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ABSTRACT

Translation of Array-based Loop Programs to Optimized SQL-based Distributed
Programs

Md Hasanuzzaman Noor, Ph.D.
The University of Texas at Arlington, 2021

Supervising Professor: Leonidas Fegaras

Most programs written to operate on data are usually expressed in terms of
array operations in sequential loops. However, these programs do not scale to large
amount of data generated by scientific experiments and industrial and commercial
markets. Given the success of machine learning algorithms on large amount of data
and the recent shift of industries to data-driven decision making, the data scientists
who are not familiar with Big Data frameworks have to rewrite the sequential pro-
grams to distributed data-parallel programs by hand. We present a novel framework,
called SQLgen, that automatically translates sequential loops to distributed data-
parallel programs. SQLgen translates array-based loops to Spark SQL programs. At
first, it translates the input programs to monoid comprehensions, which is the formal
framework of our translation model. Then, it translates the comprehensions to Spark
SQL programs. We chose Spark SQL because, unlike the Spark Core API programs,
Spark SQL programs are optimized by the query optimizer Catalyst. We compare the
performance of our generated programs with that of related work on real-world prob-
lems and show significant performance gain (up to 78x) while keeping performance
close to hand-written Spark SQL programs.
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Linear algebra operations, such as matrix multiplication, play a significant role
in many machine learning algorithms. The performance of these operations is highly
dependent on the storage implementations of these matrices. For example, in a dis-
tributed system, computations on block matrices are significantly faster than the
computations in the coordinate format in terms of computation and communication
cost. Hence, instead of coordinate arrays, these operations can be implemented in
block matrices, which are distributed collections of non-overlapping dense/sparse ar-
rays. Moreover, many graph algorithms can be expressed as repetitive computations
that resemble matrix multiplication in which the addition and multiplication opera-
tions have been replaced with generalized operations that form an algebraic structure
known as a semiring. Similar to matrix multiplication, these graph algorithms can be
implemented in a distributed system using block arrays. We present a novel frame-
work OSQLgen that automatically parallelizes array-based loop programs containing
linear algebra operations and graph programs that are equivalent to a semiring to
distributed data-parallel programs on block arrays. We compare the performance
of OSQLgen with GraphX, GraphFrames, MLlib, and hand-written Spark SQL pro-
grams on coordinate and block arrays on various real-world problems. On certain
problems, OSQLgen is up to 36x faster than GraphX, 25x faster than GraphFrames,
3x faster than MLlib, and 99x faster than hand-written Spark SQL programs on coor-
dinate arrays, giving performance close to that of hand-written Spark SQL programs
on block arrays.
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CHAPTER 1
Introduction

Many organizations are shifting towards data-driven decision making where the
key step is performing statistical analysis of data. During the statistical analysis,
the data analysts investigate the data to discover patterns, spot anomalies, and test
hypotheses. For example, they run different clustering and dimensionality reduction
algorithms to gain insight into the datasets. These algorithms are usually expressed
in terms of array operations because much of the data used in data analysis, scien-
tific computing, and machine learning come in the form of arrays, such as vectors,
matrices, and tensors. They operate on these array data using loops, which are in-
herently sequential since they access and update the array elements incrementally,
one at a time. Furthermore, many of these algorithms exhibit better performance
when expressed with mutable arrays, compared to other immutable data structures.
More importantly, scientists and data analysts are mostly familiar with imperative
programming languages, such as C and Python, and they often use numerical analysis
tools that are based on arrays, such as MATLAB and NumPy, and use algorithms
from linear algebra and data analysis textbooks that are expressed using loops and
arrays.

Scientific organizations, such as NASA and CERN, generate and process mas-
sive amounts of data to make interesting discoveries and solve complex research prob-
lems. Big Data provides scientists with greater statistical and predictive power for
data analysis. Moreover, many companies across many industries are also collecting
massive amounts of user data to make business decisions through user behavior an-
alytics using machine learning (ML) tools, such as Deep Neural Networks (DNN),
that give more accurate results with large amounts of data. The most popular ma-
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chine learning frameworks today, TensorFlow [1] and PyTorch [2], utilize specialized
hardware, such as GPUs, TPUs, and SIMD accelerators, to parallelize algorithms and
accelerate computations. These frameworks utilize the resources better when these re-
sources are scaled up to a single high-end computer, rather than scaled out to multiple
commodity computers. Recent research work has tried to close the gap of resource uti-
lization when resources are either scaled up or scaled out (see, for example, Horovod,
BigDL [3], and TensorFlowOnSpark). There has also been some recent work on com-
bining linear algebra with the relational algebra of relational database systems [4–6]
to let programmers write ML algorithms on conventional database systems. There
are also new frameworks, such as Map-Reduce [7], Spark [8], and Flink [9], commonly
known as Data-Intensive Scalable Computing Systems (DISC), that are designed
for processing data on a larger scale and utilize resources better than current ML
frameworks when these resources are scaled out to computer clusters. These DISC
systems are distributed data-parallel systems on clusters of shared-nothing computers
connected through a high-speed network. Apache Spark [8] improves the Hadoop per-
formance by maintaining intermediate results in the memory of the compute nodes,
instead of writing to the disk. Spark is also more expressive by supporting more
operations in the Spark API, such as flatMap, filter, and join. These operations allow
programmers to build rich pipelines of computation to do complex mathematical data
processing in a concise way.

Since analyzing large amounts of data play an important role in data anal-
ysis and in the accuracy of machine learning models, many organizations want to
convert their programs, originally written to run on a single computer, to work on
current DISC systems so that they can process larger amounts of data. Data ana-
lysts and scientists, who are mostly familiar with imperative programming languages
and numerical analysis tools that are based on arrays, have to learn new program-
ming paradigms to rewrite their programs to run on DISC systems. This rewriting
process slows down the development and deployment process and is non-trivial since
the programmers need to address the intricacies and avoid the pitfalls inherent to
these frameworks to get optimal performance. The lack of expertise in a particular
framework may result in erroneous or suboptimal programs. Furthermore, to achieve
flexibility and better performance, instead of using libraries, such as MLlib [10], pro-
grammers may often write ad-hoc array-based programs that are specific to their
needs. Consequently, instead of rewriting these ad-hoc programs by hand to run on a
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particular platform, one solution can be to use an automatic translation system that
will translate sequential programs with loops to distributed data-parallel programs.

Because of the prevalence of array-based loop programs and the rise of Big
Data, there have been significant efforts to automatically parallelize loops with array
operations in the area of High Performance Computing (HPC). The key challenge
here is to address loop carried dependencies, also known as recurrences. A recurrence
occurs when there is a dependency between the iterations of a loop. For example, the
update 𝑉 [𝑖] := 𝑉 [𝑖−1]+𝑉 [𝑖+1] on array 𝑉 inside a loop over 𝑖 is a recurrence since the
values of 𝑉 read in one iteration of the loop depend on the updated values of 𝑉 in the
previous iterations. In most parallelization frameworks, the loops without recurrences
are simply those that are “embarrassingly parallel" (DOALL). Even though there
have been significant efforts to parallelize the loop-based programs in HPC, there
has not been much work to automatically parallelize loops on DISC systems, with
the notable exceptions of DIABLO, MOLD, and CASPER. CASPER [11] translates
sequential Java programs to Hadoop programs while MOLD [12] translates sequential
Java programs to Spark programs. DIABLO [13] translates loop-based programs to
comprehensions and then to Spark programs. Both MOLD and DIABLO translate
the loops to RDD operations based on the Spark Core API. A Resilient Distributed
Dataset (RDD) is an immutable distributed collection of elements of data, partitioned
across a cluster of nodes. Even though RDDs can be operated on unstructured data in
parallel using transformations and actions, working with RDDs has some performance
pitfalls. One such pitfall is that the RDD operations, such as map and flatMap,
take functions as arguments that are compiled to bytecode and are not optimized.
Spark has addressed these shortcomings by providing two additional APIs, called
DataFrames and Datasets [14].

1.1 Highlights of Our Approach

Our goal is to design a framework that will translate array-based loops to a
declarative domain-specific language (DSL), more specifically, Spark SQL [14]. At
first, loops are translated to equivalent monoid comprehensions [13] and then to Spark
SQL. Not all loops can be translated to SQL. We provide simple rules for dependence
analysis that detect loops that cannot be translated to SQL. One such case is when
an array is read and updated in the same loop. For example, we reject the update
𝑉 [𝑖] := 𝑉 [𝑖− 1] + 𝑉 [𝑖 + 1] inside a loop over 𝑖 because 𝑉 is read and updated in the
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same loop. But, unlike most related work, we can translate incremental updates of
the form 𝑉 [𝑒1]+= 𝑒2, for some commutative operation + and some terms 𝑒1 and 𝑒2.
We chose Spark SQL as our target language since it is in general more efficient than
the Spark Core API because it takes advantage of existing extensive work on SQL
optimization for relational database systems. In Spark SQL, datasets are expressed as
DataFrames, which are distributed collection of data, organized into named columns.
The schema of a DataFrame must be known, while DataFrame computations are
done on columns of named and typed values. Operations from the Spark Core API,
on the other hand, are higher-order with arguments that are functions coded in the
host language and compiled to bytecode, which cannot be analyzed during program
optimization. Hence, Spark SQL can find and apply optimizations that are very
hard to detect automatically when the same program is written in the Spark Core
API. Spark DataFrames have two specialized back-end components, Catalyst (the
query optimizer) and Tungsten (the off-heap serializer), which facilitate optimized
performance on other Spark components, such as MLlib, that are primarily based
on DataFrame API. Catalyst supports both rule-based and cost-based optimization.
For example, it can optimize a query by reordering the operations, such as pushing
a filter operation before a join operation. The operations in Spark SQL reduce the
amount of data sent over the network by selecting only the relevant columns and
partitions from the dataset necessary for the computation. Consequently, we expect
that loops translated to Spark SQL, as in our framework, would perform better than
loops translated to Spark RDD operations, as it was done by earlier frameworks.

Consider, for example, a product 𝐶 of two square matrices 𝐴𝑛×𝑛 and 𝐵𝑛×𝑛 such
that 𝐶𝑖𝑗 =

∑︀
𝑘 𝐴𝑖𝑘 *𝐵𝑘𝑗. In a loop-based language, it can be expressed as:

for 𝑖 = 0, 𝑑− 1 do

for 𝑗 = 0, 𝑑− 1 do {
𝐶[𝑖, 𝑗] = 0.0;

for 𝑘 = 0, 𝑑− 1 do {
𝐶[𝑖, 𝑗] += 𝐴[𝑖, 𝑘] *𝐵[𝑘, 𝑗]);

}
}

Our framework translates the previous loop-based program to a bulk assignment to
matrix 𝐶 that calculates all the values of 𝐶 in one shot using a bag comprehension
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that returns new content of 𝐶. Here, the cumulative effects of all the updates to
the matrix 𝐶 throughout the iterations are performed in bulk by grouping the values
across the iterations by the matrix indices and then by summing up these values
for each group. Then the matrix 𝐶 can be replaced with these new values. More
specifically, the above program is translated to a comprehension as follows:

𝐶 := {{{ ((𝑖, 𝑗),+/𝑣) ||| ((𝑖, 𝑘),𝑚)← 𝐴,

((𝑘′, 𝑗), 𝑛)← 𝐵, 𝑘 = 𝑘′,

let 𝑣 = 𝑚 * 𝑛,
group by (𝑖, 𝑗)}}}.

Here, the comprehension retrieves the values 𝐴𝑖𝑘 ∈ 𝐴 and 𝐵𝑘𝑗 ∈ 𝐵 as ((𝑖, 𝑘),𝑚) and
((𝑘′, 𝑗), 𝑛) so that 𝑘 = 𝑘′, and sets 𝑣 = 𝑚 * 𝑛 = 𝐴𝑖𝑘 * 𝐵𝑘𝑗. After we group the values
by the matrix indexes 𝑖 and 𝑗, the variable 𝑣 is lifted to a bag of numerical values
𝐴𝑖𝑘*𝐵𝑘𝑗, for all 𝑘. Hence, the aggregation +/𝑣 will sum up all the values in the bag 𝑣,
deriving

∑︀
𝑘 𝐴𝑖𝑘*𝐵𝑘𝑗 for the 𝑖𝑗 element of the resulting matrix. This comprehension is

then translated to the following Spark SQL program, where matrices are represented
as tables 𝐴, 𝐵, and 𝐶 with schema ((_1,_2),_2):

select 𝑠𝑡𝑟𝑢𝑐𝑡(𝐴._1._1, 𝐵._1._2),

𝑠𝑢𝑚(𝐴._2 *𝐵._2)

from 𝐴 join𝐵 on𝐴._1._2 = 𝐵._1._1

groupby 𝐴._1._1, 𝐵._1._2

Here, the tables 𝐴 and 𝐵 are joined on the column _1._2 of matrix 𝐴 and on column
_1._1 of matrix 𝐵 and then grouped by the column _1._1 of matrix 𝐴 and column
_1._2 of matrix 𝐵. Finally the sum of the product of the values for each group is
calculated, giving the entries of matrix product as the final result.

1.2 Implementing Block Array Operations

In SQLgen and the related work, matrices and vectors are represented using a
coordinate format which accompanies each nonzero element with its row and column
indices. Although straightforward, this storage format is space inefficient and adds
a communication overhead during data shuffle. Instead, one can use an efficient
compact array storage format, such as a block matrix, which is a distributed collection
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of non-overlapping dense/sparse array blocks. In Spark [15], a block matrix can
be implemented as a distributed collection (an RDD) of fixed-sized dense square
tiles of type RDD[((Int, Int),Array[Double])], where each block ((i, j),A) has block
coordinates 𝑖 and 𝑗 and values stored in the dense matrix 𝐴, which has a fixed size
𝑁 * 𝑁 , for some constant 𝑁 . This storage format not only reduces the required
storage but also reduces the communication cost of a distributed algorithm, since the
amount of data that needs to be transferred over the network is less. Furthermore,
for some distributed algorithms, the communication cost is further reduced because
the block implementation requires less replication of data.

Consider the matrix multiplication algorithm again where, the coordinate arrays
𝐴, and 𝐵 are represented as tables with schema A((i, k),m), and B((k′, j), n). If
the matrices 𝐴 and 𝐵 are of size 𝑛2, then during the join, each row of the input
matrices is copied 𝑛 times which is also known as replication rate (𝑟). Instead, we can
store the matrices as block matrices with schema 𝐴𝑏((𝐼,𝐾),𝑀) and 𝐵𝑏((𝐾 ′, 𝐽), 𝑁),
where 𝐼, 𝐾, 𝐾 ′ and 𝐽 are block coordinates and 𝑀 and 𝑁 are array blocks. Then,
the replication rate 𝑟 to compute the product 𝐶𝑏𝐼𝐽 =

∑︀
𝐾 𝐴𝐼𝐾 * 𝐵𝐾𝐽 is

√
𝑛 times

less than the coordinate approach [16]. Furthermore, the multiplication between the
array blocks can be pushed down to CPU/GPU using efficient Basic Linear Algebra
Subprograms (BLAS) routines [17]. Hence, the block matrix approach is superior to
the coordinate approach in terms of space, communication, and computation time.

Over the past few decades, researchers have proposed solutions to generalize
graph algorithms in a form similar to the matrix multiplication algorithm. These
algorithms are represented using a general algebraic structure called a semiring, where
the + and * operations of matrix multiplication are replaced with an additive monoid
⊕ and a multiplicative monoid ⊗, respectively. Formally, a semiring (𝑆,⊕,⊗, 0, 1) is
an algebraic structure defined over a set 𝑆, equipped with two monoids: an additive
monoid (⊕, 0) : 𝑆 × 𝑆 → 𝑆 with identity 0 and a multiplicative monoid (⊗, 1) :

𝑆×𝑆 → 𝑆 with identity 1. The additive monoid must be associative and commutative
and the multiplicative monoid needs to be associative and distribute over the additive
monoid. For example, in terms of a semiring, the matrix multiplication algorithm
between matrices 𝐴 and 𝐵 can be represented as +(𝐴 * 𝐵), where ⊕ and ⊗ are
equal to + and *, respectively. Similarly, the classical graph algorithm problem all-
pairs shortest path can be represented in terms of the semiring 𝑚𝑖𝑛(𝐺 + 𝐺) where
𝐺 is the transition matrix of the input graph 𝐺. On the other hand, the block
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matrix multiplication can also be represented in terms of the semiring (𝑆,+𝑏, *𝑏, 0, 1),
where the set 𝑆 consists of 𝑁 × 𝑁 blocks and +𝑏, and *𝑏 represent addition and
multiplication of blocks. We will show that, the algorithms that can be expressed
in terms of semirings and are based on scalar operations can also be expressed in
terms of semirings that are based on block operations. We have provided a proof
of equivalency in terms of comprehensions in Appendix A. Given this equivalency,
an array-based loop program that is equivalent to a semiring can be translated to a
DISC program on block arrays so it can leverage the performance benefits of block
implementation.

Our goal is to capitalize on this performance gain based on semiring and imple-
ment this in our framework SQLgen [18]. This can be done by translating array-based
loop programs that are equivalent to semirings to programs on block arrays expressed
in Spark SQL [14]. At first, loops are translated to equivalent monoid comprehen-
sions, as in SQLgen, but instead of directly translating the comprehensions to Spark
SQL programs, we check if a comprehension is equivalent to a semiring. In that case,
we translate the comprehension to a Spark SQL program on block arrays. If the com-
prehensions are not equivalent to a semiring, we translate the programs to a Spark
SQL program by following the rules of SQLgen.

Let’s consider one iteration of the all-pairs shortest path algorithm on an input
graph 𝐺 written using arrays and loops. A graph 𝐺 is represented by a transition
matrix 𝐺 where 𝐺𝑖𝑗 = distance between the nodes 𝑖 and 𝑗 with 𝐺𝑖𝑖 = 0. When there
is no path between two nodes, the distance is initialized to +∞.

var 𝑅 : matrix[Double] = matrix();

for 𝑖 = 0, 𝑛− 1 do

for 𝑗 = 0, 𝑛− 1 do {
for 𝑘 = 0, 𝑛− 1 do {
𝑅[𝑖, 𝑗] := 𝑚𝑖𝑛(𝑅[𝑖, 𝑗], 𝐺[𝑖, 𝑘] + 𝐺[𝑘, 𝑗]); //𝑢𝑝𝑑𝑎𝑡𝑒

}
𝐺[𝑖, 𝑗] := 𝑅[𝑖, 𝑗]; //𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡

}

The above program consists of two key steps: the update step and the assignment
step. In the update step, for each vertex, the algorithm finds the minimum distance
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path among other vertices, and in the assignment step, the updated graph replaces
the existing graph.

SQLgen translates this all-pairs shortest program to a comprehension as follows:

𝑅 := {{{ ((𝑖, 𝑗),𝑚𝑖𝑛/𝑣) ||| ((𝑖, 𝑘),𝑚)← 𝐺, ((𝑘′, 𝑗), 𝑛)← 𝐺, 𝑘 = 𝑘′,

let 𝑣 = 𝑚 + 𝑛, group by (𝑖, 𝑗)}}}

This comprehension retrieves the values 𝐺𝑖𝑘 ∈ 𝐺 and 𝐺𝑘𝑗 ∈ 𝐺 in coordinate format
as triples ((𝑖, 𝑘),𝑚) and ((𝑘′, 𝑗), 𝑛) so that 𝑘 = 𝑘′, and sets 𝑣 = 𝑚 + 𝑛 = 𝐺𝑖𝑘 + 𝐺𝑘𝑗.
After we group the values by the indices 𝑖 and 𝑗, the variable 𝑣 is lifted to a bag
of numerical values 𝐺𝑖𝑘 + 𝐺𝑘𝑗, for all 𝑘. Hence, the aggregation 𝑚𝑖𝑛/𝑣 will return
the minimum of all the values in the bag 𝑣, deriving 𝑚𝑖𝑛𝑘{𝐴𝑖𝑘 + 𝐵𝑘𝑗} for the 𝑖𝑗

element of the resulting array. Since this comprehension is equivalent to a semir-
ing comprehension, we translate this comprehension to a semiring comprehension on
block arrays. At first, the array 𝐺 is converted to block array 𝐺𝑏 with nested schema
((I : Int, J : Int),V : Array[Double]) where 𝐼, 𝐽 represents block indices and 𝑉 repre-
sents a block. The scalar operations 𝑚𝑖𝑛, and + are replaced with block min (𝑚𝑖𝑛𝑏)

and block addition (+𝑏), respectively:

𝑅𝑏 := {{{ ((𝑋._1._1, 𝑌._1._2), (𝑚𝑖𝑛𝑏/𝑉 )) ||| 𝑋 ← 𝐺𝑏, 𝑌 ← 𝐺𝑏,

𝑋._1._2 = 𝑌._1._1, let𝑉 = 𝑋._2 +𝑏 𝑌._2,

group by (𝑋._1._1, 𝑌._1._2)}}}

Our frameworks, called SQLgen and OSQLgen, have been implemented in Scala
using compile-time reflection. The source language used to expressed loops with array
operations is the same proof-of-concept language defined in DIABLO [13], while the
target language is Spark SQL. Our framework can be easily extended to work with
other imperative programming languages, such as C or Java.

