
Fast and Parallelizable Numerical Algorithms for Large Scale Conic Optimization

Problems

by

MUHAMMAD ADIL

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

Dec 2021

Copyright © by Muhammad Adil 2021

All Rights Reserved

To my parents for their unconditional love and support

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my PhD advisor, Ramtin Madani,

for his endless support and valuable guidance throughout the journey. Ramtin spent

countless hours discussing research ideas, helping in formulating problems and ex-

plaining the concepts in an understandable way. I am greatly indebted to Ramtin for

inspiring me as a researcher and setting my future career directions. It was always

incredible to watch him working, his hard work and dedication towards the job was

truly inspiring. I am immensely thankful to him for being friendly and supportive.

I want to express my gratitude to Stephen Grikschat who served as a mentor

during the summer internship at MathWorks. I truly enjoyed working with optimiza-

tion toolbox team at MathWorks and it was not possible without the support of Steve.

I found him a very generous and an open minded team lead. I am also thankful to

Changrak Choi for believing in me and providing the opportunity to work for exciting

projects at JPL NASA.

I had pleasure of working with Edward Quarm Jnr and Adnan Nasir as col-

leagues at UTA. I had learned so much from Mohsen Kheirandeshfard and Fariba

Zohrizadeh and I am grateful for their valuable discussions.

This journey wouldn’t have been possible without the love and support of my

parents and siblings. My Mom never went to school but I found her a literate and

educated woman with a kind heart. She always had a dream of sending us to best

colleges in the country. I cannot be grateful enough to my brothers who sacrificed

their lives for my success.

December 14, 2021

iv

ABSTRACT

Fast and Parallelizable Numerical Algorithms for Large Scale Conic Optimization

Problems

Muhammad Adil, Ph.D.

The University of Texas at Arlington, 2021

Supervising Professor: Ramtin Madani

Many real world problems from various application areas such as engineering, finance

and operation research can be cast as optimization problems. Generally, the goal is

to optimize an objective function under a set of constraints. Traditionally, convex

optimization problems are solved by an interior point method (IPM). Interior point

methods proved to achieve high accuracy for moderate size problems. However, the

computation cost of iterations of these iterative algorithms grows non-linearly with

the dimension of the problem. Although interior-point methods are robust and the-

oretically sound, they do not scale well for very large conic optimization programs.

Computational cost, memory issues, and incompatibility with distributed platforms

are among the major impediments for interior point methods in solving large-scale

and practical conic optimization programs.

The rapid growth of problem size in application areas such as power systems,

finance, signal processing and machine learning motivated researchers to develop com-

putationally efficient optimization solvers. In recent years, first orders methods have

received a particular attention for solving large convex optimization problems. Var-

ious optimization solvers based on first order numerical algorithms have been devel-

v

oped in the past decade. Although first order methods provide low accuracy solutions,

but inexpensive iterations and low computational cost makes them attractive math-

ematical tools for handling large-scale problems.

One of the major shortcomings of first order methods to achieve a higher accu-

racy is their slow tail convergence behavior. The first part of this work is an attempt

to remedy the problem of slow convergence for first-order numerical algorithms by

proposing an adaptive conditioning heuristic policy. First, a parallelizable numerical

algorithm is proposed that is capable of dealing with large-scale conic programs on dis-

tributed platforms such as graphics processing unit (GPU) with orders-of-magnitude

time improvement. The mathematical proof for global convergence of proposed nu-

merical algorithm is provided. In the past decade, several preconditioning methods

have been applied to improve the condition number and convergence of first order

methods. Diagonal preconditioning and matrix equilibration techniques are most

commonly used for this purpose. In contrary to the existing techniques, in this work,

it is argued that the condition number of the problem data is not a reliable predictor

of convergence speed. In light of this observation, an adaptive conditioning heuristic

is proposed which enables higher accuracy compared to other first-order numerical

algorithms. A wide range of experiments are conducted on a variety of large-scale

linear programming and second-order cone programming problems to demonstrate

the scalability and computational advantages of the proposed algorithm compared to

commercial and open-source solvers.

Solving the linear system is probably the most computationally expensive part

in first order methods. The existing methods rely on direct and indirect methods

for solving the linear systems of equations. Direct methods rely on factorization

techniques which usually destroy the sparsity structure of original sparse problems

and hence become computationally prohibitive. Alternatively, indirect methods are

vi

iterative and various preconditioning variants of indirect or iterative methods have

been studied in the literature to improve accuracy, but again the preconditioners do

not necessarily retain the sparsity patterns of original problems. In the second part

of this work, a matrix-free first order approach is proposed for solving large-scale

sparse conic optimization problems. This method is based on an easy-to-compute

decomposition of large sparse matrices into two factors. The proposed numerical

algorithm is based on matrix-free decomposition and alternating direction method

of multipliers. The iterations of the designed algorithm are computationally cheap,

highly parallelizable and enjoy closed form solutions. The algorithm can easily be

implemented on distributed platforms such as graphics processing units with orders-

of-magnitude time improvements. The performance of the proposed algorithm is

demonstrated on a variety of conic problems and the performance gain is compared

with competing first-order solvers.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF FIGURES . xi

LIST OF TABLES . xiii

Chapter Page

1. Introduction . 1

1.1 First-Order Operator Splitting Algorithm 2

1.2 Rapid Convergence of First Order Methods via Adaptive Conditioning 3

1.3 A First-Order Numerical Algorithm without Matrix Operations . . . 3

2. First-Order Operator Splitting Algorithm 5

2.1 Introduction . 5

2.2 Related Work . 5

2.2.1 Contributions . 7

2.2.2 Notations . 7

2.3 Problem Formulation . 8

2.4 First Order Methods . 9

2.4.1 Douglas-Rachford Splitting . 9

2.4.2 Alternating Direction Method of Multipliers 10

2.5 Proposed Operator Splitting Method 11

2.6 Conclusion . 13

2.7 Proofs . 13

viii

3. Rapid Convergence of First Order Methods via Adaptive Condi-

tioning . 19

3.1 Introduction . 19

3.1.1 Contributions . 20

3.1.2 Notations . 22

3.2 Preliminaries . 22

3.3 State of the Art Preconditioning Methods 23

3.3.1 Example: The effect of condition number 24

3.4 Adaptive Conditioning . 28

3.4.1 Example: The choice of conditioning steps 30

3.5 Numerical Experiments . 31

3.5.1 Linear Programming . 32

3.5.2 Single vs Multi-core CPU Implementation 33

3.5.3 Comparisons with POGS . 35

3.5.4 Second-Order Cone Programming 35

3.6 Conclusions . 37

4. A First-Order Numerical Algorithm without Matrix Operations . 40

4.1 Introduction . 40

4.2 Related Work . 41

4.2.1 Contributions . 43

4.2.2 Notations . 44

4.3 Preliminaries . 45

4.3.1 Douglas-Rachford Splitting . 46

4.3.2 Alternating Direction Method of Multipliers 46

4.4 Solving Linear System . 47

4.4.1 Direct Methods . 48

ix

4.4.2 Indirect Methods . 49

4.5 Problem Formulation . 49

4.6 Numerical Experiments . 56

4.6.1 Linear Programming . 57

4.6.2 Second-Order Cone Programming 62

4.7 Conclusion . 64

5. Conclusion . 65

REFERENCES . 68

BIOGRAPHICAL STATEMENT . 78

x

LIST OF FIGURES

Figure Page

3-1 The effect of different pre-conditioning methods on the convergence of

(a) Douglas-Rachford splitting, (b) Alternating Direction Method of

Multipliers, and (c) Algorithm 1. 25

3-2 Convergence of Algorithm (2) for 10 random linear programming in-

stance (distinct color for each instance) with different conditioning steps:

(a) No conditioning, i.e., L := ∅, (b) One time conditioning at iteration

l = 300, i.e., L := {300}, and (c) Continuous conditioning at the first

50 iterations, i.e., L :={1, 2, . . . , 50}. 27

3-3 Intuitive reason behind adaptive conditioning to equalize the conver-

gence speed . 30

3-4 The performance of Algorithm 2 for linear programming in comparison

with (a) OSQP, (b) GUROBI, and (c) MOSEK. 34

3-5 Single-core vs Multi-core CPU implementation 35

3-6 The performance of Algorithm 2 for linear programming in comparison

with POGS with the absolute and relative tolerances equal to (a) εabs =

10−5, εrel = 10−4, (b) εabs = 10−6, εrel = 10−5, and (c) εabs = 10−7,

εrel = 10−6. 36

3-7 The performance of Algorithm 2 for second order cone programming in

comparison with MOSEK with Lorentz cones of size (a) h = 4 and (b)

h = 10 . 38

xi

4-1 The performance of Algorithm 3 for linear programming in comparison

with OSQP for (a) 0.1% (b) 0.5% and (c) 1.0% nonzero entries in matrix

A . 58

4-2 The performance of Algorithm 3 for linear programming in comparison

with POGS for (a) 0.1% (b) 0.5% and (c) 1.0% nonzero entries in matrix

A . 61

4-3 The performance of Algorithm 3 for second order cone programming in

comparison with SCS direct for (a) 0.1% (b) 0.5% and (c) 1.0% nonzero

entries in matrix A . 63

xii

LIST OF TABLES

Table Page

xiii

CHAPTER 1

Introduction

Conic optimization is a subfield of convex optimization that encapsulate linear

programming (LP), quadratic programming (QP), second-order cone programming

(SOCP) and semidefinite programming (SDP) as special cases. Conic optimization

can be thought as generalization of linear programming and minimizes a linear objec-

tive under the conic constraint K, where K is a convex cone. The conic optimization

problems can be written as follows:

minimize
x∈Rn

c⊤x (1.1a)

subject to Ax+ b ∈ K (1.1b)

Conic programming is of practical interest in a wide variety of areas such as

operation research, machine learning, signal processing, optimal control and portfolio

management. The real-time operation of many real-world applications in these areas

depends on solving various large-scale conic optimization problems very frequently.

Recent advancements in terms of conic relaxations for optimal power flow problems

opened new horizon for efficiently solving large scale conic optimization programs.

A great deal of efforts have been made in the past few years by introducing conic

relaxations for many non-convex problems appears in the area of machine learning.

Conic optimization finds its applications in finance by efficiently solving portfolio

1

management and risk analysis problem. Solving large scale LMI problems for various

applications in control systems can also be casted as conic optimization problems.

While conic optimization problems arise in a diverse set of fields efficiently

solving the large scale optimization problems still remains an active area of research.

In this dissertation, we propose efficient numerical algorithms for solving such large

scale conic optimization problems.

1.1 First-Order Operator Splitting Algorithm

We introduce a first order method based on operator splitting technique for

solving very large convex conic problems. The proposed algorithm uses only first-

order information and iteratively compute the optimal solution of conic programs.

The first order method distribute the objective function and then proximal operators

are used iteratively to solve the cone programs. Solving the linear system of equation

is of the important step of first order methods. In this algorithm, instead of solving

the linear system in each iteration, we solve the linear system of equation in first iter-

ation, store the factors and reuse these factors in subsequent iteration to increase the

computational power of method. The iterative steps of the algorithm are computa-

tionally inexpensive and utilize less memory. This algorithm is parallelizable and can

easily be implemented on graphics processing unit (GPU). This algorithm is highly

scalable, parallelizable for GPU implementation and requires less computing mem-

ory. The simple arithmetic steps of the proposed algorithm enables the application

of graphical processing units with an order-of-magnitude time improvement.

2

1.2 Rapid Convergence of First Order Methods via Adaptive Conditioning

First order methods have limitations in achieving higher accuracy within a

reasonable number of iterations because of their sensitivity to the condition number of

problem data matrices [11,18,24,25]. Although first order operator splitting methods

have been studied extensively in recent years for solving large scale conic programs

for different applications but until the recent past, very few efforts are made to study

the convergence rate [26, 27]. In past decade, the convergence analysis of first order

algorithms remained of central importance. Despite the fact that devoted efforts

have been made recently to accelerate the convergence behavior of operating splitting

methods and make them more robust for practical applications, these techniques rely

on the input problem data matrices, pre-conditioning, solution polishing, and step

size parameter selection [15,17,25]. In conjunction with massively parallelizable and

cheap iterative algorithm we propose a heuristic policy to scale the data matrices in

such a way that the combined algorithm ensures the global convergence and achieves

a high accuracy within a tens of iterations. In short, the proposed algorithm enjoys

the benefits of first order algorithms such as low per iteration cost, scalability for

very large problems, parallel and distributed implementations, and at the same time

achieves the higher accuracy level of interior point methods.

1.3 A First-Order Numerical Algorithm without Matrix Operations

We pursue a matrix-free first order numerical algorithm to deal with very large-

scale sparse conic optimization problems. The basic idea is to decompose the con-

straint matrix into sparse factors in such a way that iterative steps are division free

and do not involve any matrix operations. The sparse factors are computed only in

first iteration, and reused in subsequent iterations. In comparison to existing matrix

3

decomposition techniques such as LDL and QR decomposition, our approach is sim-

ple and computationally efficient to compute the factors. The notable property of

the proposed decomposition is that computing the factors and steps of iterative loop

are division free. The factors are easy-to-compute and require minimally possible

memory storage. The matrix inversion lemma is utilized to make the operations di-

vision free. We reformulate the standard conic optimization problem by introducing

auxiliary variables and then apply the proposed matrix-free algorithm in conjunction

with well-known two-block ADMM [14,19,20]. The computational burden of solving

the linear system in each iteration is being taken out of the iterative loop and fac-

tors are stored first, without any expensive factorization. The algorithm offers the

benefits of matrix-free, division-free and inexpensive iterations. The proposed algo-

rithm admitting parallel and large-scale implementation, and amenable to graphics

processing unit (GPU) implementation. We demonstrate the performance gain and

computational speedup of algorithm by conducting a wide range of experiments and

compare the results with other first-order solvers.

