convection in a fluid that is treated under 

Boussinesq approximation and described by the following set of hydrodynamic 

equations: 

2 2

2 2

2 2

2 2

2 2

2 2

0,

(1/ ) ( ) 0,

(1/ ) ( ) 0,

( ) 0,

yx

x x x x x
x z

z z z z z
x z

x z

VV

x y

V V V V Vp
V V

t x z x x z

V V V V Vp
V V g T

t x z z x z

T T T T T
V V

t x z x z

ρ ν

ρ α ν

κ

∂∂
+ =

∂ ∂

∂ ∂ ∂ ∂ ∂∂
+ + + − + =

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂∂
+ + + − + + =

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
+ + − + =

∂ ∂ ∂ ∂ ∂

 

where xV  and zV  horizontal and vertical components of the fluid velocity, and 

the fluid physical parameters are density ρ , pressure p and temperature T. In addition 

‘g’ is gravity, α  is the co-efficient of thermal expansion,ν  is the kinematic viscosity 

and κ  is the co-efficient of thermal diffusivity.  

I assume that the fluid is confined between two horizontal surfaces located at 

0z =  and z h=  with 0 0( 0)T z T T= = + ∆  and 0( )T z h T= = , and that the temperature 
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 varies between surfaces 0 0( , , ) (1 / ) ( , , )T x z t T T z h x z tθ= + ∆ − + . Using the continuity 

equation (1.1), we introduce the stream function ψ  , which is defined by  xV
z

ψ∂
= −

∂
  

and   zV
x

ψ∂
=
∂

. To express the hydrodynamic equations in terms of θ  and ψ  , we 

differentiate equation (1.2) and (1.3) with respect to z and x, respectively and subtract 

former equation from the latter . This gives 

2 2 2 4( ) ( ) ( ) 0,g
t z x x z x

ψ ψ θ
ψ ψ ψ α ν ψ

∂ ∂ ∂ ∂ ∂ ∂
∇ − ∇ + ∇ − − ∇ =

∂ ∂ ∂ ∂ ∂ ∂
                 (1.5) 

Where 

4 4

4

4 4x z

∂ ∂
∇ = +

∂ ∂
. The energy equation (1.4) can also be expressed in  

terms  of   ψ  and θ  , and we obtain     

        

2

0( / ) 0,T h
t x z x x z

θ ψ ψ θ ψ θ
κ θ

∂ ∂ ∂ ∂ ∂ ∂
− ∆ − + − ∇ =

∂ ∂ ∂ ∂ ∂ ∂
                                       (1.6) 

I follow Saltzman (1962) and introduce the following dimensionless quantities:  

/x x h∗ = , /z z h∗ = , 2/t t hκ∗ = , /ψ ψ κ∗ = ,  3 /ghθ θα κν∗ = , / h∗∇ = ∇ .Then equation 

(1.5) and (1.6) can be written as : 

2 2 2 4( ) ( ) ( ) 0,
t z x x z x

ψ ψ θ
ψ ψ ψ σ σ ψ

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∂ ∂ ∂ ∂ ∂ ∂
∇ − ∇ + ∇ − − ∇ =

∂ ∂ ∂ ∂ ∂ ∂
 (1.7) 

and 

2 0,R
t x z x x z

θ ψ ψ θ ψ θ
κ θ

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∂ ∂ ∂ ∂ ∂ ∂
− − + − ∇ =

∂ ∂ ∂ ∂ ∂ ∂
                                       (1.8)      
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where /σ ν κ=  is the Prandtl number  and  3

0 /R gh Tα νκ= ∆  is the Rayleigh  number. 

I refer to these set of equations as Saltzman’s equations. According to Saltzman one 

may impose the following boundary conditions: 0ψ ∗ = , 2 0ψ∗ ∗∇ = and 0θ ∗ =  at both 

surfaces 0z = and z h= , and write the double Fourier expansions ψ ∗  and θ ∗    

( , , ) ( , , ) exp(2 (( / ) ( / 2 ) )
m n

x z t m n t ih m L x n h zψ ψ π
∞ ∞

∗ ∗ ∗ ∗ ∗ ∗

=−∞ =−∞

= +∑ ∑              (1.9)           

  ( , , ) ( , , ) exp(2 (( / ) ( / 2 ) )
m n

x z t m n t ih m L x n h zθ θ π
∞ ∞

∗ ∗ ∗ ∗ ∗ ∗

=−∞ =−∞

= +∑ ∑            (1.10) 

where L is the characteristic scale representing periodicity 2L  in the horizontal 

direction. Saltzman (1962) expressed  ψ  and  θ   in terms of their real and imaginary 

parts, 1 2( , ) ( , ) ( , )m n m n i m nψ ψ ψ= − and 1 2( , ) ( , ) ( , )m n m n i m nθ θ θ= − , which do not 

show explicit time-dependence, substituted the above solutions to equations (1.7) and 

(1.8). The general result was a set of first order differential equations for the Fourier 

coefficients 1ψ , 2ψ , 1θ  and 2θ  . However, when the theory is applied to describe the 

cellular convective motions originating from small perturbations, Saltzman fixed the 

vertical nodal surfaces of the convection cell by excluding all 2 ( , )m nψ and 

1( , )m nθ modes .This Saltzman rule is used by Lorenz in his derivation of a 3D system 

(1963) and I will also use the same rule in my construction of higher dimensional 

Lorenz models. In addition both Lorenz and Saltzman did not consider shear flows by 
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excluding the 1ψ modes with 0m = , so the same assumption would hold in my 

derivation.           

2.1.2 From 3D to 6D Lorenz model 

Lorenz[1]  selected  the following three Fourier modes: 1(1,1)ψ ,which describes 

the  circular  convection of roll, and 2 (1,1)θ  and 2 (0, 2)θ , which approximates the 

vertical and horizontal temperature differences in the convective roll., respectively. He 

introduced the new variables 1( ) (1,1)X t ψ= , 2( ) (1,1)Y t θ= , 2( ) (0,2)Z t θ=  and derived 

the following three ordinary nonlinear differential equations approximating nonlinear 

convection in time. 

           ( )
dX

Y X
d

σ
τ
= −                                                             (1.11)                                                           

           
dY

rX Y XZ
dτ

= − −                                                         (1.12)                               

            
dZ

XY bZ
dτ
= −                                                              (1.13) 

Where / cr R R= , 2 2(1 )a tτ π ∗= +  is the dimensionless time, /a h L= is the 

aspect ratio and 24 /(1 )b a= + . The modes selected by Lorenz while truncating the 

original nonlinear equations are such that the 3D dynamical system conserves energy in 

the dissipation less limit (J.H.Curry(1978)). In addition the solution of the Lorenz 

equations are bounded.  
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                    To extend the 3D Lorenz model to higher dimensions, one must select 

higher order Fourier modes. As already discussed there are three different ways of 

selecting higher order modes. In this chapter I construct a high dimensional extension 

based on method 1, which is basically vertical mode truncation, which means we fix the 

value of  m by taking m = 1 and add the vertical modes in both the stream function and 

temperature variations (see equation 1.9 and 1.10) . Following this procedure we select  

the 1 1(1,2)X ψ= , 1 2  (1, 2)Y = Θ  and 1 2 (0, 4)Z = Θ  the  fact  that the later mode has to be 

considered along with the two former modes has been demonstrated by Thieffault and 

Horton(1996) based on the energy conserving principle. Hence, I introduce 1 1,X Y , 1Z   

and obtain the following set of equations:    

 
dX

X Y
d

σ σ
τ
= − +                                                                    (1.14)          

dY
XZ rX Y

dτ
= − + −                                                                 (1.15)                  

dZ
XY bZ

dτ
= −                                                                          (1.16)   

1
1 1 1

1

dX
c X Y

d c

σ
σ

τ
= − +                                                                (1.17)      

1
1 1 1 1 12

dY
rX c Y X Z

dτ
= − −                                                           (1.18)     

1
1 1 12 4

dZ
X Y bZ

dτ
= −                                                                   (1.19)  
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Since the original Lorenz variables ( X ,Y , Z ) are decoupled from the new variables 

( 1X , 1Y , 1Z ) , the obtained set of equations therefore do not describe a 6D system but 

instead two independent systems. One may attempt to construct a 5D system by taking 

2 (0, 2) 0θ =  and a 4D model with 2 2(1,2) (0,2) 0θ θ= = , but in both cases the additional 

equations are not coupled to the original Lorenz equations. 

             

2.1.3 From 6D to 9D Lorenz model 

Since the model derived in the previous section do not form a new system 

therefore I keep adding modes to determine the lowest order generalized Lorenz model. 

Using the vertical mode truncations, we select the 2 1(1,3)X ψ= , 2 2 (1,3)Y θ= and 

2 2 (0,6)Z θ= modes and derive the following set of first order differential equations:  

dX
X Y

d
σ σ

τ
= − +                                                                   (1.20) 

2 2 12
dY

XZ rX Y ZX X Z
dτ

= − + − + −                                       (1.21) 

2 2

dZ
XY bZ X Y XY

dτ
= − − −                                                    (1.22) 

1
1 1 1

1

dX
c X Y

d c

σ
σ

τ
= − +                                                              (1.23) 

1
1 1 1 1 12

dY
X Z rX c Y

dτ
= − + −                                                       (1.24) 

1
2 2 1 1 12 2 2 4

dZ
XY YX X Y bZ

dτ
= + + −                                         (1.25) 
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2
2 2 2

2

dX
c X Y

d c

σ
σ

τ
= − +                                                             (1.26) 

2
2 2 2 1 2 22 3

dY
XZ rX c Y XZ X Z

dτ
= + − − −                                   (1.27) 

2
2 2 23 9

dZ
X Y bZ

dτ
= −                                                                 (1.28) 

It is seen that the derived 9D system the modes given by the variables 1X , 

2X , 1Y , 2Y , 1Z  and 2Z  are coupled to the original Lorenz modes X , Y  and Z  , which 

means this is a generalized Lorenz model. In order to determine whether this is lowest 

order generalized Lorenz model, I must now consider 8D and 7D systems which are the 

subset of this 9D model. To obtain the 8D system, I assume that 2 0Z = and use it to 

reduce the above set of equations. The last term in equation (1.27) as a result becomes 

zero and in addition (1.28) yields the condition 2 2 0X Y = , which clearly indicates 8D is 

too limited to represent a new generalized system. Even more severe restriction occur 

when 7D system is derived by taking into account 2 0Y = . Since neither 8D or7D forms 

a new system, I conclude that the 9D model described by (1.20) to (1.28) is indeed the 

lowest order generalized Lorenz system that can be obtained by the method of vertical 

mode truncation. Now it remains to be checked whether my new 9D model conserves 

energy in the dissipation less limit and has bounded solutions.   
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2.1.4 Validity criteria 

There are two validity criteria that our new 9D system must satisfy in order to 

be considered a physically meaningful system. The  first criteria requires that the energy 

is conserved in the dissipation less limit; from now on when I  refer to the conservation 

of energy I would always mean it’s conservation in the dissipation less limit. The fact 

that some higher dimensional models of Rayleigh-Benard convection do not conserve 

energy in the dissipation less limit has already been recognized in literature (Theiffault 

(1996), Tong (2003)). There are many reasons for having energy conserving 

generalized Lorenz systems. Among these reasons let me explain a few: (1) the effects 

of non conservation of energy could be large and they are relevant to the energy flow in 

the dissipative regime, (2) the thermal flux in the steady-state is correctly described only 

by energy conserving systems, (3) energy conserving truncations represents the whole 

system more accurately and they reduce unphysical numerical instabilities. The second 

requirement for this system is to have bounded solutions; systems with unbounded 

solutions are treated as unphysical. This criterion has been used by many authors to 

validate their generalized Lorenz systems.  

According to Saltzman (1962), the dimensionless kinetic,K ∗ , and potential , 

U ∗ , can be expanded into spectral components as 

221
( , ) ( , )

2 m n

K m n m nδ ψ
∞ ∞

∗

=−∞ =−∞

= ∑ ∑                                                             (1.29)  

21
( , )

2 m n

U m n
R

σ ∞ ∞
∗

=−∞ =−∞

= − Θ∑ ∑                                                                     (1.30) 
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where  { }2 2 2 2 2( , ) (2 )m n a m nδ π π= + . 