1.3 Dissertation organization

In chapter 2, we discuss the related work that translate array-based loop pro-
grams both in distributed and non-distributed systems. We also discuss about related
work in storage systems and graph algorithms in HPC and distributed systems.

In chapter 3, we discuss the theory behind the formal basis of our framework
called monoid comprehension. We also discuss about the syntax of the proof-of-
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concept language that we have used in our system and the translation process of that
language to comprehensions.

In chapter 4, we present our first translation system called SQLgen along with
the description of the translation process. We also discuss the performance of SQLgen
on real-world problems in comparison to related work.

In chapter 5, we present our second translation system called OSQLgen along
with the description of the translation process and storage systems. We also discuss
the performance of OSQLgen on real-world graph and linear algebra problems in
comparison to related work on synthetic and real datasets.

Finally, in chapter 6, we discuss about the limitations of our frameworks and
future work.
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CHAPTER 2
Related Work

2.1 Program Transformation

In this section, we mention some noteworthy work in the area of program trans-
formation from array-based loops to Big Data systems. First, we mention works in
the area of HPC and then in DISC systems.

2.1.1 Program Transformation in HPC

Researchers in HPC explored the problem of automatic parallelization of various
kinds of loops. The most common approach for parallelizing loops is DOALL [19]. In
DOALL, each iteration is executed in parallel if there is no dependency among the iter-
ations, a restriction commonly known as a loop-carried dependency. DOACROSS [20]
addresses this problem of loop-carried dependencies by rewriting the loop to extract
the computations that can be performed independently. The independent part is
computed in parallel and later synchronized with the dependent part which is com-
puted sequentially. Another approach is DOPIPE [21], a pipelined parallelism where
an iteration with a loop-carried dependency is distributed over multiple synchronized
loops. Here, each step starts when there is sufficient data available from the previous
step.

In HPC, communications are done usually via Message Passing Interface(MPI)
which requires coding at the transport layer, for example, decomposition of data struc-
ture across processors. Optimization in HPC is slow because to make any changes
all MPI code has to be rewritten. There is also no data locality i.e. data are sent
to one node to another for a computation which makes the computation slow. Also
with the emergence of supercomputing hardware and increasing mean time between

10



failures of the computers, the computations in HPC can be even slower to rebalance
the computation on the alternative set of resources. On the other hand, DISC systems
don’t require the developers to code at the transport layer that saves the develop-
ment time. Instead of sending data around it sends the computations to the data
which reduces network overhead. Most importantly DISC systems provide automatic
fault tolerance. So in case of a failure of a node, the DISC systems will rebalance
the computations for the developers. The trade-off is DISC systems have a limited
communication model compared to MPI. It uses shuffle operation to communicate
and the shuffle operation can make computations very slow. However, DISC systems
emphasize using this operation as less as possible which makes the system efficient.

2.1.2 Program Transformation in DISC Systems

MOLD [12] is a translator of Java code to Scala code that can be executed
either on a single computing node via parallel Scala collections or on a cluster of
computers in a distributed manner using Spark. Like DIABLO [13], SQLgen [18]
and OSQLgen [22], it uses a group-by operation to parallelize loops with recurrences.
That is, the cumulative effects of these recurrences are brought together by grouping
the new array values by their destination location. For incremental updates on arrays,
the source values of these updates are grouped by the array index of the incremented
array and are aggregated in parallel. However, the authors use a template-based
rewriting system to match specific templates of Java loops. They use a heuristic
search to find the matching templates for each program fragment and to generate the
Map-Reduce output program. Another translator is CASPER [11], which translates
sequential Java code into semantically equivalent Map-Reduce programs. It uses a
program synthesizer to search over the space of sequential program summaries, ex-
pressed as IRs. Unlike MOLD, CASPER uses a theorem prover based on Hoare logic
to prove that the derived Map-Reduce programs are equivalent to the original sequen-
tial programs. Our system differs from both MOLD and CASPER as it translates
loops directly to parallel programs using simple meaning preserving transformations,
without having to search for rules to apply. The actual rule-based optimization of
our translations is done at a second stage using a small set of rewrite rules, thus
separating meaning-preserving translation from optimization.

DIABLO [13] translates array-based loops to parallel programs using simple
meaning preserving transformations. Unlike MOLD and CASPER, it does not use
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any search mechanisms, which makes the translation process fast. The transforma-
tion stage is separated from the optimization stage and optimization is done using
a small set of rewrite rules. However, DIABLO lacks a comprehensive cost-based
query optimizer. SQLgen, and OSQLgen improve DIABLO by replacing its back-end
engine with Spark SQL which utilizes optimization techniques developed by database
researchers. The translated Spark SQL can be faster than the programs translated
by DIABLO when the schema information of the input dataset is available. Spark
SQL can also be faster than a hand-optimized RDD based Scala program because of
the effectiveness of Catalyst and Tungsten in Spark.

2.1.3 Program Transformation in Database Systems

Another area related to automated parallelization for DISC systems is deriving
SQL queries from imperative code in a non-distributed setting [23]. Unlike our work,
this work addresses aggregates, inserts, and appends to lists but does not address array
updates. The work by Luo et al. [6] adds a new attribute type to relational schemas
to capture arrays that can fit in memory and extends SQL with array operators.
Although these SQL queries are evaluated in Map-Reduce, the arrays are not fully
distributed. Instead, large matrices must be split into multiple rows as indexed tiles
and the programmer must use SQL to implement a matrix operation by correlating
these tiles. This makes it hard to specify some matrix operations, such as matrix
inversion.

2.2 Array Storage Systems

Many array-processing systems use special storage techniques, such as regular
tiling, to achieve better performance on certain array computations. TileDB [24]
is an array data storage management system that performs complex analytics on
scientific data. It organizes array elements into ordered collections called fragments,
where each fragment is dense or sparse, and groups contiguous array elements into
data tiles of fixed capacity. Unlike our works, the focus of TileDB is on the I/O
optimization of array operations by using small block updates to update the array
stores. SciDB [25] is a large-scale data management system for scientific analysis
based on an array data model with implicit ordering. The SciDB storage manager
decomposes arrays into a number of equal-sized and potentially overlapping chunks,
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in a way that allows parallel and pipeline processing of array data. Like SciDB,
ArrayStore [26] stores arrays into chunks, which are typically the size of a storage
block. One of their most effective storage method is a two-level chunking strategy
with regular chunks and regular tiles. SciHadoop [27] is a Hadoop plugin that allows
scientists to specify logical queries over arrays stored in the NetCDF file format.
Their chunking strategy, which is called the Baseline partitioning strategy, subdivides
the logical input into a set of partitions (sub-arrays), one for each physical block
of the input file. SciHive [28] is a scalable array-based query system that enables
scientists to process raw array datasets in parallel with a SQL-like query language.
SciHive maps array datasets in NetCDF files to Hive tables and executes queries
via Map-Reduce. Based on the mapping of array variables to Hive tables, SQL-like
queries on arrays are translated to HiveQL queries on tables and then optimized by
the Hive query optimizer. SciMATE [29] extends the Map-Reduce API to support
the processing of the NetCDF and HDF5 scientific formats, in addition to flat-files.
SciMATE supports various optimizations specific to scientific applications by selecting
a small number of attributes used by an application and perform data partition based
on these attributes. TensorFlow [30] is a dataflow language for machine learning
that supports data parallelism on multi- core machines and GPUs but has limited
support for distributed computing. SystemML [31] is a machine learning (ML) library
built on top of Spark. It supports a high-level specification of ML algorithms that
simplifies the development and deployment of ML algorithms by separating algorithm
semantics from underlying data representations and runtime execution plans. There
has also been some recent work on combining linear algebra with relational algebra to
let programmers implement ML algorithms on relational database systems [5, 6, 32].
Although many of these systems support block matrices, their runtime systems are
based on a library of built-in, hand-optimized linear algebra operations, which is hard
to extend with new storage structures and algorithms. Furthermore, many of these
systems lack a comprehensive framework for automatic inter-operator optimization,
such as finding the best way to form the product of several matrices. Like these
systems, our frameworks separates specification from implementation, but, unlike
these systems, our system will support ad-hoc operations on array collections, rather
than a library of built-in array operations, is extensible with customized storage
structures, and uses relational-style optimizations to optimize array programs with
multiple operations.
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2.3 Optimizing Iterative Graph Algorithms

In current distributed systems, the vertex-centric approach is prevalent. In the
vertex centric approach, a graph program is expressed as a sequence of iterations, in
each of which, all the vertices were updated by the neighboring vertices in parallel.
This was introduced by Pregel [33] and later an open-source version was released
named Apache Giraph [34] for Hadoop. Both systems provide APIs that pairs the
bulk synchronous parallel (BSP) computation model [35] with a vertex-centric pro-
gramming model for developers to implement graph algorithms. Spark also provides
similar APIs for graph algorithms GraphX [36] which is based on RDD and Graph-
Frames [37] which is based on DataFrames.

In contrast to the vertex-centric approach, graph algorithms have also been
studied in terms of linear algebra [38]. The key idea is that many graph algorithms
can be represented in a semiring structure. Basically, a semiring consists of two
monoids, one is additive and the other one is multiplicative which corresponds to the
matrix multiplication operation. Essentially, the graph algorithms can be represented
in terms of matrix-matrix/vector operations. Combinatoral BLAS [39] is one of the
most popular systems to exploit this concept. It is implemented for the MPI system.
Later, Graph Programming Interface(GPI) [40] was implemented on Spark Scala.
This gives an interface to the developers to write graph algorithms while hiding the
implementation details such as choosing storage format and matrix representations.
Our framework OSQLgen [22] for translating array-based loops containing iterative
graph algorithms to a DISC system differs from related work because most recent
works are implemented on HPC systems with the exception of GPI. While GPI is
implemented on the Spark Core API system, we implement our system on Spark
SQL so the system can leverage on Catalyst optimizer and massive parallelism by
GPUs if available.
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CHAPTER 3
Formal Framework

3.1 Introduction

Our frameworks SQLgen and OSQLgen are built on top of our earlier framework
DIABLO(a Data-Intensive Array-Based Loop Optimizer) [13]. The source language
used in these frameworks to express loops with array operations is the same proof-
of-concept language used in DIABLO. DIABLO translates loop-based programs to
comprehensions and then to Spark Core API programs. In this chapter, we discuss the
syntax of our proof-of-concept language, comprehensions, and the translation from
loop programs to comprehensions.

3.2 Syntax of the Loop-Based Language

The syntax of the loop-based language is given in Figure 3.1. This is a proof-of-
concept loop-based language; many other languages, such as Java or C, can be used
instead. Types of values include parametric types for various kinds of collections,
such as vectors, matrices, key-value maps, bags, lists, etc. To simplify our translation
rules and examples in this section, we do not allow nested arrays, such as vectors
of vectors. There are two kinds of assignments, an incremental update 𝑑⊕= 𝑒 for
some commutative operation ⊕, which is equivalent to the update 𝑑 := 𝑑 ⊕ 𝑒, and
all other assignments 𝑑 := 𝑒. To simplify translation, variable declarations, var 𝑣 :

𝑡 = 𝑒, cannot appear inside for-loops. There are two kinds of for-loops that can be
parallelized: a for-loop in which an index variable iterates over a range of integers,
and a for-loop in which a variable iterates over the elements of a collection, such
as the values of an array. Our current framework generates sequential code from a
while-loop. Furthermore, if a for-loop contains a while-loop in its body, then this
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Type:
𝑡 ::= 𝑣 basic type (int, float, . . . )
| 𝑣[𝑡] parametric type
| (𝑡1, . . . , 𝑡𝑛) tuple type
| ⟨𝐴1 : 𝑡1, . . . , 𝐴𝑛 : 𝑡𝑛 ⟩ record type

Expression:
𝑒 ::= 𝑑 a destination (L-value)
| 𝑒1 ⋆ 𝑒2 any binary operation ⋆
| (𝑒1, . . . , 𝑒𝑛) tuple construction
| ⟨𝐴1= 𝑒1, . . . , 𝐴𝑛= 𝑒𝑛 ⟩ record construction
| 𝑐𝑜𝑛𝑠𝑡 constant (int, float, . . . )

Destination:
𝑑 ::= 𝑣 variable
| 𝑑.𝐴 record projection
| 𝑣[𝑒1, . . . , 𝑒𝑛] array indexing

Statement:
𝑠 ::= 𝑑+= 𝑒 incremental update
| 𝑑 := 𝑒 assignment
| var 𝑣 : 𝑡 = 𝑒 declaration
| for 𝑣 = 𝑒1, 𝑒2 do 𝑠 iteration
| for 𝑣 in 𝑒 do 𝑠 traversal
| while (𝑒) 𝑠 loop
| if (𝑒) 𝑠1 [ else 𝑠2 ] conditional
| { 𝑠1; . . . ; 𝑠𝑛} statement block

Figure 3.1. Syntax of loop-based programs.

for-loop too becomes sequential and it is treated as a while-loop. Finally, a statement
block contains a sequence of statements.

3.3 Recurrence and Restrictions for Parallelization

A recurrence occurs when there is a dependency between the iterations of a
loop. For example, the update 𝑉 [𝑖] := 𝑉 [𝑖 − 1] + 𝑉 [𝑖 + 1] on array 𝑉 inside a loop
over 𝑖 is a recurrence since the values of 𝑉 read in one iteration of the loop depend on
the updated values of 𝑉 in the previous iterations. DIABLO can translate for-loops
to equivalent DISC programs when these loops satisfy certain restrictions described
in this section.
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Our restrictions use the following definitions. For any statement 𝑠 in a loop-
based program, we define the following three sets of L-values (destinations): the
readers ℛJ𝑠K, the writers 𝒲J𝑠K, and the aggregators 𝒜J𝑠K. The readers are the L-
values read in 𝑠, the writers are the L-values written (but not incremented) in 𝑠, and
the aggregators are the L-values incremented in 𝑠. For example, for the following
statement:

𝑉 [𝑊 [𝑖]] += 𝑛 * 𝐶[𝑖] * 𝐶[𝑖 + 1]

where 𝑖 is a loop index, the aggregators are 𝒜J𝑠K = {{𝑉 [𝑊 [𝑖]]}}, the readers are ℛJ𝑠K =

{{𝑊 [𝑖], 𝑛, 𝐶[𝑖], 𝐶[𝑖 + 1]}}, and the writers are 𝒲J𝑠K = ∅. Two L-values 𝑑1 and 𝑑2

overlap, denoted by overlap(𝑑1, 𝑑2), if they are the same variable, or they are equal
to the projections 𝑑′1.𝐴 and 𝑑′2.𝐴 with overlap(𝑑′1, 𝑑

′
2), or they are array accesses over

the same array name. The context of a statement 𝑠, context(𝑠), is the set of outer
loop indexes for all loops that enclose 𝑠. Note that, each for-loop must have a distinct
loop index variable; if not, the duplicate loop index is replaced with a fresh variable.
For an L-value 𝑑, indexes(𝑑) is the set of loop indexes used in 𝑑.

An affine expression [41] takes the form

𝑐0 + 𝑐1 * 𝑖1 + · · ·+ 𝑐𝑘 * 𝑖𝑘

where 𝑖1, . . . , 𝑖𝑘 are loop indexes and 𝑐0, . . . , 𝑐𝑘 are constants. For an L-value 𝑑 in a
statement 𝑠, affine(𝑑, 𝑠) is true if 𝑑 is a variable, or a projection 𝑑′.𝐴 with affine(𝑑′, 𝑠),
or an array indexing 𝑣[𝑒1, . . . , 𝑒𝑛], where each index 𝑒𝑖 is an affine expression and all
loop indexes in context(𝑠) are used in 𝑑. In other words, if affine(𝑑, 𝑠) is true, then 𝑑

is stored at different locations for different values of the loop indexes in context(𝑠).
Definition 3.3.1 (Affine For-Loop). A for-loop statement 𝑠 is affine if 𝑠 satisfies the
following properties:

1. for any update 𝑑 := 𝑒 in 𝑠, affine(𝑑, 𝑠);
2. there are no dependencies between any two statements 𝑠1 and 𝑠2 in 𝑠, that

is, if there are no L-values 𝑑1 ∈ (𝒜J𝑠1K ∪ 𝒲J𝑠1K) and 𝑑2 ∈ ℛJ𝑠2K such that
overlap(𝑑1, 𝑑2), with the following exceptions:
(a) if 𝑑1 ∈ 𝒲J𝑠1K, 𝑑1 = 𝑑2, and 𝑠1 precedes 𝑠2;
(b) if 𝑑1 ∈ 𝒜J𝑠1K, 𝑑1 = 𝑑2, affine(𝑑2, 𝑠2), 𝑠1 precedes 𝑠2, and context(𝑠1) ∩

context(𝑠2) = indexes(𝑑1).
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Restriction 1 indicates that the destination of any non-incremental update must
be a different location at each loop iteration. If the update destination is an array
access, the array indexes must be affine and completely cover all surrounding loop
indexes. This restriction does not hold for incremental updates, which allow arbitrary
array indexes in a destination as long as the array is not read in the same loop.
Restriction 2 combined with exception (a) rejects any read and write on the same
array in a loop except when the read is after the write and the read and write are at
the same location (𝑑1 = 𝑑2), which, based on Restriction 1, is a different location at
each loop iteration. Exception (b) indicates that if we first increment and then read
the same location, then these two operations must not be inside a for-loop whose loop
index is not used in the destination. This is because the increment of the destination
is done within the for-loops whose loop indexes are used in the destination and across
the rest of the surrounding for-loops. For example, the following loop:

for 𝑖 = . . . do {
for 𝑗 = . . . do {𝑉 [𝑖] += 1 }; 𝑊 [𝑖] := 𝑉 [𝑖]

}

increments and reads 𝑉 [𝑖]. The contexts of the first and second updates are {{𝑖, 𝑗}}
and {{𝑖}}, respectively, and their intersection gives {{𝑖}}, which is equal to the indexes of
𝑉 [𝑖]. If there were another statement 𝑀 [𝑖, 𝑗] := 𝑉 [𝑖] inside the inner loop, this would
violate Exception (b) since their context intersection would have been {{𝑖, 𝑗}}, which
is not equal to the indexes of 𝑉 [𝑖].