4

CHAPTER 2

First-Order Operator Splitting Algorithm

2.1 Introduction

Conic optimization is of practical interest in a variety of application areas such

as operation research, machine learning, signal processing and optimal control. Conic

formulation can be visualized as a universal formulation of convex programs as any

convex optimization problem can be cast in standard conic optimization formulation.

In fact several convex optimization solvers and tools such as MOSEK [1], SDPT3 [2],

CVX [3], GUROBI [4] and CPLEX [5] first transform the problems into a conic opti-

mization problem. For this purpose, interior point-based algorithms perform very well

and have become the standard method of solving conic optimization problems [6–8].

Various commercial and open-source solvers such as MOSEK [1], GUROBI [4], and

SeDuMi [9] are based on interior point methods as their default algorithm. Although

interior-point methods are robust and theoretically sound, they do not scale well for

very large conic optimization programs. Computational cost, memory issues, and in-

compatibility with distributed platforms are among the major impediment for interior

point methods in solving large-scale and practical conic optimization problems.

2.2 Related Work

The conic optimization problem can be cast as composite convex optimization

problem and there exists a variety of first order operator splitting methods to solve

such large scale problems. In recent years, operator splitting approaches such as

Alternating Direction Method of Multipliers (ADMM) [14–20] and Douglas-Rachford

5

Splitting (DRS) [10–13] have received particular attention because of their potential

for parallelization and ability to scale. These methods are interrelated in a sense

that ADMM applied to primal is equivalent to DRS applied to the dual. First order

methods are popular because the iterative steps are computationally cheap and easy

to implement and thus ideal for large scale problems where high accuracy solutions

are typically not required. Operator splitting techniques, on the other hand can lead

to parallel and distributed implementation and provide moderate accuracy solutions

to conic programs in a relatively lower computational time.

Motivated by the cheap per iteration cost and ability to handle large scale

problems, several first order operator splitting algorithms have been proposed re-

cently. Authors in [16], introduce a solver (SCS), a homogeneous self-dual embedding

method based on ADMM to solve large convex cone programs and provide primal or

dual infeasibility certificates when relevant. A MATLAB solver CDCS [17] extended

the homogeneous self-dual embedding concept [16] and exploits the sparsity struc-

ture using chordal decomposition for solving large scale semidefinite programming

problems. The ADMM algorithm introduced in [14] is improved by selecting the

proximal parameter and pre-conditioning to introduce an open-source software pack-

age called POGS (Proximal Graph Solver) [15] and multiple practical problems are

tested to evaluate the performance. Another application of operator splitting methods

is provided in an open-source solver OSQP (operator splitting solver for quadratic pro-

grams) [18], where operator splitting technique is applied to solve quadratic programs.

Open-source Julia implemented conic operator splitting method (COSMO) [21], solves

the quadratic objective function under conic constraints. In [12], a Python pack-

age Anderson accelerated Douglas-Rachford splitting (A2DR) is introduced to solve

large-scale non-smooth convex optimization problems. Although these solvers scale

very well as the dimension of the problem increases in different practical areas but

6

suffers from slow convergence and do not perform well when the given problem is

ill-conditioned [13,22,23].

2.2.1 Contributions

We propose a highly scalable, simple iterative, and parallelizable first order al-

gorithm for solving large conic optimization programs. We propose a new operating

splitting method where each iteration requires simple arithmetic operations, leads to

parallel and distributive implementation, scales gracefully for very large cone pro-

grams and provides a very accurate solutions which is beyond the reach of other first

order solvers. In short, we aim to propose algorithm which enjoys the benefits of first

order algorithms such as low per iteration cost, scalability for very large problems,

parallel and distributed implementations, and at the same time achieves the higher

accuracy level of interior point methods.

The rest of the chapter is organized as follows. Some preliminaries of cone

programming and definitions are presented in section 2.3. A brief introduction of

commonly used first order algorithms is presented in 2.4. Section 2.5, discusses the

proposed first order algorithm. Section 2.6 concludes the chapter.

2.2.2 Notations

Notations R and N denote the set of real and natural numbers, respectively.

Matrices and vectors are represented by bold uppercase, and bold lowercase letters,

respectively. Notation ∥·∥2 refers to ℓ2 norm of either matrix or vector depending

on the context and |·| represents the absolute value. The symbol (·)⊤ represent the

transpose operators. The notations In refer to the n×n identity matrix. The symbol

K is used to describe different types of cones used in this paper. The superscript

7

(·)opt refers to the optimal solution of optimization problem. The notation(·)† denotes

the Moore–Penrose pseudoinverse of transpose of a matrix. The symbol L represent

the set of values to apply adaptive conditioning. The notation diag{· · · } represent

the diagonal elements of a diagonal matrix. The symbols SK,AC,CS, are used to

refer Sinkhorn-Knopp, adaptive conditioning and competing solver, respectively. The

symbols εabs and εrel are used for absolute and relative tolerance, respectively.

2.3 Problem Formulation

In this chapter, we consider conic optimization problems with a linear objective,

subject to a set of affine and second-order conic constraints. The primal formulation

under study can be cast as:

minimize
x∈Rn

c⊤x (2.1a)

subject to Ax = b (2.1b)

x ∈ K (2.1c)

where c ∈ Rn,A ∈ Rm×n, and b ∈ Rm are given and x ∈ Rn is the unknown

optimization variable. Additionally, K ≜ Kn1 × Kn2 × · · · × Knk
⊆ Rn, where each

Kni
⊆ Rni is a Lorentz cone of size ni, i.e.,

Kni
≜

{
w ∈ Rni |w1 ≥

∥∥[w2, . . . , wni
]
∥∥
2

}
,

and n1 + n2 + . . .+ nk = n.

8

The corresponding dual formulation of (2.1) is

maximize
y∈Rm,z∈Rn

b⊤y (2.2a)

subject to A⊤y + z = c (2.2b)

z ∈ K (2.2c)

where y and z are dual variables associated with the constraints (2.1b) and (2.1c),

respectively.

2.4 First Order Methods

In the past decade, several first order methods based solvers have been devel-

oped to solve large scale conic programs. Alternating Direction Method of Multipliers

(ADMM) and Douglas-Rachford (DR) Splitting are the most common methods to tar-

get such large conic optimization problems. The key idea behind first order methods

is to distribute the objective function by reformulating the original conic problem and

then solve the distributed formulation. To this end, we breifly introduce DR splitting

and ADMM methods.

2.4.1 Douglas-Rachford Splitting

In order to implement the DR splitting method, it is common practice to cast

problem (2.1) as follows

minimize f(x) + g(x) (2.3)

9

where f, g : Rn → R ∪ {∞} are defined as

f(x)≜

 0 if x ∈ K

∞ otherwise
and g(x)≜

c⊤x if Ax = b

∞ otherwise

leading to the following steps:

x← proxf (z) (2.4a)

z ← z + proxg(2x− z)− x. (2.4b)

2.4.2 Alternating Direction Method of Multipliers

A standard way of solving problem (2.1) via ADMM is through the formulation

minimize
x1,x2∈Rn

f(x1) + g(x2) (2.5a)

subject to x1 = x2 (2.5b)

leading to the steps

x1 ← proxµ−1f (x2 − µ−1z) (2.6a)

x2 ← proxµ−1g(x1 + µ−1z) (2.6b)

z ← z + µ(x1 − x2). (2.6c)

where µ is a fixed tuning parameter. In this paper, we pursue a proximal numerical

method inspired by Douglas-Rachford splitting [10,11] to solve the class of optimiza-

tion problems of the form (2.1).

10

2.5 Proposed Operator Splitting Method

In this work, we propose a novel first order numerical algorithm which is inspired

by Douglas-Rachford splitting to target large scale conic programs given in 2.1.

minimize f(x) + g(x) (2.7)

where f, g : Rn → R ∪ {∞} are indicator functions and defined as

f(x)≜

 0 if x ∈ K

∞ otherwise
and g(x)≜

c⊤x if Ax = b

∞ otherwise

Projection and absolute value operators serves the purpose of proximal parameters

in this method. To this end, the projection and absolute value operators are defined

as follows.

Definition 1. For any proper cone C ∈ Rn, define the projection operator projC :

Rn → C as

projC(v) ≜ argminu∈C ∥u− v∥2.

Additionally, define the absolute value operator absC : Rn → Rn associated with C as

absC(x0) ≜ 2projC(x0)− x0.

Algorithm 1 details the proposed first-order numerical method for solving (2.1).

The input of the algorithm are the data matrices (A, b, c,K) of original optimization

problem as shown in 2.1.

11

Algorithm 1

Input: (A, b, c,K), fixed µ > 0, and initial point s ∈ Rn

1: A := range{A⊤}

2: d := A†b+
µ

2
(absA(c)− c)

3: repeat
4: p← absK(s)

5: r ← absA(p)

6: s← s

2
− r

2
+ d

7: until stopping criteria is met.

Output: x← p+s

2
, z← p−s

2µ

� Steps 1 - 2: Solving linear system of equation in each iteration is one of the

requirement of iterative algorithms. Instead of solving linear system in each

iteration, we solve the system in this step and reuse the factors in subsequent

iterations.

� Steps 4-6: These iterative steps of the algorithms includes cheap arithmetic

operations and can be carried out in parallel. The projection of cones is per-

formed and the structure of each cone is preserved.

Theorem 1. Let {sl}∞l=0 and {pl}∞l=0 denote the sequence of vectors generated by

Algorithm 1. Then we have

lim
l→∞

pl + sl

2
= x̄ and lim

l→∞

pl − sl

2µ
= z̄ (2.8)

where x̄ and z̄ are a pair of primal and dual solutions for problems (2.1) and (2.2),

respectively.

Proof. Please see the Appendix for the proof.

12

Despite its potential for massive parallelization for both CPU and GPU ar-

chitectures, in and of itself, Algorithm (2) may not offer any advantages over the

common-practice Alternating Direction Method of Multipliers (ADMM) and Douglas-

Rachford (DR) splitting . However, as we will demonstrate next, Algorithm (2) en-

ables us to perform adaptive conditioning to achieve much faster convergence speed

in comparison with the standard pre-conditioning methods.

2.6 Conclusion

We introduced a first order numerical algorithm based on operator splitting

method to solve large scale conic optimization problems. The proposed method is in-

spired from Douglas-Rachford splitting and distribute the objective function to solve

problem in a distributed and parallelizable manner. The proposed approach is compu-

tationally inexpensive, requires less memory and can be implemented on distributed

computing architecture such as GPU for better performance. The convergence proof

of the algorithm is provided.

2.7 Proofs

In order to prove Theorem 1, we first give a few lemmas.

Lemma 1. Define the notation | · |⋆ as

| · |⋆ ≜ absA(absK(·)). (2.9)

Then for every u ∈ Rn, we have

∥|u|⋆∥2 = ∥u∥2 (2.10)

13

and for every pair u,v ∈ Rn, we have

|u|⊤⋆ |v|⋆ ≥ u⊤v. (2.11)

Proof. The proof follows directly from the definition of absA and absK.

Lemma 2. Let xopt and zopt denote a pair of primal and dual solutions for problems

(2.1) and (2.2). Then

sopt ≜ xopt − µzopt (2.12)

is a fixed point of Algorithm (1) and

d =
sopt + |sopt|⋆

2
. (2.13)

Proof. According to the Karush–Kuhn–Tucker (KKT) optimality conditions, there

exists yopt ∈ Rm, for which

c− zopt +A⊤yopt = 0 (2.14a)

Axopt = b (2.14b)

(xopt)⊤zopt = 0, xopt ∈ K, zopt ∈ K. (2.14c)

Define

popt ≜ xopt + µzopt, (2.15)

14

then according to (2.14c), we have:

popt = absK(s
opt). (2.16)

Hence

d− sopt+|sopt|⋆
2

= (2.17a)

A†b+
µ(absA(c)−c)

2
−sopt+|sopt|⋆

2

(2.16)
= (2.17b)

A†b+
µ(absA(c)−c)

2
− sopt + absA(p

opt)

2
= (2.17c)

A†(b−Axopt)− µ(c− zopt −A†A(c− zopt))
(2.14b)
= (2.17d)

µ(c− zopt −A†A(c− zopt))
(2.14a)
= (2.17e)

µ(c− zopt +A†AA⊤yopt) = (2.17f)

µ(c− zopt +A⊤yopt)
(2.14a)
= 0n, (2.17g)

which concludes (2.13). Now according to the steps of Algorithm 1, one can immedi-

ately conclude that sopt is a fixed point.

Lemma 3. Let {sl}∞l=0 be the sequence generated by Algorithm (1) and define sopt ≜

xopt−µzopt, where xopt and zopt denote an arbitrary pair of primal and dual solutions

for problems (2.1) and (2.2). Then,

a) the sequence {∥sl − sopt∥2}∞l=0 is convergent,

b) and the sequence {∥sl+1 − sl∥2}∞l=0 converges to zero.

Proof. According to the steps of Algorithm 1, we have

sl+1 =
sl − |sl|⋆

2
+ d (2.18)

15

and due to (2.13):

sl+1 =
sl + sopt

2
− |s

l|⋆ − |sopt|⋆
2

. (2.19)

Hence

∥sl+1 − sl∥22 + ∥sl+1 − sopt∥22 − ∥sl − sopt∥22
(2.19)
= (2.20a)

∥s
l − sopt

2
+
|sl|⋆ − |sopt|⋆

2
∥22+ (2.20b)

∥s
l − sopt

2
− |s

l|⋆ − |sopt|⋆
2

∥22 − ∥sl − sopt∥22 = (2.20c)

∥|sl|⋆ − |sopt|⋆∥22
2

− ∥s
l − sopt∥22

2

(2.10)
= (2.20d)

(sl)⊤sopt − |sl|⊤⋆ |sopt|⋆
(2.11)

≤ 0, (2.20e)

which concludes that {∥sl−sopt∥2}∞l=0 is nonincreasing and convergent. Additionally,

(2.20) concludes that

∞∑
l=0

∥sl+1 − sl∥22 ≤ ∥s0 − sopt∥22 (2.21)

which means that {∥sl+1 − sl∥2}∞l=0 converges to zero.