I now apply these formulas to our 9D model to obtain  

2 2 2 2 2 2

1 2

1
[ (1,1) (1, 2) (1,3) ]

2
K X X Xδ δ δ∗ = + +                                             (1.31)                 

2 2 2 2 2 2

1 2 1 2

1
( )

2
U Y Y Y Z Z Z

R

σ∗ = − + + + + +                                                  (1.32)                  

where 2 2 2(1,1), (1, 2), (1,3)δ δ δ   are constants. To verify that the total energy 

E K U∗ ∗ ∗= +  , is conserved I write  equation (1.30) as follows: 

2 2 2

1 1 1 2 2 2 1 2 1 2

1 2

1 1
[ (1,1)( ) (1, 2)( ) (1,3)( )] ( )

dE
X Y c X Y c X Y Y Y Y Z Z Z

d c c R

σ
σ δ δ δ

τ

∗

= − − + − + − − + + + + +� � � � � �

            using equation (1.20), (1.23) and (1.26)  in the dissipation less limit 

When 0σ →  equation (1.33) becomes  

0
lim 0,

dE

dσ τ

∗

→
=                                                                                                  (1.33) 

which gives E K U∗ ∗ ∗= +   is constant. Hence the 9D system conserves energy 

in the dissipation less limit. To show that this 9D system has bounded solutions I 

introduce a quantity called Q (see Appendix A) defined as  

3 3
2 2

1 1

2
2 ( )i j

i j

Q K Y Z
n

∗ ∗

= =

= + + −∑ ∑                                                                (1.34) 

Note that all selected modes are included inQ , so if one of them diverges, then 

Qwould also diverge. To obtain the condition for bounded solutions, we take the time 

derivative of Q  and write  
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0[ min(2 , ) 4 ]
dQ

Q n
d

ν κ κ
τ

∗

≤ − +                                                                    (1.35) 

where 0n  is the number of Z modes. To have 0
dQ

dτ

∗

<  , one must have 

04 / min(2 , )Q nκ ν κ> , which is the condition for bounded solutions. This condition was 

checked numerically for the 9D system and found to be always satisfied. Hence the 

conclusion the model has bounded solutions. 

 

2.1.5 Comparison with previous works 

The most important previous work has already been described in the 

introduction in Chapter I and as well as in section 1 of chapter II. Here, I make a 

comparison between my results and those obtained by Kennamer (1995), Humi (2004), 

Curry (1978) and Reiterer (1998). The main reason for this selective comparison is that 

only generalized Lorenz systems constructed by these authors are directly relevant to 

our models. Since in all these cases higher-order modes were added to the original three 

modes picked up by Lorenz, in the following, I only list those extra modes. 

An interesting result has been found by Kennamer (1995) who selected 

the 1(1,3)ψ , 2 (1,3)θ and 2 (0, 4)θ modes and obtained an extension of Lorenz model in six 

dimensions. He showed that his three extra modes are coupled to the original Lorenz 

modes.(see section 2.4 ) and that the solutions to these  equations were bounded. The 

result presented in Appendix B also shows that this model does conserves energy. 

Comparison of this 6D model with my uncoupled 6D model given by equations (11) – 
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(16) clearly shows that Kennamer omitted the modes 1(1,2)ψ  and 2 (1,2)θ without 

giving any physical justifications. In addition his selection of 2 (0, 4)θ seems to be 

inconsistent with a general principle of selecting modes as formulated by Theiffault and 

Horton (1996). 

Another 6D Lorenz model was constructed by Humi [10] who selected 1(1,2)ψ , 

1(2,1)ψ and 2 (1,2)θ modes and showed that the solutions were bounded. Comparison 

with our uncoupled 6D system shows that the 2 (0, 4)θ mode in my model was replaced 

by the 1(2,1)ψ mode. This replacement is not consistent with Theiffault and Horton’s   

principle and therefore it does not conserve total energy. The latter is easy to 

demonstrate by using the results given in section (2.1.3). 

 A generalized model developed by Curry (1978) has 14 dimensions and it was 

constructed by using six 1ψ  modes and six 2θ  modes with 1 3m≤ ≤  and  1 4n≤ ≤  , in 

addition the  2 (0, 2)θ and 2 (0,6)θ modes. Curry demonstrated that his 14D model had 

bounded solutions, however he did not check the conservation of energy. The results of 

section (2.1.3) can be used to show that the system does not conserves energy. Note that 

the 6D model constructed by Kennamer [6] is a subset of this 14D model but Humi’s 

6D model or the 9D model are the subset of Curry’s general system. 

Finally I want to compare the 9D Lorenz system derived in section 2.1.2 to that 

developed by Reiterer et al. (1998). To describe 3D square convection cells , the authors 

have expanded the x, y, z  components of  a vector potential A , with  V A= ∇×
�� ��

, and  
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the temperature variations θ  into triple Fourier series, with , ,l m n  representing the 

modes in the y, x  and z direction(see equations 1.9 and 1.10) , respectively. These 

Fourier expansions have been truncated up to second order and a 9D Lorenz system was 

derived. The authors strongly emphasized that they used a mathematically consistent 

approach to select the modes and that all second-order modes have been included in the 

derivation. The model is presented in this chapter section 2.5, where we also show that  

This mathematically consistent approach leads to a 9D system that violates the 

principle of conservation of energy. 

 

2.1.6 Routes to chaos 

After demonstrating that my 9D system conserves energy in the dissipation less 

limit and has bounded solutions, I may now investigate the onset of chaos in this system 

and determine the routes to chaos. To achieve this, I solved numerically the set of 

equations (1.17) through (1.25) by fixing parameters 8 / 3b =  and 10σ = , and varying 

the control parameter over the range 0 50r≤ ≤ . The main purpose of this calculation 

was to determine the value of r for which fully developed chaos is observed and to 

determine route that lead to the chaotic regime. The obtained results are presented by 

using phase portraits, power spectra and Lyapunov spectra. 
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                 2.1   Phase space portrait of x, y, z at r =15.42 

 

                  

                     2.2   Phase space portrait of x, y, z at r =24.54 
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                        2.3   Phase space portrait of x, y, z at r =35.56                    

                         

                         

                     

                         2.4   Phase space portrait of x, y, z at r =39.48 
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                         2.5   Phase space plot of Lorenz 9D at r =18.42 

  

                                              

 

                     2.6   Phase space plot of Lorenz 9D at r =24.54 
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                     2.7   Phase space plot of Lorenz 9D at r =34.54 

 

 

       

 

                            

                  2.8   Phase space plot of Lorenz 9D at r =42.48     
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The phase portrait for the set of variables ( , ,X Y Z ) and ( 1 1 1, ,X Y Z ) are given in Figures 

2.1 through 2.8.The result presented in these figures show time evolution of the system 

from given initial conditions to a periodic or strange attractor. The panels of Figs 1 and 

3 clearly show periodic behavior of the system for the values of r ranging from 24 to 

34. Periodic behavior is also seen in the upper panel of Figs 2 and 4, where phase 

portraits for  40r =  are presented. Prominent chaotic behavior of the system is seen in 

the lower panels of Figures 2.4 and 2.8, where system’s strange attractor is displayed 

for 42.12r = . The strange attractor has the same properties as the Lorenz strange 

attractor, these properties are either best displayed in ( , ,X Y Z ) or ( 1 1 1, ,X Y Z ) variables. 

Changes in the behavior of the system with the increasing value of r are also seen in the 

Figures 2.10-2.14, which presents the power spectra. The broad band power spectrum 

shown in the lower panel of Fig.2.14 represents additional strong evidence that the 

system has entered fully developed chaotic regime. 
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                    2.9   Power spectrum for Lorenz 9D at r =15.42                               

 

                  

                    2.10   Power spectrum for Lorenz 9D at r =20.54          
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                 2.11   Power spectrum for Lorenz 9D at r =24.54  

 

 

             

                   2.12   Power spectrum for Lorenz 9D at r =28.54 
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                     2.13   Power spectrum for Lorenz 9D at r =38.54 

               

2.14 Power spectrum for Lorenz 9D at r =42.54 
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To determine the route to chaos of this system and the precise value of  r  at which the 

system enters the chaotic regime, we calculated all nine Lyapunov exponents for the 

system. The three leading Lyapunov exponents are plotted versus r in Fig.2.15. The 

plots show that one Lyapunov exponent becomes positive when 40.43r = , however 

further increase of  r  leads to several spikes that quickly disappear at 40.49r = . The 

same Lyapunov exponent become positive again at 41.10r =  and it shows many spikes 

that implies that the system is entering full chaos via chaotic transients, which is the 

same route that observed in the original Lorenz 3D system. After the last negative spike 

at 41.44r = , fully developed chaos is observed when 41.54r ≥ . These results are 

consistent with those shown in Figs 2.1 through 2.8. 
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                        2.15   Three leading Lyapunov exponents for Lorenz 9D 
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There are similarities between my result obtained for the 9D system and the 

original 3D Lorenz model(1963), and the 6D model constructed by Kennamer (1995); 

note that all three models are energy conserving systems. Both the 9D and 6D systems 

have strange attractors that are very similar to the Lorenz strange attractor. In addition, 

the route to chaos via chaotic transients observed in the 9D and 6D system is the same 

as that identified for the 3D Lorenz system (1963). The only important difference 

between these three models is that each one of them exhibits fully developed chaos for a 

different value of parameter r . For the 3D system, this critical value of r =24.75, for the 

6D system it is 40.15r = , and finally for my 9D system 41.54r =  is required. This 

implies the larger the number of Fourier modes taken into account the higher the value 

of r required for the system to enter the fully developed chaotic regime. 

It now becomes clear that the period-doubling route to chaos discovered by 

Humi (2004) and Reiterer (1998) in their generalized Lorenz models was caused by 

their selection of the modes that do not conserve energy. The same is true for the 14D 

system constructed by Curry (1978) as this system also violates the principle of 

conservation of energy. My results show that the energy conserving generalized Lorenz 

models have the same routes to chaos as the original 3D Lorenz model, which is a 

subset of these models. 
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2.1.7 Another 6D Lorenz model 

Kennamer (1995) constructed a new 6D Lorenz system by selecting 

11( ) (1,3)X t ψ= , 2Y1(t) = (1, 3) Θ  and 2Z1(t) = (0, 4) Θ  in addition to the three modes 

originally chosen by Lorenz (1963). 

The 6D system is described by the following set of nonlinear and first-order 

differential equations: 

 =  - X + Y 
dX

d
σ σ

τ
                                                                                      (1.34)                                                                                              

1 1 1= -XZ+rX-Y+ZX  -2X
dY

Z
dτ

                                                                     (1.35) 

1 1

dZ
XY bZ XY X Y

dτ
= − − −                                                                           (1.36) 

                                                     

1
1 1 1

1

dX
c X Y

d c

σ
σ

τ
= − +                                                                                    (1.37)   

             1
1 1 1 12

dY
XZ XZ rX c Y

dτ
= − + −                                                                        (1.38)                                                                           

1
1 1 12 2 4

dZ
XY YX bZ

dτ
= + −                                                                             (1.39)                

       

where 2 2(1 )a tτ π ∗= +  is the dimensionless time, a = h/L is the aspect ratio, b = 

4/(1+ 2a ), r = R / cR  with 4 2 3 2(1 ) /cR a aπ= +  and 1c  = (9+ 2a )/(1+ 2a ). Kennamer 

already demonstrated that this system has bounded solutions and its route to chaos is via 

chaotic transients (1995). We now show that the system conserves energy in the 
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dissipationless limit. Based on the results obtained in Sec. II.D., we know that the 

potential energy U ∗  approaches zero as 0σ → , thus, we only calculate the kinetic 

energy K ∗ of the system and obtain 

2 2 2 2

1

1
[ (1,1) (1,3)

2
K X Xδ δ∗ = + ]                                                              (1.40)                              

where 2 (1,1)δ  and 2 (1,3)δ  are constants. The time derivative of K ∗  is 

2 2

1(1,1) (1,3)
dK

X X
d

δ δ
τ

∗

= +� �                                                                     (1.41) 

We replace X�  and 1X
�  by the RHS of Equations (1.34) and (1.37), respectively,  

and take the limit of 0σ → . Then, we have 

0
lim 0

dE

dσ τ

∗

→
=                                                                                               (1.42) 

Which gives E K U∗ ∗ ∗= +  = const and shows that the total energy of this 6D 

system is conserved. 