For example, the incremental update:

for 𝑖 = . . . do 𝐶[𝑉 [𝑖].𝐾] += 𝑉 [𝑖].𝐷

which counts all 𝑉 [𝑖].𝐷 in groups that have the same key 𝑉 [𝑖].𝐾, satisfies our re-
strictions since it increments but does not read 𝐶. On the other hand, some non-
incremental updates may outright be rejected. For example, the loop:

for 𝑖 = . . . do
𝑉 [𝑖] := (𝑉 [𝑖− 1] + 𝑉 [𝑖 + 1])/2

will be rejected by Restriction 2 because 𝑉 is both a reader and a writer.
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To alleviate this problem, one may rewrite this loop as follows:

for 𝑖 = . . . do 𝑉 ′[𝑖] := 𝑉 [𝑖];

for 𝑖 = . . . do 𝑉 [𝑖] := (𝑉 ′[𝑖− 1] + 𝑉 ′[𝑖 + 1])/2

which first stores 𝑉 to 𝑉 ′ and then reads 𝑉 ′ to compute 𝑉 . This program satisfies our
restrictions but is not equivalent to the original program because it uses the previous
values of 𝑉 to compute the new ones. Another example is:

for 𝑖 = . . . do {𝑛 := 𝑉 [𝑖]; 𝑊 [𝑖] := 𝑓(𝑛) }

which is also rejected because 𝑛 is not affine as it does not cover the loop indexes
(namely, 𝑖). To fix this problem, one may redefine 𝑛 as a vector and rewrite the loop
as:

for 𝑖 = . . . do {𝑛[𝑖] := 𝑉 [𝑖]; 𝑊 [𝑖] := 𝑓(𝑛[𝑖]) }

Redefining variables by adding to them more array dimensions is currently done
manually by a programmer, but we believe that it can be automated when a variable
that violates our restrictions is detected.

3.4 Monoid Comprehensions

Our framework is based on monoid comprehensions, which are translated to
a monoid algebra that consists of monoid homomorphisms. Monoids and monoid
homomorphisms directly capture the most important property required for data par-
allelism, namely associativity. Given a type 𝑇 , a binary operator ⊗ from (𝑇, 𝑇 ) to 𝑇 ,
and a value 1⊗ of type 𝑇 , the triple (𝑇,⊗, 1⊗) is called a monoid if ⊗ is associative
and has an identity 1⊗,that is, 𝑥 ⊗ 1⊗ = 1⊗ ⊗ 𝑥 = 𝑥. Given that a monoid can
be identified by its operation ⊗, it is simply referred to as ⊗. A container monoid
(𝐶[𝑇 ],⊗, 1⊗, 𝑈⊗) over a parametric type 𝐶[𝑇 ] is a monoid equipped with a unit in-
jection function 𝑈⊗ from 𝑇 to 𝐶[𝑇 ]. Data collections, such as lists, sets, and bags,
can be captured as container monoids. For example, the unit function for the bag
monoid ⊎ maps a value 𝑣 of type 𝑇 to the bag {𝑣} of type {𝑇} (ie, a bag[𝑇 ]). A
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homomorphism 𝐻 from a container monoid (𝐶[𝑇 ],⊗, 1⊗, 𝑈⊗) to a monoid (𝑆,⊕, 1⊕)

is defined as follows:

𝐻(𝑋 ⊗ 𝑌 ) = 𝐻(𝑋)⊕𝐻(𝑌 )

𝐻(𝑈⊗(𝑥)) = 𝑓(𝑥)

𝐻(1⊗) = 1⊕

for a function 𝑓 from 𝑇 to 𝑆. All operations in our monoid algebra are homo-
morphisms. Not all homomorphisms are well-behaved; some may actually lead to
contradictions. In general, a homomorphism from a container monoid ⊗ to a monoid
⊕ is well-behaved if ⊕ satisfies all the laws that ⊗ does (the laws in our case are com-
mutativity and idempotence). For example, converting a list to a bag is well-behaved,
while converting a bag to a list and set cardinality are not.

If the target monoid of a homomorphism is also a container monoid, it is called
a flatMap. When restricted to bags, flatMap(𝑓,𝑋) maps a bag 𝑋 of type {𝑇} to a
bag of type {𝑆} by applying the function 𝑓 from type 𝑇 to type {𝑆} to each element
of 𝑋, yielding one bag for each element, and then by merging these bags to form a
single bag of type {𝑆}:

flatMap(𝑓,𝑋 ⊎ 𝑌 ) = flatMap(𝑓,𝑋) ⊎ flatMap(𝑓, 𝑌 )

flatMap(𝑓, {𝑎}) = 𝑓(𝑎)

flatMap(𝑓, {}) = {}

More complex homomorphisms, such as groupBy, coGroup, and array scans,
are defined using the following monoid ⇕⊕, which depends on some monoid ⊕:

𝑋 ⇕⊕ 𝑌 ={(𝑘, 𝑎⊕ 𝑏)|(𝑘, 𝑎)𝜖𝑋, (𝑘′, 𝑏)𝜖𝑌, 𝑘 = 𝑘′}

⊎ {(𝑘, 𝑎)|(𝑘, 𝑎)𝜖𝑋, ∀(𝑘′, 𝑏)𝜖𝑌 : 𝑘′ ̸= 𝑘}

⊎ {(𝑘, 𝑏)|(𝑘, 𝑏)𝜖𝑌, ∀(𝑘′, 𝑎)𝜖𝑋 : 𝑘′ ̸= 𝑘}

The first term is a join between 𝑋 and 𝑌 , the second is the subset of 𝑋 not
joined with 𝑌 , and the third is the subset of 𝑌 not joined with 𝑋. It returns an
indexed set (a key-value map) in which the values that correspond to the same key
are merged using the monoid ⊕. Given a bag 𝑋 of type {(𝐾,𝑉 )}, groupBy(𝑋) groups
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the elements of 𝑋 by their first component of type 𝐾 (the group-by key) and returns
a bag of type {(𝐾, {𝑉 })}. It is a homomorphism over the monoid ⇕⊎:

groupBy(𝑋 ⊎ 𝑌 ) = groupBy(𝑋) ⇕⊎ groupBy(𝑌 )

groupBy({(𝑘, 𝑣)}) = {(𝑘, {𝑣})}

groupBy({}) = {}

Similarly, a coGroup(𝑋, 𝑌 ) between a bag 𝑋 of type {(𝐾,𝑉 )} and a bag 𝑌 of type
{(𝐾,𝑊 )} over their first component of type 𝐾 (the join key) returns a bag of type
{(𝐾, ({𝑉 }, {𝑊}))}. It is a homomorphism over the monoid ⇕⊙, where (𝑋, 𝑌 ) ⊙
(𝑋 ′, 𝑌 ′)=(𝑋 ⊎𝑋 ′, 𝑌 ⊎ 𝑌 ′):

coGroup((𝑋, 𝑌 )⊙ (𝑋 ′, 𝑌 ′)) = coGroup(𝑋 ⊎𝑋 ′, 𝑌 ⊎ 𝑌 ′)

= coGroup(𝑋, 𝑌 ) ⇕⊙ coGroup(𝑋 ′, 𝑌 ′)

Finally, reduce(⊕, 𝑋) aggregates a collection 𝑋 of type {𝑉 } to a value of type 𝑉

using the monoid ⊕, which is from (𝑉, 𝑉 ) to 𝑉 .
The target of our translations consists of monoid comprehensions, which are

equivalent to the SQL select-from-where-group-by-having syntax. Monoid compre-
hensions are translated to a monoid algebra that consists of monoid homomorphisms.

A monoid comprehension has the following syntax:

{{{ 𝑒 ||| 𝑞1, . . . , 𝑞𝑛 }}}

where the expression 𝑒 is the comprehension head and a qualifier 𝑞𝑖 is defined as
follows:

Qualifier:
𝑞 ::= 𝑝← 𝑒 generator
| let 𝑝 = 𝑒 let-binding
| 𝑒 condition
| group by 𝑝 [ : 𝑒 ] group-by

Pattern:
𝑝 ::= 𝑣 pattern variable
| (𝑝1, . . . , 𝑝𝑛) tuple pattern.
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The domain 𝑒 of a generator 𝑝 ← 𝑒 must be a bag. This generator draws elements
from this bag and, each time, it binds the pattern 𝑝 to an element. A condition
qualifier 𝑒 is an expression of type boolean. It is used for filtering out elements drawn
by the generators. A let-binding let 𝑝 = 𝑒 binds the pattern 𝑝 to the result of 𝑒.
A group-by qualifier uses a pattern 𝑝 and an optional expression 𝑒. If 𝑒 is missing,
it is taken to be 𝑝. The group-by operation groups all the pattern variables in the
same comprehension that are defined before the group-by (except the variables in 𝑝)
by the value of 𝑒 (the group-by key), so that all variable bindings that result to the
same key value are grouped together. After the group-by, 𝑝 is bound to a group-by
key and each one of these pattern variables is lifted to a bag of values. The result of
a comprehension {{{ 𝑒 ||| 𝑞1, . . . , 𝑞𝑛 }}} is a bag that contains all values of 𝑒 derived from
the variable bindings in the qualifiers.

Comprehensions can be translated to algebraic operations that resemble the
bulk operations supported by many DISC systems, such as groupBy, join, map, and
flatMap. We use 𝑞 to represent the sequence of qualifiers 𝑞1, . . . , 𝑞𝑛, for 𝑛 ≥ 0. To
translate a comprehension {{{ 𝑒 ||| 𝑞 }}} to the algebra, the group-by qualifiers are first
translated to groupBy operations from left to right. Given a bag 𝑋 of type {{(𝐾,𝑉 )}},
groupBy(𝑋) groups the elements of 𝑋 by their first component of type 𝐾 (the group-
by key) and returns a bag of type {{(𝐾, {{𝑉 }})}}. Let 𝑣1, . . . , 𝑣𝑛 be the pattern variables
in the sequence of qualifiers 𝑞1 that do not appear in the group-by pattern 𝑝, then we
have:

{{{ 𝑒′ ||| 𝑞1, group by 𝑝 : 𝑒, 𝑞2 }}}

= {{{ 𝑒′ ||| (𝑝, 𝑠)← groupBy({{{ (𝑒, (𝑣1, . . . , 𝑣𝑛)) ||| 𝑞1 }}}),

∀𝑖 : let 𝑣𝑖 = {{{ 𝑣𝑖 ||| (𝑣1, . . . , 𝑣𝑛)← 𝑠}}}, 𝑞2 }}}

That is, for each pattern variable 𝑣𝑖, this rule embeds a let-binding so that this
variable is lifted to a bag that contains all 𝑣𝑖 values in the current group. Then,
comprehensions without any group-by are translated to the algebra by translating
the qualifiers from left to right:

{{{ 𝑒′ ||| 𝑝← 𝑒, 𝑞 }}} = flatMap(𝜆𝑝.{{{ 𝑒′ ||| 𝑞 }}}, 𝑒)

{{{ 𝑒′ ||| let 𝑝 = 𝑒, 𝑞 }}} = let 𝑝 = 𝑒 in {{{ 𝑒′ ||| 𝑞 }}}
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{{{ 𝑒′ ||| 𝑒, 𝑞 }}} = if 𝑒 then {{{ 𝑒′ ||| 𝑞 }}} else ∅

{{{ 𝑒′ ||| }}} = {{𝑒′}}

Given a function 𝑓 that maps an element of type 𝑇 to a bag of type {{𝑆}} and a bag
𝑋 of type {{𝑇}}, the operation flatMap(𝑓,𝑋) maps the bag 𝑋 to a bag of type {{𝑆}}
by applying the function 𝑓 to each element of 𝑋 and unioning together the results.
Although this translation generates nested flatMaps from join-like comprehensions,
there is a general method for identifying all possible equi-joins from nested flatMaps,
including joins across deeply nested comprehensions, and translating them to joins
and coGroups.

Finally, nested comprehensions can be unnested by the following rule:

{{{ 𝑒1 ||| 𝑞1, 𝑝← {{{ 𝑒2 ||| 𝑞3 }}}, 𝑞2 }}}

= {{{ 𝑒1 ||| 𝑞1, 𝑞3, let 𝑝 = 𝑒2, 𝑞2 }}} (3.1)

for any sequence of qualifiers 𝑞1, 𝑞2, and 𝑞3. This rule can only apply if there is no
group-by qualifier in 𝑞3 or when 𝑞1 is empty. It may require renaming the variables
in {{{ 𝑒2 ||| 𝑞3 }}} to prevent variable capture.

3.5 DIABLO Framework

3.5.1 Array Representation

In DIABLO, a sparse array, such as a sparse vector or a matrix, is repre-
sented as a key-value map (also known as an indexed set), which is a bag of type
{{(𝐾,𝑇 )}}, where 𝐾 is the array index type and 𝑇 is the array value type. More
specifically, a sparse vector of type vector[𝑇 ] is captured as a key-value map of type
{{(long, 𝑇 )}}, while a sparse matrix of type matrix[𝑇 ] is captured as a key-value map
of type {{((long, long), 𝑇 )}}.

Merging two compatible arrays is done with the array merging operation C,
defined as follows:

𝑋 C 𝑌 = {{{ (𝑘, 𝑏) ||| (𝑘, 𝑎)← 𝑋, (𝑘′, 𝑏) ∈ 𝑌, 𝑘 = 𝑘′ }}}

⊎ {{{ (𝑘, 𝑎) ||| (𝑘, 𝑎)← 𝑋, 𝑘 ̸∈ Π1(𝑌 )}}}

⊎ {{{ (𝑘, 𝑏) ||| (𝑘, 𝑏)← 𝑌, 𝑘 ̸∈ Π1(𝑋)}}}
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where Π1(𝑋) returns the keys of 𝑋. That is, 𝑋 C 𝑌 is the union of 𝑋 and
𝑌 , except when there is (𝑘, 𝑥) ∈ 𝑋 and (𝑘, 𝑦) ∈ 𝑌 , in which case it chooses
the latter value, (𝑘, 𝑦). For example, {{(3, 10), (1, 20)}} C {{(1, 30), (4, 40)}} is equal
to {{(3, 10), (1, 30), (4, 40)}}. On Spark, the C operation can be implemented as a
coGroup.

An update to a vector 𝑉 [𝑒1] := 𝑒2 is equivalent to the assignment 𝑉 := 𝑉 C

{{(𝑒1, 𝑒2)}}. That is, the new value of 𝑉 is the current vector 𝑉 but with the value
associated with the index 𝑒1 (if any) replaced with 𝑒2. Similarly, an update to a
matrix 𝑀 [𝑒1, 𝑒2] := 𝑒3 is equivalent to the assignment 𝑀 := 𝑀 C {{((𝑒1, 𝑒2), 𝑒3)}}.
Array indexing though is a little bit more complex because the indexed element may
not exist in the sparse array. Instead of a value of type 𝑇 , indexing over an array
of 𝑇 should return a bag of type {{𝑇}}, which can be {{𝑣}} for some value 𝑣 of type 𝑇 ,
if the value exists, or ∅, if the value does not exist. Then, the vector indexing 𝑉 [𝑒]

is {{{ 𝑣 ||| (𝑖, 𝑣) ← 𝑉, 𝑖 = 𝑒}}}, which returns a bag of type {{𝑇}}. Similarly, the matrix
indexing 𝑀 [𝑒1, 𝑒2] is {{{ 𝑣 ||| ((𝑖, 𝑗), 𝑣) ← 𝑀, 𝑖 = 𝑒1, 𝑗 = 𝑒2 }}}. We are now ready to
express any assignment that involves vectors and matrices. For example, consider the
matrices 𝑅, 𝑀 , and 𝑁 of type matrix[float]. The assignment:

𝑅[𝑖, 𝑗] := 𝑀 [𝑖, 𝑘] *𝑁 [𝑘, 𝑗] (3.2)

is translated to the assignment:

𝑅 := 𝑅C {{{ ((𝑖, 𝑗),𝑚 * 𝑛) ||| ((𝑖, 𝑘),𝑚)←𝑀, (3.3)

((𝑘′, 𝑗), 𝑛)← 𝑁, 𝑘 = 𝑘′ }}}

which uses a bag comprehension equivalent to a join between the matrices 𝑀 and 𝑁 .
This assignment can be derived from assignment (3.2) using simple transformations.
To understand these transformations, consider the product 𝑋 *𝑌 . Since both 𝑋 and
𝑌 have been lifted to bags, because they may contain array accesses, this product
must also be lifted to a comprehension that extracts the values of 𝑋 and 𝑌 , if any,
and returns their product:

𝑋 * 𝑌 = {{{𝑥 * 𝑦 ||| 𝑥← 𝑋, 𝑦 ← 𝑌 }}}
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Given that matrix accesses are expressed as:

𝑀 [𝑖, 𝑘] = {{{𝑚 ||| ((𝐼, 𝐽),𝑚)←𝑀, 𝐼 = 𝑖, 𝐽 = 𝑘 }}}
𝑁 [𝑘, 𝑗] = {{{𝑛 ||| ((𝐼, 𝐽), 𝑛)← 𝑁, 𝐼 = 𝑘, 𝐽 = 𝑗 }}}

the product 𝑀 [𝑖, 𝑘] *𝑁 [𝑘, 𝑗] is equal to:

{{{𝑥 * 𝑦 ||| 𝑥← {{{𝑚 ||| ((𝐼, 𝐽),𝑚)←𝑀, 𝐼 = 𝑖, 𝐽 = 𝑘 }}},
𝑦 ← {{{𝑛 ||| ((𝐼, 𝐽), 𝑛)← 𝑁, 𝐼 = 𝑘, 𝐽 = 𝑗 }}}}}}

which is normalized as follows using Rule (3.1), after some variable renaming:

{{{𝑥 * 𝑦 ||| ((𝐼, 𝐽),𝑚)←𝑀, 𝐼 = 𝑖, 𝐽 = 𝑘, let 𝑥 = 𝑚,

((𝐼 ′, 𝐽 ′), 𝑛)← 𝑁, 𝐼 ′ = 𝑘, 𝐽 ′ = 𝑗, let 𝑦 = 𝑛}}}
= {{{𝑚 * 𝑛 ||| ((𝐼, 𝐽),𝑚)←𝑀, 𝐼 = 𝑖, 𝐽 = 𝑘,

((𝐼 ′, 𝐽 ′), 𝑛)← 𝑁, 𝐼 ′ = 𝑘, 𝐽 ′ = 𝑗 }}}

Lastly, since the value of 𝑒 in the assignment 𝑅[𝑖, 𝑗] := 𝑒 is lifted to a bag, this
assignment is translated to 𝑅 := 𝑅 C {{{ ((𝑖, 𝑗), 𝑣) ||| 𝑣 ← 𝑒}}}, that is, 𝑅 is augmented
with an indexed set that results from accessing the lifted value of 𝑒. If 𝑒 contains a
value, the comprehension will return a singleton bag, which will replace 𝑅[𝑖, 𝑗] with
that value. After substituting the value 𝑒 with the term derived for 𝑀 [𝑖, 𝑘] *𝑁 [𝑘, 𝑗],
we get an assignment equivalent to the assignment (3.3).

3.5.2 Handling Array Updates in a Loop

We now address the problem of translating array updates in a loop. We classify
updates into two categories:

1. Incremental updates of the form 𝑑 := 𝑑 ⊕ 𝑒, for some commutative operation
⊕, where 𝑑 is an update destination, which is also repeated as the left operand
of ⊕. It can also be written as 𝑑⊕= 𝑒. For example, 𝑉 [𝑖] += 1 increments 𝑉 [𝑖]

by 1.
2. All other updates of the form 𝑑 := 𝑒.

Consider the following loop with a non-incremental update:

for 𝑖 = 1, 𝑁 do 𝑉 [𝑔(𝑖)] := 𝑊 [𝑓(𝑖)] (3.4)
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for some vectors 𝑉 and 𝑊 , and some terms 𝑓(𝑖) and 𝑔(𝑖) that depend on the index
𝑖. Our framework translates this loop to an update to the vector 𝑉 , where all the
elements of 𝑉 are updated at once, in a parallel fashion:

𝑉 := 𝑉 C {{{ (𝑔(𝑖), 𝑣) ||| 𝑖← range(1, 𝑁), (3.5)

(𝑘, 𝑣)← 𝑉, 𝑘 = 𝑓(𝑖)}}}

But this expression may not produce the same vector 𝑉 as the original loop if there are
recurrences in the loop, such as, when the loop body is 𝑉 [𝑖] := 𝑉 [𝑖−1]. Furthermore,
the join between range(1, 𝑁) and 𝑊 in (3.5) looks unnecessary. We will transform
such joins to array traversals in Section 3.5.3.