Proof of theorem 1. According to the first part of Lemma 3, the sequence {sl}∞l=0 is

bounded and therefore, it has a convergent subsequence {s̄l}∞l=0, where

lim
l→∞

s̄l = s̄. (2.22)

16

Define

x̄ ≜
absK(s̄) + s̄

2
and z̄ ≜

absK(s̄)− s̄

2µ
. (2.23)

In order to show that x̄ and z̄ are a pair of primal and dual solutions, we prove the

following KKT optimality criteria:

z̄ − c ∈ range{A⊤} (2.24a)

Ax̄ = b (2.24b)

x̄⊤z̄ = 0, x̄ ∈ K, z̄ ∈ K. (2.24c)

Condition (2.24c) follows directly from the definition (2.23). Additionally, according

to the second part of Lemma 3,

0n = lim
l→∞

sl+1 − sl (2.25a)

= lim
l→∞

d− sl + |sl|⋆
2

(2.25b)

= lim
l→∞

d− s̄l + |s̄l|⋆
2

(2.22)
= d− s̄+ |s̄|⋆

2
(2.25c)

Hence,

s̄+ |s̄|⋆
2

= d
(2.13)
=

sopt + |sopt|⋆
2

(2.26)

17

Therefore,

0n=
s̄+ |s̄|⋆

2
− sopt + |sopt|⋆

2
(2.27a)

=
s̄− sopt+(2A†A−In)(absK(s̄)− absK(s

opt))

2
(2.27b)

=
(x̄− xopt)− µ(z̄ − zopt)

2

+
(2A†A− In)[(x̄− xopt) + µ(z̄ − zopt)]

2
(2.27c)

= A†(Ax̄−Axopt)− µ(In −A†A)(z̄ − zopt). (2.27d)

Now, pre-multiplication by A concludes that

Ax̄ = Axopt = b. (2.28)

Similarly,

0n=
s̄+ |s̄|⋆

2
− d (2.29a)

= A†(Ax̄− b)− µ(In −A†A)(z̄ − c) (2.29b)

= µ(In −A†A)(c− z̄) (2.29c)

which concludes (2.24a). Therefore x̄ and z̄ are primal and dual optimal, and ac-

cording to the first part of Lemma 3, the following limit exists:

lim
l→∞
∥sl − s̄∥2 = lim

l→∞
∥s̄l − s̄∥2 = 0 (2.30)

which completes the proof.

18

CHAPTER 3

Rapid Convergence of First Order Methods via Adaptive Conditioning

3.1 Introduction

First order methods are considered very sensitive to condition number of prob-

lem data and parameter selection, and consequently have limitations in achieving

higher accuracy within a reasonable number of iterations [11, 18, 24, 25]. Although

first order operator splitting methods have been studied extensively in recent years for

solving large scale conic programs for different applications but until the recent past,

very few efforts are made to study the convergence rate [26, 27]. As an attempt to

solve the convergence rate issues, recently serious efforts have been made to make first

order algorithms more robust and practical for real-world applications [22,25,28–33].

A line search method is proposed in [34] to accelerate convergence. In [35], a global

linear convergence proof is given under strict convexity and Lipschitz gradient condi-

tion on one function. A global linear convergence approach and metric selection ap-

proach shown in [11] under strong convexity and smoothness conditions. Researchers

have proposed several acceleration techniques to expedite the convergence speed of

ADMM. Adaptive penalty scheme is introduced in [23,36] to automatically tune the

penalty parameter. In [37,38], Anderson acceleration (AA) is applied to improve the

convergence of local-global solver and ADMM with application to geometry optimiza-

tion and physics simulation problems. The authors in [39], applied the type-I variant

of Anderson acceleration [40] to splitting conic solver (SCS) [16] to solve conic opti-

mization problems and improved the terminal convergence. A new framework known

as SuperSCS is introduced in [13] by combining SCS solver with original type-II AA

19

to solve large cone problems and it is shown that the new approach performs better

than the original SCS solver. Type-II Anderson acceleration Douglas-Rachford split-

ting (A2DR) algorithm is proposed in [12], to show the rapid convergence or provide

infeasibility/unboundedness certificates. However, most of these techniques works

reasonably well under limited scenarios, particular conditions, and for a very specific

problem structures and yield no tangible benefits for any general class of problems.

Improvements from these techniques are very limited and has very mild effect on the

convergence due to the nature of accelerated algorithms. Moreover, these techniques

fail to achieve a higher accuracy.

Operator splitting methods heavily rely on the input problem data matrices,

pre-conditioning, solution polishing, and step size parameter selection [15, 17, 25].

Parameter selection for global convergence is still a challenge to be addressed [11,18].

Despite the scalability and computational advantages, these methods suffer from slow

terminal convergence, and are highly sensitive to problem condition number, hence,

cannot be applied to many practical problems [12, 29, 33]. There is a dire need to

develop a general purpose, and reliable first order algorithm that encapsulates the

benefits of simple inexpensive iterations and scaling properties of first order algorithm,

as well as providing the highly reliable and accurate solutions similar to that of interior

point methods.

3.1.1 Contributions

In this work, we first show that the condition number of data matrices has no

significant effect on convergence of general first order methods and this is the major

impediment for achieving highly accurate results with operator splitting methods.

Furthermore, we propose a new operating splitting method where each iteration re-

quires simple arithmetic operations, leads to parallel and distributive implementation,

20

scales gracefully for very large cone programs and provides a very accurate solutions

which is beyond the reach of other first order solvers. Moreover, in conjunction with

massively parallelizable and cheap iterative algorithm we propose a heuristic policy

to scale the data matrices in such a way that the combined algorithm ensures the

global convergence and achieves a high accuracy within a tens of iterations. In short,

the proposed algorithm enjoys the benefits of first order algorithms such as low per

iteration cost, scalability for very large problems, parallel and distributed implemen-

tations, and at the same time achieves the higher accuracy level of interior point

methods. The major contributions and novelty of this paper are as follows

1. We illustrate that a smaller condition number does not necessarily guarantee

the faster convergence as the problem data matrices with a higher condition

number can converge faster.

2. We propose a heuristic adaptive conditioning policy to obtain accurate solu-

tions in comparison with other first order algorithms and a proof is provided to

guarantee the convergence of algorithm.

3. We apply the proposed algorithm on graphics processing unit (GPU) to benefit

the simple arithmetic operations in each iteration.

4. A wide range of tests are conducted on different conic programs and results

are compared with several first order and interior point methods to justify the

claims of scalability, efficiency and accuracy.

Rest of the chapter is organized as follows. Some preliminaries of cone program-

ming and definitions are presented in section 3.2. The effect of preconditioning and

the need for proposed adaptive conditioning is illustrated in section 3.3 by providing

a numerical example. In section 3.4, we investigate the conditioning procedure to

accelerate the convergence and provide an algorithm for adaptive conditioning. We

compare the performance of proposed algorithm and adaptive conditioning in section

21

3.5, by solving a wide range of problems and comparing the results with commonly

used solvers, and section 3.6 concludes the paper.

3.1.2 Notations

Notations R and N denote the set of real and natural numbers, respectively.

Matrices and vectors are represented by bold uppercase, and bold lowercase letters,

respectively. Notation ∥·∥2 refers to ℓ2 norm of either matrix or vector depending

on the context and |·| represents the absolute value. The symbol (·)⊤ represent the

transpose operators. The notations In refer to the n×n identity matrix. The symbol

K is used to describe different types of cones used in this paper. The superscript

(·)opt refers to the optimal solution of optimization problem. The notation(·)† denotes

the Moore–Penrose pseudoinverse of transpose of a matrix. The symbol L represent

the set of values to apply adaptive conditioning. The notation diag{· · · } represent

the diagonal elements of a diagonal matrix. The symbols SK,AC,CS, are used to

refer Sinkhorn-Knopp, adaptive conditioning and competing solver, respectively. The

symbols εabs and εrel are used for absolute and relative tolerance, respectively.

3.2 Preliminaries

In this paper, we consider conic optimization problems with a linear objective,

subject to a set of affine and second-order conic constraints. The primal formulation

under study can be cast as:

minimize
x∈Rn

c⊤x (3.1a)

subject to Ax = b (3.1b)

x ∈ K (3.1c)

22

where c ∈ Rn,A ∈ Rm×n, and b ∈ Rm are given and x ∈ Rn is the unknown

optimization variable. Additionally, K ≜ Kn1 × Kn2 × · · · × Knk
⊆ Rn, where each

Kni
⊆ Rni is a Lorentz cone of size ni, i.e.,

Kni
≜

{
w ∈ Rni |w1 ≥

∥∥[w2, . . . , wni
]
∥∥
2

}
,

and n1 + n2 + . . .+ nk = n.

The corresponding dual formulation of (3.1) is

maximize
y∈Rm,z∈Rn

b⊤y (3.2a)

subject to A⊤y + z = c (3.2b)

z ∈ K (3.2c)

where y and z are dual variables associated with the constraints (3.1b) and (3.1c),

respectively.

3.3 State of the Art Preconditioning Methods

One of the major drawbacks of first-order numerical methods is their sensitivity

to the problem conditioning [15,18,41]. Hence, it is common practice to reformulate

problem (3.1) with respect to new parameters

Â ≜ DAE, b̂ ≜ Db, and ĉ ≜ Ec (3.3)

and new proxy variables

x̂ = E−1x and ẑ = E⊤z (3.4)

23

where D ∈ Rm×m and E ∈ Rn×n are tuned to improve convergence speed. The

process of finding an appropriate D and E to improve the performance of a first-

order numerical algorithm is regarded as preconditioning of data.

Theoretical and practical evidence show that choices of D and E that result

in smaller condition number for Â lead to better performance in both precision and

convergence rate of first-order numerical algorithms [24,41–43]. As a result, over the

past decade, several research directions have pursued preconditioning methods such as

heuristic diagonal scaling with the aim of reducing the condition number of Â [42,44].

To this end, a number of matrix equilibration heuristics such as Sinkhorn-Knopp

and Ruiz methods have been proposed in [15, 17, 18, 45] that indirectly influence the

condition number of Â by equalizing ℓp norm for each row through diagonal choices

of D and E.

In this paper, we pursue an alternative approach. We argue that the condition

number of Â is not a reliable indicator of convergence speed for first-order numerical

methods and instead, we offer a new approach regarded as adaptive conditioning.

Before elaborating the details of the proposed procedure, we first give a simple illus-

trative example through which it is shown that a smaller condition number for the

data matrix Â does not necessarily result in better performance.

3.3.1 Example: The effect of condition number

In this example, we provide simple data matrices and compare the effect of

different pre-conditioning methods on the convergence of Algorithm (1), DR splitting,

and ADMM. The goal is to demonstrate that the condition number of Â is not a

reliable predictor of the convergence speed.

24

0 20 40 60 80 100

Number of iterations

10
-30

10
-20

10
-10

10
0

R
e

s
id

u
a

l
E

n
e

rg
y

 DR with (A,b,c)

 DR with (A
SK

, b
SK

, c
SK

)

 DR with (A
AC

, b
AC

, c
AC

)

(a)

0 20 40 60 80 100

Number of iterations

10
-30

10
-20

10
-10

10
0

R
e

s
id

u
a

l
E

n
e

rg
y

ADMM with (A,b,c)

ADMM with (A
SK

, b
SK

, c
SK

)

ADMM with (A
AC

, b
AC

, c
AC

)

(b)

0 20 40 60 80 100

Number of iterations

10
-30

10
-20

10
-10

10
0

R
e

s
id

u
a

l
E

n
e

rg
y

Algorithm 1 with (A,b,c)

Algorithm 1 with (A
SK

, b
SK

, c
SK

)

Algorithm 1 with (A
AC

, b
AC

, c
AC

)

(c)

Figure 3-1: The effect of different pre-conditioning methods on the convergence of (a)
Douglas-Rachford splitting, (b) Alternating Direction Method of Multipliers, and (c)
Algorithm 1.

25

Consider the following data matrices:

A :=


3.57 3.45 3.33 64.24 −72.76

3.45 3.33 3.23 95.14 −23.34

3.33 3.23 3.13 93.53 −17.43

 ,

b :=

[
−10.44 20.65 22.94

]⊤
,

c :=

[
0.37 1.93 −0.12 −0.38 1.01

]⊤
,

and K := R5
+. The corresponding diagonal matrices obtained from regularized

Sinkhorn-Knopp algorithm [15] for ℓ2 norms are

DSK = diag{[0.0217, 0.0215, 0.0222]},

ESK = diag{[0.4722, 0.4722, 0.4722, 0.4722, 0.4722]},

while the proposed heuristic adaptive conditioning results in the following matrices

DAC=I3×3,

EAC=diag{[0.0792, 0.0884, 14.5484, 292.9524, 316.2179]}.

Define

ÂSK := DSKAESK and ÂAC := DACAEAC.

In this case, the condition numbers of A, ÂSK, and ÂAC are equal to 2046.4, 2044.38,

and 72079.13, respectively.

26

0 100 200 300 400 500 600 700
Number of iterations

10-10

10-5

100

105

R
es

id
ua

l E
ne

rg
y

(a)

0 100 200 300 400 500 600 700
Number of iterations

10-10

10-5

100

105

R
es

id
ua

l E
ne

rg
y

(b)

0 100 200 300 400 500 600 700
Number of iterations

10-10

10-5

100

105

R
es

id
ua

l E
ne

rg
y

(c)

Figure 3-2: Convergence of Algorithm (2) for 10 random linear programming instance
(distinct color for each instance) with different conditioning steps: (a) No condition-
ing, i.e., L := ∅, (b) One time conditioning at iteration l = 300, i.e., L := {300}, and
(c) Continuous conditioning at the first 50 iterations, i.e., L :={1, 2, . . . , 50}.