2.1.8 Another 9D Lorenz model 

A system that is of special interest here is a 9D model developed by Reiterer 

(1998). To describe 3D square convection cells, the authors have expanded the x, y and 

z components of a vector potential A, with V = r × A, and the temperature variations θ  

into triple Fourier expansions, with l, m and n representing the modes in the y, x and z 

direction (see Equations (1.9) and (1.10)), respectively. These Fourier expansions have 

been truncated up to the second order and the following Fourier modes have been used: 

X(t) = A1(0, 2, 2), X1(t) =A1(1, 1, 1), X2(t) = A2(2, 0, 2), Y (t) = A2(1, 1, 1), Y1(t) =  
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A3(2, 2, 0), Y2(t) = Θ (0, 0, 2), Z(t) =Θ (0, 2, 2), Z1(t) = Θ (2, 0, 2) and Z2(t) = 

Θ (1, 1, 1), where A1, A2, A3 and Θ  are the Fourier coefficients of the Ax, Ay, Az and 

θ  expansions, respectively. This selection of Fourier modes leads to the following 

equations: 

2

1 1 4 3 2 1 2

dX
b X X Y b Y b X Y b Z

d
σ σ

τ
= − − + + −                                                (1.43) 

1
1 1 1 1 2

1

2

dX
X XY X Y YY Z

d
σ σ

τ
= − + − + −                                                       (1.44) 

22
1 2 1 4 1 3 1 2 1

dX
b X X Y b X b XY b Z

d
σ σ

τ
= − + − − +                                              (1.45) 

1 2 1 1 1 2

1

2

dY
Y X X X Y YY Z

d
σ σ

τ
= − − − + +                                                        (1.46) 

2 21
5 1

1 1

2 2

dY
b Y X Y

d
σ

τ
= − + −                                                                          (1.47) 

2
6 2 1 2 2

dY
b Y X Z YZ

dτ
= − + −                                                                             (1.48) 

1 1 1 22
dZ

b Z rX Y Z YZ
dτ
= − − + −                                                                       (1.49) 

21
1 1 1 1 22

dZ
b Z rX Y Z X Z

dτ
= − + − +                                                                  (1.50)    

             2
2 1 1 2 2 1 12 2

dZ
Z rX rY X Y YY YZ X Z

dτ
= − − + − + + −                                       (1.51)  
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where τ  = (1 + 2 2κ )t, with x yκ κ κ= = , b1 = 4(1 + 2κ )/(1 + 2 2κ ), b2 = (1 + 

2κ )/2(1 + 2κ ), b3 = 2(1− 2κ )/(1+ 2κ ), b4 = k2/(1 + 2κ ), b5 = 8 2κ /(1 + 2 2κ ) and b6 = 

4/(1 + 2 2κ ). 

 Detailed numerical studies of this 9D system have been done by Reiterer et al. 

(1998), who showed that the system had bounded solutions and its route to chaos was 

via period-doubling. Comparison of this set of equations to that given in Sec. II (see 

Equations 1.20 through 1.28) shows that these two 9D models are completely different. 

One obvious reason for this difference is the fact that my 9D model and their 9D models 

describe 2D and 3D Rayleigh-B´enard convection, respectively. Another more 

important reason for the difference is that my 9D model does conserve energy in the 

dissipation less limit, however, their 9D model does not. To demonstrate this, we use 

Equations (26) and (27), and extend them by adding summation over l. Since the 

potential energy approaches zero as  0σ → , we only calculate the kinetic energy of the 

system and obtain 

2 2 2 2 2

1 1 2 1 3 2 4 5 1

1
[ ]

2
K c X c X c X c Y c Y= + + + +                                                (1.52) 

where 1c , 2c , 3c , 4c  and 5c  are constants that depend on l, m and n (see 

Equations. (26)). Taking   derivative with respected to time, we get 

1 2 1 3 2 4 5 1

dK
c X c X c X c Y c Y

dτ
= + + + +� � � � �                                                           (1.53) 
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and use Equations (1.44) through (1.48) to calculate the time derivatives of X, 

X1, X2, Y and Y1. Since there are several terms on the RHS of Equations (44) - (48) 

that do not explicitly depend on   σ , those terms will remain non-zero when the limit 

0σ →  is applied to Equation. (1.53). Hence, I obtain 

0
lim 0

dE

dσ τ→
≠                                                                                                 (1.54) 

Where E = K + U. This shows that the total energy of the 9D system constructed 

by Reiterer (1998) is not conserved and, therefore, their results on the onset of chaos 

and route to chaos in this system are not valid. The energy conserving 9D Lorenz model 

for a   2D   Rayleigh-B´enard convection is presented in Sec. II of this thesis. 
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                                               CHAPTER 3 

                              GENERALIZED LORENZ MODEL II 

                                    3.1 Horizontal mode truncations 

 

3.1.1 Introduction 

All attempts to generalize the three dimensional Lorenz model by selecting 

higher order Fourier modes can be divided into three categories, namely: vertical, 

horizontal and vertical-horizontal mode truncations. The previous chapter showed that 

the first method allowed only construction of at least a 9D system when the selected 

modes were energy conserving. The results presented in this chapter demonstrate that a 

5D model is the lowest-order generalized Lorenz model that can be constructed by the 

second method and that its route to chaos is the same as that observed in the original 

Lorenz model. It is shown that the onset of chaos in both systems is determined by a 

number of modes that determines the vertical temperature difference in a convection 

roll, which make sense because after all in this simplified model of convection the main 

driving force of the system is the vertical temperature difference. In addition, a simple 

yet general rule is proposed that allows selecting modes that conserves energy for each 

method.  
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3.1.2 Derivation of 5D Lorenz model 

In order to derive lowest order generalized Lorenz model using horizontal mode 

truncations I would use the equations (1.9) and (1.10) already derived in Chapter 1.The 

boundary condition is the same as stated in the Saltzman derivation. As already stated  

Fourier mode 1(1,1)ψ , that describes the circulation of convection roll and 2 (1,1)θ and  

2 (0, 2)θ  which describe the horizontal and vertical temperature difference in the 

convective roll were selected by Lorenz to construct his 3D model. Here I select higher 

order Fourier modes by using the method of horizontal mode truncations. The original 

3D Lorenz model is treated as the basis and the higher modes are added until the lowest 

order generalized Lorenz model is obtained. I begin with two Fourier modes 

1(2,1)ψ and 2 (2,1)θ , and find that they are already coupled to the original Lorenz 

modes. The coupling is shown by a resulting set of ordinary differential equations: 

dX
X Y

d
σ σ

τ
= − +                                                                                         (3.1) 

dY
rX XZ Y

dτ
= − −                                                                                       (3.2) 

1 12
dZ

XY bZ X Y
dτ
= − +                                                                                 (3.3) 

1
1 1 1 1( / )2

dX
c X c Y

d
σ σ

τ
= − +                                                                           (3.4) 

1
1 1 1 12 2

dY
X Z rX c Y

dτ
= − + −                                                                            (3.5)           
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Since coupling already takes place in this 5D model I conclude that this is the lowest-

order generalized model that can be constructed by using the horizontal mode 

truncations. As expected the model reduces to the 3D Lorenz model when 1X  = 1Y =0. 

Now I can use the method presented in Chapter II to show that this generalized Lorenz 

model also conserves energy in the dissipationless limit and has bounded solutions. As a 

result we call the 1 1(2,1)X ψ= and 1 2 (2,1)Y θ=  the energy-conserving modes. 

 

                        3.2 Coupling of modes via a simple rule   

An interesting result which I discovered seems to mediate a general coupling of 

higher modes to original Lorenz modes while deriving generalized Lorenz model. This 

was not apparent until I derived the 5D model using horizontal mode truncations. An 

interesting result is that horizontal and vertical mode truncation lead to systems having 

different dimensions. This clearly indicates that the vertical and the horizontal modes 

are coupled to original Lorenz modes quite differently. The main problem to be 

recognized is whether a mode is coupled or not, and identify a rule which underlies this 

coupling. In the following both issues are discussed in detail. As already mentioned in 

the previous chapter while deriving the basic equations, Saltzman expressed the 

coefficients ( , )m nψ and ( , )m nθ  see equation (3.1) and (3.2) in terms of their real and 

imaginary parts and applied such boundary conditions that that all the modes 

2 1( , ), ( , )m n m nψ θ and 1(0, )nψ  are excluded. He derived the following set of first order 

differential equations: 
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2
21

1 1 2 12 2

( , )
( , , , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , )p q

d p q l m
C m n p q p q m p n q m n m n m n

dt m n m n

ψ β σ
ψ ψ θ αβ ψ

β β

∗∞ ∞

∗
=−∞ =−∞

= − − − −∑ ∑

22
1 2 1 2( , , , ) ( , ) ( , ) ( , ) ( , ) ( , )

p q

d
C m n p q p q m p n q Rl m m n m n m n

dt

θ
ψ θ ψ β θ

∞ ∞
∗

∗
=−∞ =−∞

= − − − − −∑ ∑                                                                                                                                                                 

                        

where 2/t t hκ∗ =  is dimensionless time, 2 2 2 2 2( , )m n l m nβ π∗= + and /σ ν κ= is 

the Prandtl number, with ν  and κ being the kinematic viscosity and the coefficient of 

thermal diffusivity, respectively. In addition, 2 /l h Lπ∗ =  and 3

0 /R gh Tα κν= ∆  is the 

Rayleigh number, with α  being constant of thermal expansion, g being gravity, and 

0T∆  representing vertical temperature difference in the convective region. 

Using the above equations, it is easy to determine whether a selected mode is 

coupled to the original Lorenz system or not. As an example, let me consider the 

vertical mode 1(1,2)ψ . Since m=1, n=2, equation (1.8) shows there is no way to couple 

this mode to 1(1,1)ψ . In addition equation (1.9) shows that 1(1,2)ψ can neither be 

coupled to 2 (1,1)θ  nor to 2 (0, 2)θ .Let us now consider the horizontal modes 1(2,1)ψ and 

2 (2,1)θ . Clearly these modes still can not be coupled to either 1(1,1)ψ or 2 (1,1)θ  but they 

get coupled to the mode 2 (0, 2)θ  and, as a result, 5D Lorenz system is obtained. 

Extending this procedure to higher order vertical modes ( 1(1,3)ψ and 2 (1,3)θ ), one may 

demonstrate that the lowest order generalized Lorenz system that can be constructed is a 

9D system (see Chapter I). 
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I now use equations (3.1 and 3.2) to determine a rule that underlies the above selection. 

My analysis shows that only those vertical modes that are separated from the  original 

Lorenz modes by 2π  are coupled to the 3D system; hence , the modes with 2n =  are 

not coupled but modes with 3n = are coupled. It is easy to demonstrate all the modes 

labeled with n being an odd integer are coupled. The situation is different for the 

horizontal modes as in this case all modes with m being an integer are coupled to the 

Lorenz modes. Hence the difference is onlyπ . These simple rule can be used to 

construct a generalized Lorenz system by applying either the vertical or horizontal 

mode truncations. In both methods it is only required that the energy conserving modes 

are selected. 

                                     3.3 Routes to chaos 

To determine the routes to chaos in the derived 5D system, we solved 

numerically the set of equations (3.3) through (3.7) by fixing parameters 

8 / 3b = , 10σ = , and varying the control parameter over the range 0 30r≤ ≤ . The 

calculations allowed us to establish the value of minr for which the onset of chaos is 

observed and then determine maxr for which the system exhibits fully developed chaos. 

Routes  to chaos are determined from detailed studies of the behavior of the system in 

the range min maxr r r≤ ≤ . The obtained results are presented using phase portraits, power 

spectra and Lyapunov spectra. 
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The phase space portraits for the set of variables ( X ,Y , Z ) and ( 1X , 1Y , 1Z ) are given in 

figures (3.1) to (3.4) . The result presented in this figure is the time evolution of the 

system from given initial conditions to a periodic or a strange attractor. It is seen that 

the system exhibits periodic behavior for the values of ‘r’ ranging from 14 to 20. 