In our framework, for-loops are embedded as generators inside the comprehen-
sions that are associated with the loop assignments. Consider, for example, matrix
copying:

for 𝑖 = 1, 10 do for 𝑗 = 1, 20 do 𝑀 [𝑖, 𝑗] := 𝑁 [𝑖, 𝑗]

Using the translation of the assignment 𝑀 [𝑖, 𝑗] := 𝑁 [𝑖, 𝑗], the loop becomes:

for 𝑖 = 1, 10 do (3.6)

for 𝑗 = 1, 20 do

𝑀 := 𝑀 C {{{ ((𝑖, 𝑗), 𝑛) ||| ((𝐼, 𝐽), 𝑛)← 𝑁, 𝐼 = 𝑖, 𝐽 = 𝑗 }}}

To parallelize this loop, we embed the for-loops inside the comprehension as genera-
tors:

𝑀 := 𝑀 C {{{ ((𝑖, 𝑗), 𝑛) ||| 𝑖← range(1, 10), 𝑗 ← range(1, 20), (3.7)

((𝐼, 𝐽), 𝑛)← 𝑁, 𝐼 = 𝑖, 𝐽 = 𝑗 }}}

Notice the difference between the loop (3.6) and the assignment (3.7). The former
will do 10*20 updates to 𝑀 while the latter will only do one bulk update that will
replace all 𝑀 [𝑖, 𝑗] with 𝑁 [𝑖, 𝑗] at once. This transformation can only apply when
there are no recurrences across iterations.
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3.5.3 Eliminating Loop Iterations

Before we present the details of program translation, we address the problem of
eliminating index iterations, such as range(1,N) in assignment (3.5), and range(1, 10)

and range(1, 20) in assignment (3.7). If there is a right inverse 𝐹 of 𝑓 such that
𝑓(𝐹 (𝑘)) = 𝑘, then the assignment (3.5) is optimized to:

𝑉 := 𝑉 C {{{ (𝑔(𝐹 (𝑘)), 𝑣) ||| (𝑘, 𝑣)← 𝑊, inRange(𝐹 (𝑘), 1, 𝑁)}}} (3.8)

where the predicate inRange(𝐹 (𝑘), 1, 𝑁) returns true if 𝐹 (𝑘) is within the range [1, 𝑁 ].
Given that the right-hand side of an update may involve multiple array accesses, we
can choose one whose index term can be inverted. For example, for 𝑉 [𝑖−1], the inverse
of 𝑘 = 𝑖− 1 is 𝑖 = 𝑘 + 1. In the case where no such inverse can be derived, the range
iteration simply remains as is. One such example is the loop for 𝑖 = 1, 𝑁 do 𝑉 [𝑖] := 0,
which is translated to 𝑉 := 𝑉 C {{{ (𝑖, 0) ||| 𝑖← range(1, 𝑁)}}}.

3.5.4 Handling Incremental Updates

There is an important class of recurrences in loops that can be parallelized
using group-by and aggregation. Consider, for example, the following loop with an
incremental update:

for 𝑖 = 1, 𝑁 do 𝑉 [𝑔(𝑖)] += 𝑊 [𝑖] (3.9)

Let’s say, for example, that there are 3 indexes overall, 𝑖1, 𝑖2, and 𝑖3, that have the
same image under 𝑔, ie, 𝑘 = 𝑔(𝑖1) = 𝑔(𝑖2) = 𝑔(𝑖3). Then, 𝑉 [𝑘] must be set to
𝑉 [𝑘] + 𝑊 [𝑖1] + 𝑊 [𝑖2] + 𝑊 [𝑖3]. In general, we need to bring together all values of
𝑊 whose indexes have the same image under 𝑔. That is, we need to group by 𝑔(𝑖).
Hence, the loop can be translated to a comprehension with a group-by:

𝑉 := 𝑉 C {{{ (𝑘, 𝑣 + (+/𝑤)) ||| (𝑖, 𝑤)← 𝑊, inRange(𝑖, 1, 𝑁),

group by 𝑘 : 𝑔(𝑖), (𝑗, 𝑣)← 𝑉, 𝑗 = 𝑘 }}}

which groups 𝑊 by the destination index 𝑔(𝑖) and, for each group, it calculates the
aggregation +/𝑤 of all values 𝑤 = 𝑊 [𝑖] with the same 𝑔(𝑖) value, but also adds the
original value 𝑣 = 𝑉 [𝑔(𝑖)] before the group-by.
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If the destination of the incremental update is a variable, such as in 𝑛+= 𝑊 [𝑖],
then the group-by is over ( ), since there are no indexes used in 𝑛:

𝑛 := {{{𝑛 + (+/𝑤) ||| (𝑖, 𝑤)← 𝑊, inRange(𝑖, 1, 𝑁), group by 𝑘 : ( )}}}

This group-by can be eliminated because it forms a single group; in which case the
variable 𝑤 is lifted to a bag that contains all the values of 𝑊 :

𝑛 := {{{𝑛 + (+/{{{𝑤 ||| (𝑖, 𝑤)← 𝑊, inRange(𝑖, 1, 𝑁)}}})}}}

3.5.5 Program Translation

DIABLO translates a loop-based program in pieces, in a bottom-up fashion over
the abstract syntax tree (AST) representation of the program, by translating every
AST node to a comprehension. The target of DIABLO is a list of statements, where
a statement 𝑐 has the following syntax:

Target Code:
𝑐 ::= 𝑣 := 𝑒 assignment
| while(𝑒, 𝑐) loop
| [ 𝑐1, . . . , 𝑐𝑛 ] code block

In the target code, an assignment to a variable 𝑣 of type 𝑡 gets a value 𝑒 of type {{𝑡}}.
An assignment to an array is done in bulk, by replacing the entire array with a new
one. The while-loop corresponds to the while statement in Figure 3.1; it repeats the
code 𝑐 in its body while the condition 𝑒 is true. Finally, a code block is like a block
of statements that need to be evaluated in order.

3.5.6 Examples of Program Translation

Consider, for example, the incremental update 𝐴[𝑒] += 𝑣 in a loop, for a sparse
vector 𝐴. The cumulative effects of all these updates throughout the loop can be
performed in bulk by grouping the values 𝑣 across all loop iterations by the array
index 𝑒 (that is, by the different destination locations) and by summing up these
values for each group. Then the entire vector 𝐴 can be replaced with these new
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values. For instance, assuming that the values of 𝐶 were zero before the loop, the
following program:

for 𝑖 = 0, 9 do

𝐶[𝐴[𝑖].𝐾] += 𝐴[𝑖].𝑉 )

can be evaluated in bulk by grouping the elements 𝐴[𝑖] of the vector 𝐴 by 𝐴[𝑖].𝐾 (the
group-by key), and summing up all the values 𝐴[𝑖].𝑉 associated with each different
group-by key. Then the resulting key-sum pairs are the new values for the vector 𝐶.

Our framework translates the previous loop-based program to the following bulk
assignment that calculates all the values of 𝐶 using a bag comprehension that returns
a bag of index-value pairs:

𝐶 := {{{ (𝑘,+/𝑣) ||| (𝑖, 𝑘, 𝑣)← 𝐴, group by 𝑘 }}}

A group-by operation in a comprehension lifts each pattern variable defined before the
group-by (except the group-by keys) from some type 𝑡 to a bag of 𝑡, indicating that
each such variable must now contain all the values associated with the same group-by
key value. Consequently, after we group by 𝑘, the variable 𝑣 is lifted to a bag of
values, one bag for each different 𝑘. In the comprehension result, the aggregation
+/𝑣 sums up all the values in the bag 𝑣, thus deriving the new values of 𝐶 for each
index 𝑘.

Now, let’s consider the product 𝑅 of two square matrices 𝑀 and 𝑁 such that
𝑅𝑖𝑗 =

∑︀
𝑘 𝑀𝑖𝑘 *𝑁𝑘𝑗. It can be expressed as follows in a loop-based language:

for 𝑖 = 0, 𝑑− 1 do

for 𝑗 = 0, 𝑑− 1 do {
𝑅[𝑖, 𝑗] = 0.0;

for 𝑘 = 0, 𝑑− 1 do {
𝑅[𝑖, 𝑗] += 𝑀 [𝑖, 𝑘] *𝑁 [𝑘, 𝑗]);

}
}

A sparse matrix 𝑀 can be represented as a bag of tuples (𝑖, 𝑗, 𝑣) such that 𝑣 = 𝑀𝑖𝑗.
This program too can be translated to a single assignment that replaces the entire
content of the matrix 𝑅 with a new content, which is calculated using bulk relational
operations.
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DIABLO translates the loop-based program for matrix multiplication to the
following assignment:

𝑅 := {{{ (𝑖, 𝑗,+/𝑣) ||| (𝑖, 𝑘,𝑚)←𝑀, (𝑘′, 𝑗, 𝑛)← 𝑁, 𝑘 = 𝑘′,

let 𝑣 = 𝑚 * 𝑛, group by (𝑖, 𝑗)}}}

Here, the comprehension retrieves the values 𝑀𝑖𝑘 ∈𝑀 and 𝑁𝑘𝑗 ∈ 𝑁 as triples (𝑖, 𝑘,𝑚)

and (𝑘′, 𝑗, 𝑛) so that 𝑘 = 𝑘′, and sets 𝑣 = 𝑚 * 𝑛 = 𝑀𝑖𝑘 * 𝑁𝑘𝑗. After we group the
values by the matrix indexes 𝑖 and 𝑗, the variable 𝑣 is lifted to a bag of numerical
values 𝑀𝑖𝑘 * 𝑁𝑘𝑗, for all 𝑘. Hence, the aggregation +/𝑣 will sum up all the values
in the bag 𝑣, deriving

∑︀
𝑘 𝑀𝑖𝑘 *𝑁𝑘𝑗 for the 𝑖𝑗 element of the resulting matrix. If we

ignore non-shuffling operations, this comprehension is equivalent to a join between
𝑀 and 𝑁 followed by a reduceByKey operation in Spark.

3.6 Conclusion

In DIABLO, the array-based loop programs are translated to comprehensions
and these comprehensions are translated to Spark Core API programs. However, in
the next chapters we will see that instead of translating to Core API programs, we
can translate them to SQL programs. We will also see that SQL programs perform
significantly faster than Core API programs.
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CHAPTER 4
SQLgen: Translation to SQL

4.1 Introduction

In this chapter, we discuss our framework SQLgen [18]. SQLgen translates
array-based loops to a declarative domain-specific language (DSL), more specifically,
Spark SQL [14]. At first, loops are translated to equivalent monoid comprehen-
sions [13] and then to Spark SQL. We chose Spark SQL as our target language since
it is in general more efficient than the Spark Core API because it takes advantage
of existing extensive work on SQL optimization for relational database systems. In
Spark SQL, datasets are expressed as DataFrames, which are distributed collection
of data, organized into named columns. The schema of a DataFrame must be known,
while DataFrame computations are done on columns of named and typed values.
Operations from the Spark Core API, on the other hand, are higher-order with argu-
ments that are functions coded in the host language and compiled to bytecode, which
cannot be analyzed during program optimization. Hence, Spark SQL can find and ap-
ply optimizations that are very hard to detect automatically when the same program
is written in the Spark Core API. Spark DataFrames have two specialized back-end
components, Catalyst (the query optimizer) and Tungsten (the off-heap serializer),
which facilitate optimized performance on other Spark components, such as MLlib,
that are primarily based on DataFrame API. Catalyst supports both rule-based and
cost-based optimization. For example, it can optimize a query by reordering the op-
erations, such as pushing a filter operation before a join operation. The operations
in Spark SQL reduce the amount of data sent over the network by selecting only
the relevant columns and partitions from the dataset necessary for the computation.
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Consequently, loops translated to Spark SQL performs better than loops translated
to Spark RDD operations, as it was done by earlier frameworks.

The contributions of this work are summarized as follows:
• We present a novel framework SQLgen for translating array-based loops to

Spark SQL that is able to handle all array programs that satisfy some simple
recurrence restrictions.

• We evaluate our system on a variety of data analysis and machine learning
programs and we compare its performance relative to DIABLO and to hand-
written Spark programs expressed in the Spark Core API (RDDs) and in Spark
SQL. Our performance results indicate that, for these programs, SQLgen out-
performs the equivalent DIABLO and the hand-written Spark Core programs,
giving performance close to that of hand-written programs in Spark SQL.

4.2 The SQLgen Framework

In our earlier work DIABLO, loop-based programs are first translated to monoid
comprehensions, then to the monoid algebra, and finally to Java byte code that calls
the Spark Core API. The goal of SQLgen is to improve the performance of these
translations by translating the generated monoid comprehensions directly to Spark
SQL queries, thus taking advantage of the Catalyst optimizer used by Spark SQL,
which is more powerful than the DIABLO optimizer used for optimizing the monoid
algebra.

The syntax of a monoid comprehension is as follows:

𝑒 ::= {{{ 𝑒 ||| 𝑞1, . . . , 𝑞𝑛 }}} comprehension
| ⊕/𝑒 reduction

where in the comprehension, the comprehension head 𝑒 is an expression and 𝑞𝑖 is a
qualifier, and ⊕/𝑒 is a total aggregation over a comprehension 𝑒. The output of our
translations is a list of statements 𝑐 that have the following syntax:

Target Code:
𝑐 ::= 𝑣 := 𝑠 assignment
| {𝑐1; . . . ; 𝑐𝑛} code block
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where 𝑠 is the Spark SQL generated from a comprehension, which is assigned to a
variable 𝑣. Multiple assignments can be grouped in a code block 𝑐.

In DIABLO, a sparse array, such as a sparse vector or a matrix, is represented
by a key-value map (also known as an indexed set), which is a bag of type {{(𝐾,𝑇 )}},
where 𝐾 is the array index type and 𝑇 is the array value type. An array can be
traversed using a generator in a comprehension. For example, we can traverse the
elements of a sparse vector 𝑉 using the generator (𝑖, 𝑣) ← 𝑉 , where the pattern
variable 𝑖 is the index of type Long, and 𝑣 is the value. Similarly, we can traverse a
sparse matrix 𝑀 using a generator ((𝑖, 𝑗), 𝑣)←𝑀 , where 𝑖 and 𝑗 are row and column
indices of type Long and 𝑣 is the value.

Vectors and matrices in DIABLO are translated to DataFrames in Spark SQL.
Basically, a sparse array is translated to a relational table with two columns: the
first column is a tuple that contains the index elements and the second column
is the element value, which can be a primitive type or a composite type, such as
StructType, which is represented by a case class in Scala. For example, a vector 𝑉 of
type {{(Long,Double)}} in DIABLO is mapped to a table 𝑉 of schema (_1 : Long,_2 :

Double), while a matrix 𝑀 of type {{((Long,Long),Double)}} in DIABLO is mapped
to a table 𝑀 of schema (_1 : Struct (_1 : Long,_2 : Long),_2 : Double), where
the index column is nested with the row index column referred to as _1._1 and the
column index referred to as _1._2.

The syntax of Spark SQL though is very limited compared to the full SQL
syntax. The syntax of Spark SQL generated by our translator is as follows:

select 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 [as 𝑎𝑙𝑖𝑎𝑠]

[, 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 [as 𝑎𝑙𝑖𝑎𝑠], ...]

from (𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 [𝑎𝑙𝑖𝑎𝑠] |
𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 [𝑎𝑙𝑖𝑎𝑠] join 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 [𝑎𝑙𝑖𝑎𝑠]on

𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 [join 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 [𝑎𝑙𝑖𝑎𝑠]

on 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ...])

[where 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

[and 𝑏𝑜𝑜𝑙𝑒𝑎𝑛_𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and ...]]

[groupby 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 [, 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛, ...]]

where alternatives are shown in parenthesis (. . . | . . . | . . .) and optional parts in square
brackets [. . .]. Expressions in the 𝑠𝑒𝑙𝑒𝑐𝑡 clause contain column names and may contain
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aggregate function. In the 𝑓𝑟𝑜𝑚 clause, a relation can be a table or a view. To simplify
our translation, we assume that the input programs will only have for-loops but no
while-loops. We have also restricted our generated SQL queries to use only inner
joins and no subqueries.

For example, the product 𝑅 of two square matrices 𝑀 and 𝑁 , such that 𝑅𝑖𝑗 =∑︀
𝑘 𝑀𝑖𝑘 *𝑁𝑘𝑗, can be expressed as follows in a loop-based language:

for 𝑖 = 0, 𝑑− 1 do

for 𝑗 = 0, 𝑑− 1 do {
𝑅[𝑖, 𝑗] = 0.0;

for 𝑘 = 0, 𝑑− 1 do

𝑅[𝑖, 𝑗] += 𝑀 [𝑖, 𝑘] *𝑁 [𝑘, 𝑗]);

}
}

This program is translated to a single assignment that replaces the entire content of
the matrix 𝑅 with a new content, which is calculated using DISC operations. More
specifically, it is translated to the following assignment:

𝑅 := {{{ (𝑖, 𝑗,+/𝑣) ||| (𝑖, 𝑘,𝑚)←𝑀, (𝑘′, 𝑗, 𝑛)← 𝑁,

𝑘 = 𝑘′, let 𝑣 = 𝑚 * 𝑛,
group by (𝑖, 𝑗)}}}.

This comprehension retrieves the values 𝑀𝑖𝑘 ∈ 𝑀 and 𝑁𝑘𝑗 ∈ 𝑁 as triples (𝑖, 𝑘,𝑚)

and (𝑘′, 𝑗, 𝑛) so that 𝑘 = 𝑘′, and sets 𝑣 = 𝑚 * 𝑛 = 𝑀𝑖𝑘 * 𝑁𝑘𝑗. After we group the
values by the matrix indexes 𝑖 and 𝑗, the variable 𝑣 is lifted to a bag of numerical
values 𝑀𝑖𝑘 * 𝑁𝑘𝑗, for all 𝑘. Hence, the aggregation +/𝑣 will sum up all the values
in the bag 𝑣, deriving

∑︀
𝑘 𝑀𝑖𝑘 *𝑁𝑘𝑗 for the 𝑖𝑗 element of the resulting matrix. This

comprehension is translated to a join between 𝑀 and 𝑁 followed by a reduceByKey
operation in Spark. This comprehension is then translated to the following Spark
SQL program, where matrices are represented as tables 𝑀 , 𝑁 , and 𝑅 with schema
(I, J, V):

select 𝑀.𝐼, 𝑁.𝐽, 𝑠𝑢𝑚(𝑀.𝑉 *𝑁.𝑉 ) as𝑉

from 𝑀 join𝑁 on𝑀.𝐽 = 𝑁.𝐼

groupby 𝑀.𝐼, 𝑁.𝐽
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Here, the tables 𝑀 and 𝑁 are joined on the column 𝐽 of matrix 𝑀 and on column 𝐼

of matrix 𝑁 and then grouped by the column 𝐼 of matrix 𝑀 and column 𝐽 of matrix
𝑁 . Finally the sum of the product of the values for each group is calculated, giving
the entries of matrix product as the final result.

Our framework, called SQLgen, has been implemented in Scala using compile-
time reflection. The source language used to expressed loops with array operations
is the same proof-of-concept language defined in DIABLO, while the target language
is Spark SQL. Our framework can be easily extended to work with other imperative
programming languages, such as C or Java.

4.2.1 Translation to SQL

We translate the comprehension in two steps: pattern compilation and com-
prehension translation. In pattern compilation step, we remove the pattern variables
from the comprehensions. Then in comprehension translation step, we translate the
transformed comprehensions to Spark SQL programs.

