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Abstract

Buckling Load Optimization of Variable stiffness composite Plate
Using FEM and Semi-analytical method

Jeegar Vallabhbhai Patel, MS.
The University of Texas at Arlington, 2021

Supervising Professor(s) : Dr. Paul Davidson

The advent of new composite manufacturing techniques like Automated Fiber Placement (AFP) offers

greater flexibility in structural designs by allowing curvilinear fiber paths. Hence, it is now possible to change

laminate stiffness locally, thereby enabling Variable Stiffness (VS) composite structures. Such structures demon-

strate superior buckling performance over traditional constant stiffness structures. However, obtaining the

optimum fiber paths to improve buckling performance remains an open area of research due to the complexity

of determining such fiber paths. This research investigated two approaches for optimizing fiber paths; First,

a Finite Element Method (FEM) approach that utilizes linear shape functions to interpolate local fiber angle

variation within the plate when given angle values at global manufacturing mesh nodes. Second, a new semi-

analytical formulation for calculating in-plane load distribution and stability of a composite laminated plate,

with spatial variation in ply-by-ply fiber angles. Double Fourier series approximation is used to achieve variable

fiber angle distribution. Ritz method is used to find the approximate solution for the boundary value prob-

lem. Using the developed methods, optimization studies were conducted on uniaxially compressed, eight-ply

symmetric composite laminate plate, with univariate and bivariate fiber angle distribution. The study used

Genetic-Algorithm(GA) and Quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) as

optimization formulation. The results not only show an 87% and 67% improvement in buckling load for a

VS plate using FEM and Semi-analytical method respectively but also provides a better understanding of the

influence of fiber angle distribution.
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Chapter 1

Introduction

1.1 Background

In the aerospace industry, composite material has been superseding metallic material for the last decade due
to its high strength to weight ratio and typically constitutes about 50% of an aircraft’s weight. Lightweighting
with optimum strength is the prime requirement of the aerospace structures such as fuselage and wings, which
are thin-walled structures. Since such structures are prone to buckling than the other failure modes, such as a
compression or shear failure, it is necessary to design thin structures to have optimum resistance to the buckling
under general loading conditions.

One of the distinct advantages of laminated composites over metallic material in structural design is its
ability to change the stiffness and strength properties of the laminate by designing the laminate stacking
sequence relative to the application of load. Laminate in-plane properties are governed by the number of layers
with different fiber orientation angles, and bending properties are governed by the relative positioning of the
layers with reference to the mid-plane. Therefore, with the same number of plies in the laminate, one can
get entirely different in-plane and bending properties by rearranging the laminate stacking sequence. With
the given flexibility to change in-plane and bending properties of the laminate, one can easily design a distinct
laminate that offers maximum in-plane or buckling resistance for a given boundary and loading conditions while
maintaining the load-carrying capability without failures. Similarly, one can determine the minimum number
of layers and their orientation angles to minimize the structure’s weight for a specified buckling load factor with
given boundary and loading conditions.

Before the emergence of the Automated Fiber Placement (AFP) techniques, designers were left with little
choice but to design the composite structure with a conventional straight fiber layup as shown in Figure 1.1
which give constant stiffness distribution thought the structure even if the stress distribution is not uniform(for
example a plate with a hole or non-uniform loading condition). Therefore the directional material stiffness
offered by advanced composites is not utilized. However, the recent development of the AFP has made it
possible to steer the individual fiber tows or tape curvilinearly, which results in a non-conventional layup as
shown in Figure 1.2 and aides designers with wide design space to spatially distribute the stiffness such that it
gives optimum structure performance under general loading.

Figure 1.1: Conventional Layup Figure 1.2: Non-conventional Layup

Gurdal and Olmedo [7] were among the first who introduced the ”Variable stiffness Panel” concept by
studying the in-plane response of the laminate with spatially varying fiber orientations where the effects of the
variable fiber orientation on the displacement fields, stress resultants, and the global stiffness were presented
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for univariate fiber orientations. Later they studied the buckling response in the subsequent for the same
univariate fiber orientation (either function of x or y) where semi-analytical solutions were developed using
Ritz-method and results showed better buckling response as compared to the constant stiffness panel [15]. This
idea was expanded by a generalizing direction of fiber orientation angle variation to be rotated with respect to
the coordinate direction x to study the buckling behavior and get the optimum buckling load [8].

There are two popular methods to optimize a composite panel for the buckling load. The first is stiffness
variation-based optimization, and the second is fiber variation-based optimization. In the stiffness variation-
based optimization approach, lamination parameters are introduced, representing the laminate stiffness proper-
ties (ABD−matrix) using fewer parameters and allowing for a continuous laminate stiffness formulation within
a convex solution space. In this approach, the number of parameters remains the same even when the laminate
thickness is increased [1] [9] [17]. Furthermore, since the formulation is within a conservative convex solution
space, an efficient gradient-based optimizer such as a Gradient Decent(GD) method can be used to determine
the optimal stiffness distribution to maximize structural performance. However, a secondary framework is still
required to find the optimal fiber angle distribution after the optimum lamination parameters are found. How-
ever, it is no longer a convex problem as multiple stacking sequences and fiber directions can result in the same
ABD matrix distribution. A further limitation of the stiffness-based optimization or Lamination parameter-
based framework is that it is difficult to implement strength constraints in the optimization procedure. Despite
these limitations, this optimization approach is efficient when the number of lamina in laminates(or laminates
thickness) is high.

On the other hand, the fiber angle variation-based optimization framework directly defines the distinct fiber
angle orientation throughout the domain of each ply, which results in stiffness variation [3] and does not re-
quire any post-processing. Furthermore, this approach also uses manufacturing constraint, strength constraint,
stiffness constraint, curvature constraint efficiently during the optimization routine, which is difficult to im-
plement in a purely stiffness-based optimization framework. However, fiber angle variation-based optimization
framework may result in non-convex solution space; therefore, it is necessary to verify that the optimized re-
sult is a global optimum solution. Furthermore, this framework is efficient when the number of ply in the
laminates(or laminate thickness) is few because the number of design variables increases with the increasing
laminate thickness or ply.

As there is no closed-form solution available to calculate the buckling load for bivariate variable stiffness
composite panel, numerical methods like FEM are used to find the buckling load. However, FEM discretizes the
domain of the panel into sub-domain(sections) and assigns the stiffness properties section or sub-domain, which
results in discontinuous stiffness variation. Therefore a semi-analytical approximation proposed by Tang [11]
can be used to calculate the in-plane loading distribution and buckling. In this thesis, a mesh-less optimization
approach is proposed, which uses a semi-analytical method to optimize the buckling load by a continuous
distribution of stiffness as compared to a discrete approach of FEM. In the proposed method, fiber angle
distribution is represented as a double Fourier series approximation that gives high fidelity in fiber angle
variation.

1.2 Thesis Outline

The thesis presented here is divided into a total of seven chapters. Chapter 1 provides the motivation of
the thesis and its structure. In chapter 2, a detailed derivation of governing equations [20] [16], the stability
equation, and the Boundary value problem for a variable stiffness plate studied here is provided.

Chapter 3 describes the FEM and closed-form solution [20] for the reference problem of the constant stiffness
plate. FEM problem definition for the stability or buckling load is established for an 8-ply composite laminate
plate under investigation, and a mesh convergence study is performed for buckling load. Subsequently, the
constant stiffness laminate modeled using FEM is optimized for the buckling load using Genetic algorithm(GA)
to set a benchmark buckling load. The optimized results are verified with the analytical closed-form solution.
Chapter 4 describes the framework(MFEM-framework) to achieve variable stiffness through the domain of the
plate defined in FEM. Further, buckling load is optimized for univariate variable stiffness plate (angle variation
in either x or y direction) and bivariate variable stiffness composite plate using Genetic algorithm(GA) and
BFGS methods. Chapter 5 provides the derivation for a semi-analytical method to evaluate in-plane loading
distribution and buckling load, utilizing double Fourier series approximation as a description of fiber angle
distribution. A convergence study is performed to decide which double Fourier series approximation(either
sine or cosine) represents the fiber angle distribution effectively. Finally, the buckling load is optimized using
semi-analytical method independently for different cases of Fourier series expansion which represents the fiber
angle distribution. BFGS method is used as an optimizer formulation to optimize the buckling load. Finally,
optimized buckling load achieved using the different methods is reported and compared in Chapter 6. As the
study presented in the thesis is still an open area of research, some future aspects of this study are discussed
in Chapter 7.
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Chapter 2

Governing equations and Boundary
Value Problem

In this section, the kinematic quantities, constitutive equations and governing equations are formulated for
variable stiffness plate based on procedure given by Whitney [20].

2.1 Basic Assumptions

In most practical applications of thin plates since the magnitude of the stresses acting on the surface parallel
to the middle plane are small compared to the bending and membrane stresses therefore for a thin plate the
traction on any surface parallel to the mid-plane are relatively small and consequently an approximate state of
plane stress can be assumed.

A standard, x, y, z coordinate system, as shown in figure 2.1, is used in deriving the governing equations.
The displacements in the x, y, z directions are denoted u, v, w respectively. The following basic assumptions are
made:

1. The plate is constructed of an arbitrary number of layers of orthotropic sheets bonded together. However,
the orthotropic axes of material symmetry of an individual layer need not coincide with the x− y axis of
the plate.

2. Each layer is of constant thickness. Consequently the plate has constant thickness h.

3. The plate is thin, i.e., the thickness h is much smaller than the other physical dimensions. Hence,
transverse shear strains ϵxz and ϵyz are negligible, and transverse normal strain ϵz is negligible.

4. The displacements u, v, and w are small compared to the plate thickness.Similarly, In-plane strains ϵx, ϵy
and ϵxy are small compared to unity.

5. Tangential displacements u and v are linear functions of the z coordinate.

6. Transverse shear stresses σxz and σyz vanish on the top and bottom surfaces of the plate(at z = ±h/2,
σxz=σyz=0).

7. In order to include in-plane force effects, nonlinear terms in the equations of motion involving products
of stresses and plate slopes are retained. All other nonlinear terms are neglected.

8. Each ply obeys Hook’s law.

9. There are no body forces such as gravitational or magnetic forces.

10. All the derivation are for static case, so all the inertia terms and time related parameters are neglected.
Rotatory inertia terms are negligible.

It should be noted that assumption 3 is a direct consequence of plane stress, and constitute the classical
assumptions of Kirchhoff.
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Figure 2.1: Coordinate system of plate.

2.2 Strain-displacement relations

Based on the assumptions made in Section 2.1, tangential or in-plane displacements at any location of plate
are given as,

w = w(x, y)

u = u0(x, y)− zw,x

v = v0(x, y)− zw,y

(2.1)

where u0 and v0 are tangential displacements of the middle-plane. Strain-displacement relations can be written
as,

ϵx = ϵ0x + zκx

ϵy = ϵ0y + zκy

ϵxy = ϵ0xy + zκxy

(2.2)

where,

ϵ0x = u0
,x ϵ0y = v0,x ϵ0xy = u0

,y + v0,x (2.3)

κx = −w,xx κy = −w,yy κxy = −2w,xy (2.4)

Equations 2.2,2.3 and 2.4 coincide with those of classical homogeneous plate theory.

2.3 Equations of Motion

Assumption 3 cannot be satisfied unless the resultant shear vanishes, which is not physically correct. How-
ever, this apparent inconsistency in classical plate theory is recognized and accepted, and resultant shears are
considered when developing the equations of motions which are given for kth laminate as,

∂σk
x

∂x
+

∂σk
xy

∂y
+

∂σk
xz

∂z
= 0 (2.5)

∂σk
xy

∂x
+

∂σk
y

∂y
+

∂σk
yz

∂z
= 0 (2.6)
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∂

∂x
(σk

xx + σk
xw,x + σk

xyw,y) +
∂

∂y
(σk

yz + σk
xyw,x + σk

yw,y) +
∂

∂z
(σk

x + σk
xzw,x + σk

yzw,y) = 0 (2.7)

Stress and moment resultants are defined as follows:

(Nx, Ny, Nxy) =

∫ h/2

−h/2

(σk
x, σ

k
y , σ

k
xy) dz

(Qx, Qy) =

∫ h/2

−h/2

(σk
xz, σ

k
yz) dz

(Mx,My,Mxy) =

∫ h/2

−h/2

(σk
x, σ

k
y , σ

k
xy)z dz

(2.8)

These resultants are illustrated in figure 2.2a,2.2b.

(a) Resultant stress nomenclature (b) Nomenclature for moment and transverse
shear resultant

Figure 2.2: Nomenclature of resultants

Integrating Equations 2.5-2.7 with respect to z and then Substituting Equation 2.8, yields;

Nx,x +Nxy,y = 0 (2.9)

Nxy,x +Ny,y = 0 (2.10)

Nxw,xx + 2Nxyw,xy +Nyw,yy +Qx,x +Qy,y + w,x(Nx,x +Nxy,y) + w,y(Nxy,x +Ny,y) + q = 0 (2.11)

where;

q = σk
x(

h

2
)− σk

x(
−h

2
) (2.12)
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For static case, 2.9 and 2.10 can be substituted in equations 2.11, to give,

Nxw,xx + 2Nxyw,xy +Nyw,yy +Qx,x +Qy,y + q = 0 (2.13)

Now multiplying equations 2.5 and 2.6 by z, integrating with respect to z over the plate thickness, and taking
equation 2.8 into account yields,

Mx,x +Mxy,y −Qx = 0 (2.14)

Mxy,x +My,y −Qy = 0 (2.15)

Differentiating equations 2.14 and 2.15 with respect to x and y respectively and then taking equation 2.13 into
account yields,

Mx,xx + 2Mxy,xy +My,yy +Nxw,xx + 2Nxyw,xy +Nyw,yy + q = 0 (2.16)

equation 2.9, 2.10 and 2.16 together constitute the equations of motion and are identical to those of classical
homogeneous plate theory.

