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ABSTRACT

ANALYSIS OF BLOOD PRESSURE WAVEFORM FOR DETECTION AND

DIAGNOSIS OF CARDIOVASCULAR ANOMALIES

Atul Shrotriya, M.S.

The University of Texas at Arlington, 2021

Supervising Professor: Dr. David A. Hullender

Cardiovascular diseases are the leading cause of mortalities worldwide as well

as in the United States. Early diagnosis and prediction of these diseases is critical

to mitigate the risks to the patient. A common method to assess a person’s heart

health is through the use of cuff type oscillometric devices placed on the arm of

the patient. As the mean pressure in the cuff is increased the blood flow in the

brachial artery becomes blocked. When the cuff pressure is reduced the blood starts

flowing again; during this cycle, pressure fluctuations in the cuff are measured using

a pressure transducer. Modern devices use proprietary algorithms on these pressure

fluctuations to estimate a patient’s systolic and diastolic pressure levels. Hullender

and Brown developed a model and an extended Kalman filter algorithm which is able

to estimate the total blood pressure waveform along with arterial stiffness component

using the same cuff pressure fluctuations. This research pertains to an evaluation

of the algorithm for different levels of measurement uncertainty and different mean

pressure cuff levels and cycle rates.
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This work also develops and evaluates an extension of the algorithm to assess

the cardiovascular health of a patient. The extended algorithm uses standardized

values for a blood pressure waveform to diagnose cardiovascular anomalies such as

high blood pressure, hypertension severity, arrhythmia, atrial fibrillation, tachycardia

and bradycardia. It also extracts important blood pressure waveform characteristics

such as time periods and their ratios associated with different peaks in each cycle,

dicrotic notch depth, systolic pressure increment and detriment slopes along with

ventricular and total cardiac output factors. Furthermore, these characteristics are

measured continuously and their average and variations are provided in the final diag-

nostic report. While the measured characteristics are not as obvious as the diagnosed

anomalies, they can be viewed by a medical professional for quick diagnosis instead

of having to analyze each parameter by studying the waveform. The significance of

these preliminary results to assess the cardiovascular health of a patient appears to

be most promising and justification for future research considering complexities as-

sociated with patient-to-patient differences, levels of patient activity, effects of other

medical issues, etc.
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CHAPTER 1

INTRODUCTION

Cardiovascular diseases are the leading cause of death worldwide and in the

United States as per the data published by the World Health Organization and Na-

tional Center for Health Statistics (US) in 2019 [1, 2]. As per these reports, over 17.9

million people died due to heart diseases worldwide which accounted for 32 percent

of all deaths globally. More than 75 percent of these deaths occur in countries which

have low or middle-income.

Heart diseases are also a major concern in the United States where they are

the leading cause of death as per a 2019 report published by the National Center

for Health Statistics. 1 out of every 4 deaths in the United States occurred due to

heart disease in 2019. According to the NCHS report, heart diseases caused 659,041

and another 150,005 people died due to stroke in the US [2]. Over $363 billion were

lost in 2019 due to heart diseases, these costs not only include the hospital bills but

also the work lost when the patients weren’t able to contribute to the US economy.

In the latest estimates published by National Vital Statistics System, heart disease

had caused twice the number of deaths as compared to the COVID-19 pandemic

during the year 2020 [3]. This data proves that cardiovascular diseases are the most

significant challenge for the healthcare industry as of present.

1.1 Major Cardiovascular Diseases

Worldwide, more than 85 percent of the deaths associated with heart diseases

occur due to heart attacks and strokes [4]. Ischaemic (or ischemic) heart disease which
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is also known as coronary artery disease or coronary heart disease is the leading cause

of mortality across the world as per the latest data published in 2019 by the World

Health Organization. This is followed by stroke which makes the top two causes

of mortality related to cardiovascular ailments. Ischaemic heart disease caused 8.9

million deaths and 6.1 million people died due to strokes in 2019 [1].

In the United States as well, coronary artery disease accounts for more than

50 percent of all deaths associated with heart diseases [5]. Nearly 6.7 percent of all

adults over the age of 20 years have this disease in the US. Heart attacks are another

major concern relating to heart diseases, in the US around 805,000 people have a

heart attack each year and every 40 seconds someone has a heart attack. One out of

every five heart attacks is silent and the patient has no idea of its occurrence or the

damage caused to their heart [5, 2].

1.1.1 Ischaemic Heart Disease

As defined by the American Heart Association, all parts of our body need

oxygen to function properly which is supplied through blood. When the blood flow

is reduced or restricted within a part of the body, it is termed as ischemia. When the

blood flow to heart is reduced, the condition is termed as cardiac ischemia.

Heart problems arising from the narrowing of heart arteries is termed as is-

chaemic heart disease which can cause heart attacks ultimately. Commonly, ischaemia

causes pain or discomfort in the chest region which is medically referred to as angina

pectoris. However, in many cases ischemia can also occur without pain which is

termed as silent ischaemia and can cause silent heart attacks [6].
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1.1.2 Contributing Factors to Cardiovascular Diseases

The effects of cardiovascular diseases or risk of developing a heart disease can

be compounded by age, family history, lifestyle and presence of other diseases. The

key risk factors for cardiovascular diseases include smoking, diabetes and cholesterol.

Around 47 percent of all Americans have one of these three key risk factors [5].

According to the Center for Disease Control in the United States, 10.5 percent of

total population and 13 percent of adults over the age of 18 years suffer from diabetes

[7].

Patients with other health conditions like diabetes, obesity and chronic kidney

disease (CKD) are at a higher risk of getting cardiovascular diseases and they also have

higher chances of cardiovascular incidents along with mortality rates [7, 8]. Similarly,

heart disease can also lead to other health conditions which makes it important to

diagnose cardiovascular diseases as early as possible for risk mitigation and early

action to stop or slow additional damage.

1.2 Common Cardiovascular Assessment Techniques

Growing pace of technology is becoming more focused on healthcare and di-

agnostics technology. Further advancement of manufacturing techniques and com-

putational resources improved diagnostic processes through wearable devices which

allow for continuous health monitoring of patients [9, 10]. However, measuring blood

pressure is a basic check performed by medicine professionals.

This check is essential and supplementary to a wide array of diagnostic pro-

cedures. In many cases requiring blood pressure tracking, patients often use remote

kits for doing the test themselves. These readings are then reported to the consulting

doctor. Modern devices including but not limited to smartwatches and fitness bands
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provide a convenient means to measure blood pressure [11, 12, 13]. They can also be

used for monitoring the blood pressure of a patient while they are sleeping or access

it continuously to diagnose any irregularities such as arrhythmias. Further research

is being done to develop wearable devices and algorithms which can provide better

readings remotely [14, 15, 16, 17]

Among the most common procedures for measuring the blood pressure, a cuff

type device is placed on the upper portion of the arm where the brachial artery is

present. Then the pressure in the cuff is increased till it completely blocks off the

flow in the artery. After this, the pressure is reduced which allows the blood to flow

again. This causes pressure fluctuations in the cuff which are measured using pressure

transducers. Commercially available devices use proprietary algorithms to estimate

the blood pressure using these cuff pressure fluctuation measurements. The cycle

of increasing and decreasing the blood pressure can be repeated more than once.

However as per a 2014 study, even advanced blood pressure measurement systems

only provide the systolic and diastolic pressures in most cases and are unable to take

advantage of the entire blood pressure waveform [18].

1.2.1 Hullender and Brown’s Waveform Estimation Algorithm

In a 2020 paper, Hullender showed that an extended Kalman filter yielded

promising results to estimate the blood pressure waveform [19]. Furthermore, it is re-

ported that arterial stiffness and hypertension can also be calculated using the blood

pressure waveform. This research first evaluates the algorithm developed by Hullen-

der and Brown. This is followed by developing an extension to the algorithm that

just uses the estimated blood pressure waveform to extract the important blood pres-

sure waveform characteristics and then compares some characteristics to standardized

values for diagnosing high blood pressure, hypertension severity, arrhythmia, atrial
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fibrillation, tachycardia and bradycardia while reporting others. It should be noted

that the extension to the algorithm can work independently by just assessing the

blood pressure waveform. In case a different algorithm is developed which can pro-

vide the blood pressure waveform using other means such as pulse wave velocity or

optical sensors then the same extension developed in this research can be applied

to those algorithms too. The algorithm developed by Hullender and Brown along

with the techniques used such as Fourier transformation and extended Kalman Filter

functioning are explained in detail in Appendix C.