4.2.1.1 Pattern Compilation

Pattern variables in a comprehension are defined in the generators and are used
in the rest of the comprehension. However, SQL does not support patterns. To
address this problem, we eliminate patterns by substituting each pattern with a fresh
variable and by creating an environment 𝜌 that binds the variables in the pattern to
terms that depend on the fresh variable. The fresh variable is also used as the alias for
the SQL table. For example, if there is a generator ((𝑖, 𝑗), 𝑣)← 𝑒 in a comprehension,
we replace it with 𝑥 ← 𝑒, where 𝑥 is a fresh variable, and we create an environment
𝜌 = [𝑖→ 𝑥._1._1, 𝑗 → 𝑥._1._2, 𝑣 → 𝑥._2], which expresses 𝑖, 𝑗, and 𝑣 in terms of
𝑥. (The term 𝑥._𝑛 returns the 𝑛th element of the tuple 𝑥.) Given a term 𝑥 and a
pattern 𝑝, the semantic function 𝒞J𝑝K𝑥 returns a binding list that binds the pattern
variables in 𝑝 in terms of 𝑥 such that 𝑝 = 𝑥:

𝒞J(𝑝1, . . . , 𝑝𝑛)K𝑥 = 𝒞J𝑝1K𝑥._1 ++ · · ·++ 𝒞J𝑝𝑛K𝑥._𝑛 (4.1)

𝒞J𝑣K𝑥 = [𝑣 → 𝑥] (4.2)

where ++ merges bindings.
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For our example, after applying (4.1) on ((𝑖, 𝑗), 𝑣) we get the bindings:

𝒞J((𝑖, 𝑗), 𝑣)K𝑥 = 𝒞J(𝑖, 𝑗)K𝑥._1 ++ 𝒞J𝑣K𝑥._2

= 𝒞J𝑖K𝑥._1._1 ++ 𝒞J𝑗K𝑥._1._2 ++ 𝒞J𝑣K𝑥._2

Then, applying (4.2) we get, 𝒞J((𝑖, 𝑗), 𝑣)K𝑥 = [𝑖 → 𝑥._1._1, 𝑗 → 𝑥._1._2, 𝑣 →
𝑥._2]. Before the translation to SQL, we eliminate the patterns from a compre-
hension. For each generator 𝑝 ← 𝑒′, and any sequences of qualifiers 𝑞1 and 𝑞2 in a
comprehension, we do:

{{{ 𝑒 ||| 𝑞1, 𝑝← 𝑒′, 𝑞2 }}} = {{{ 𝜌(𝑒) ||| 𝑞1, 𝑥← 𝑒′, 𝜌(𝑞2)}}} (4.3)

where 𝑥 is a fresh variable and 𝜌 = 𝒞J𝑝K𝑥, which expresses the variables in 𝑝 in terms
of the fresh variable 𝑥. The 𝜌(𝑒) and 𝜌(𝑞2) replace all occurrences of the variables in
𝑒 and 𝑞2 using the binding 𝜌. For example, the comprehension

{{{ (𝑖, 𝑎 + 𝑏) ||| (𝑖, 𝑎)← 𝐴, (𝑗, 𝑏)← 𝐵, 𝑖 = 𝑗 }}}

is translated to:

{{{ (𝑥._1, 𝑥._2 + 𝑦._2) ||| 𝑥← 𝐴, 𝑦 ← 𝐵, 𝑥._1 = 𝑦._1}}}

4.2.1.2 Comprehension Translation

The next step is the translation of a comprehension to SQL using the semantic
function 𝒮𝒬ℒ, which takes the comprehension as input and translates it to a Spark
SQL query:

𝒮𝒬ℒJ{{{ℎ ||| 𝑞 }}}K = selectℎ

from𝒬J𝑞K

where𝒫J𝑞K

groupby 𝒢J𝑞K (4.4)

where ℎ refers to comprehension head and the semantic functions 𝒬, 𝒫 , and 𝒢 trans-
late a list of qualifiers to SQL tables and joins, predicates, and group-by expression.
They are described next in this section.
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The comprehension head ℎ is translated to a 𝑠𝑒𝑙𝑒𝑐𝑡 clause. For a total ag-
gregation over a comprehension, such as ⊕/{{{ℎ ||| . . . }}}, the monoid ⊕ is applied to
the translation of the header ℎ in the 𝑠𝑒𝑙𝑒𝑐𝑡 clause. For example, the header of
+/({{{ 𝑣 ||| (𝑖, 𝑣)← 𝑉 }}}) is translated to select 𝑠𝑢𝑚(𝑣).

We use the semantic function 𝒬 to translate the generators in a comprehension
to SQL 𝑓𝑟𝑜𝑚 clauses. If there are pairs of generators in the qualifiers correlated
with a join condition, we translate each such pair to a 𝑗𝑜𝑖𝑛 clause along with a join
condition. In the following rules, semantic function 𝒬 takes a list of qualifiers as
input, identifies joins, and creates a SQL join clause with a join condition:

𝒬J𝑞1, 𝑣1 ← 𝑒1, 𝑞2, 𝑣2 ← 𝑒2, 𝑞3, 𝑒3 = 𝑒4, 𝑞4K =

𝒬J𝑞1, (𝑣1, 𝑣2)← (𝑒1 join 𝑒2 on 𝑒3 = 𝑒4), 𝑞2, 𝑞3, 𝑞4K (4.5)

where 𝑒3 = 𝑒4 must correlate the variables 𝑣1 and 𝑣2, that is, 𝑒3 must depend on 𝑣1

only and 𝑒4 must depend on 𝑣2 only, or vice versa. The remaining generators are
translated to table traversals:

𝒬J𝑣 ← 𝑒, 𝑞K = 𝑒 𝑣, 𝒬J𝑞K (4.6)

𝒬J𝑒, 𝑞K = 𝒬J𝑞K (4.7)

𝒬J K = ∅ (4.8)

where (4.6) collects the generators that are not joined with any other table as simple
table traversals. If there is more than one such table, this corresponds to a cross
product, which is not supported by Spark SQL.

The semantic function 𝒫 is used to collect condition qualifiers. It takes a list
of qualifiers and translates them to a list of SQL conditions:

𝒫J𝑒, 𝑞K = 𝑒 and𝒫J𝑞K (4.9)

𝒫J𝑝← 𝑒, 𝑞K = 𝒫J𝑞K (4.10)

𝒫J K = ∅ (4.11)

37



The semantic function 𝒢 collects the group-by keys. Currently, our translation
algorithm accepts at most one group-by qualifier. 𝒢 takes a list of qualifiers as input
and returns an optional group-by key:

𝒢Jgroupby 𝑝, 𝑞K = 𝑝 (4.12)

𝒢J𝑝← 𝑒, 𝑞K = 𝒢J𝑞K (4.13)

𝒢J𝑒, 𝑞K = 𝒢J𝑞K (4.14)

𝒢J K = ∅ (4.15)

4.2.2 Examples of Program Translation

Consider a loop-based program that sums up the values of an array, written as
follows:

𝑠𝑢𝑚 := 0

for 𝑖 = 1, 10 do 𝑠𝑢𝑚+= 𝑉 [𝑖]

Here, the values of an array 𝑉 are summed and assigned to a variable 𝑠𝑢𝑚. The
comprehension of this program is:

𝑠𝑢𝑚 := +/({{{ 𝑣 ||| (𝑖, 𝑣)← 𝑉, inRange(𝑖, 1, 10)}}})

where the predicate inRange(𝑥._1, 1, 10) returns true if 1 ≤ 𝑥._1 ≤ 10. Before
the translation to SQL, we eliminate the patterns from the comprehension. The only
pattern in the comprehension is (𝑖, 𝑣), which is replaced with a fresh variable 𝑥. Then,
using (4.1) and (4.2) we get 𝒞J(𝑖, 𝑣)K𝑥 = [𝑖→ 𝑥._1, 𝑣 → 𝑥._2]. Therefore, using (4.3),
the comprehension is transformed to:

𝑠𝑢𝑚 := +/({{{𝑥._2 ||| 𝑥← 𝑉, inRange(𝑥._1, 1, 10)}}})

where pattern variable 𝑖 is replaced with 𝑥._1 and 𝑣 is replaced with 𝑥._2. Next, we
translate this transformed comprehension to an equivalent SQL query. To generate
the equivalent SQL query, we use (4.4) to translate the transformed comprehension
to SQL.
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The semantic functions 𝒬,𝒫 , and 𝒢 take the qualifiers of the transformed com-
prehension as their input and translate to the equivalent SQL program:

select 𝑠𝑢𝑚(𝑥._2)

from 𝒬J𝑥← 𝑉, inRange(𝑖, 1, 10)K
where 𝒫J𝑥← 𝑉, inRange(𝑖, 1, 10)K
groupby 𝒢J𝑥← 𝑉, inRange(𝑖, 1, 10)K

= select 𝑠𝑢𝑚(𝑥._2)

from 𝑉 𝑥

where 1 <= 𝑥._1 and𝑥._1 <= 10

Consider now the following loop-based program:

for 𝑖 = 1, 10 do 𝑊 [𝐾[𝑖]] += 𝑉 [𝑖]

For each different key 𝑘 in 𝐾, this program sums the values 𝑉𝑖 associated with the
same key 𝐾𝑖 = 𝑘 and stores the results in array 𝑊 . The comprehension of the above
program is:

𝑊 := {{{ (𝑎,+/𝑣) ||| (𝑖, 𝑣)← 𝑉, inRange(𝑖, 1, 10),

(𝑚, 𝑎)← 𝐾, 𝑖 = 𝑚,group by 𝑎}}}

In this comprehension, there are two generators 𝑉 and 𝐾 containing the patterns
(𝑖, 𝑣) and (𝑚, 𝑎). After replacing the patterns with fresh variables 𝑥 and 𝑦 and
applying (4.1) and (4.2), we get: 𝒞J(𝑖, 𝑣)K𝑥 = [𝑖→ 𝑥._1, 𝑣 → 𝑥._2] and 𝒞J(𝑚, 𝑎)K𝑦 =

[𝑚 → 𝑦._1, 𝑎 → 𝑦._2]. Then the patterns are removed from the comprehension
using (4.3):

𝑊 := {{{ (𝑦._2,+/𝑥._2) ||| 𝑥← 𝑉, inRange(𝑥._1, 1, 10),

𝑦 ← 𝐾, 𝑥._1 = 𝑦._1,group by 𝑦._2}}}

Then, we apply (4.4) where the header of the comprehension (𝑦._2,+/𝑥._2) is trans-
lated to 𝑦._2, 𝑠𝑢𝑚(𝑥._2).
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Then, using (4.5)-(4.8), the semantic function 𝒬 is applied to the transformed
comprehension in the 𝑓𝑟𝑜𝑚 clause:

select 𝑦._2, 𝑠𝑢𝑚(𝑥._2)

from 𝒬J𝑥← 𝑉, inRange(𝑥._1, 1, 10),

𝑦 ← 𝐾, 𝑥._1 = 𝑦._1, groupby 𝑦._2K
where 𝒫J𝑞K
groupby 𝒢J𝑞K

= select 𝑦._2, 𝑠𝑢𝑚(𝑥._2)

from 𝑉 𝑥 join𝐾 𝑦 on𝑥._1 = 𝑦._1

where 𝒫J𝑞K
groupby 𝒢J𝑞K

Using (4.9)-(4.11) we get:

select 𝑦._2, 𝑠𝑢𝑚(𝑥._2)

from 𝑉 𝑥 join𝐾 𝑦 on𝑥._1 = 𝑦._1

where 𝒫J𝑥← 𝑉, inRange(𝑥._1, 1, 10),

𝑦 ← 𝐾, 𝑥._1 = 𝑦._1, groupby 𝑦._2K
groupby 𝒢J𝑞K

= select 𝑦._2, 𝑠𝑢𝑚(𝑥._2)

from 𝑉 𝑥 join𝐾 𝑦 on𝑥._1 = 𝑦._1

where 1 ≤ 𝑥._1 and𝑥._1 ≤ 10

groupby 𝒢J𝑞K

Then, using (4.12), we get:

select 𝑦._2, 𝑠𝑢𝑚(𝑥._2)

from 𝑉 𝑥 join𝐾 𝑦 on𝑥._1 = 𝑦._1

where 1 ≤ 𝑥._1 and 10 ≤ 𝑥._1

groupby 𝒢J𝑥← 𝑉, inRange(𝑥._1, 1, 10),

𝑦 ← 𝐾, 𝑥._1 = 𝑦._1, groupby 𝑦._2K
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= select 𝑦._2, 𝑠𝑢𝑚(𝑥._2)

from 𝑉 𝑥 join𝐾 𝑦 on𝑥._1 = 𝑦._1

where 1 ≤ 𝑥._1 and𝑥._1 ≤ 10

groupby 𝑦._2

The final translation is an assignment that assigns the result of the generated SQL
query to the DataFrame table 𝑊 .

As yet another example, consider the matrix multiplication between the matri-
ces 𝑀 and 𝑁 , which is stored in the matrix 𝑅:

for 𝑖 = 0, 10 do

for 𝑗 = 0, 10 do {
𝑅[𝑖, 𝑗] = 0.0;

for 𝑘 = 0, 10 do {
𝑅[𝑖, 𝑗] += 𝑀 [𝑖, 𝑘] *𝑁 [𝑘, 𝑗]);

}
}

The comprehension of matrix multiplication is as follows:

𝑅 := {{{ ((𝑖, 𝑗), (+/𝑣)) ||| ((𝑖, 𝑘),𝑚)←𝑀, ((𝑘′, 𝑗), 𝑛)← 𝑁, 𝑘 = 𝑘′,

let 𝑣 = 𝑚 * 𝑛, group by (𝑖, 𝑗)}}}

To keep this example simple, we omit the inRange qualifiers. In the comprehen-
sion above, the patterns ((𝑖, 𝑘),𝑚) and ((𝑘′, 𝑗), 𝑛) are replaced with fresh variables
𝑥 and 𝑦. Then, after applying (4.1) and (4.2), we get the following bindings:
𝒞J((𝑖, 𝑘),𝑚)K𝑥 = [𝑖 → 𝑥._1._1, 𝑘 → 𝑥._1._2, 𝑚 → 𝑥._2], 𝒞J((𝑘′, 𝑗), 𝑛)K𝑦 = [𝑘′ →
𝑦._1._1, 𝑗 → 𝑦._1._2, 𝑛 → 𝑦._2]. Then, these patterns are eliminated using (4.3)
and the comprehension is transformed to:

𝑅 := {{{ ((𝑥._1._1, 𝑦._1._2), (+/𝑣)) ||| (𝑥←𝑀, 𝑦 ← 𝑁, 𝑥._1._2 = 𝑦._1._1,

let 𝑣 = 𝑥._2 * 𝑦._2,

group by (𝑥._1._1, 𝑦._1._2)}}}

Then, we can get the equivalent SQL from (4.4). In the 𝑠𝑒𝑙𝑒𝑐𝑡 clause, we get,
𝑥._1._1, 𝑦._1._2, 𝑠𝑢𝑚(𝑥._2 * 𝑦._2) where 𝑣 is substituted by the let-binding ex-
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pression. Next, the semantic function 𝒬 is applied to the transformed comprehension
in the 𝑓𝑟𝑜𝑚 clause. Using (4.5-4.8), we get:

select 𝑥._1._1, 𝑦._1._2, 𝑠𝑢𝑚(𝑥._2 * 𝑦._2)

from 𝒬J𝑥←𝑀, 𝑦 ← 𝑁, 𝑥._1._2 = 𝑦._1._1,

groupby 𝑥._1._1, 𝑦._1._2K
groupby 𝒢J𝑞K

= select 𝑥._1._1, 𝑦._1._2, 𝑠𝑢𝑚(𝑥._2 * 𝑦._2)

from 𝑀 𝑥 join𝑁 𝑦 on𝑥._1._2 = 𝑦._1._1

groupby 𝒢J𝑞K

Next, we apply the semantic function 𝒫 to the transformed comprehension in
the 𝑤ℎ𝑒𝑟𝑒 clause, which is not shown here. Then, we apply semantic function 𝒢 to
the transformed comprehension in the 𝑔𝑟𝑜𝑢𝑝 𝑏𝑦 clause. Using (4.12), we get:

select 𝑥._1._1, 𝑦._1._2, 𝑠𝑢𝑚(𝑥._2 * 𝑦._2)

from 𝑀 𝑥 join𝑁 𝑦 on𝑥._1._2 = 𝑦._1._1

groupby 𝒢J𝑥←𝑀, 𝑦 ← 𝑁, 𝑥._1._2 = 𝑦._1._1,

groupby 𝑥._1._1, 𝑦._1._2K
= select 𝑥._1._1, 𝑦._1._2, 𝑠𝑢𝑚(𝑥._2 * 𝑦._2)

from 𝑀 𝑥 join𝑁 𝑦 on𝑥._1._2 = 𝑦._1._1

groupby 𝑥._1._1, 𝑦._1._2

The final translation is an assignment that assigns the result of the generated SQL
query to table 𝑅.

4.3 Performance Evaluation

Our translation system SQLgen is implemented on top of DIABLO [13]. At first,
array-based loops are translated to monoid comprehensions, and then the monoid
comprehensions are translated to Spark SQL by SQLgen.

We evaluated the performance of SQLgen on 12 different programs and com-
pared it with equivalent DIABLO programs, hand-written RDD-based Spark pro-
grams, and Spark SQL programs as shown in Figure 4.1. The platform used in our
experiments is the XSEDE Comet cloud computing infrastructure at SDSC (San
Diego Supercomputer Center). Each program was run on a cluster of 10 nodes where
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Figure 4.1. Performance of SQLgen relative to DIABLO, hand-written Spark RDD,
and Spark SQL.

each node is equipped with 24 core Xeon E5-2680v3 processor with 2.5GHz clock
speed, 128GB RAM and 320GB SSD. The programs were run on Apache Spark 2.2.0
on Apache Hadoop 2.6.0. Each Spark executor on Spark was configured to have 4
cores and 23 GB RAM. So, there were 24/4 = 6 executors per node, giving a total
of 60 executors, from which 2 were reserved. The input data for each program were
randomly generated. Each program was evaluated 4 times on each of 5 different sizes
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of datasets. From the 4 iterations over each dataset, the results from the first iteration
were ignored to avoid the possible overhead due to the JIT warm-up time. So, each
data point in the plots represents the mean time on the rest of the 3 iterations. The
input dataset size was calculated by multiplying the length of the dataset by the size
of each serialized dataset element. For example, the size of a serialized RDD of the
key-value pair RDD[(Long, Double)] is 47 bytes. So, the size of 100 key-value pairs
is 47*100 = 4700 bytes. The performance results are shown in Fig. 2.

Sum (A) and Word Count (B): Sum aggregates a dataset that contains random
data. The largest dataset used had 2× 108 elements and size 27.19 GB. Word Count
counts the number of occurrences of strings with 4 characters in a dataset with 1000
different strings. The largest dataset used had 8 × 107 elements and size 11.47 GB.
For these two experiments, all four modes of evaluation had similar performance.

GroupBy (C) and GroupByJoin (D): GroupBy groups a dataset by its first
component and sums up the second component. The first components were random
long integers with 10 duplicates on the average. The largest dataset used had 2× 108

elements and size 35.39 GB. SQLgen is approximately 3 times faster than DIABLO.
GroupByJoin joins two datasets, groups the result by some component, and returns
the sum of another component in each group. The join keys of both datasets were
random long integers with 10 duplicates on the average. The largest datasets had
2 × 107 elements and size 2.72 GB each. For this experiment, SQLgen is up to 18
times faster than DIABLO.

Histogram (E): Histogram calculates the frequency of values in a dataset con-
taining RGB values (0-255). The largest dataset used had 9× 107 elements and size
16.93 GB. For this experiment, SQLgen is up to twice as fast as DIABLO.

String Match (F): String Match matches a list of keys with a file containing
strings and counts the number of occurrences of the keys in the file. The largest file
containing the strings had 15×107 strings and size 21.51 GB and keys were broadcast
to the worker nodes. In this experiment, the hand-written RDD based program was
the fastest and the performance of the SQLgen program was approximately 1.5 times
faster than DIABLO.

Matrix Addition (G) and Matrix Multiplication(H): The matrices used for ad-
dition and multiplication were pairs of square matrices of the same size. Although
sparse, all matrix elements were provided, were placed in random order, and were
filled with random values between 0.0 and 10.0. The largest matrices used in matrix
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addition had 7000 × 7000 elements and size 10.59 GB each, while those in multipli-
cation had 4000× 4000 elements and size 3.46 GB each. Multiplication on DIABLO
and the hand-written RDD-based program was very slow, so it was only run on 2
datasets. For both addition and multiplication, SQLgen is approximately 20 times
faster than DIABLO and has similar performance to the hand-written Spark SQL
program.

