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ABSTRACT

SCALABLE OPTIMIZATION METHOD FOR GENERATOR SCHEDULING UNDER

UNCERTAINTY

EDWARD ARTHUR QUARM JNR., Ph.D.

The University of Texas at Arlington, 2021

Supervising Professor: Dr. Ramtin Madani

Scalable optimization methods for power system operation has been subject of re-

search over the last 60 years. State-of-the-art methods in this research area is yet to yield

the scalability desired by system operators for practical operation of electric grids. This

article-based dissertation makes three significant contributions. A scalable computational

method is developed to tackle a mixed-integer problem commonly referred to as Stochastic

Security-Constrained Unit Commitment (SSCUC), the output of which will be beneficial

to Independent System Operators to manage electric grids. Secondly, an improved model

for time-progressive contingencies in security-constrained optimization problems is pre-

sented. This modeling approach is more realistic representation of contingency modeling

as compared to what exists in literature. Finally, uncertainty from pulsed load transients in

microgrids is tackled in the presence of energy storage units.

In the first paper, a detailed SSCUC problem is considered that suffers from com-

plexities posed by the presence of binary variables, uncertainty of renewable energy and

security constraints. The second paper deals with extra challenges time-progressive contin-

gencies such as hurricanes and wildfires pose to the Security-Constrained Optimal Power

ii



Flow (SCOPF) problem. The third paper deals with the MG scheduling problem in the

presence of uncertainty introduced by transient load demand.
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CHAPTER 1

INTRODUCTION

1.1 Research Overview

At the center of operating the US electric grids are Independent System Operators (ISOs)

whose aim is to facilitate the real-time and day-ahead operation. ISOs have to deal with

a changing conditions under which the grid operates. These changes are commonly re-

ferred to as uncertainties. For example, renewable energy sources such as wind and solar

power cause variability in power generation while low-frequency high impact events such

as hurricanes, floods and other natural disasters affect system reliability.

This dissertation examines the complexity of tackling challenging day-ahead schedul-

ing problems in cases where large-scale UC is combined with security constraints, contin-

gency events and uncertain wind scenarios. Secondly, electricity security is investigated

in the presence of hurricane contingencies. This research work was part of an internship

opportunity at Pacific Northwest National Laboratory in summer 2021. The results of this

dissertation can be adopted by ISOs for daily operation of the US electric grid, national

laboratories to conduct studies on the large-scale grids in US and the broad research com-

munity for further advancement.

1.2 Summary of Publications

This dissertation is presented in an article-based format and includes three research papers;

1 published journal paper, 1 published conference paper and 1 manuscript under prepa-

ration. Chapter 2 presents the paper titled, “Scalable Security-Constrained Unit Commit-

ment Under Uncertainty via Cone Programming Relaxation”, which was published in IEEE
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Transactions on Power Systems Journal in 2021. This paper is co-authored and includes

the following author: Dr. Ramtin Madani. As the primary author, I was responsible for

formulating the problem and performing experiments. Dr. Madani supervised the research

work by providing feedback on research directions, reviewing and editing the manuscript.

This paper proposed a scalable method to deal with computationally challenging

SCUC problems. The method was tested extensively on IEEE and PEGASE benchmark

systems to establish its relative performance against two widely used solvers, CPLEX and

GUROBI together with the state-of-the-art perspective and linear programming. We show

that the proposed semidefinite programming relaxation consistently finds near-globally op-

timal solutions for each benchmark system under uncertain wind scenarios and with an

extensive list of contingencies with up to 12,240 binary variables and 1,830,560 continu-

ous variables.

Chapter 3 presents a conference paper titled, “Proactive Posturing of Large Power

Grid for Mitigating Hurricane Impacts ”,which is to appear in 2022 IEEE PES Confer-

ence on Innovative Smart Grid Technologies (ISGT 2022). This paper is co-authored by:

Xiaoyuan Fan, Marcelo Elizondo and Ramtin Madani. As the primary author, I was re-

sponsible for formulating the problem and performing experiments. Dr. Xiaoyuan Fan

supervised the research work; Dr. Marcelo Elizondo co-supervised research work and Dr.

Ramtin Madani contributed to providing feedback on problem formulation and final ver-

sion of manuscript.

This paper aims to develop interactive cross-domain data analytics based on hurri-

cane modeling, power system optimization and model-based simulations. The temporal

relations among individual steps (groups of time period) within historical hurricane event

have been explored and transformed into explicit optimization constraints, and further in-

corporated into SCOPF problem to identify proactive posturing of power system elements.

Variations of the operation cost among different hurricane steps (contingency batches) in-
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dicates the applicability of such optimization formulation, and the improvement in targeted

credible line contingencies shows promising improvements by such proactive dispatch.

Chapter 4 presents a manuscript under preparation for publication titled, “Microgrid

Scheduling with Uncertainty in Transient Load”. This paper is co-authored by: Dr. Ramtin

Madani. As the primary author, I was responsible for problem formulation and performing

experiments. Dr. Ramtin Madani supervised the research work by providing feedback on

research directions, reviewing and editing the manuscript.

In this paper, we presented the Microgrid (MG) scheduling problem under load de-

mand uncertainty. MGs by design have smaller network size and suffer from inadequate

reserve margins as compared to main grids. As a result, highly variable load like transient

load demand can negatively affect reliability. To tackle this challenge in the MG scheduling

problem, we make use of semidefinite programming relaxation which is capable of finding

feasible solutions within provable distance from global optimality. It is shown that the pro-

posed SDP relaxation finds optimal solutions to the scheduling problem without need to

adopt scenario reduction techniques when mixed-integer programming solvers are utilized.

Furthermore, we demonstrated that the problem of load variability can be greatly reduced

with the help of Energy Storage Units (ESUs) when scheduled in tandem with Distributed

Generators (DGs). The analysis performed can serve as a guide to MG operators in find-

ing the approximate size of ESUs needed to achieve a desired load profile in a scheduling

problem with the objective of minimizing operation cost.

Finally, Chapter 5 presents general conclusions and directions for future research

work.
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CHAPTER 2

SCALABLE SECURITY-CONSTRAINED UNIT COMMITMENT UNDER

UNCERTAINTY VIA CONE PROGRAMMING RELAXATION
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Scalable Security-Constrained Unit Commitment Under Uncertainty via Cone

Programming Relaxation1

E. Quarm and R. Madani, “Scalable Security-Constrained Unit Commitment Under

Uncertainty via Cone Programming Relaxation,” in IEEE Trans. on Power Systems, vol.

36, no. 5, pp. 4733-4744, Sept. 2021, doi: 10.1109/TPWRS.2021.3062203.

1Copyright © 2021 IEEE. Reprinted, with permission, from R. Madani, Security-Constrained Unit
Commitment Under Uncertainty via Cone Programming Relaxation, IEEE Trans. on Power Systems,Sept.
2021.



Scalable Security-Constrained Unit Commitment under Uncertainty via Cone

Programming Relaxation

Edward Quarm Jnr. and Ramtin Madani

The authors are with the Department of Electrical Engineering, University of Texas at

Arlington (email: edwardarthur.quarmjnr@uta.edu, ramtin.madani@uta.edu).

Abstract — This paper is concerned with the problem of Security-Constrained Unit Com-

mitment (SCUC) which is a long-standing challenge in power system engineering faced

by system operators and utility companies on a daily basis. We consider a detailed variant

of this problem that suffers from complexities posed by the presence of binary variables,

the uncertainty of renewable sources and security constraints. A convex relaxation is for-

mulated which is capable of finding feasible solutions within a provable distance from

global optimality. We demonstrate the performance of this approach on detailed and chal-

lenging instances of SCUC with IEEE and PEGASE benchmark cases from The proposed

approach is able to handle over 12,000 binary variables and 2 million continuous variables

with significant improvement in solution quality over commonly-used off-the-shelf solvers

and other methods of convex relaxation.

Keywords — Power generation scheduling, Power system security, Optimization

methods.
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2.1 INTRODUCTION

Unit commitment (UC) is the problem of determining the schedule and level of contribu-

tions by generators in a power grid to meet forecasted demand for electricity as econom-

ically as possible. The efficiency of wholesale power markets is highly dependent on so-

lution methods for UC. Efficient algorithms based on high-fidelity power grid models can

alleviate a variety of problems such as uplift payments, underfunded transmission rights

and occasional disputes between market participants [1, 2]. Several variants of UC have

been studied in the literature to address considerations such as contingency constraints

and to mitigate the uncertainty of demand and renewable sources. Network components

are prone to various sources of failure. Hence, contingency planning is central to reliable

functioning of power grids. To ensure immunity to the outage of individual grid com-

ponents, it is common-practice to impose a comprehensive list of constraints, accounting

for pre-determined contingencies. This problem is regarded as Security-Constrained Unit

Commitment (SCUC). Due to the ever increasing integration of renewable energy sources,

several papers have considered stochastic formulations of SCUC to mitigate the risks asso-

ciated with grid uncertainty. In this paper, we propose a computational method for SCUC

under the uncertainty of renewable sources.

The presence of binary variables pose a major challenge in solving large-scale unit

commitment problems. Therefore, a variety of methods have been developed for UC since

the late 1960s. Among early attempts were rudimentary methods such as exhaustive enu-

meration and priority list [3–7] that are only applicable to small instances of UC. In the

1960s and 70s a number of Dynamic Programming (DP) methods were proposed for UC

in [8–10], without success on large-scale problems due to curse of dimensionality. To this

date, Lagrangian Relaxation (LR) has remained one of the successful methods to approach

UC [11–13]. LR works by decomposing UC problems into a master problem and sub-

problems that are solved iteratively until an optimal solution is found. The success of LR

7



is due to its reliance on a lower complexity dual formulation as opposed to the high di-

mensional primal UC problem which is tackled by other methods. Recent papers employ

benders decomposition for separating the UC into master and subproblems to be solved us-

ing augmented LR or combined with DP and Genetic Algorithm (GA) [14–16] to achieve

reasonable computational speed, though not fast enough for practical applications.

With the increase in computer memory and processing power Mixed-Integer Pro-

gramming (MIP) methods such as Branch and Bound (B&B) have gained popularity as

solution approaches to UC [17, 18]. Recently, MIP solvers such as CPLEX and GUROBI

have become very popular and widely used to solve UC problems for commercial appli-

cations [1]. However, a main disadvantage of B&B is the rapid growth of search trees

with the number of binary variables [19]. The success of MIP solvers in tackling stochas-

tic SCUC problems depends on the tightness and compactness of formulation, number of

binary variables, number of wind scenarios, number of contingencies and binding trans-

mission line constraints [20–22]. In order to improve the efficiency and solution quality of

B&B searches, the creators of CPLEX; IBM have offered improvements such as heuristics,

node presolve and cutting planes [23]. Despite these improvements, a number of papers

have reported that the computational burden on off-the-shelf MIP solvers increases when

applied to large-scale SCUC problems as solvers either exceed the time-limit or CPU mem-

ory limit [20–22]. Many papers have also offered partial convex hull characterizations of

UC feasible sets [24–27] to improve efficiency of B&B. The paper [28] offers a critical

review of the common-practice of implementing linear programming (LP) relaxation as a

reliable approach to UC.

Recently, more sophisticated convex relaxations such as Semidefinite Programming

(SDP) and Second-Order Cone Programming (SOCP) have been used for solving different

variants of UC [29, 30]. In [29], it is shown that perspective relaxation can significantly

improve the performance of MIP search for UC. The paper [30] applies SDP relaxation

8



to SCUC with AC network constraints. In [31] a strengthened SDP relaxation is pro-

posed, which offers improved performance using the Reformulation Linearization Tech-

nique (RLT). The paper [32] employs SOCP to find globally optimal solutions to UC with

AC network constraints. Due to the computational complexity of UC, solutions obtained

from any polynomial-solvable relaxation may not be feasible for the original non-convex

UC problem. To address this issue, the paper [33] proposes a sequential penalization

method for UC to obtain near-globally optimal solutions.

This paper examines the complexity of tackling challenging day-ahead scheduling

problems in cases where large-scale UC is combined with security constraints, contingency

events and uncertain wind scenarios. We adopted a stochastic approach proposed in [34].

The base case and contingency states are tied together by generator ramp limits. In addition,

generator re-dispatches are treated as recourse actions to contingencies. This stochastic

approach to modeling system security is preferred to other modeling approaches because it

allows for cost of each state to be weighted by its probability of occurrence.

In this paper, we leverage the power of SDP relaxation to alleviate the burden of

branch-and-bound search for detailed and large-scale SCUC problems. While off-the-shelf

SDP relaxation produces a lower bound on the optimal objective, it is computationally pro-

hibitive thus not scalable [35, 36]. Hence, in this work, we are forging a low-complexity

conic relaxation that is capable of solving large-scale SCUC. This effort is aligned with

the recent body of research devoted to scalable variants of semidefinite programming [37].

In lieu of computationally demanding constraints, we employ low-order SDP constraints

to determine binary variables. So as to strengthen the relaxation, valid inequalities are in-

troduced from the multiplication of constraints through the Reformulation-Linearization

Technique (RLT). To address cases for which the proposed relaxation is not exact, we pro-

pose a heuristic approach to infer near-globally optimal points from the outcome of convex

relaxation. The proposed approach is tested on modified IEEE and PEGASE benchmark

9



systems with realizations of uncertain wind scenarios and N-1 contingencies. The largest

benchmark system considered includes 12,240 binary decision variables and 1,830,560

continuous variables. The performance of the proposed convex relaxation is compared

with off-the-shelf solvers such as CPLEX and GUROBI and other methods of relaxation

like perspective and LP relaxations.

The remainder of this paper is organized as follows. In Section 2.2.1, we formulate

the SCUC problem under uncertainty. This non-convex problem is convexified by means

of convex surrogates in Section 2.3. Next, a scalable convex relaxation is proposed in Sec-

tion 2.3 to tackle SCUC in polynomial time. Section 2.4 proposes a heuristic approach to

infer near-globally optimal points from the outcome of convex relaxation. Extensive exper-

iments are conducted in Section 2.5 on IEEE and PEGASE benchmark systems. Section

2.6 concludes the paper.

2.1.1 Notation

Throughout this paper, matrices, vectors and scalars are represented by boldface uppercase,

boldface lowercase and italic lowercase letters, respectively. | · | represents the absolute

value of a scalar or the cardinality of a set. The symbol (·)> represents the transpose

operator. The notation real{·} represents the real part of a scalar or a matrix. Given a

matrixA, the notationAjk refers to its (j, k)th element. A � 0 means thatA is symmetric

and positive semidefinite.

