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Abstract 

Language Pre-Training and Auxiliary Tasks for Vision 

and Language Navigation 

SAUMYA BHATT, M.S. Computer Science 

The University of Texas at Arlington, 2021 

 

Supervising Professor: Dr. Manfred Huber 

The Vision and Language Navigation task came to life from the idea that 

we can build a robot or an autonomous system that can be instructed in human 

language and that will navigate using the instructions given. For example, we tell 

the agent to “Go down past some room dividers toward a glass top desk and turn 

into the dining area. Wait next to the large glass dining table” and not only does it 

reach the goal state but it follows the instructions while navigating. With the current 

developments, this may not seem like a distant problem anymore and in recent years 

a number of systems have been developed that attempt to address this task. 

To accomplish this task, the artificial agent must understand two modalities 

with which humans perceive the world, vision, and language, and then translate 

these into actions. While significant progress has been made in recent years to 

develop systems capable of performing this task, these systems still fail in a 

significant number of cases. To investigate reasons and potential ways to overcome 
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this, this thesis explores a few ways in which the navigation task with multiple 

modalities can be grounded and can be aligned temporally and visually.  

This thesis analyzes the failures of the previously used Environment Drop 

method with Back translation and investigates what happens when pre-trained 

embeddings, as well as auxiliary tasks, are utilized with it. In particular, it proposes 

an augmentation to the architecture for the Vision and language Navigation task 

with pretrained language tokens and a navigator with reasoning to oversee the 

progress and to co-ground vision and language rather than to only use temporal 

attention mechanism. The underlying base architecture on which the modifications 

have been implemented has been a highly successful method and uses the 

Environment Drop method with Back translation. While results with the modified 

architecture and proposed improvements did not show a significant increase in the 

success rate of the chosen base architecture, the analysis of the results has provided 

valuable insights to help determine the direction of potential further research.  

 

  



vii 

 

Table of Contents 

Acknowledgments .............................................................................................................. iv 

Abstract ............................................................................................................................... v 

Table of Contents ...............................................................................................................vii 

List of Illustrations .............................................................................................................. ix 

List of Tables ....................................................................................................................... x 

Chapter 1 Introduction: The Vision and Language Navigation Problem ........................... 11 

Chapter 2 Background and Related Work ........................................................................ 14 

Vision and Language Grounding .............................................................................. 14 

Vision and Language Navigation .............................................................................. 14 

Vision and Language Navigation Data Requirements ............................................. 16 

Chapter 3 Base Architecture ............................................................................................. 18 

Back Translation in Vision and Language Navigation .................................................. 18 

Overview ................................................................................................................... 18 

Data Augmentation ................................................................................................... 20 

Instruction Generator ................................................................................................ 21 

Navigator .................................................................................................................. 22 

Self-Supervised imitation Learning + Reinforcement Learning .................................... 23 

Environmental Dropout method .................................................................................... 24 

Chapter 4 Analysis: Base Architecture ............................................................................. 25 

Failure Analysis ............................................................................................................ 25 

Navigation Errors and Path Lengths .................................................................... 27 

Training Data ........................................................................................................ 28 

Seen Data ............................................................................................................ 29 



viii 

Unseen Data ........................................................................................................ 31 

Comparison .......................................................................................................... 32 

Success Rate ........................................................................................................... 33 

Chapter 5 Proposed Improvements .................................................................................. 34 

Overview ....................................................................................................................... 34 

Pre-trained Word Embeddings ..................................................................................... 35 

Auxiliary Reasoning Tasks ........................................................................................... 35 

Progress Estimator ................................................................................................... 37 

Cross-Modal Matching.............................................................................................. 37 

Feature Predictor ...................................................................................................... 37 

Chapter 6 Experiment and Implementation Detail ............................................................ 39 

Dataset ......................................................................................................................... 39 

Implementation Details ................................................................................................. 39 

Evaluation Metrics ........................................................................................................ 41 