27

Figure (3-1) presents the outcome of DR splitting, ADMM, and Algorithm (1),

respectively, with µ = 1 and different pre-conditioning methods. The three cases of

no preconditioning, Sinkhorn-Knopp preconditioning, and adaptive conditioning are

illustrated in each figure. As demonstrated in Figure 3-1, a lower condition number

for the data matrix does not necessarily result in a faster convergence. Motivated by

this observation, the following section presents the proposed adaptive conditioning

procedure.

3.4 Adaptive Conditioning

In this work, we rely on post multiplication of the data matrix A by a diagonal

positive-definite matrix O, to enhance the convergence speed of Algorithm 1. The

primal problem (3.1) is reformulated as:

minimize
x̂∈Rn

(O⊤c)⊤x̂ (3.8a)

subject to (AO)x̂ = b (3.8b)

x̂ ∈ O−1K (3.8c)

and the dual problem (3.2) as:

maximize
y∈Rm,ẑ∈Rn

b⊤y (3.9a)

subject to (AO)⊤y + ẑ = O⊤c (3.9b)

ẑ ∈ O⊤K∗ (3.9c)

28

where

x̂ ≜ O−1x and ẑ ≜ O⊤z (3.10)

are proxy variables.

In contrary to the existing practice that focuses on the condition number of the

data matrix, we continuously update the matrix O according to a prespecified policy

to improve the convergence speed. This heuristic procedure is detailed in Algorithm

2. As illustrated in Figure 3-3, the intuitive reason behind the proposed adaptive

conditioning is to equalize the rate of convergence for elements of s. The steps 4 to

15 of Algorithm 2 serve this purpose

� Step 4: Adaptive conditioning can be done based on a user-defined criteria or

in the simplest case, at a set of user-defined iterations L.

� Step 5 and 11: New coefficients are calculated for each cone to equalize the

speed of convergence for the elements of x and z. Note that since the vectors x

and z are complementary at optimality, the elements of o can be very large or

very small numbers and that is the motivation behind the normalization step

11.

� Steps 12 and 13: These two steps are concerned with the adjustments of the

proximal operators and the vector d, respectively.

� Step 14: This step casts the vector s into the new space so that current progress

is continued.

29

𝑂!,!&! 𝑥!
𝑂","&! 𝑥"
𝑂#,#&! 𝑥#
𝑂$,$&! 𝑥$
⋮

𝑂%&",%&"&! 𝑥%&"
𝑂%&!,%&!&! 𝑥%&!

𝑂%,%&! 𝑥%

𝑂!,! 𝑧!
𝑂"," 𝑧"
𝑂#,# 𝑧#
𝑂$,$ 𝑧$
⋮

𝑂%&",%&" 𝑧%&"
𝑂%&!,%&! 𝑧%&!

𝑂%,% 𝑧%

𝑂!,!&! 𝑥!
𝑂","&! 𝑥"
𝑂#,#&! 𝑥#
𝑂$,$&! 𝑥$
𝑂$,$&! ⋮

𝑂%&! 𝑥%&"
𝑂%&! 𝑥%&!
𝑂%,%&! 𝑥%

𝑂!,!&! 𝑧!
𝑂","&! 𝑧"
𝑂#,#&! 𝑧#
𝑂$,$&! 𝑧$
𝑂$,$&! ⋮

𝑂%&! 𝑧%&"
𝑂%&! 𝑧%&!
𝑂%,%&! 𝑧%

Non-uniform convergence
speed prior to

pre-conditioning

Uniformed convergence
speed after

pre-conditioning

Figure 3-3: Intuitive reason behind adaptive conditioning to equalize the convergence
speed

The next example demonstrates the effectiveness of the proposed adaptive con-

ditioning approach on random instances of linear programming (LP).

3.4.1 Example: The choice of conditioning steps

This case study is concerned with the effect of conditioning steps on the con-

vergence behavior of Algorithm (2). We consider three cases:

� No conditioning, i.e., L := ∅,

� One time conditioning at iteration l = 300, i.e., L := {300},

� Continuous conditioning at the first 50 iterations, i.e., L :={1, 2, . . . , 50}.

We generated 10 random instances of linear programming with 100 variables and 80

linear constraints whose data are chosen such that:

� The elements of A ∈ R80×100 have i.i.d standard normal distribution.

� b := Aẋ where the elements of ẋ ∈ R100 have i.i.d uniform distribution from

the interval [0, 1].

30

� The elements of c ∈ R100 have i.i.d standard normal distribution.

� And K = R100
+ .

The effect of adaptive conditioning proposed in Algorithm 2 for t = 9.2 is illustrated

in Figure 3-2 for all 10 random instance. As demonstrated in the figure, even a one

time adaptive conditioning results in significant improvement of convergence speed.

3.5 Numerical Experiments

We provide case studies to evaluate the performance of Algorithm 2 on both

CPU and GPU platforms in comparison with the state-of-the-art commercial solvers

MOSEK [1], GUROBI [4] as well as the open source software OSQP [18] and POGS

[15]. Our case studies consist of randomly generated linear programming (LP) prob-

lems and second-order cone programming (SOCP) problems. We conduct experi-

ments on problems with a wide range of variable and constraint numbers to assess

both scalability and speed. Additionally, we consider different values for infeasibli-

ty/gap tolerance, to assess the solution accuracy of Algorithm 2. The proposed

algorithm and competing solvers are implemented in MATLABR2020a and all the

simulations are conducted on a DGX station with 20 2.2 GHz cores, Intel Xeon E5-

2698 v4 CPU, with NVIDIA Tesla V100-DGXS-32GB (128 GB total) GPU processor

and 256 GB of RAM. The parallel nature of algorithm enables the implementation

to take advantage of multi-core CPU processing. Note that our implementation of

proposed algorithm in MATLAB utilizes only a single GPU and does not benefit from

multiple GPU’s of the platform. Moreover, all experiments reported in this paper are

not bounded by RAM or GPU memory of DGX station. We used the MATLAB

interface of OSQP v0.6.0, MOSEK v9.2.5 and GUROBI v9.0.

31

In all of the experiments, the stopping criteria of Algorithm 2 is when it exceeds

both primal and dual feasibility of the solution produced by the competing solver. In

other words, when the following two criteria are met:

∥Ax− b∥2 < ∥AxCS − b∥2 (3.11a)

|(A†b)⊤(c− z)− c⊤x| < |b⊤yCS − c⊤xCS| (3.11b)

where xCS and yCS are primal and dual solutions produced by the competing solver

under default settings. In each figure, the experiments are continued until the run time

of the competing solver reached a maximum time of 1200 seconds. The maximum

time is chosen in such a way that the experiments provide sufficient information to

compare the computational time for all solvers.

3.5.1 Linear Programming

3.5.1.1 Comparisons with OSQP, Gurobi, and MOSEK

This cases study is concerned with the class of linear programming problems.

The performance of Algorithm 2 is tested in comparison with the solvers, OSQP,

Gurobi, and MOSEK. We have generated random LP instances with n ranging from

100 to 30000, and m = ⌊0.8n⌋. The number of nonzero elements of A ranges from

104 to 109. The data is generated as follows:

� The elements of A ∈ Rm×n have i.i.d uniform distribution from the interval

[−1, 1].

� b := A|ẋ| where the elements of ẋ ∈ Rn have i.i.d standard normal distribution.

� The elements of c ∈ Rn have i.i.d standard normal distribution.

� And K = Rn
+.

32

We start applying adaptive conditioning at iterations 300 and apply it once again in

every 100 steps, i.e.,

L = {300, 400, 500, . . .}. (3.12)

Parameters t and µ are set to 9.2 and 1, respectively. The advantage of using GPU

can be seen for large scale problems, when the problem dimension increases, the

GPU starts outperforming the other solvers significantly. The default settings are

used for all three competing solvers and Algorithm 2 is terminated once a solution

with better primal and dual feasibility is obtained, as defined in (3.11). As demon-

strated in Figure 3-4, for large instances, we have achieved approximately 3.3 and 19

times improvements for CPU and GPU respectively, in comparison with Gurobi, and

more than an order-of-magnitude time improvement in comparison with MOSEK and

OSQP with their default settings.

3.5.2 Single vs Multi-core CPU Implementation

The iterative steps of Algorithms 1 and 2 are completely parallelizable. The

parallel steps of algorithms are not only important for the graphics processing unit

(GPU) implementation, but also provides the computational benefits for CPU im-

plementation. We demonstrate the parallel processing strength of the proposed al-

gorithm by solving the previous instances of linear programming on both single-core

and multi-core (20 cores) CPU settings. Figure 3-5 shows that the multi-core CPU

implementation is approximately 10 times faster than the single-core implementa-

tion.

33

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Non-zero entries

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

T
im

e
 [

s
e

c
]

 OSQP

 Algorithm 2 CPU

 Algorithm 2 GPU

(a)

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Non-zero entries

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

T
im

e
 [

s
e

c
]

 Gurobi

 Algorithm 2 CPU

 Algorithm 2 GPU

(b)

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Non-zero entries

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

T
im

e
 [

s
e

c
]

 MOSEK

 Algorithm 2 CPU

 Algorithm 2 GPU

(c)

Figure 3-4: The performance of Algorithm 2 for linear programming in comparison
with (a) OSQP, (b) GUROBI, and (c) MOSEK.

34

10
6

10
7

10
8

Non-zero entries

10
0

10
1

10
2

10
3

T
im

e
 [

s
e

c
]

 Multi-core CPU

 Single-core CPU

Figure 3-5: Single-core vs Multi-core CPU implementation

3.5.3 Comparisons with POGS

In this case study, we seek to demonstrate the ability of Algorithm 2 in finding

very accurate solutions unlike competing first-order solvers that struggle with accu-

racy. In Figure 3-6, we perform comparisons between Algorithm 2 and the first-order

solver POGS [15]. We use the default settings for POGS except for the absolute and

relative tolerance values εabs and εrel for stopping criteria. Figure 3-6 demonstrates

that Algorithm 2 comprehensively outperforms one of the prominent first order solver,

particularly with lower tolerance values. Similar to the previous experiment, the stop-

ping criteria of Algorithm (2) depends on the competing solver, as define in (3.11).

3.5.4 Second-Order Cone Programming

This case study is concerned with the class of second-order cone programming

optimization problems. The performance of Algorithm 2 is tested in comparison with

MOSEK on default settings. We have generated random SOCP instances with n

ranging from 100 to 2900 (MOSEK takes the maximum time of 1200 seconds), and

m = ⌊0.8n⌋:

35

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Non-zero entries

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

T
im

e
 [

s
e

c
]

 POGS CPU

 POGS GPU

 Algorithm 2 CPU

 Algorithm 2 GPU

(a)

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Non-zero entries

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

T
im

e
 [

s
e

c
]

 POGS CPU

 POGS GPU

 Algorithm 2 CPU

 Algorithm 2 GPU

(b)

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Non-zero entries

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

T
im

e
 [

s
e

c
]

 POGS CPU

 POGS GPU

 Algorithm 2 CPU

 Algorithm 2 GPU

(c)

Figure 3-6: The performance of Algorithm 2 for linear programming in comparison
with POGS with the absolute and relative tolerances equal to (a) εabs = 10−5, εrel =
10−4, (b) εabs = 10−6, εrel = 10−5, and (c) εabs = 10−7, εrel = 10−6.

36

� The elements of A ∈ Rm×n have i.i.d uniform distribution from the interval

[−1, 1].

� b := A× absK(ẋ) where the elements of ẋ ∈ Rn have i.i.d uniform distribution

from the interval [0, 1].

� The elements of c ∈ Rn have i.i.d uniform distribution from the interval [0, 1].

� And K = (Kh)
n
h , where Kh is the standard Lorentz cone of size h.

We start applying adaptive conditioning at iterations 200 and apply it once again in

every 100 steps, i.e.,

L = {200, 300, 400, . . .}. (3.13)

Parameters t and µ are set to 1.7 and 1, respectively.

The comparison of computational time for Lorentz cones of size h = 4 and

h = 10 are reported in Figure 3-7. It is clear from Figure 3-7 that Algorithm (2)

outperforms MOSEK by a large margins as the size of problem grows, while MOSEK

performs better for smaller size problems.

3.6 Conclusions

We proposed a proximal numerical method with potential for parallelization.

Next, an adaptive conditioning heuristic was developed to speed up the convergence

of the proposed method. We provided a numerical example to demonstrate the fact

that existing acceleration, parameter tuning and preconditioning methods have very

limited effect on convergence behavior of first order methods. Moreover, we showed

that convergence rate can be improved, irrespective of the condition number of data

matrices. The proposed algorithm is implemented on graphics processing unit with

an order-of-magnitude time improvement. A wide range of numerical experiments

37

10
5

10
6

10
7

10
8

Non-zero entries

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

T
im

e
 [

s
e

c
]

 MOSEK

 Algorithm 2 CPU

 Algorithm 2 GPU

(a)

10
5

10
6

10
7

10
8

Non-zero entries

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

T
im

e
 [

s
e

c
]

 MOSEK

 Algorithm 2 CPU

 Algorithm 2 GPU

(b)

Figure 3-7: The performance of Algorithm 2 for second order cone programming in
comparison with MOSEK with Lorentz cones of size (a) h = 4 and (b) h = 10

are conducted on large problems and results are compared with prominent first order

solvers as well as the interior point method based solvers to demonstrate the claims

made in this paper. We solved a variety of linear programs and second-order cone

programs. It is evident from experimental results that the proposed algorithm out-

performs the first order algorithms in terms of computational time and achieves the

accuracy levels comparable to second-order state-of-the-art methods.