2.4 Constitutive Equations

For a laminated composite plate, the plane stress constitutive equation for the kth layer is defined as,


σk
x

σk
y

σk
xy

 =


Qk

11 Qk
12 Qk

16

Qk
12 Qk

22 Qk
26

Qk
16 Qk

26 Qk
66



ϵx

ϵy

ϵxy

 (2.17)

Where Qk
ij are reduced stiffness terms for kth layer [16]. Using equation 2.17 in conjunction with equation 2.2,

the stress resultant, and moment resultant definitions, yield the following constitutive relation for a laminated
composite plate:



Nx

Ny

Nxy

Mx

My

Mxy


=



A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66





ϵ0x

ϵ0y

ϵ0xy

κx

κy

κxy


(2.18)

where,

(Aij , Bij , Dij) =

∫ h/2

−h/2

Qk
ij(1, z, z

2) dz (2.19)
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It should be noted that for Variable Stiffness composite, with fiber angle is spatially varied, Qk
ij is not

constant within a ply, therefore,

Qk
ij = Qk

ij(x, y) (2.20)

Thus, from equation 2.19 and 2.20 we find that the ABD matrix is a function of spatial dimensions x and y,

Aij = Aij(x, y) Bij = Bij(x, y) Dij = Dij(x, y) (2.21)

2.5 Equation of Motion in terms of Displacements

In the following derivation the effect of in-plane forces on bending is neglected. In particular, it is assumed
that large membrane forces are not applied externally to the plate.

After substituting equation 2.18 in equation 2.9,2.10 and 2.16 respectively and neglecting in-plane force
effect on bending we get,

A11u
0
,xx + 2A16u

0
,xy +A66u

0
,yy +A16v

0
,xx + (A12 +A66)v

0
,xy +A26v

0
,yy −B11w,xxx − 3B16w,xxy −B26w,yyy−

(B12 + 2B66)w,yyx + (
∂A16

∂y
+

∂A11

∂x
)u0

,x + (
∂A66

∂y
+

∂A16

∂x
)u0

,y + (
∂A66

∂y
+

∂A16

∂x
)v0,x + (

∂A26

∂y
+

∂A12

∂x
)v0,y−

(
∂B16

∂y
+

∂B11

∂x
)w,xx − 2(

∂B66

∂y
+

∂B16

∂x
)w,xy − (

∂B26

∂y
+

∂B12

∂x
)w,yy = 0

(2.22)

similarly,

A16u
0
,xx + (A12 +A66)u

0
,xy +A26u

0
,yy +A66v

0
,xx + 2A26v

0
,xy +A22v

0
,yy −B16w

0
,xxx − (B12 + 2B66)w,xxy−

B22w,yyy − 3B26w,yyx + (
∂A12

∂y
+

∂A16

∂x
)u0

,x + (
∂A26

∂y
+

∂A66

∂x
)u0

,y + (
∂A26

∂y
+

∂A66

∂x
)v0,x + (

∂A22

∂y
+

∂A26

∂x
)v0,y−

(
∂B12

∂y
+

∂B16

∂x
)w,xx − 2(

∂B26

∂y
+

∂B66

∂x
)w,xy − (

∂B22

∂y
+

∂B26

∂x
)w,yy = 0

(2.23)

and,

D11w,xxxx + 4D16w,xxxy + (2D12 + 4D66)w,xxyy + 4D26w,yyyx +D22w,yyyy −B11u
0
,xxx − 3B16u

0
,xxy−

(B12 + 2B66)u
0
,yyx −B26u

0
,yyy −B16v

0
,xxx − (B12 + 2B66)v

0
,xxy − 3B26v

0
,yyx −B22v

0
,yyy − 2(

∂B16

∂y
+

∂B11

∂x
)u0

,xx−

(4
∂B16

∂x
+ 2

∂B12

∂y
+ 2

∂B66

∂y
)u0

,xy − 2(
∂B26

∂y
+

∂B66

∂x
)u0

,yy − 2(
∂B66

∂y
+

∂B16

∂x
)v0,xx − (2

∂B12

∂x
+ 2

∂B66

∂x
+ 4

∂B26

∂y
)v0,xy−

2(
∂B22

∂y
+

∂B26

∂x
)v0,yy + 2(

∂D16

∂y
+

∂D11

∂x
)w,xxx + (6

∂D16

∂x
+ 2

∂D12

∂y
+ 4

∂D66

∂y
)w,xxy + 2(

∂D22

∂y
+

∂D26

∂x
)w,yyy+

(2
∂D12

∂x
+ 4

∂D66

∂x
+ 6

∂D26

∂y
)w,yyx − (

∂2B12

∂y ∂y
+ 2

∂2B16

∂x ∂y
+

∂2B11

∂x ∂x
)u0

,x − (
∂2B26

∂y ∂y
+ 2

∂2B66

∂x ∂y
+

∂2B16

∂x ∂x
)u0

,y−

(
∂2B26

∂y ∂y
+ 2

∂2B66

∂x ∂y
+

∂2B16

∂x ∂x
)v0,x − (

∂2B22

∂y ∂y
+ 2

∂2B26

∂x ∂y
+

∂2B12

∂x ∂x
)v0,y + (

∂2D12

∂y ∂y
+ 2

∂2D16

∂x ∂y
+

∂2D11

∂x ∂x
)w,xx+

(2
∂2D26

∂y ∂y
+ 4

∂2D66

∂x ∂y
+ 2

∂2D16

∂x ∂x
)w,xy + (

∂2D22

∂y ∂y
+ 2

∂2D26

∂x ∂y
+

∂2D12

∂x ∂x
)w,yy = q
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(2.24)

Equations 2.22,2.23 and 2.24 are governing equation for variable stiffness plate. Note that, if A, B and D were
constant, all the derivatives in the above equations will be zero, which is the governing equation for constant
stiffness plate. These equation can be simplified for specially orthotropic laminate where A16, A26, D16, D26

and Bij are zero over the domain.

The force and moment resultants are obtained from the constitutive relations as shown in Eqaution 2.18.

Nx = A11u
0
,x +A16(u

0
,y + v0,x) +A12v

0
,y −B11w,xx − 2B16w,xy −B12w,yy (2.25)

Ny = A12u
0
,x +A26(u

0
,y + v0,x) +A22v

0
,y −B12w,xx − 2B26w,xy −B22w,yy (2.26)

Nxy = A16u
0
,x +A66(u

0
,y + v0,x) +A26v

0
,y −B16w,xx − 2B66w,xy −B26w,yy (2.27)

Mx = B11u
0
,x +B16(u

0
,y + v0,x) +B12v

0
,y −D11w,xx − 2D16w,xy −D12w,yy (2.28)

My = B12u
0
,x +B26(u

0
,y + v0,x) +B22v

0
,y −D12w,xx − 2D26w,xy −D22w,yy (2.29)

Mxy = B16u
0
,x +B66(u

0
,y + v0,x) +B26v

0
,y −D16w,xx − 2D66w,xy −D26w,yy (2.30)

From equations 2.28, 2.29, 2.30 and equation (2.14-2.15) the following shear resultants are obtained.

Qx = B11u
0
,xx + 2B16u

0
,xy +B66u

0
,yy +B16v

0
,xx + (B12 +B66)v

0
,xy +B26v

0
,yy −D11w,xxx − 3D16w,xxy−

(D12 + 2D66)w,yyx −D26w,yyy + (
∂B16

∂y
+

∂B11

∂x
)u0

,x + (
∂B66

∂y
+

∂B16

∂x
)u,y + (

∂B66

∂y
+

∂B16

∂x
)v0,x+

(
∂B26

∂y
+

∂B12

∂x
)v0,y − (

∂D16

∂y
+

∂D11

∂x
)w,xx − 2(

∂D66

∂y
+

∂D16

∂x
)w,xy − (

∂D26

∂y
+

∂D12

∂x
)w,yy

(2.31)

Qy = B16u
0
,xx + (B12 +B66)u

0
,xy +B26u

0
,yy +B66v

0
,xx + 2B26v

0
,xy +B22v

0
,yy −D16w,xxx − (D12 + 2D66)w,xxy

−3D26w,yyx −D22w,yyy + (
∂B12

∂y
+

∂B16

∂x
)u0

,x + (
∂B26

∂y
+

∂B66

∂x
)u0

,y + (
∂B26

∂y
+

∂B66

∂x
)v0,x+

(
∂B22

∂y
+

∂B26

∂x
)v0,y − (

∂D12

∂y
+

∂D16

∂x
)w,xx − 2(

∂D26

∂y
+

∂D66

∂x
)w,xy − (

∂D22

∂y
+

∂D26

∂x
)w,yy

(2.32)

Using the constitutive equation (2.24) the following stresses are obtained within each layer:

σk
x = Qk

11u
0
,x +Qk

16(u
0
,y + v0,x) +Qk

12v
0
,y − z(Qk

11w,xx + 2Qk
16w,xy +Qk

12w,yy) (2.33)

σk
y = Qk

12u
0
,x +Qk

26(u
0
,y + v0,x) +Qk

22v
0
,y − z(Qk

12w,xx + 2Qk
26w,xy +Qk

22w,yy) (2.34)

σk
xy = Qk

16u
0
,x +Qk

66(u
0
,y + v0,x) +Qk

26v
0
,y − z(Qk

16w,xx + 2Qk
66w,xy +Qk

26w,yy) (2.35)
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2.6 Governing Equation in Terms of a stress function and transverse
displacement

For certain static and dynamic problems, where the in-plane inertia terms can be neglected, a stress function
formulation of the in-plane loading can be defined using a stress function Φ such that,

Nx = Φ,yy Ny = Φ,xx Nxy = −Φ,xy (2.36)

Equation 2.9 and 2.10 are exactly satisfied by equation 2.36. Using an abbreviated form of equation 2.18;

N

M

 =

A B

B D

ϵ0
κ

 (2.37)

Equation 2.37 can be rewritten as,

ϵ0

M

 =

 A∗ B∗

(−B∗)T D∗

N
κ

 (2.38)

where the superscript T denotes a transpose matrix, and

A∗ = A−1 B∗ = −A−1B D∗ = D −BA−1B (2.39)

In the general A∗ and D∗ are symmetric while B∗ is not. Substituting equation 2.38 into equation 2.16, and
neglecting in plane force effects, yields,

D∗
11w,xxxx + 4D∗

16w,xxxy + (2D∗
12 + 4D∗

66)w,xxyy + 4D∗
26w,yyyx +D∗

22w,yyyy +B∗
21Φ,xxxx + (2B∗

26 −B∗
61)Φ,xxxy+

(B∗
11 +B∗

22 − 2B∗
66)Φ,xxyy + (2B∗

16 −B∗
62)Φ,yyyx +B∗

12Φ,yyyy + 2(
∂D∗

16

∂y
+

∂D∗
11

∂x
)w,xxx+

(6
∂D∗

16

∂x
+ 2

∂D∗
12

∂y
+ 4

∂D∗
66

∂y
)w,xxy + 2(

∂D∗
22

∂y
+

∂D∗
26

∂x
)w,yyy + (2

∂D∗
12

∂x
+ 4

∂D∗
66

∂x
+ 6

∂D∗
26

∂y
)w,yyx+

(
∂2D∗

12

∂y ∂y
+ 2

∂2D∗
16

∂x ∂y
+

∂2D∗
11

∂x ∂x
)w,xx + (2

∂2D∗
26

∂y ∂y
+ 4

∂2D∗
66

∂x ∂y
+ 2

∂2D∗
16

∂x ∂x
)w,xy + (

∂2D∗
22

∂y ∂y
+ 2

∂2D∗
26

∂x ∂y
+

∂2D∗
12

∂x ∂x
)w,yy+

2(
∂B∗

26

∂y
+

∂B∗
21

∂x
)Φ,xxx + 2(

∂B∗
26

∂x
− ∂B∗

61

∂x
+

∂B∗
22

∂y
− ∂B∗

66

∂y
)Φ,xxy + 2(

∂B∗
12

∂y
+

∂B∗
16

∂x
)Φ,yyy+

2(
∂B∗

11

∂x
− ∂B∗

66

∂x
+

∂B∗
16

∂y
− ∂B∗

62

∂y
)Φ,yyx + (

∂2B∗
22

∂y ∂y
+ 2

∂2B∗
26

∂x ∂y
+

∂2B∗
21

∂x ∂x
)Φ,xx − (

∂2B∗
62

∂y ∂y
+ 2

∂2B∗
66

∂x ∂y
+

∂2B∗
61

∂x ∂x
)Φ,xy+

(
∂2B∗

12

∂y ∂y
+ 2

∂2B∗
16

∂x ∂y
+

∂2B∗
11

∂x ∂x
)Φ,yy = q

(2.40)

Equation 2.6 involves two unknowns; thus a second relationship is necessary. So, the strain-displacement
equations [20] is given as,

ϵ0x,yy + ϵ0y,xx − ϵ0xy,xy = 0 (2.41)

Substituting equation 2.38 into equation 2.41 and taking into account Equation 2.36 and equation 2.4 leads
to following compatibility equation,
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A∗
22Φ,xxxx − 2A∗