Chapter 7 Analysis: Pre-trained Word Embeddings ......................................................... 43 

Chapter 8 Results and Conclusions .................................................................................. 46 

Chapter 9 Conclusion and Future Work ............................................................................ 49 

References ........................................................................................................................ 50 

Biography .......................................................................................................................... 53 

 

  

  



ix 

List of Illustrations 

Figure 1: Instruction Generator ......................................................................................... 19 

Figure 2: Navigator ............................................................................................................ 19 

Figure 3:Architecture ......................................................................................................... 20 

Figure 4: Instruction Generator Architecture ..................................................................... 21 

Figure 5: Navigator Architecture ....................................................................................... 22 

Figure 6: Failures in the Training, Seen Test, and Unseen Test Cases ........................... 26 

Figure 7: Navigation Errors whose paths are more and less than the shortest path ........ 27 

Figure 8: Percentage of Path more and less than the shortest path ................................ 28 

Figure 9: Navigation Errors in the Training Set ................................................................. 29 

Figure 10: Nav Error Seen ................................................................................................ 30 

Figure 11: Navigation Errors in the Unseen Test Set ....................................................... 31 

Figure 12: Nav Error Comparison ..................................................................................... 32 

Figure 13: Success Rate Comparison .............................................................................. 33 

Figure 14: Proposed Architecture with Pretrained Embeddings and Auxiliary Tasks ...... 38 

Figure 15: Bleu Values of Generated Instructions Before and After Use of GloVe Pre-

Trained Word Embeddings on Previously Seen Environment Data ................................. 43 

Figure 16: Bleu Values of Generated Instructions Before and After Use of GloVe Pre-

Trained Word Embeddings on Previously Unseen Environment Data ............................. 44 

Figure 17: Bleu Values for Generated Instructions Before and After Use of Pre-Trained 

GloVe Word Embeddings for Previously Unseen Environment Data ............................... 45 

 

  



x 

List of Tables  

Table 1: Results ................................................................................................................ 46 

 

  



 

11 

Chapter 1 

Introduction: The Vision and Language Navigation 

Problem 

Artificial Intelligence has been used to understand and simulate human 

perceptions. After required training, the intelligent systems can perceive 

information based on patterns. The decision-making process is based to a large 

degree on the perceptions related to the input data patterns. In this thesis, I 

investigate one such application which connects vision and language. It has been in 

the spotlight recently for its fast developments and is commonly termed as “Vision 

and Language Navigation” or VLN.  

Vision and language Navigation came to life from the idea that someday we 

might be able to give instructions to a robot to finish required tasks and it will be 

successfully done without any further human intervention. To make this possible 

we need the agent to understand the visual environment, understand human 

language, ground it in the real-world environment, and make the decisions to reach 

the required location. For a human, this task may not seem significant but for an 

artificial agent, there are a lot of nuances that are challenging and must be taken 

care of before this can be implemented successfully in the real world. There have 

been many implementations in this area, but it is still a while before it is perfected 

and can be implemented in previously unseen environments successfully.  
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In recent years, development in the field of machine translation has helped 

to produce increasingly better results that have translated into other domains. In this 

vein, improvements in machine translation models have been popularly used with 

vision and language to make decisions and found their entry into the Vision and 

Language Navigation domain. The real challenge in these models is grounding 

vision and language. However, this has proven to give good enough results in pre-

explored environments but as we tend to move towards new environments the 

results get worse.  

For simulating more than one human perception at once, the agent has to 

find a way to ground the different modalities so they can be correlated, usually 

requiring the agent to pre-learn using a large amount of data. This is the main reason 

why the current models for Vision and Language Navigation are data-hungry. Pre-

training on large-scale data should thus be able to help the model to show better 

results on downstream tasks. However, pre-training is still a relatively unexplored 

area when it comes to Vision and Language Navigation. 