However, for 22r = , figure (3.4) display strange attractor, which shows many 

similarities with the original Lorenz strange attractor. The fact that the system is 

periodic for 14 20r = − and chaotic for 22r ≥  is seen in the plots of power spectra in 

figures 3.6 to 3.9. To determine the value of r for which the system enters chaotic 

regime, I plotted three Lyapunov exponents in figure 3.5. Based on these exponents, I 

determined 21.5r =  to be the critical value for the onset chaos for this 5D generalized 

Lorenz system. The results presented in figure 3.5  also shows that further increase of r 

leads to a series of spikes in Lyapunov spectra and that fully developed chaos is 

observed when 22.5r = . The spikes are typically identified as chaotic transients. Which 

means that is typically the route to chaos in this 5D model. 
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                          3.1 (x , y , z) phase plots at r =14.0 

                  

                    3.2  (x , y , z) phase plots at r =18.0 
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                                   3.3 (x , y , z) phase plots at r =20.0 

                           

 

                                  3.4 (x , y , z) phase plots at r =26.0                   
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lyapunov exponent versus Rayleigh ratio for Lorenz 5d
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                       3.5 Three leading Lyapunov exponents for 5D   

 

 

                      

                       3.6   Power spectrum for Lorenz 5D at r =15.0 
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                         3.7 Power spectrum for Lorenz 5D at r =18.34 

 

                     

                           3.8  Power spectrum for Lorenz 5D at r =20.34     
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                         3.9 Power spectrum for Lorenz 5D at r =23.12 

 

                        3.4 Comparison with other Lorenz models 

I compare the above results to those previously obtained for the 3D Lorenz 

model and 9D Lorenz model derived in Chapter I. First of all it is seen that both the 

onset of chaos and the onset of fully developed chaos in the 5D system occur at  the 

values of r  that are lower than those observed in the original 3D Lorenz system and the 

9D system discussed in Chapter I. To be specific, the onset of fully developed chaos in 

the 5D system occurs at 22.5r =  , which must be compared to 24.75r =  in the 3D 

Lorenz model and 41.54r =  in the 9D model. This is a surprising result because 

typically the addition of higher-order modes requires higher value of r for a system to 

enter chaotic regime (e.g. our result in Chapter I). In the following I explain this result.  

I performed studies of the role played by different Fourier modes in the onset of 

chaos and found out that the dominant role played by the Z modes, which represent the 

vertical temperature difference in the convective roll. The main result is that more 
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Z modes in the system the higher the value of r necessary to for the onset of chaos. 

Since there is only one Z mode in the 3D system and also in the 5D system, the onset of 

chaos for both systems takes place almost at similar values of r . However there are 

three Z modes in the 9D model (see chapter II) therefore the value of r required for this 

system to enter chaos is almost twice as high as the 5D Lorenz system. My study also 

shows that by adding horizontal modes to the 3D Lorenz system, the value of r required 

for the onset of chaos can be reduced. 

To verify these conclusions I derived a 7D generalized Lorenz   model by 

adding the following energy-conserving horizontal modes: 2 1( ) (3,1)X t ψ= and 

2 2( ) (3,1)Y t θ= ; Note that no Z mode was added. I investigated the onset of chaos   in 

this model and found 21.75r =  to be the critical value. I also determined that at 

22.28r =  the system enters the fully developed chaotic regime. These result supports 

the above conclusions. My studies show that 5D, 7D and 9D generalized Lorenz 

systems enter the fully developed chaos via chaotic transients. This is the same routes to 

chaos as observed in the original 3D Lorenz system.   
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                                               CHAPTER 4 

                               GENRALIZED LORENZ MODEL III 

                              4.1 Horizontal-Vertical mode truncations 

 

In this chapter a new lowest order generalized Lorenz system is derived using 

horizontal-vertical mode truncations. It is also found that the routes to chaos for this 

system changes in comparison with the models previously studied by Roy and Musielak 

(2006).The reasons are discussed in detail. The selection of the energy conserving 

modes both in horizontal-vertical directions resulted in an 8D extension of the Lorenz 

system. This 8D system is energy conserving in the dissipation less limit and also has 

bounded solutions. In order to understand the change in the routes to chaos for this 

system a 10D model is derived by adding two more modes to the 8D model. The 

numerical investigation of the 10D extension also shows the same routes to chaos as the 

8D  Lorenz  model. 

4.1.1 Introduction 

Most attempts made by previous authors (J.H.Curry1978,Howard(1986), 

Rieterrar(1998), Humi(2004) )  in order to combine the idea of coupling of lower order 

modes with higher order modes in the double Fourier expansions of stream function and 

temperature variations and in that process derive a generalized Lorenz system(1963)  

have failed for various reasons. I would like to point out only two important ones. (1)  
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Failure to select  energy conserving Fourier modes (2) Failure to couple the lower order 

modes with  higher order modes in a mathematically consistent and physically 

meaningful generalized Lorenz system.  

In general, there are three different methods of selecting the higher-order Fourier modes 

(Roy 2006). In the first method, only the vertical Fourier modes are chosen. The second 

method is restricted to horizontal mode truncations. However, in the third method, both 

vertical and horizontal modes are selected. Different methods were chosen by different 

authors, who often made their choices without giving a clear physical justification. 

In addition, in many cases Fourier modes were selected in such a way that the 

resulting generalized Lorenz models did not conserve energy in the dissipation less 

limit. The fact that the choice of the modes which do not conserve energy significantly 

restricts description of these systems was recognized by several authors 

(Thieffault(1996),Tong(2003)), who also showed how to construct energy-conserving 

generalized Lorenz systems. 

In   chapter I of this thesis, I used the first method to obtain a generalized 

Lorenz system. By selecting energy-conserving modes, we demonstrated that the 

lowest-order generalized Lorenz system was a nine-dimensional (9D) model. In paper 

II, I used the second method to select energy-conserving modes to construct the lowest-

order generalized Lorenz model. I find that the constructed model is only five-

dimensional (5D). In this chapter I derive a meaningful generalized Lorenz system by  
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adding three more modes with the 5 modes used to construct a 5D generalized 

Lorenz model. An interesting result is that the lowest order generalized Lorenz system 

that can be obtained using this horizontal-vertical mode variation is the 8D system. One 

of the reason for a 8D model is that the original Lorenz modes gets weakly coupled to 

two modes namely 1ψ (2, 1) and 2Θ (2, 1) which are selected to derive 5D Lorenz 

system. Therefore, once we have constructed 5D model one can add higher order 

Fourier terms to derive high dimensional Lorenz system, however, one needs to be 

careful because the selection should be mathematically consistent and also energy 

conserving in the dissipation less limit. By using this criteria I obtained the 8D Lorenz 

system which is mathematically and physically consistent. 

 

4.1.2 Derivation of  Lorenz 8D model 

Generalized Lorenz models can be derived from Saltzman’s equations (see Eqs. 

7 and 8 in chapter I) by taking into account different modes in the following double 

Fourier expansions:  

( , , ) ( , , ) exp[2 ( )]
2m n

m n
x z t m n t ih x z

L h
ψ ψ π

+∞ +∞
∗ ∗ ∗ ∗ ∗

=−∞ =−∞

= +∑ ∑                              (4.1) 

( , , ) ( , , ) exp[2 ( )]
2m n

m n
x z t m n t ih x z

L h
θ π

+∞ +∞
∗ ∗ ∗ ∗ ∗

=−∞ =−∞

= Θ +∑ ∑                               (4.2) 

where x∗ , y∗ , z∗  and t∗  are dimensionless coordinates, ψ ∗  is the dimensionless 

stream function and θ ∗  is also a dimensionless quantity that describes temperature  
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variations due to convection. In addition, x and z represent the vertical and 

horizontal directions, respectively, L is the characteristic scale representing periodicity 

2L in the horizontal direction, and h is the thickness of a convection region. Based on 

these expansions, we shall refer to the modes labelled by m and n as the horizontal and 

vertical modes, respectively. 

Following Saltzman [2], we write ψ (m, n) = 1ψ (m, n) − 2iψ (m, n) andΘ (m, n) 

= 2Θ (m, n) − 2iΘ (m, n); note that the time-dependence is suppressed. Saltzman 

excluded all 2ψ (m, n) and 1Θ (m, n) modes by fixing the vertical nodal surfaces of the 

convective cells, and assumed that the 1ψ modes with m = 0 describing shear flows can 

be neglected. These Saltzman rules were adapted by Lorenz to construct his 3D model 

and by us to obtain a 9D Lorenz model in chapter I and 5D model in chapter II 

respectively. The same rules will be used here to derive the lowest-order generalized 

Lorenz system by the method of horizontal-vertical mode truncations. 

                                   4.2 Lowest order generalized model 

In paper II of this series we have derived a 5D generalized Lorenz model by 

adding two modes namely: 1ψ (2, 1) and 2Θ (2, 1) to original Lorenz modes 1ψ (1, 1) that 

describes the circulation of a convective roll, and 2Θ (1, 1) and 2Θ (0, 2) that 

approximate respectively the horizontal and vertical temperature differences in the 

convective roll in the 3D model. I find that the above two modes (higher order) gets 

coupled with the lower order modes. Just like I treated original Lorenz modes as our  
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basis in order to add energy conserving higher order modes consistently similarly I use 

this 5D model that I have already derived in  second chapter[16] as the basis and add 

higher order modes to it consistently and try to see whether they get coupled. The 

following higher order modes are added to achieve this objective 1ψ (1, 2), 2Θ (1, 2) and 

2Θ (0, 4). The last mode is added in order to satisfy the principle of conservation of 

energy and bounded ness of solutions. So  on the basis of this truncations I was able to 

derive a 8D system which we find is strongly coupled with the original 3D and as well 

as this 5D system. I realize that Humi [10] also picked up the above modes except two 

of them namely: 2Θ (2, 1) and 2Θ (0, 4). I recognize that one of the modes which 

describes transport of the the net heat flux of the system 2Θ (0, 4) is missing from his 

selection of modes , the absence of this mode as shown previously by Thieffault and 

Horton [12] and independently by Tong et al.[14]generally affect the conservation of  

energy in the dissipationless limit. I would like to point out that in the method of 

vertical mode truncations used in chapter I the following three modes, 1ψ (1, 2), 2Θ (1, 

2) and 2Θ (0, 4), were added to those originally selected by Lorenz. These as I 

recognize are the same modes added to the 5D system. However, analysis in the first 

chapter showed that these modes were not coupled to the Lorenz modes and as a result 

we derived two independent 3D systems. In this chapter I show that these modes gets 

coupled to the original Lorenz modes via 1ψ (2, 1) and 2Θ (2, 1) modes. Again this 

coupling is consistent with the rule proposed in chapter II of this thesis. 
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Here, I select higher-order Fourier modes by using the method of horizontal-vertical 

mode truncations. The original 3D Lorenz model is treated as the basis and the higher-

order modes are added until the lowest-order generalized Lorenz model is obtained. I 

begin with the three Fourier modes 1ψ (1, 2) and 2Θ (1, 2) and 2Θ (0, 4) which gets 

coupled with the original lower order Lorenz modes. The coupling resulted in the 

following set of ordinary differential equations: 

1 2

3
( ) 2
4

dX
X Y X X

d
σ σ

τ
= − + −                                                               (4.3) 

2 1 2 1

3
( ) 2 (3/ 4) 2
4

dY
XZ rX Y X Y Y X

dτ
= − + − + +                                   (4.4) 

1 12
dZ

XY bZ X Y
dτ
= − +                                                                             (4.5) 

1
1 1 1 2

1

3
2 ( ) 2

4

dX
c X Y XX

d c

σ
σ

τ
= − + +                                                        (4.6) 

1
1 1 1 1 2 1 2

3 3
2 2 ( ) 2 ( ) 2

4 4

dY
X Z rX c Y X Y X Y

dτ
= − + − − +                             (4.7) 

2
2 2 2 1

2

1
2( )

4

dX
c X Y XX

d c

σ
σ

τ
= − + −                                                        (4.8) 

2
2 2 2 1 1 2 1

3 3
2 ( ) 2 ( ) 2 2

4 4

dY
c Y rX XY X Y X Z

dτ
= − + − − −                            (4.9) 

1
2 2 12 4

dZ
X Y bZ

dτ
= −                                                                                 (4.10) 

Where   X(t) = 1ψ  (1, 1), Y (t) = 2Θ (1, 1), Z(t) = 2Θ (0, 2), 1( )X t  = 1ψ (2, 1),  
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1( )Y t  = 2Θ (2, 1), 2 ( )X t  = 1ψ (1, 2) , 2Y (t) = 2Θ (1, 2) and 1( )Z t  = 2Θ (0, 4). In 

addition, τ  = 2(1+ 2a )t is dimensionless time, a = h/L is the aspect ratio, b = 4/(1 + a2), 

r = 
c

R

R
 with cR  = 4π (1 + 2a ) 3 / 2a , and c1 = (1 + 4 2a )/(1 + 2a ),c2 = (4 + 2a )/(1 + 2a ). 