1.2.2 Possible Enhancements for the Current Extended Kalman Filter Algorithm

Various studies have found that most of oscillometric devices fail to extract full

information available in the blood pressure waveform [20, 21, 22]. However, Hullender

and Brown’s algorithm is reliably able to provide accurate estimates for the entire

blood pressure waveform.

Blacher surmised that pulse wave velocity measurements can be used to de-

tect hypertension in patients [23]. Similarly, the presence of measurement from other

sensors can be used to verify the estimates especially in cases where the cuff type

transducers seem inadequate due to physical limitations. Kalman algorithms can ef-

fectively utilize simultaneous signals from multiple sources such as pulse wave velocity

(PWV) sensors or optical sensors found in most smartphone cameras [24]. Further-

more, the readings from different sensors can be combined to make better diagnoses

as there will be more than one factors to indicate an anomaly.

1.3 Characteristics of Blood Pressure Waveform for Diagnosis

The blood pressure waveform is an ideal indicator for getting vital body sig-

nals especially during competitive events, diagnosing conditions linked to heart rate
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Figure 1.1. Normal Blood Pressure Waveform Cycle.

such as hypertension and even for non-medical applications such as overcoming public

speaking anxiety or stuttering [25], improving sport performance etc. Various studies

have been conducted to develop models for obtaining the blood pressure waveform

[26, 19] or to analyze it for diagnosis of heart diseases [27, 28, 29, 30] Some im-

portant characteristics that can be utilized to predict heart conditions and diagnose

cardiovascular diseases [31, 30] are explained using the figures [32] below.

The above figure depicts one cardiovascular cycle with normal characteristics

[33]. Here, systolic pressure (Ps) is the pressure at the highest peak of the curve

whereas the diastolic pressure (Pd) is the lowest pressure on the curve. These pressures

are measured by most common devices and are useful for diagnosing hypertension and
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Figure 1.2. Ventricular Ejection Region on Blood Pressure Waveform.

assessing the risk for heart attack and stroke. The dicrotic notch (Pn) is the minimum

pressure in the valley after systolic pressure and marks the end of ventricular ejection.

The dicrotic peak (Pd) occurs right after the dicrotic notch. Combined, these two are

important factors in predicting the cardiovascular output, aortic valve functioning,

systole to diastole ratios and pressure reflections.

Other than these pressures, the time periods to reach these pressures along

with the entire cycle time are important factors in detecting elevated heart rate and

anomalies in cardiac output which can be used to predict or diagnose ischaemic heart

disease [34]. Furthermore, the waveform can be used to calculate the slope of the

systolic peak which is a good indicator of the arterial thickness and flexibility. A

higher slope of the blood pressure waveform indicates thin-walled arteries requiring
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minimal oscillations to change the pressure. Comparing all these characteristics over

time can allow medical professionals to diagnose any sudden changes or look into any

abnormalities [35, 36].

1.3.1 Parameters to consider while diagnosing

Cardiovascular diseases cost over 218 billion dollars and 138 billion dollars due

to lost productivity every year [37]. It is difficult to quantify the exact number of

incorrect diagnoses due to the variety of factors involved. However, various studies

conclude that cardiovascular diseases are more prone to misdiagnoses [38, 39]. For

cardiovascular malpractice cases with incorrect diagnoses, the chances of death are

75 percent as compared to 27 percent for non-cardiovascular diseases.

Diagnosing cardiovascular diseases can also have significant impacts on the

lifestyle and overall mental state of the patients. In some cases, the blood pressure

waveform might have slight fluctuations due to measurement errors or due to the

functioning of the pressure transducers in the cuff type oscillometric device. Further-

more, the presence of other diseases or factors such as age, gender or body physique

[40] may lead to changes in the blood pressure waveform. Therefore, it is important to

consider such parameters while diagnosing and verify the data before any predictions

are made.

To do this, the second chapter evaluates the performance of the algorithm de-

veloped by Hullender and Brown within different conditions before focusing on its

implementations.

1.3.2 Impacts of better diagnosis of cardiovascular diseases

As per the American Heart Association and the World Health Organization,

early diagnosis of cardiovascular diseases is crucial for timely action [37, 1]. This
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can help to prevent the onset of certain heart diseases and significantly reduce the

complications associated with long term cardiovascular damage [41].

According to a 2012 study, United States had the highest rates of unplanned re-

hospitalizations following a myocardial infraction event [42]. Due to a high mortality

risk, the United States government launched a program to penalize hospitals which

had significantly higher unplanned readmission rates within 30 days as compared to

the national average [43, 44].

Remote monitoring of patients is another challenge for medical professionals.

Advanced methods such as the electrocardiograph or CT scan to accurately gain data

about the patient’s blood pressure require expert knowledge regarding the implemen-

tation and operation of such systems. Therefore, being able to assess the entire blood

pressure waveform through simple cuff type oscillometric devices will greatly increase

the capabilities for remote monitoring and diagnosis. Additionally, algorithms for

extracting important characteristics from the waveform will further ease the work of

medical professionals and save significant amount of time spent studying the readings

from other instruments. The third chapter delves into developing algorithms that can

be reliably used to extract important characteristics from the blood pressure wave-

form while diagnosing conditions which are based on standardized values unaffected

by factors such as age, gender or body type under usual circumstances.
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CHAPTER 2

SYSTEM TESTING

An erroneous estimation of the blood pressure waveform can lead to incorrect

diagnoses of patients. As explained in the previous sections, faulty diagnoses pose

a huge risk to the patients especially in the case of cardiovascular diseases. While

the equations for modeling the system have been verified to be accurate, this section

deals with assessment of algorithm’s performance, limits and control methods. This is

done to check the convergence rate and computational resources used by the algorithm

under different conditions followed by an assessment of errors at extreme limits.

2.1 Optimal Control of Estimation System

The blood pressure waveform is estimated using the algorithm developed by

Hullender and Brown as explained in previous sections. The algorithm uses an ex-

tended Kalman filter and it only uses one input which is the change in mean cuff

pressure as it is inflated and deflated in cycles. The limits of the cuff pressure level

are accurate as they represent the maximum pressure necessary to cut off the blood

flow in the brachial artery and the minimum pressure is zero. Henceforth, various

methods are evaluated for controlling the rate of pressure change (r) within the cuff

pressure excluding the pressure fluctuations.

The main aim of optimally controlling the rate of pressure change in the cuff

is to reduce computation requirements and to achieve convergence between the real

and estimated values quickly. Furthermore, the extended Kalman filter estimation

algorithm is tested for error, covariance and noise limits at different rates of cuff
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Figure 2.1. Diagram for an LQG regulator.

pressure change (r) and with different measurement noise covariance values which are

specified using the R matrix in most Kalman filters.

2.2 Optimal control of cuff pressure fluctuations

The cuff pressure variation was analyzed to assess its impact on the conver-

gence of the extended Kalman Filter algorithm. The Kalman Filter to estimate the

16 parameters is an extended Kalman filter. The parameters to be estimated are

the 11 Fourier series coefficients, frequency ω, cuff pressure fluctuations along with

artery volume and its parameters i.e., Vao, a and b. The system locally linearizes

the non-linear equations and computes estimates and is not applicable for severely

non-linear systems. To optimize this, a linear quadratic regulator (LQR) approach is

attempted with constrained control as the cuff pressure input is limited by maximum

pressure and pressure change rate. This system can be generally described by the

LQG regulator diagram in Figure 2.1.

In Figure 2.1, v is the measurement noise and w is the process noise. The input

to the system is u and the output is y. To formulate the optimal gain through LQR, the

first step is to define a cost function which needs to be extremized. On evaluating the

above equations, it is anticipated that optimally varying the low frequency portion
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of pressure inflating and deflating the cuff would lead to more accurate estimates

from the Kalman algorithm. Simulations of the combined optimally controlled low

frequency portion of the cuff pressure in conjunction with the Kalman filter algorithm

are used to assess the potential improvements in robustness and accuracy of the

concept.

The maximum volume of cuff is 100 cm3 whereas the initial volume is 20 cm3.

The constants ‘a’ and ‘b’ may vary from equipment to equipment and are kept as

0.075 and 0.02 respectively in mmHg units. For comparison, the normal artery has

the same parameters as 0.11 and 0.03. The actual artery volume at 0 transmural

pressure is 0.25 cm3 and initial estimate is 0.3 cm3.