2.2 UNIT COMMITMENT PROBLEM

This work considers a secure unit commitment problem under wind generation uncertainty.

As mentioned in the introduction, security constraints are modeled using a stochastic ap-

proach proposed in [34]. Contingencies in the network are modeled by specifying outages

to units or lines. Locational reserve requirements are endogenously determined as a func-

10



tion of the set of included credible contingencies, which is in stark contrast to deterministic

approach where zonal reserve requirements are predefined by system operators and em-

ployed in various UC studies [14]. Pre-defined or fixed reserve requirements are not used

in this study, conversely we make use of generator ramp rate modeled after [38]. Also,

we define a power contract variable which represents reference dispatch value from which

dispatch deviations are defined.

Uncertainty in wind generation is modeled as scenarios with continuous probability

distributions, such that each scenario represents a different forecast of wind. Furthermore,

a transition probability matrix is used to describe the transitions from a limited set of base

scenarios in one period to a limited set of base scenarios in the next period. Experimental

data on generator and wind parameters including ramp rate for IEEE and PEGASE bench-

mark systems are specified in Section 2.5.

2.2.1 Problem Formulation

The goal of unit commitment is to schedule the generation of electricity within a time

horizon T = {1, 2, . . . , |T |}. For every t ∈ T , let St represent the set of all possible

uncertainty scenarios for renewable sources at time t. Additionally, let Gt represent the set

of all generating units that are available at time t ∈ T . For every, t ∈ T and s ∈ St, define

Cts as the set of all contingency cases with 0 ∈ Cts representing the base case (normal

operation). Lastly, Gtsc ⊆ Gt is defined as the set of all generating units that are available

at time t ∈ T , scenario s ∈ St and contingency c ∈ Cts, such that

Gt = ∪s∈St ∪c∈Cts Gtsc.

Consider a power system with V as the set of buses, and Etc ⊆ V ×V as the set of branches

at time t ∈ T and contingency c ∈ ∪s∈StCts.
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Motivated by [34], we formulate SCUC using the following list of decision variables:

{xtg ∈ {0, 1}}t∈T , g∈Gt , {pcontract
tg , r+

tg, r
−
tg, w

+
tg, w

−
tg ∈ R}t∈T , g∈Gt

{ptgsc}t∈T , g∈Gt, s∈St, c∈Cts ,
{
θtsc ∈ R|V|

}
t∈T , s∈St, c∈Cts

.

Each xtg is a binary variable indicating the on/off status of unit g ∈ Gt at time t ∈ T

and pcontract
tg is its contract active power quantity. Variables (r+

tg, r
−
tg) are upward and down-

ward contingency reserve quantities, and (w+
tg, w

−
tg) represent upward and downward load-

following ramping reserve quantities, respectively. If g /∈ Gt, then

xtg = pcontract
tg = r+

tg = r−tg = w+
tg = w−tg = 0.

Each variable ptgsc denotes the active power injection at time t ∈ T by generator g ∈ Gt, in

scenario s ∈ St and contingency c ∈ Cts. Lastly, θtsc ∈ R|V| represents the vector of nodal

phase angles at time t ∈ T , scenario s ∈ St and contingency c ∈ Cts.

2.2.2 Objective function

We consider a holistic objective accounting for the expected value of the total cost through-

out the time horizon T , and across the set of all scenarios and contingencies. This objective

is made up of the expected base case and post-contingency generation costs, ramping “wear

and tear” costs, load-following ramp reserve and contingency reserve costs, as well as the
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generator start-up, shutdown and fixed costs. This objective function can be cast with re-

spect to the following three expressions:

∑
t∈T

γt
∑
g∈Gt

σ
(1)
tg (xtg, r

+
tg, r

−
tg, w

+
tg, w

−
tg) (2.1a)

∑
t∈T

∑
s∈St

∑
c∈Cts

ψtsc
∑
g∈Gtsc

σ
(2)
tg (ptgsc, p

contract
tg ) (2.1b)

∑
t∈T

γt
∑

s1∈St−1

∑
s2∈St

φts1s2
∑

g∈Gts20

σ(3)
g (ptgs20, p(t−1)gs10) (2.1c)

In the first line of the objective (2.1a), the cost function σ(1)
tg is defined as

σ
(1)
tg (xtg, r

+
tg, r

−
tg, w

+
tg, w

−
tg) , ζtg xtg (2.2a)

+ ζ↑tg (1− x(t−1)g)xtg (2.2b)

+ ζ↓tg x(t−1)g(1− xtg) (2.2c)

+ (η+
tg r

+
tg + η−tg r

−
tg) (2.2d)

+ (µ+
tg w

+
tg + µ−tg w

−
tg) (2.2e)

with the expressions (2.2a), (2.2b) and (2.2c) corresponding to generator fixed, startup and

shutdown costs, respectively; while (2.2d) and (2.2e) account for the cost of contingency

and load-following ramping reserves, respectively. The start-up and shutdown costs ζ↑tg

and ζ↓tg incur with every time slot at which the unit changes status. The fixed production

cost ζtg is enforced if the unit is active. The coefficients η+
tg and η−tg are the costs incurred

when reserves are purchased from a generating unit in the event of a contingency. The

coefficients µ+
tg and µ−tg are the costs incurred due to variations of active power between

two consecutive time slots in which the unit g is committed. These costs are weighted
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by γt, which is the probability of transitioning to period t without branching off from the

central base case path to a contingency.

In the second line (2.1b), the function σ(2)
tg (·, ·) is defined as

σ
(2)
tg (ptgsc, p

contract
tg ) , αsqr

tg p2
tgsc + αlin

tg ptgsc + (2.3a)

β+
tg+β−tg

2
|ptgsc−pcontract

tg |+
β+
tg−β−tg

2
(ptgsc − pcontract

tg ) (2.3b)

including the quadratic expression (2.3a) with nonnegative quadratic and linear coefficients

αsqr
tg and αlin

tg , and the term (2.3b) for assigning costs to deviations from contract values

with nonnegative coefficients β+
tg and β−tg. These costs are weighted by the probability of

contingency ψtsc.

Finally, we have the third term (2.1c) representing a quadratic load-following ramp

“wear and tear” cost

σ(3)
g (ptgs20, p(t−1)gs10) , κg×(ptgs20 − p(t−1)gs10)2 (2.4)

weighted by γt, the nonnegative coefficients κg, and φts1s2 which is the probability of tran-

sitioning to scenario s2 in period t provided that scenario s1 was realized in period t− 1.

2.2.3 Constraints

We apply the following constraints which can be separated into five main categories:

2.2.3.1 Integrality constraints

For every t ∈ T and g ∈ Gt, the binary requirements are:

xtg ∈ {0, 1} (2.5)
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These constraints are the main sources of complexity in SCUC. We will relax the integrality

constraints (2.5) and implicitly impose them via proxy conic and linear inequalities.

2.2.3.2 Unit capacity constraints

For every t ∈ T and g ∈ Gt, the unit capacity constraints consist of:

¯
pg xtg ≤ ptgsc ≤ p̄g xtg ∀s ∈ St, ∀c ∈ Cts (2.6)

Constraint (2.6) ensures that when unit g ∈ Gt is committed during the interval t, then its

active power injections lies within the pre-specified limits
¯
ptgsc and p̄tgsc.

2.2.3.3 Minimum up/down time constraints

For every t ∈ T and g ∈ Gt, the Minimum up/down time constraints are:

xtg ≥ xτg − x(τ−1)g ∀τ ∈ {t−m↑g + 1, . . . , t} (2.7a)

1− xtg ≥ x(τ−1)g − xτg ∀τ ∈ {t−m↓g + 1, . . . , t} (2.7b)

wherem↑g andm↓g denote the minimum up and down time limits of generator t, respectively.
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2.2.3.4 Ramp constraints

For every t ∈ T and g ∈ Gt, the generator ramp constraints consist of:

0 ≤ w+
tg ≤ w̄tg, (2.8a)

0 ≤ w−tg ≤ ¯
wtg, (2.8b)

ptgs20 − p(t−1)gs10 ≤ w+
(t−1)g, ∀s1 ∈ St−1, ∀s2 ∈ St (2.8c)

p(t−1)gs10 − ptgs20 ≤ w−(t−1)g, ∀s1 ∈ St−1, ∀s2 ∈ St (2.8d)

Constraints (2.8a) – (2.8b) impose the limits w̄tg and
¯
wtg on the upward and downward

load-following reserve quantities of generator t, respectively. Constraints (2.8c) – (2.8d)

limit changes in active power injection between two consecutive time slots during which

the unit t is committed.

2.2.3.5 Post-contingency reserve constraints

For every t ∈ T and g ∈ Gt, the post-contingency reserve constraints are:

0 ≤ r+
tg ≤ r̄tg, (2.9a)

0 ≤ r−tg ≤ ¯
rtg, (2.9b)

ptgsc − pcontract
tg ≤ r+

tg, ∀s ∈ St, ∀c ∈ Cts (2.9c)

pcontract
tg − ptgsc ≤ r−tg, ∀s ∈ St, ∀c ∈ Cts (2.9d)

−
¯
∆g ≤ ptgsc − ptgs0 ≤ ∆̄g, ∀s ∈ St, ∀c ∈ Cts (2.9e)

Constraints (2.9a) – (2.9b) impose the upward/downward reserve capacity limits r̄tg and

¯
rtg on post-contingency dispatch quantities, respectively. Deviations from active power

contract quantities are limited by constraints (2.9c) – (2.9d). Additionally, the constraint
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(2.9e) enforces the physical ramp limits
¯
∆g and ∆̄g on downward and upward transitions

from base to post-contigency cases.

2.2.3.6 DC network constraints

The DC modeling is employed to describe the flow of power throughout the network. To

this end, let B denote the the imaginary part of the network bus admittance matrix and

for each t ∈ T and c ∈ ∪s∈StCts, let ~Btc ∈ R|Etc|×|V| and Btc ∈ R|V|×|V| represent the

corresponding susceptance matrices. Additionally, define Ctsc ∈ {0, 1}|Gtsc|×|V| as the

incidence matrix whose (j, k) element is equal to 1, if and only if the unit g belongs to the

bus k. For every t ∈ T , the DC network constraints can be cast as

dtc +Btc θtsc = C>tsc ptsc, ∀s ∈ St, ∀c ∈ Cts (2.10a)

|~Btc θtsc + f shift
tc | ≤ fmax

tc ∀s ∈ St, ∀c ∈ Cts (2.10b)

where

ptsc , [pt1sc, pt2sc, . . . , pt|Gtsc|sc]
> (2.11)

Constraint (2.10a) imposes power balance equation in which dtc ∈ R|V| represents nodal

demand and the vector Btcθtsc ∈ R|V| contains approximate values for active power ex-

changes between each vertex and the rest of the network. Additionally, constraint (2.10b)

restricts the flow of power by the vector of line thermal limits fmax
tc ∈ R|Etc|, where f shift

tc

accounts for the effect of transformers and phase shifters.
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Given the above three-part expression in (2.1) and constraints in (2.5) – (2.10), the

Stochastic SCUC problem can be formulated as the optimization:

minimize (2.1a)+(2.1b)+(2.1c) (2.12a)

subject to (2.5) – (2.9) ∀t ∈ T , ∀g ∈ Gt (2.12b)

(2.10) ∀t ∈ T (2.12c)

with respect to variables {xtg}, {ptgsc}, {pcontract
tg }, {r+

tg}, {r−tg}, {w+
tg}, and {w−tg}.

2.3 CONVEXIFICATION OF SCUC PROBLEM

In this section, we construct convex relaxations in order to efficiently tackle the SCUC

problem (2.12). We employ conic relaxations combined with a set of valid inequalities

which lead to a computationally-tractable convex formulation. To this end, we transition to

a lifted space by introducing additional auxiliary variables each accounting for a quadratic

monomial. We then formulate a SOCP relaxation based on the “perspective relaxation”

in [39]. Finally, a strong SDP relaxation is formulated using additional variables and valid

inequalities.

2.3.1 Lifted objective

To formulate convex relaxations we first lift the objective function (2.1) into a higher-

dimensional space in which it is piecewise linear. This is done by introducing the variables

{utg}t∈T , g∈Gt , {htgs1s2}t∈T , g∈Gt, s1∈St−1, s2∈St , {otgsc}t∈T , g∈Gt, s∈St, c∈Cts
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representing the products

{x(t−1)g xtg}, {p(t−1)gs10 × ptgs20}, {p2
tgsc} (2.13)

respectively. Consider the following lifted objective function components:

∑
t∈T

γt
∑
g∈Gt

σ̄
(1)
tg (xtg, utg, r

+
tg, r

−
tg, w

+
tg, w

−
tg) (2.14a)

∑
t∈T

∑
s∈St

∑
c∈Cts

ψtsc
∑
g∈Gtsc

σ̄
(2)
tg (ptgsc, otgsc, p

contract
tg ) (2.14b)

∑
t∈T

γt
∑

s1∈St−1

∑
s2∈St

φts1s2
∑

g∈Gts20

σ̄(3)
g (otgs20, o(t−1)gs10, htgs2s1) (2.14c)

where for each t ∈ T and g ∈ Gt

σ̄
(1)
tg (xtg, utg, r

+
tg, r

−
tg, w

+
tg, w

−
tg) , ζtg xtg (2.15a)

+ ζ↑tg (xtg − utg) (2.15b)

+ ζ↓tg (x(t−1)g − utg) (2.15c)

+ (η+
tg r

+
tg + η−tg r

−
tg) (2.15d)

+ (µ+
tg w

+
tg + µ−tg w

−
tg) (2.15e)

encapsulates the lifted startup and shutdown costs and

σ̄
(2)
tg (ptgsc, otgsc, p

contract
tg ) , αsqr

tg otgsc + αlin
tg ptgsc + (2.16a)

β+
tg+β−tg

2
|ptgsc−pcontract

tg |+
β+
tg−β−tg

2
(ptgsc−pcontract

tg ). (2.16b)
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represents the lifted quadratic cost function. Additionally, for each g ∈ G,

σ̄(3)
g (otgs20, o(t−1)gs10, htgs1s2) , κg×(otgs20 + o(t−1)gs10 − 2htgs1s2) (2.17)

is the lifted “wear and tear” cost.

2.3.2 LP and perspective relaxations

For every t ∈ T and g ∈ Gt, the relation between the auxiliary variables {utg} and

their corresponding monomials can be enforced using the following valid inequalities:

max{0, x(t−1)g+xtg−1} ≤ utg ≤ min{x(t−1)g, xtg} (2.18)

The role of (2.18) is to ensure that the lifted costs (2.14a) is equivalent to the original costs

(2.1a). Through simple enumeration of the set (xg(t−1), xgt) ∈ {0, 1}2, it can be observed

that

(2.5) ∧ (2.18) ⇒ utg = xtgx(t−1)g

for every t ∈ T and g ∈ Gt.