Linear Regression (I): Linear Regression takes a dataset of 2-D points and
calculates the intercept and the slope coefficient that models the dataset. The data
used were points (𝑥 + 𝑑𝑥, 𝑥− 𝑑𝑥), where 𝑥 is a random double between 0 and 1000,
and 𝑑𝑥 is a random double between 0 and 10. The largest dataset used had 12× 107

elements and size 21.57 GB. For this experiment, SQLgen is approximately 4.5 times
faster than DIABLO and has similar performance to the hand-written RDD-based
program and the Spark SQL program.

PCA (J): Given a set of data points in the form of a matrix, PCA calculates
the mean vector and the covariance matrix. The largest dataset had 6000 × 400

elements and size 0.52 GB. PCA on DIABLO was very slow, so it was only run on
3 datasets with 30, 40, and 50 columns and SQLgen performed approximately 78.5
times faster than DIABLO. For the next two datasets, where the number of columns
was increased to 400, SQLgen performed approximately 10 times faster than the
hand-written RDD-based program.

Matrix Factorization (K): This program is one iteration of matrix factorization
using gradient descent [42]. For our experiments, we used the learning rate 𝑎 = 0.002

and the normalization factor 𝑏 = 0.02. The matrix to be factorized, R, was a square
sparse matrix 𝑛 * 𝑛 with random integer values between 1 and 5, in which only 10%
of the elements were provided (the rest were implicitly zero). The derived matrices P
and Q had dimensions 𝑛 * 2 and 2 * 𝑛, respectively, and were initialized with random
values between 0.0 and 1.0. The largest matrix 𝑅 used had 6000×6000 elements and
size 7.68 GB. For this experiment, SQLgen is approximately 4.5 times faster than
DIABLO.

PageRank (L): This program computes one iteration of the PageRank algorithm
that assigns a rank to each vertex of a graph, which measures its importance relative to
the other vertices in the graph [43]. The graphs used in our experiments were synthetic
data generated by the RMAT (Recursive MATrix) Graph Generator [44] using the
Kronecker graph generator parameters a=0.30, b=0.25, c=0.20, and d=0.25. The
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number of edges generated was 10 times the number of graph vertices. The largest
graph used had 2 × 107 vertices, 2 × 108 edges, and had size 36.32 GB. For this
experiment, SQLgen is more than 5 times faster than DIABLO.

4.4 Conclusion

From all these experiments, we can see that the programs generated by SQLgen
have similar performance to the hand-written Spark SQL programs. For many graphs
shown in Fig. 2, the SQLgen lines coincide with that of the hand-written Spark SQL
lines, which implies that the derived SQL queries from SQLgen are equivalent (al-
though not equal) to the hand-written SQL queries. On the other hand, compared to
hand-written RDD-based programs and the programs generated by DIABLO, SQL-
gen is significantly faster except for the simple programs Sum and Word Count, where
the performance of all four programs was similar.

46



CHAPTER 5
OSQLgen: Translation to SQL on Block
Arrays

5.1 Introduction

Over the past few decades, researchers have expressed many algorithms, es-
pecially graph algorithms, in a form similar to the matrix multiplication algorithm.
These algorithms are represented using a general algebraic structure called a semir-
ing, where the + and * operations of matrix multiplication are replaced with an
additive monoid ⊕ and a multiplicative monoid ⊗, respectively. Formally, a semir-
ing (𝑆,⊕,⊗, 0, 1) is an algebraic structure defined over a set 𝑆, equipped with two
monoids: an additive monoid (⊕, 0) : 𝑆×𝑆 → 𝑆 with identity 0 and a multiplicative
monoid (⊗, 1) : 𝑆 × 𝑆 → 𝑆 with identity 1. The additive monoid must be asso-
ciative and commutative and the multiplicative monoid needs to be associative and
distribute over the additive monoid. For example, in terms of a semiring, the matrix
multiplication algorithm between matrices 𝐴 and 𝐵 can be represented as +(𝐴 *𝐵),
where ⊕ and ⊗ are equal to + and *, respectively. Similarly, the classical graph algo-
rithm for all-pairs shortest path problem can be represented in terms of the semiring
𝑚𝑖𝑛(𝐺 + 𝐺) where 𝐺 is the transition matrix of the input graph 𝐺. Some other
well-known algorithms that fall under this umbrella are shown in Table 5.1. On the
other hand, the block matrix multiplication can also be represented in terms of the
semiring (𝑆,+𝑏, *𝑏, 0, 1), where the set 𝑆 consists of 𝑁 × 𝑁 blocks and +𝑏, and *𝑏
represent addition and multiplication of blocks. We will show that, the algorithms
that can be expressed in terms of semirings and are based on scalar operations can
also be expressed in terms of semirings that are based on block operations. We have
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provided a proof of equivalency in terms of comprehensions in Appendix 5.5. Given
this equivalency, an array-based loop program that is equivalent to a semiring can
be translated to a DISC program on block arrays so it can leverage the performance
benefits of block implementation.

Our goal is to improve the framework that we have developed in our earlier
work SQLgen [18], by translating array-based loop programs that are equivalent to
semirings to programs on block arrays expressed in Spark SQL [14]. At first, loops are
translated to equivalent monoid comprehensions, as in SQLgen, but instead of directly
translating the comprehensions to Spark SQL programs, we check if a comprehension
is equivalent to a semiring. In that case, we translate the comprehension to a Spark
SQL program on block arrays. If the comprehensions are not equivalent to a semiring,
we translate the programs to a Spark SQL program by following the rules of SQLgen.
The contributions of this work are summarized as follows:

• We present a novel framework, called OSQLgen, for translating array-based
loop programs to optimized Spark SQL programs on block arrays that is able
to handle many important programs including many graph algorithms that
satisfy the properties of a semiring.

• OSQLgen can also translate basic linear algebra operations such as matrix mul-
tiplication, matrix transpose, etc. on coordinate arrays to more optimal block
arrays.

• We compare the performance of our system on real-world problems relative to
GraphX, GraphFrames, MLlib, and hand-written Spark SQL programs on co-
ordinate and block arrays. Our performance results indicate that, for these pro-
grams, OSQLgen outperforms GraphX, GraphFrames, MLlib and Spark SQL
programs on coordinate arrays giving performance close to that of hand-written
Spark SQL programs on block arrays.

5.2 Background

OSQLgen is built on top of our earlier work SQLgen described in chapter 4. In
OSQLgen, the input programs are same proof-of-concept language used in SQLgen,
and DIABLO.
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𝑆𝑒𝑚𝑖𝑟𝑖𝑛𝑔𝑠 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

+(𝐴 *𝐵) All-pairs shortest path
+(𝐴 * 𝑏) PageRank
𝑚𝑎𝑥(𝐴 *𝐵) Maximum reliability path
𝑚𝑖𝑛(𝑚𝑎𝑥(𝐴, 𝐵)) Minimum spanning tree
𝑚𝑎𝑥(𝑚𝑖𝑛(𝐴, 𝐵)) Maximum capacity path

Table 5.1. Semirings for Graph Algorithms

5.2.1 Semiring and Graph Algorithms

The formal basis of our framework is the monoid comprehension. In abstract
algebra, a monoid is an algebraic structure equipped with a single associative binary
operation and a single identity element. More formally, given a set 𝑆, a binary
operator ⊕ from 𝑆 × 𝑆 to 𝑆, and an element 𝑒 ∈ 𝑆, the structure (𝑆,⊕, 𝑒) is called a
monoid if ⊕ is associative and has an identity 𝑒:

𝑥⊕ (𝑦 ⊕ 𝑧) = (𝑥⊕ 𝑦)⊕ 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ 𝑆

𝑥⊕ 𝑒 = 𝑥 = 𝑒⊕ 𝑥 for all 𝑥 ∈ 𝑆

Monoids may satisfy additional algebraic laws. The monoid (𝑆,⊕, 𝑒) is commu-
tative if 𝑥 ⊕ 𝑦 = 𝑦 ⊕ 𝑥, for all 𝑥, 𝑦 ∈ 𝑆. A semiring(𝑆,⊕,⊗, 1, 0) is an al-
gebraic structure equipped with two monoids: additive(⊕, 0) : 𝑆 × 𝑆 → 𝑆 and
multiplicative(⊗, 1) : 𝑆 × 𝑆 → 𝑆, where the additive monoid is commutative and
the multiplicative monoid distributes over the additive monoid. We use the notation
⊕(𝐴 ⊗ 𝐵) to represent semiring operation between the sets 𝐴 and 𝐵 over 𝑆. This
notation is used to represent algorithms that follow the properties of a semiring. For
example, multiplication between matrices 𝐴 and 𝐵 is represented in terms of the
semiring 𝐶 = +(𝐴 * 𝐵). Many graph algorithms can also be represented in terms
of semirings. For example, the computation of all-pairs shortest path can be repre-
sented as 𝐶 = 𝑚𝑖𝑛(𝐴 + 𝐵). On the other hand, the product of two matrices can
be computed by operating on the submatrices after partitioning the matrices into
blocks of submatrices [45]. We denote the multiplication of two block matrices as
𝐶𝑏 = +𝑏(𝐴𝑏 *𝑏 𝐵𝑏) where *𝑏 represents multiplication between blocks and +𝑏 rep-
resents addition of blocks. In a distributed system such as Spark, multiplication of
matrices can be done by first partitioning the input matrices conformably and the
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partitions/blocks are small enough to fit in each worker’s memory. Then the blocks
are multiplied in each worker node to compute the partial results and then added
together to get the final result. Here, the order of the operands in the worker nodes
to multiply the blocks (*𝑏) is set by the input program. Similarly, graph algorithms
that can be represented as ⊕𝑏(𝐴𝑏 ⊗𝑏 𝐵𝑏) can also be implemented on Spark, where
⊗𝑏 represents multiplicative operation on blocks in worker nodes and ⊕𝑏 represents a
additive operation on blocks across the worker nodes.

5.3 The OSQLgen Framework

Similar to SQLgen the input to our translation system is monoid comprehen-
sions. The syntax of a monoid comprehension is as follows:

𝑒 ::= {{{ 𝑒 ||| 𝑞1, . . . , 𝑞𝑛 }}} comprehension
| ⊕/𝑒 reduction

where in the comprehension, the comprehension head 𝑒 is an expression, 𝑞𝑖 is a qual-
ifier, and ⊕/𝑒 is a total aggregation over an expression 𝑒 that reduces the results of
𝑒 using the monoid ⊕.

The output OSQLgen is a list of statements 𝑐 that have syntax:

𝑐 ::= 𝑣 := 𝑒 assignment
| while(𝑒, 𝑐) loop
| {𝑐1; . . . ; 𝑐𝑛} code block

Here, in 𝑣 := 𝑒, a comprehension 𝑒 is translated to a Spark SQL query. Multiple
assignments can be grouped in a code block using {𝑐1; . . . ; 𝑐𝑛}.

The syntax of Spark SQL on block arrays generated by OSQLgen when the
input program is a semiring is as follows:

select 𝐴._1._1, 𝐵._1._2 as_1,+𝑏(𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑙𝑖𝑠𝑡(*𝑏(𝐴._2, 𝐵._2))) as _2

from 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝐴 join 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝐵 on𝐴._1._2 = 𝐵._1._1

groupby 𝐴._1._1, 𝐵._1._2

Loop-based programs are translated to comprehension using a method described
in our earlier work [13]. Then, we translate the resulting comprehension in two steps:
pattern compilation and comprehension translation. In the pattern compilation step,
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we transform the comprehension by eliminating the patterns from the comprehen-
sion. Then, in the comprehension translation step, we translate the transformed
comprehension to Spark SQL program using a few semantic functions.

Let’s consider one iteration of the all-pairs shortest path algorithm on an input
graph 𝐺 written using arrays and loops. A graph 𝐺 is represented by a transition
matrix 𝐺 where 𝐺𝑖𝑗 = distance between the nodes 𝑖 and 𝑗 with 𝐺𝑖𝑖 = 0. When there
is no path between two nodes, the distance is initialized to +∞.

var 𝑅 : matrix[Double] = matrix();

for 𝑖 = 0, 𝑛− 1 do

for 𝑗 = 0, 𝑛− 1 do {
for 𝑘 = 0, 𝑛− 1 do {
𝑅[𝑖, 𝑗] := 𝑚𝑖𝑛(𝑅[𝑖, 𝑗], 𝐺[𝑖, 𝑘] + 𝐺[𝑘, 𝑗]); //𝑢𝑝𝑑𝑎𝑡𝑒

}
𝐺[𝑖, 𝑗] := 𝑅[𝑖, 𝑗]; //𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡

}

The above program consists of two key steps: the update step and the assignment
step. In the update step, for each vertex, the algorithm finds the minimum distance
path among other vertices, and in the assignment step, the updated graph replaces
the existing graph. In general, a program that is equivalent to a semiring on array 𝐴

and 𝐵 has the following structure:

var 𝐶 : matrix[Double] = matrix();

for 𝑖 = 0, 𝑛− 1 do

for 𝑗 = 0, 𝑛− 1 do {
for 𝑘 = 0, 𝑛− 1 do {
𝐶[𝑖, 𝑗] := 𝐶[𝑖, 𝑗]⊕ (𝐴[𝑖, 𝑘]⊗𝐵[𝑘, 𝑗]); //𝑢𝑝𝑑𝑎𝑡𝑒

}
𝐴[𝑖, 𝑗] := 𝐶[𝑖, 𝑗]; //𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡

}

Here, in the update step, the additive monoid ⊕ is applied to the result of the multi-
plicative monoid ⊗ applied to the arrays 𝐴 and 𝐵. Our example program to compute

51



all-pairs shortest path has the same structure since 𝑚𝑖𝑛, and + follow the properties
of ⊕ and ⊗, respectively and the arrays 𝐴 and 𝐵 are the transition matrix 𝐺.

SQLgen translates this all-pairs shortest program to a bulk assignment to array
𝑅 that calculates all the values of 𝑅 in one shot using a bag comprehension that
returns the new content of 𝑅. The cumulative effects of all the updates to the array
𝑅 throughout the iterations are performed in bulk by grouping the values across the
iterations by the indices and then by summing up these values for each group. Then
the array 𝑅 is replaced with these new values. The array 𝑅 then replaces the array
𝐺. More specifically, the above program is translated to a comprehension as follows:

𝑅 := {{{ ((𝑖, 𝑗),𝑚𝑖𝑛/𝑣) ||| ((𝑖, 𝑘),𝑚)← 𝐺, ((𝑘′, 𝑗), 𝑛)← 𝐺, 𝑘 = 𝑘′,

let 𝑣 = 𝑚 + 𝑛, group by (𝑖, 𝑗)}}}

𝐺 := 𝑅

This comprehension retrieves the values 𝐺𝑖𝑘 ∈ 𝐺 and 𝐺𝑘𝑗 ∈ 𝐺 in coordinate format as
triples ((𝑖, 𝑘),𝑚) and ((𝑘′, 𝑗), 𝑛) so that 𝑘 = 𝑘′, and sets 𝑣 = 𝑚+𝑛 = 𝐺𝑖𝑘 +𝐺𝑘𝑗. After
we group the values by the indices 𝑖 and 𝑗, the variable 𝑣 is lifted to a bag of numerical
values 𝐺𝑖𝑘 + 𝐺𝑘𝑗, for all 𝑘. Hence, the aggregation 𝑚𝑖𝑛/𝑣 will return the minimum
of all the values in the bag 𝑣, deriving 𝑚𝑖𝑛𝑘{𝐴𝑖𝑘 + 𝐵𝑘𝑗} for the 𝑖𝑗 element of the
resulting array. Since this comprehension is equivalent to a semiring comprehension,
we translate this comprehension to a semiring comprehension on block arrays. At
first, the array 𝐺 is converted to block array 𝐺𝑏 with nested schema ((I:Int, J:Int),
V:Array[Double]) where 𝐼, 𝐽 represents block indices and 𝑉 represents a block. The
scalar operations 𝑚𝑖𝑛, and + are replaced with block min (𝑚𝑖𝑛𝑏) and block addition
(+𝑏), respectively:

𝑅𝑏 := {{{ ((𝑋._1._1, 𝑌._1._2), (𝑚𝑖𝑛𝑏/𝑉 )) ||| 𝑋 ← 𝐺𝑏, 𝑌 ← 𝐺𝑏,

𝑋._1._2 = 𝑌._1._1, let𝑉 = 𝑋._2 +𝑏 𝑌._2,

group by (𝑋._1._1, 𝑌._1._2)}}}

𝐺𝑏 := 𝑅𝑏
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Then, from this block comprehension, we generate the following SQL program which
operates on the block matrices:

𝑅𝑏 := select 𝑠𝑡𝑟𝑢𝑐𝑡(X._1._1, Y._1._2), 𝑡𝑖𝑙𝑒_𝑚𝑖𝑛(

𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑙𝑖𝑠𝑡(𝑚𝑖𝑛_𝑡𝑖𝑙𝑒𝑠(X._2,Y._2)))

from Gb𝑋 join Gb𝑌 on X._1._2 = Y._1._1

groupby X._1._1, Y._1._2

Here, 𝑚𝑖𝑛_𝑡𝑖𝑙𝑒𝑠 is a user-defined function that computes 𝑚𝑖𝑛𝑏 the minimum distance
values between the pair of blocks of arrays, and 𝑡𝑖𝑙𝑒_𝑚𝑖𝑛 is a user-defined function
that computes +𝑏 the minimum distance values of the blocks after aggregating the
blocks using the built-in function 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑙𝑖𝑠𝑡.

Our framework, called OSQLgen, has been integrated into our existing frame-
work SQLgen. The source language used to expressed loops with array operations is
the same proof-of-concept language used in DIABLO [13], while the target language
is Spark SQL. Our framework can be easily extended to work with other imperative
programming languages, such as C or Java.

5.3.1 OSQLgen Storage System

Vectors and matrices in DIABLO are translated to DataFrames in Spark SQL.
Basically, a sparse array is translated to a relational table with two columns: the
first column is a nested struct column of StructType that contains the block index
elements and the second column is the element value, which can be a primitive type
or a composite type. For example, a vector 𝑉 of type {{(Long,Double)}} in DIABLO is
mapped to a table 𝑉 of schema (_1 : Int,_2 : Vector) where _1 represents the block
index. The vector can be either dense or sparse. A dense vector is represented as a
vector of type {{(values : Array[Double])}}. On the other hand, a sparse vector is rep-
resented as a vector of type {{(size : Int, indices : Array[Int], values : Array[Double])}}.
For example, a vector (1.0, 0.0, 2.0) can be represented in dense format as [1.0, 0.0, 2.0]

or in sparse format as (3, [0, 2], [1.0, 2.0]), where 3 is the size of the vector.
On the other hand, a matrix 𝑀 of type {{((Long,Long),Double)}} in DIABLO is

mapped to a table 𝑀 of schema (_1 : Struct (_1 : Int,_2 : Int),_2 : Matrix), where
the index column is nested with the block row index column referred to as _1._1

and the block column index referred to as _1._2. The matrix can be either dense
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or sparse. The dense matrix is represented as {{(values : Array[Double])}}. The entry
values of the matrix are stored as of type Array[Double] in a column-major order.
For example, the following dense matrix:⎡⎢⎣1.0 2.0

3.0 4.0

5.0 6.0

⎤⎥⎦
is stored in values array as [1.0, 3.0, 5.0, 2.0, 4.0, 6.0]. The sparse ma-

trix is represented in Compressed Sparse Column (CSC) format as {{(colPtrs :

Array[Int]), rowIndices : Array[Int]), values : Array[Double])}} where the values array
contains all the non-zero entries of the matrix in a column-major order, rowIndices

array contains the row indices of the values in the values array, and finally colPtrs

contains the pointers to the first elements of each column appended by the number
of non-zero elements in the matrix. For example, the following matrix:⎡⎢⎣1.0 0.0

0.0 3.0

2.0 0.0

⎤⎥⎦
is stored as values array: [1.0, 2.0, 3.0], rowIndices array =[0, 2, 1], and

colPointers array=[0, 2, 3].