When we observe this constructed 8D model we find that all the selected modes 

are fairly strongly coupled to each other. As we will show in the next section the extra 

terms that results in (3),(6) and (8) cancels out among each other resulting in a bounded 

and energy conserving solutions. As expected, the model reduces to the 5D Lorenz 

model when 2X  = 2Y  = 1Z  = 0. A natural question is whether this derived model is 

needed a generalized lowest order Lorenz model. To answer this question all I did let 

1( )Z t  = 0, Therefore either 2 ( )X t  = 0 or 2 ( )Y t  = 0 in (10). In either case one can easily 

show that this results into a 6D Lorenz system. However, there still remains an 

ambiguity regarding the fact that which modes among 2 ( )X t  and 2 ( )Y t  should be 

retained in the Fourier expansion which is precisely the reason that lacks in Humi’s 

derivation of his 6D model (2004). We try to resolve this ambiguity here by invoking 

energy conservation principle presented by Thiffeault and Horton (1996) and by 

selecting following energy conserving modes 2 ( )X t , 2 ( )Y t  and 1Z (t). Therefore we 

conclude that the derived 8D system is indeed the lowest order generalized Lorenz 

system by using Horizontal-vertical mode truncations. Now, we may use the method 

presented in Paper I (see Sec. II.C) to show that the derived 8D model conserves energy  
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in the dissipation less limit and has bounded solutions. As a result, we call the 

modes 2 ( )X t = 1ψ (1, 2) and 2Y (t) = 2Θ (1, 2) and 1( )Z t  = 2Θ (0, 4) as the energy-

conserving modes. 

 

                   4.1 Time series plot for model I and model II 

 

                                          4.3 Energy conservation of 8D model 

The equations for kinetic and potential energy can be written using the 

following expressions: 

2 21
( , ) ( , )

2 m n

K m n m nδ ψ
+∞ +∞

∗

=−∞ =−∞

= ∑ ∑                                                                 (4.11) 

21
( ) ( , )
2 m n

U m n
R

σ +∞ +∞
∗

=−∞ =−∞

= − Θ∑ ∑                                                                      (4.12) 

where  2 ( , )m nδ = 2 2 2m a n+                         

 

The quantity is already normalized. we apply this above mentioned formula to 

our 8D system to obtain 
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2 2 2 2 2 21
[ (1,1) (1,1) (2,1) (2,1) (1, 2) (1,2)]

2
K δ ψ δ ψ δ ψ∗ = + +                            (4.13) 

2 2 2 2 21
[ (1,1) (2,1) (1, 2) (0,2) (0, 4)]

2
U

R

σ∗ = − Θ +Θ +Θ +Θ +Θ                      (4.14) 

where 2 (1,1)δ , 2 (2,1)δ  and  2 (1,2)δ  are constants. 

To show that the total energy, E K U∗ ∗ ∗= + , is indeed conserved in the 

dissipation less limit I write the following expression for total energy 

2 2 2

1 1 1 2 2 2

1 2

2 2 2

1 1 2 1

1 2 1

2 2
[ (1,1)( ) (2,1)( ) (1,2)( )]

3 3 1
(1,1)( ) 2 (2,1)( ) 2 (1, 2)( ) 2

4 4 4

[ ]

dE
X Y c X Y c X Y

d c c

XX X X XX

Y Y Y Z Z
R

σ δ δ δ
τ

δ δ δ

σ

∗

= − − + − + −

− + −

− + + + +� � � � �

  (4.15)            

In the dissipation less limit 0σ → the above Equation (4.15) gives 

0
lim 0

dE

dσ τ

∗

→
=                                                                                                   (4.16) 

Which gives E K U∗ ∗ ∗= +  = const. Hence, our 8D system conserves energy in 

the dissipation less limit. 

                                    4.4  Routes to chaos 

To determine route to chaos in the derived 8D system, we solved numerically 

the set of   equations (3) through (10) by fixing the parameters b = 8/3 and _ = 10, and 

varying the control parameter r over the range 0 40r≤ ≤ . The calculations allowed us to  
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establish the value of r min for which the onset of chaos is observed and then determine 

r max for which the system exhibits fully developed chaos. Route to chaos is 

determined from detailed studies of the behavior of the system in the 

range min maxr r r≤ ≤ . The obtained results are presented using phase portraits, power 

spectra and Lyapunov spectra.  

        

                      4.2 Time series plot for x1, y1, z for 8D at r =19.54 
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                   4.3 Phase space portrait for x1, y1, z at r =19.54  

 

                 

                        4.4 Time series plot for x1, y1, z for 8D at r =24.54                    
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                         4.5 Phase space portrait for x1, y1, z at r =24.54 

 

The phase portraits and time series for the sets of variables (X, Y, Z) and (X1, 

Y1, Z) are given in Figures (4.1)  through (4.4). The  result  presented in these figures 

show time evolution of the system from given initial conditions to a periodic or strange 

attractor. It is seen that the system exhibits periodic behavior for the values of r ranging 

from 15 to 36. However, for r = 36, the figure (4.7) displays a strange attractor, which 

shows differences and as well as similarities to the original Lorenz attractor. The quasi 

periodic behavior of this system is quite nicely captured in the power spectral plot for 

value of r = 15 − 35 and chaotic for r = 36.54 is seen in plots of the power spectra given 

in Figs 4.10 through 4.12. In order to exactly determine the value of r for which the 

system enters the chaotic regime, we plotted three leading Lyapunov exponents in Fig.  
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4.9. Based on these exponents, we were able to establish that at r = 32.5 − 34.5 all three 

leading Lyapunov exponents becomes zero and therefore supports our argument about 

the quasi periodic behavior of this dynamical system. 

                                                   

                      4.6 Time series plot for x1, y1, z for 8D at r =34.54                                            
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                     4.7   Phase space portrait for x1, y1, z at r =38.54 

 

                 

LYAPUNOV exponet versus Rayleigh number for Lorenz 8D
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                            4.8 The leading three Lyapunov exponents 
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I investigated the behavior of both Lyapunov exponents and power spectral plot in the 

range of values between r = 32.5 − 34.5 just to understand how and what value the quasi 

periodic behavior decays to chaotic behavior. we were able to show based on our 

numerical results that the system enters chaotic regime at r = 35.5.The results presented 

in Fig. 7 also show that further increase of r leads to almost linear increase of leading 

Lyapunov exponent and the other two Lyapunov exponents becomes negative .In this 

process the fully developed chaos is observed when r = 36.5. These results allow us to 

conclude that the routes to chaos for this 8D system is the 

following 0 1 2 3T T T T chaos→ → → → . 

                                          

                          4.9   Power spectral plot for 8D at r =24.54 
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                      4.10   Power spectral plot for 8D at r =28.54  

 

 

                     

                             4.11 Power spectral plot for 8D at r =32.56  
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                           4.12 Power spectral plot for 8D at r =36.56   

               

In order to understand this behavior clearly I derived a 10D Lorenz model by 

adding both horizontal and vertical modes to this 8D system. I observe that in order to  

derive this 10D model one can either add two following modes 3 1( ) (2, 2)X t ψ=  and 

3 2( ) (2,2)Y t = Θ  or 3 1( ) (3,1)X t ψ= and 3 2( ) (3,1)Y t = Θ to the modes already selected 

based on energy conservation to derive 8D system. However, the selection of first two 

modes gives extraneous terms which do not cancel out in the dissipation less limit 

therefore one must add the next two modes in order to derive a 10D system. We 

investigated our 10D system numerically and found that the routes to chaos for this 

system is also through quasi periodicity. Moreover we find that the critical value of r = 

35.5 for the onset of chaos in this 10D system which is in agreement with our 

observation in chapter II of this thesis. Therefore, based on these results I conclude that  
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one of the main reasons the routes to chaos changes in the 8D system compared with 

our previous models is because of the strong coupling between all the selected modes 

and the same is also true for the 10D system.  

                           4.5 Comparisons with other Lorenz models 

We now compare the above results to those previously obtained for the 9D 

generalized Lorenz systems and the 5D generalized Lorenz system discussed in chapter 

I and chapter II. First of all, it is seen that both the onset of chaos and the onset of fully 

developed chaos in the 5D system occur at the values of r that are lower than those 

observed for the original 3D Lorenz system and the 9D system discussed in Paper I. To 

be specific, the onset of fully developed chaos in the 5D system occurs at r = 22.5, 

which must be compared to r = 24.75 in the 3D Lorenz model and r = 41.54 in the 9D 

model. In this 8D system the onset of chaos occurs at r = 36.5 which is consistent with 

our observation in chapter II. We performed studies of the role played by different 

Fourier modes in the onset of chaos and found out that the dominant role is played by 

the Z modes, which represent the vertical temperature difference in a convective roll. 

The main result is that the more Z modes in the system, the higher the value of r 

required for the onset of chaos. Since there is only one Z mode in the 3D Lorenz system 

and also one Z mode in the 5D system, the onset of chaos in both systems takes place at 

similar values of r. However, there are three Z modes in the 9D system (see chapter I), 

so the value of r required for this system to enter chaos is almost twice as high as that  
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observed in the 5D system. Similarly the r value required for the onset of chaos in the 

8D system is also high compared to previously studied 5D model(see chapter II) and 

low in comparison with the 9D model(see chapter I). My studies also showed that by 

adding both horizontal and vertical modes to the 5D Lorenz system, I was able to derive 

a system which is fairly strongly coupled as a result it’s collective behavior is entirely 

different from the 5D system. To be precise we observe that 1 2( ), ( ), ( )X t X t X t  gets 

coupled with each other in the respective differential equations  which is not the case 

with 9D or 5D system.  Moreover   this modes gets also fairly well coupled with the Y 

(t), Y1(t) and Y2(t)  modes and as well as with Z(t) providing just the right additional 

stability to the system. This I perceive as one of the main reason for the routes to chaos 

for this system to become quasi periodic. To verify this hypothesis, we derived a 10D 

generalized Lorenz model by adding the following energy-conserving horizontal 

modes: 3 1( ) (3,1)X t ψ= and 3 2( ) (3,1)Y t = Θ ; note that no Z mode was added. We 

investigated the onset of chaos in this model and found r = 35.5 to be the critical value. 

We also determined that at r = 36.28 the system enter the fully developed chaotic 

regime through quasi periodicity. These results support the above hypothesis. 

My studies showed that the 8D and 10D generalized Lorenz systems enter the 

fully developed chaotic regime via quasi periodicity this is different from the route to 

chaos as that observed in the original 3D Lorenz system.  
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                                                CHAPTER 5 

                                      SUMMARY OF THESIS 

 

   I used the method of the vertical mode truncation in chapter I to construct 

generalized Lorenz models that approximate a 2D Rayleigh-B´enard convection. The 

original 3D Lorenz model is a subset of these models, which means that the generalized 

systems were derived by adding higher order Fourier modes to the original three modes 

selected by Lorenz (1963). An interesting result of my study is that the lowest-order 

generalized Lorenz model, which conserves energy in the dissipation less limit and has 

bounded solutions, is a 9D system and that its route to chaos is via chaotic transients, 

first observed in the 3D Lorenz system. In addition, it is shown that more thermal 

energy is required for our 9D system to transition to chaos than for the 3D Lorenz 

system. The critical value of r for which our system exhibits fully developed chaos is r 

= 41.54, however, it is only r = 24.75 for the 3D system. This implies that the larger 

number of Fourier modes are taken into account, the higher the values of r are required 

for the system to enter the fully developed chaotic regime. The method of the vertical 

mode truncation did not allow us to construct any physically consistent system with 

dimensions ranging from four to eight. There are, however, some examples of such 

models constructed by others (Kennamer (1995), Humi (2004), Howard (1986)). One 

example is a 6D system developed by Kennamer (1995). There are similarities between 
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this energy-conserving model and our 9D system, namely, both models have strange  

attractors that have properties very similar to the Lorenz strange attractor and chaotic 

transients are their routes to chaos. However, the problem is that the 6D model was 

derived by skipping the vertical modes with m = 1 and n = 2 and selecting a temperature 

mode with m = 0 and n = 4 in an inconsistent way (Tong (2003)). Other 6D and 9D 

models (Humi (2004), Reiterer (1998)), which predicted period-doubling as their routes 

to chaos, happened to be non-conserving energy systems. Similarly, it has been shown 

that a 14D model constructed by Curry (1978), with its route to chaos via decaying tori, 

does not   conserve energy in the dissipation less limit. 

Based on our results and their comparison to those previously obtained, it is now clear 

 

that the period-doubling route to chaos discovered by Humi (2004) and Reiterer (1998) 

 

in their generalized Lorenz models was caused by their selection of the modes that do 

 

not conserve energy. The same is true for the 14D system constructed by Curry (1978)  

 

as this system also voliates the principle of the conservation of energy. On the other  

 

hand, my  results clearly show that when genearlized Lorenz models are constructed in  

 

such a way  that the energy-conserving Fourier modes are taken into account, then the  

 

route to   chaos in these models is the same (chaotic transients) as that observed in the  

 

original 3D Lorenz  model. 