26Φ,xxxy + (2A∗
12 +A∗

66)Φ,xxyy − 2A∗
16Φ,yyyx +A∗

11Φ,yyyy −B∗
21w,xxxx + (B∗

61 − 2B∗
26)w,xxxy+

(2B∗
66 −B∗

22 −B∗
11)w,xxyy + (B∗

62 − 2B∗
16)w,yyyx −B∗

12w,yyyy + (
∂B∗

61

∂y
− 2

∂B∗
21

∂x
)w,xxx+

(
∂B∗

61

∂x
− 4

∂B∗
26

∂x
− 2

∂B∗
11

∂y
+ 2

∂B∗
66

∂y
)w,xxy − (2

∂B∗
12

∂y
− ∂B∗

62

∂x
)w,yyy+

(2
∂B∗

66

∂x
− 2

∂B∗
22

∂x
− 4

∂B∗
16

∂y
+

∂B∗
62

∂y
)w,yyx − (

∂2B∗
11

∂y ∂y
− ∂2B∗

61

∂x ∂y
+

∂2B∗
21

∂x ∂x
)w,xx−

2(
∂2B∗

16

∂y ∂y
− ∂2B∗

66

∂x ∂y
+

∂2B∗
26

∂x ∂x
)w,xy − (

∂2B∗
12

∂y ∂y
− ∂2B∗

62

∂x ∂y
+

∂2B∗
22

∂x ∂x
)w,yy − (

∂A∗
26

∂y
− ∂A∗

22

∂x
)Φ,xxx+

(2
∂A∗

12

∂y
− 3

∂A∗
26

∂x
+

∂A∗
66

∂y
)Φ,xxy + (2

∂A∗
11

∂y
− ∂A∗

16

∂x
)Φ,yyy + (2

∂A∗
12

∂x
+

∂A∗
66

∂x
− 3

∂A∗
16

∂y
)Φ,yyx+

(
∂2A∗

12

∂y ∂y
− ∂2A∗

26

∂x ∂y
+

∂2A∗
22

∂x ∂x
)Φ,xx − (

∂2A∗
16

∂y ∂y
− ∂2A∗

66

∂x ∂y
+

∂2A∗
26

∂x ∂x
)Φ,xy + (

∂2A∗
11

∂y ∂y
− ∂2A∗

16

∂x ∂y
+

∂2A∗
12

∂x ∂x
)Φ,yy = 0

(2.42)

The moment resultants are obtained from the constitutive relations as shown in equation 2.38:

Mx = − (B∗
21Φ,xx −B∗

61Φ,xy +B∗
11Φ,yy +D∗

11w,xx + 2D∗
16w,xy +D∗

12w,yy) (2.43)

My = − (B∗
22Φ,xx −B∗

62Φ,xy +B∗
12Φ,yy +D∗

12w,xx + 2D∗
26w,xy +D∗

22w,yy) (2.44)

Mxy = − (B∗
26Φ,xx −B∗

66Φ,xy +B∗
16Φ,yy +D∗

16w,xx + 2D∗
66w,xy +D∗

26w,yy) (2.45)

And, from equations 2.14,2.14, and 2.6 the following shear resultants are obtained:

Qx = −[B∗
21Φ,xxx + (B∗

26 −B∗
61)Φ,xxy + (B∗

11 −B∗
66)Φ,yyx +B∗

16Φ,yyy+

D∗
11w,xxx + 3D∗

16w,xxy + (D∗
12 + 2D∗

66)w,yyx +D∗
26w,yyy+

(
∂D∗

16

∂y
+

∂D∗
11

∂x
)w,xx + 2(

∂D∗
66

∂y
+

∂D∗
16

∂x
)w,xy + (

∂D∗
26

∂y
+

∂D∗
12

∂x
)w,yy+

(
∂B∗

26

∂y
+

∂B∗
21

∂x
)Φ,xx − (

∂B∗
66

∂y
+

∂B∗
61

∂x
)Φ,xy + (

∂B∗
16

∂y
+

∂B∗
11

∂x
)Φ,yy]

(2.46)

Qy = −[B∗
26Φ,xxx + (B∗

22 −B∗
66)Φ,xxy + (B∗

16 −B∗
62)Φ,yyx +B∗

12Φ,yyy+

D∗
16w,xxx + (D∗

12 + 2D∗
66)w,xxy + 3D∗

26w,yyx +D∗
22w,yyy+

(
∂D∗

12

∂y
+

∂D∗
16

∂x
)w,xx + 2(

∂D∗
26

∂y
+

∂D∗
66

∂x
)w,xy + (

∂D∗
22

∂y
+

∂D∗
26

∂x
)w,yy+

(
∂B∗

22

∂y
+

∂B∗
26

∂x
)Φ,xx − (

∂B∗
62

∂y
+

∂B∗
66

∂x
)Φ,xy + (

∂B∗
12

∂y
+

∂B∗
16

∂x
)Φ,yy]

(2.47)
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2.7 Stability of Variable stiffness composite Plates

In the two previous sections it was assumed that no large external in-plane forces were applied to the plate.
However, plate buckling occurs only under large in-plane loads. Thus a stability analysis must include the
effect of in-plane forces on plate bending. If equation 2.16 is used in its present form, then for unsymmetrical
laminates (Bij ̸= 0) the problem becomes nonlinear. Since our concept of a critical buckling load is based on
a linear analysis, an altered form of equation 2.16 must be obtained. This can be done in a manner directly
analogous to procedures in classical shell theory.

Consider the displacement field,

u0 = u0i + λu0 v0 = v0i + λv0 w = wi + λw (2.48)

where the superscript i denotes the pre-buckling displacements and λ is an infinitesimally small perturbation.
Therefore, a critical load is sought which causes an infinitesimally small shift in the equilibrium position. In
classical stability theory this is referred to as the “Adjacent equilibrium method”. Using equation 2.48 in
conjunction with the constitutive relations given in equation 2.37 leads to the following matrix equations,

N = Aϵ0i +Bκi + λ(Aϵ+Bκ) = N i + λN

M = Bϵ0i +Dκi + λ(Bϵ+Dκ) = M i + λM
(2.49)

Substituting, equation 2.48 and 2.49 into equation 2.16, collecting terms of like powers in λ, and neglecting
second order terms in λ leads to the following post-buckling equation,

Mx,xx + 2Mxy,xy +My,yy +N i
xw,xx +Nxw

i
,xx + 2N i

xyw,xy + 2Nxyw
i
,xy +N i

yw,yy +Nyw
i
,yy + q = 0 (2.50)

Since wi, Ny, and N i are obtained from the solutions for the initial equilibrium position equation 2.50 is
linear. However difficulty is still encountered as the nonlinear version of equation 2.16 is used to determine the
initial configuration. A common simplification can be introduced by using linear theory to determine solutions
corresponding to the initial equilibrium position. This assumption is the distinguishing feature of a linear
stability analysis. Since the initial configuration is determined from linear theory, the terms in equation 2.50
containing initial curvatures can be neglected. Thus equation 2.50 becomes,

Mx,xx + 2Mxy,xy +My,yy +N i
xw,xx + 2N i

xyw,xy +N i
yw,yy + q = 0 (2.51)

For the displacement formulation of the stability problem, the governing Equations include 2.22 and 2.23.
Taking 2.51 into account. Equation 2.24 becomes,

D11w,xxxx + 4D16w,xxxy + (2D12 + 4D66)w,xxyy + 4D26w,yyyx +D22w,yyyy −B11u
0
,xxx − 3B16u

0
,xxy−

(B12 + 2B66)u
0
,yyx −B26u

0
,yyy −B16v

0
,xxx − (B12 + 2B66)v

0
,xxy − 3B26v

0
,yyx −B22v

0
,yyy − 2(

∂B16

∂y
+

∂B11

∂x
)u0

,xx−

(4
∂B16

∂x
+ 2

∂B12

∂y
+ 2

∂B66

∂y
)u0

,xy − 2(
∂B26

∂y
+

∂B66

∂x
)u0

,yy − 2(
∂B66

∂y
+

∂B16

∂x
)v0,xx − (2

∂B12

∂x
+ 2

∂B66

∂x
+ 4

∂B26

∂y
)v0,xy−

2(
∂B22

∂y
+

∂B26

∂x
)v0,yy + 2(

∂D16

∂y
+

∂D11

∂x
)w,xxx + (6

∂D16

∂x
+ 2

∂D12

∂y
+ 4

∂D66

∂y
)w,xxy + 2(

∂D22

∂y
+

∂D26

∂x
)w,yyy+

(2
∂D12

∂x
+ 4

∂D66

∂x
+ 6

∂D26

∂y
)w,yyx − (

∂2B12

∂y ∂y
+ 2

∂2B16

∂x ∂y
+

∂2B11

∂x ∂x
)u0

,x − (
∂2B26

∂y ∂y
+ 2

∂2B66

∂x ∂y
+

∂2B16

∂x ∂x
)u0

,y−

(
∂2B26

∂y ∂y
+ 2

∂2B66

∂x ∂y
+

∂2B16

∂x ∂x
)v0,x − (

∂2B22

∂y ∂y
+ 2

∂2B26

∂x ∂y
+

∂2B12

∂x ∂x
)v0,y + (

∂2D12

∂y ∂y
+ 2

∂2D16

∂x ∂y
+

∂2D11

∂x ∂x
)w,xx+

(2
∂2D26

∂y ∂y
+ 4

∂2D66

∂x ∂y
+ 2

∂2D16

∂x ∂x
)w,xy + (

∂2D22

∂y ∂y
+ 2

∂2D26

∂x ∂y
+

∂2D12

∂x ∂x
)w,yy = N i

xw,xx + 2N i
xyw,xy +N i

yw,yy + q

(2.52)

For the stress function formulation the governing Equations include 2.6 and2.6 which becomes, after taking
2.51 into account,
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D∗
11w,xxxx + 4D∗

16w,xxxy + (2D∗
12 + 4D∗

66)w,xxyy + 4D∗
26w,yyyx +D∗

22w,yyyy +B∗
21Φ,xxxx+

(2B∗
26 −B∗

61)Φ,xxxy + (B∗
11 +B∗

22 − 2B∗
66)Φ,xxyy + (2B∗

16 −B∗
62)Φ,yyyx +B∗

12Φ,yyyy+

2(
∂D∗

16

∂y
+

∂D∗
11

∂x
)w,xxx + (6

∂D∗
16

∂x
+ 2

∂D∗
12

∂y
+ 4

∂D∗
66

∂y
)w,xxy + 2(

∂D∗
22

∂y
+

∂D∗
26

∂x
)w,yyy+

(2
∂D∗

12

∂x
+ 4

∂D∗
66

∂x
+ 6

∂D∗
26

∂y
)w,yyx + (

∂2D∗
12

∂y ∂y
+ 2

∂2D∗
16

∂x ∂y
+

∂2D∗
11

∂x ∂x
)w,xx+

(2
∂2D∗

26

∂y ∂y
+ 4

∂2D∗
66

∂x ∂y
+ 2

∂2D∗
16

∂x ∂x
)w,xy + (

∂2D∗
22

∂y ∂y
+ 2

∂2D∗
26

∂x ∂y
+

∂2D∗
12

∂x ∂x
)w,yy + 2(

∂B∗
26

∂y
+

∂B∗
21

∂x
)Φ,xxx+

2(
∂B∗

26

∂x
− ∂B∗

61

∂x
+

∂B∗
22

∂y
− ∂B∗

66

∂y
)Φ,xxy + 2(

∂B∗
12

∂y
+

∂B∗
16

∂x
)Φ,yyy+

2(
∂B∗

11

∂x
− ∂B∗

66

∂x
+

∂B∗
16

∂y
− ∂B∗

62

∂y
)Φ,yyx + (

∂2B∗
22

∂y ∂y
+ 2

∂2B∗
26

∂x ∂y
+

∂2B∗
21

∂x ∂x
)Φ,xx−

(
∂2B∗

62

∂y ∂y
+ 2

∂2B∗
66

∂x ∂y
+

∂2B∗
61

∂x ∂x
)Φ,xy + (

∂2B∗
12

∂y ∂y
+ 2

∂2B∗
16

∂x ∂y
+

∂2B∗
11

∂x ∂x
)Φ,yy = N i

xw,xx + 2N i
xyw,xy +N i

yw,yy + q

(2.53)

Equations 2.52 and 2.53, are the two governing differential equations for the stability of a VS plate. These
equations provide a general formulation, and can be simplified for specific cases, like symmetric laminates where
[Bij ] = 0. The constant stiffness cases is obtained by setting the derivative of [A], [B], [D] to zero.

2.8 Boundary Value Problem

In this thesis a simply supported composite plate under uni-axial loading is optimized for the buckling load.
The dimension of the plate are aXb = 1000mmX1000mm result in unit aspect ratio(R = 1).The unidirectional
carbon-epoxy IM7-8552 lamina [13] was selected as a for present study where properties of the material is given
in the Table 2.1. The composite plate is made up of 8-ply laminates as shown in Figure 2.3b. The loading and
boundary condition are shown in Figure 2.3a.

(a) Plate under uni-axial compression load

(b) Stack-up of the laminate plate under
consideration

Figure 2.3: Boundary value problem under investigation

Modulus, E(MPa) Poisson’s ratio, v(-) Shear Modulus, G(MPa) Ply thickness, tply(mm)

E1 171,420 v12 0.32 G12 5290 0.125
E2 9080 v13 0.32 G13 5290
E3 9080 v23 0.5 G23 3974

Table 2.1: Material properties of IM7-8552.