38

Algorithm 2

Input: (A, b, c,K), fixed µ > 0, initial points x ∈ Rn and z ∈ (R \ {0})n, fixed
0 < t < 1, and L ⊆ N

1: l← 0
2: repeat
3: l← l + 1
4: if l ∈ L ∪ {1} then
5: for i = 1, . . . , k do
6: h← n1 + . . .+ ni−1

7: for j = h+ 1, . . . , h+ ni do
8: oj←

∣∣xh+1−∥[xh+2, . . . , xh+ni
]∥2

∣∣/|zh+1|
9: end for
10: end for
11: O ← diag{|o|}min{1, t

log(max{o})−log(min{o})}

12: Â ← range{(AO)⊤}

13: d← (AO)†b+
µ

2

(
absO⊤A(O

⊤c)−O⊤c
)

14: s← O−1x− µOz
15: end if
16: p← absO−1K(s)

17: r ← absÂ(p)

18: s← s

2
− r

2
+ d

19: x←O(p+s)

2

20: z←O−1(p−s)
2µ

21: until stopping criteria is met.

Output: x and z

39

CHAPTER 4

A First-Order Numerical Algorithm without Matrix Operations

4.1 Introduction

Conic formulation can be visualized as a universal formulation of convex pro-

grams as any convex optimization problem can be formulated in terms of conic opti-

mization. In fact several convex optimization solvers and tools such as MOSEK [1],

SDPT3 [2], CVX [3], GUROBI [4] and CPLEX [5] first transform the problems into

a conic optimization problem. Several numerical algorithms have been developed in

literature to solve conic optimization problems, the most commonly being interior

point methods (IPMs) [6–8,46–48]. These methods are known for reliability and effi-

ciency to solve small to medium-sized problems. Interior point methods provide high

accuracy solution in a few tens of iterations irrespective of problem condition num-

ber and structure. However, at each iteration IPMs rely on Newton method and are

require to build and solve the linear systems corresponding to KKT matrix. Some of

the common available algorithm for handling the KKT system in each iteration are

Gauss-Jordan [49], Gaussian elimination [50], LU decomposition [51], Cholesky de-

composition [52], QR decomposition and Monte Carlo Methods [53] for inverse. The

computation of direct approaches are prohibitively expensive for large scale problems.

Computation of KKT system in IPMs is the major bottleneck and impede their abil-

ity to target larger problems. Interior point methods are not used in practice for large

scale problem because the computational cost and memory requirements are high in

each iteration.

40

4.2 Related Work

Motivated by the requirement of solving linear system in each steps and com-

putationally expensive direct methods, researchers explored matrix-free interior-point

methods. Indirect or iterative numerical algorithms for solving KKT matrix have re-

ceived a particular attention in recent past [54,55]. Direct methods for solving linear

systems of equations becomes impractical for large scale problems [54, 56]. Alterna-

tively, iterative methods do not require to store Schur complement matrix [56], thus

Krylove subspace based methods such as preconditioned conjugate gradient (PCG)

becomes efficient. The conjugate gradient method was first introduced in [57] where

an iterative technique was applied to solve the Newton step instead of factorizing Hes-

sian matrix directly. Authors in [58] proposed a Lagrangian dual predictor-corrector

algorithm and applied conjugate gradient method for handling linear system. In [59],

an iterative algorithm is applied to modified barrier method for handling large-scale

semidefinite optimization problems. The conjugate gradient method with a basic pre-

conditioner is applied [60] to save the computation time for solving semidefinite pro-

grams. Inexact semi-smooth Newton conjugate gradient approach is adopted in [61]

to improve the accuracy of handling semidefinite problems.

Unlike the direct methods, one of the notable disadvantage of iterative methods

is to render the inexact or approximate solution of KKT system. The performance of

iterative numerical algorithms is highly influenced by the spectral properties of linear

system and depends upon the condition number of matrix involved [62]. The precon-

ditioners in iterative methods are designed in way that the condition number should

be as small as possible [63]. In order to ensure the accuracy of IPMs, a number of

devoted attempts have been made to study the conditions in which inexact directions

satisfy the high accuracy [55, 64]. A matrix-free numerical algorithm for equality

41

constraint nonlinear programming is proposed in [65] to remedy the ill-conditioning

problem that may render from the rank-deficient Jacobian matrix. A matrix-free

solver PDCO [66] uses LSMR to solver linear system. In [67] an attempt has been

made to design a matrix-free IPM to work for quadratic programs, where the KKT

system is regularized to bound the condition number and then the preconditioner is

designed for the regularized system. This approach substantially decreased the com-

putational cost and memory storage in each iteration in comparison to traditional

IPMs at the trade of more iterations and lower accuracy. Despite these serious efforts

and introduction of indirect methods, IPMs are inherently computationally expensive

and thus not suitable for large-scale conic programs.

Alternatively, first order methods scales gracefully for handling huge cone pro-

grams at the cost of moderate accuracy [15–18]. The computational cost of each

iteration is significantly lower than of IPMs and thus provide a reasonable alternative

to deal with large problems. These methods are known to provide reasonable accu-

racy solutions in a few hundred of iterations because of computationally inexpensive

iterations and are well suited for the applications such as large scale optimization,

where high accuracy solutions are typically not required [13, 14]. The fast conver-

gence of first-order method to achieve a reasonable accuracy in a limited number of

iterations is an active research area and several dedicated attempts have been made

to accelerate the convergence in past few years [11,12,25–27,29,32,33,44,68].

Despite of the fact that first-order methods offers inexpensive iterative steps,

low memory requirement and easy implementation, these methods are also required

to solve KKT system in each iteration [18]. Thanks to factorizing caching, in practice,

the linear system is solved in first iterations, factors are stored and then reused in

subsequent iteration [13,15,18]. The most common factorizing caching approaches are

LDL and QR decomposition [69]. For large-scale conic programs the direct methods

42

or factorizing caching becomes impractical, at which point matrix-free or indirect

approaches become viable [15]. The first-order methods based solvers [15, 16, 18, 69],

apply conjugate gradient method to solve the large scale problems.

First-order methods struggles to find high accuracy solutions and matrix-free

indirect conjugate gradient approaches further hamper their ability to render high

quality solutions. The computational complexity of direct methods and low accuracy

solution of indirect methods to tackle large conic problems motivated us to propose

a general purpose matrix-free approach to solve very large problems with a modest

accuracy.

4.2.1 Contributions

In this work, we pursue a matrix-free first order numerical algorithm to deal

with very large-scale sparse conic optimization problems. The basic idea is to de-

compose the constraint matrix into sparse factors in such a way that iterative steps

are division free and do not involve any matrix operations. The sparse factors are

computed only in first iteration, and reused in subsequent iterations. In comparison

to existing matrix decomposition techniques such as LDL and QR decomposition,

our approach is simple and computationally efficient to compute the factors. The

notable property of the proposed decomposition is that computing the factors and

steps of iterative loop are division free. The factors are easy-to-compute and re-

quire minimally possible memory storage. The matrix inversion lemma is utilized to

make the operations division free. We reformulate the standard conic optimization

problem by introducing auxiliary variables and then apply the proposed matrix-free

algorithm in conjunction with well-known two-block ADMM [14, 19, 20]. The com-

putational burden of solving the linear system in each iteration is being taken out

of the iterative loop and factors are stored first, without any expensive factorization.

43

The algorithm offers the benefits of matrix-free, division-free and inexpensive iter-

ations. The proposed algorithm admitting parallel and large-scale implementation,

and amenable to graphics processing unit (GPU) implementation. We demonstrate

the performance gain and computational speedup of algorithm by conducting a wide

range of experiments and compare the results with other first-order solvers.

Rest of the chapter is organized as follows. We introduce the cone program-

ming and a brief description of operator splitting numerical algorithms for solving

such problems is presented in section 4.3. We analyze the existing direct and indirect

methods for solving the linear system and provide a motivation for our numerical

method in section 4.4. Section 4.5 presents the proposed algorithm. Numerical ex-

periments and comparison with existing competing solvers are presented in 4.6. The

conclusion is provided in section 4.7.

4.2.2 Notations

Notations R and N denote the set of real and natural numbers, respectively.

Matrices and vectors are represented by bold uppercase, and bold lowercase letters,

respectively. Notation ∥·∥2 refers to ℓ2 norm of either matrix or vector depending

on the context and |·| represents the absolute value. The symbol (·)⊤ represent the

transpose operators. The notations In refer to the n×n identity matrix. The symbol

K is used to describe different types of cones used in this paper. The superscript

(·)opt refers to the optimal solution of optimization problem. The notation o denotes

the number of nonzero entries in matrix. The symbol L represent the augmented

Lagrangian function. The notations “P1”, “P2” and “D” represent the primal and

dual blocks of two-block ADMM. The symbols εprim, εdual, εabs and εrel are used for

primal, dual, absolute and relative tolerance, respectively, and notation εgap is the

tolerance for difference between primal and dual objective values.

44

4.3 Preliminaries

We consider convex optimization programs with a linear objective function sub-

ject to a number of conic constraints in the form:

minimize
x∈Rn

c⊤x (4.1a)

subject to Ax = b (4.1b)

x ∈ K (4.1c)

where x ∈ Rn is the primal decision variable of conic program and objective function

is defined by vector c ∈ Rn. The conic constraints of primal problem are defined by

sparse matrix A ∈ Rm×n, vector b ∈ Rm and a closed, convex and non-empty cone

K ≜ Kn1 ×Kn2 × · · · × Knk
⊆ Rn, where each Kni

⊆ Rni is a Lorentz cone of size ni,

i.e.,

Kni
≜

{
w ∈ Rni |w1 ≥

∥∥[w2, . . . , wni
]
∥∥
2

}
,

and n1 + n2 + . . .+ nk = n.

In order to solve 4.1, various first order operator splitting methods have been

implemented in past decade. First order methods are particularly interesting for

the applications where iterative steps can be solved efficiently through closed form

formula and large number of iterations can be executed in a short amount of time.

The most common methods are Alternating Direction Method of Multipliers (ADMM)

and Douglas-Rachford Splitting (DRS). To this end, we briefly introduce DRS and

ADMM methods to solve problem 4.1.

45

4.3.1 Douglas-Rachford Splitting

DR splitting was fist introduced in [70] to find numerical solutions of differential

equations for heat conduction problems, and has been used to solve separable convex

optimization problems. Rather than operating on the whole problem directly, DRS

works on a splitting scheme to address each component of problem separately. In order

to implement the DR splitting method, the optimization problem (4.1) is casted in

the form of

minimize f(x) + g(x) (4.2)

where f, g : Rn → R ∪ {∞} are indicator functions and defined as

f(x)≜

 0 if x ∈ K

∞ otherwise
and g(x)≜

c⊤x if Ax = b

∞ otherwise

leading to the following steps:

x← proxf (z) (4.3a)

z ← z + proxg(2x− z)− x. (4.3b)

Each iteration of DRS algorithm requires proximal operator evaluation and projection

onto a linear subspace.

4.3.2 Alternating Direction Method of Multipliers

The alternating direction method of multipliers (ADMM) is one of the most

commonly used first-order algorithm in the literature for handling large-scale opti-

46

mization problems. ADMM is efficient for large-scale problems owing to its simple

implementation, computational cheapness, and distributive nature. This method can

be analyzed as a special case of DRS as the former applied to primal is equivalent

to applying DRS to the dual problem. A standard way of solving problem (4.1) via

ADMM is through the formulation

minimize
x1,x2∈Rn

f(x1) + g(x2) (4.4a)

subject to x1 = x2 (4.4b)

leading to the steps

x1 ← proxµ−1f (x2 − µ−1λ1) (4.5a)

x2 ← proxµ−1g(x1 + µ−1λ1) (4.5b)

λ1 ← λ1 + µ(x1 − x2). (4.5c)

where x1,x2 are primal variables, λ1 is dual variable and µ is a fixed tuning param-

eter.

4.4 Solving Linear System

Although the first order numerical algorithms are considered highly efficient for

solving large optimization problems with modest accuracy, but evaluating the pro-

jection operator in each step is probably one of the most computationally expensive

part in these methods. One need to project the primal and dual variables onto the

linear space and solve the linear system at each iterations. Depending on the prob-

lem dimension and structure of the constraint matrix A, there are different ways to

47

find solution of the linear system. The common methods for solving linear system in

iterative algorithms are classified as direct and indirect methods [15,18].

4.4.1 Direct Methods

The solution of linear system can be computed by first factorizing the KKT

matrix of optimization problem, and then performing forward or backward substitu-

tions. Since the KKT matrix doesn’t change throughout the iterations, the common

practice is to compute the factors at the beginning in first iteration and then reuse

in subsequent iterations. The process of computing the factors at first iteration and

then reusing in rest of the iterations is known as factorization caching. The technique

of factorization caching is computationally efficient and is frequently used by first

order solvers [15, 16,18,69].

When A is dense, the common practice to solve the KKT matrix by performing

Cholesky decomposition or QR decomposition at first iteration and then cache the

factor for subsequent iterations. The complexity in both approaches is O(mn2) in

first iterate and O(mn) in subsequent iterations.

When the problem size of sparse matrix is not too big, the direct sparse LDL⊤

decomposition is well defined for quasi-definite KKT matrix, i.e. it can be defined

as a 2x2 block symmetric matrix where diagonal blocks are positive and negative

definite, respectively. [71]. In such scenarios, direct method exactly solves the system

by using LDL⊤ factorization, with L being the lower triangular matrix and D is a

diagonal matrix. By storing D−1 in first step, the solution of KKT matrix can be

made division free. The computational complexity for sparse matrices is O(oL) and

depends upon the nonzero entries of factor L.

48

4.4.2 Indirect Methods

For very large problems factoring the linear system can be computationally

expensive and direct methods becomes impractical. In these cases, indirect methods

are preferred to approximately find the solution of linear system. Instead of solving

the linear system by factorization, indirect methods applies an iterative scheme such

as conjugate gradient CG [57,72,73] or LSQR [74,75].