 

The method of horizontal mode truncations was used in chapter II to construct 

generalized Lorenz systems by selecting energy-conserving modes. The main result is 

that a 5D system is the lowest-order generalized Lorenz model, which can be 

constructed by this method. In chapter I it is showed that a 9D system is the lowest- 
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order generalized Lorenz model that can be constructed by the method of vertical mode 

truncations (see chapter I). This implies that horizontal modes couple more easily to the 

original 3D Lorenz system than the vertical modes. The general rule is that all (even and 

odd) horizontal modes are coupled but among all vertical modes only the odd modes get 

coupled.  

My numerical studies of the 5D system showed that the onset of chaos in this 

system occurs at value of r = 21.5, which is lower than that required for the onset of 

chaos in the 3D Lorenz system. The onset of fully developed chaos takes place at r = 

22.5, which is lower than r = 24.75 for the 3D Lorenz model and r = 41.54 for the 9D 

model. I demonstrated that the value of r for which the onset of chaos occurs is 

primarily determined by a number of z modes in a system. These modes represent the 

vertical temperature variations resulting from the convection and more of them in a 

system require higher values of r for the onset of chaos. My results also showed that the 

5D system transitions to chaos via chaotic transients, which is the same route to chaos 

as that observed in the 3D Lorenz system and in the 9D system. This clearly shows that 

the route to chaos in the lowest-order generalized Lorenz systems remains the same as 

in the original Lorenz system. The lowest order generalized Lorenz system is 

constructed in chapter III based on the horizontal-vertical mode truncations. The main 

result is that the lowest order generalized Lorenz system is a 8D system in this method 

of truncations and that all the selected modes in the Fourier double expansion are fairly 

well coupled with each other resulting  in the collective dynamics of the system as the  
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parameter r is varied. The onset of chaos occurs at higher r values which is the result of 

selection of higher z modes. My previous work showed that based on the method of 

horizontal and vertical mode truncations one can derive a 5D and 9D model 

respectively and that the routes to chaos remain the same as in the original Lorenz 3D 

model. The main conclusion is that 3D, 5D, 7D and 9D models show the same routes to 

chaos. On the other hand 8D and10D models show different routes to chaos in 

comparison with the above models. Therefore it is clear that the horizontal-vertical 

mode truncations lead to a different route to chaos. The physical reason for this change 

in the route to chaos is discussed in section D of chapter 4. I further argue that by using 

the method of horizontal-vertical mode truncations one can derive higher dimensional 

Lorenz systems and perhaps would be able to understand the rule by which the higher 

order modes get coupled with the lower order modes. This requires further research. 

                             5.1 Future work and recommendations 

The results of this thesis can be extended to high dimensional systems. One can 

use energy conserving horizontal-vertical mode truncations to derive higher 

dimensional generalized Lorenz model to study the onset of chaos. One can further 

investigate the route to chaos for the derived models and try to find out if there exist any 

correlation between the dimension and the route to chaos. One can also explore the 

possibility of discovering a new route to chaos in the derived high dimensional models. 

Future work requires a study to the applicability of the method for other systems. 
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                                     ENERGY CONSERVATION THEOREM    
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In general the Fourier expansion of the nonlinear equations can be infinite dimensional 

and therefore one can have infinite number of conserved quantities in the limit 

0, 0ν κ→ → . Here I shall concern myself with the total energy, E, given by   

E = 21
( )

2
yT K Uψ − = +  ,                                                                   (A.1) 

where K is the kinetic energy, U is the potential energy, and the angle brackets denote 

the integral over the fluid domain. In the dissipationless limit, the time derivative of E  

is  

2 0
dE T

y
dt t t

ψ ψ
∂ ∂

= − ∇ − =
∂ ∂

                                                            (A.2) 

showing   that the total energy is conserved (I have set surface terms to zero in 

Equation. 4). The total internal (thermal) energy of the fluid, T , is also conserved. 

Let me now look at truncations of system (1) and their properties. In the first part we 

derive the equations of motion for modes of the truncations. I also examine the behavior 

of the invariants after they are truncated and show that they can be made to remain 

invariant by adding certain modes to the system. Such truncations will be called energy-

conserving. Finally, I examine the important properties of these truncations, namely that 

the truncated system has no singular solutions and that the thermal flux is properly 

modeled. 

To turn the system of partial differential equations (1) into ordinary differential 

equations, we use the following normal mode expansions for the ψ  and T   fields: 
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( )

,

( , )

( , , ) ,i m x ny

m n

m n A

x y t e
ψ

αψ ψ +

∈

= ∑
                                                                  (A.3) 

( )

,

( , )

( , , ) ,i m x ny

m n

m n A

T x y t T e
ψ

α +

∈

= ∑
                                                                   (A.4) 

where (1/ )Lα =  is the inverse aspect ratio.  The summations are over some sets TA and 

Aψ  modes (i.e., (m, n) pairs, where both m and n can be negative or zero). If both of 

these sets are infinite and contain all possible (m,n) pairs, then the equalities hold. 

Otherwise, the expansion is a truncation. Expansion (A.3 and A.4) are more general 

than used by previous authors (Humi (2004), Curry (1978)): first, it allows for a 

variable phase in the rolls (by allowing the m, n to be complex) and second, the 

expansion admits a non-vanishing shear flow part (the 0,nψ  modes). The reality of the 

fields and the stress-free boundary conditions (2) lead to 

                 , , ,m n m n m nψ ψ ψ∗

− − −= = −                                                                             (A.5) 

       

                  , , ,m n m n m nT T T∗

− − −= = −                                                                              (A.6)                                                                                                                               

so that if, say, 1,1ψ  is in Aψ  , then so are 1, 1ψ − , 1,1ψ −  and 1, 1ψ − −  similarly for TA  . Note 

that Aψ   and TA  need not contain the same modes. For convenience I define 

2 2 2

,m n m nρ α= +  to be the eigenvalues of the operator − 2∇ . If I insert Equation (A.5) 

into the Boussinesq equation (1), we obtain the following set of coupled nonlinear 

ODE’s: 
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'' ''

' ' '' ''

' ''

' ''

, ,' '' '' '

, , , , ,
, ,

( )
m n m n

m n m n m n m n m n
m m mm n m n

n n n

d m
i T m n m n

dt

ρψ α
νρ ψ α ψ ψ

ρ ρ+ =

+ =

= − − + −∑         (A.7)     

' ' '' ''

' ''

' ''

, ' '' '' '

, , , , ,
( )

m n

m n m n m n m n m n
m m m

n n n

dT
T i m mn m n T

dt
κρ α ψ α ψ

+ =

+ =

= − + + −∑                       (A.8)                   

  The kinetic and  potential energies given by Equation. (A.3)  have   the expansions 

2

, ,

,

1

2
m n m n

m n

K ρ ψ= ∑                                                                                         (A.9) 

0

0

( 1) p

p

p

U i T
p≠

−
= ∑                                                                                           (A.10)    

One can ask whether the total energy E is still conserved in the dissipation less limit for 

a truncated system. Taking  the time derivative of Equations. (A.9 and A.10) and  using 

Equations. (A.7 and A.8) with  ν  = κ  = 0, 

I obtain after some manipulation: 

         
( )dE d K U

dt dt

+
= = , , , ,

, ,
0

( 1) pm n m n m n m n p

m n m n
p

i m T i m Tα ψ α ψ∗ ∗

−

≠

+ −∑ ∑                       (A.11) 

Let N ≡ {max (n) | (m, n) }TA Aψ∈ ∪  i.e., the maximum vertical mode number included  

in the truncation. If one assume the sum over p runs from −N′ to N′, one can write 

Equation. (A.11) as 

        

'

'

, ,( 1)
N N

p

m n m n p

m n N p N

dE
i m T

dt
α ψ ∗

−
=− =−

= −∑ ∑ ∑                                                          (A.12) 

Now replace p by s = n − p: 

'

'

, ,( 1)
N N n

n s

m n m s

m n N s N n

dE
i m T

dt
α ψ

+
− ∗

=− =− +

= −∑ ∑ ∑                                                     (A.13) 
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where the maximum lower bound for s is −N′ + N when n = N, while the minimum 

upper bound is N′ − N when n = −N. If N′ = 2N, s [ , ]N N∈ −  always (since for |s| > N 

the mode is not included in the truncation and so it must vanish), and one can use the 

symmetries given by Equation. (A.5 and A.6) to show that 
dE

dt
 vanishes. Hence, p has 

to run from −2N to 2N, which implies adding the modes 0, 2NT −  . . . 0,2NT to TA  . For the 

internal energy, T , the expansion is 

02 p

podd

Ti
T

pπ
= ∑                                                                                            (A.14)    

 

and its time derivative in the dissipation less limit is 

       , ,

,

2
m n m n p

m n podd

d T i
m T

dt

α
ψ

π
∗

−= ∑∑                                                                  (A.15) 

 

Comparing  equation. (A.15)  with equation. (A.11), I see that the equation. (15) 

vanishes  under the same condition as the total energy E. 

To show that the truncated systems obtained have bounded solutions for all times t > 0, 

we consider the quantity Q: 

2 2

, 0,

, 0 0

2
2 ( )i

m n n

m n n

Q K T T
n> >

= + + −∑ ∑                                                             (A.16) 

where K is the kinetic energy defined previously. The quantity Q is non-negative and it 

includes all the modes in the truncation such that if any of them diverges, then Q 
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diverges. Thus, if Q is bounded from above then the truncated system has no unbounded 

solutions. 

Taking the time derivative of Q, with the viscosity and thermal conductivity nonzero, 

we can write:  

0min{2 , } 4
dQ

Q N
dt

ν κ κ≤ − +                                                                         (A.17) 

with 0N  being the number of 
0 n
T | modes included in the truncation. For Q > 

04

min{2 , }

Nκ

ν κ
, I have  

dQ

dt
 < 0, and so Q is bounded. One can define the horizontally 

averaged vertical thermal flux as ( ) ( ) ( )cv cdq y q y q y= + , where ( )cv yq y Tν=  is the 

convective thermal flux and ( ) (1 )cd yq y Tκ= − ∂  is the conductive thermal flux (the  bar 

denotes an average over x). For energy-conserving truncations one can write the 

expansion for q as : 

 
0,

0

cos
( ) 2

i

n

m

dTmy
q y q

m dt>

= − ∑                                                                    (A.18)  

In a steady-state situation this reduces to the expected result q = q , independent of y, 

showing that the energy cannot “pile up” in steady convection. For a general truncation, 

one cannot write q in the form given by Equation. (18) and the thermal flux has an 

unphysical y dependence in a steady-state. General truncations can also have 

unbounded solutions as is the case in (Howard (1986)) for large enough Rayleigh 

number. 
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                                                      APPENDIX B 

 

                            FORTRAN CODE FOR LYAPUNOV EXPONENTS   
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                                        Program Lyapunov exponents  estimation 

c     

c pini-initial prandl number,tau-incremental integration step 

c b-aspect ratio,Nmax=integration points 

c r-Rayleigh ratio,T-TIME 

c maxstepsr=rsteps,NLE=OF SYSTEM OF DIFFERENTIAL EQUATIONS 

c NE=OF SYSTEM AND LINEARIZED EQUATIONS 

c Toll-exponent tolerance 

c 

INTEGER I,NMAX,NE,NLE,K,MAXRSTP,IR,CT,kk,ij 

PARAMETER(NMAX=1000,NLE=8,MAXRSTP=100) 

REAL b,r,tau,y(72),dydx(72),sigma,ex1,ex2,ex3,ex(nle),exold(nle) 

real znorm(nle),gsc(nle),cum(nle),delr,rinti,pini,t,toll(nle) 

real epsl(nle),eps 

common sigma,b,ne 

open(unit=11,file=’lyap3.dat’,status=’unknown’) 

data tau,eps,delr,rinti,pini/.005,.001,.05,32.74,10.0/ 

b=8.0/3.0 

ne=30 

r=rinti  

sigma=pini 

do 14 i=1,nle 
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epsl(i)=eps 

14    continue      

      do 500 ir=1,maxrstp 

        r=r+delr 

        y(1)=10. 

        y(2)=5. 

        y(3)=15. 

        y(4)=20. 

        y(5)=25. 

        y(6)=30. 

        y(7)=35. 

        y(8)=40. 