Lifting the first part of the objective and the transformation of xgt ∈ {0, 1} to 0 ≤

xtg ≤ 1, results in the following LP relaxation of SCUC [40–42]:

minimize (2.14a)+(2.1b)+(2.1c) (2.19a)

subject to 0 ≤ xtg ≤ 1 ∀t ∈ T , ∀g ∈ Gt (2.19b)

(2.6) – (2.9), (2.18) ∀t ∈ T , ∀g ∈ Gt (2.19c)

(2.10) ∀t ∈ T (2.19d)
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As shown in [39], the performance of this approach can be significantly improved by lifting

(2.1b) to (2.14b), and relaxing otgsc = p2
tgsc to the SOCP and McCormick constraint

otgsc xtg ≥ p2
tgsc, otgsc ≥ 0 ∀s ∈ St, ∀c∈Cts (2.20a)

otgsc +
¯
pg p̄g xtg ≤ (

¯
pg + p̄g)ptgsc ∀s ∈ St, ∀c∈Cts (2.20b)

which results in the following perspective relaxation:

minimize (2.14a)+(2.14b)+(2.1c) (2.21a)

subject to 0 ≤ xtg ≤ 1 ∀t ∈ T , ∀g ∈ Gt (2.21b)

(2.6) – (2.9), (2.18), (2.20) ∀t ∈ T , ∀g ∈ Gt (2.21c)

(2.10) ∀t ∈ T (2.21d)

In the remainder of this section, we will construct an SDP relaxation as an alternative to

(2.21).

2.3.3 SDP relaxation

To forge a stronger relaxation, consider the new variables

{ztgs}t∈T , g∈Gt, s∈St , {ytgs}t∈T , g∈Gt, s∈St
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
x(t−1)g ∗ ∗ ∗ ∗
utg xtg ∗ ∗ ∗
utg utg utg ∗ ∗
p(t−1)gs10 ztgs1 ztgs1 o(t−1)gs10 ∗
ytgs1 ptgs20 ytgs1 htgs1s2 otgs20

� 0 ∀s1 ∈ St−1, ∀s2 ∈ St

(2.22a)

¯
pg (ptgs10 + ptgs20) ≤ htgs1s2 +

¯
p2
g utg ∀s1 ∈ St−1, ∀s2 ∈ St

(2.22b)

p̄g (ptgs10 + ptgs20) ≤ htgs1s2 + p̄2
g utg ∀s1 ∈ St−1, ∀s2 ∈ St

(2.22c)

htgs1s2 +
¯
pgp̄g utg ≤ p̄g ytgs1 +

¯
pg ztgs1 ∀s1 ∈ St−1, ∀s2 ∈ St

(2.22d)

htgs1s2 +
¯
pgp̄g utg ≤

¯
pg ytgs1 + p̄g ztgs1 ∀s1 ∈ St−1, ∀s2 ∈ St

(2.22e)

¯
pg utg ≤ ytgs1 ≤ p̄g utg ∀s ∈ St (2.22f)

¯
pg utg ≤ ztgs1 ≤ p̄g utg ∀s ∈ St (2.22g)

p̄g (utg − xtg) ≤ ytgs1 − ptgs0 ≤
¯
pg (utg − xtg) ∀s ∈ St (2.22h)

p̄g (utg − x(t−1)g) ≤ ztgs1 − p(t−1)gs0 ≤
¯
pg (utg − x(t−1)g) ∀s ∈ St (2.22i)

representing monomials {p(t−1)gs0xtg} and {ptgs0x(t−1)g}, respectively. In place of (2.19b),

we impose a collection of conic and linear inequalities (2.22), resulting in the following

SDP relaxation of SCUC:

minimize (2.14a)+(2.14b)+(2.14c) (2.23a)

subject to (2.22) ∀t ∈ T , ∀g ∈ Gt (2.23b)

(2.6) – (2.9), (2.18), (2.20) ∀t ∈ T , ∀g ∈ Gt (2.23c)

(2.10) ∀t ∈ T (2.23d)

22



The matrix inequality (2.22a) is a surrogate for:



x(t−1)g ∗ ∗ ∗ ∗

utg xtg ∗ ∗ ∗

utg utg utg ∗ ∗

p(t−1)gs10 ztgs1 ztgs1 o(t−1)gs10 ∗

ytgs1 ptgs20 ytgs1 htgs1s2 otgs20


=



x(t−1)g

xtg

utg

p(t−1)gs10

ptgs10


[
x(t−1)g xtg utg p(t−1)gs10 ptgs10

]

(2.24)

If equality holds at optimality, then the above relations are satisfied and the relaxation

is regarded as exact. To further strengthen the proposed relaxation, we incorporate the

Reformulation-Linearization Technique (RLT) technique [43]. Linear inequalities (2.22b)

– (2.22e) are derived from (2.6). Lastly, inequalities (2.22g) – (2.22i) are immediate con-

sequences of (2.5) and (2.6).

The variables that appear in (2.22) are tightly correlated and this is the primary mo-

tivation behind the proposed valid inequalities. In Section (2.5), we will demonstrate the

effect of these additional inequalities on the quality of relaxation and their ability to obtain

feasible points.

2.4 FEASIBLE POINT RECOVERY

Let {xrlx
tg }t∈T, g∈Gt denote the resulting schedule from a convex relaxation of SCUC. For

large-scale problems, convex relaxations can fail to satisfy the integrality constraint (2.5).

In this section, we propose a heuristic to infer a feasible point {x̂tg ∈ {0, 1}}t∈T, g∈Gt .

To this end, the main challenge is to ensure that the minimum up and minimum down

constraints (2.7a) and (2.7b) are satisfied, which is not possible by simply rounding xrlx
tg

values. To tackle this issue we adopt the following procedure.
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Feasible Point Recovery:

1) For every t ∈ T and g ∈ Gt do xrnd
tg ←round{0.4 + xrlx

tg }.

2) For every g ∈ ∪t∈T Gt,

(a) Solve the following linear program

minimize
∑
t∈T
|xtg − xrnd

tg | (2.25a)

subject to xtg = 0 if g /∈ Gt (2.25b)

0 ≤ xtg ≤ 1 if g ∈ Gt (2.25c)

xtg ≥ xτg−x(τ−1)g ∀t∈T , ∀τ ∈{t−m↑g+1, . . . , t} (2.25d)

1− xtg ≥ x(τ−1)g−xτg ∀t∈T , ∀τ ∈{t−m↓g+1, . . . , t} (2.25e)

and denote the resulting solution as {x̂tg}t∈T .

(b) For t = 1, . . . , |T | do

a↑tg ← max{x̂τg−x̂(τ−1)g | ∀τ ∈{t−m↑g+1, . . . , t}}, (2.26a)

a↓tg ← max{x̂(τ−1)g−x̂τg | ∀τ ∈{t−m↓g+1, . . . , t}}, (2.26b)

if a↑tg = 0 ∧ a↓tg = 0 then x̂tg ← xrnd
tg , (2.26c)

if a↑tg = 0 ∧ a↓tg = 1 then x̂tg ← 0, (2.26d)

if a↑tg = 1 ∧ a↓tg = 0 then x̂tg ← 1, (2.26e)

if a↑tg = 1 ∧ a↓tg = 1 then declare failure. (2.26f)
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3) Declare {x̂tg}t∈T, g∈Gt as the recovered schedule and solve the convex optimization

minimize (2.1a)+(2.1b)+(2.1c) (2.27a)

subject to xtg = x̂tg ∀t ∈ T , ∀g ∈ Gt (2.27b)

(2.6) – (2.9) ∀t ∈ T , ∀g ∈ Gt (2.27c)

(2.10) ∀t ∈ T (2.27d)

to obtain a feasible point:

{x̂tg, p̂contract
tg , r̂+

tg, r̂
−
tg, ŵ

+
tg , ŵ

−
tg ∈ R}t∈T , g∈Gt

{p̂tgsc}t∈T , g∈Gt, s∈St, c∈Cts ,
{
θ̂tsc ∈ R|V|

}
t∈T , s∈St, c∈Cts

.

In case of infeasibility, declare failure.

As we will demonstrate in Section (2.5), this heuristic is able to obtain good qual-

ity feasible points for challenging instances of SCUC. We use the following measure to

evaluate the quality of the resulting feasible points:

Optimality Gap % = 100× σ̂ − σrlx

σ̂
(2.28)

where σrlx and σ̂ are the optimal objective values for convex relaxation and the recovery

problem (2.27), respectively.

2.5 EXPERIMENTS

In this section, we demonstrate the performance of the proposed convex relaxation on a

wide range of challenging SCUC problems. Simulations are performed on a 64-bit com-

puter with an Intel 3.0 GHz, 12-core CPU and 256 GB RAM using MATLAB 2019a. The
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solver MOSEK v8.0.0.60 [44] is used for convex optimization through CVX v2.1 [45, 46].

SCUC problems are formulated using the MATPOWER Optimal Scheduling Tool (MOST)

v1.0.2 [47]. For comparison, CPLEX v12.9.0.0 [48] and GUROBI v9.0 are used for

mixed-integer programming through MOST. We would like to emphasis that CPLEX and

GUROBI may exhibit far better performance on the same problem, if applied differently.

System operators and utility companies may leverage stronger MILP formulations and valid

inequalities in order to strengthen the performance of SCUC.

2.5.1 Data

Transmission Network Data: We use IEEE and Pan European Grid Advanced Simulation

and State Estimation (PEGASE) benchmark grids from MATPOWER [47]. Certain modi-

fications are made to the following parts of the data in order to make the resulting SCUC

problems feasible and sufficiently challenging:

• fmax
tc : Line thermal limits specified in MATPOWER data files were used without mod-

ifications. Source data on line flow limits are specified in the documentation of MAT-

POWER data files [47].

• dtc: With no loss of generality, we assume that all loads are deterministic and we

do not consider the contingency of loads. In all of the simulations, load variations

throughout the day, follow the vector:

πgen, νgen×[ 0.684, 0.645, 0.620, 0.604, 0.606, 0.627

0.677, 0.694, 0.730, 0.808, 0.893, 0.922

0.946, 0.952, 0.972, 0.999, 1.000, 0.964

0.961, 0.927, 0.927, 0.909, 0.765, 0.764 ]
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where νgen = 0.9 for case New England 39-bus system and νgen = 0.5 for all of the

other benchmark cases. In other words, for every t ∈ T and c ∈ ∪s∈StCts we have

dtc = πgen
t d, where d is the vector of nodal demand from MATPOWER.

In addition to the above modifications, we have added wind generators to certain buses and

altered generator costs due to the absence of fixed, quadratic, reserve and load-following

costs in MATPOWER data. These changes are detailed next.

Deterministic Generator Cost Data:

• αsqr
tg , αlin

tg , ζtg, ζ
↑
tg, ζ

↓
tg: These cost coefficients are randomly chosen based on uniform

distributions within ±20% of mean values $0.0025/(MW.h)2, $20/(MW.h), $500/h,

$5000/h, and $500/h, respectively following [49, 50] .

• η+
tg, η

−
tg, µ

+
tg, µ

−
tg: Reserve cost coefficients are selected as η+

tg = η−tg = 5.0αlin
tg and

µ+
tg = µ−tg = 0.2αlin

tg .

• β+
tg, β

−
tg: Active power re-dispatch cost coefficients are selected as β+

tg = β−tg =

0.2αlin
tg .

• κg: Ramp “wear and tear” cost coefficients are selected as κg = 500αsqr
tg .

Deterministic Generator Limits:

•
¯
pg: Minimum active power is selected as

¯
pg = 0.

• m↑g, m
↓
g: A quarter of the generators are randomly selected with m↑g = m↓g = 1 to

act as fast-start units that have the capacity to ramp-up quickly in order to support

generation shortfalls. For the remaining generators

m↑g = min
{
m̃↑g + 1, b|T |/2c

}
m↓g = min

{
m̃↓g + 1, b|T |/2c

}
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where each m̃↑g and m̃↓g has Poisson distribution with parameter 4.

• The initial state of each generator is uniformly chosen from the set of integers {k ∈

Z | − 5 ≤ k ≤ 5} \ {0} with negative and positive numbers, respectively, indicating

the number of uptime and downtime periods at t = 0.

• w̄tg,
¯
wtg, r̄tg,

¯
rtg, ∆̄g,

¯
∆g: Following [38], ramp limits are selected as w̄tg =

¯
wtg =

0.3p̄ and r̄tg =
¯
rtg = ∆̄g =

¯
∆g = 0.1p̄.

Wind Generator Data: Data on wind generators and hourly wind profile are obtained from

the SW Minnesota wind power plant [51]. Let |G| indicate the total number of deterministic

generators. We consider round{|G|/3}wind generators, each located at a randomly chosen

bus. We consider 5 wind scenarios representing 100%, 80%, 60% 40%, and %20 wind

generation, with initial probabilities

Φ1 =

[
0.11 0.48 0.17 0.17 0.07

]>
(2.29)

respectively. Additionally, for every t ∈ T \ {1} the transition probability matrix is set to

Φt =



0.7858 0.2001 0.0109 0.0032 0

0.1022 0.6215 0.2381 0.0371 0.0012

0.0154 0.3184 0.5042 0.1439 0.0181

0.0022 0.0356 0.2488 0.5435 0.1698

0 0.0004 0.0073 0.0543 0.9379


(2.30)

The scenario transition probabilities φts1s2 are obtained from the SW Minnesota wind

power plant [51]. The coefficients of (2.29) – (2.30) is used to weight ramp “wear and

tear” cost in (2.1c).
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• αlin
tg , ζtg, ζ

↑
tg, ζ

↓
tg: Wind energy cost coefficients are selected as αlin

tg = $20/(MW.h),

ζtg = $20/h, and ζ↑tg = ζ↓tg = $0/h.

• Wind generator output is given by the product of the maximum wind generator output

from MATPOWER [52] and the ratios

πwind , [ 0.72, 0.61, 0.35, 0.28, 0.15, 0.39

0.25, 0.35, 0.29, 0.57, 0.49, 0.37

0.52, 0.34, 0.42, 0.41, 0.63, 0.42

0.29, 0.53, 0.79, 0.83, 0.81, 0.87 ]

Contingencies: We consider N-1 contingency analysis in this study. 3 generators and 3

lines are randomly selected each representing a contingency with probability 1/60.