The Loading boundary condition can be written mathematically as,
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Nx = 1N/mm,Nxy = 0 (on x=0,a) (2.54)

Ny = 0, Nxy = 0 (on y=0,b) (2.55)

And since, plate under study is simply supported, the essential and natural boundary condition can be written
mathematically as,

w = 0,Mx = 0,Mxy = 0,Mz = 0 (on x=0,a) (2.56)

w = 0,My = 0,Mxy = 0,Mz = 0 (on y=0,b) (2.57)
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Chapter 3

Buckling Load Optimization of CS
composite plate using FEM

As a first step, the case of constant stiffness (CS) composite plate was studied. The aim of this study is to;
first establish a finite element framework and perform mesh convergence. Second, to verify Genetic Algorithm
(GA) [5] (refer Appedix-A) optimization method against analytical closed form solution. Third, to establish a
benchmark buckling load to assess performance of variable stiffness plate.

3.1 Stability of Constant stiffness Plates

The derivation follows the procedure outlined by Whitney [20]. Consider a simply-supported bi-axially com-
pressed, constant stiffness angle-ply laminated plate, with following boundary condition,

For, x = 0:

u0 = 0, Nxy = 0, w = 0,Mx = 0 (3.1)

For, x = a:

u0 = C1, Nxy = 0, w = 0,Mx = 0 (3.2)

For, y = 0:

v0 = 0, Nxy = 0, w = 0,My = 0 (3.3)

For, y = b:

v0 = C2, Nxy = 0, w = 0,My = 0 (3.4)

For this particular case, stability equation can be solved into a closed form solution [20] where initial
pre-buckling displacement field is assumed to be linear functions,

u0i =
c1
a
x v0i =

c2
b
y wi = 0 (3.5)

which satisfy all the boundary condition simultaneously for q = 0. The constant c1 and c2 are determined
by assuming

N i
x = −N0 = constant N i

y = −kN0, N0 > 0 (3.6)

where k is a load proportionality constant in case of bi-axial loading. Substituting equation (3.5-3.6) into
equation (2.25-2.26) c1 and c2 can be determined as follows,
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c1 =
(A12k −A22)N0

A11A22 −A2
12

c2 =
(A12k −A11)N0

A11A22 −A2
12

(3.7)

The post-buckling equations can be determined using Equation (2.22-2.23) and equation 2.52 for constant
stiffness laminate as,

A11u
0
,xx +A66u

0
,yy + (A12 +A66)v

0
,xy − 3B16w,xxy −B26w,yyy = 0 (3.8)

similarly,

(A12 +A66)u
0
,xy +A66v

0
,xx +A22v

0
,yy −B16w

0
,xxx − 3B26w,yyx = 0

(3.9)

and,

D11w,xxxx + (2D12 + 4D66)w,xxyy +D22w,yyyy − 3B16u
0
,xxy −B26u

0
,yyy

−B16v
0
,xxx − 3B26v

0
,yyx −B22v

0
,yyy +N0(w,xx + kw, yy) = 0

(3.10)

Equation(3.8-??) and boundary condition equation(3.1-3.4) are satisfied by following displacement field,

u0 = Asin(
mπx

a
)cos(

nπy

b
)

v0 = Bcos(
mπx

a
)sin(

nπy

b
)

w = Csin(
mπx

a
)sin(

nπy

b
)

(3.11)

After substituting equation 3.11 into equations(3.8-??) and collecting like terms leads to following homoge-
neous equation


Amn Bmn Cmn

Bmn Dmn Emn

Cmn Emn (Fmn − λ)

 =


0

0

0

 (3.12)

In order to solve Equation 3.12, and to obtain non-trivial solution, the determinant of the matrix should be
zero. Equating the determinant of the matrix to zero, the equation of λ and ultimately buckling load N0 can
be found in closed form,

N0 =
π2

R2b2(m2 + kn2R2)
[D11m

4 + 2(D12 + 2D66)m
2n2R2 +D22n

4R4]

− 1

J1
[m(B16m

2 + 3B26n
2R2)J2 + nR(3B16m

2 +B26n
2R2)J3]

(3.13)

where,

J1 = (A11m
2 +A66n

2R2)(A66m
2 +A22n

2R2)− (A12 +A66)
2m2n2R2

J2 = (A11m
2 +A66n

2R2)(B16m
2 + 3B26n

2R2)− n2R2(A12 +A66)(3B16m
2 + 3B26n

2R2)

J3 = (A66m
2 +A22n

2R2)(3B16m
2 +B26n

2R2)− n2R2(A12 +A66)(B16m
2 + 3B26n

2R2)

(3.14)

The buckling load for uni-axial load case can be found by setting k = 0. In the above equation, the following
observations can be made; first, the maximum load is obtained when the second term in the equation is less
than or equal to zero. The second term is equal to zero when B16 = B26 = 0, which indicates that maximum
buckling load is achieved for symmetric laminates.
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3.2 FEM Mesh Convergence Study

A square plate of size 1000mm x 1000mm is considered with applied in-plane uni-axial compressive load as
illustrated in the Figure 3.1. The plate is simply supported on all the edges and The unidirectional carbon-
epoxy IM7-8552 was selected for the present study where properties of the material is given in Table-2.1 [13].

Figure 3.1: Plate under uni-axial compression load
FEM stress-element M× N= 15×15

The Finite element procedure is an eigenvalue problem of form [16],

[
K − λiG

]
vi = 0 (3.15)

where, K is assembled stiffness matrix, G is geometric stiffness matrix, vi is i′th eigenvector associated with
i′th eigenvalue, from which lowest eigenvalue is sought for critical buckling load. A 8-ply composite plate with
quasi-isotropic symmetric laminate [0 45 90 − 45]s, was modeled in a commercial FEA software Abaqus [18]
with boundary and loading condition, shown in Figure 3.1. The plate was discretized along x and y (mesh
M × N) respectively using S4 element, which is a 4-node quadrilateral conventional shell element with full
integration scheme. The convergence study of the buckling load vs mesh size are shown in Table-3.1.

Mesh(M × N) Buckling Load(N/mm), N0 Decrease(%)

5×5 0.21378 -
10×10 0.20305 5.019
15×15 0.20114 0.94
20×20 0.20045 0.343

Table 3.1: Mesh convergence study of the buckling load N0

The convergence study shown above, indicates that the plate with mesh(15×15) has sufficiently converged
(0.94% variation), hence was chosen as the minimum mesh size for further analysis and optimization in all
case.

3.3 Optimization Results

To set the reference buckling load and to verify the GA-based optimization approach, a study on maximum
buckling load of a constant stiffness plate was conducted. A brief note on GA is provided in Appendix-A. Here
again, an eight ply composite was modeled in FEM, where the angles of each ply are the optimization variable.
The optimization problem can be written as;

min− λ(θk) ∀ θk ∈ [−90, 90], k = 1, 2, ..8 (3.16)

Parameters for GA [5] algorithms are shown in Table-3.2. For optimization, two cases were studied. First,
where the minimum step size of angle variation was kept to 1◦. Second, where the variation was fixed at 45◦.
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For the optimization, at each iteration the FEM model was call and evaluated. The buckling load is then
post processed and the results are fed to the GA routine. The complete process is automated using python
scripting.

GA Parameter Value

Generation 40
Population 150

Mutation Probability 0.2 (20%)
Crossover Probability 0.5 (50%)

Crossover type Uniform
Parents Portion 0.3 (30%)

Elit ratio 0.01 (1%)
Variable bound [−90◦, 90◦]

Table 3.2: GA Parameters for the optimization of CS Plate

By tracking the GA parameter population, it is possible to see the evolution of ABD matrices. Figures
3.2,3.3 and 3.4, show the GA function evaluation parameters versus the buckling load. It can be noticed from
that GA tries to make all element of [Bij ] and D26 and D16 zero. This observation is also evident from Equation
3.13 which shows that buckling load would be higher if these elements of [ABD] matrix are zero. Also it can
be noted that, D12 and D26 evolves to maximum which can be reasoned from Equation 3.13 as buckling load is
proportional to these two parameters. From this optimization study, it can be concluded that, to get laminate
which gives high buckling load, it at-least need to be symmetric which means [Bij ] should be zero.

(a) A11 (b) A12 (c) A16

(d) A22 (e) A26 (f) A66

Figure 3.2: GA Evolution plot of [Aij ]
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(a) B11 (b) B12 (c) B16

(d) B22 (e) B26 (f) B66

Figure 3.3: GA Evolution plot of [Bij ]

(a) D11 (b) D12 (c) D16

(d) D22 (e) D26 (f) D66

Figure 3.4: GA Evolution plot of [Dij ]

Table 3.3, lists the optimization results for the two cases. From the results, it can be concluded that among
all the possible laminates balanced anti-symmetric layup (layup [-45 45 45 -45 45 -45 -45 45]) is the best for
the buckling. Since, there is an analytical-closed form solution for the constant stiffness composite laminate
as shown in Section 3.2, the optimized buckling load achieved using FEM can also be verified. The analytical
solution is found by setting Bij = D26 = D16 = 0 (balanced-anti symmetric) in equation 3.13, to get the closed
form solution 3.3. The result of the closed form solution is also listed in table 3.3.

N0 =
π2

R2b2(m2 + kn2R2)
[D11m

4 + 2(D12 + 2D66)m
2n2R2 +D22n

4R4]

(3.17)
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Layup Type Variable Steps(◦) (GA) Optimized Result Buckling Load(N/mm), N0

Test:1 General 1 [-44 46 42 -44 43 -46 -43 45] 0.2998
Test:2 General 45 [-45 45 45 -45 45 -45 -45 45] 0.3007

Eqn 3.16 General - [-45 45 45 -45 45 -45 -45 45] 0.2985

Table 3.3: Optimized buckling load for CS Plate.

Figure 3.5 and Figure 3.6 shows the comparison of first two buckling mode are compared calculated using
FEM and Analytical method .

(a) FEM(stress− element : 15X15)
(Eigenvalue = 0.3007)

(b) Analytical solution
(Eigenvalue = 0.2985)

Figure 3.5: First Buckling-mode comparison: FEM Vs Analytical

(a) FEM(stress− element : 15X15)
(Eigenvalue = 0.4013)

(b) Analytical solution
(Eigenvalue = 0.3950)

Figure 3.6: Second Buckling-mode comparison: FEM Vs Analytical

3.4 Summary

From the analysis of constant stiffness plate, the following can be summarized. First, the maximum mesh
size to obtain a converged solution is 15. Second, the optimum ply stack up for a constant stiffness plate is a
balanced anti-symmetric [-45 45 45 -45 45 -45 -45 45]. Third, the optimization results using GA is reasonable
and is verified using closed form solution.
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Chapter 4

Buckling Load Optimization Of VS
Composite Plate using FEM

The first approach taken to study the buckling of variable stiffness composite is using a FEM framework, where
in the spatial variation of angle is provided as an input at each integration point. The question then becomes of
how the angles are to be distributed across the plies. The most general approach would be to randomly define
fiber angles θk(x, y) at centroidal location of each FEM stress-mesh element, as shown in Figure(2.1). However
the main problem with this approach is large number of input or control parameters ( fiber angle θ(x, y) for each
stress-mesh element in each ply ) for the optimization. Also randomness of fiber angle distribution can causes
high stiffness discontinuity between two adjacent elements which may causes error in FEM approximation.
Additionally, fiber angle distribution for each ply would be impossible to manufacture using AFP.

Figure 4.1: Random fiber angle distribution for Kth ply.

This problem can be addressed by using interpolation technique which reduce the number of input or
control parameters for the optimization. There may be many techniques for the interpolation however, in
this thesis, the fiber steering are achieved using Lagrangian interpolation where the domain of each ply is
meshed using very coarse mesh which is called as MM (Manufacturing Mesh) and this interpolation framework
is referred as MFEM(manufacturing finite element mesh)-framework [3]. The MFEM approach helps to reduce
the optimization parameters by using fine stress-mesh for FEM calculations and coarser Manufacturing-mesh
to obtain optimum fiber path throughout the domain independently.

In this section, the MFEM framework is described, followed by buckling load optimization studies for
the different cases of variable stiffness composite plate. First study is on the buckling load optimization for
univariate variable stiffness composite plate (fiber angle or direction as a function of x or y ) is performed.
Later, bivariate variable stiffness composite plate (fiber angle or direction as a function of both x and y) is
optimized for the buckling using Genetic Algorithm (GA) and BFGS algorithm.
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4.1 MFEM-Framework

A manufacturing mesh is a coarse 4-nodes quadrilateral element with only 1 degree of freedom per node per
ply which represents fiber direction or angle θ(x, y) in kth ply at jth node. The fiber direction at the jth node
are then used to obtain the fiber direction or angle at the centroidal location of the stress-mesh elements which
falls in the domain of each manufacturing mesh element. Consider the Figure 4.2, where stress-mesh is shown
in green with centroids in black and manufacturing-mesh is shown red with angle at each node in black. Figure
4.3 shows the enlarged representation of eth manufacturing-mesh element of kth ply having angles θe1 to θe4 at
the respective nodes and centroids of all the stress-mesh elements which falls in it’s domain.

Figure 4.2: Manufacturing-Mesh with stress-
mesh for kth ply.

Figure 4.3: eth Manufacturing mesh element
of kth ply.