The indirect methods are required to evaluate the approximate projections in

each step, but in practice, this method takes very few iterations to produce an ade-

quate approximation. A more practical approach is to terminate the method when

the system of equations is solved to a reasonable accuracy. Another advantage of

indirect method is that the conjugate gradient technique can be warm-started by us-

ing the solution obtained in previous iteration as an initial point in each subsequent

step. This heuristic approach results inaccurate projections at the beginning but

start producing more accurate ones as the first order algorithms begins to converge.

In contrast to direct methods, indirect methods offers low complexity and more free-

dom for adaptive parameter selection since there is no factorization. In each step

of conjugate gradient, a vector is required to be multiplied by A and A⊤, thus the

computational cost of each iteration is O(oA).

4.5 Problem Formulation

Notice that problem 4.1 can be computationally expensive for large scale prob-

lems due to the requirement of solving linear system or factorization caching. In con-

trast to existing direct and indirect methods for solving linear system in literature, we

propose a highly efficient matrix-free method to handle large scale sparse optimiza-

tion problems. The basic idea is to decompose A = UV , such that U ∈ Rm×o has

49

exactly one non-zero value in each column and V ∈ Ro×n has exactly one non-zero

entry in each row. Such decomposition can be readily constructed as follows.

Let {Aik,jk}ok=1 represent the non-zero elements of A in an arbitrary order.

U ≜
o∑

k=1

Aik,jkeikf
⊤
k (4.6a)

V ≜
o∑

k=1

fkg
⊤
jk

(4.6b)

where ek
m
k=1, fk

o
k=1, and gk

n
k=1 represent the standard basis for Rm, Ro, and Rn,

respectively. The factor U contains the nonzero elements of matrix A whereas V is

the associated sparse permutation matrix. These factors are computed in such a way

that the matrix U contains exactly one nonzero element in each column, whereas the

matrix V contains exactly one nonzero entry in each row. We illustrate the idea of

decomposition by providing a simple example as follows:

50

Example 1: We illustrate the decomposition A = UV , where A is a sparse

matrix with o nonzero entries, the corresponding U and V are

A :=


1 0 4 6 8

0 0 5 0 0

2 3 0 7 0

 ,

U :=


1 0 0 4 0 6 0 8

0 0 0 0 5 0 0 0

0 2 3 0 0 0 7 0

 ,

V :=



1 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1



⊤

To this end, we reformulate the problem 4.1 and apply matrix free decomposition

minimize
x∈Rn

c⊤x (4.8a)

subject to Uy = b (4.8b)

y = V x (4.8c)

z = x (4.8d)

z ∈ K (4.8e)

where y ∈ Rn and z ∈ Rn are auxiliary variables. The equality constraint 4.1b

is reformulated by 4.8b and 4.8c to avoid the matrix inversion to solve linear sys-

51

tem, whereas 4.8d enable the formulation to be solved by ADMM. The augmented

Lagrangian function for problem 4.8 is given as

L(x,y, z,λ,γ, δ) ≜ c⊤x+ λ⊤(Uy − b) +
µ

2

∥∥Uy − b
∥∥2

2

+ γ⊤(y − V x) +
µ

2

∥∥y − V x
∥∥2

2

+ δ⊤(z − x) +
µ

2

∥∥z − x
∥∥2

2

(4.9)

where µ ∈ R is a fixed parameter and λ ∈ Rm,γ ∈ Ro, and δ ∈ Rn are the Lagrange

multipliers associated with constraint 4.8b,4.8c and 4.8d, respectively.

We perform two block ADMM and regroup the primal and dual variables as

(Block 1) P1 = {x}

(Block 2) P2 = {y, z}

(Dual) D = {λ,γ, δ}

where “P1”, “P2” and “D” corresponds to x1, x2 and λ in standard formulation of

ADMM. The iterations of Two block ADMM for problem 4.8 can be given as follows:

1. Minimization in terms of x: This step consist of freezing the other variables at

their previous values and minimizing the Lagrangian function with respect to

x , i.e.,

xk+1 = arg min
x∈Rn

L(x,yk, zk,λk,γk, δk)

The variable x update results in following closed form solution

52

xk+1 = (I + V ⊤V)−1
[
V ⊤(yk +

γk

µ

)
+ zk +

δk

2µ
− c

µ

]
(4.10)

Observe that V ⊤V is diagonal and (I+V ⊤V) is a diagonal matrix with nonzero

diagonal entries. Notice that once the factor V is known, calculating the solu-

tion of 4.10 can be made division-free by storing (I + V ⊤V)−1.

2. The subproblem 4.5b in terms of P2 consists of two parallel steps:

(a) Minimization in terms of y: Minimizing the Lagrangian function with re-

spect to variable y and freezing the other variables at their latest values

yields the following closed form formula for updating y

yk+1 = (I +U⊤U)−1
[
U⊤(b− λk

µ

)
+ V xk+1 − γk

µ

]
(4.11)

Notice that UU⊤ is diagonal and this step can be made matrix free by

applying Lemma 1.

(b) Minimization in terms of z: This steps consists of projecting the variable

onto associated Lorentz cones by using 4.16.

zk+1 = projK

{
xk+1 − δk

µ

}
(4.12)

We project w = xk+1 − δk

µ
onto cone K in each iteration. The projection

onto each Ki can be done in parallel and with little computational cost.

Projection onto Lorentz cone has the closed form solution is provided in

Definition 2.

53

Algorithm 3

Input: (A, b, c,K), fixed µ > 0, and initial points x, z, δ ∈ Rn,y,γ ∈ Ro, and
λ ∈ Rm

1: U :=
∑o

k=1 Aik,jkeikf
⊤
k

2: V :=
∑o

k=1 fkg
⊤
jk

3: FU := I −U⊤(I +UU⊤)−1
U

4: FV :=
(
I + V ⊤V

)−1

5: repeat

6: x← FV

(
V ⊤(y + γ

µ

)
+ z + δ

µ
− c

µ

)
7: y ← FU

(
U⊤(b− λ

µ

)
+ V x− γ

µ

)
8: z ← projK

{
x− δ

µ

}
9: λ← λ+ µ(Uy − b)
10: γ ← γ + µ(y − V x)
11: δ ← δ + µ(z − x)

12: until stopping criteria is met.

Output: xopt,λopt

3. Dual variables update: This steps involves the dual variable update given as

follows:

λk+1 = λk + µ(Uyk+1 − b) (4.13)

γk+1 = γk + µ(yk+1 − V xk+1) (4.14)

δk+1 = δk + µ(zk+1 − xk+1) (4.15)

In contrary to existing practices that focuses on either using standard matrix

decompositions or apply an approximate solution by conjugate gradient method, we

propose a matrix free algorithm which does not rely on standard matrix factorization.

Instead, we store the nonzero entries in sparse matrices in such a way that we do

not need to apply the standard matrix decomposition. The standard fast ADMM

54

iterations can be used to the reformulated problem. These steps are highlighted in

Algorithm 3

� Step 1 and 2: The equality constraint matrix A is decomposed into A = UV

in such a manner that U has exactly one non-zero entry in each column while

V has exactly one non-zero entry in each row.

� Step 3 and 4: In order to make iterative steps division free, we compute

the multiplication factors in these steps. Note that these factors are easy-to-

compute since (I +UU⊤) and (I +V ⊤V) are diagonal matrices with non-zero

diagonal entries.

� Step 6 to 11: These steps are concerned with ADMM primal and dual variables

update, whereas the projection onto specific cone is performed in Step 8.

Definition 2. For any proper cone Ki ∈ Rni, define the projection operator projKi
:

Rni → Rni as

projKi
(w) ≜


0ni

∥∥[w2, . . . , wni
]
∥∥
2
≤ −w1

w
∥∥[w2, . . . , wni

]
∥∥
2
≤ w1[

α,
α[w2, . . . , wni

]

∥[w2, . . . , wni
]∥2

]
otherwise

(4.16)

where α = (w1 + ∥[w2, . . . , wni
]∥2)/2.

Lemma 4. Let I is the identity matrix and U be matrix of size m × o, then the

following identity holds:

(I +U⊤U)−1 = I −U⊤(I +UU⊤)−1U (4.17)

where UU⊤ is diagonal and I +UU⊤ is a diagonal matrix with nonzero elements.

55

Proof. Please refer to [76] for proof.

4.6 Numerical Experiments

We highlight the computational strength and scalability of proposed algorithm

by testing it on a variety of randomly generated large scale linear programming (LP)

and second order cone programming (SOCP) sparse problems. We compare the results

with other first order solvers POGS (Proximal Graph Solver) [15], OSQP (Operator

Splitting Solver for Quadratic Programs) [18] and SCS (Splitting Conic Solver) [16].

Our algorithm’s computational performance is a significant improvement over other

standard first order solvers. For each experiment, we apply the termination criteria

used by competing solver and compare the residual norms. In addition to termination

criteria of competing solver, we also compare objective value and constraint violations

to terminate the proposed algorithm. The computational gain of proposed approach

is consistent across all problem instances and different hardware architectures.

The proposed algorithm and competing solvers are implemented in MATLABR2020a

and all the experiments are counducted on a Linux based DGX station with 20 2.2

GHz cores, Intel Xeon E5-2698 v4 CPU, with NVIDIA Tesla V100-DGXS-32GB (128

GB total) GPU processor and 256 GB of RAM. The parallel nature of algorithm en-

ables the implementation to take advantage of multi-core CPU processing. Note that

our implementation of proposed algorithm in MATLAB utilizes only a single GPU

and does not benefit from multiple GPU’s of the platform. Moreover, all experiments

reported in this paper are not bounded by RAM or GPU memory of DGX station.

We used the MATLAB interface of POGS, OSQP v0.6.0 and SCS v2.1.2.

56

Problem instances: All data is generated in such a way that the all problems

are bounded and feasible. The number of nonzero entries of A are in the range of 104

to 106.

� We generate A ∈ Rm×n to be a random sparse matrix with 0.1%, 0.5% and

1.0% nonzero elements, which are drawn i.i.d. (independently and identically

distributed) from N (0, 1).

� b := A × projK(ẋ) where the elements of ẋ ∈ Rn have i.i.d standard normal

distribution.

� The elements of c ∈ Rn have i.i.d standard normal distribution.

� For LP K = Rn
+ and K = (Kh)

n
h , where Kh is the standard Lorentz cone of size

h for SOCP problems.

4.6.1 Linear Programming

We consider randomly generated linear programming problems and compare

the result with first-order solvers. We compare the performance of algorithm 3 in

comparison with POGS and OSQP on a variety of sparse problems.

In each case study, the experiments are continued until the run time of the

competing solver reaches a maximum time of 1200 seconds. The maximum time is

chosen in such a way that the experiments provide sufficient information to compare

the computational time for all solvers.

4.6.1.1 Comparison with OSQP

OSQP is a first order general purpose open-source solver based on alternating

direction method on multiplies (ADMM). In figure 4-1, we demonstrate the compu-

tational performance of our algorithm in comparison with OSQP by running several

57

1 1.5 2 2.5 3 3.5 4

Non-zero entries 10
5

10
0

10
1

10
2

10
3

10
4

T
im

e
 [

s
e

c
]

 OSQP CPU

 Algorithm 3 CPU

 Algorithm 3 GPU

(a)

10
4

10
5

10
6

Non-zero entries

10
0

10
1

10
2

10
3

10
4

T
im

e
 [

s
e

c
]

 OSQP CPU

 Algorithm 3 CPU

 Algorithm 3 GPU

(b)

10
5

10
6

Non-zero entries

10
0

10
1

10
2

10
3

10
4

T
im

e
 [

s
e

c
]

 OSQP CPU

 Algorithm 3 CPU

 Algorithm 3 GPU

(c)

Figure 4-1: The performance of Algorithm 3 for linear programming in comparison
with OSQP for (a) 0.1% (b) 0.5% and (c) 1.0% nonzero entries in matrix A

58

sparse linear programming instances. For each instance, we solve the problem by us-

ing OSQP solver in its default parameter settings and then provide these parameters

as input to our algorithm to achieve the same tolerance values.

Termination criteria: In all of the experiments, we use the following stopping cri-

teria used by OSQP, where both primal and dual residuals are smaller than some

predefined tolerance limits εprim > 0 and εdual > 0, i.e.,

∥Ax− b∥∞ < εprim (4.18a)

∥A⊤λ+ c∥∞ < εdual (4.18b)

εprim = εabs + εrel max{∥Ax∥∞, ∥b∥∞}

εdual = εabs + εrel max{∥A⊤λ∥∞, ∥c∥∞}

where εabs = 10−4 and εrel = 10−3 are default absolute and relative tolerance values,

respectively. In addition to this stopping criteria, we also make sure to satisfy the

following condition to terminate our algorithm

|c⊤x+ b⊤λ| < |c⊤xOSQP + b⊤yOSQP|

Figure 4-1a, demonstrate that CPU implementation or proposed algorithm is

at least 10 times faster than OSQP, whereas the GPU implementation shows two

order or magnitude improvement. Similar results are depicted in 4-1b, where we used

0.2% nonzero values in constraint matrix A. The CPU and GPU implementation

59

of proposed algorithm can easily achieve ten times and hundred times improvements

respectively, while satisfying the same or even strict stopping criteria as compare to

OSQP.

4.6.1.2 Comparison with POGS

POGS is an open-source implementation of graph projection splitting method

to target the multi-core and GPU-based systems for solving optimization problems.

In this case study, we compare the performance of proposed algorithm with POGS

on both CPU and GPU system architectures in figure 4-2. In these experiments,

POGS returns inaccurate solution in its default parameter settings, hence we made

a slight change in default parameters by setting εabs = 10−5 and εrel = 10−4 to get

reasonable accuracy. The same tolerance parameters along with primal and dual

solutions returned by POGS are used as input parameters for proposed algorithm to

meet the same stopping criteria.