2.2.1 Controller Design

Since the measured output is cuff pressure variations, it seems likely that a

higher magnitude of these variations would result in more information for the Kalman

filter leading to better estimates. Therefore, a graph is plotted (shown in figure 2.2)

between estimated cuff pressure (Pc(t)) which is the input and the estimated cuff

pressure variations(y(t)).

From the graph in figure 2.2, it appears that there are three options for opti-

mization:

1. The maximum amplitude of ẏ (t) which is around 160 mmHg i.e., maximum

cuff pressure (Pcm)

2. The maximum variation in amplitude of y(t) which is around 80mmHg

3. On closer inspection of the graph and comparing it to the blood pressure wave-

form, it is observed that the maximum amplitude difference around 80 mmHg is

achieved as it corresponds to the diastolic blood pressure. This is readily observ-

able from the ẏ (t) equation. Here, the compliance function (f(Pt)) decreases
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Figure 2.2. Relation of variations in cuff pressure to the cuff pressure.

for any value of transmural pressure above 0. Similarly, if the cuff pressure (Pc)

is stabilized then the only contribution to ẏ (t) would be through the change in

blood pressure. This will reduce the bias due to input. Therefore, a controller

can be designed to maintain the cuff pressure near to the diastolic pressure

based on the average diastolic pressure obtained from previous Kalman filter

estimates. As the readings proceed, the average will stabilize which will lead to

better control and estimation.

Research studies show that human body can withstand sudden external pres-

sures of nearly 40 psi or more than 2000 mmHg without damage. Air pressures of 5

psi or nearly 260 mmHg directly to the eardrum can cause damage in 1 percent of

cases [45, 46, 47, 48, 49]. From the above graph, it is apparent that increasing the

cuff pressure to nearly 160 mmHg results in the maximum magnitude of cuff pressure

variations which are then used by the extended Kalman filter to generate estimates.
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Figure 2.3. Initial Algorithm for Optimal Control of Cuff Pressure Variation.

However, a cuff pressure of 160 mmHg which is around 3psi doesn’t cause any

harm to humans even if it’s applied suddenly. It must be noted that sudden increase

doesn’t correspond to an impulse as it would generate a pressure increment in the

form of blast overpressure which can cause injuries at values of 3psi. Since this is

not applicable practically, the only limitation to reach a pressure of 160mmHg is the

maximum air input to the cuff.

The quick pressure increment may not be suitable for a few extremely fragile

patients but in that case even the conventional oscillometric devices may not be a

good choice. Hence, a cost function with input constraint based on maximum air

input to cuff can be defined to bring the cuff pressure to 160mmHg within a finite

duration. This duration would be the time step used by the Kalman filter so that the

next incoming value doesn’t interfere with the current optimal input.
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Here, Pd(t) is the average diastolic pressure based on previous values and n

is defined by the number of estimations available. The input constraint remains the

same as it is only dependent on maximum air input. Square values are taken so that

the magnitude is minimized instead of the system trying to make the cuff pressure

zero. Also, a soft constraint is specified to ensure that the system moves in the correct

direction this may not be necessary as the diastolic pressure will dictate the direction

adequately.

2.2.1.1 Noise cancellation approach

After discussion with Dr. Robert L. Woods, it was concluded that the cuff

system cannot be modeled as an isolated lumped parameter system containing gases

with variations caused due to blood pressure oscillations as noise. Thus, the system

may not be adequately controllable using the Linear Quadratic Tracker approach.

A better approach would be the use of Model Predictive Control (MPC) tech-

niques as they can handle interaction between input and outputs. However, they

have limitations for long calculations as explained by Dr. Kamesh Subbarao in the

Optimal Controls lectures at the University of Texas at Arlington. MPC can be in-

tegrated into the Kalman filter over a few steps to provide feasible solution. This

would require extensive modification of MPC and local linearization of function.

The system is remodeled to exclude the variations considering them to be small

and non-detrimental to the average pressure within the cuff.

2.2.1.2 System remodeling

The system is remodeled using the lumped parameter modeling approach [50].

The equations for temperature and density variation are neglected considering that
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they don’t have much impact. Implementing the capacitance equation for cuff pres-

sure gives equation 2.1.

Ṗc = 1.2 ∗ Pc

V0 + ut
(−0.18u), (2.1)

Here, Pc is the cuff pressure and u is the input provided to optimize it. Note, the

heat transfer coefficient is kept 1.2 to give mid-range values. The above equation is not

linear or an ordinary differential equation as there are two unknowns being multiplied.

Therefore, the traditional methods are not applicable in this case. Combining different

approaches taught by Dr. Subbarao, equations 2.2 to 2.6 can be derived.

Pc = c1 ∗ (V0 + ut)
−0.22

u , (2.2)

Assuming the system takes 4 seconds to reach the pressure of 80mmHg, calcu-

lating and substituting the initial and final conditions,

1.609 = −0.22(ln(4 ∗ u+ V0) − ln(V0)), (2.3)

This gives u 0 which cannot take the system anywhere in the desired time.

Therefore, the usual methods are not applicable in this case. On trying the conven-

tional two-point boundary value approach,

Hessian(H) = (Pc − 80)2 + λ
−0.22Pcu

V0 + ut
, (2.4)

∂H

∂x
= −λ̇ = 2(x− 80) − 0.22λu

V0 + ut
, (2.5)

∂H

∂u
= −0.22λV0Pc

V0 + ut
= 0, (2.6)

This implies that λ = 0 and doesn’t provide a reliable solution.
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Figure 2.4. Real and estimated blood pressure values after using MATLAB Loop.

2.2.1.3 MATLAB loop

Another approach is attempted by simply choosing control effort (u) as the

difference between current and target value (80mmHg) of cuff pressure. This is im-

plemented using a for loop as follows:

for Pc>80

u=-|Pc-80|;

for Pc<80

u=|Pc-80|;

else u=0;

The above loop was added to the extended Kalman filter at the position where it

stores values for Pc and the plot in Figure 2.4 was obtained.
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From the above plot, it appears that there is a slight improvement in the rate of

convergence. On the other hand, the estimate waveform is very different. Therefore,

another similar approach was attempted using the following algorithm:

%The variable Pc is now independent of time and switches to

%either of the two thresholds which makes the rate of

%change of cuff pressure i.e., r=0

Pc=160*cf;

if t>Tf/nt && t<=2*Tf/nt

Pc=0*cf;

elseif t>2*Tf/nt && t<=3*Tf/nt

Pc=160*cf;

elseif t>3*Tf/nt && t<=4*Tf/nt

Pc=0*cf;

elseif t>4*Tf/nt && t<=5*Tf/nt

Pc=160*cf;

elseif t>5*Tf/nt

Pc=0*cf;

end

As observed in Figure 2.5, the blood pressure waveform estimate is much better

now. However, the peak values have a divergence of nearly 5mmHg which is not

acceptable in most cases. It can be surmised that implementing bang-bang type

control is making the system unstable due to sudden impulses in the input.
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Figure 2.5. Estimated and True Blood Pressure Waveform with Bang-Bang Control.

2.2.2 Changing the r and cf values

As seen in the previous section, sudden impulses as input make the system

unstable. So, the r and cf values are changed in an iterative manner to find the

best value of cuff pressure variation which results in a low computation time while

providing acceptable estimates for the blood pressure waveform.

2.2.2.1 Effect of number of cycles and cuff pressure rate on blood pressure waveform

estimate

To check the impact of cuff pressure and cycles on the estimated blood pres-

sure waveform, 8 different sets of values were tried using the design of experiment
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methodology explained in Juran’s Quality Handbook [51]. These included the values

for r/cf and nt provided in Table 2.1

Table 2.1. Tests to assess impact of cuff pressure rate change and number of cycles
on estimated blood pressure waveform

Trial Number Cuff pressure variation factor (r/cf) Number of cycles(nt)
1 15 4
2 10 6
3 15 6
4 7.5 8
5 10 8
6 6 10
7 8 10
8 10 12

The results showed that for above stated values there was no noticeable differ-

ence between the estimated and actual value once the extended Kalman filter system

had converged for different values of cuff pressure fluctuations and number of cycles.