One other but the related area which can potentially improve the results of 

Vision and Language Navigation is the introduction of auxiliary reasoning tasks. 

First applications of these have shown to give good results. The main reason to 

include the reasoning tasks is to obtain more continuous feedback from the agent 
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while it is navigating. This helps in grounding and overseeing the progress of the 

agent. 

In this thesis, I propose to augment a common architecture for the Vision 

and Language Navigation task with pretrained language tokens and a navigator with 

reasoning to oversee the progress and to co-ground vision and language rather than 

only a temporal attention mechanism based on the [Fengda Z. 2020]. 
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Chapter 2 

Background and Related Work 

Vision and Language Grounding 

There has been a lot of work done to understand language in the 

environment, in synthetic as well as real environments. For example, image 

captioning, visual question answering, or generating images from the textual 

description, all serve as multimodal problems, where natural language is mapped 

to the objects in the images, or the images are mapped to the natural language. Here, 

I have focused on the VLN problem in a real-world environment which is a 

multimodal problem and requires the agent to continuously interact with the 

environment.   

Vision and Language Navigation 

There have been several early papers that talk about Navigating with 

Natural Language Instructions but only with the introduction of the Room-to-Room 

dataset [Peter A. 2018] has this navigation task become more popular and been 

made possible in real-world environments. They implemented a deep learning 

sequence-to-sequence architecture with an attention mechanism and used one of 

the popularly used Adam optimizers, [Diederik P. 2015]. In my work, I have used 

a different base architecture as a starting point but used the same dataset and Adam 

optimizer initially with weight decay. 
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With the introduction of the common VLN environment simulator, a 

number of approaches have emerged to address this task. Some of the works see 

this as a reinforcement learning problem like [Xin W. 2018] which applied model-

based and model-free reinforcement learning techniques. An imitation learning 

aspect was added to training in works like [Xin W. 2019, Khanh N. 2019]. The 

imitation learning aspect helped the agent to learn in previously seen environments 

and reinforcement learning proved to work better in unseen environments. [Daniel 

F. 2018] applied the popularly known Speaker-Follower or the back translation 

method to the VLN task. It divides the architecture into two modules, Speaker and 

Follower. The Speaker learns to generate instructions for the routes and supports 

the follower while the follower learns to follow the instructions. There are other 

methods like [Hao T. 2019] that use similar base architecture but add additional 

components to try to address problems of overfitting to the set of environments in 

the training set. This particular architecture proposes an ‘environmental dropout’ 

method based on view and viewpoint-consistent masking of the visual features to 

increase visual diversity and make the results better in unseen environments. This 

architecture is better in terms of successes than most of the previous papers but still 

failed to co-ground vision and language while training the navigator. I work with 

this architecture and my proposed architecture differs from it in terms of training 

and pre-processing. 
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Some other works like [Daniel F. 2018, Xin W. 2019]  have included pre-

trained word embeddings but have not studied changes and analyzed them to get a 

better output or understand their impact on the dataset. 

Most of the work tries to outgrow the bottleneck of the dataset and ground 

natural language in a real environment, but even after all the attempts, vision and 

language navigation have a lot of work to be done. Most of the previous work 

neglects the language semantics and works only on the given dataset without 

language pretraining. Most of the work also does not reason with the navigator 

during navigation to estimate the progress and the success. [Fengda Z. 2020] 

includes the reasoning aspect making the learning process better but neglects the 

language semantics. In contrast, in my work, I have included the pretrained 

language tokens and included a navigator with reasoning to oversee the progress 

and co-ground vision and Language rather than only a temporal attention 

mechanism.  

Vision and Language Navigation Data Requirements 

For a single modality task, we require a huge amount of data. For example, 

the popularly used [ImageNet dataset] for image recognition tasks contains 

hundreds and thousands of images for each label. This makes the image recognition 

task much easier as the dataset contains a lot of variety and there is very little chance 

of overfitting. The requirements for a multimodal task like Vision and Language 
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Navigation are far more complex. The data must be varied in terms of visual 

environments and text and must be aligned with each other. Moreover, the data here 

also has a temporal aspect as it must align with a corresponding action sequence, 

further increasing the complexity of the required data. 