         

      do 5 i=1,nle 

       ex(i)=0.0 

       exold(i)=1.0 

       y((nle+1)*i)=1.0 

       cum(i)=0.0 

5     continue 

   

      t=0.0 

      ct=0 
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      do 250 i=1,nmax 

      t=float(i)*tau 

      do 6 ij=1,nle 

      exold(nle)=ex(nle) 

6     continue 

call rk(y,dydx,tau,r) 

call ornorm(nle,y,cum,gsc,znorm,ex,t) 

do 128 k=1,nle 

if (k.eq.1) then 

ex1=ex(k) 

elseif(k.eq.2)then 

ex2=ex(k) 

elseif(k.eq.3)then 

ex3=ex(k) 

elseif(k.eq.4)then 

ex4=ex(k) 

elseif(k.eq.5)then 

ex5=ex(k)  

c    explot=ex3  

        endif 

 128   continue 
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c    write(*,*)r,t,ex1,ex2,ex3 

c    if((ex2.lt.eps).and.(ex2.gt.-eps))then 

c    write(9,98)ct,r,ex1,ex2,ex3 

c    

c   goto 500 

c   explot=0.0 

c  endif 

if(i.eq.nmax)then 

ct=1    

write(11,*)r,ex1,ex2,ex3,ex4,ex5 

goto 500 

endif 

do 125 k=1,nle 

toll(k)=abs(ex(k)-exold(k)) 

125    continue   

 

       do 127 kk=1,nle 

       if(toll(kk).ge.epsl(kk))then 

       goto 250 

       endif 

127    continue 
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       write(11,*)r,ex1,ex2,ex3,ex4,ex5 

       goto 500 

250    continue 

500    continue    

       stop 

       end 

c 

 

c      integration subroutine 

c 

       subroutine rk(y,dydx,tau,r) 

       real y(72),dydx(72),tau,y1(72),dydx2(72),dydx3(72),dydx4(72),r 

       integer i 

       common sigma,b,ne 

       call dervs(y,dydx,r,tau) 

         do 10 i=1,72 

          y1(i)=y(i)+.5*dydx(i) 

10      continue  

call dervs(y1,dydx2,r,tau) 

do 20 i=1,72 

y1(i)=y(i)+.5*dydx2(i) 

20       continue       
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        call dervs(y1,dydx3,r,tau) 

          do 30 i=1,72 

          y1(i)=y(i)+dydx3(i) 

30       continue 

        call dervs(y1,dydx4,r,tau) 

          do 50 i=1,72 

          y(i)=y(i)+(1./6.)*(dydx(i)+2.*dydx2(i)+2.*dydx3(i)+dydx4(i)) 

50       continue    

         return 

         end 

          

c 

c  linearized system of equations to be solved 

 

       subroutine dervs(y,dydx,r,tau) 

       real y(72),dydx(72),r,tau 

       common sigma,b,ne 

       dydx(1)=tau*(-sigma*y(1)+sigma*y(2)-(3/4)*1.41*y(4)*y(6)) 

       dydx(2)=tau*(-y(1)*y(3)+r*y(1)-y(2)+(3/4)*1.41*y(4)*y(7) 

1     +(3/4)*1.41*y(6)*y(5))              

dydx(3)=tau*(y(1)*y(2)-b*y(3)+2*y(4)*y(5))  
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dydx(4)=tau*(sigma*y(5)-(2)*sigma*y(4) 

1  +(3/4)*1.41*y(1)*y(6)) 

        

dydx(5)=tau*(-2*y(5)-2*y(4)*y(3)+2*r*y(4)-(3/4)*1.41*y(6)*y(2)+ 

1   3*(1.41/4)*y(1)*y(7)) 

dydx(6)=tau*(-(3)*sigma*y(6)-(1/4)*1.41*y(1)*y(4) 

1  +sigma*(1/3)*y(7)) 

       

dydx(7)=tau*(-(3/4)*1.41*y(4)*y(2)-3*(1.41/4)*y(1)*y(5)+2*r*y(6) 

1 -3*y(7)-2*y(6)*y(8)) 

dydx(8)=tau*(2*y(6)*y(7)-4*b*y(8)) 

c 

dydx(9)=tau*(sigma*y(17)-sigma*y(9)-(3/4)*1.41*y(6)*y(33) 

1 -(3/4)*1.41*y(4)*y(49)) 

dydx(10)=tau*(sigma*y(18)-sigma*y(10)-(3/4)*1.41*y(6)*y(34) 

1 -(3/4)*1.41*y(4)*y(50)) 

dydx(11)=tau*(sigma*y(19)-sigma*y(11)-(3/4)*1.41*y(6)*y(35) 

1 -(3/4)*1.41*y(4)*y(51)) 

dydx(12)=tau*(sigma*y(20)-sigma*y(12)-(3/4)*1.41*y(6)*y(36) 

1 -(3/4)*1.41*y(4)*y(52)) 

dydx(13)=tau*(sigma*y(21)-sigma*y(13)-(3/4)*1.41*y(6)*y(37) 

1-(3/4)*1.41*y(4)*y(53)) 
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dydx(14)=tau*(sigma*y(22)-sigma*y(14)-(3/4)*1.41*y(6)*y(38) 

1 -(3/4)*1.41*y(4)*y(54)) 

dydx(15)=tau*(sigma*y(23)-sigma*y(15)-(3/4)*1.41*y(6)*y(39) 

1 -(3/4)*1.41*y(4)*y(55)) 

dydx(16)=tau*(sigma*y(24)-sigma*y(16)-(3/4)*1.41*y(6)*y(40) 

1 -(3/4)*1.41*y(4)*y(56)) 

c              

dydx(17)=tau*((r-y(3))*y(9)-y(17)+(3/4)*1.41*y(7)*y(33) 

1  +(3/4)*1.41*y(4)*y(57)+(3/4)*1.41*y(6)*y(41) 

2  +(3/4)*1.41*y(5)*y(49))                     

                 

dydx(18)=tau*((r-y(3))*y(10)-y(18)+(3/4)*1.41*y(7)*y(34) 

1 +(3/4)*1.41*y(4)*y(58)+(3/4)*1.41*y(6)*y(42) 

2 +(3/4)*1.41*y(5)*y(50)) 

                        

dydx(19)=tau*((r-y(3))*y(11)-y(19)+(3/4)*1.41*y(7)*y(35) 

1 +(3/4)*1.41*y(4)*y(59)+(3/4)*1.41*y(6)*y(43) 

2 +(3/4)*1.41*y(5)*y(51)) 

                       

dydx(20)=tau*((r-y(3))*y(12)-y(20)+(3/4)*1.41*y(7)*y(36) 

1+(3/4)*1.41*y(4)*y(60)+(3/4)*1.41*y(6)*y(44) 

2+(3/4)*1.41*y(5)*y(52))   
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dydx(21)=tau*((r-y(3))*y(13)-y(21)+(3/4)*1.41*y(7)*y(37) 

1 +(3/4)*1.41*y(4)*y(61)+(3/4)*1.41*y(6)*y(45) 

2 +(3/4)*y(5)*1.41*y(53)) 

 

dydx(22)=tau*((r-y(3))*y(14)-y(22)+(3/4)*1.41*y(7)*y(38) 

1 +(3/4)*1.41*y(4)*y(62)+(3/4)*1.41*y(6)*y(46) 

2 +(3/4)*y(5)*1.41*y(54)) 

 

dydx(23)=tau*((r-y(3))*y(15)-y(23)+(3/4)*1.41*y(7)*y(39) 

1+(3/4)*1.41*y(4)*y(63)+(3/4)*1.41*y(6)*y(47) 

2+(3/4)*y(5)*1.41*y(55)) 

 

dydx(24)=tau*((r-y(3))*y(16)-y(24)+(3/4)*1.41*y(7)*y(40) 

1+(3/4)*1.41*y(4)*y(64)+(3/4)*1.41*y(6)*y(48) 

2+(3/4)*1.41*y(5)*y(56)) 

        

c          

dydx(25)=tau*(y(2)*y(9)+y(1)*y(17)-b*y(25)+2*y(5)*y(33) 

1   +2*y(4)*y(41)) 
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dydx(26)=tau*(y(2)*y(10)+y(1)*y(18)-b*y(26)+2*y(5)*y(34) 

1  +2*y(4)*y(42))    

                           

            

dydx(27)=tau*(y(2)*y(11)+y(1)*y(19)-b*y(27)+2*y(5)*y(35) 

1 +2*y(4)*y(43)) 

dydx(28)=tau*(y(2)*y(12)+y(1)*y(20)-b*y(28)+2*y(5)*y(36) 

1 +2*y(4)*y(44)) 

dydx(29)=tau*(y(2)*y(13)+y(1)*y(21)-b*y(29)+2*y(5)*y(37) 

1 +2*y(4)*y(45)) 

dydx(30)=tau*(y(2)*y(14)+y(1)*y(22)-b*y(30)+2*y(5)*y(38) 

1+2*y(4)*y(46)) 

dydx(31)=tau*(y(2)*y(15)+y(1)*y(23)-b*y(31)+2*y(5)*y(39) 

1 +2*y(4)*y(47)) 

dydx(32)=tau*(y(2)*y(16)+y(1)*y(24)-b*y(32)+2*y(5)*y(40) 

1 +2*y(4)*y(48)) 

c          

dydx(33)=tau*((3/4)*1.41*y(6)*y(9)-2*sigma*y(33) 

1 +sigma*y(41)+(3/4)*1.41*y(1)*y(49))                     

dydx(34)=tau*((3/4)*1.41*y(6)*y(10)-2*sigma*y(34) 

1 +sigma*y(42)+(3/4)*1.41*y(1)*y(50)) 

dydx(35)=tau*((3/4)*1.41*y(6)*y(11)-2*sigma*y(35) 
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1 +sigma*y(43)+(3/4)*1.41*y(1)*y(51)) 

dydx(36)=tau*((3/4)*1.41*y(6)*y(12)-2*sigma*y(36) 

1 +sigma*y(44)+(3/4)*1.41*y(1)*y(52)) 

dydx(37)=tau*((3/4)*1.41*y(6)*y(13)-2*sigma*y(37) 

1 +sigma*y(45)+(3/4)*1.41*y(1)*y(53)) 

dydx(38)=tau*((3/4)*1.41*y(6)*y(14)-2*sigma*y(38) 

1 +sigma*y(46)+(3/4)*1.41*y(1)*y(54)) 

dydx(39)=tau*((3/4)*1.41*y(6)*y(15)-2*sigma*y(39) 

1 +sigma*y(47)+(3/4)*1.41*y(1)*y(55)) 

dydx(40)=tau*((3/4)*1.41*y(6)*y(16)-2*sigma*y(40) 

1 +sigma*y(48)+(3/4)*1.41*y(1)*y(56))  

c  

dydx(41)=tau*(3*(1.41/4)*y(7)*y(9)-(3/4)*1.41*y(6)*y(17) 

1  -2*y(4)*y(25)+2*(r-y(3))*y(33)-2*y(41) 

2  -(3/4)*1.41*y(2)*y(49)+3*(1.41/4)*y(1)*y(57)) 

  

dydx(42)=tau*(3*(1.41/4)*y(7)*y(10)-1.41*(3/4)*y(6)*y(18) 

1 -2*y(4)*y(26)+2*(r-y(3))*y(34)-2*y(42) 

2 -(3/4)*1.41*y(2)*y(50)+3*(1.41/4)*y(1)*y(58)) 

 

dydx(43)=tau*(3*(1.41/4)*y(7)*y(11)-(3/4)*1.41*y(6)*y(19) 

1    -2*y(4)*y(27)+2*(r-y(3))*y(35)-2*y(43) 
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2 -(3/4)*1.41*y(2)*y(51)+3*(1.41/4)*y(1)*y(59)) 

dydx(44)=tau*(3*(1.41/4)*y(7)*y(12)-(3/4)*1.41*y(6)*y(20) 

1   -2*y(4)*y(28)+2*(r-y(3))*y(36)-2*y(44) 

2 -(3/4)*1.41*y(2)*y(52)+3*(1.41/4)*y(1)*y(60)) 

dydx(45)=tau*(3*(1.41/4)*y(7)*y(13)-(3/4)*(1.41)*y(6)*y(21) 

1 -2*y(4)*y(29)+2*(r-y(3))*y(37)-2*y(45) 

2 -(3/4)*1.41*y(2)*y(53)+3*(1.41/4)*y(1)*y(61)) 

 

dydx(46)=tau*(3*(1.41/4)*y(7)*y(14)-(3/4)*1.41*y(6)*y(22) 

1 -2*y(4)*y(30) +2*(r-y(3))*y(38)-2*y(46) 

2-(3/4)*1.41*y(2)*y(54)+3*(1.41/4)*y(1)*y(62)) 

 

dydx(47)=tau*(3*(1.41/4)*y(7)*y(15)-(3/4)*1.41*y(6)*y(23) 