• ψtsc: Base scenario conditional probabilities are selected as ψts0 = 0.1/|C| for every

s ∈ S. Additionally, for every c ∈ C post-contingency probabilities are given by:



ψt1c

ψt2c
...

ψt|S|c


=

1

|C|
× Φt



ψ(t−1)10

ψ(t−1)20

...

ψ(t−1)|S|0


(2.31)

• γt: Lastly, the probability of making it to period t without branching off the central

path in a contingency is given by:

γt =
∑
s∈St

ψ(t−1)s0 =
∑

s∈St, c∈Cts

ψtsc ≤ 1, for t ≥ 1 (2.32)
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2.5.2 Evaluation of Lower Bound

In order to evaluate the performance of our proposed SDP relaxation, we consider 5 bench-

mark grids based on IEEE and PEGASE modified data. Each benchmark grid is simulated

in 4 realizations producing 20 test cases. The planning horizon is divided into 24 hourly

intervals, 6 stochastic wind scenarios and 6 independent contingencies. The largest grid

considered is PEGASE 2869 benchmark grid with 2,869 buses (vertices) and 510 generat-

ing units. For the largest benchmark, the model has 12,240 binary decision variables and

1,830,560 continuous variables. Table 2.1 presents details on the benchmark grids.

Table 2.2 reports performance of SDP relaxation compared to CPLEX and GUROBI

numerical solvers and also perspective and LP relaxation methods. Performance is com-

pared in terms of: i) convex lower bound (LB) on the optimal cost, ii) cost of the recovered

feasible solution, iii) optimality gap and iv) computation time t(s). In all experiments per-

formed using SDP relaxation, we successfully infer a feasible point using heuristics pre-

sented in Section (2.4). The reported gaps in Table 2.2 show that SDP relaxation achieves

average of 0.05% and does not exceed 0.36% optimality gap for all the test cases. This is

better than average gap reported by both perspective and LP relaxations. Computation time

reported by SDP relaxation averages at 35 mins. 35 sec.

2.5.3 Solution Quality

Figures 2.1a and 2.2a emphasize disparities in the number of inexact binaries gener-

ated by SDP, perspective and LP methods of relaxation for large test cases such as PEGASE

1354 and PEGASE 2869. As shown in Figures 2.1a and 2.2a, SDP relaxation generates

fewer inexact binaries between ‘0’ and ‘1’ as compared to perspective and LP relaxations.

Figures 2.1b, 2.1c, 2.2b and 2.2c shows that perspective and LP relaxations report higher

number of inexact binaries. Poor solution quality negatively impacts ability of the proposed

heuristic to infer a feasible point resulting in failed recoveries. Table 2.2 shows failed re-
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Table 2.1: Experiments for 24-hour horizon scheduling of benchmark systems

Experiment Test Cases # of # of # of
Generators Binaries Continuous variables

1 New England 39-bus 10 240 67,750
2 New England 39-bus 10 240 67,750
3 New England 39-bus 10 240 67,750
4 New England 39-bus 10 240 67,750
5 IEEE 118 54 1,296 191,664
6 IEEE 118 54 1,296 191,664
7 IEEE 118 54 1,296 191,664
8 IEEE 118 54 1,296 191,664
9 IEEE 300 69 1,656 247,664
10 IEEE 300 69 1,656 247,664
11 IEEE 300 69 1,656 247,664
12 IEEE 300 69 1,656 247,664
13 PEGASE 1354 260 6,240 928,925
14 PEGASE 1354 260 6,240 928,925
15 PEGASE 1354 260 6,240 928,925
16 PEGASE 1354 260 6,240 928,925
17 PEGASE 2869 510 12,240 1,830,560
18 PEGASE 2869 510 12,240 1,830,560
19 PEGASE 2869 510 12,240 1,830,560
20 PEGASE 2869 510 12,240 1,830,560

coveries in experiments 15, 17 and 19 using perspective relaxation and experiments 14,

15 and 19 using LP relaxation due to poor solution quality. As seen from the table, all

experiments using SDP relaxation produced feasible solutions because of fewer inexact

binaries.
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Figure 2.1: Distribution of Binary variables for PEGASE 1354 (Experiment 14) in 24-hour
horizon scheduling
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Table 2.2: The performance of SDP relaxation algorithm for 24-hour horizon scheduling
of benchmark systems (4 realizations in each benchmark system)

Exp. Test Case
CPLEX GUROBI SDP Relaxation Perspective Relaxation LP Relaxation

Feasible GAP (%) t(s) Feasible GAP (%) t(s) LB Feasible GAP (%) Determined t(s) LB Feasible GAP (%) Determined t(s) LB Feasible GAP (%) Determined t(s)
Binaries (%) Binaries (%) Binaries (%)

1 NE 39 bus -2.621e+6 0.00 94.26 -2.621e+6 0.00 442.81 -2.621e+6 -2.621e+6 0.002 100 42.7 -2.623e+6 -2.620e+6 0.076 92.92 7.55 -2.627e+6 -2.620e+6 0.153 92.92 7.05
2 NE 39 bus -1.337e+6 0.00 119.59 -1.337e+6 0.00 473.75 -1.337e+6 -1.337e+6 0.008 99.58 39.78 -1.339e+6 -1.337e+6 0.147 96.67 7.05 -1.340e+6 -1.337e+6 0.055 96.67 6.06
3 NE 39 bus -1.867e+6 0.15 81.94 -1.867e+6 0.00 247.77 -1.867e+6 -1.867e+6 0.020 98.75 30.7 -1.871e+6 -1.867e+6 0.174 85 7.53 -1.873e+6 -1.867e+6 0.123 85 6.88
4 NE 39 bus -2.149e+6 0.08 163.27 -2.149e+6 0.00 588.68 -2.150e+6 -2.149e+6 0.065 97.92 33.67 -2.152e+6 -2.149e+6 0.064 90.42 8.16 -2.159e+6 -2.149e+6 0.331 90.42 6.11
5 IEEE 118 – – 3,600† – – 3,600† -5.592e+5 -5.592e+5 6.496e-4 100 721.7 -5.592e+5 -5.592e+5 3.493e-5 100 40.8 -5.621e+5 -5.592e+5 0.518 100 38.34
6 IEEE 118 – – 3,600† – – 3,600† -8.022e+5 -8.022e+5 4.642e-4 100 879.89 -8.022e+5 -8.022e+5 4.053e-6 100 46.56 -8.062e+5 -8.022e+5 0.491 100 40.19
7 IEEE 118 – – 3,600† – – 3,600† -9.297e+5 -9.297e+5 5.577e-5 100 789.39 -9.297e+5 -9.297e+5 3.270e-6 100 38.17 -9.304e+5 -9.297e+5 0.073 100 39.94
8 IEEE 118 – – 3,600† – – 3,600† -3.064e+5 -3.064e+5 2.006e-4 100 783.75 -3.064e+5 -3.064e+5 6.499e-4 100 46.38 -3.145e+5 -3.064e+5 2.646 100 41.69
9 IEEE 300 – – 3,600† – – 3,600† -9.214e+6 -9.208e+6 0.069 93.78 1,128.7 -9.215e+6 -9.207e+6 0.016 93.12 67.89 -9.229e+6 -9.207e+6 0.145 93.12 51.25

10 IEEE 300 – – 3,600† – – 3,600† -3.498e+6 -3.498e+6 2.903e-4 100 1,071.2 -3.501e+6 -3.497e+6 0.070 98.25 52.23 -3.516e+6 -3.497e+6 0.446 98.25 47.7
11 IEEE 300 – – 3,600† – – 3,600† -6.558e+6 -6.558e+6 1.012e-4 100 1,279.2 -6.560e+6 -6.555e+6 0.028 96.01 47.59 -6.574e+6 -6.555e+6 0.220 96.01 39.88
12 IEEE 300 – – 3,600† – – 3,600† -8.045e+6 -8.040e+6 0.057 95.59 1,291.5 -8.048e+6 -8.038e+6 0.032 93.06 56.06 -8.060e+6 -8.038e+6 0.158 93.06 50.77
13 PEGASE 1354 – – 3,600† – – 3,600† -3.463e+7 -3.459e+7 0.129 97.76 6,444.9 -3.470e+7 -9.231e+6 0.194 91.55 364.22 -3.488e+7 -9.886e+6 0.512 91.55 298.52
14 PEGASE 1354 – – 3,600† – – 3,600† -3.441e+7 -3.440e+7 0.003 99.63 9,278.9 -3.447e+7 -9.828e+6 0.184 94.38 400.83 -3.457e+7 – 0.303 94.38 301.88
15 PEGASE 1354 – – 3,600† – – 3,600† -2.827e+7 -2.826e+7 0.036 97.45 5,496.4 -2.834e+7 – 0.238 91.43 347.55 -2.851e+7 – 0.604 91.43 279.64
16 PEGASE 1354 – – 3,600† – – 3,600† -3.837e+7 -3.823e+7 0.354 96.39 6,203.6 -3.849e+7 -1.282e+7 0.323 90.79 368.33 -3.864e+7 -1.363e+7 0.374 90.79 321.2
17 PEGASE 2869 – – 3,600† – – 3,600† -4.753e+7 -4.751e+7 0.025 98.59 1,311.8 -4.760e+7 – 0.149 92.51 568.5 -4.787e+7 2.414e+6 0.565 92.51 425.47
18 PEGASE 2869 – – 3,600† – – 3,600† -5.420e+7 -5.415e+7 0.090 98.38 1,529.8 -5.429e+7 -1.310e+6 0.174 92.38 600.66 -5.450e+7 -1.861e+6 0.378 92.38 425.17
19 PEGASE 2869 – – 3,600† – – 3,600† -5.394e+7 -5.393e+7 0.031 98.44 1,600.5 -5.310e+7 – 0.102 94.14 534.64 -5.412e+7 – 0.235 94.14 433.41
20 PEGASE 2869 – – 3,600† – – 3,600† -5.402e+7 -5.400e+7 0.027 98.22 2,755.3 -5.410e+7 -3.900e+6 0.147 92.94 399.14 -5.420e+7 -4.629e+6 0.1861 92.94 436.77

Avg – – – – 0.046 2,135.7 0.106 200.49 0.426 164.90
Max – – – – 0.354 2,755.3 0.323 600.66 2.646 436.77

† Solvers are terminated within 3600 seconds.
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Figure 2.2: Distribution of Binary variables for PEGASE 2869 (Experiment 17) in 24-hour
horizon scheduling

2.5.4 Hourly Profile

Fig. 2.3 depicts the 24-hr profile of selected generators and transmission lines in

SCUC experiment 1 on New-England 39 bus benchmark system. The data and the resulting

commitment keys for this particular experiment are given by Tables 2.3 and 2.4. In the

figure, Gen. #5 and line #38 are shown in pre and post-contingency states, and Gen. #2

in post-contingency state. Post-contingency #1 represents outage of Gen. #3 while post-

contingency #6 represents loss of line #35. In Fig. 2.3, hourly profile is divided into 3

scenarios with probability assigned to transition from one scenario to the other. Notice that

during on-peak hours 12PM – 10PM, Gen. #2 drives up to maximum output power in order

to supply peak load in pre and post-contingency states. Likewise, Gen. #5 sees a significant
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Table 2.3: Generator data for New England 39-bus benchmark system (Experiment 1)

Unit Gen. #1 Gen. #2 Gen. #3 Gen. #4 Gen. #5 Gen. #6 Gen. #7 Gen. #8 Gen. #9 Gen. #10 Wnd. #1 Wnd. #2 Wnd. #3

αsqr
tg ($/MW2h) 0.0026 0.0022 0.0013 0.0018 0.0009 0.002 0.0018 0.0019 0.0038 0.0026 0 0 0
αlin
tg ($/MWh) 20.68 28.78 7.85 24.01 15.09 14.71 22.39 31.65 10.35 25.52 20 20 20
ζtg ($/h) 821.47 259.33 338.63 497.22 811.92 501.13 321.60 527.17 559.40 430.24 20 20 20
ζ↑tg ($/h) 1,118.1 6,622.1 5,054 4,050.1 1,519.5 3,868.6 2,874 2,628 7,510.2 4,147.5 0 0 0
ζ↓tg ($/h) 142.86 400.04 720 232.24 829.78 355.36 363.82 263.39 713.77 155.98 0 0 0
µ+tg , µ−tg ($/MWh) 4.13 5.75 1.56 4.80 3.01 2.94 4.47 6.32 2.07 5.10 4 4 4
η+tg , η−tg ($/MWh) 4.30 5.82 3.66 6.64 1.35 7.19 5.46 4.37 1.71 6.16 4 4 4
β+
tg , β−tg ($/MWh) 103.37 143.88 39.24 120.07 75.46 73.53 111.93 158.23 51.77 127.59 100 100 100
κg ($/MW2h) 1.29 1.10 0.66 0.89 0.47 1 0.91 0.93 1.88 1.31 0 0 0
Pmax (MW) 1040 646 725 652 508 687 580 564 865 1100 100 100 100
Pmin (MW) 0 0 0 0 0 0 0 0 0 0 0 0 0
m↑g (h) 7 5 10 7 1 7 10 7 1 1 1 1 1
m↓g (h) 3 10 4 7 1 4 5 10 1 1 1 1 1
Initial state (h) 5 -3 -4 3 3 -1 1 4 4 -1 1 1 1

Table 2.4: Binary commitment decisions for New England 39-bus benchmark system (Ex-
periment 1)

Cost: $604,856.05
Unit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Gen. #1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen. #2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen. #3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen. #4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen. #5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen. #6 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen. #7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen. #8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen. #9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen. #10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Wnd. #1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Wnd. #2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Wnd. #3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

upward climb in output power in post-contingency #1 in order to compensate for outage to

Gen. #3. This presents stress on the network which is discussed next and illustrated by 2.4.

As seen in Fig. 2.3, line #38 shows signs of congestion in post-contingency #6 due

to loss of line #35 during on-peak hours. Of significance, line flows in post-contingency

state is almost three times higher than line flows before contingency occurred. The impact

of high wind penetration on generator and line congestion is seen between 9PM – 1AM.

Between 9PM – 1AM, wind penetration is at its highest point coinciding with congested

generators and line flows. This results in the noticeable decline in line flows and power

generation seen between 9PM – 1AM in Fig. 2.3.
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Figure 2.3: New-England 39-bus (Experiment 1) 24-hr profile showing generator output
and line flows. First from top: Gen. 2 base case and post-contingency power output show-
ing transition probabilities across 3 scenarios. Second from top: Gen. 5 base case and
post-contingency power output across 3 scenarios. Third from top: Line 38 basecase and
post-contingency power flows across 3 scenarios.