5.3.1.1 Mapping to Block Matrix

We use the following mapping to transform a coordinate matrix to a block
matrix:

{{{ ((𝐼, 𝐽),matrix(𝑚)) ||| ((𝑖, 𝑗), 𝑣)← 𝐴, let 𝐼 = 𝑖/𝑁, let 𝐽 = 𝑗/𝑁,

let𝑚 = ((𝑖%𝑁, 𝑗%𝑁), 𝑣), group by (𝐼, 𝐽)}}}

In the head of this comprehension, we have the indices of the block and a call to a
function matrix(m).
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Function matrix(m) takes a list of coordinates of form ((𝑖, 𝑗), 𝑣) and returns an
array representing a block. The function is defined as follows in Scala:

def matrix(L : List[(i, j), v)]) : Array[T] ={
val V = Array.ofDim[T](N * N);

for {((𝑖, 𝑗), 𝑣) ← L}
V(i + N * j) := v;

V;

}

If the generator 𝐵 is a vector we use mapping to transform a coordinate vector
to a block vector:

{{{ (𝐼, vector(𝑚)) ||| (𝑖, 𝑣)← 𝐵, let 𝐼 = 𝑖/𝑁, let𝑚 = (𝑖%𝑁, 𝑣), group by 𝐼 }}}

The function vector(m) takes a list of coordinates of form (𝑖, 𝑣) and returns an
array representing a block. The function is defined as follows:

def vector(L : List[(i, v)]) : Array[T] ={
val V = Array.ofDim[T](N);

for {(𝑖, 𝑣) ← L}
V(i * N) := v;

V;

}

5.3.2 Translation of Linear Algebra operations to SQL on Block Arrays

OSQlgen can match a few basic linear algebra operations such as matrix-matrix
multiplication, matrix-vector multiplication, matrix transpose, etc. in the input pro-
grams translate them to Spark SQL program on block arrays. A programmer can
decide the type of the input array blocks to be either sparse or dense.

5.3.3 Translation of Semiring to SQL on Block Arrays

In our framework, the array-based graph programs that are based on a semiring
are translated Spark SQL programs on block arrays. These graph programs generally
consist of two steps: update, and assignment, which are repeated until a stopping
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condition is met. In update step, a new graph is produced from an existing graph
where the computation is equivalent to a semiring, and in assignment step the updated
graph replaces the existing graph. These two steps generate two comprehensions
inside a code block in our framework. We provide a new semantic function 𝒮 to
pattern match a semiring (update step) in the input comprehension and transform
the input comprehensions to comprehensions on block arrays. Next, we apply pattern
compilation to remove the patterns from the comprehension. We provide a semantic
function ℬ to translate the comprehension on block arrays to a Spark SQL query on
block arrays. In our framework, a comprehension between two arrays 𝐴, 𝐵 that is
equivalent to a semiring has the following structure:

{{{ (𝑔,⊕/𝑣) ||| (𝑖,𝑚)← 𝐴, (𝑗, 𝑛)← 𝐵, 𝜌1(𝑖) = 𝜌2(𝑗),

let 𝑣 = 𝑚⊗ 𝑛, group by 𝑔 : 𝑓(𝑖, 𝑗)}}}

This comprehension retrieves the key-value pairs (𝑖,𝑚), and (𝑗, 𝑛) from generators 𝐴
and 𝐵, where 𝑖 and 𝑗 are tuples that contain indices of the generators. In the join
condition (𝜌1(𝑖) = 𝜌2(𝑗)), functions 𝜌1 and 𝜌2 are applied on the indices of 𝐴 and
𝐵 to get the columns on which the generators are joined. The let-binding qualifier
sets 𝑣 to the multiplicative monoid ⊗ applied to the values of the generators. Then,
we group 𝑣 using group-by key 𝑔 which is a function 𝑓 applied on the indices of the
generators. Finally, the comprehension head contains a key-value pair where the key
is the group-by key and the value is calculated by applying additive monoid ⊕ on 𝑣.

For each input code block, we pattern-match using the semantic function 𝒮 to
check if it is equivalent to a semiring. If a match is found, the comprehension on
coordinate arrays is transformed to comprehension on block arrays:

𝒮J{{{ (𝑔,⊕/𝑣) ||| (𝑖,𝑚)← 𝐴, (𝑗, 𝑛)← 𝐵, 𝜌1(𝑖) = 𝜌2(𝑗),

let 𝑣 = 𝑚⊗ 𝑛, group by 𝑔 : 𝑓(𝑖, 𝑗)}}}K =

{{{ (𝐺,⊕𝑏/𝑉 ) ||| (𝐼,𝑀)← 𝐴𝑏, (𝐽,𝑁)← 𝐵𝑏, 𝜌1(𝐼) = 𝜌2(𝐽),

let𝑉 = 𝑀 ⊗𝑏 𝑁, group by 𝐺 : 𝑓(𝐼, 𝐽)}}} (5.1)

𝒮J{{{ (ℎ ||| 𝑥← 𝐴}}}K = {{{𝐻 ||| 𝑋 ← 𝐴𝑏}}} (5.2)

Here, in rule (5.1) the coordinate matrices 𝐴 and 𝐵 of type {{((Long,Long),Double)}}
is transformed to block matrices 𝐴𝑏 and 𝐵𝑏 of type {{((Int, Int),Array[Double])}},
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where 𝐼, 𝐽 represent the indices of each block of 𝐴𝑏, and 𝐵𝑏, respectively, and 𝑀

and 𝑁 represent the values of the block. If the generator 𝐵 is a vector of type
{{(Long,Double)}}, it is transformed to block vector 𝐵𝑏 of type {{(Int,Array[Double])}},
where 𝐽 represents the index of the block, and 𝑁 represents the values of the
block. The updated graph computed using rule (5.1) replaces the current graph
using rule (5.2), where ℎ and 𝐻 refer to the headers of coordinate and block matrices
respectively.

5.3.3.1 Pattern Compilation and Comprehension Translation

After the coordinate arrays are mapped to block arrays, we apply pattern com-
pilation to get rid of the pattern variables since SQL doesn’t support patterns. To
do that, we use the semantic function described in section 4.2.1.1. For example, after
applying pattern compilation, the following comprehension:

{{{ ((𝐼, 𝐽),⊕𝑏/𝑉 ) ||| ((𝐼,𝐾),𝑀)← 𝐴𝑏, ((𝐾 ′, 𝐽), 𝑁)← 𝐵𝑏,

𝐾 = 𝐾 ′, let𝑉 = 𝑀 ⊗𝑏 𝑁,

group by (𝐼, 𝐽)}}}

is transformed to:

{{{ ((𝑋._1._1, 𝑌._1._2),⊕𝑏/𝑉 ) ||| (𝑋 ← 𝐴𝑏, 𝑌 ← 𝐵𝑏,

𝑋._1._2 = 𝑌._1._1,

let𝑉 = 𝑋._2⊗𝑏 𝑌._2,

group by (𝑋._1._1, 𝑌._1._2)}}}

Here, the pattern variables in the generators 𝐴𝑏 and 𝐵𝑏 are replaced with
new variables 𝑋 and 𝑌 and the pattern variables in the rest of the qualifiers are
expressed in terms of these new variables. Here, the pattern variables 𝐼, 𝐾 and 𝑀

are expressed as 𝑋._1._1, 𝑋._1._2, and 𝑋._2. Similarly, for the generator 𝐵𝑏, the
pattern variables 𝐾 ′, 𝐽 and 𝑁 are expressed as 𝑌._1._1, 𝑌._1._2, and 𝑌._2.
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Finally, the transformed comprehensions are translated to SQL programs on
block arrays using the semantic function ℬ:

ℬJ{{{ (𝐺,⊕𝑏/𝑉 ) ||| ((𝑋 ← 𝐴𝑏, 𝑌 ← 𝐵𝑏,𝐾 = 𝐾 ′,

let𝑉 = 𝑀 ⊗𝑏 𝑁, groupby 𝐺}}}K =

′′select 𝑠𝑡𝑟𝑢𝑐𝑡(𝐺), 𝑡𝑖𝑙𝑒_𝑠𝑢𝑚(

𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑙𝑖𝑠𝑡(𝑚𝑢𝑙𝑡_𝑡𝑖𝑙𝑒𝑠(M,N)))

from 𝐴𝑏𝑋 join 𝐵𝑏𝑌 on 𝐾 = 𝐾 ′

groupby 𝐺′′ (5.3)

ℬJ𝑣 ← 𝑒, 𝑞K = ℬJ𝑞K (5.4)

ℬJ𝑒, 𝑞K = ℬJ𝑞K (5.5)

ℬJ K = ∅ (5.6)

Here, the user-defined functions 𝑡𝑖𝑙𝑒_𝑠𝑢𝑚, and 𝑚𝑢𝑙𝑡_𝑡𝑖𝑙𝑒𝑠 represent additive,
and multiplicative monoids on block arrays respectively. The implementations of these
user-defined functions are provided by our framework. The multiplicative monoid *𝑏
is defined as:

def mult_tiles(M : Array[T],N : Array[T]) : Array[T] ={
val V = Array.ofDim[T](N * N);

for {𝑖← 0until𝑁 ; 𝑗 ← 0until𝑁}{
V[i + N * j] := ⊕zero;

for {𝑘 ← 0until𝑁}
V[i + N * j] := V[i + N * j] ⊕

(M[i + N * k]⊗ N[k + N * j]);

}
𝑉 ;

}

In Spark SQL, user-defined functions are called UDFs. If ⊕ and ⊗ represent +

and *, this is simply a multiplication between the tiles/blocks of the input matrices.
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User-defined function 𝑡𝑖𝑙𝑒_𝑠𝑢𝑚 applies additive monoid after aggregating the
blocks using built-in function 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑙𝑖𝑠𝑡. The additive monoid +𝑏 is defined as:

def tile_add(M : List[Array[T]) : Array[T] ={
val V = Array.ofDim[T](N * N);

for {𝑥←𝑀 ; 𝑖← 0until𝑁 ; 𝑗 ← 0until𝑁}
V[i + N * j] := V[i + N * j]⊕ x(i + N * j);

V;

}

We also provide special functions if the header of the comprehension in (5.2)
contains scalar operation on a column. For example, for addition of a constant 𝑐 to
value column we provide the following function:

def vec_sum(M : Array[T], c : Double : Array[T] ={
val V = Array.ofDim[T](N * N);

for {𝑖← 0until𝑁}
𝑉 (𝑖) := 𝑉 (𝑖) + 𝑐;

V;

}

If there are code blocks containing comprehensions on the same array after a
code block containing a semiring that are not semirings, we translate the block array
back to coordinate array:

𝐶 :={{{ ((𝐼 *𝑁 + 𝑖, 𝐽 *𝑁 + 𝑗), 𝑉 (𝑖 + 𝑁 * 𝑗) |||

((𝐼, 𝐽), 𝑉 )← 𝐶𝑏, 𝑖← 0 until 𝑁, 𝑗 ← 0 until 𝑁 }}} (5.7)

That way, the SQL programs generated from the non-semiring code block will operate
on coordinate array.

5.3.4 Examples of Program Translation

Let’s consider one iteration of all-pairs shortest path computation of an input
graph 𝐺 written using arrays and loops. A graph 𝐺 is represented by a transition
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matrix where 𝐺𝑖𝑗 = distance between node 𝑖 and 𝑗, 𝐺𝑖𝑖 = 0 and 𝐺𝑖𝑗 = +∞ if there
is no edge between 𝑖 and 𝑗.

var 𝑅 : matrix[Double] = matrix();

for 𝑖 = 0, 𝑛− 1 do

for 𝑗 = 0, 𝑛− 1 do {
for 𝑘 = 0, 𝑛− 1 do {
𝑅[𝑖, 𝑗] := 𝑚𝑖𝑛(𝑅[𝑖, 𝑗], 𝐺[𝑖, 𝑘] + 𝐺[𝑘, 𝑗]);

}
𝐺[𝑖, 𝑗] := 𝑅[𝑖, 𝑗];

}

The comprehensions of this program are:

𝑅 := {{{ ((𝑖, 𝑗),𝑚𝑖𝑛/𝑣) ||| ((𝑖, 𝑘),𝑚)← 𝐺, ((𝑘′, 𝑗), 𝑛)← 𝐺, 𝑘 = 𝑘′,

let 𝑣 = 𝑚 + 𝑛, group by (𝑖, 𝑗)}}} (5.8)

𝐺 := 𝑅 (5.9)

We apply semantic function 𝒮 on them which transforms the comprehensions
on coordinate arrays to comprehensions on block arrays using (5.1) and (5.2):

𝑅𝑏 := {{{ ((𝐼, 𝐽),𝑚𝑖𝑛𝑏/𝑉 ) ||| ((𝐼,𝐾),𝑀)← 𝐺𝑏, ((𝐾 ′, 𝐽), 𝑁)← 𝐺𝑏,

𝐾 = 𝐾 ′, let𝑉 = 𝑀 +𝑏 𝑁, group by (𝐼, 𝐽)}}} (5.10)

𝐺𝑏 := 𝑅𝑏 (5.11)

Then pattern compilation is applied to remove the patterns using formulae from
our earlier work:

𝑅𝑏 := {{{ ((𝑋._1._1, 𝑌._1._2), (𝑚𝑖𝑛𝑏/𝑉 )) ||| (𝑋 ← 𝐺𝑏, 𝑌 ← 𝐺𝑏,

𝑋._1._2 = 𝑌._1._1,

let𝑉 = 𝑋._2 +𝑏 𝑌._2,

group by (𝑋._1._1, 𝑌._1._2)}}} (5.12)

𝐺𝑏 := 𝑅𝑏 (5.13)
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Then, the transformed comprehension (5.12) is translated to Spark SQL program on
block arrays using (5.3):

𝑅𝑏 := select 𝑠𝑡𝑟𝑢𝑐𝑡(X._1._1, Y._1._2), 𝑡𝑖𝑙𝑒_𝑚𝑖𝑛(

𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑙𝑖𝑠𝑡(𝑚𝑖𝑛_𝑡𝑖𝑙𝑒𝑠(X._2,Y._2)))

from Gb𝑋 join Gb𝑌 on X._1._2 = Y._1._1

groupby X._1._1, Y._1._2 (5.14)

Now, let’s consider one iteration of PageRank computation of a graph using the
following equation: 𝑟′ = 𝛽𝑀𝑟+(1−𝛽)/𝑛. At first, rank vector 𝑟 is initialized to 1/𝑛,
where 𝑛 is the total number of nodes in the graph. (1− 𝛽)/𝑛 is assigned to variable
𝑎 which represents the introduction of a new random surfer at a random page with
probability (1 − 𝛽). In the transition matrix 𝑀 , 𝑀𝑖𝑗 has value 1/𝑘 if page 𝑗 has k
outgoing edges. Then 𝑀 is multiplied with 𝛽 and assigned to the variable 𝐺.

var 𝑠 : vector[Double] = vector();

for 𝑖 = 0, 𝑛− 1 do {
𝑠[𝑖] := 0;

for 𝑗 = 0, 𝑛− 1 do {
𝑠[𝑖] += 𝐺[𝑖, 𝑗] * 𝑟[𝑗];

}
𝑟[𝑖] := 𝑠[𝑖] + 𝑎;

}

The comprehensions of this program are:

𝑠 := {{{ (𝑖,+/𝑣) ||| ((𝑖, 𝑘),𝑚)← 𝐺, (𝑘′, 𝑛)← 𝑟, 𝑘 = 𝑘′,

let 𝑣 = 𝑚 * 𝑛, group by 𝑖}}} (5.15)

𝑟 := {{{ (𝑖, 𝑣 + 𝑎)) ||| (𝑖, 𝑣)← 𝑠}}} (5.16)
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The comprehensions are transformed to comprehensions on block arrays by
applying semantic function 𝒮 using (5.1) and (5.2):

𝑠𝑏 := {{{ (𝐼,+𝑏/𝑉 ) ||| ((𝐼,𝐾),𝑀)← 𝐺𝑏, (𝐾 ′, 𝑁)← 𝑟𝑏, 𝐾 = 𝐾 ′,

let𝑉 = 𝑀 *𝑏 𝑁, group by 𝐼 }}} (5.17)

𝑟𝑏 := {{{ (𝐼, 𝑉 +𝑏 𝑎)) ||| (𝐼, 𝑉 )← 𝑠𝑏}}} (5.18)

Then pattern compilation is applied to remove the patterns using formulae from
our earlier work:

𝑠𝑏 := {{{𝑋._1._1,+/𝑉 ) ||| (𝑋 ← 𝐺𝑏, 𝑌 ← 𝑟𝑏, 𝑋._1._2 = 𝑌._1,

let𝑉 = 𝑋._2 *𝑏 𝑌._2, group by 𝑋._1._1)}}} (5.19)

𝑟𝑏 := {{{ (𝑋._1, 𝑋._2 + 𝑎) ||| 𝑋 ← 𝑠𝑏}}} (5.20)

Then the first transformed comprehension (5.19) is translated to Spark SQL program
on block arrays using (5.3):

𝑠𝑏 := select X._1._1, 𝑡𝑖𝑙𝑒_𝑠𝑢𝑚(𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑙𝑖𝑠𝑡(

𝑚𝑢𝑙𝑡_𝑡𝑖𝑙𝑒𝑠(X._2,Y._2)))

from Gb𝑋 join rb𝑌 on X._1._2 = Y._1

groupby X._1._1 (5.21)

For the second comprehension, the header contains a scalar operation with the second
column. Therefore, our special function 𝑣𝑒𝑐_𝑠𝑢𝑚 is applied on the header and then
using semantic functions described in our earlier work for comprehension translation
𝑟𝑏 equals to:

select X._1,X._2 + a

from 𝒬JX← sbK
where 𝒫JX← sbK
groupby 𝒢JX← sbK

= select X._1, vec_sum(X._2 + a)

from sb X
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Figure 5.1. Performance of OSQLgen on linear algebra operations relative to MLlib,
hand-written Spark SQL on programs on coordinate and block arrays.

5.4 Performance Evaluation

Our solution to generate optimized queries based on semirings is integrated into
our existing system SQLGen [18] which in turn is implemented on top of DIABLO [13].
The input programs are translated to monoid comprehensions and then to optimized
SQL program. The generated query is compiled to bytecode at compile-time, which
in turn is embedded in the bytecode generated by the rest of the Scala program.

In the first part, we evaluated the performance of our system on matrix-
matrix multiplication, matrix-vector multiplication, and linear regression on synthetic
datasets. We compared the performance of our system with MLlib, hand-written SQL
programs on coordinate and block arrays. In the second part, we evaluated the perfor-
mance of our system on all-pairs shortest path, and PageRank on synthetic datasets.
We compared the performance of our system with GraphX [46], GraphFrames [37],
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Figure 5.2. Performance of OSQLgen relative to GraphX, GraphFrames, and hand-
written Spark SQL on COO and Block arrays.

handwritten Spark SQL programs on coordinate, and block arrays. The platform
used in our experiments is the XSEDE Expanse cloud computing infrastructure at
SDSC (San Diego Supercomputer Center) [47]. Each program was run on a cluster of
5 nodes where each node is equipped with 128 core AMD EPYC 7742 processor with
2.5GHz clock speed, 256 RAM and 1TB SSD. The programs were run on Apache
Spark 3.0.1 on Apache Hadoop 3.2.0. Each Spark executor on Spark was configured
to have 30 cores and 60 GB memory. So there were 4 executors per node, giving a
total of 20 executors, from which 2 were reserved. The input data for each program
were generated using GraphX synthetic graph generators. Each program was evalu-
ated 4 times on each of 5 different sizes of datasets. From the 4 iterations over each
dataset, the results from the first iteration were ignored to avoid the possible overhead
due to the JIT warm-up time. Hence, each data point in the plots in Figure 5.1 and
Figure 5.2 represents the mean time on the rest of the 3 iterations.

First, we compared the performance of OSQLgen on some linear algebra oper-
ations as shown in Figure 5.1.

Matrix-matrix Multiplication: We compared the performance of OSQLgen
on matrix product of two matrices with four different combinations: Dense-Dense
(DMDM), Dense-Sparse (DMSpM), Sparse-Dense (SpMDM), and Sparse-Sparse
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(SpMSpM). The dense matrices were complete and the sparse matrices had 87.5%
sparsity. Each program was run for 5 sizes of input datasets with each array block of
size 1024, except SQL programs on coordinate arrays which was run for first 2 datasets
because it was very slow. The largest dense matrix generated in these experiments
had 5, 120×5, 120 elements and the largest sparse matrix had 640×640 elements. For
these experiments, the average speedups of OSQLgen were 2.09× (DMDM), 2.06×
(DMSpM), 2.41× (SpMDM), and 2.5× (SpMSpM) over MLlib programs and 10.86×
(DMDM), 40.22× (DMSpM), 38.02× (SpMDM), and 37.7× (SpMSpM) over hand-
written Spark SQL programs on coordinate arrays and had similar performance to
the hand-written Spark SQL program on block arrays.