Therefore, changing the rate of cuff pressure fluctuations slightly will not affect the

quality of estimated blood pressure waveform. Thus, the next section focuses on the

rate of convergence of the system along with the computational resources required

for major estimated parameters to reach within 97.5 percent of actual value with

the above shown trial values for number of cycles and larger values of cuff pressure

change.

2.2.2.2 Effect of number of cycles and cuff pressure rate on convergence duration

and computational requirements

From table 2.2 it is observed:
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Table 2.2. Tests to assess impact of cuff pressure rate change and number of cycles
on estimated blood pressure waveform

Cuff pressure number
variation of A0 A1, B1 A2, B2 A3, B3 Computation

factor(r/cf) cycles(nt) time (sec)
10 4 9.8 Not Compared 46.094
10 8 9.78 Not Compared 79.297
10 10 > 20 Not Compared 211
10 6 9.77 10.7,10.7 9.74,11.86 11.14,9.1 132.44
15 6 6.75 7.34,9.67 6.35,7.57 7.91,6.2 85.469
25 6 3.11 4.3,7.6 3.7,4.41 5,7 52.234
40 6 2.71 3.1,5.7 2.13,3.1 4.17,8.1 33.391
70 6 1.5 2.18,10.5 6.34,2.25 3.65,12.1 25.641
80 6 1.58 1.3,2.49 3.09,2.1 6.52,DNC 26.75
100 6 1.32 1.18,5.4 2.3,3.35 4.4,3.33 33.10
150 6 0.87 1.1,DNC 5,4 3.6,1.1 18.969
158 6 0.67 2.14,DNC 2.5,3.3 2.68,2.61 18

1. Estimated values of most important Fourier series coefficients converge towards

actual values quicker as the rate of cuff pressure change is increased.

2. The fastest convergence of Fourier series coefficients is observed at r=158*cf

which is a high gain controller. The pressure increases to 98.75 percent of

maximum cuff pressure in one second.

3. Values above r=158*cf cause the system to start diverging significantly which

results in an offset for the estimated blood pressure waveform when compared

to true values. Divergence for r=158*cf is 0.72mmHg whereas for r=150*cf it

is 0.426mmHg. Depending on the type of application, either of those may be

acceptable whereas going to slower cuff pressure change rates is also an option.

Although the divergence can be eliminated by increasing the number of cycles

as they directly affect the final time and allow more time for the system to

converge.
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4. Computation time decreases significantly but this could be directly related to

the quick convergence of estimated values.

5. At higher cuff pressure fluctuation rates, the less significant Fourier series co-

efficients do not converge to the actual values in many cases. Also, there are

significant variations (up to even 40 times in some cases) in the starting du-

ration where the estimated values vary rapidly before starting to settle down.

These disturbances may cause for a misdiagnosis. However, the initial results

can be discarded for a duration with threshold for differences caused due to

changes in patients and environment.

6. The blood pressure waveform is accurately estimated even though some Fourier

series coefficients do not converge to the actual values with increasing cuff pres-

sure rates. Although the estimated values remain within a 5 percent error range

even when they converge at a different value. In some cases, this makes it look

like a system with higher rate of cuff pressure fluctuations converged slower.

However, comparing the graphs always show that the estimate had stabilized

earlier but towards a slightly different value.

7. On plotting the r/cf parameter on x-axis, and computation time on y-axis an

exponential looking curve is obtained as shown in Figure 2.6.

2.3 Error and Covariance Testing

A Kalman filter is a linear dynamic system which works as an optimal estimator

[52] for one or more variables using a given set of output measurements. An extended

Kalman filter is used to estimate the states for a non-linear system and works by

linearizing the system.
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Figure 2.6. Cuff Pressure Variation Rate Vs. Computation Time.

2.3.1 System Operating within a Given Linear Region

In case the system is only operating within a range where the system mostly

behaves linearly then the linearization can be done about that range. However, that

is not the case with the system dynamics used for calculating the blood pressure

waveform.

2.3.2 System Operating Over Larger Ranges or with High Fluctuations

As in this case, the system needs to be partially differentiated at each step.

This is done by partially differentiating the A matrix with non-linear elements to get
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a Jacobian so that the resulting matrix can be used as a system matrix [52]. This is

explained using the equations below.

ẋ = a(x, u, t) +G(t)w, (2.7)

z = h(x, t) + v, (2.8)

A(x, t) =
∂a(x, u, t)

∂x
, (2.9)

H(x, t) =
∂h(x, t)

∂x
, (2.10)

Here, ẋ is the derivative of state variables used to update the changes in vari-

ables through a given input u. In equation 2.7, a(x, u, t) denotes a set of non-linear

equations whereas w represents process noise which is considered to be negligible for

our case. In equation 2.8, z represents the measured variables which are computed

using the equations contained by h(x, t) and are mainly dependent on the computed

state variables. The dynamics are linearized by partially differentiating the set of

non-linear equations in a(x, u, t) and h(x, t) to obtain Jacobians which replace A and

H matrices which usually represent state (or system) matrix and output matrix re-

spectively in case of linear systems. Equations 2.9 and 2.10 show the calculation of

Jacobians for an extended Kalman filter operating in continuous time process.

In equation 2.8, the variable v represents the measurement noise whose co-

variance is specified using the R matrix in extended Kalman filter equations. This

covariance value is altered to assess the amount of noise the filter can handle while

functioning properly.
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Figure 2.7. Error Vs. Covariance values for r=158*cf with different number of cycles
(n = 6 and 90 respectively).
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2.3.3 Analysis of Error and Covariance Values

The upper and lower thresholds for the noise determine the robustness of the

estimator. Using different values, it was found that the upper limit for selecting

initial measurement noise covariance matrix R is 1.0945 whereas the lower limit is

0.694. For R<0.694 the system is not able to converge so a stiff solver was tried using

MATLAB command ode15s. This allowed for the system to converge with small

divergences. Making the system dynamics continuous could help avert the divergence

and allow for even lower initial R values which would improve the system further. A

well-tuned Kalman filter has nearly 80 percent of error peaks within the covariance

bounds. If all the peaks are above the covariance bounds then the filter is heavily

depending on system model and neglecting the measurement values whereas all the

values within the bounds indicate a filter that is neglecting the system model. The

algorithm by Hullender and Brown is successfully able to fulfill these conditions for

values or R ranging between 0.694 and 1.0945. This is true even for a high gain value

of r = 158 ∗ cf and is shown in figure 2.7. Although, the number of cycles need

to be increased sufficiently to allow the system to converge well. Other parameters

affecting the error such as Q, Xo and Po are not altered.
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CHAPTER 3

EXTRACTING BLOOD PRESSURE WAVEFORM CHARACTERISTICS AND

PREDICTING CARDIOVASCULAR DISEASES

In the previous section, it was confirmed that the estimate of blood pressure

waveform provided by the algorithm developed by Hullender and Brown is accurate

when operating within certain parameters of noise and cuff pressure change rates.

Now, this section aims to develop an algorithm which can extract the important

characteristics from the estimated blood pressure waveform and predict or diagnose

some conditions based on standardized values. It should be noted that while the

standardized values can accurately diagnose some diseases which are not affected by

age, gender or other patient attributes, they might be a side effect of another disease

or caused due to a scenario. For example, secondary hypertension has similar char-

acteristics as hypertension but is caused by an underlying condition such as kidney

disease, sleep apnea, thyroid issues etc. [53] Therefore, any diagnoses or information

provided by the algorithm should be confirmed with a licensed medical professional

before taking any medication or other steps to improve the cardiovascular health. The

detailed code along with logic to implement the algorithm is presented in Appendix

B.

3.1 Extracting Time Periods from the Blood Pressure Waveform

There are a number of time periods within the blood pressure waveform which

can be used to assess the cardiovascular health by comparison to themselves or other

time spans [54, 55]. One of the most important time periods is the cycle time which
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represents the time duration of one complete blood pressure waveform cycle. Cycle

time is necessary to measure the heart rate and is heavily linked to hypertension, atrial

fibrillation and arrhythmia [13, 56, 57, 58]. While hypertension indicates sustained

high blood pressures, atrial fibrillation relates to irregular heart rhythm and is termed

as arrhythmia in case of very rapid heart rhythm [59, 60].