2.5.5 Network Congestion

Fig. 2.4 shows the contrast in network congestion between pre and post-contingency states

of New England 39-bus benchmark grid. As seen in Fig. 2.4a, all 46 transmission lines

operate within thermal limits with some lines transmitting more power than others as indi-

cated by varying thickness of lines in the figure. Directional arrows are used to show the

flow of power throughout the grid network.
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(b) Post-contingency case @ 4PM, high wind penetra-
tion, line contingency @ line 22→ 21. As a result of
the contingnecy, line 23→ 24 is congested.

Figure 2.4: Directed graph of New England 39-bus Pre and Post-contingencies

In post-contingency state #6 depicted in Fig. 2.4b, we observe network congestion

during peak hours of the day. The loss of line #35 in this contingency results in congestion

on transmission line connecting bus 23 to 24 at severe levels attributed to increased flow

of power in order to supply peak load at bus 24. The contingency also results in reversal

of flow on line connecting bus 16 to 21 and line connecting bus 16 to 24. Power flow is

increased on neighboring lines in attempts to compensate for loss of line #35 as observed

in line from bus 22 to bus 23, as well as bus 32 to bus 10 to mention a few.

We observe that line contingencies make the SCUC problem more challenging since

power flow is redirected to compensate for the sudden loss of a line or a generator. Since

line flows must not exceed the maximum thermal limits, lines tend to become congested

and in some cases reach critical levels.

2.6 CONCLUSIONS

In this paper, we study the SCUC problem under uncertainty by adopting a stochastic for-

mulation proposed in [34]. The proposed method for tackling the computationally chal-
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lenging problem is tested extensively on IEEE and PEGASE benchmark systems to es-

tablish its relative performance against two widely used off-the-shelf solvers, CPLEX and

GUROBI and common-practice methods of relaxation, namely perspective and LP relax-

ations. It is shown that SDP relaxation consistently finds near-globally optimal solutions

in each benchmark system under uncertain wind scenarios and with an extensive list of

contingencies with up to 12,240 binary variables and 1,830,560 continuous variables.
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CHAPTER 3

PROACTIVE POSTURING OF LARGE POWER GRID FOR MITIGATING

HURRICANE IMPACTS
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Abstract — In the past decade, natural disasters such as hurricanes have challenged

the operation and control of U.S. power grid. It is crucial to develop proactive strategies

to assist grid operators for better emergency response and minimized electricity service

interruptions. In this paper, we propose a proactive posturing of power system elements,

and formulated a Security-Constrained Optimal Power Flow (SCOPF) informed by cross-

domain hurricane modeling and its potential impacts on grid elements. Simulation results

based on real-world power grid and historical hurricane event validated the applicability

of the proposed optimization formulation, and show potential to enable grid operators and

planners with interactive cross-domain data analytics for mitigating hurricane impacts.

Keywords — Power system emergency response, security constrained optimal power

flow, hurricane impact mitigation.
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3.1 INTRODUCTION

Severe weather is one of the major threats to power system security in the United States

today. The effects of climate change and worsening pollution levels have contributed to de-

structive weather events such as hurricanes, tornadoes, blizzards, and droughts [53]. There-

fore, it is crucial to develop a framework for establishing critical infrastructure resilience

goals [54], and using it as one important guideline for multi-domain, multi-agency coor-

dination, planning, and emergency response. For example, in 2017, Hurricane Irma and

Maria stroke Puerto Rico as Category 5 storm, and caused prolonged yet wide-spread dam-

age to Puerto Rico’s electrical infrastructure. Since then, research efforts have been made

to develop new algorithms and tools in support of optimized grid resilience improvements

and potential emergency mitigation strategies [55, 56].

Several research papers have explored different ways of including hurricane contin-

gencies into the optimal power flow (OPF) and unit commitment (UC) problems. Current

modeling approaches can be widely classified into two categories: proactive operation,

and corrective operation of the grid in response to contingency events. Studies [57–59]

explored corrective approaches to contingency modeling where [60–62] explored proac-

tive approaches. Proactive modeling strategies such as [62] has shown some promise in

mitigating the adverse impacts of contingencies on the grid.

Large-scale SCOPF problems are computationally intractable [63,64]. The complex-

ity is attributed to the presence of nonlinear alternating current (AC) network constraints,

enforcing large number of transmission constraints, considering multiple scenarios and

multiple contingencies in the formulation [65, 66]. In order to alleviate the computational

burden in N − k OPF problems, research papers [65, 67] proposed contingency screening

to reduce problem size.

Semi-definite programming (SDP) relaxation holds significant promise for applica-

tion to large-scale OPF and UC problems. In [68], the authors proved that a global opti-

40



mum solution to the OPF problem can be obtained when the duality gap is zero. However,

for some practical problems SDP relaxation may not be tight, therefore, fails to obtain

a global optimum solution. In order to address inexactness of SDP relaxation, penalty

terms are incorporated into the objective of convex relaxations to drive the solution to near-

globally optimal solution [66,69–71]. Furthermore, [72] proposed adding valid inequalities

to strengthen SDP relaxation when the relaxation is inexact.

Very few papers have attempted to consider the sequential temporal relationship be-

tween individual contingencies in the multi-period SCOPF problem. In this paper, we adopt

a proactive strategy of handling contingencies brought about by hurricane events with the

aim of improving the preparedness of the grid to withstand the disruptive events. The tem-

poral relations among individual steps (groups of time period) within one hurricane event

have been explored, in particular the present group of power system contingencies (includes

outaged generators and transmission line) will be considered as N-1 security constraints,

while the following group of power system contingencies is incorporated as explicit line

rating constraints; this cascaded forward-looking design embodies proactive posturing of

power system elements, but differentiates itself from simply stacking adjacent groups of

power system contingencies. To tackle this, We employ a low order conic relaxation which

has been demonstrated through multiple experiments in [73] to be exact for many large-

scale SCUC problem and suitable to be applied to SCOPF formulations.

The rest of this paper is organized as follows: section 3.2 introduces modeling hur-

ricane’s impact on the electric grid. Next, the SCOPF with contingencies is formulated in

3.2.2. Numerical simulations are provided in section 3.3 and conclusions are summarized

in section 3.4.
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3.1.1 Notations

Throughout this paper, matrices, vectors and scalars are represented by boldface up-

percase, boldface lowercase and italic lowercase letters, respectively. | · | represents the

absolute value of a scalar or the cardinality of a set. The symbol (·)> represents the trans-

pose operator. The notation real{·} represents the real part of a scalar or a matrix. Given a

matrixA, the notationA, the notationAjk refers to its (j, k)th element. A, he notationAjk

refers to its (j, k)th element. A � 0 means thatA is symmetric and positive semidefinite.

3.2 MODELING HURRICANE’S IMPACT ON GRID AND THE OPTIMIZATION

PROBLEM FORMULATION

As one of the major natural disasters that influence U.S. every year, the modeling and

prediction of hurricane based on climatology and meteorology are critical and fundamental

[74]. But to fully capture its impacts on power grid and further take advantage of such

cross-domain capabilities into power grid operation and planning, major barriers including

GIS data fusion and standardized cross-domain data curation pose significant challenges

for private industry [56], not even mention the following requirements on optimization and

computing techniques when developing system hardening strategies and impact mitigation

plan.

To overcome those challenges, we formulate a multi-period SCOPF problem, which

considers hurricane-influenced grid contingencies as well as the sequential temporal rela-

tionship between individual steps. As a result, the modeling and prediction of hurricane,

usually published 24 to 72 hours in advance, can be transformed into cross-domain intelli-

gence in a proactive manner, and further incorporated into power system domain analysis.

More details are given as follows.
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3.2.1 Hurricane Contingency Description

Hurricane can be modelled as a multi-step temporal process, each step includes the dam-

aged group of power system equipment and may be described as classical contingency for

power grid, such as line tripping, generation tripping, etc.. It should be noted that individual

power system equipment has its own fragility curve, which dictates the failure possibility of

that equipment under certain wind speed during hurricane or storm [55]. For example, one

performed simulation for Hurricane Maria included three steps, and each step includes one

PSS®E idv file to represent the sequence of elements damaged by hurricane. Therefore,

each idv file is considered as a form of dynamic contingency simulation with proper time

spacing between individual equipment failure, while it is also natural to be considered as

N − k contingency formulation in steady-sate analysis.

A preventive SCOPF problem can be formulated for each step, by taking advantage

of temporal relationship among the cascaded hurricane contingency groups and maximize

the benefits of the predictable hurricane trajectory and intensity in advance. More specifi-

cally, by proactively posturing the power system operating conditions to embrace the pos-

sible grid contingencies due to power system equipment failure from both temporal and

geographical perspectives, the proposed method aims to explore the optimal system op-

eration point considering the current group of contingencies as security constraints, while

also minimizing the potential impacts of the following batch of contingencies by penalizing

line flows on candidate lines accordingly. As a result, the cross-domain intelligence from

advanced hurricane modeling and prediction can be transformed into timely absorbable

information to guide proactive posturing of power grid.

3.2.2 Multi-period Proactive SCOPF Problem Formulation

Let T represent the set of discrete time slots, with index t. Additionally, let Gt

represent the set of all generating units that are available at time t ∈ T . Define Ct as the
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set of all predicted hurricane contingency cases with 0 ∈ Ct representing the base case

(normal grid operation). Lastly, Gtc ⊆ Gt is defined as the set of all generating units that

are available at time t ∈ T and contingency c ∈ Ct, such that

Gt = ∪c∈CtGtc.

Consider a power system with V as the set of buses, and Etc ⊆ V × V as the set

of branches at time t ∈ T and contingency c ∈ Ct. The proactive SCOPF problem is

formulated as:

min
∑
t∈T

(∑
c∈Ct

∑
g∈Gtc

αsqr
tg p2

tgc + αlin
tg ptgc + ζtg (3.1a)

+
∑
c∈0

∑
g∈Gtc

κg×(ptg0 − p(t−1)g0)2 (3.1b)

+
∑
g∈Gt

(
η+
tg r

+
tg + η−tg r

−
tg (3.1c)

+ µ+
tg w

+
tg + µ−tg w

−
tg

))
(3.1d)

s.t. dtc +Btc θtc = C>tc ptc, ∀t,∀c (3.1e)

where

ptc , [pt1c, pt2c, . . . , pt|Gtc|c]
>

|~Btc θtc + f shift
tc | ≤ fmax

tc , ∀t, ∀c (3.1f)

pmin
gc ≤ ptgc ≤ pmax

gc , ∀t,∀g,∀c (3.1g)

0 ≤ w+
tg ≤ wmax

tg , ∀t,∀g (3.1h)

0 ≤ w−tg ≤ wmin
tg , ∀t,∀g (3.1i)
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ptg0 − p(t−1)g0 ≤ w+
(t−1)g, ∀t, ∀g (3.1j)

p(t−1)g0 − ptg0 ≤ w−(t−1)g, ∀t, ∀g (3.1k)

0 ≤ r+
tg ≤ rmax

tg , ∀t, ∀g (3.1l)

0 ≤ r−tg ≤ rmin
tg , ∀t, ∀g (3.1m)

ptgc − ptg0 ≤ r+
tg, ∀t, ∀g,∀c 6= 0 (3.1n)

ptg0 − ptgc ≤ r+
tg, ∀t, ∀g,∀c 6= 0 (3.1o)

−∆min
g ≤ ptgc − ptg0 ≤ ∆max

g , ∀t, ∀g,∀c 6= 0 (3.1p)

Objective (3.1a) represents the operation cost with quadratic coefficient αsqr
tg , lin-

ear coefficient αlin
tg and fixed cost ζtg. (3.1b) represents the quadratic load-following ramp

“wear and tear” cost with coefficient κg. Furthermore, (3.1c) accounts for the cost of con-

tingency with coefficients η+
tg and η−tg. Expression (3.1d) represents cost of load-following

ramping reserves with coefficients µ+
tg and µ−tg. Constraint (3.1e) imposes the Direct Cur-

rent (DC) power balance constraints. Constraint (3.1f) restricts the flow of power by the

vector of line thermal limits fmax
tc ∈ R|Etc|, where f shift

tc accounts for the effect of trans-

formers and phase shifters. Constraint (3.1g) imposes upper and lower limits {pmin
gc , pmax

gc }

on each generator. Per-period ramp limits are imposed on the units with constraints (3.1h) –

(3.1k). Constraints (3.1l) – (3.1o) impose upward/downward limits {rmax
tg , rmin

tg } on post-

contingency dispatch quantities, respectively. Additionally, constraint (3.1p) enforces lim-

its on downward and upward transitions from base to post-contingency state.

3.2.3 Multi-Step Cascaded Optimization Problem considering Hurricane Progression

A hurricane can be divided into multiple steps considering its time progression. In this case,

the resulted power flow case from previous step of existing Dynamic Contingency Analysis
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Figure 3.1: An illustration of multi-step cascaded optimization considering hurricane pro-
gression.

Toolbox (DCAT) simulation can be utilized in next step, as a new operation basecase. Then

contingency list will be updated for individual step, as hurricane will continue to move

through the power grid spanning over large geographical areas.

It should be noted that with the predictive intelligence derived from hurricane mod-

eling, one potential idea would be for one hurricane step, not only using the contingencies

in the current step list, but also imposing further constraints on transmission line yet to-

be-impacted in next step, i.e., more conservative constraints of line flow ratings (100% to

70%); therefore, the resulted contingency-constrained SCOPF problem is further extended

with proactive posturing capability throughout the hurricane life cycle. Fig. 3.1 provides

an illustrative example with 6 steps representing one historical hurricane.

3.3 NUMERICAL RESULTS

To evaluate and validate our proposed methodology, a real-world power grid model is uti-

lized considering a single historical hurricane event. The power system model considered

is a 1263-Bus and 1269-Branch network [55]. Based on historical hurricane event data

in 2017, one realization of the hurricane was derived considering wind speed variations.
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Moreover, within this realization the hurricane process is divided into six consecutive steps;

each step is a set of power system contingencies, such as credible transmission line, bus

and generator outages along the hurricane trajectory shown in Table 3.1. Detailed examples

and illustrations can be found in Section 5, Simulation Results in [55].