The fiber directions of the manufacturing-mesh element at each node are interpolated at the centroidal
location of stress-mesh elements using set of four Lagrangian’s interpolation functions which are,

N1 =
1

4ab
(x− x2)(y − y4)

N2 =
1

4ab
(x− x1)(y − y3)

N3 =
1

4ab
(x− x4)(y − y2)

N4 =
1

4ab
(x− x3)(y − y1)

(4.1)

where,

a =
x2 − x1

2
b =

y2 − y1
2

(4.2)

subsequently, the fiber direction or angle θ(x, y) at the centroid located at (x, y) can be given as,

θe,k(x, y) =

4∑
j=1

N
(e)
j θe,kj (4.3)

here, fiber direction θe,kj at each nodal point of manufacturing-mesh elements are design variables for the

optimization. Once, the fiber direction θe,kj from the nodal point of manufacturing-mesh element are mapped at
the centroidal location of the stress-mesh element, FEM calculations such as stresses, strains and displacements
are performed.
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4.2 Univariate variable stiffness composite plate

When fiber angle distribution, throughout the domain of plate, is a function of only x, it results in stiffness
as a function of variable x. Similarly for fiber angle distribution as a function of y. Univariate fiber angle
distribution as a function of x can be achieved using following linear equation provided by Gurdal et al [8],

θ(x) =
2(T1 − T0)

a
|x|+ T0 (4.4)

Similarly, univariate fiber angle distribution as a function of y can be given as,

θ(y) =
2(T1 − T0)

a
|y|+ T0 (4.5)

Where, < T0, T1 > is a set of initial and final angle of the fiber distribution.

4.2.1 Stiffness as a function of-x

To achieve the fiber angle as a function of x, only a 2×2 manufacturing-mesh is needed where T0 are the
angles at the nodes in the centers and T1 are the angles at the left and right and edges of the plate as shown
in Figure 5.1. Here, balanced anti-symmetric 8-ply laminate [± < T0, T1 > ∓ < T0, T1 >2 ± < T0, T1 >]
(A16 = A26 = D16 = D26 = Bij = 0 ) is chosen, which results in only two input parameters for the optimization.
Since, there are only two input variables T0 and T1, the results can be plotted and the maximum buckling load
can be ontained graphically, negating the requirement for optimization algorithm. The bound for each input
parameters are [0◦, 90◦] at 3◦ steps.

Figure 4.4 represents the plot of buckling load for different combination of T0 and T1. The plot is shown
for T0 at 6◦ steps for convenience. It can be concluded form the plot that buckling load is highest for < T0,
T1 > = < 3◦, 54◦ > at 0.3249 N/mm. The corresponding fiber angle distribution θ(x) for < 3◦, 54◦ > is
shown in Figure 4.6 and first two buckling mode for the optimized laminate are shown in Figure 4.7 . Note
that, optimized buckling load is 8.05% higher as compared to the optimum buckling load of constant stiffness
composite plate.
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(a) For 0◦ ≤ T0 ≤ 42◦

(b) For 48◦ ≤ T0 ≤ 90◦

Figure 4.4: Buckling load vs Angle θ(x) =< T0, T1 >
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Figure 4.5: Angle variation θ(x) using
MFEM-framework.

Figure 4.6: Optimized fiber Angle distribu-
tion θ(x) < 3◦, 54◦ >,

(a) BucklingMode : 1(Eigenvalue = 0.3249) (b) BucklingMode : 2(Eigenvalue = 0.5014)

Figure 4.7: Buckling Mode of optimized Univariate variable stiffness when θ(x)

4.2.2 Stiffness as a function of-y

Similarly, to achieve the fiber angle as a function of y, only 2×2 manufacturing-mesh is needed where T0 are
the angles at the nodes which are at the centers and T1 are the angles at the top and bottom and edges of the
plate as shown in Figure 4.9.

Figure 4.8 represents the plot of buckling load for different combination of T0 and T1. The plot is shown
for T0 at 6◦ steps for convenience. It can be concluded form the plot that buckling load is highest for < T0,
T1 > = < 66◦, 27◦ > which is 0.3968 N/mm. The fiber angle distribution θ(y) for < 66◦, 27◦ > is shown in
Figure 4.10 for the top ply and and first two buckling mode for the optimized laminate are shown in Figure
4.11. Also note that optimized buckling load is 31.96% higher as compared to the optimum buckling load of
constant stiffness composite plate.
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(a) For 0◦ ≤ T0 ≤ 42◦

(b) For 48◦ ≤ T0 ≤ 90◦

Figure 4.8: Buckling load vs Angle θ(y) =< T0, T1 >

Figure 4.9: Angle variation θ(y) using MM-
framework.

Figure 4.10: Optimized fiber Angle distribu-
tion θ(y) < 66◦, 27◦ >,
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(a) BucklingMode : 1(Eigenvalue = 0.3968) (b) BucklingMode : 2(Eigenvalue = 0.3989)

Figure 4.11: Buckling Mode of optimized unidirectional variable stiffness when θ(y)

4.3 Bivariate variable stiffness composite plate : Using GA

In this section, bivariate stiffness composite plate is optimized for buckling using MFEM-framework for dif-
ferent number of manufacturing-mesh. To achieve bivariate variable stiffness composite plate, each nodes of
manufacturing-mesh elements in each ply needs to be treated independently as an input which results in bi-
variate distribution of fiber directions or angle θ(x, y). Here, the layup to be optimized for the buckling load is
8-ply symmetric layup (Bij = 0 thought the plate domain) which means only 4-ply(either from top or bottom
of the laminate) needs to be meshed using manufacturing-mesh to keep minimum number of input parameters
for the optimization. Since input parameters associated with this optimization is large, optimization using
different combination of this parameters is not preferable. Also, there could be many local minimum(local
optimal solution for the buckling load) possible, optimization using Gradient-decent(GD) may not give the
global optimum(Global optimal solution for the buckling load). Therefore, Genetic-algorithm(GA) used for the
optimization in this case which is elite in finding global optimal solution.

Here, three different cases of manufacturing-mesh sizes, 2×2,3×3, and 5×5 are chosen to discretize 4-ply for
the optimization of the buckling load of the 8-ply symmetric layup. There are 36, 64 and 144 input parameters
for optimization using 2×2,3×3, and 5×5 manufacturing mesh respectively. The GA Parameter taken for all
the three cases are shown in Table-4.1. The population size taken in case of 5×5 manufacturing mesh double
the population size taken in case of 2×2 and 3×3 manufacturing mesh as the number of input parameter in
case of 5×5 manufacturing mesh is large.

GA Parameter Value

Generation 100
Population 600 (For MM:2×2 & MM:3×3)
Population 1200 (For MM:5×5)

Mutation Probability 0.2 (20%)
Crossover Probability 0.5 (50%)

Crossover type Uniform
Parents Portion 0.3 (30%)

Elit ratio 0.01 (1%)
Variable Bound [−90◦, 90◦]

Table 4.1: GA Parameters for the Optimization of buckling load of bivariate VS composite Plate .

The input parameters for 2×2,3×3, and 5×5 manufacturing mesh for kth ply is shown in Figure 4.12. Also,
convergence plot of the optimization using GA for all the three cases are shown in Figure 4.13,
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(a) For Manufacturing Mesh : 2×2 (b) For Manufacturing Mesh : 3×3

(c) For Manufacturing Mesh : 5×5

Figure 4.12: Input Parameters for kth ply

(a) For Manufacturing Mesh : 2×2 (b) For Manufacturing Mesh : 3×3

(c) For Manufacturing Mesh : 5×5

Figure 4.13: GA convergence graph
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4.3.1 Optimized Results Comparison : Ply

In this section, the optimized fiber angle or direction for optimized buckling load are compared for each ply as
shown in Figure 4.14-4.17. It can be noticed from the fiber angle distribution that, fiber angles are arranged in
approximately -45◦ or 45◦ angle away from the center of the plate. The results(S-shaped fiber angle distribution)
are similar to Tatting and Gurdal [11] but due to GA is poor in searching converged solution, the optimal
distribution of fiber angle θ(x, y) is not converged.

(a) Manufacturing Mesh : 2×2 (b) Fiber angle distribution MM: 2×2

(c) Manufacturing Mesh : 3×3 (d) Fiber angle distribution MM: 3×3

(e) Manufacturing Mesh : 5×5 (f) Fiber angle distribution MM: 5×5

Figure 4.14: Optimized result Comparison of: Ply-1
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(a) Manufacturing Mesh : 2×2 (b) Fiber angle distribution MM: 2×2

(c) Manufacturing Mesh : 3×3 (d) Fiber angle distribution MM: 3×3

(e) Manufacturing Mesh : 5×5 (f) Fiber angle distribution MM: 5×5

Figure 4.15: Optimized result Comparison of: Ply-2
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(a) Manufacturing Mesh : 2×2 (b) Fiber angle distribution MM: 2×2

(c) Manufacturing Mesh : 3×3 (d) Fiber angle distribution MM: 3×3

(e) Manufacturing Mesh : 5×5 (f) Fiber angle distribution MM: 5×5

Figure 4.16: Optimized result Comparison of: Ply-3
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(a) Manufacturing Mesh : 2×2 (b) Fiber angle distribution MM: 2×2

(c) Manufacturing Mesh : 3×3 (d) Fiber angle distribution MM: 3×3

(e) Manufacturing Mesh : 5×5 (f) Fiber angle distribution MM: 5×5

Figure 4.17: Optimized result Comparison of: Ply-4

4.3.2 Optimized Results Comparison : Buckling Mode

Here first two buckling mode or eigenvectors are compared for optimized results achieved using MM:2×2,
MM:3×3 and MM:5×5 mesh in Figure 4.18 and 4.19. It can be observed from figure that first two eigenvalues
are nearly equal in each of the case.
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(a) MM: 2×2
Eigenvalue = 0.4432

(b) MM: 3×3
Eigenvalue = 0.4318

(c) MM: 5×5
Eigenvalue = 0.3983

Figure 4.18: Comparison of Buckling Mode-1

(a) MM: 2×2
Eigenvalue = 0.4476

(b) MM: 3×3
Eigenvalue = 0.4429

(c) MM: 5×5
Eigenvalue = 0.4172

Figure 4.19: Comparison of Buckling Mode-2

4.3.3 Convergence study of optimized result

Since the FEM mesh chosen for buckling load optimization consist 15X15 mesh (total 225 stress-mesh elements),
the optimized buckling load is verified for convergence by refining the FEM model further with fine stress-mesh
using the optimized fiber angle distribution achieved using 15×15 stress-mesh (total 225 stress-mesh elements).
The convergence study for each case,namely MM:2×2, MM:3×3 and MM:5×5 are shown in Table-4.2, 4.3 and
4.4 respectively. It can be seen from the table that change in the buckling load is not large even if the model
is refined with fine stress-mesh elements.

Stress-Mesh(M×N) Buckling Load(N/mm), N0 Decrease(%)

15×15 0.4432 -
30×30 0.4362 1.58
45×45 0.4348 0.32
60×60 0.4343 0.11

Table 4.2: Convergence study on optimized 2×2 MM case.

Stress-Mesh(M×N) Buckling Load(N/mm), N0 Decrease(%)

15×15 0.4318 -
30×30 0.4257 1.41
45×45 0.4245 0.28
60×60 0.4240 0.12

Table 4.3: Convergence study on optimized 3×3 MM case.
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Stress-Mesh(M×N) Buckling Load(N/mm), N0 Decrease(%)

15×15 0.3983 -
30×30 0.3949 0.85
45×45 0.3942 0.18
60×60 0.3939 0.076

Table 4.4: Convergence study on optimized 5×5 MM case.

4.4 Bivariate variable stiffness composite plate : Using BFGS

The parameter for BFGS optimizer chosen here is shown in Table-4.5, where gradient tolerance (gtol) represents
the stopping criteria which means if gradient evaluated at the kth iterate is less than the specified gradient
tolerance(gtol) it stops evaluating further. The input parameters for MM:2×2, MM:3×3 and MM:5×5 manu-
facturing mesh for kth ply is shown in Figure 4.12.Also, convergence plot of the optimization using BFGS for
all the three cases are shown in Figure 4.20,

BFGS Parameter Value

c1 1e-4
c2 0.9
ϵ 1◦ (forward− difference)

gtol 1e-5
Variable Bound [−90◦, 90◦]
Initial Guess [−45◦, 45◦, 45◦,−45◦]s

Table 4.5: BFGS Parameters for the Optimization of buckling load of bidirectional VS composite Plate .

(a) For Manufacturing Mesh : 2×2 (b) For Manufacturing Mesh : 3×3

(c) For Manufacturing Mesh : 5×5

Figure 4.20: BFGS convergence plot for each cases of MM

4.4.1 Optimized Results Comparison : Ply

In this section, the optimized fiber angle or direction for optimized buckling load are compared for each ply as
shown from Figure 4.21 to Figure 4.24. It can be noticed from the fiber angle distribution that, fiber angles
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are arranged in approximately -45◦ or 45◦ angle away from the center of the plate. The results(S-shaped fiber
angle distribution) are similar to Tatting and Gurdal [11] and the optimal distribution of fiber angle θ(x, y) is
converged.