Termination criteria: In all of the experiments, the stopping criteria of Algorithm

is when it exceeds both primal and dual feasibility of the solution produced by the

competing solver. In other words, when the following two criteria are met:

∥Ax− b∥2 < ∥AxPOGS − b∥2 (4.19a)

|c⊤x+ b⊤λ| < |c⊤xPOGS + b⊤yPOGS| (4.19b)

where xPOGS and yPOGS are primal and dual solutions produced by the com-

peting solver POGS under default settings.

Figure 4-2a, and 4-2b, shows notable time improvements of proposed algorithm

in both cases. Our CPU and GPU implementation of algorithm shows an order of

60

1 1.5 2 2.5 3

Non-zero entries 10
5

10
0

10
1

10
2

10
3

10
4

T
im

e
 [

s
e

c
]

 POGS CPU

 POGS GPU

 Algorithm 3 CPU

 Algorithm 3 GPU

(a)

10
4

10
5

10
6

Non-zero entries

10
0

10
1

10
2

10
3

10
4

T
im

e
 [

s
e

c
]

 POGS CPU

 POGS GPU

 Algorithm 3 CPU

 Algorithm 3 GPU

(b)

10
5

10
6

Non-zero entries

10
0

10
1

10
2

10
3

10
4

T
im

e
 [

s
e

c
]

 POGS CPU

 POGS GPU

 Algorithm 3 CPU

 Algorithm 3 GPU

(c)

Figure 4-2: The performance of Algorithm 3 for linear programming in comparison
with POGS for (a) 0.1% (b) 0.5% and (c) 1.0% nonzero entries in matrix A

61

magnitude time improvements as compare to POGS, and this performance improve-

ment keeps getting better as the problem becomes large.

4.6.2 Second-Order Cone Programming

In this case study, we consider the class of second-order cone programming

optimization problems. We compare the performance of algorithm 3 in comparison

with SCS on a variety of sparse conic problems.

4.6.2.1 Comparison with SCS

Splitting conic solver (SCS), primarily written in C, is a first-order numerical

optimization solver for solving large-scale cone programs using ADMM. This solver

returns both primal and dual solutions along with infeasibility certificate when ap-

plies.

Termination criteria: In all of the experiments, we use the following default stopping

criteria of SCS solver.

∥Ax− b∥2
(1 + ∥b∥2)

≤ εprim,
∥A⊤λ+ c∥2
(1 + ∥c∥2)

≤ εdual,

(c⊤x+ b⊤λ)

1 + |c⊤x|+ |b⊤λ|
≤ εgap

where εprim = εdual = εgap = 10−3.

We solve multiple SOCP problems for different sparse density and satisfy the

termination criteria of SCS solver and compare the computational time in figure 4-3.

The proposed algorithms is approximately ten times faster than SCS.

62

10
5

Non-zero entries

10
0

10
1

10
2

10
3

10
4

T
im

e
 [

s
e

c
]

 SCS CPU

 Algorithm 3 CPU

 Algorithm 3 GPU

(a)

10
5

10
6

Non-zero entries

10
0

10
1

10
2

10
3

10
4

T
im

e
 [

s
e

c
]

 SCS CPU

 Algorithm 3 CPU

 Algorithm 3 GPU

(b)

10
5

10
6

Non-zero entries

10
0

10
1

10
2

10
3

10
4

T
im

e
 [

s
e

c
]

 SCS CPU

 Algorithm 3 CPU

 Algorithm 3 GPU

(c)

Figure 4-3: The performance of Algorithm 3 for second order cone programming in
comparison with SCS direct for (a) 0.1% (b) 0.5% and (c) 1.0% nonzero entries in
matrix A

63

4.7 Conclusion

Motivated by the requirement of solving linear systems in first-order methods

and computational complexity of existing direct methods, we propose a computa-

tionally efficient and inexpensive matrix-free first order numerical algorithm for large

sparse conic programs. The computational burden of solving the linear system is

managed by decomposing the constraint into sparse factors in such a way that the

decomposed factors are easy-to-compute. The matrix inverse lemma is used to make

the algorithm division free. A highly parallelizable and inexpensive numerical algo-

rithm is developed based on alternating direction method of multipliers. The iterative

steps of the algorithm are division-free, can be computed by closed form solution, and

involves only simple arithmetic operations. The parallel nature of algorithms enjoys

the benefits of graphics processing unite implementation to speed up the computa-

tional gain of an order-of-magnitude time improvement. The proposed numerical

algorithm is applied on a wide range of conic optimization programs. The numerical

experiments shows that matrix-free algorithm is very competitive in comparison to

other competing first-order solvers. Numerical experiments demonstrate that the pro-

posed algorithm achieves notable time improvement in comparison to POGS, OSQP

and SCS solvers.

64

CHAPTER 5

Conclusion

In this dissertation, we first introduced a proximal numerical method with po-

tential for parallelization. This first order numerical algorithm is highly efficient and

scalable for dealing with large problems, but in and of itself, the algorithm suffers

from slow tail convergence similar to the existing first order numerical methods. Next,

an adaptive conditioning heuristic was developed to accelerate the convergence of the

proposed method. Most of the techniques available in literature are limited to a

certain problem structures or conditions and cannot be applied to general cases of

conic optimization. Moreover, we showed that convergence rate can be improved,

irrespective of the condition number of data matrices. The proposed algorithm is

implemented on graphics processing unit with an order-of-magnitude time improve-

ment. A wide range of numerical experiments are conducted on large problems and

results are compared with prominent first order solvers as well as the interior point

method based solvers to demonstrate the performance of scalable and high accuracy

algorithm. The numerical experiments show that the proposed algorithm outperforms

the first order algorithms in terms of computational time and achieves the accuracy

levels comparable to second-order interior point methods. We provide the proof of

convergence of the algorithm.

Additionally, we introduced a matrix-free numerical algorithm for solving huge

sparse conic programs. The first-order methods are required to solve the linear system

of equations in each iteration. Several standard approaches (direct methods) exists

in literature to solve the linear system when the problem size is not very large. The

65

direct methods are computationally expensive and thus not ideal for very large-scale

problems. Alternatively, iterative approaches such as conjugate gradient methods (in-

direct methods) are applied for such problems, but these methods produces only the

approximation and thus compromise on the accuracy of solution. High computational

and memory cost of direct methods and low accuracy of indirect methods motivated us

to design a numerical algorithm, which serves the purpose of computational efficiency

and numerical accuracy at the same time. The original conic problem is reformulated

based on a novel decomposition and a matrix free algorithm is developed for this

new reformulated problem. The proposed algorithm is applied on a wide range of

conic optimization problems. The numerical experiments show matrix-free algorithm

outperforms other competing first-order solvers. Numerical experiments demonstrate

that the proposed algorithm achieves approximately an order-of-magnitude time im-

provement in comparison to first order solvers POGS, OSQP and SCS solvers.

66

REFERENCES

[1] MOSEK ApS, The MOSEK optimization toolbox for MATLAB manual. Version

9.0., 2019. [Online]. Available: http://docs.mosek.com/9.0/toolbox/index.html

[2] K. C. Toh, M. J. Todd, and R. H. Tütüncü, “SDPT3–A Matlab software

package for semidefinite programming, Version 1.3,” Optimization Methods

and Software, vol. 11, no. 1-4, pp. 545–581, 1999. [Online]. Available:

https://doi.org/10.1080/10556789908805762

[3] CVX Research Inc, “CVX: Matlab Software for Disciplined Convex Program-

ming, version 2.0,” http://cvxr.com/cvx, Aug. 2012.

[4] Gurobi Optimization, LLC, “Gurobi optimizer reference manual,” 2020.

[Online]. Available: http://www.gurobi.com

[5] CPLEX IBM ILOG, “V12.1: User’s Manual for CPLEX,” International Business

Machines Corporation, vol. 46, no. 53, p. 157, 2009.

[6] S. Mehrotra, “On the implementation of a primal-dual interior point method,”

SIAM Journal on Optimization, vol. 2, no. 4, pp. 575–601, 1992. [Online].

Available: https://doi.org/10.1137/0802028

[7] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver for embedded

systems,” in 2013 European Control Conference (ECC), 2013, pp. 3071–3076.

[8] R. H. Tütüncü, K. C. Toh, and M. J. Todd, “Solving semidefinite-quadratic-

linear programs using SDPT3,” MATHEMATICAL PROGRAMMING, vol. 95,

pp. 189–217, 2003.

67

http://docs.mosek.com/9.0/toolbox/index.html
https://doi.org/10.1080/10556789908805762
http://cvxr.com/cvx
http://www.gurobi.com
https://doi.org/10.1137/0802028

[9] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over

symmetric cones,” Optimization methods and software, vol. 11, no. 1-4, pp. 625–

653, 1999.

[10] J. Eckstein and D. P. Bertsekas, “On the Douglas-Rachford splitting method and

the proximal point algorithm for maximal monotone operators,” Mathematical

Programming, vol. 55, no. 1, pp. 293–318, Apr 1992. [Online]. Available:

https://doi.org/10.1007/BF01581204

[11] P. Giselsson and S. Boyd, “Linear convergence and metric selection for Douglas-

Rachford splitting and ADMM,” IRE Transactions on Automatic Control,

vol. 62, no. 2, pp. 532–544, 2 2017.

[12] A. Fu, J. Zhang, and S. P. Boyd, “Anderson accelerated Douglas-Rachford split-

ting,” arXiv: Optimization and Control, 2019.

[13] P. Sopasakis, K. Menounou, and P. Patrinos, “SuperSCS: fast and accurate large-

scale conic optimization,” in 18th European Control Conference (ECC), 2019, pp.

1500–1505.

[14] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed

optimization and statistical learning via the alternating direction method of

multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, Jan. 2011.

[Online]. Available: http://dx.doi.org/10.1561/2200000016

[15] C. Fougner and S. Boyd, Parameter selection and preconditioning for a graph

form solver. Cham: Springer International Publishing, 2018, pp. 41–61.

[Online]. Available: https://doi.org/10.1007/978-3-319-67068-3 4

[16] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd, “Conic optimization

via operator splitting and homogeneous self-dual embedding,” Journal of

Optimization Theory and Applications, vol. 169, no. 3, pp. 1042–1068, Jun 2016.

[Online]. Available: https://doi.org/10.1007/s10957-016-0892-3

68

https://doi.org/10.1007/BF01581204
http://dx.doi.org/10.1561/2200000016
https://doi.org/10.1007/978-3-319-67068-3_4
https://doi.org/10.1007/s10957-016-0892-3

[17] Y. Zheng, G. Fantuzzi, A. Papachristodoulou, P. Goulart, and A. Wynn,

“Chordal decomposition in operator-splitting methods for sparse semidefinite

programs,” Mathematical Programming, vol. 180, pp. 489–532, Mar. 2020.

[18] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: An

operator splitting solver for quadratic programs,” ArXiv e-prints, Jan. 2018.

[Online]. Available: https://arxiv.org/abs/1711.08013

[19] R. Madani, A. Kalbat, and J. Lavaei, “A low-complexity parallelizable numerical

algorithm for sparse semidefinite programming,” IEEE Transactions on Control

of Network Systems, vol. 5, no. 4, pp. 1898–1909, 2018.

[20] ——, “ADMM for sparse semidefinite programming with applications to optimal

power flow problem,” in 2015 54th IEEE Conference on Decision and Control

(CDC), 2015, pp. 5932–5939.

[21] M. Garstka, M. Cannon, and P. Goulart, “Cosmo: A conic operator splitting

method for convex conic problems,” 2020.

[22] A. Themelis and P. Patrinos, “SuperMann: A superlinearly convergent algo-

rithm for finding fixed points of nonexpansive operators,” IEEE Transactions on

Automatic Control, vol. 64, no. 12, pp. 4875–4890, 2019.

[23] Z. Xu, G. Taylor, H. Li, M. A. T. Figueiredo, X. Yuan, and T. Goldstein, “Adap-

tive consensus ADMM for distributed optimization,” ser. Proceedings of Machine

Learning Research, vol. 70. PMLR, 2017, pp. 3841–3850.

[24] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “Optimal parameter

selection for the alternating direction method of multipliers (ADMM): Quadratic

problems,” IEEE Transactions on Automatic Control, vol. 60, no. 3, pp. 644–658,

2015.

69

https://arxiv.org/abs/1711.08013

[25] R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. Jordan, “A general

analysis of the convergence of ADMM,” in Proceedings of the 32nd International

Conference on Machine Learning, vol. 37. ICML’15, 2015, pp. 343–352.

[26] M. Hong and Z. Luo, “On the linear convergence of the alternating direction

method of multipliers,” Mathematical Programming, vol. 162, no. 1-2, pp. 165–

199, 2017.

[27] W. Ouyang, Y. Peng, Y. Yao, J. Zhang, and B. Deng, “Anderson acceleration

for nonconvex ADMM based on Douglas-Rachford splitting,” Computer

Graphics Forum, vol. 39, no. 5, pp. 221–239, 2020. [Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14081

[28] S. Wang and N. Shroff, “A new alternating direction method for linear

programming,” in Advances in Neural Information Processing Systems, vol. 30.

NIPS, 2017, pp. 1480–1488. [Online]. Available: https://proceedings.neurips.cc/

paper/2017/file/c4b31ce7d95c75ca70d50c19aef08bf1-Paper.pdf

[29] J. Eckstein and W. Yao, “Understanding the convergence of the alternating

direction method of multipliers: Theoretical and computational perspectives,”

2015.