Simulations are performed on a laptop with an Intel Core i5 2.3 GHz CPU and 8

GB RAM using MATLAB R2020b. The open-source solver SDPT3 is used to solve the

semidefinite program through CVX v2.1 [45]. The objective function for each contingency

batch is the sum of operation cost over time scale of 15 minutes as each contingency (Ctg)

batch from DCAT has the same time scale. For each step in the hurricane progression,

grid data obtained through DCAT is fed as a basecase to the optimization problem. The

output of the optimization is then analyzed. This multi-step cascaded optimization setup is

illustrated in Figure 3.1.

Table 3.1: Contingency Data and Operation Cost

Contingency # of # of # of Operation
Batches Buses Lost Branches Lost Generators Lost Cost ($)

Ctg Batch 1 0 0 0 99,638
Ctg Batch 2 0 1 0 114,248
Ctg Batch 3 90 114 2 –
Ctg Batch 4 268 318 4 1,537,810
Ctg Batch 5 376 447 5 –
Ctg Batch 6 401 481 5 –

3.3.1 Operation Cost

In the simulations, the optimizer found an optimal solution to the SDP relaxation after com-

putation time of 2 minutes 46 seconds. It was observed that the cost of operating the grid

during hurricane-triggered contingencies gradually increases as the hurricane progresses

through the grid network and causes loss to network elements. This result is shown in Ta-
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ble 3.1, operation cost gradually increases from a basecase cost of $99,638 to $1,537,810 in

Ctg Batch 4. This can be attributed to increased utilization of network elements as a result

of the loss of buses, branches and generators in the network making the electric grid more

and more expensive to operate. In Ctg Batch 3, 5, and 6 the model becomes infeasible due

to the grids inability to survive outage to several damaged elements.

3.3.2 Proactive Mitigation Measure

Hurricane impacts which lead to fatal damage to grid elements such as lines, buses, gen-

erators, transformer etc. can be mitigated by applying proactive measures to adjust their

operation during hurricane progression while still maintaining reliability to serve as many

customers as possible. To test proactive measures, We apply tighter line flow constraints

to Ctg Batch branches to power flow cases generated through DCAT’s time domain sim-

ulation. In the experiments, line flows on branches in the hurricane’s path are proactively

limited to operate at 70% of normal operation limits.

In Figure 3.2, we observe that line flows over branch #77 reduces by a maximum of

7% when we applying a proactive mitigation strategy of tightening branch flow constraints

without violating other constraints or the optimization model becoming infeasible.We can

further tighten the line flow limits below 70% until we reach infeasibility of the model for

the purpose of analysis; additional runs with progressively tighter branch flow constraints

indicated that the model becomes infeasible when line flow limits fall below 40% of normal

operation while still meeting the system load demand.

3.4 CONCLUSIONS

The paper aims to develop interactive cross-domain data analytics based on hurricane mod-

eling, power system optimization and model-based simulations. The temporal relations

among individual steps (groups of time period) within historical hurricane event have been

48



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time (minutes)

60

65

70

75

80

85

90

95

100

105

110

Fl
ow

s 
(M

V
A

)
Line Limit - Fmax

Line #77 before proactive measure applied
Line #77 after proactive measures applied

Figure 3.2: Line MVA flows on line # 77 before and after applying proactive mitigation to
penalize the flow on selected lines in the hurricane path

explored and transformed into explicit optimization constraints, and further incorporated

into SCOPF problem to identify proactive posturing of power system elements. Variations

of the operation cost among different hurricane steps (contingency batches) indicates the

applicability of such optimization formulation, and the improvement in targeted credible

line contingencies shows promising improvements by such proactive dispatch. Future work

includes scalability evaluation with large volume of DCAT simulation outputs based on

different base cases and synthesized hurricane events, and expanded validation considering

multiple resilience metrics [55].
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CHAPTER 4

MICROGRID SCHEDULING WITH UNCERTAINTY IN TRANSIENT LOAD
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Abstract — Microgrids (MGs) have the potential to increase grid reliability by al-

leviating burden on the main grid. However due to the lack of adequate reserve margins,

imbalances between demand and supply become problematic in island mode making the

MG prone to collapse. In this paper, we formulate the MG scheduling problem which con-

siders uncertainty introduced by transient load demand. A convex relaxation is formulated

which is capable of finding feasible solutions within a provable distance from global opti-

mality. We demonstrate the performance of this approach on a modified IEEE 14-bus and

compare to numerical solvers and other methods of relaxation. Through experiments, we

demonstrate that Energy Storage Units (ESUs) have the potential to enhance MG reliability

even in the presence of highly variable transient load demand. The analysis performed in

this paper can serve as a guide to MG operators to determine ESU size needed to achieve

a desired load profile in a scheduling problem under uncertainty. Additionally, we demon-

strate that the proposed convex relaxation is able to tackle the MG scheduling problem

under uncertainty without a need to occasionally adopt scenario reduction methods when

MIP solvers are utilized.

Keywords — Microgrid security, Energy Storage, Optimization methods.
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4.1 INTRODUCTION

Microgrids (MGs) have gained importance as a reliable way to alleviate the burden on

the main grid and provide the needed resiliency required in today’s power system. This

interest has led to investment and research into operations, control, planning and design of

the technology [75]. Even as the grid goes through radical changes, the MG technology

will need further improvement in order to make way for a resilient futuristic grid.

MGs are an important piece of the grid infrastructure because they enhance grid

resilience, help reduce grid disturbance and function as a grid resource for faster system

response and recovery [76]. In addition, they reduce carbon emissions thereby helping to

preserve the environment. Typical MG infrastructure consists of Distributed Generators

(DGs), Energy Storage Units (ESUs) and Renewable Energy Resources (RES) like photo-

voltaic, wind and in certain cases biomass generators. ESUs make MGs sustainable as they

coordinate with DGs to guarantee generation adequacy and also smoothen out load im-

balances . During grid interruption, ESUs can serve as a load balancing and translational

source while back-up generators are given time to kick in [77].

The MG scheduling problem is an essential piece to the autonomous operation and

control of the technology. This problem aims to determine the optimal schedule of DGs to

meet forecasted demand while satisfying technological and operational constraints of the

MG. The resulting commitment decisions are implemented by centralized, decentralized or

hierarchical controllers that also communicate with the main grid depending on the system

architecture [78–81].

One major issue with operating MGs autonomously is their lack of adequate reserve

margins and rotating inertia of synchronous generators that the main grid possess which en-

force demand-supply equilibrium and dampen out grid transients. While in grid-connected

mode, MGs rely on power exchanges with the main grid to mitigate steep load demand

variations. However, in island mode it is difficult to alleviate this mismatch because of the
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slow ramp response and inadequate reserve margins of DGs. These phenomena contributes

to voltage and frequency dips, increase the cost and reduce the fuel efficiency of DG power

supply due to operation of DGs at low capacity factors [82]. One way to handle this is to

ensure constant energy exchange with the macrogrid and demand side management strate-

gies such as load shedding as proposed in [83, 84] respectively, however the two options

are not always achievable or desirable in island mode.

A variety of methods have been proposed in literature to tackle the MG scheduling

problem, however only a few consider the effect of load demand uncertainty on MG se-

curity. For instance, authors in [85] formulated a two-stage stochastic mixed-integer MG

scheduling problem with RES being the only source of uncertainty. In [86], uncertain-

ties namely wind speed, day-ahead market price and MG load were considered in using a

two-stage stochastic formulation. Power generation schedules without uncertainties were

determined in the first stage, and feasible schedules due to uncertain variables determined

in the second stage. In [87] the authors made an attempt to consider both intermittency of

RES and demand in the problem formulation, using a probability-based index to describe

the uncertainties rather than scenario probability density functions which will be utilized in

this paper.

Operating the MG in island mode presents many challenges to reliability of gen-

eration to meet load demand. Islanding constraints were introduced for the purpose of

enhancing resiliency in MGs in [88, 89]. To enforce MG security, scheduling decisions

were revised using islanding cuts if sufficient generation is not available to guarantee a

feasible islanding in [88]. Load curtailment has been explored as an option to ensure ade-

quate generation to supply demand [84, 90] although this method is generally undesirable

for consumers.

MG scheduling problems easily becomes intractable to be solved by Mixed-Integer

Programming (MIP) solver when more scenarios are considered. To resolve this problem
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[91] suggest trimming down scenarios. Scenario reduction techniques were also applied

in [92] to trim the large number of wind and photovoltaic scenarios generated by Monte

Carlo sampling to be solved by CPLEX. The authors in [93] realized the need to consider

the uncertainties in both supply and demand, however the problem was formulated as a

trajectory tracking problem using Stochastic Model Predictive Controller (SMPC).

Uncertainty of RES in MG has been modeled using the method of chance-constrained

programming [83,89]. In [83] chance-constrained optimization was used to minimize oper-

ational cost of MG and to ensure energy exchange commitments between MG and macro-

grid were met. In [94] spinning reserves requirements were considered in order to com-

pensate for load variations during the island mode. However with this approach the total

generation cost becomes larger due to the additional reserve and besides doesn’t alleviate

the sharp dips and ramps of DGs.

The contributions of this paper are in three-fold: I. We present a stochastic MG

scheduling problem which considers load demand uncertainty in the form of transient load

and DG outage contingencies in the formulation. II. We propose a scalable method based

on convex relaxations to solve the stochastic MG scheduling formulation under uncertainty.

III. We present simulation results showing improvement to MG security. The scheduling

strategy is to utilize ESUs to improve load profile in island mode while minimizing opera-

tional costs of the MG.

A high number of uncertain scenarios and system contingencies increases prob-

lem size and hence makes the MIP formulation intractable to be solved by MIP solvers

[86, 91, 92], hence we leverage the power of SDP relaxation to alleviate the burden of

branch-and-bound search. While off-the-shelf SDP relaxation produces a lower bound on

the optimal objective, it is computationally prohibitive thus not scalable [35, 36]. Hence,

in this work, we are forging a low-complexity conic relaxation that is capable of solving

detailed MG scheduling. This effort is aligned with the recent body of research devoted
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to scalable variants of semidefinite programming [37]. In lieu of computationally demand-

ing constraints, we employ low-order SDP constraints to determine binary variables. So

as to strengthen the relaxation, valid inequalities are introduced from the multiplication

of constraints through the Reformulation-Linearization Technique (RLT). To address cases

for which the proposed relaxation is not exact, we propose a heuristic approach to infer

near-globally optimal points from the outcome of convex relaxation.

The remainder of this paper is organized as follows. In Section 4.2.2, we formulate

the MG scheduling problem under uncertainty. This non-convex problem is convexified by

means of convex surrogates in Section 4.3. Next, a scalable convex relaxation is proposed

in Section 4.3 to tackle MG scheduling in polynomial time. Section 4.4 proposes a heuris-

tic approach to infer near-globally optimal points from the outcome of convex relaxation.

Extensive experiments are presented in Section 4.5. Section 4.6 concludes the paper.

4.1.1 Notations

Throughout this paper, matrices, vectors and scalars are represented by boldface up-

percase, boldface lowercase and italic lowercase letters, respectively. | · | represents the

absolute value of a scalar or the cardinality of a set. The symbol (·)> represents the trans-

pose operator. Given a matrix A, the notation Ajk refers to its (j, k)th element. A � 0

means thatA is symmetric and positive semidefinite.

4.2 MG SCHEDULING PROBLEM

This work considers the MG scheduling problem under load demand uncertainty. Further-

more, we consider contingencies arising from DG outages in the formulation. We employ

a stochastic approach to modeling security motivated by [34] and MATPOWER Optimal

Scheduling software package. This involves defining re-dispatch variables in the problem
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formulation which represents recourse decisions contingent on the outcome of an uncer-

tainty.

4.2.1 Multi-scenario Load demand Profile

Load demand is a major source of uncertainty in an MG. Typically, load uncertainty is in-

troduced by forecasting errors and consumer decision on energy usage [85,91,92]. Propos-

ing algorithms to handle uncertainty becomes even more challenging when transient load

demand is considered in the formulation. In this paper, uncertainty is modeled as sce-

narios with continuous probability distributions where each scenario represents a different

realization of load demand with an assigned probability of occurrence. In order to model

uncertainty in demand, we define a transition probability matrix to describe transitions the

set of base scenarios in one period to the set of base scenarios in the next period.

Figure 4.1 shows three types of demand profiles used to build scenarios. They in-

clude:

4.2.1.1 Base Loads

Base loads represent the minimum predicted load demand profile at constant magni-

tude over the time horizon.

4.2.1.2 Peak Loads

Peak loads represent the maximum predicted load demand profile at constant magni-

tude over the time horizon.
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Figure 4.1: Load demand profiles. First from top: group 1 - Base loads. Second from top: group 2
- Peak loads. Third from top - Transient loads.

4.2.1.3 Transient Loads

Transient loads represent predicted load demand profile with pulsating behavior over

the time horizon.

4.2.2 Problem Formulation

The Microgrid (MG) scheduling problem aims to find the optimal schedule of Dis-

tributed Generators (DGs) and Energy Storage Units (ESU) throughout a discrete time

horizon T , subject to demand forecast and operational constraints.
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4.2.3 Objective function

The objective of MG scheduling problem is to minimize the expected value of the

total cost throughout the time horizon T , and across the set of scenarios and contingencies.

This objective is made up of the expected base case and post-contingency generation costs,

ramping “wear and tear” costs, load-following ramp reserve and contingency reserve costs,

as well as the generator start-up, shutdown and fixed costs. This objective function can be

cast with respect to the following three expressions:

∑
t∈T

γt
∑
g∈Gt

σ
(1)
tg (xtg, r

+
tg, r

−
tg, w

+
tg, w

−
tg) (4.1a)

∑
t∈T

∑
s∈St

∑
c∈Cts

ψtsc
∑
g∈Gtsc

σ
(2)
tg (ptgsc, p

ref
tg ) (4.1b)

∑
t∈T

γt
∑

s1∈St−1

∑
s2∈St

φts1s2
∑

g∈Gts20

σ(3)
g (ptgs20, p(t−1)gs10) (4.1c)

In the first line of the objective (4.1a), the cost function σ(1)
tg is defined as

σ
(1)
tg (xtg, r

+
tg, r

−
tg, w

+
tg, w

−
tg) , ζtg xtg (4.2a)

+ ζ↑tg (1− x(t−1)g)xtg (4.2b)

+ ζ↓tg x(t−1)g(1− xtg) (4.2c)

+ (η+
tg r

+
tg + η−tg r

−
tg) (4.2d)

+ (µ+
tg w

+
tg + µ−tg w

−
tg) (4.2e)

with the expressions (4.2a), (4.2b) and (4.2c) corresponding to generator fixed, startup and

shutdown costs, respectively; while (4.2d) and (4.2e) account for the cost of contingency

and load-following ramping reserves, respectively.
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In the second line (4.1b), the function σ(2)
tg (·, ·) is defined as

σ
(2)
tg (ptgsc, p

ref
tg ) , αsqr

tg p2
tgsc + αlin

tg ptgsc + (4.3a)

β+
tg+β−tg

2
|ptgsc−pref

tg |+
β+
tg−β−tg

2
(ptgsc − pref

tg ) (4.3b)

including the quadratic expression (4.3a) with nonnegative quadratic and linear coefficients

αsqr
tg and αlin

tg , and the term (4.3b) for assigning costs to deviations from reference values

with nonnegative coefficients β+
tg and β−tg. These costs are weighted by the probability of

contingency ψtsc.