Matrix-vector Multiplication: We compared the performance of OSQLgen on
product of a matrix and vector with four different combinations: Dense-Dense
(DMDv), Dense-Sparse (DMSpv), Sparse-Dense (SpMDv), and Sparse-Sparse (SpM-
Spv). In these experiments, we couldn’t compare the performance of our system
with Spark MLlib since Spark MLlib doesn’t have block vector. The dense matrices
and vectors were complete and the sparse matrices and vectors had 87.5%, and 50%
sparsity respectively. Each program was run for 5 sizes of input datasets with each
array block of size 2048. The largest dense matrix generated in these experiments had
12, 288 × 12, 288 elements and the largest sparse matrix had 1536 × 1536 elements.
On the other hand, largest dense vector generated in these experiments had 12, 288

elements and the largest sparse matrix had 6144 elements. For these experiments,
the average speedups of OSQLgen were 9.13× (DMDv), 8.53× (DMSpv), 14.5× (Sp-
MDv), and 30.18× (SpMSpv) over handwritten Spark SQL programs on coordinate
arrays and had similar performance to the hand-written Spark SQL program on block
arrays.

Linear Regression: We compared the performance of OSQLgen for one iteration
of linear regression algorithm. The formula used to do this is the following: 𝑡ℎ𝑒𝑡𝑎 =

𝑡ℎ𝑒𝑡𝑎−(𝑎*1/𝑚*𝑋𝑇 )×(𝑋×𝑡ℎ𝑒𝑡𝑎−𝑦) where 𝑎,𝑚, 𝑡ℎ𝑒𝑡𝑎 and 𝑦 represent learning rate,
number of examples, parameter and label vector respectively. The feature matrix,
parameter and label vector were all dense. Each program was run for 5 sizes of input
datasets with each array block of size 128. The largest dense matrix generated in this
experiments had 131072×128 elements. For these experiments, the average speedups
of OSQLgen were 8.44×, and 5.44× over MLlib and handwritten Spark SQL program
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on coordinate arrays respectively and had similar performance to the hand-written
Spark SQL program on block arrays.

Next, we compared the performance of OSQLgen on some graph algorithms
as shown in Figure 5.2. In first set of experiments, we compare the performance of
graph algorithms on different graph size by keeping the block size and number of
iterations fixed. In the second set of experiments, we compare the performances of
graph algorithms on different number of iterations and by keeping the graph size and
block size fixed.

PageRank: This program assigns a rank to each vertex of a graph using PageR-
ank algorithm which measures its importance relative to the other vertices in the
graph. We compare the performance of OSQLgen with the PageRank algorithms
provided by the GraphX, and the GraphFrames libraries, and hand-written Spark
SQL program on coordinate and block arrays.

The input graph used in experiment A was generated by the GraphX log-normal
graph generator with parameters, mean of out-degree distribution, 𝜇 = 4.0, and
standard deviation of out-degree distribution, 𝜎 =1.3. The largest graph generated
in this experiment had 220 vertices and 227(apprx.) edges. Each program was run
for 8 iterations for 5 sizes of input datasets, except GraphFrames which was run for
first 3 datasets because it was very slow. For this experiment, the speedup ranges
of OSQLgen were 1.81×-2.28×, 5.1×-5.9×, and 2.1×-3.3× with average speedups of
2.01×, 5.21×, and 2.62× over GraphX, GraphFrames, and handwritten Spark SQL
program on coordinate arrays respectively and had similar performance to the hand-
written Spark SQL program on block arrays.

In experiment B, we evaluate the performance of OSQLgen with increasing
number of iterations (up to 18) for a fixed size of input graph with 218 vertices
and 225(apprx.) edges generated by GraphX log-normal graph generator with same
parameters as in experiment A. For this experiment, the speedup ranges of OSQL-
gen were 1.58×-2.07×, 3.8×-12.7×, and 2.6×-6.7× with average speedups of 1.84×,
6.55×, and 4.02× over GraphX, GraphFrames, and handwritten Spark SQL program
on coordinate arrays respectively and had similar performance to the hand-written
Spark SQL program on block arrays.

In experiment C, we use GraphX R-MAT (Recursive MATrix) graph generator
with parameters a=0.45, b=0.15, c=0.15, d=0.25 for our input datasets. The largest
graph generated in this experiment had 219(apprx.) vertices and 225 edges. Each pro-
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gram was run for 8 iterations for 3 sizes of input datasets for GraphX, GraphFrames,
and Spark SQL on coordinate arrays and 5 sizes of input dataset for OSQLgen, and
hand-written Spark SQL programs on block arrays. For this experiment, the speedup
ranges of OSQLgen were 3.91×-22.01×, 5.02×-25.21×, and 29.43×-44.05× with av-
erage speedups of 12.14×, 14.06×, and 36.37× over GraphX, GraphFrames, and
handwritten Spark SQL program on coordinate arrays respectively and had similar
performance to the hand-written Spark SQL program on block arrays.

In experiment D, we evaluate the performance of OSQLgen with increasing
number of iterations(up to 18) for a fixed size of input graph with 215 vertices and
223(apprx.) edges generated by GraphX R-MAT graph generator with same param-
eters as in experiment C. Each program was run for 5 sizes of input datasets except
hand-written Spark SQL programs on coordinate arrays which was run for 4 sizes
of input datasets. For this experiment, the speedup ranges of OSQLgen was 8.58×-
12.8×, 11.41×-14.29×, and 10.48×-99.01× with average speedups of 10.46×, 12.73×,
and 39.10× over GraphX, GraphFrames, and handwritten Spark SQL program on co-
ordinate arrays respectively and had similar performance to the hand-written Spark
SQL program on block arrays.

All-pairs Shortest Path: This program computes shortest cost path among all
pairs of vertices. The input graph used in experiment E was synthetic data generated
by the GraphX log-normal graph generator with same parameters as in experiment
A. We compare the performance of OSQLgen with hand-written programs written
in GraphX, GraphFrames, and Spark SQL program on coordinate, and block arrays.
The largest graph generated in this experiment had 211 vertices and 218(apprx.) edges.
The rest of the entries between the edges were filled with 0 if it was in between a
vertex to itself else they are filled with ∞. The total number of edges of our largest
graph was 222. Each program was run for 2 iterations for 3 sizes of input datasets
for GraphX, GraphFrames, and Spark SQL on coordinate arrays and 5 sizes of input
datasets for OSQLgen, and hand-written Spark SQL programs on block arrays. Since
the size of the first 3 datasets are significantly smaller than the last two datasets the
data points of the first 3 experiments are very close to each other in the figure. For
this experiment, the speedup ranges of OSQLgen were 5.97×-20.53×, 5.25×-6.4×,
and 5.02×-6.77× with average speedups of 12.1×, 5.8×, and 5.93× over GraphX,
GraphFrames, and handwritten Spark SQL program on coordinate arrays respectively
and had similar performance to the hand-written Spark SQL program on block arrays.
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In experiment F, we evaluate the performance of OSQLgen with increasing
number of iterations(up to 10) for a fixed size of input graph generated by GraphX log-
normal graph generator with same parameters as in experiment A. The largest graph
generated in this experiment had 1.5× 28 vertices and 215(apprx.) edges. The rest of
the entries between the edges were filled with 0 if it was in between a vertex to itself
else they are filled with∞. The total number of edges of our largest graph was 9×214.
Each program was run for for 3 sizes of input datasets for GraphX, GraphFrames,
and Spark SQL on coordinate arrays and 5 sizes of input datasets for OSQLgen, and
hand-written Spark SQL programs on block arrays. For this experiment, the speedup
ranges of OSQLgen were 25.51×-36.23×, 3.87×-6.19×, and 5.02×-9.16× with average
speedups of 29.3×, 5.1×, and 7.56× over GraphX, GraphFrames, and handwritten
Spark SQL program on coordinate arrays respectively and had similar performance
to the hand-written Spark SQL program on block arrays.

Figure 5.3. Performance of OSQLgen on graph algorithms on real datasets relative to
GraphX, GraphFrames, MLlib and hand-written Spark SQL on coordinate and Block
arrays.

Finally, we compared the performance of OSQLgen for linear regression, PageR-
ank, and all-pairs shortest path problems on real datasets as shown in Figure 5.3. For
linear regression, we used Car dataset from Craigslist [48] and Housing dataset of Eng-
land and Wales [49]. In these experiments, all the systems performed similar except
MLlib which performed slower than other systems on Housing dataset. For PageR-
ank algorithm, we have used Google web graph [50] and twitter dataset [51]. In these
experiments, GraphX, OSQLgen, and hand-written Spark SQL program on block ar-
rays performed faster than GraphFrames and SQL program on coordinate arrays. For
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all-pairs shortest path problem, we have used USA and New York road graphs [52].
In these experiments, OSQLgen performed similar to hand-written Spark SQL pro-
gram on block arrays and significantly faster than GraphX, GraphFrames and SQL
program on coordinate arrays.

5.5 Conclusion

From all these experiments, we see that OSQLgen has similar performance to
the hand-written Spark SQL programs on block arrays and performs significantly
faster than GraphX, GraphFrames, and Spark SQL programs on coordinate arrays.

Appendix A: Correctness Proof

Block arrays: for k-dimensional arrays we have k-dimension blocks of size
k⏞  ⏟  

𝐷 *𝐷 * ... *𝐷 = 𝐷𝑘 for fixed 𝐷. A block array 𝐴𝑏 is converted to a coordinate
array 𝐴 using mapping 𝐺:

𝐺(𝐴𝑏) = {{{ (𝐼 + 𝐷 * 𝑖,𝑚) ||| (𝐼, 𝐴)← 𝐴𝑏, (𝑖,𝑚)← 𝐹 (𝐴)}}}

where 𝐹 converts a block to a coordinate list:

𝐹 (𝐴) = {{{ (𝑖, 𝐴[𝑖]) ||| 𝑖← 0 ... 𝐷}}}

When 𝑘 = 2 :

𝐺(𝐴𝑏) = {{{ ((𝐼 + 𝐷 * 𝑖, 𝐽 + 𝐷 * 𝑗),𝑚) ||| ((𝐼, 𝐽),𝑀)← 𝐴𝑏, ((𝑖, 𝑗),𝑚)← 𝐹 (𝑀)}}}

where 𝐹 (𝑀) is:
{{{ ((𝑖, 𝑗),𝑀 [𝑖, 𝑗]) ||| 𝑖← 0 ... 𝐷, 𝑗 ← 0 ... 𝐷}}}

The mapping of application of additive monoid on two block arrays to coordinate
array is defined as:

𝐹 (𝑀 ⊕𝑏 𝑁) = {{{ ((𝑖, 𝑘),𝑚⊕ 𝑛) ||| ((𝑖, 𝑗),𝑚)← 𝐹 (𝑀), ((𝑖′, 𝑗′), 𝑛)← 𝐹 (𝑁),

𝑖 = 𝑖′, 𝑗 = 𝑗′ }}}

= {{{ ((𝑖, 𝑘),𝑀 [𝑖, 𝑗]⊕𝑁 [𝑖, 𝑗]) ||| 𝑖← 0 ... 𝐷, 𝑗 ← 0 ... 𝐷}}}
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The mapping of application of multiplicative monoid on two block arrays to coordinate
array is defined as:

𝐹 (𝑀 ⊗𝑏 𝑁) = {{{ ((𝑖, 𝑗),⊕/𝑣) ||| ((𝑖, 𝑘),𝑚)← 𝐹 (𝑀), ((𝑘′, 𝑗), 𝑛)← 𝐹 (𝑁),

𝑘 = 𝑘′, let 𝑣 = 𝑚⊗ 𝑛, group by (𝑖, 𝑗)}}}

= {{{ ((𝑖, 𝑗),⊕/𝑣) ||| 𝑖← 0 ... 𝐷, 𝑘 ← 0 ... 𝐷,

𝑗 ← 0 ... 𝐷, 𝑘 = 𝑘′, let 𝑀 [𝑖, 𝑘]⊗𝑁 [𝑘, 𝑗],

group by (𝑖, 𝑗)}}}

The semiring comprehension 𝑞 on k-dimensional coordinate arrays 𝐴, and 𝐵 is defined
as:

𝑞(𝐴,𝐵) = {{{ (𝑘,⊕/𝑣) ||| (𝑖,𝑚)← 𝐴, (𝑗, 𝑛)← 𝐵, 𝜌1(𝑖) = 𝜌2(𝑗),

let 𝑣 = 𝑚⊗ 𝑛, group by 𝑘 : 𝑓(𝑖, 𝑗)}}}

when 𝑘 = 2, 𝑞(𝐴,𝐵) equals:

{{{ ((𝑖, 𝑗),⊕/𝑣) ||| ((𝑖, 𝑘),𝑚)← 𝐴, ((𝑘′, 𝑗), 𝑛)← 𝐵, 𝑘 = 𝑘′,

let 𝑣 = 𝑚⊗ 𝑛,group by (𝑖, 𝑗)}}}

The semiring comprehension 𝑄 on block arrays 𝐴𝑏, and 𝐵𝑏 is:

𝑄(𝐴𝑏,𝐵𝑏) = {{{ (𝐾,⊕𝑏/𝑉 ) ||| (𝐼,𝑀)← 𝐴𝑏, (𝐽,𝑁)← 𝐵𝑏, 𝜌1(𝐼) = 𝜌2(𝐽),

let𝑉 = 𝑀 ⊗𝑏 𝑁, group by 𝐾 : 𝑓(𝐼, 𝐽)}}}

When 𝑘 = 2, 𝑄(𝐴𝑏,𝐵𝑏) equals to:

{{{ ((𝐼, 𝐽),⊕𝑏/𝑉 ) ||| ((𝐼,𝐾),𝑀)← 𝐴𝑏, ((𝐾 ′, 𝐽), 𝑁)← 𝐵𝑏, 𝐾 = 𝐾 ′,

let𝑉 = 𝑀 ⊗𝑏 𝑁,group by (𝐼, 𝐽)}}}

Theorem 5.5.1. Given the block arrays 𝐴𝑏, and 𝐵𝑏, the semiring comprehension 𝑞 on
these arrays after applying 𝐺 is equivalent to 𝐺 applied to the semiring comprehension
𝑄 on 𝐴𝑏, and 𝐵𝑏:

∀𝐴𝑏,𝐵𝑏 : 𝑞(𝐺(𝐴𝑏), 𝐺(𝐵𝑏)) = 𝐺(𝑄(𝐴𝑏,𝐵𝑏))

where 𝐺 maps block arrays to coordinate arrays.
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Proof: We have provided the proof for 𝑘 = 2,⊕ = +,⊕𝑏 = +𝑏,⊗ = *,⊗𝑏 = *𝑏:

𝑞(𝐺(𝐴𝑏), 𝐺(𝐵𝑏))

= {{{ ((𝑖, 𝑗),+/𝑣) ||| ((𝑖, 𝑘),𝑚)← 𝐺(𝐴𝑏), ((𝑘′, 𝑗), 𝑛)← 𝐺(𝐵𝑏), 𝑘 = 𝑘′,

let 𝑣 = 𝑚 * 𝑛, group by (𝑖, 𝑗)}}}

= {{{ ((𝐼 + 𝐷 * 𝑖, 𝐽 + 𝐷 * 𝑗),+/𝑣) ||| ((𝐼,𝐾),𝑀)← 𝐴𝑏, ((𝑖, 𝑘),𝑚)← 𝐹 (𝑀),

((𝐾 ′, 𝐽), 𝑁)← 𝐵𝑏, ((𝑘′, 𝑗), 𝑛)← 𝐹 (𝑁), 𝐾 ′ + 𝐷 * 𝑘′ = 𝐾 + 𝐷 * 𝑘,

let 𝑣 = 𝑚 * 𝑛,group by (𝑖, 𝑗)}}}

= {{{ ((𝐼 + 𝐷 * 𝑖, 𝐽 + 𝐷 * 𝑗),+/𝑣) ||| ((𝐼,𝐾),𝑀)← 𝐴𝑏, ((𝑖, 𝑘),𝑚)← 𝐹 (𝑀),

((𝐾 ′, 𝐽), 𝑁)← 𝐵𝑏, ((𝑘′, 𝑗), 𝑛)← 𝐹 (𝑁), 𝐾 = 𝐾 ′, 𝑘 = 𝑘′,

let 𝑣 = 𝑚 * 𝑛,group by (𝑖, 𝑗)}}}

(since 𝐾 ′ + 𝐷 * 𝑘′ = 𝐾 + 𝐷 * 𝑘 and 𝑘, 𝑘′ < 𝐷 implies K=K′ and k=k′)

= {{{ ((𝐼 + 𝐷 * 𝑖, 𝐽 + 𝐷 * 𝑗),+/𝑣) ||| ((𝐼,𝐾),𝑀)← 𝐴𝑏, ((𝐾 ′, 𝐽), 𝑁)← 𝐵𝑏, 𝐾 = 𝐾 ′,

group by (𝐼, 𝐽), ((𝑖, 𝑘),𝑚)← 𝐹 (𝑀), ((𝑘′, 𝑗), 𝑛)← 𝐹 (𝑁),

𝑘 = 𝑘′, let 𝑣 = 𝑚 * 𝑛,group by (𝑖, 𝑗)}}}

(since 𝐼 = 𝑖/𝐷 and 𝐽 = 𝑗/𝐷, then group by (𝑖, 𝑗) implies group by (𝐼, 𝐽))

= {{{ ((𝐼 + 𝐷 * 𝑖, 𝐽 + 𝐷 * 𝑗),+/𝑣) ||| ((𝐼, 𝐽), 𝑉 )← 𝑄(𝐴𝑏,𝐵𝑏), 𝑉 = 𝑀 *𝑏 𝑁,

((𝑖, 𝑘),𝑚)← 𝐹 (𝑀), ((𝑘′, 𝑗), 𝑛)← 𝐹 (𝑁), 𝑘 = 𝑘′, let 𝑣 = 𝑚 * 𝑛,

group by (𝑖, 𝑗)}}}

= {{{ ((𝐼 + 𝐷 * 𝑖, 𝐽 + 𝐷 * 𝑗),+/𝑣) ||| ((𝐼, 𝐽), 𝑉 )← 𝑄(𝐴𝑏,𝐵𝑏),

𝑉 = 𝑀 *𝑏 𝑁, ((𝑖, 𝑗), 𝑣)← 𝐹 (𝑀 *𝑏 𝑁)}}}

= {{{ ((𝐼 + 𝐷 * 𝑖, 𝐽 + 𝐷 * 𝑗),+/𝑣) ||| ((𝐼, 𝐽), 𝑉 )← 𝑄(𝐴𝑏,𝐵𝑏), ((𝑖, 𝑗), 𝑣)← 𝐹 (𝑉 )}}}

= 𝐺(𝑄(𝐴𝑏,𝐵𝑏)) �
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CHAPTER 6
Conclusion and Future Work

We have presented two frameworks, SQLgen and OSQLgen. These frameworks
translate array-based loop programs to Spark SQL programs. SQLgen translates
array-based loop programs to comprehensions and then to Spark SQL programs on
coordinate arrays. On the other hand, OSQLgen translates array-based loop programs
to comprehensions and then checks if the comprehension is a semiring comprehension.
If it is, it translates these comprehensions to Spark SQL programs on block arrays.
The block computations are implemented as user-defined functions (UDF) on Spark.
Since Spark has recently started providing GPU support, as a future work, we plan
to implement more UDFs on GPUs. We also plan to explore different storage formats
for the array blocks since choosing the right storage format can result in a signifi-
cant performance gain both in terms of storage and computation. Furthermore, we
plan to explore different partitioning strategies for arrays such that our system can
automatically choose an optimal partitioning scheme for the arrays.
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