An algorithm is developed to determine cycle time by finding the duration

between adjacent diastolic peaks as it iterates through systolic peaks. Since there is

only one systolic peak during each cycle, this is a reliable method to determine cycle

times accurately. The cycle time is monitored continuously, and output is provided

in case the cycle time changes suddenly or abruptly. Studies show that unexpected

changes in the cycle time can signal towards an upcoming or ongoing stroke, heart

attack etc. [61, 62]

The final diagnostic report consists of the upper and lower thresholds for the

cycle times along with the average and deviations. The deviations are highly useful to

pinpoint anomalies during the measurement process. Any abnormal cycle times are

noted to diagnose for atrial fibrillation and arrhythmia. Using standardized values,

the algorithm also diagnoses tachycardia and bradycardia [63].

Furthermore, the algorithm also provides similar data regarding the systolic

peak time, dicrotic notch and dicrotic peak periods. The MATLAB code to implement

this algorithm is given in the final part of this chapter, the commented lines of code

can be used to reliably implement the algorithm in other languages, without the use of

inbuilt functions. This increases the versatility of algorithm so that it can be applied

over different platforms with varying computational resources.
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3.2 Evaluation of Cardiac Output Factors

The area under the blood pressure waveform is directly related to the volume

of blood pumped by the heart. Although this volume can vary based on age, gender

and body features, it can still provide important information and diagnose certain

cardiovascular diseases simply by comparison of systolic and diastolic elements. The

volume pumped by the heart within the systolic curve is known as the ventricular

ejection or output [34]. This is a good way to assess if enough blood is reaching to

the heart and can be used to diagnose coronary artery disease which is caused by a

blockage or restriction in arteries leading to the heart [64, 65]. As per experimental

research, this condition usually results in low stroke volume output despite high sys-

tolic pressure especially during exercise. The cardiac output factor combined with the

ratio of systolic duration to cycle time is a reliable measure to diagnose the severity

of coronary artery disease [66, 67].

Furthermore, comparison of the ventricular output to the entire area under the

curve and/or the area under the diastolic region can also provide useful information

to measure cardiovascular health [33, 35]. Among other conditions which can be

diagnosed by comparing cardiac output factors, the most important ones are arterial

sclerosis which refers to the hardening of arteries, and stroke occurrence [68].

The algorithm is extended to calculate the area under the systolic and diastolic

regions of the blood pressure waveform curve. It then compares the time for ventric-

ular output to the total cycle time. These are good indicators of arterial sclerosis as

confirmed by Meune and Lambova in independent research [69, 70].

The algorithm also monitors the mean and deviations from the cardiac output

factors to notice sudden changes which can point towards arrhythmia or even a heart

attack [71]. This is especially crucial to accurately diagnose silent heart attacks

immediately and take necessary measures to mitigate further damage to the heart.
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Comparing ventricular output factor for different activity modes (rest, exercise)

allows prediction of heart attacks, strokes and other risks [72, 73]. This also helps in

remotely monitoring patients and determining situations or environments which can

lead to abnormal heart activity when compared to normal values [74].

3.3 Shape of the Blood Pressure Waveform Curve

The slope for pressure increases during systolic peak and the depth of the di-

crotic notch also referred to as incisura are important factors of blood pressure wave-

form [75, 76]. These factors can be reliably used to predict the artery thickness, artery

blockage, atrial valve function and other parameters important for assessment of car-

diovascular health. A comparison and continuous assessment of these parameters can

be used for accurately diagnosing major cardiovascular diseases including arterial scle-

rosis, aortic stenosis, aortic regurgitation, hypertrophic obstructive cardiomyopathy,

coronary artery disease, atrial fibrillation and stroke [19, 77].

3.3.1 Assessment of Dicrotic Notch

When the aortic valve within the heart narrows abnormally, the condition is

termed as aortic stenosis. According to many studies, this condition can be predicted

by a small depth of dicrotic notch or an indistinct incisura [78, 76, 36].

3.3.2 Assessment of Systolic Peak Slopes

In case of hypertrophic obstructive cardiomyopathy, where the muscle of the

heart becomes thick in an abnormal manner making it hard for the heart to pump

blood. As explained by Yartsev and Mark in their respective books, on the blood

pressure waveform, this is seen by a splitting of the systolic peak into two parts with

a steep decline after the first systolic peak.
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When the heart valve does not close properly, it leads to a back flow of blood

into the heart. This condition is termed as aortic regurgitation. On the blood pressure

waveform curve, this is signified by a steep decline after the systolic peak followed by

an indistinct incisura [79, 36].

3.3.3 Algorithm to Assess Blood Pressure Waveform’s Shape

The algorithm calculates the slope of the systolic pressure rise from the previous

diastolic peak to the systolic peak. Many sources segregate this slope at the anacrotic

notch to segregate forward wave and reflected wave. However, the anacrotic notch is

usually indistinct in normal blood pressure waveforms and the estimation algorithm

developed by Hullender and Brown provides a smooth curve with no anacrotic notch.

Following the peak, the algorithm calculates the slope from the systolic peak to the

dicrotic notch.

The depth for dicrotic notch is calculated in terms of mmHg by comparing

the pressures at dicrotic notch and dicrotic peak. The depth of dicrotic notch is an

important parameter to assess artery thickness [80, 81] and proper closing of valves.

The average and deviation for these values are also calculated to assess any abnormal

changes [54].

3.4 Blood Pressure Analysis

Although measuring blood pressure is common, the blood pressure waveform

provides much more detailed information regarding the blood pressures [82, 10, 30].

Instead of just two peaks, an algorithm is developed which monitors the blood pressure

peaks constantly. These can be effectively used to assess important cardiovascular

diseases such as hypertension and its severity [83, 84], risk of coronary artery disease

and possibility of cardiovascular incidents [85, 86]. As per a 1986 study by Berthe,
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a medical professional may be able to determine the severity and even location of

coronary artery disease when there is an abnormal change in blood pressure levels after

a specific physical activity [87]. Similarly, the fluctuations observed with different

activities can be used to assess the cardiovascular risk for a patient [88].

The algorithm determines the systolic and diastolic pressure then compares

them to standardized values for diagnosing the severity of elevated or low blood

pressure and hypertensive stages [89]. Additionally, it constantly evaluates the total

time and compares it to the time with elevated blood pressure. According to a 2002

study published in the American Heart Association, this helps in diagnosing the

hypertension severity [90]. Average, thresholds and deviation for both systolic and

diastolic pressure are provided in the diagnostic report so that a medical professional

can pinpoint the anomalies.

3.5 Factors to Consider While Analyzing the Diagnostic Report

The report provided by the algorithm provides some information which needs

to be compared to other data such as the cardiac output factors. Moreover, various

assumptions are made by Hullender and Brown while modeling the system and devel-

oping the algorithm; even more assumptions are made while developing the algorithm

which might not be true in the real world. For example, the baseline pressure of the

body keeps changing as the body tries to regulate the internal body pressures, these

changes in baseline pressure depend on posture, environment and activity level of

the patient along with other things [91, 92]. Another example would be the absence

of process noise within the extended Kalman Filter algorithm developed by Hullen-

der and Brown. The process noise can occur due to fluctuations in the functioning

of pressure transducers, or changes in the body due to internally reflected pressure

waves or environment among other things.
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3.6 Limitations of the algorithm

The algorithm shares the same limitations as the extended Kalman filter since

it does not improve or alter the estimates in any way. Furthermore, the algorithm

would not able to function properly if there are additional peaks due to an underlying

medical condition.

Due to varying medical studies and changes in technology, there is conflicting

data when trying to diagnose or predict a cardiovascular disease in many instances.

For example, a 1961 study by Buteler concluded that systolic upstroke time is not a

reliable measure for aortic stenosis [93] although many sources claim them to be linked

directly [94, 95]. Therefore, further studies with more patients need to be conducted

before a characteristic of the blood pressure waveform is used for diagnosis.
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CHAPTER 4

RESULT AND DISCUSSION

The rate of cuff pressure change at a high gain of 0.98 times the maximum

pressure allows for the quickest convergence without significant deviation. The devi-

ations can be reduced by increasing the number of cycles which allows the system to

converge closer to the actual values.

Higher gains allow a greater number of cuff pressure cycles to be completed

in shorter amount of time. They also result in increased cuff pressure variations to

provide more input data to the algorithm developed by Hullender and Brown. These

factors result in a lower computation time. A combination of high gain and ample

number of cycles can be implemented to obtain reliable estimates for any given ap-

plication.

The rates of cuff pressure change beyond 158 ∗ cf cause significant divergence

from estimates which may be removed by increasing the number of cycles. However,

this will further increase the computation time and might not be desirable as increas-

ing the number of cycles increases the computational requirements.