(a) Manufacturing Mesh : 2×2 (b) Fiber angle distribution MM: 2×2

(c) Manufacturing Mesh : 3×3 (d) Fiber angle distribution MM: 3×3

(e) Manufacturing Mesh : 5×5 (f) Fiber angle distribution MM: 5×5

Figure 4.21: Optimized result Comparison of: Ply-1
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(a) Manufacturing Mesh : 2×2 (b) Fiber angle distribution MM: 2×2

(c) Manufacturing Mesh : 3×3 (d) Fiber angle distribution MM: 3×3

(e) Manufacturing Mesh : 5×5 (f) Fiber angle distribution MM: 5×5

Figure 4.22: Optimized result Comparison of: Ply-2
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(a) Manufacturing Mesh : 2×2 (b) Fiber angle distribution MM: 2×2

(c) Manufacturing Mesh : 3×3 (d) Fiber angle distribution MM: 3×3

(e) Manufacturing Mesh : 5×5 (f) Fiber angle distribution MM: 5×5

Figure 4.23: Optimized result Comparison of: Ply-3
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(a) Manufacturing Mesh : 2×2 (b) Fiber angle distribution MM: 2×2

(c) Manufacturing Mesh : 3×3 (d) Fiber angle distribution MM: 3×3

(e) Manufacturing Mesh : 5×5 (f) Fiber angle distribution MM: 5×5

Figure 4.24: Optimized result Comparison of: Ply-4

4.4.2 Optimized Results Comparison : Buckling Mode

Here first two buckling mode or eigenvectors are compared for optimized results achieved using MM:2×2,MM:3×3
and MM:5×5 mesh shown in Figure 4.25 and Figure 4.26 respectively. It can be observed from figure that first
two eigenvalues are nearly equal in each of the case.
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(a) MM: 2×2
Eigenvalue = 0.4611

(b) MM: 3×3
Eigenvalue = 0.4804

(c) MM: 5×5
Eigenvalue = 0.5811

Figure 4.25: Comparison of Buckling Mode-1

(a) MM: 2×2
Eigenvalue = 0.4618

(b) MM: 3×3
Eigenvalue = 0.4809

(c) MM: 5×5
Eigenvalue = 0.5813

Figure 4.26: Comparison of Buckling Mode-2

4.4.3 Convergence study of optimized result

Since the FEM mesh chosen for buckling load optimization consist 15×15 mesh (total 225 stress-mesh elements),
the optimized buckling load is verified for convergence by further refining the FEM model further with fine
mesh using the optimized fiber angle distribution achieved using 15×15 mesh (total 225 stress-mesh elements).
The convergence study for each case,namely MM:2×2, MM:3×3 and MM:5×5 are shown in Table 4.6, 4.7 and
4.8 respectively. It can be seen from the table that change in the buckling load is not large even if the model
is refined with fine stress-mesh elements.

Stress-Mesh(M×N) Buckling Load(N/mm), N0 Decrease(%)

15×15 0.4611 -
30×30 0.4537 1.60
45×45 0.4522 0.33
60×60 0.4516 0.13

Table 4.6: Convergence study on optimized 2×2 MM case.

Stress-Mesh(M×N) Buckling Load(N/mm), N0 Decrease(%)

15×15 0.4804 -
30×30 0.4711 1.94
45×45 0.4694 0.36
60×60 0.4687 0.15

Table 4.7: Convergence study on optimized 3×3 MM case.
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Stress-Mesh(M×N) Buckling Load(N/mm), N0 Decrease(%)

15×15 0.5811 -
30×30 0.5681 2.24
45×45 0.5652 0.51
60×60 0.5640 0.21

Table 4.8: Convergence study on optimized 5×5 MM case.
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Chapter 5

Buckling Load Optimization Of VS
Composite Plate using Semi-Analytical
method

One of the main problem using MFEM-framwork is variation of fiber angle distributions

5.1 Ritz-method

Unlike the derivation shown from Section (2.5-2.7), Ritz method bypasses the derivation of the governing
differential equations, and goes directly from the variational statements of the problem, such as the principle
of minimization of total potential energy, which are equivalent to the governing differential equations and
the corresponding natural boundary conditions, where unknown variables such as out-of-plane displacement
(w) or Airy-stress function (Φ) is approximated by finite linear combination of shape function with unknown
parameters which satisfy the required boundary condition [16], such as

Φ ≈ ϕ0 +

∞∑
i=1

ciϕi (5.1)

Where ci are the unknown parameters, ϕ0 and ϕi are the shape function. Note that ϕ0 serves as a particular
solution where as ϕi serves as a homogeneous solution of the equation. Also, the selected shape function must
be such that it meets following requirement [16],

• ϕ0 must satisfy the specified essential or geometric boundary conditions.

• ϕi must satisfy the homogeneous form of the essential boundary condition. also it should be linearly
independent and form a complete system of functions.

As compared to Galerking methd, Ritz-method has several advantages, one of which is it is not necessary
that chosen shape function has to satisfy the natural boundary condition [2], but if it does, the accuracy of
the approximation is substantially better.Morever, in Ritz-method, only essential boundary condition has to
satisfied by the shape function [16]. Also, for the computational accuracy, it is better to choose orthogonal
shape functions [4]. if chosen shape functions are not orthogonal somehow, it can be orthogonalized using
Gram-schmidt orthogonalization process [6].

To apply Ritz-method, the first step is to derive the equation of total complemetry energy of the panel in
the prebuckling state to calculate the in-plane stress or load distribution, and then the total energy functional
(combination of complementary and strain energy) for the postbuckling state to determine the buckling load
and out-of-plane displacement. Note that all the equations shown in this section are for symmetric laminate
([Bij ] = 0).

5.1.1 Total Complementary energy and Total energy functional

For detailed derivation of Total Complementary energy and Total Potential energy for a panel under general
load case, reader is referred to [19]. Consider a free body under general load case as shown in Figure 5.1 where
BL represents the boundary of prescribed load and BD represent the boundary of prescribed displacement, so
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Figure 5.1: Boundary of Free body.

total boundary of the free body under general load case becomes BT = BL+BD. For a plate, total boundary
is comprised of four straight edge.

Here the free body is considered under prescribed load N̄x,N̄y and N̄xy on boundary BL and prescribed
displacement ū and v̄ on boundary BD,

There for the mechanical boundary conditions are,

Nx = N̄x, Ny = N̄y, Nxy = N̄xy (On boundary BL) (5.2)

similarly, the geometric boundary conditions are ,

u = ū, v = v̄ (On boundary BD) (5.3)

The total complementary energy for the body or panel can be given as[28,29,33],

Πc
pre = U c

m + VBD (5.4)

Where, U c
m is the membrane complementary energy which can be given as[7,28],

U c
m =

1

2

∫∫
[A∗

11N
2
x + 2A∗

12NxNy + 2A∗
16NxNxy +A∗

22N
2
y + 2A∗

26NyNxy +A∗
66N

2
xy] dx dy (5.5)

and VBD is the complementary work done by the prescribed displacements on boundary BD which can be
given for rectangular plates(as shown in Figure 2.1) as [28,33],

VBD = −
∫
BD

[(Ny v̄+Nxyū)y=b − (Ny v̄+Nxyū)y=0] dx−
∫
BD

[(Nxū+Nxy v̄)x=a − (Nxū+Nxy v̄)x=0] dy (5.6)

By by making complementary energy Πc
pre stationary with respect to unknown variable Nx,Ny and Nxy , in-

plane load distribution can be solved. To solve the in-plane load distribution, it is necessary to satisfy in-plane
equilibrium equation as shown in Equation 2.9 and 2.10, which can be addressed by using airy-stress function
as shown in Equation 2.36 and shown here for convenience,

Nx = Φ,yy Ny = Φ,xx Nx = −Φ,xy (5.7)

Therefore, the equation for complementary energy Πc
pre can be rewritten as,

Πc
pre =

1

2

∫∫
[ϕTA∗ ϕ] dx dy −

∫
BD

[(Φ,xxv̄ − Φ,xyū)y=b − (Φ,xxv̄ − Φ,xyū)y=0] dx

−
∫
BD

[(Φ,yyū− Φ,xy v̄)x=a − (Φ,yyū− Φ,xy v̄)x=0] dy (5.8)

where,

ϕ = [Φ,yy Φ,xx Φ,xy]
T (5.9)
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Similar derivation for Total Potential energy (Π) given in terms of airy-stress function for general load case
as [19],

Π = −1

2

∫∫
[ϕTA∗ ϕ] dx dy +

1

2

∫∫
[κTD κ] dx dy +

∫∫
ϕT en dx dy

+

∫
BD

[(Φ,xxv̄ − Φ,xyū)y=b − (Φ,xxv̄ − Φ,xyū)y=0] dx

+

∫
BD

[(Φ,yyū− Φ,xy v̄)x=a − (Φ,yyū− Φ,xy v̄)x=0] dy (5.10)

Where,

κ = [−w,xx − w,yy − 2w,xy]
T

en = [
1

2
w2

,x

1

2
w2

,y w,xwy]
T

(5.11)

Equation 5.8 and 5.10 are used to solve the in-plane load distribution and stability of the VS panel respec-
tively. Note that Equation 5.10 is mixture of membrane complementary energy(first part of the Equation 5.10)
and bending strain energy (second part of the Equation 5.10.Therefore, it is called as Total energy functional
instead of Total potential energy.

5.1.2 Semi-analytical equation for Prebuckling-Ritz method

The detailed derivation of the section is presented in [19]. To evaluate the stability of the VS composite plate,
it is necessary to calculate in-plate load distribution Nx, Ny and Nxy first as these loads will not be the uniform
throughout the domain of the plate due to variation of in-plane stiffness [A∗

ij(x, y)] and distribution of the
in-plane load affect the buckling behaviour of the plate. Here, the boundary conditions for the in-plane loads
for the plate under the investigation are shown here for convenience,

Nx = N̄x, Nxy = 0 (on x=0,a) (5.12)

Ny = 0, Nxy = 0 (on y=0,b) (5.13)

since, No prescribed displacement (ū and v̄ ) applied on any of the four edge of the plate, work done by the
prescribed displacement is zero, there for equation of complementary energy Πc

pre reduced from Equation 5.8
to [19],

Πc
pre =

1

2

∫∫
(ϕTA∗ ϕ) dx dy (5.14)

and from the in-plane boundary condition mentioned in Equation 5.12 and 5.13, the airy-stress function can
be assumed as,

Φ(x, y) =
1

2
N̄xy

2 +

KL∑
kl

ΦklXk(x)Yl(y) (5.15)

Where, Φkl are unknown parameters. It can be noticed from Equation 5.15 that first part ( 12N̄x) serves as a
particular solution of the equation and second part (Xk(x) and Yl(y)) serves as a homogeneous solution of the
equation. After Substituting Equation 5.15 into Equation 5.14 and making complementary energy stationary
with respect to unknown parameters Φkl,

∂Πc
pre

∂Φkl
= 0 ,(for k = 1 to K, l = 1 to L) (5.16)
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leads to KXL linear equation which can be written in terms of matrix as [19],

N̄xCkl + Caϕkl = 0 (5.17)

Where, ϕkl is a vector of length KXL,

ϕkl = [Φ11,Φ12, ...,Φ1L,Φ21, ...,Φkl, ...,ΦKL]
T (5.18)

Ckl is a vector of length KXL where each element of which given as,

∫∫ 
A∗

11

A∗
12

A∗
16


T 

XkY
′′

l

X
′′

k Yl

−X
′′

k Y
′′

l

 dx dy (5.19)

and Ca is a matrix size of KXL by KXL where each element of which given as,

∫∫ 
XkY

′′

l

X
′′

k Yl

−X
′′

k Y
′′

l


T

A∗


Xk2Y

′′

l2

X
′′

k2Yl2

−X
′′

k2Y
′′

l2

 dx dy (5.20)

Where, X
′

k and X
′′

k represent the first and second derivative of Xk with respect to x and Y
′

l and Y
′′

l represents
the first and second derivative with respect to y respectively. k2, l2, Xk2 and Yl2 are the counterparts of k, l,
Xk and Yl in quadruple summations [19].

Then the unknown parameter vector ϕkl can be solved as,

ϕkl = −N̄xC
−1
a Ckl (5.21)

Once, each unknown parameter Φkl solved, Airy-stress function Φ(x, y) can be determined using Equation ??
and ultimately in-plane load distribution Nx, Ny and Nxy can be calculated using Equation 2.36. It can easily
be observed from Equation 5.21 that ϕkl or subsequently in-plane loads are linearly depended on N̄x, there for
buckling initiation can be determined by introducing buckling factor λ to the prescribed load N̄x as,

N0 = N̄x
critical

= λN̄x (5.22)

Where, if λ is greater than 1, prescribed load N̄x is lower than the critical buckling load of the plate and likewise
if the λ is less than 1, the prescribed load is higher than the critical buckling load of the plate.