Finally, we have the third term (4.1c), we have the term representing a quadratic

load-following ramp “wear and tear” cost

σ(3)
g (ptgs20, p(t−1)gs10) , κg×(ptgs20 − p(t−1)gs10)2 (4.4)

weighted by γt, the nonnegative coefficients κg, and φts1s2 .

4.2.4 Constraints

We apply the following constraints to the MG scheduling problem for every t ∈ T

and g ∈ Gt:

xtg ∈ {0, 1} (4.5)

¯
pg xtg ≤ ptgsc ≤ p̄g xtg ∀s ∈ St, ∀c ∈ Cts (4.6)

xtg ≥ xτg − x(τ−1)g ∀τ ∈ {t−m↑g + 1, . . . , t} (4.7)

1− xtg ≥ x(τ−1)g − xτg ∀τ ∈ {t−m↓g + 1, . . . , t} (4.8)

0 ≤ w+
tg ≤ w̄tg, (4.9)
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0 ≤ w−tg ≤ ¯
wtg, (4.10)

ptgs20 − p(t−1)gs10 ≤ w+
(t−1)g,

∀s1 ∈ St−1, ∀s2 ∈ St (4.11)

p(t−1)gs10 − ptgs20 ≤ w−(t−1)g,

∀s1 ∈ St−1, ∀s2 ∈ St (4.12)

0 ≤ r+
tg ≤ r̄tg, (4.13)

0 ≤ r−tg ≤ ¯
rtg, (4.14)

ptgsc − pref
tg ≤ r+

tg, ∀s ∈ St, ∀c ∈ Cts (4.15)

E+
tg ≤ Ēg, (4.16)

¯
Eg ≤ E−tg, (4.17)

¯
Eg ≤ E−(t−1)g + E∆

tgsc, ∀s ∈ St, ∀c ∈ Cts (4.18)

E+
(t−1)g + E∆

tgsc ≤ Ēg, ∀s ∈ St, ∀c ∈ Cts (4.19)

E∆
tgsc , −∆(ρin

g p
ESU+
tgsc +

1

ρout
g

pESU−
tgsc ),

∀s ∈ St, ∀c ∈ Cts (4.20)

pref
tg − ptgsc ≤ r−tg, ∀s ∈ St, ∀c ∈ Cts (4.21)

−
¯
∆g ≤ ptgsc − ptgs0 ≤ ∆̄g, ∀s ∈ St, ∀c ∈ Cts (4.22)

ptgsc = pESU+
tgsc + pESU−

tgsc , ∀s ∈ St, ∀c ∈ Cts (4.23)

pESU+
tgsc ≤ 0, ∀s ∈ St, ∀c ∈ Cts (4.24)

0 ≤ pESU−
tgsc , ∀s ∈ St, ∀c ∈ Cts (4.25)
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E−tg ≤ E−(t−1)g + E∆
tgs0 −∆

ρloss
g

2
(E−tg + E−(t−1)g),

∀s ∈ St, ∀c ∈ Cts (4.26)

∆
ρloss
g

2
(E+

tg + E+
(t−1)g)− E

+
(t−1)g − E

∆
tgs0 ≤ E+

tg,

∀s ∈ St, ∀c ∈ Cts (4.27)∑
ptsc =

∑
dtsc, ∀s ∈ St, ∀c ∈ Cts (4.28)

where

ptsc , [pt1sc, pt2sc, . . . , pt|Gtsc|sc]
> (4.29)

Constraint (4.5) imposes binary requirements on units in the MG. Upper and lower

limits {
¯
ptgsc , p̄tgsc} on DG active power injections are imposed by the constraint (4.6).

The DG units are subject to minimum up and down time limits in (4.7) – (4.8). Per-period

ramp limits are imposed on the units with constraints (4.9) – (4.12). Constraints (4.13) –

(4.15) – (4.21) impose upward/downward limits {r̄tg ,
¯
rtg} on post-contingency dispatch

quantities, respectively. Additionally, constraint (4.22) enforces limits on downward and

upward transitions from base to post-contigency cases.

ESU constraints (4.23) – (4.25) and (4.16) – (4.17) impose charging and discharging

limits {
¯
ptgsc, p̄tgsc} and energy limits {

¯
Eg, Ēg} on storage units, respectively. Constraint

(4.18) – (4.19) represent the amount of energy stored in a given unit in post-contingency

state at the end of period t. Furthermore, constraints (4.26) – (4.27) represents the amount

of energy stored in storage unit in basecase at the end of period t. Constraint (4.28) imposes

the balance between DG power generation ptsc and uncertain load demand dtsc ∈ R.
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Given the above three-part expression in (4.1) and constraints in (4.5) – (4.28), the

Stochastic MG scheduling problem can be formulated as the optimization:

minimize (4.1a)+(4.1b)+(4.1c) (4.30a)

subject to (4.5) – (4.27) ∀t ∈ T , ∀g ∈ Gt (4.30b)

(4.28) ∀t ∈ T (4.30c)

with respect to variables {xtg}, {ptgsc}, {p+ESU
tgsc }, {p−ESU

tgsc }, {pref
tg }, {r+

tg}, {r−tg}, {w+
tg},

{w−tg}, {E−tg} and {E−tg}.

4.3 CONVEXIFICATION OF MG SCHEDULING PROBLEM

In this section, we construct convex relaxations in order to efficiently tackle the MG

scheduling problem (2.12). We employ conic relaxations combined with a set of valid

inequalities which lead to a computationally-tractable convex formulation. To this end, we

transition to a lifted space by introducing additional auxiliary variables each accounting for

a quadratic monomial. We then formulate a SOCP relaxation based on the “perspective re-

laxation” in [39]. Finally, a strong SDP relaxation is formulated using additional variables

and valid inequalities.

4.3.1 Lifted objective

To formulate convex relaxations we first lift the objective function (2.1) into a higher-

dimensional space in which it is piecewise linear. This is done by introducing the variables

{utg}t∈T , g∈Gt , {htgs1s2}t∈T , g∈Gt, s1∈St−1, s2∈St ,

{otgsc}t∈T , g∈Gt, s∈St, c∈Cts
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representing the products

{x(t−1)g xtg}, {p(t−1)gs10 × ptgs20}, {p2
tgsc} (4.31)

respectively. Consider the following lifted objective function components:

∑
t∈T

γt
∑
g∈Gt

σ̄
(1)
tg (xtg, utg, r

+
tg, r

−
tg, w

+
tg, w

−
tg) (4.32a)

∑
t∈T

∑
s∈St

∑
c∈Cts

ψtsc
∑
g∈Gtsc

σ̄
(2)
tg (ptgsc, otgsc, p

ref
tg ) (4.32b)

∑
t∈T

γt
∑

s1∈St−1

∑
s2∈St

φts1s2
∑

g∈Gts20

σ̄(3)
g (otgs20, o(t−1)gs10, htgs2s1) (4.32c)

where for each t ∈ T and g ∈ Gt

σ̄
(1)
tg (xtg, utg, r

+
tg, r

−
tg, w

+
tg, w

−
tg) , ζtg xtg (4.33a)

+ ζ↑tg (xtg − utg) (4.33b)

+ ζ↓tg (x(t−1)g − utg) (4.33c)

+ (η+
tg r

+
tg + η−tg r

−
tg) (4.33d)

+ (µ+
tg w

+
tg + µ−tg w

−
tg) (4.33e)

encapsulates the lifted startup and shutdown costs and

σ̄
(2)
tg (ptgsc, otgsc, p

ref
tg ) , αsqr

tg otgsc + αlin
tg ptgsc + (4.34a)

β+
tg+β−tg

2
|ptgsc−pref

tg |+
β+
tg−β−tg

2
(ptgsc−pref

tg ). (4.34b)
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represents the lifted quadratic cost function. Additionally, for each g ∈ G,

σ̄(3)
g (otgs20, o(t−1)gs10, htgs1s2) ,

κg×(otgs20 + o(t−1)gs10 − 2htgs1s2) (4.35)

is the lifted “wear and tear” cost.

4.3.2 LP and perspective relaxations

For every t ∈ T and g ∈ Gt, the relation between the auxiliary variables {utg} and

their corresponding monomials can be enforced using the following valid inequalities:

max{0, x(t−1)g+xtg−1} ≤ utg ≤ min{x(t−1)g, xtg} (4.36)

The role of (4.36) is to ensure that the lifted costs (2.14a) is equivalent to the original costs

(2.1a). Through simple enumeration of the set (xg(t−1), xgt) ∈ {0, 1}2, it can be observed

that

(4.5) ∧ (4.36) ⇒ utg = xtgx(t−1)g

, for every t ∈ T and g ∈ Gt.
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Lifting the first part of the objective and the transformation of xgt ∈ {0, 1} to 0 ≤

xtg ≤ 1, results in the following LP relaxation of the MG scheduling problem [40–42]:

minimize (2.14a)+(2.1b)+(2.1c) (4.37a)

subject to 0 ≤ xtg ≤ 1 ∀t ∈ T , ∀g ∈ Gt (4.37b)

(2.6) – (4.27), (4.36) ∀t ∈ T , ∀g ∈ Gt (4.37c)

(2.10a) ∀t ∈ T (4.37d)

As shown in [39], the performance of this approach can be significantly improved by lifting

(2.1b) to (2.14b), and relaxing otgsc = p2
tgsc to the SOCP and McCormick constraint

otgsc xtg ≥ p2
tgsc, otgsc ≥ 0 ∀s ∈ St, ∀c∈Cts (4.38a)

otgsc +
¯
pg p̄g xtg ≤ (

¯
pg + p̄g)ptgsc ∀s ∈ St, ∀c∈Cts (4.38b)

which results in the following perspective relaxation:

minimize (2.14a)+(2.14b)+(2.1c) (4.39a)

subject to 0 ≤ xtg ≤ 1 ∀t ∈ T , ∀g ∈ Gt (4.39b)

(2.6) – (4.27), (4.36), (4.38) ∀t ∈ T , ∀g ∈ Gt (4.39c)

(2.10a) ∀t ∈ T (4.39d)

In the remainder of this section, we will construct an SDP relaxation as an alternative to

(4.39).
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
x(t−1)g ∗ ∗ ∗ ∗
utg xtg ∗ ∗ ∗
utg utg utg ∗ ∗
p(t−1)gs10 ztgs1 ztgs1 o(t−1)gs10 ∗
ytgs1 ptgs20 ytgs1 htgs1s2 otgs20

� 0 ∀s1 ∈ St−1, ∀s2 ∈ St

(4.40a)

¯
pg (ptgs10 + ptgs20) ≤ htgs1s2 +

¯
p2
g utg ∀s1 ∈ St−1, ∀s2 ∈ St

(4.40b)

p̄g (ptgs10 + ptgs20) ≤ htgs1s2 + p̄2
g utg ∀s1 ∈ St−1, ∀s2 ∈ St

(4.40c)

htgs1s2 +
¯
pgp̄g utg ≤ p̄g ytgs1 +

¯
pg ztgs1 ∀s1 ∈ St−1, ∀s2 ∈ St

(4.40d)

htgs1s2 +
¯
pgp̄g utg ≤

¯
pg ytgs1 + p̄g ztgs1 ∀s1 ∈ St−1, ∀s2 ∈ St

(4.40e)

¯
pg utg ≤ ytgs1 ≤ p̄g utg ∀s ∈ St (4.40f)

¯
pg utg ≤ ztgs1 ≤ p̄g utg ∀s ∈ St (4.40g)

p̄g (utg − xtg) ≤ ytgs1 − ptgs0 ≤
¯
pg (utg − xtg) ∀s ∈ St (4.40h)

p̄g (utg − x(t−1)g) ≤ ztgs1 − p(t−1)gs0 ≤
¯
pg (utg − x(t−1)g) ∀s ∈ St (4.40i)

4.3.3 SDP relaxation

To forge a stronger relaxation, consider the new variables

{ztgs}t∈T , g∈Gt, s∈St , {ytgs}t∈T , g∈Gt, s∈St
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representing monomials {p(t−1)gs0xtg} and {ptgs0x(t−1)g}, respectively. In place of (4.37b),

we impose a collection of conic and linear inequalities (4.40), resulting in the following

SDP relaxation of SCUC:

minimize (2.14a)+(2.14b)+(2.14c) (4.41a)

subject to (4.40) ∀t ∈ T , ∀g ∈ Gt (4.41b)

(2.6) – (4.27), (4.36), (4.38) ∀t ∈ T , ∀g ∈ Gt (4.41c)

(2.10a) ∀t ∈ T (4.41d)

The matrix inequality (4.40a) is a surrogate for:



x(t−1)g ∗ ∗ ∗ ∗

utg xtg ∗ ∗ ∗

utg utg utg ∗ ∗

p(t−1)gs10 ztgs1 ztgs1 o(t−1)gs10 ∗

ytgs1 ptgs20 ytgs1 htgs1s2 otgs20


=



x(t−1)g

xtg

utg

p(t−1)gs10

ptgs10


[
x(t−1)g xtg utg p(t−1)gs10 ptgs10

]

(4.42)

If equality holds at optimality, then the above relations are satisfied and the relaxation

is regarded as exact. To further strengthen the proposed relaxation, we incorporate the

Reformulation-Linearization Technique (RLT) technique [43]. Linear inequalities (4.40b)

– (4.40e) are derived from (2.6). Lastly, inequalities (4.40g) – (4.40i) are immediate con-

sequences of (4.5) and (2.6).

The variables that appear in (4.40) are tightly correlated and this is the primary mo-

tivation behind the proposed valid inequalities. In Section (4.5), we will demonstrate the
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effect of these additional inequalities on the quality of relaxation and their ability to obtain

feasible points.

4.4 FEASIBLE POINT RECOVERY

Let {xrlx
tg }t∈T, g∈Gt denote the resulting schedule from a convex relaxation of SCUC. For

large-scale problems, convex relaxations can fail to satisfy the integrality constraint (4.5).