Over the tested ranges in table 2.2, the convergence time decreases in an expo-

nential manner as the rate of cuff pressure variation is increased.
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The algorithm functions effectively and is able to reliably extract the important

characteristics from the blood pressure waveform. An alternative code is included

as a commented section (shown in Chapter 3), which can be used to implement the

algorithm without using MATLAB functions. This allows the algorithm to be directly

implemented in other languages such as Python, C and C++ which can be supported

by a wide range of devices and platforms.

After assessing the blood pressure levels, cycle times and other parameters along

with their changes, the algorithm diagnoses for the following cardiovascular diseases

by comparing them to standardized values:

1. Blood pressure level along with hypertension severity

2. Arrhythmia

3. Atrial Fibrillation

4. Tachycardia and Bradycardia

The algorithm displays all the parameters along with their variations in the

final diagnostics report output. If any anomalies or sudden changes are noticed, then

they can be clearly seen in the report through the standard deviation metrics.

A sample output of the diagnostic report printed by the algorithm in MATLAB

is included in Appendix B.

It is seen from the report that the algorithm is able to accurately diagnose

cardiovascular diseases and extract all the required characteristics. The algorithm

has also been modified further to ignore the first 10 cycles as the extended Kalman

filter needs some time to converge to the real values. Finally, the thresholds can be

changed as required to better diagnose the cardiovascular anomalies.
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CHAPTER 5

FUTURE WORK

As described by Dr. Hullender, the existing algorithm can be expanded by con-

tinuation of the equations within the system model to accommodate wider ranges of

initial measurement noise value, R. Furthermore, advanced computation techniques

such as machine learning and neural networks can be used to relate different factors

such as age, gender and physical characteristics with multiple features extracted from

the blood pressure waveform.

Additional algorithm can be added before the existing algorithm to readjust

the estimated blood pressure waveform or account for changes related to:

1. Natural and continuous events such as baseline fluctuations [31]

2. Presence of a cardiovascular disease such as hemodynamic instability [96]

3. Patient to patient variations due to age [97], gender and physical characteristics

[91] among other things.

In terms of practical devices, a portable cuff-type pressure transducer type

device can be used to assess blood pressure remotely at any time of the day by

connecting it to mobile devices like smartphones, tablets and laptops.
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APPENDIX A

ALGORITHM AND CODE TO EXTRACT AND ANALYZE BLOOD PRESSURE

WAVEFORM CHARACTERISTICS
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In the following appendix, the code is presented along with the algorithms used

to develop the logic for the program. This program is developed for MATLAB but

an additional section is included using which the program can be implemented in any

modern language such as C++, Python etc.

Throughout the code, comments have been used to explain the steps taken.

These comments start with a % symbol whereas the sections for MATLAB specific

and general code are spli using two %% symbols together.

%% Algorithm to Analyze the Blood Pressure Waveform

%To calculate computational time, a variable is initialized in the first

%line to store CPU time and a variable is initialized in the last line to

%substract the current CPU time from the initial CPU time. Both lines of

%code are given below as comments respectively.

%tstart=cputime

%tend=cputime-tstart

%The algorithm only needs the estimated blood pressure waveform for

%analysis and thus it can be included within the model developed by

%Hullender and Brown or as a separate function which only fetches the

%estimated blood pressure waveform values.

%initializing variables to recognize anomalies

SElevBp=0;

SHighBpStage1=0;

SHighBpStage2=0;

SHypertensiveCrisis=0;
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SLowBp=0;

DHighBpStage1=0;

DHighBpStage2=0;

DHypertensiveCrisis=0;

DLowBp=0;

tnow=0;

tfor=0;

rangeCycle=0;

cyclenum=0;

Fib=0;

slf=0;

cyclen2=0;

COf=0;

TachyCar=0;

BradyCar=0;

ArrhythmiaSt=0;

ElevBPDur=0;

%% Section - 1: To Run Code Without MATLAB findpeaks functions

%all other functions used are common and can be coded easily

%across different languages although similar functions may already exist

%under a different name depending on the programming language and library

% JD=PE/cf;

% negJD=-JD;

% duo=0;
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% for numit=1:1:length(JD)-2

%

% % conditional statement to find peaks

% if (JD(numit+1)-JD(numit)>0) && (JD(numit+2)-JD(numit+1) <= 0)

% duo=duo+1;

% PeakMag(duo)=JD(numit+1);

% Locats(duo)=t(numit+1);

% end

% %conditional statement to find trough/valleys

% if (negJD(numit+1)-negJD(numit)>0) && (negJD(numit+2)-negJD(numit+1)<=0)

% LowPeaks(duo)=-negJD(numit+1);

% LowLocats(duo)=t(numit+1);

% end

% end

%% Section - 2: Code using MATLAB Functions

%to run the code without errors due to multiple assignments, only one

%section should be run and other commented

%fetching peak values and their time locations

JD=PE/cf; %PE is the estimated blood pressure waveform

[PKs,LOCs,wi,pr]=findpeaks(JD,t,’WidthReference’,’halfheight’); %peaks

PeakMag=PKs; %magnitude of peaks

Locats=LOCs; %time locations of peaks

SysPeakWidth=wi;
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%fetching minimum trough/valley magnitudes and their time locations

[BPKs,BLOCs,Bwi,Bpr]=findpeaks(-JD,t); %valleys

LowPeaks=-BPKs; %magnitude of valleys

LowLocats=BLOCs; %time locations of valleys

systamp=zeros(1,floor(length(PeakMag)/3));

%% Algorithms below use basic functions

%NOTE - It is assumed that the system needs the time for first 10 peaks to

%converge to the actual values of blood pressure waveform. Therefore, the

%first 10 peaks are neglected throughout the algorithm when evaluating the

%estimated blood pressure waveform.

%iterating through systolic peaks

for iter=11:1:floor((length(PeakMag)-2)/3)

if PeakMag(iter)>PeakMag(iter+1) && PeakMag(iter)>PeakMag(iter+2)

SysP(iter)=PeakMag(3*iter-2);

DiaP(iter)=LowPeaks(3*iter);

end

end

%Average, maximum, mimimum and standard deviation of systolic pressure

AverageSystolicPressure=mean(SysP);

MaxSysP=max(SysP);

MinSysP=min(SysP);
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DevSysP=std(SysP);

%Average, maximum, mimimum and standard deviation of diastolic pressure

ADiaP=mean(DiaP);

MaxDiaP=max(DiaP);

MinDiaP=min(DiaP);

DevDiaP=std(DiaP);

%recognizing anomalies in systolic pressure

for isy=11:1:(length(PeakMag)-3)

if abs(PeakMag(isy)-PeakMag(isy+3))>5

Fib=1;

end

%classifying hypertension/high BP severity based on systolic pressure

if PeakMag(isy)>PeakMag(isy+1) && PeakMag(isy)>PeakMag(isy+2)

if PeakMag(isy)>=120 && PeakMag(isy)<130

SElevBp=1;

elseif PeakMag(isy)>=130 && PeakMag(isy)<140

SHighBpStage1=1;

elseif PeakMag(isy)>=140 && PeakMag(isy)<180

SHighBPStage2=1;

elseif PeakMag(isy)>=180

SHypertensiveCrisis=1;

elseif PeakMag(isy)<90

SLowBp=1;
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end

cyclenum=cyclenum+11;

%calculating cycle time

rangeCycle(cyclenum)=Locats(isy+3)-Locats(isy);

if isy>3

slf=slf+1;

%calculating slope to reach systolic pressure

SysSlope(slf)=floor((PeakMag(isy)-LowPeaks(isy-1))/...

(Locats(isy)-LowLocats(isy-1)));

%calculating slope after the systolic pressure

SystolicDecrementSlope(slf)=floor((PeakMag(isy)...