5.1.3 Semi-analytical equation for Stability-Ritz method

Once, Airy-stress function Φ(x, y) or in-plane load distribution Nx, Ny and Nxy is solved, next step is to solve
the buckling load factor λ. For the plate under the loading condition mentioned in Equation 5.12 and 5.13,
Total energy functional reduced from Equation 5.10 to ,

Π = −1

2

∫∫
[ϕTA∗ ϕ] dx dy +

1

2

∫∫
[κTD κ] dx dy +

∫∫
ϕT en dx dy (5.23)

Where,
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ϕ = [Φ,yy Φ,xx Φ,xy]
T

κ = [−w,xx − w,yy − 2w,xy]
T

en = [
1

2
w2

,x

1

2
w2

,y w,xwy]
T

(5.24)

The out-of-plane displacement is approximated as,

w =

PQ∑
pq

WpqXp(x)Yq(y) (5.25)

where Wpq are unknown parameters and Xp, Yq are the shape functions different from the shape function used
to approximate airy-stress function. To initiate the buckling, buckling load factor is introduced with Airy-stress
function as,

Φ(x, y) = λ(
1

2
N̄xy

2 +

KL∑
kl

ΦklXk(x)Yl(y)) (5.26)

where the solution for parameters Φkl are already solved using Equation 5.21. After substituting Equation
5.25 and Equation 5.26 into Equation 5.23 and making total energy functional Π stationary with respect to
unknown parameters Wpq as,

∂Π

∂Wpq
= 0 ,(for p = 1 to P , q = 1 to P ) (5.27)

results in PXQ linear equations, which can be written in matrix from as [19],

[CD + λ(CN + CF )]wpq = 0 (5.28)

where, wpq is a vector of length PXQ given as,

wpq = [W11,W12, ...,W1P ,W21, ...,Wpq, ...,WPQ]
T (5.29)

CD is a matrix of dimension PXQ by PXQ of which each element is,

∫∫ 
X
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CN is a matrix of dimension PXQ by PXQ of which each element is,

N̄x
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′

pYqX
′

p2Yq2) dx dy (5.31)

and CF is a matrix of dimension PXQ by PXQ of which each element are,
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Here, p2, q2, Xp2 and Yq2 are the counterparts of p, q, Xp and Yq in quadruple summations. For detailed
derivation for the stability equation, please refer to [19].
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5.2 Double Fourier series approximation of fiber angle distribution

To use Ritz-method approximation(Equation 5.8 and Equation 5.10), it is necessary to precalculate in-plane
stiffness A∗

ij(x, y) and bending stiffness Dij(x, y) which are functions of fiber angle θ(x, y) of the kth ply in a
laminate. Thus once, fiber angle distribution function θ(x, y) are known for each ply in the laminate, in-plane
stiffness and bending-stiffness and subsequently in-plane load distribution and buckling load can be solved.
Out-of-many possible approximation of a function in R2, Double Fourier series approximation is one of the
widely used approximation method which gives infinitely differential continuous approximation of any function
in a domain Ω [10]. There are two choices for double Fourier series approximation which are Double sine Fourier
series as shown in Equation 5.33 as,

¯θ(x, y) =

M=∞∑
m=1

N=∞∑
n=1

θmnsin(
mπx

a
)sin(

nπy

b
) (5.33)

where,

θmn =
4

ab

∫ a

0

∫ b

0

θ(x, y)sin(
mπx

a
)sin(

nπy

b
) dx dy (5.34)

and Double cosine Fourier series as shown in Equation 5.35 as,

¯θ(x, y) =

M=∞∑
m=0

N=∞∑
n=0

θmncos(
mπx

a
)cos(

nπy

b
) (5.35)

where,

θmn =
4

ab

∫ a

0

∫ b

0

θ(x, y)cos(
mπx

a
)cos(

nπy

b
) dx dy (5.36)

Here, m and n represents the number of half waves alog x and y directions respectively. Out of these two
double Fourier approximation, which approximation should be used can be decided based on the convergence of
Root Mean square error(RSME) to zero, which is calculated using true fiber angle distribution θ(x, y)(obtained
using MFEM-framework) and approximated fiber angle distribution ¯θ(x, y)(approximation using Double Fourier
series) as,

RSME =

√∑
(θ(x, y)− ¯θ(x, y))2

N
(5.37)

where N is the number of samples. In this section, fiber angle distribution is approximated for the optimized
fiber angle distribution obtained using MFEM-framework (case : MM − 5X5, stress-mesh 60X60) in section
4.4 by double sin Fourier series and double cosine Fourier series separately and RSME convergence plot for
each ply are shown in Figure 5.2.
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(a) RSME convergence plot : Ply-1 (b) RSME convergence plot : Ply-2

(c) RSME convergence plot : Ply-3 (d) RSME convergence plot : Ply-4

Figure 5.2: RSME convergence plot of fourier approximation

It can be concluded from the RSME convergence plot that Double cosine Fourier series approximation
gives better approximation of the optimized fiber angle distribution obtained using MFEM-framework(Case:
MM-5X5, stress-mesh 15X15) than the Double sine Fourier series approximation and RSME value converges
to zero rapidly if fiber angle distribution is approximated using Double cosine Fourier series. The reason that
Double sine Fourier series approximation gives poor approximation of fiber angle distribution is it forces the
fiber angle distribution to be zero at all the edges of the plate while it can be seen from the result obtained
in Section 4.4 that fiber angles are certainly not zero at the edges or the corner of the plate. Therefore, fiber
angle distribution θ(x, y) is assumed as a Double cosine Fourier series for the buckling load optimization using
semi-analytical method as,

¯θ(x, y) =

M=∞∑
m=0

N=∞∑
n=0

θmncos(
mπx

a
)cos(

nπy

b
) (5.38)

5.2.1 Verification

In this section, solution for in-plane load distribution and stability using ritz method are verified with op-
timized converged result achieved using MFEM-framework(MM: 5×5, stress-mesh: 60×60) and number of
terms(K,L, P,Q) of shape functions needed to approximate in-plane load distribution and buckling are decided
based on convergence to the FEM results with convergence error less than 2%.

To approximate the in-plane load distribution, the chosen shape function has to satisfy the mechanical
boundary conditions as shown in Equation 5.12 and 5.13 term by term for the loading condition chosen for the
study and can be written as,

Xk(x) = X
′

k(x) = 0 (on x=0,a for k=1,2,...K) (5.39)
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Yl(y) = Y
′

l (y) = 0 (on y=0,b for l=1,2,...L) (5.40)

Therefore, Polynomial shape functions are used to approximate in-plane loading distributions which satisfy the
conditions as shown in Equation 5.39 and 5.40 [19].The assumed Polynomial shape function is of fourth order,

X(x) = c0 + c1x+ c2x
2 + c0x

3 + c4x
4 (5.41)

The constant c0 to c4 are determined using boundary conditions as shown in Equation 5.39 and Equation 5.40.
As there is only four boundary conditions, Only Four out of Five constants can be solved, therefore rest of the
constants are arbitrary and can be set to unity. After applying the boundary conditions, Polynomial shape
function becomes,

X(x) = (
x

a
)2(

x

a
− 1)2 (5.42)

Therefore the kth shape function can be written as,

Xk(x) = (
x

a
)k+1(

x

a
− 1)2 (5.43)

The shape functions are then Orthogonalized using Gram-Schmidt process and transformed into the natural
coordinates (ζ, η) spanning the interval [−1, 1] to avoid the numerical instability. Finally, The transformed
shape functions are written as [19],

X1(ζ) =
3
√
35

16
(ζ2 − 1)2 (5.44)

X2(ζ) =
3
√
385

16
ζ(ζ2 − 1)2 (5.45)

.

.

.

(5.46)

Similar procedure is for shape functions Y (y) in y-direction, where Yl(η) can be written as [19],

Y1(η) =
3
√
35

16
(η2 − 1)2 (5.47)

Y2(η) =
3
√
385

16
η(η2 − 1)2 (5.48)

.

.

.

(5.49)

Where,
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ζ =
2x− a

a

η =
2y − b

b

(5.50)

To approximate, the Out-of-plane displacement in Buckling, It can be assumed as a linear combinations of
shape functions as shown in Equation 5.25, As the plate under investigation is simply supported, the boundary
condition shape function has to satisfy term by term is written as,

Xp(x) = 0 (on x=0,a)

Yq(y) = 0 (on y=0,b)
(5.51)

X
′

p(x) = 0 (on x=0,a)

Y
′

q (y) = 0 (on y=0,b)
(5.52)

X
′′

p (x) = 0 (on x=0,a)

Y
′′

q (y) = 0 (on y=0,b)
(5.53)

There is no shape function which can satisfy the boundary shown in Equation 5.2.1 and 5.2.1 simultaneously
which result in error in approximation. However, as the number of terms used to approximate the solution are
increased, the error in the approximation reduce [19] [16].

Out of many possible shape function, polynomial shape function is used which satisfy the essential boundary
condition and written as [19],

Xp(x) = (
x

a
)p(

x

a
− 1) (for p=1,2,..,P)

Yq(y) = (
y

b
)q(

y

b
− 1) (for q=1,2,..,Q)

(5.54)

The shape function shown in Equation 5.2.1 are then transferred to natural coordinates [−1, 1] and after
orthogonalized using Gram-Schmidt process, finally Xp(ζ) can be written as [19],

X1(ζ) =

√
15

4
(ζ2 − 1)2 (5.55)

X2(ζ) =

√
105

4
ζ(ζ2 − 1) (5.56)

.

.

.

(5.57)

Similarly, Yq(η) can be written as [19],
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Y1(η) =

√
15

4
(η2 − 1)2 (5.58)

Y2(η) =

√
105

4
η(η2 − 1) (5.59)

.

.

.

(5.60)

Where,

ζ =
2x− a

a

η =
2y − b

b

(5.61)

Here, Optimized fiber angle distribution for buckling achieved using MFEM(MM:5×5) in Section 4.4 is
first approximated using double cosine Fourier series for each ply and later buckling load is calculated using
approximated angle distribution ¯θ(x, y) by semi-analytical method and verified for convergence as shown in
Figure 5.3. All the integration required to evaluate the in-plane loading distribution(Equation 5.19-5.20) and
the buckling (Equation 5.30-5.32) are performed numerically using Gaussian quadrature points (Ng).

(a) Buckling Load vs Number of Gaussian points (b) Buckling Load convergence

Figure 5.3: Buckling Load approximation using Ritz method

It can be seen that, semi-analytical method requires only upto 8 terms(K = L = P = Q = 8) to approximate
the buckling load with convergence error less than 2% due to stiffness discontinuity [19]. Further, First two
eigenmodes calculated using MFEM-framework(MM: 5×5, stress-mesh: 60×60) and calculated using semi-
analytical method (terms K = L = P = Q = 8) are compared for the verification which show that semi-
analytical method approximate buckling load and buckling mode by using only upto 8 terms (terms K = L =
P = Q = 8) with convergence error less than 2% and therefore optimization using Semi-analytical method is
carried out using K = L = P = Q = 8 with 21×21 Gaussian quadrature points(Ng = 21) in each direction(ζ
and η) which captures the buckling behaviour effectively and requires less calculation time.
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(a) FEM(stress− element : 60X60)
(Eigenvalue = 0.5640)

(b) Ritz (K = L = P = Q = 8)
(Eigenvalue = 0.5755)

Figure 5.4: First Buckling-mode comparison: FEM Vs Semi-analytical

(a) FEM(stress− element : 60X60)
(Eigenvalue = 0.5642)

(b) Ritz (K = L = P = Q = 8)
(Eigenvalue = 0.5764)

Figure 5.5: Second Buckling-mode comparison: FEM Vs Semi-analytical

5.3 Optimization using Semi-analytical equation

In this section Buckling load optimization of bivariate Variable stiffness plate using semi-analytical method
has been performed.As explained in Section Appendix-A, The BFGS algorithm [14] is used as an optimization
method and its parameters are shown in Table 5.1. The fiber angle distribution θ(x, y) is assumed as a Double
cosine Fourier series for the buckling load optimization using semi-analytical method as,

¯θ(x, y) =

M=∞∑
m=1

N=∞∑
n=1

θmncos(
mπx

a
)cos(

nπy

b
) (5.62)

where, θmn are unknown parameters and inputs of the objective function which is being optimized for buckling
load.
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To start with initial Guess which is [−45◦, 45◦, 45◦,−45◦]s, the constant θ00 are set with the value −45◦ or
45◦ according to sequence of laminate, and rest of the amplitude θmn associated with cosines are set to zero
initially for each ply.

Here, buckling load is optimized for three different cases of cosine terms expansion; Case1 : M = N = 2,
Case2 : M = N = 3 and Case3 : M = N = 5 separately and BFGS optimization convergence plot is shown for
all three cases in Figure 5.6

BFGS Parameter Value

c1 1e-4
c2 0.9
ϵ 0.01◦ (forward− difference)

gtol 1e-5
Variable Bound [−90◦, 90◦]
Initial Guess [−45◦, 45◦, 45◦,−45◦]s

Table 5.1: BFGS Parameters for the Optimization of buckling load of bi-variate VS composite Plate .