[30] K. Guo, D. Han, and X. Yuan, “Convergence analysis of Douglas-Rachford

splitting method for “strongly+weakly” convex programming,” SIAM Journal

on Numerical Analysis, vol. 55, no. 4, pp. 1549–1577, 2017. [Online]. Available:

https://doi.org/10.1137/16M1078604

[31] L. Demanet and X. Zhang, “Eventual linear convergence of the Douglas-Rachford

iteration for basis pursuit,” Math. Comput., vol. 85, pp. 209–238, 2016.

[32] G. Banjac and P. J. Goulart, “Global linear convergence in operator splitting

methods,” in IEEE 55th Conference on Decision and Control (CDC), 2016, pp.

233–238.

70

https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14081
https://proceedings.neurips.cc/paper/2017/file/c4b31ce7d95c75ca70d50c19aef08bf1-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/c4b31ce7d95c75ca70d50c19aef08bf1-Paper.pdf
https://doi.org/10.1137/16M1078604

[33] G. Banjac and P. Goulart, “Tight global linear convergence rate bounds for

operator splitting methods,” IEEE Transactions on Automatic Control, vol. 63,

pp. 4126–4139, 2018.

[34] P. Giselsson, M. Fält, and S. Boyd, “Line search for averaged operator iteration,”

in IEEE 55th Conference on Decision and Control (CDC), Dec 2016, pp. 1015–

1022.

[35] W. Deng and W. Yin, “On the global and linear convergence of the

generalized alternating direction method of multipliers,” Journal of Scientific

Computing, vol. 66, no. 3, pp. 889–916, Mar 2016. [Online]. Available:

https://doi.org/10.1007/s10915-015-0048-x

[36] C. Song, S. Yoon, and V. Pavlovic, “Fast ADMM algorithm for distributed op-

timization with adaptive penalty,” in Proceedings of the 13th AAAI Conference

on Artificial Intelligence, ser. AAAI’16, 2016, p. 753–759.

[37] Y. Peng, B. , J. Zhang, F. Geng, W. Qin, and L. Liu, “Anderson acceleration for

geometry optimization and physics simulation,” ACM Trans. Graph., vol. 37,

no. 4, July 2018. [Online]. Available: https://doi.org/10.1145/3197517.3201290

[38] J. Zhang, Y. Peng, W. Ouyang, and B. Deng, “Accelerating ADMM for

efficient simulation and optimization,” vol. 38, no. 6, 2019. [Online]. Available:

https://doi.org/10.1145/3355089.3356491

[39] J. Zhang, B. O’Donoghue, and S. P. Boyd, “Globally convergent type-I Anderson

acceleration for non-smooth fixed-point iterations,” arXiv: Optimization and

Control, 2018.

[40] H. Fang and Y. Saad, “Two classes of multisecant methods for nonlinear acceler-

ation,” Numerical Linear Algebra with Applications, vol. 16, no. 3, pp. 197–221,

Mar. 2009.

71

https://doi.org/10.1007/s10915-015-0048-x
https://doi.org/10.1145/3197517.3201290
https://doi.org/10.1145/3355089.3356491

[41] P. Giselsson and S. Boyd, “Metric selection in fast dual forward–backward

splitting,” Automatica, vol. 62, pp. 1 – 10, 2015. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0005109815003611

[42] P. Giselsson and S. P. Boyd, “Diagonal scaling in Douglas-Rachford splitting and

ADMM,” 53rd IEEE Conference on Decision and Control, pp. 5033–5039, 2014.

[43] P. Giselsson and S. Boyd, “Preconditioning in fast dual gradient methods,” in

53rd IEEE Conference on Decision and Control, Dec 2014, pp. 5040–5045.

[44] T. Pock and A. Chambolle, “Diagonal preconditioning for first order primal-dual

algorithms in convex optimization,” in International Conference on Computer

Vision, Nov 2011, pp. 1762–1769.

[45] S. Diamond and S. Boyd, “Stochastic matrix-free equilibration,” Journal of

Optimization Theory and Applications, vol. 172, no. 2, pp. 436–454, Feb 2017.

[Online]. Available: https://doi.org/10.1007/s10957-016-0990-2

[46] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York, NY,

USA: Springer, 2006.

[47] Y. Nesterov, Lectures on Convex Optimization, 2nd ed. Springer Publishing

Company, Incorporated, 2018.

[48] S. J. Wright, Primal-Dual Interior-Point Methods. USA: Society for Industrial

and Applied Mathematics, 1997.

[49] S. C. Althoen and R. Mclaughlin, “Gauss-jordan reduction: A brief history,”

The American Mathematical Monthly, vol. 94, no. 2, pp. 130–142, 1987. [Online].

Available: https://doi.org/10.1080/00029890.1987.12000605

[50] P. S. Stanimirović and M. D. Petković, “Gauss–jordan elimination method for

computing outer inverses,” Applied Mathematics and Computation, vol. 219,

no. 9, pp. 4667–4679, 2013. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0096300312010971

72

http://www.sciencedirect.com/science/article/pii/S0005109815003611
https://doi.org/10.1007/s10957-016-0990-2
https://doi.org/10.1080/00029890.1987.12000605
https://www.sciencedirect.com/science/article/pii/S0096300312010971
https://www.sciencedirect.com/science/article/pii/S0096300312010971

[51] R. Mittal and A. Al-Kurdi, “Lu-decomposition and numerical structure for

solving large sparse nonsymmetric linear systems,” Computers & Mathematics

with Applications, vol. 43, no. 1, pp. 131–155, 2002. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0898122101002796

[52] I. P. Stanimirović and M. B. Tasić, “Computation of generalized inverses by

using the ldl decomposition,” Applied Mathematics Letters, vol. 25, no. 3,

pp. 526–531, 2012. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0893965911004630

[53] B. Fathi Vajargah, “A way to obtain monte carlo matrix inversion with minimal

error,” Applied Mathematics and Computation, vol. 191, no. 1, pp. 225–233,

2007. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0096300307002494

[54] S. Diamond and S. Boyd, “Matrix-free convex optimization modeling,” in Opti-

mization and its applications in control and data sciences. Springer, 2016, pp.

221–264.

[55] J. Al-Jeiroudi, G. Gondzio, “Convergence analysis of the inexact infeasible

interior-point method for linear optimization,” Journal of Optimization Theory

and Applications, vol. 141, no. 2, pp. 231–247, 2009. [Online]. Available:

https://doi.org/10.1007/s10957-008-9500-5

[56] K.-C. Toh, “Solving large scale semidefinite programs via an iterative solver on

the augmented systems,” SIAM Journal on Optimization, vol. 14, no. 3, pp.

670–698, 2004. [Online]. Available: https://doi.org/10.1137/S1052623402419819

[57] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear

systems,” Journal of research of the National Bureau of Standards, vol. 49, pp.

409–436, 1952.

73

https://www.sciencedirect.com/science/article/pii/S0898122101002796
https://www.sciencedirect.com/science/article/pii/S0893965911004630
https://www.sciencedirect.com/science/article/pii/S0893965911004630
https://www.sciencedirect.com/science/article/pii/S0096300307002494
https://www.sciencedirect.com/science/article/pii/S0096300307002494
https://doi.org/10.1007/s10957-008-9500-5
https://doi.org/10.1137/S1052623402419819

[58] M. Fukuda, M. Kojima, and M. Shida, “Lagrangian dual interior-point

methods for semidefinite programs,” SIAM Journal on Optimization, vol. 12,

no. 4, pp. 1007–1031, 2002. [Online]. Available: https://doi.org/10.1137/

S1052623401387349

[59] M. KoăundefinedVara and M. Stingl, “On the solution of large-scale sdp problems

by the modified barrier method using iterative solvers,” Math. Program., vol. 109,

no. 2–3, p. 413–444, Mar. 2007.

[60] C. Choi and Y. Ye, “Solving sparse semidefinite programs using the dual scaling

algorithm with an iterative solver,” Working paper, Department of Management

Sciences, University of Iowa, 2000.

[61] X.-Y. Zhao, D. Sun, and K.-C. Toh, “A newton-cg augmented lagrangian method

for semidefinite programming,” SIAM Journal on Optimization, vol. 20, no. 4,

pp. 1737–1765, 2010. [Online]. Available: https://doi.org/10.1137/080718206

[62] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, ser.

Frontiers in Applied Mathematics. SIAM, 1995, no. 16. [Online]. Available:

http://www.siam.org/books/textbooks/fr16 book.pdf

[63] M. DApuzzo, V. De Simone, and D. di Serafino, “On mutual impact of

numerical linear algebra and large-scale optimization with focus on interior point

methods,” Computational Optimization and Applications, vol. 45, no. 2, pp.

283–310, 2010. [Online]. Available: https://doi.org/10.1007/s10589-008-9226-1

[64] Z. Lu, R. D. C. Monteiro, and J. W. O’Neal, “An iterative solver-based infeasible

primal-dual path-following algorithm for convex quadratic programming,” SIAM

Journal on Optimization, vol. 17, no. 1, pp. 287–310, 2006. [Online]. Available:

https://doi.org/10.1137/04060771X

74

https://doi.org/10.1137/S1052623401387349
https://doi.org/10.1137/S1052623401387349
https://doi.org/10.1137/080718206
http://www.siam.org/books/textbooks/fr16_book.pdf
https://doi.org/10.1007/s10589-008-9226-1
https://doi.org/10.1137/04060771X

[65] F. E. Curtis, J. Nocedal, and A. Wächter, “A matrix-free algorithm for equality

constrained optimization problems with rank-deficient jacobians,” SIAM J. on

Optimization, vol. 20, no. 3, p. 1224–1249, Sept. 2009.

[66] M. Saunders, B. Kim, C. Maes, A. Santiago, and M. Zahr, “PDCO: primal-dual

interior method for convex Objectives,” http://www.stanford.edu/group/SOL/

software/pdco.html, 2018.

[67] J. Gondzio, “Matrix-free interior point method,” Comput. Optim. Appl.,

vol. 51, no. 2, p. 457–480, Mar. 2012. [Online]. Available: https:

//doi.org/10.1007/s10589-010-9361-3

[68] M. Adil, S. Tavakkol, and R. Madani, “Rapid convergence of first-order numerical

algorithms via adaptive conditioning,” 2021.

[69] E. Chu, B. O’Donoghue, N. Parikh, and S. P. Boyd, “A primal-dual operator

splitting method for conic optimization,” 2013.

[70] J. Douglas and H. H. Rachford, “On the numerical solution of heat conduction

problems in two and three space variables,” Transactions of the American

Mathematical Society, vol. 82, no. 2, pp. 421–439, 1956. [Online]. Available:

http://www.jstor.org/stable/1993056

[71] R. J. Vanderbei, “Symmetric quasidefinite matrices,” SIAM Journal on

Optimization, vol. 5, no. 1, pp. 100–113, 1995. [Online]. Available:

https://doi.org/10.1137/0805005

[72] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.). USA: Johns

Hopkins University Press, 1996.

[73] J. Nocedal and S. Wright, Numerical Optimization: Springer Series in Opera-

tions Research and Financial Engineering. Springer, 2006.

[74] C. C. Paige and M. A. Saunders, “Lsqr: An algorithm for sparse linear equations

and sparse least squares,” ACM Trans. Math. Software, pp. 43–71, 1982.

75

https://doi.org/10.1007/s10589-010-9361-3
https://doi.org/10.1007/s10589-010-9361-3
http://www.jstor.org/stable/1993056
https://doi.org/10.1137/0805005

[75] H. Huang, J. M. Dennis, L. Wang, and P. Chen, “A scalable parallel

lsqr algorithm for solving large-scale linear system for tomographic problems:

A case study in seismic tomography,” Procedia Computer Science, vol. 18,

pp. 581–590, 2013, 2013 International Conference on Computational

Science. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S1877050913003657

[76] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.

Society for Industrial and Applied Mathematics, 2002. [Online]. Available:

https://epubs.siam.org/doi/abs/10.1137/1.9780898718027

76

https://www.sciencedirect.com/science/article/pii/S1877050913003657
https://www.sciencedirect.com/science/article/pii/S1877050913003657
https://epubs.siam.org/doi/abs/10.1137/1.9780898718027

BIOGRAPHICAL STATEMENT

Muhammad Adil was born in a small village in northern Pakistan. He received

his B.S. degree in Electrical Engineering from University of Engineering and Technol-

ogy and his M.S. degree from Pakistan Institute of Engineering and Applied Sciences

Islamabd in 2012 and 2014, respectively. He worked toward his PhD degree from

2017 to 2021 at University of Texas at Arlington. His research interested includes

developing numerical algorithm for solving optimization problems appears in power

systems, control systems and machine learning.

77

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	First-Order Operator Splitting Algorithm
	Rapid Convergence of First Order Methods via Adaptive Conditioning
	A First-Order Numerical Algorithm without Matrix Operations

	 First-Order Operator Splitting Algorithm
	Introduction
	Related Work
	Contributions
	Notations

	Problem Formulation
	First Order Methods
	Douglas-Rachford Splitting
	Alternating Direction Method of Multipliers

	Proposed Operator Splitting Method
	Conclusion
	Proofs

	Rapid Convergence of First Order Methods via Adaptive Conditioning
	Introduction
	Contributions
	Notations

	Preliminaries
	State of the Art Preconditioning Methods
	Example: The effect of condition number

	Adaptive Conditioning
	Example: The choice of conditioning steps

	Numerical Experiments
	Linear Programming
	Single vs Multi-core CPU Implementation
	Comparisons with POGS
	Second-Order Cone Programming

	Conclusions

	A First-Order Numerical Algorithm without Matrix Operations
	Introduction
	Related Work
	Contributions
	Notations

	Preliminaries
	Douglas-Rachford Splitting
	Alternating Direction Method of Multipliers

	Solving Linear System
	Direct Methods
	Indirect Methods

	Problem Formulation
	Numerical Experiments
	Linear Programming
	Second-Order Cone Programming

	Conclusion

	Conclusion
	REFERENCES
	BIOGRAPHICAL STATEMENT