-LowPeaks(isy))/(Locats(isy)-LowLocats(isy)));

%calculating dicrotic notch depth

DicNotchDepth(slf)=floor(PeakMag(isy+1)-LowPeaks(isy));

%calculating duration of elevated blood pressure

if PeakMag(isy)>120 || LowPeaks(isy-1)>80

ElevBPDur=ElevBPDur+rangeCycle(cyclenum);

end

end

%diagnosing intermittent arrhythmia based on fluctuation in cycle time
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%The thresholds can vary depending on patient’s age, gender etc.

if cyclenum>10

prevCycle(cyclenum)=rangeCycle(cyclenum-1);

if prevCycle(cyclenum)>1.2*rangeCycle(cyclenum)...

|| prevCycle(cyclenum)<0.8*rangeCycle(cyclenum)

ArrhythmiaSt=1;

end

%diagnosing Tachycardia and Bradycardia

if rangeCycle(cyclenum)<0.6

TachyCar=1;

elseif rangeCycle(cyclenum)>1

BradyCar=1;

end

end

end

end

%determining average and deviations for slope to reach systolic pressure

AvSysSlope=mean(SysSlope);

DevSysSlope=std(SysSlope);

%determining average and deviations for dicrotic notch depth

AvDicND=mean(DicNotchDepth);

DevDicND=std(DicNotchDepth);
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%determining average and deviations for slope after systolic pressure

AverageSystolicDecrementSlope=mean(SystolicDecrementSlope);

DeviationSystolicDecrementSlope=std(SystolicDecrementSlope);

%determining the ratio of high blood pressure cycles to normal ones

%this helps in determining if the elevated blood pressures are constant

TotalTime=sum(rangeCycle);

ElevBPDuration=sum(ElevBPDur);

RatioElevBP=ElevBPDuration/TotalTime;

%determining maximum, miminum, average and deviations in cycle time

MaxCyc=max(rangeCycle);

AvgCyc=mean(rangeCycle);

BeatDev=std(rangeCycle);

MinCyc=min(rangeCycle);

%recognizing anomalies in diastolic pressure

for kdi=11:1:(length(LowPeaks)-3)

%classifying hypertension/high BP severity based on diastolic pressure

if LowPeaks(kdi)<LowPeaks(kdi+1) && LowPeaks(kdi+1)>LowPeaks(kdi+2)

if LowPeaks(kdi)>=80 && LowPeaks(kdi)<90

DHighBpStage1=1;

elseif LowPeaks(kdi)>=90

DHighBpStage2=1;

elseif LowPeaks(kdi)>=120
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DHypertensiveCrisis=1;

elseif LowPeaks(kdi)<60

DLowBp=1;

end

%evaluating other time periods for comparison

for kco=1:1:length(t)

if LowLocats(kdi)==t(kco)

tnow=kco;

end

end

%evaluating ventricular output factor and duration

for kco2=1:1:length(t)

if LowLocats(kdi+1)==t(kco2)

tfor=kco2;

if tnow>=1

cyclen2=cyclen2+1;

curWave=JD(tnow:tfor);

rangeSys=t(tnow:tfor);

COf=COf+1;

VentricularOutDur(COf)=LowLocats(kdi+1)-LowLocats(kdi);

SysCOfactor(COf)=trapz(rangeSys,curWave);

%evaluating durations to reach systolic peak and dicrotic peak

DicPeakDur(COf)=Locats(kdi+2)-LowLocats(kdi);
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SysPeakDur(COf)=Locats(kdi+1)-LowLocats(kdi);

%calculating the ratio of systolic duration/time to reach dicrotic notch

%to overall cycle

sysRatio(COf)=(t(tfor)-t(tnow))/rangeCycle(cyclen2);

end

end

%calculating diastolic cardiac output factor i.e., area under the diastolic

%curve

if LowLocats(kdi+3)==t(kco2)

tnxt=kco2;

if tnow>=1

diaWave=JD(tfor:tnxt);

rangeDia=t(tfor:tnxt);

DiaCOfactor(COf)=trapz(rangeDia,diaWave);

end

end

end

end

end

%evaluating the average and deviations in systolic and diastolic

%cardiac output factors

MeanSyCO=mean(SysCOfactor);

MeanDiaCO=mean(DiaCOfactor);
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DevSyCO=std(SysCOfactor);

DevDiaCO=std(DiaCOfactor);

%evaluating average and deviations in systolic ratio to cycle time

MeanSysRatio=mean(sysRatio);

DevSysRatio=std(sysRatio);

%average and deviations in ventricular output duration

AvgVentOutDur=mean(VentricularOutDur);

DevVentOutDur=std(VentricularOutDur);

%average and deviations in duration to reach systolic peak

AvgSystolicPeakDuration=mean(SysPeakDur);

DevSystolicPeakDuration=std(SysPeakDur);

%average and deviations in duration to reach dicrotic peak

AvgDicroticPeakDuration=mean(DicPeakDur);

DevDicroticPeakDuration=std(DicPeakDur);

%Diagnostic Report with important characteristics and diagnoses

CycStr=[’\n\n Patient Diagnostic Report \n\nNote: 0 indicates ’ ...

’a negative result and 1 indicates a positive result.’ ...

’\nAll durations are in seconds. \n\nMaximum Cycle Time = %.2f’...

’\nAverage Cycle Time = %.2f \nDeviation in Cycle Time = %.2f’...

’\nMinimum Cycle Time = %.2f’];

fprintf(CycStr,MaxCyc,AvgCyc,BeatDev,MinCyc)
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TimePerStr=[’\n\nAverage Time to Reach Systolic Peak = %.2f’...

’\nDeviation in Time to Reach Systolic Peak = %.2f’...

’\n\nAverage Time to Reach Dicrotic Peak = %.2f’...

’\nDeviation in Time to Reach Dicrotic Peak = %.2f’...

’\n\nAverage Ventricular Output Duration = %.2f’...

’\nDeviation in Ventricular Output Duration = %.2f’];

fprintf(TimePerStr,AvgSystolicPeakDuration,DevSystolicPeakDuration,...

AvgDicroticPeakDuration,DevDicroticPeakDuration,AvgVentOutDur,...

DevVentOutDur)

ShapeStr=[’\n\nAverage Slope to reach Systolic Peak = %.2f mmHg/sec’...

’\nDeviation in Slope to reach Systolic Peak = %.2f \n\nAverage’];

fprintf(ShapeStr,AvSysSlope,DevSysSlope)

SystolicDecrementString=[’\n\n Average Slope after the Systolic Peak’...

’ = %.2f \n Deviation in Slope after the Systolic Peak = %.2f’...

’\n\nAverage Dicrotic Notch Depth = %.2f mmHg \nDeviation in Dicrotic’...

’Notch Depth = %.2f’];

fprintf(SystolicDecrementString,AverageSystolicDecrementSlope,...

DeviationSystolicDecrementSlope,AvDicND,DevDicND)

TimeDurStr=[’\n\nTotal Time Monitored = %.2f \nDuration of Elevated’...

’Blood Pressure = %.2f \nRatio of Elevated Blood Pressure’...

’to Total Time = %.2f’];

fprintf(TimeDurStr,TotalTime,ElevBPDuration,RatioElevBP)
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VentrStr=[’\n\nMean Ventricular Output Factor = %.2f’...

’\nDeviation in Ventricular Output Factor = %.2f’];

fprintf(VentrStr,MeanSyCO,DevSyCO)

DiastStr=[’\nMean Diastolic Output Factor = %.2f’...

’\nDeviation in Diastolic Output Factor = %.2f’];

fprintf(DiastStr,MeanDiaCO,DevDiaCO)

PeriodComparisonStr=[’\n\nMean Ratio of Systolic Duration to Total’...

’Cycle Duration = %.2f \nDeviation in Ratio of Systolic’...

’Duration to Total Cycle Duration = %.2f’];

fprintf(PeriodComparisonStr,MeanSysRatio,DevSysRatio)

SysPAStr=[’\n\nAverage Systolic Pressure %.2f mmHg’...

’\nMaximum Systolic Pressure %.2f mmHg’...

’\nMinimum Systolic Pressure %.2fmmHg’...

’\nStandard Deviation in Systolic Pressure’...

’%.2f mmHg’];

fprintf(SysPAStr, AverageSystolicPressure, MaxSysP, MinSysP, DevSysP)

DiaPAStr=[’\n\n Average Diastolic Pressure = %.2f mmHg’...

’\nMaximum Diastolic Pressure = %.2f mmHg’...

’\nMinimum Diastolic Pressure = %.2f mmHg’...

’\nStandard Deviation in Diastolic Pressure = %.2f mmHg’];

fprintf(DiaPAStr,ADiaP, MaxDiaP, MinDiaP, DevDiaP)
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fprintf(’\n \nAtrial Fibrilation - %d’,Fib)

DiagATBStr=[’\nArrythmia - %d \nTachycardia (Elevated Heartbeat)’...