In this section, we propose a heuristic to infer a feasible point {x̂tg ∈ {0, 1}}t∈T, g∈Gt .

To this end, the main challenge is to ensure that the minimum up and minimum down

constraints (2.7a) and (2.7b) are satisfied, which is not possible by simply rounding xrlx
tg

values. To tackle this issue we adopt the following procedure.

Feasible Point Recovery:

1) For every t ∈ T and g ∈ Gt do xrnd
tg ←round{0.4 + xrlx

tg }.

2) For every g ∈ ∪t∈T Gt,

(a) Solve the following linear program

minimize
∑
t∈T
|xtg − xrnd

tg | (4.43a)

subject to xtg = 0 if g /∈ Gt (4.43b)

0 ≤ xtg ≤ 1 if g ∈ Gt (4.43c)

xtg ≥ xτg−x(τ−1)g ∀t∈T , ∀τ ∈{t−m↑g+1, . . . , t} (4.43d)

1− xtg ≥ x(τ−1)g−xτg ∀t∈T , ∀τ ∈{t−m↓g+1, . . . , t} (4.43e)

and denote the resulting solution as {x̂tg}t∈T .

(b) For t = 1, . . . , |T | do
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a↑tg ← max{x̂τg−x̂(τ−1)g | ∀τ ∈{t−m↑g+1, . . . , t}}, (4.44a)

a↓tg ← max{x̂(τ−1)g−x̂τg | ∀τ ∈{t−m↓g+1, . . . , t}}, (4.44b)

if a↑tg = 0 ∧ a↓tg = 0 then x̂tg ← xrnd
tg , (4.44c)

if a↑tg = 0 ∧ a↓tg = 1 then x̂tg ← 0, (4.44d)

if a↑tg = 1 ∧ a↓tg = 0 then x̂tg ← 1, (4.44e)

if a↑tg = 1 ∧ a↓tg = 1 then declare failure. (4.44f)

3) Declare {x̂tg}t∈T, g∈Gt as the recovered schedule and solve the convex optimization

minimize (2.1a)+(2.1b)+(2.1c) (4.45a)

subject to xtg = x̂tg ∀t ∈ T , ∀g ∈ Gt (4.45b)

(2.6) – (4.27) ∀t ∈ T , ∀g ∈ Gt (4.45c)

(2.10a) ∀t ∈ T (4.45d)

to obtain a feasible point:

{x̂tg, p̂ref
tg , r̂

+
tg, r̂

−
tg, ŵ

+
tg , ŵ

−
tg , Ê

+
tg , Ê

−
tg ∈ R}t∈T , g∈Gt

{p̂tgsc, p̂+ESU
tgsc , p̂−ESUtgsc }t∈T , g∈Gt, s∈St, c∈Cts .

In case of infeasibility, declare failure.
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As we will demonstrate in Section (4.5), this heuristic is able to obtain good qual-

ity feasible points for challenging instances of SCUC. We use the following measure to

evaluate the quality of the resulting feasible points:

Optimality Gap % = 100× σ̂ − σrlx

σ̂
(4.46)

where σrlx and σ̂ are the optimal objective values for convex relaxation and the recovery

problem (4.45), respectively.

4.5 EXPERIMENTS

The proposed SDP relaxation and recovery algorithm is tested on the MG scheduling prob-

lem under load demand uncertainty. Simulations are performed on a 64-bit computer with

an Intel 3.0 GHz, 12-core CPU and 256 GB RAM using MATLAB 2019a. The MOSEK

solver v8.0.0.60 [44] is used for convex optimization through CVX v2.1 [45,46]. For com-

parison, CPLEX v12.9.0.0 [48] and GUROBI v9.0 are used for mixed-integer programming

through MOST.

A modified IEEE 14-bus benchmark system is utilized to perform simulations. Pa-

rameters are obtained from the MATLAB MATPOWR package [52] with modifications

made to DG cost, ESUs cost and load demand profiles. A single-line diagram of the bench-

mark system is depicted in Figure 4.2; it consists of 5 thermal DGs, 5 ESUs and load

demand assigned to load buses in the network. The scheduling period is 1 second with the

scheduling time interval of 200 milliseconds.

To demonstrate the effectiveness of our proposed methods, we generate random DG

parameters as motivated by [95] in order to make problems feasible and sufficiently chal-

lenging. Table 4.1 shows a summary of DGs and ESUs parameters and costs. Additionally,
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we generate load demand scenarios from a combination of the three load types discussed

in Section 4.2, namely:

• Scenario #1: Group 1 (i.e. base load)

• Scenario #2: Group 1 & Group 2 (i.e. base + peak load)

• Scenario #3: Group 1, Group 2 & Group 3 (i.e. base + peak + transient load)

Scenarios are assigned initial probabilities

Φ1 =

[
0.76 0.17 0.07

]>
(4.47)

respectively. Additionally, for every t ∈ T \ {1} the transition probability matrix is set to

Φt =


0.68 0.10 0.22

0.30 0.60 0.10

0.02 0.30 0.68

 (4.48)

For simulating DG outage contingencies, 4 DGs are selected for outage contingen-

cies each represented with probability of 1/60. Base scenario conditional probabilities are

selected as ψts0 = 0.1/|C| for every s ∈ S . Additionally, for every c ∈ C post-contingency

probabilities are given by:



ψt1c

ψt2c
...

ψt|S|c


=

1

|C|
× Φt



ψ(t−1)10

ψ(t−1)20

...

ψ(t−1)|S|0


(4.49)
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Table 4.1: Generator Parameters

Unit DG #1 DG #2 DG #3 DG #4 DG #5 ESUs

αsqr
tg ($/MW2hr) 0.001 0.003 0.003 0.003 0.002 0
αlin
tg ($/MWhr) 21.504 13.482 27.830 10.047 25.977 0
ζtg ($/hr) 246.809 394.788 600.495 724.182 164.901 20
ζ↑tg ($/hr) 8,435.1 7,205.7 4,894.3 4,486.9 4,574.3 0.001
ζ↓tg ($/hr) 345.08 506.807 508.617 754.102 735.865 0.001
µ+tg , µ−tg ($/MWhr) 21.504 13.482 27.830 10.047 25.977 0
η+tg , η−tg ($/MWhr) 4.301 2.697 5.566 2.009 5.195 0
β+
tg , β−tg ($/MWhr) 107.521 67.411 139.151 50.233 129.884 0
κg ($/MW2hr) 411.6e05 1,083.8e05 1,199.4e05 1,081.8e05 806.3e05 0
Pmax (MW) 166.2 70 50 50 50 10
Pmin (MW) 0 0 0 0 0 -10
m↑g (h) 3 5 1 3 5 1
m↓g (h) 3 4 1 3 7 1
Initial state (h) 2 4 -2 4 2 1

4.5.1 Evaluation of Lower Bound

Table 4.2 reports the performance of SDP relaxation compared to CPLEX and GUROBI

solvers, perspective and LP relaxation methods. These numerical methods are compared

on : i) convex lower bound (LB) on the optimal cost, ii) cost of the recovered feasible

solution, iii) optimality gap and iv) computation time t(s). Simulations are performed

on 5 realizations of test system parameters. In each simulation, the solver is terminated

after 3,600s and optimality gap computed using 4.46. In each individual realization, the

numerical solver tries to determine optimal values of 1,500 binary decision variables and

1,035,632 continuous variables.

Table 4.2 shows that all three methods of relaxation, namely SDP relaxation, Per-

spective and LP relaxations obtain a lower bound to the globally optimal solution in 4 of

the 5 experiments performed. In experiment 5, perspective relaxation fail to find a convex

lower bound to the optimization problem where as both LP and SDP relaxation successfully

find a convex lower bound and feasible solutions. As expected, average computation time

is higher in the case of SDP relaxation (31m 15s) as compared to Perspective (8m 38s) and

LP (9m 50s) relaxation. This is predictable as SDP relaxation method is a computationally

expensive method of relaxation. The merit of applying SDP relaxation in this problem lies
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Figure 4.2: IEEE 14-bus Microgrid test system; showing ESUs placement in Experiment 5

Table 4.2: Comparative performance of SDP relaxation algorithm to off-the-shelf solvers
and selected convex relaxations

Exp. Test Case
CPLEX GUROBI SDP Relaxation Perspective Relaxation LP Relaxation

Feasible GAP (%) t(s) Feasible GAP (%) t(s) LB Feasible GAP (%) t(s) LB Feasible GAP (%) t(s) LB Feasible GAP (%) t(s)

1 IEEE 14-bus – – 3,600† – – 3,600† -1.667e+03 -1.667e+03 0.011 1,435 -1.667e+03 -1.667e+03 0.012 518 -1.667e+03 -1.667e+03 6.734e-05 715
2 IEEE 14-bus – – 3,600† – – 3,600† -5.041e+03 -5.041e+03 0.002 2,034 -5.041e+03 -5.041e+03 0.003 513 -5.041e+03 -5.041e+03 9.580e-05 497
3 IEEE 14-bus – – 3,600† – – 3,600† -5.907e+03 -5.907e+03 0.002 1,916 -5.908e+03 -5.908e+03 0.002 467 -5.908e+03 -5.908e+03 3.690e-05 432
4 IEEE 14-bus – – 3,600† – – 3,600† -7.108e+03 -7.108e+03 0.002 2,176 -7.108e+03 -7.108e+03 0.002 652 -7.108e+03 -7.108e+03 4.454e-04 505
5 IEEE 14-bus – – 3,600† – – 3,600† -1.057e+09 -1.057e+09 0.013 1,821 – – – 441 -1.057e+09 -1.057e+09 1.365e-04 574

Avg – – – – 0.006 1,876 0.005 518 1.614e-04 545
Max – – – – 0.011 2,176 0.012 652 4.45e-04 715

† Solvers are terminated within 3600 seconds.

in the fact that it can successfully find an optimal solution to the original MIP problem

under uncertainty without a need to adopt scenario reduction methods when MIP solvers

are used in the case of [86, 91, 92].

4.5.2 Utilizing Energy Storage Units to Compensate Variability in Load Profile

A major problem of MGs is inadequate reserve margins which adversely impacts

its reliability. ESUs can be utilized to compensate for supply-demand mismatch which

arises from the presence of highly variable load demand. In figure 4.3 we show benefits of

ESUs to alleviate the burden of DGs in all three scenarios. We plot DG profile and ESU
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Figure 4.3: Impact of Energy Storage Units on load variability at 200ms time scales. First from
top: DG and ESU power output in the presence of Group 1 (base loads). Second from top: DG and
ESU power output in the presence of Group 1 & 2 (base + Peak loads). Third from top: DG and
ESU power output in the presence of Group 1, 2 & 3 (base + peak + transient loads. Forth from top:
ESU charge and discharge power output in scenario # 3.

charge and discharge levels over a period of 1 minute. It is observed that ESUs reduce the

variability in Load profile in scenario #3. In scenario #3 when MG is subject to transient

loads, ESUs alleviate the burden thereby increasing grid reliability.

Additionally, figure 4.3 presents the evolution of ESU charge and discharge levels

over the time horizon. We observe that storage unit discharges energy to balance the high

variability of transient load demand throughout the time horizon. This analysis can provide

a guideline on determining the ESU size to achieve a desired supply-demand equilibrium

across different load demand scenarios.
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4.6 CONCLUSIONS

In this paper, we presented the Microgrid (MG) scheduling problem under load de-

mand uncertainty. MGs by design have smaller network size and inadequate reserve mar-

gins as compared to the main grid. As a result, highly variable load like transient load

demand can easily have adverse effects on reliability. To tackle this challenge in the MG

scheduling problem, we proposed an SDP relaxation which is capable of finding feasible

solutions within provable distance from global optimality. It is shown that the proposed

SDP relaxation finds optimal solutions to the scheduling problem without need to adopt

scenario reduction techniques when MIP solvers are utilized. Furthermore, we demon-

strated that the problem of load variability can be greatly reduced with the help of Energy

Storage Units (ESUs) when scheduled in tandem with Distributed Generators (DGs). The

analysis performed can serve as a guide to MG operators in finding the approximate size of

ESUs needed to achieve a desired load profile in a scheduling problem with the objective

of minimizing operation cost.
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CHAPTER 5

GENERAL CONCLUSIONS
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5.1 Conclusions

In this article-based dissertation, an efficient computational optimization method is pre-

sented to deal with several complexities in power systems in 3 research papers. This re-

search topic has been widely investigated for the last 60 years however scalable algorithms

do not exist to the author’s knowledge able to tackle problems of the scale presented in this

dissertation at the time of writing. The algorithm developed in this research work has been

tested on real-world grids with great results. Emphasizing its repeatability.

In Chapter 2, the proposed algorithm is used to tackle a stochastic security-constrained

unit commitment problem which suffers from complexities posed by the presence of bi-

nary variables, probability distribution of uncertain parameters and security constraints.

More than 12,000 binary variables are determined and almost 2 million continuous vari-

ables are deteremined through numerical experiments. In chapter 3, challenge of dealing

with time-progressive contingencies such as hurricanes are tackled. As one of the major

natural disasters that influence U.S. every year, the modeling and prediction of hurricane

based on climatology and meteorology are critical and fundamental. For example, in 2017,

Hurricane Irma and Maria stroke Puerto Rico as Category 5 storm, and caused prolonged

yet wide-spread damage to Puerto Rico’s electrical infrastructure. The experiment results

indicate that this approach generates optimal results.

In Chapter 4, microgrid scheduling is explored in the presence of uncertainty in tran-

sient load demand. Through experiments, we demonstrate that Energy Storage Units have

the potential to enhance MG reliability even in the presence of highly variable transient

load demand.
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5.2 Future Research Direction

The research work in this dissertation has many interesting directions for the future. Di-

mension of semidefinite matrices increases with the number of variables in the problem.

As a result, SDP programming is computationally challenging to be solved with interior

point solvers for higher order cones. One way of dealing with this is to decompose the

larger semidefinite matrix into smaller cones. Thereby reducing the computational burdern

of solving the large semidefinite matrix. Secondly, this idea opens up the possibility to

utilize a parallelizable numerical algorithm that is capable of solving large-scale conic op-

timization problems on distributed platforms such as graphics processing unit (GPUs) with

orders-of-magnitude time improvement.

Alternative Current (AC) network constraints introduce non-convexities into the prob-

lem formulation due to nonlinearities in voltage variable as a result system operators resort

to the linear DC network constraints, also utilized in the papers presented here. Promising

research indicates that nonlinearities in AC constraints can be tackled using SDP relaxation

methods. An area for future research is to incorporate AC constraints into the stochastic

SCUC formulation.
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