(a) Case: M=N=2 (b) Case: M=N=3

(c) Case: M=N=5

Figure 5.6: BFGS convergence plot for each cases of M=N

5.3.1 Optimized Results Comparison : Ply

In this section, the optimized fiber angle or direction for optimized buckling load are compared for each ply
from Figure 5.7 to 5.10. It can be noticed from the fiber angle distribution that, fiber angles are arranged in
approximately -45◦ or 45◦ angle away from the center of the plate. The results(S-shaped fiber angle distribution)
are similar to Tatting and Gurdal [11].
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(a) Case : M = N = 2 (b) Fiber angle distribution : M = N = 2

(c) Case : M = N = 3 (d) Fiber angle distribution : M = N = 3

(e) Case : M = N = 5 (f) Fiber angle distribution : M = N = 5

Figure 5.7: Optimized result Comparison of: Ply-1
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(a) Case : M = N = 2 (b) Fiber angle distribution : M = N = 2

(c) Case : M = N = 3 (d) Fiber angle distribution : M = N = 3

(e) Case : M = N = 5 (f) Fiber angle distribution : M = N = 5

Figure 5.8: Optimized result Comparison of: Ply-2
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(a) Case : M = N = 2 (b) Fiber angle distribution : M = N = 2

(c) Case : M = N = 3 (d) Fiber angle distribution : M = N = 3

(e) Case : M = N = 5 (f) Fiber angle distribution : M = N = 5

Figure 5.9: Optimized result Comparison of: Ply-3
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(a) Case : M = N = 2 (b) Fiber angle distribution : M = N = 2

(c) Case : M = N = 3 (d) Fiber angle distribution : M = N = 3

(e) Case : M = N = 5 (f) Fiber angle distribution : M = N = 5

Figure 5.10: Optimized result Comparison of: Ply-4

5.3.2 Optimized Results Comparison : Buckling Mode

Here first two buckling mode or eigenvectors are compared for optimized results achieved using M = N = 2,
M = N = 3 and M = N = 5. It can be observed from Figure 5.11 and 5.12 that first two eigenvalues are
nearly equal in each of the case.
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(a) Case: M=N=2
Eigenvalue = 0.4460

(b) Case: M=N=3
Eigenvalue = 0.4560

(c) Case: M=N=5
Eigenvalue = 0.5308

Figure 5.11: Comparison of Buckling Mode-1

(a) Case: M=N=2
Eigenvalue = 0.4461

(b) Case: M=N=3
Eigenvalue = 0.4560

(c) Case: M=N=5
Eigenvalue = 0.5309

Figure 5.12: Comparison of Buckling Mode-2

5.3.3 Convergence study of optimized result

Since the Number of polynomial approximation(K,L, P,Q) chosen for buckling load optimization upto 8th
order, the optimized buckling load is verified for convergence by adding more polynomial terms further with
using the optimized fiber angle distribution achieved using K,L, P,Q = 8 terms. The convergence study for
each case,namely M = N = 2, M = N = 3 and M = N = 5 are shown in Figure 5.13. It can be seen from the
table that change in the buckling load is not noticeably large even if the approximation is refined with adding
higher order terms K,L, P and Q .
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(a) Buckling load vs Gaussian Points
Case: M = N = 2

(b) Buckling Load convergence
Case: M = N = 2

(c) Buckling load vs Gaussian Points
Case: M = N = 3

(d) Buckling Load convergence
Case: M = N = 3

(e) Buckling load vs Gaussian Points
Case: M = N = 5

(f) Buckling Load convergence
Case: M = N = 5

Figure 5.13: Buckling Load approximation vs Polynomial terms(K,L, P,Q) required
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Chapter 6

Results and Conclusion

6.1 Comparison of optimum buckling load

The optimized buckling load achieved using MFEM-framework and Semi-analytical method (Ritz method) are
compared with benchmarked CS composite plate for each case in this section. Figure 6.1 shows Optimization
convergence plot of buckling load using both method and final optimized results for all the study(Optimization
of buckling load for CS, Univariate VS, Bivariate VS plate) conducted in the thesis are summarized in the
Table 6.1.

(a) Optimization using MFEM (b) Optimization using Ritz

Figure 6.1: Buckling load optimization convergence for MFEM-framework and Ritz-method

Case Buckling Load N0 (N/mm)

CS Plate(Benchmark) 0.3007
Univariate VS Plate θ(x) 0.3249
Univariate VS Plate θ(y) 0.3968

Bivariate MFEM-framework 0.5640
Bivariate Ritz-method 0.5039

Table 6.1: Optimization results for MFEM and Ritz.

The optimization results from the two approaches MFEM and Ritz(semi-analytical method) shows that there
is 87% and 67% improvement in buckling load for a bivariate VS composite plate respectively as compared to
benchmarked CS composite plate under investigation.

Even though the fiber angle distribution for the optimized buckling load using MFEM-framework(MM:
5 × 5) and Semi-analytical method (M = N = 5) shows similar (S − shape) pattern for each ply, as shown
in Section 4.4.1 and Section 5.3.1, the optimized buckling load achieved using MFEM is 11% higher than the
optimized buckling load achieved using Semi-analytical. The reason for the discrepancy in the buckling load
cannot not be explained easily by fiber angle distribution alone. Instead the distribution of bending stiffness
Dij throughout the plate may provide a better explanation.Therefore, the comparison of bending stiffness Dij
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are shown in Figure 6.2 to 6.5 for Optimized constant stiffness plate, Univariate Variable stiffness, and Bivariate
VS stiffness(MFEM vs Ritz). There is noticeable difference in the distribution of the bending stiffness Dij(x, y)
in each case and therefore in the buckling load. Which indicates that distribution of bending stiffness Dij(x, y)
is the influential parameter for the buckling load.

(a) Distribution of D11 for
Optimized CS Plate

(b) Distribution of D11 : Optimized
Univariate VS Plate θ(x)

(c) Distribution of D11 : Optimized
Univariate VS Plate θ(y)

(d) Distribution of D11 : (MFEM)
MM: 5× 5

(e) Distribution of D11 : (Ritz)
M=N=5

Figure 6.2: Comparison of Distribution of D11 for optimized CS, Univariate VS, Bivariate VS plate

(a) Distribution of D12 for
Optimized CS Plate

(b) Distribution of D12 : Optimized
Univariate VS Plate θ(x)

(c) Distribution of D12 : Optimized
Univariate VS Plate θ(y)

(d) Distribution of D12 : (MFEM)
MM: 5× 5

(e) Distribution of D12 : (Ritz)
M=N=5

Figure 6.3: Comparison of Distribution of D12 for optimized CS, Univariate VS, Bivariate VS plate
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(a) Distribution of D22 for
Optimized CS Plate

(b) Distribution of D22 : Optimized
Univariate VS Plate θ(x)

(c) Distribution of D22 : Optimized
Univariate VS Plate θ(y)

(d) Distribution of D22 : (MFEM)
MM: 5× 5

(e) Distribution of D22 : (Ritz)
M=N=5

Figure 6.4: Comparison of Distribution of D22 for optimized CS, Univariate VS, Bivariate VS plate

(a) Distribution of D66 for
Optimized CS Plate

(b) Distribution of D66 : Optimized
Univariate VS Plate θ(x)

(c) Distribution of D66 : Optimized
Univariate VS Plate θ(y)

(d) Distribution of D66 : (MFEM)
MM: 5× 5

(e) Distribution of D66 : (Ritz)
M=N=5

Figure 6.5: Comparison of Distribution of D66 for optimized CS, Univariate VS, Bivariate VS plate

6.2 Conclusions and Unique contribution

• From the optimized results shown in Table 6.1, it can be easily concluded that Variable stiffness composite
plate shows better buckling performance than the constant stiffness composite plate by redistributing the
load and stiffness in the domain of the plate.

• It also can be concluded from the optimized results achieved for Univariate VS Plate and Bivariate VS
plate that bi-directional variability in fiber angle distribution( or ultimately stiffness) widen the design
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space for the optimization result in higher buckling load as compared to Univariate VS Plate.

• It can be easily observed from the Figure 6.2 to 6.5 that the optimized distribution of Dij achieved using
MFEM-framwork has discrete jump element to element where as optimized distribution of Dij achieved
using semi-analytical method has higly smooth variation of the stiffness. Therefore it can be concluded
that highly smooth resolution or variation of stiffness may not be required to achieve better buckling load
capacity as it highly depends on localized sharp fiber angle variation or ultimately stiffness variation.

• Moreover, semi-analytical method can be used as a substitute to the FEM for the optimization by following
the proposed methodology in this thesis.

• The main contribution to this thesis are; First, the development of a python module which can utilize the
MFEM-framework explained in Chapter 4 for the optimization of the Variable stiffness plate for buckling
load . Secondly, development of a methodology/framework which can unitize the semi-analytical method
to optimize the buckling load.

61



Chapter 7

Future work

In this study, all the optimization were performed on a plate having aspect ratio (length/width = 1)with simply
supported boundary condition as shown in Chapter 3 or Shown in Equation 5.2 and 5.3. This optimization
study can be extended with the different boundary condition such as clamped or hinged edges of plate with
different aspect ratios to understand the effect of proposed method on convergence and the buckling behaviour of
the plate. For different boundary condition shape function for the Ritz-approximation(semi-analytical method)
should be such that it satisfy the necessary boundary condition. Moreover, the study shown here can be
expanded for a cylindrical shell where first flatten the shell as shown in Figure 7.1 and apply the MFEM-
framework for the buckling load optimization using FEM and from the results of the study, approximate what
function should be used (either double sin Fourier approximation or double cosine Fourier approximation) for
the fiber angle distribution and apply the semi-analytical method [19] using the fiber angle distribution function
for the buckling load optimization.

(a) Cylinder meshed with stress-
mesh elements (b) 3 X 3 Manufacturing mesh on a flatten Cylinder

Figure 7.1: MFEM-framework on a Cylinder

Note that boundary condition for the optimization variable should be periodic as shown in Figure 7.1b
where angle at the left edge and right edge of the flatten cylinder are same.

Moreover, the study in thesis is only considered for the buckling load optimization,however, real structure
have to also sustain the load without failing in tension, shear or compression. There for it should have enough
in-plane stiffness to withstand general loading condition. Therefore the buckling load needs to be optimized
with other constraints such as longitudinal(tensile) strength, shear strength etc.

It can be observed from the fiber angle distribution of the optimized panel that divergence of the fiber angle
vectors are positive at the center of the plate and negative at the corner, which results in gaps and overlap of
between the adjacent tow path. If gaps are large enough, it may results in the reduced buckling resistance of
the panel due to reduced bending or axial stiffness at the location where there are gaps. Similarly, if overlaps
are large enough, it may results in better buckling resistance and increased axial stiffness but it also increase
the weight of the plate. To avoid gaps and overlap, fiber tow paths can be generated similar to the stripe
pattern [12] as shown in Figure 7.2 where Figure 7.2a represents optimal fiber angle distribution of kth ply and
Figure 7.2b represents the center-lines of AFP tow paths such that it minimize the gaps and overlaps.
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(a) Optimized Fiber Angle distribution of kthply (b) Discontinuous AFP Path

Figure 7.2: AFP Path generation using Stripe Pattern

Since, each evaluations of the objective function is expensive, it is time consuming to optimize using Genetic-
algorithm or BFGS method using true expensive objective function. There for it is convenient to develop a
surrogate model which mimic the true objective function and perform different optimization study using the
surrogate model which is less time consuming.

The optimization study can be extended to the multiple objective function optimization where variable
stiffness panel can be optimized for the buckling simultaneously with the axial stiffness which minimize the
axial strain.
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Appendix A

Appendix A

A.1 Genetic Algorithm

Out of many optimization algorithm, Genetic algorithm [5] is used for the global optimization as it is superior
in finding global minima than the other optimization algorithm such as gradient-decent(GD), which depends
on the initial guess or starting point of the input variable and usually get stuck at the local minima. Despite of
being superior at finding global minima, GA is poor in convergence as compared to gradient-decent and require
to many function evaluation to reach to the global minima. GA works on the three basic principal, ’Selection’,
’Mutation’ and ’Crossover’ and typically requires,

• Genetic representation of solution domain(which are input variables)

• Fitness function to evaluate the solution domain (which is output or objective function)

further, There are certain parameters needs to be set for the optimization which are discussed here briefly,

• Generation : Which decides the maximum number of generation to perform the iteration, which is one of
the stopping criteria for GA. Each Generation contains fixed number of populations(or candidate solution)
for which fitness function gets evaluated.

• Population :Which decides the number of trial solutions in each iteration or Generation.

• Mutation Probability: Which decide the probability of mutation of each gene(variable) in each individual
solution to be replaced by a random value. This parameter is one of the reason why GA does not get
stuck at a point and make it possible to explore the domain as much as possible.

• Crossover Probability: Which determines the probability of an existed solution to pass its genome to new
trial solutions.

• Crossover type: Which determines the type of crossover to perform between two parent. There are many
type of crossover possible such as One-point crossover,Two-point crossover, Three parent crossover and
Uniform crossover.

• Parents Portion: Which is the percentage of the population in current generation filled by the members
of the previous generation who were selected as a parents.

• Elit ratio: which decides the percentage of the best individual in the current generation is saved in the
next generation as it is.

Here, main objective is to find highest linear buckling load (N0) within the design space or variable bound.
Mathematically, it can be written as,

min
θ

−N0(θ)

θ ∈ [−90◦, 90◦]
(A.1)

Where θ is optimization variable.
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A.2 BFGS Algorithm

The Genetic-algorithm is better in finding global optimum solution but it is poor in finding converged solution.
Therefore The same laminate is optimized using Broyden, Fletcher, Goldfarb, and Shanno (BFGS) [14] method
which is a popular class of quasi-Newton method and elite in finding an optimal solution which may be a
local optimal solution but converged. In BFGS method, objective function (f) is approximated by a convex
quadratic model mk at current iterate step xk as follows [14],

mk(p) = fk +∇fT
k p+

1

2
pTBkp (A.2)

Where Bk is an n x n symmetric positive definite matrix(approximated Hessian) instead of true Hessian matrix,
updated at every iteration. When p = 0, the value and gradient of the approximated convex quadratic model
match fk and ∇fk respectively. The minimizer pk of the model can be written as [14],

pk = −B−1
k ∇fk (A.3)

which is used as search direction and new iterate is written as,

xk+1 = xk + αkpk (A.4)

Where αk is a step length in the direction of search, which is chosen such as to satisfy the Wolfe condition
which requires that αk should be such that it gives sufficient decrease in the objective function (f) represented
by following inequality which is referred as Armijo condition [14],

f(xk + αpk) ≤ fk + c1α∇fT
k pk Where, (c1 ∈ (0, 1)) (A.5)

To avoid small steps in the direction of search, curvature condition is introduced which requires αk to satisfy [14],

∇f(xk + αkpk)
T pk ≥ c2∇fT

k pk Where, (c2 ∈ (c1, 1)) (A.6)

The gradient vector of the objective function ∇f in Rn can be written analytically as,

∇f(x) = [
∂f(x)

∂x1
,
∂f(x)

∂x2
, ...,

∂f(x)

∂xn
]T (A.7)

If it is not possible to get the gradient vector analytically, it can be calculated numerically as,

∇f(x) = [
∆f(x)

∆x1
,
∆f(x)

∆x2
, ...,

∆f(x)

∆xn
]T (A.8)

Where ∆f represents change in the objective function, and ∆xn represents finite difference step (ϵ) of nth

variable or change in the nth variable .
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