’- %d \nBradycardia (Slow Heartbeat) - %d \n\n’];

fprintf(DiagATBStr,ArrhythmiaSt,TachyCar,BradyCar)

%combining systolic and diastolic anomalies to diagnose blood pressure and

%hypertension severity

if SHypertensiveCrisis==1 || DHypertensiveCrisis==1

fprintf(’Hypertensive crisis!’)

elseif SHighBPStage2==1 || DHighBpStage2==1

fprintf(’High Blood Pressure - Stage 2’)

elseif SHighBpStage1==1 || DHighBpStage1==1

fprintf(’High Blood Pressure - Stage 1’)

elseif SElevBp==1

fprintf(’Elevated Blood Pressure’)

elseif SLowBp==1 || DLowBp==1

fprintf(’Low Blood Pressure’)

else

fprintf(’Blood Pressure is normal’)

end

fprintf(’\nEnd of Report.\n’)
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APPENDIX B

SAMPLE OF THE GENERATED DIAGNOSTIC REPORT
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This appendix shows a sample output diagnostic report generated by the code

in Appendix A.

Patient Diagnostic Report

Note: 0 indicates a negative result and 1 indicates a positive result.

All durations are in seconds.

Maximum Cycle Time = 1.01

Average Cycle Time = 1.00

Deviation in Cycle Time = 0.00

Minimum Cycle Time = 0.99

Average Time to Reach Systolic Peak = 0.27

Deviation in Time to Reach Systolic Peak = 0.00

Average Time to Reach Dicrotic Peak = 0.61

Deviation in Time to Reach Dicrotic Peak = 0.00

Average Ventricular Output Duration = 0.44

Deviation in Ventricular Output Duration = 0.00

Average Slope to reach Systolic Peak = 267.13 mmHg/sec

Deviation in Slope to reach Systolic Peak = 2.84

Average Slope after the Systolic Peak = -327.96

Deviation in Slope after the Systolic Peak = 4.94
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Average Dicrotic Notch Depth = 11.00 mmHg

Deviation in DicroticNotch Depth = 0.00

Total Time Monitored = 95.00

Duration of ElevatedBlood Pressure = 94.00

Ratio of Elevated Blood Pressureto Total Time = 0.99

Mean Ventricular Output Factor = 54.38

Deviation in Ventricular Output Factor = 0.28

Mean Diastolic Output Factor = 56.94

Deviation in Diastolic Output Factor = 0.26

Mean Ratio of Systolic Duration to TotalCycle Duration = 0.44

Deviation in Ratio of SystolicDuration to Total Cycle Duration = 0.00

Average Systolic Pressure 54.63 mmHg

Maximum Systolic Pressure 160.49 mmHg

Minimum Systolic Pressure 0.00mmHg

Standard Deviation in Systolic Pressure76.45 mmHg

Average Diastolic Pressure = 30.30 mmHg

Maximum Diastolic Pressure = 89.08 mmHg

Minimum Diastolic Pressure = 0.00 mmHg

Standard Deviation in Diastolic Pressure = 42.41 mmHg
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Atrial Fibrilation - 0

Arrythmia - 0

Tachycardia (Elevated Heartbeat)- 0

Bradycardia (Slow Heartbeat) - 1

High Blood Pressure - Stage 2

End of Report.
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APPENDIX C

HULLENDER AND BROWN’S WAVEFORM ESTIMATION ALGORITHM
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This appendix explains the algorithm developed by Hullender and Brown along

with the techniques used within it such as Fourier transform and the extended Kalman

filter.

Hullender and Brown modeled a cuff pressure oscilloscope system where blood

pressure is measured by placing a cuff around the arm of the patient then raising the

cuff pressure Pc(t) to maximum before reducing it back to zero in cycles by changing

the cuff volume Vc(t). The changing cuff pressure and internal blood flow cause volume

changes in artery which sends small disturbances to the cuff. The model of the system

developed by Hullender [19] measures these disturbances and then estimates the blood

pressure waveform along with the stiffness of the wall arteries. The model formation

approach uses mathematical formulae for fluid flow and nonlinear estimation using

an extended Kalman Filter. The equations used to define the system are given below:

Vc (t) = Vo e
−5Pc (t)

Pcm + Vcm (1 − e
−5Pc (t)

Pcm ), (C.1)

in the above equation, Vo and Vcm represent the initial and maximum cuff

volumes whereas Pcm refers to the maximum cuff pressure. Next, the equation relating

cuff volume change V̇c (t) to the derivative of cuff pressure oscillations ẏ (t) and

transmural pressure Pt such that Pt(t) = P (t) − Pc(t).

ẏ (t) =
1.4Pca

Vc(t)
Ṗt(t)Vao f(Pt), (C.2)

where Pca refers to the absolute cuff pressure, Vao signifies the artery volume when

P (t) = Pc(t) making the transmural pressure Pt(t) = 0. f(Pt) refers to the compliance

function for artery walls.

f(Pt) = ae−bPt for Pt(t) ≥ 0, (C.3)
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f(Pt) = ae−aPt for Pt(t) ≤ 0, (C.4)

where a and b are constants. The slope of the compliance function directly

relates to the arterial stiffness. A smaller slope would require higher change in trans-

mural pressure to change the volume by a certain amount which means that the

artery walls are stiffer [98]. Equations were verified once again to check for accuracy

using adiabatic capacitance equations for fluid systems [99, 100, 50]. Furthermore,

the extended Kalman filter was also assessed to gain a deeper understanding of the

estimated waveform [52].

C.1 Fourier series formation

For this research, the blood pressure waveform is assumed to be repeating at

a fixed frequency with similar amplitudes under normal health circumstances which

makes it a periodic function [101]. However, it should be noted that the real blood

pressure waveform is neither constant in frequency nor amplitude. The frequency can

change depending on the body activity, mental state and environmental factors among

others. Furthermore, the amplitudes for blood pressure waveform can often change

due to the baseline offset. In order to regulate the internal body pressures, the mean

blood pressure keeps changing which is referred to as baseline offset. It is possible to

remove these disturbances from the blood pressure waveform using filtering methods.

Therefore, the model can be extended using existing research to overcome normal

fluctuations in frequency and amplitude which would make it feasible for practical

applications in future.

A periodic function can be estimated using a combination of sine and cosine

wave elements. More elements allow for a better fit between estimated and actual

function and a series with infinite elements also known as Fourier series can be used
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to replicate any periodic function. To estimate the blood pressure waveform, it is

converted to a Fourier series with 11 elements.

P (t) = Ao + A1sin(ωt) + A2sin(2ωt) + A3sin(3ωt) + A4sin(4ωt)

+B1cos(ωt) +B2cos(2ωt) +B3cos(3ωt) +B4cos(4ωt) +B5cos(5ωt),

(C.5)

where Ai and Bi represent the amplitudes of sine and cosine elements while ω repre-

sents the unknown frequency. The values for coefficients representing amplitudes for

sine and cosine waves are recalculated using Fourier series equations and it is verified

that the coefficients taken are correct.

C.2 Extended Kalman Filter Functioning

A Kalman filter is an optimal estimation algorithm that functions in two steps

known as prediction and correction. During the first step of prediction, it estimates

the states based on input and using previous data. In the correction or update step

it uses the output values measured for the same input and then compares them to

the estimated values for updating the prediction and estimated state matrix using

weighted averages also known as Kalman gain [52, 102]. While the algorithm is a

recursive algorithm, it can also work in real time by only using the current input,

uncertainty matrices and previously estimated states.

Kalman filter is also termed as linear quadratic estimator and can only work

with linear systems. However, since most systems are non-linear in nature, extensions

for Kalman filter are developed to accurately estimate the states. The model devel-

oped by Hullender and Brown uses an extended Kalman filter which functions by

partially differentiating the non-linear equations at each step. In cases where the sys-

tem only operates over a given approximately linear range then the system dynamics

can be partially differentiated over that range to get accurate estimates.
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In the original model, the simulation is run for a total of 96 seconds allowing

for 3 cycles of cuff pressure increment till 160mmHg and reduction to zero at the rate

of 10mmHg/sec. A total of 16 parameters are estimated which include the 11 Fourier

coefficients, frequency of blood pressure waveform cycle (ω), artery volume (Vao)

at zero transmural pressure (Pt(t)=0), cuff pressure fluctuations (y(t)) and arterial

compliance constants denoted by a and b.
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