1 -2*y(4)*y(31)+2*(r-y(3))*y(39)-2*y(47) 

2-(3/4)*1.41*y(2)*y(55)+3*(1.41/4)*y(1)*y(63)) 

 

dydx(48)=tau*(3*(1.41/4)*y(7)*y(16)-(3/4)*1.41*y(6)*y(24) 

1 -2*y(4)*y(32)+2*(r-y(3))*y(40)-2*y(48) 

2 -(3/4)*1.41*y(2)*y(56)+3*(1.41/4)*y(1)*y(64)) 

c  

dydx(49)=tau*(-3*(1/4)*1.41*y(4)*y(9)-(1/4)*1.41*y(1)*y(33) 

1 -3*sigma*y(49)+(1/3)*sigma*y(57))  
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dydx(50)=tau*(-3*(1/4)*1.41*y(4)*y(10)-(1/4)*1.41*y(1)*y(34) 

1 -3*sigma*y(50)+(1/3)*sigma*y(58)) 

dydx(51)=tau*(-3*(1/4)*1.41*y(4)*y(11)-(1/4)*1.41*y(1)*y(35) 

1 -3*sigma*y(51)+(1/3)*sigma*y(59)) 

dydx(52)=tau*(-3*(1/4)*1.41*y(4)*y(12)-(1/4)*1.41*y(1)*y(36) 

1 -3*sigma*y(52)+(1/3)*sigma*y(60)) 

dydx(53)=tau*(-3*(1/4)*1.41*y(4)*y(13)-(1/4)*1.41*y(1)*y(37) 

1 -3*sigma*y(53)+(1/3)*sigma*y(61))  

dydx(54)=tau*(-3*(1/4)*1.41*y(4)*y(14)-(1/4)*1.41*y(1)*y(38) 

1 -3*sigma*y(54)+(1/3)*sigma*y(62)) 

dydx(55)=tau*(-3*(1/4)*1.41*y(4)*y(15)-(1/4)*1.41*y(1)*y(39) 

1 -3*sigma*y(55)+(1/3)*sigma*y(63)) 

dydx(56)=tau*(-3*(1/4)*1.41*y(4)*y(16)-(1/4)*1.41*y(1)*y(40) 

1 -3*sigma*y(56)+(1/3)*sigma*y(64)) 

c 

dydx(57)=tau*(-3*(1.41/4)*y(5)*y(9)-(3/4)*1.41*y(4)*y(17) 

1 -(3/4)*1.41*y(2)*y(33)+2*(r-y(8))*y(49) 

2 -3*(1.41/4)*y(1)*y(41)-3*y(57)-2*y(6)*y(65)) 

  

dydx(58)=tau*(-3*(1.41/4)*y(5)*y(10)-(3/4)*1.41*y(4)*y(18) 

1 -(3/4)*1.41*y(2)*y(34)+2*(r-y(8))*y(50) 

2 -3*(1.41/4)*y(1)*y(42)-3*y(58)-2*y(6)*y(66)) 



 

 95 

 

dydx(59)=tau*(-3*(1.41/4)*y(5)*y(11)-(3/4)*1.41*y(4)*y(19) 

1 -(3/4)*1.41*y(2)*y(35)+2*(r-y(8))*y(51) 

2 -3*(1.41/4)*y(1)*y(43)-3*y(59)-2*y(6)*y(67)) 

 

dydx(60)=tau*(-3*(1.41/4)*y(5)*y(12)-(3/4)*1.41*y(4)*y(20) 

1 -(3/4)*1.41*y(2)*y(36)+2*(r-y(8))*y(52) 

2 -3*(1.41/4)*y(1)*y(44)-3*y(60)-2*y(6)*y(68)) 

 

dydx(61)=tau*(-3*(1.41/4)*y(5)*y(13)-(3/4)*1.41*y(4)*y(21) 

1 -(3/4)*1.41*y(2)*y(37)+2*(r-y(8))*y(53) 

2 -3*(1.41/4)*y(1)*y(45)-3*y(61)-2*y(6)*y(69)) 

 

dydx(62)=tau*(-3*(1.41/4)*y(5)*y(14)-(3/4)*1.41*y(4)*y(22) 

1 -(3/4)*1.41*y(2)*y(38)+2*(r-y(8))*y(54) 

2 -3*(1.41/4)*y(1)*y(46)-3*y(62)-2*y(6)*y(70)) 

 

dydx(63)=tau*(-3*(1.41/4)*y(5)*y(15)-(3/4)*1.41*y(4)*y(23) 

1 -(3/4)*1.41*y(2)*y(39)+2*(r-y(8))*y(55) 

2 -3*(1.41/4)*y(1)*y(47)-3*y(63)-2*y(6)*y(71)) 

 

dydx(64)=tau*(-3*(1.41/4)*y(5)*y(16)-(3/4)*1.41*y(4)*y(24) 
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1 -(3/4)*1.41*y(2)*y(40)+2*(r-y(8))*y(56) 

2 -3*(1.41/4)*y(1)*y(48)-3*y(64)-2*y(6)*y(72))      

      

c 

dydx(65)=tau*(2*y(7)*y(49)+2*y(6)*y(57)-4*b*y(65)) 

dydx(66)=tau*(2*y(7)*y(50)+2*y(6)*y(58)-4*b*y(66))   

dydx(67)=tau*(2*y(7)*y(51)+2*y(6)*y(59)-4*b*y(67))  

dydx(68)=tau*(2*y(7)*y(52)+2*y(6)*y(60)-4*b*y(68)) 

dydx(69)=tau*(2*y(7)*y(53)+2*y(6)*y(61)-4*b*y(69)) 

dydx(70)=tau*(2*y(7)*y(54)+2*y(6)*y(62)-4*b*y(70)) 

dydx(71)=tau*(2*y(7)*y(55)+2*y(6)*y(63)-4*b*y(71)) 

dydx(72)=tau*(2*y(7)*y(56)+2*y(6)*y(64)-4*b*y(72)) 

       

        

return 

end 

c 

c      subroutine ornorm constructs a new orthonormal basis by the 

c gram-schmidt method 

c 

         subroutine ornorm(nle,y,cum,gsc,znorm,ex,t) 

         real znorm(nle),y(72),gsc(nle),cum(nle),ex(nle),t 
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         integer j,nle,ne,k,l 

         common ne 

c      normalize first vector 

        znorm(1)=0.0 

        do 30 j=1,nle 

        znorm(1)=znorm(1)+y(nle*j+1)**2 

30      continue 

        znorm(1)=sqrt(znorm(1)) 

        do 40 j=1,nle 

        y(nle*j+1)=y(nle*j+1)/znorm(1) 

40      continue 

c     generate a new set of orthonormal vectors 

 

       do 80 j=2,nle 

c generate j-1 gsr coefficients 

       do 50 k=1,j-1 

        gsc(k)=0.0 

        do 50 l=1,nle 

        gsc(k)=gsc(k)+y(nle*l+j)*y(nle*l+k) 

 50     continue 

c    construct a new vector 

 



 

 98 

       do 60 k=1,nle 

       do 60 l=1,(j-1) 

        y(nle*k+j)=y(nle*k+j)-gsc(l)*y(nle*k+l) 

60     continue 

c   calculate vectors norm 

 

znorm(j)=0.0 

do 70 k=1,nle 

znorm(j)=znorm(j)+y(nle*k+j)**2 

70     continue 

       znorm(j)=sqrt(znorm(j)) 

c    normalize the new vector 

       do 80 k=1,nle 

       y(nle*k+j)=y(nle*k+j)/znorm(j) 

80     continue 

c    update vector magnitudes 

      do 90 k=1,nle 

      cum(k)=cum(k)+alog(znorm(k))/alog(2.0) 

      ex(k)=cum(k)/t 

c    write(*,*) t,ex(k) 

90    continue 

        return 
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        end 
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                                                     APPENDIX C 

 

                                MATLAB CODE TO INTEGRATE ODES 
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                                             Program lorenz5d 

Implicit none 

c this program solves 5d Lorenz system 

c declarations 

c n: number of equations, min/max in x, dist: length of x-steps 

c y(1): initial position, y(2):initial velocity 

Real*8Tau, y(5),sigma,b,R,xdat,ydat,zdat,t,sdat,wdat,vdat,v1dat 

Real*8 w1dat, s1dat 

c       real*8 h, e, left, right, k, dist, de 

        Integer n, i, ij 

        parameter(n=8192,tau=0.005,b=8.0/3.0) 

        data sigma,r/10.d0,15.0d0/ 

c     set initial conditions 

 

 

c 

c        eps=0.0001 !tolerance value for our result 

 

 

        y(1)=10 

        y(2)=5 
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        y(3)=20 

        y(4)=15 

        y(5)=30 

c       y(6)=35 

c       y(7)=15 

c       y(8)=10 

c       y(9)=25 

c       de=0.01 

 

 

 

 

c     do n steps of Runga-Kutta algorithm 

c     from right and also from left 

        Do 100 ij=1,n 

        t=0.0d0 

        Call rk4(tau,r,sigma,b,y) 

 

        t=float(ij)*tau 

 

       do 50 i=1,9 

         if(i.eq.1)then 
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          xdat=y(1) 

          elseif(i.eq.2)then 

          ydat=y(2) 

          elseif(i.eq.3)then 

          zdat=y(3) 

          elseif(i.eq.4)then 

          vdat=y(4) 

          elseif(i.eq.5)then 

          wdat=y(5) 

c          elseif(i.eq.6)then 

c          sdat=y(6) 

c          elseif(i.eq.7)then 

c          v1dat=y(7) 

c          elseif(i.eq.8)then 

c          w1dat=y(8) 

c          elseif(i.eq.9)then 

c          s1dat=y(9)   

          endif 

50        continue 

        open(unit=10,file=’lore1.dat’,status=’unknown’)  

        write(10,*)xdat,ydat,zdat 

100      continue 
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         stop 

         end 

 

 

  

 

 

c------------------------end of main program------------------------ 

c 

c fourth-order Runge-Kutta subroutine 

        Subroutine rk4(tau,r,sigma,b, y) 

        Implicit none 

c declarations 

        Real*8 dydx(5),tau,y1(5),dydx2(5),dydx3(5) 

        real*8   y(5),dydx4(5),r,sigma,b 

Integer i 

call dervs(y,dydx,r,sigma,b,tau) 

Do 10 i = 1,5 

y1(i) = y(i)+0.5d0 *dydx(i) 

 10     Continue 

        call dervs(y1,dydx2,r,sigma,b,tau) 

        Do 20 i = 1,5 
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           y1(i) = y(i)+0.5d0*dydx2(i) 

 

 20     Continue 

        call dervs(y1,dydx3,r,sigma,b,tau) 

        Do 30 i = 1,5 

           y1(i) = y(i)+dydx3(i) 

 

 30     Continue 

        call dervs(y1,dydx4,r,sigma,b,tau) 

        Do 40 i = 1,5 

 

     y(i) = y(i) + (dydx(i) + (2.*(dydx2(i) + dydx3(i)))+dydx4(i))/6.0 

 40     Continue 

c 

        Return 

        End 

c function which returns the derivatives 

        subroutine dervs(y,dydx,r,sigma,b,tau) 

        Implicit none 

c       declarations 

        Real*8 y(5),dydx(5),r,sigma,b,tau 
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        dydx(1)=tau*(-sigma*y(1)+sigma*y(2)) 

    

        dydx(2)=tau*(-y(1)*y(3)+r*y(1)-y(2)) 

            

        dydx(3)=tau*(y(1)*y(2)+2*y(4)*y(5)-b*y(3)) 

   

        dydx(5)=tau*(-2*y(4)*y(3)+2*r*y(4)-2*y(5)) 

        

        dydx(4)=tau*(sigma*y(5)-2*sigma*y(4))  

        return 

 

        end 
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                                                      APPENDIX D 

 

                                 MATLAB CODE FOR POWER SPECTRA  
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                                                   program on power spectra 

load roy1.dat; 

n=8192; 

xdat=roy1(1:n,1); 

ydat=roy1(1:n,2); 

zdat=roy1(1:n,3); 

fx=fft(xdat,n); 

pxx=fx.*conj(fx)/n; 

f=1000*(0:((n/2)-1))/n; 

px=log10(pxx); 

plot(f,px(1:(n/2)),’k’); 

axis([0 50 -5 5]); 

title(‘power spectrum for lorenz 8d’); 

xlabel(‘hz’,’fontsize’,15); 

ylabel(‘log10(power)’,’fontsize’,15); 

set(gca,’fontsize’,13,’x color’,’black’,’y color’,’black’,’z color’,’black’) 
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