The dataset that I have used in my work is huge but still lacks in terms of 

variability and the amount of data needed to directly be used without any 

pretraining on images or texts. One of the major disadvantages is that even if we 

use pre-trained word embeddings or image features and let it be fine-tuned by the 

current dataset, it might overfit the training environment and it becomes harder to 

get good results in an unseen environment even after pretraining. This is the main 

reason that a lot of researchers are working towards pretraining the language and 

image tokens with vision and language navigation tasks along with the main 

decision-making architecture. We try to observe the change and evaluate our results 

by using pre-trained GloVe embeddings, taking one small step towards pretraining, 

and hopefully achieving better results. 
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Chapter 3 

Base Architecture 

The work presented in this thesis builds largely around the base speaker-

follower architecture used in [Hao T. 2019], adding pre-training and auxiliary tasks 

to investigate their benefits. His chapter introduces the main components and 

methods used in this base architecture before the following chapters provide some 

analysis of this architecture’s failure conditions and introduce and evaluate the 

proposed modifications. 

Back Translation in Vision and Language Navigation  

Overview 

The back-translation method is popularly used in machine translation to find 

how accurate the translation is from the source to the target text. It translates the 

complete translation to the original language and then compares it with the source 

text. Back translation for vision and language navigation is termed by some of the 

previous works like [Daniel F. 2018] as the “speaker-follower model”. Like 

machine translation, in this model, the speaker is the instruction generator that 

learns to generate alternate instructions for the given instruction-path pairs and the 

follower is the navigator who learns to follow the instructions as shown in Figure 

1 and Figure 2. The overall architecture is shown in Figure 3.  
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Figure 1: Instruction Generator 

 

 

Figure 2: Navigator 
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Figure 3: Architecture 

Data Augmentation 

There are only a limited number of training instruction-path pairs at present 

in the data, so generating more instruction-path pairs in the given environment 

should result in a better learning process. The instructions are generated by the 

instruction generator for a set of sampled paths and are then used in the architecture 

used in this thesis to train the Navigator separately.  
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Instruction Generator  

I have used a sequence-to-sequence model which generates a distribution of 

instructions (i) given the path (p) for the speaker. Instead of a simple sequence-to-

sequence model I have used a Bidirectional-LSTM encoder with attention over 

visual information, which encodes the visual observations, and a decoder with 

attention over encoded input route which generates instructions word-by-word. 

Figure 4 shows the final Instruction Generator Architecture similar to [Hao T. 

2019]. 

 

 

Figure 4: Instruction Generator Architecture 
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Navigator 

The navigator or the agent uses a sequence-to-sequence model which 

generates a distribution of paths (p) given the instructions (i). A bidirectional 

encoder and LSTM decoder with attention over the features is used in the modified 

architecture sued here. To make sure that the agent knows the previous steps, we 

have added the instruction aware-hidden vector, instead of a hidden vector in the 

same way as [Hao T. 2019]. The final architecture for the baseline navigator is as 

shown in Figure 5. 

 

Figure 5: Navigator Architecture 
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Self-Supervised imitation Learning + Reinforcement Learning 

 

Imitation learning is an off-policy learning method that utilizes given 

behavior sequences to train a policy that will reproduce them. The agent learns to 

imitate the behavior of the teacher. In this case, rather than using a pre-computed 

set of teacher examples, the next demonstrated navigation action is decided by 

calculating the shortest distance to the target, and the next navigable viewpoint on 

this path is selected. This is termed as teacher action. To achieve imitation, the actor 

is trained with a loss function that is the negative probability of the teacher’s action.  

To make sure that the teacher’s action leads to the goal, an on-policy 

reinforcement learning agent is used along with the above. It adds a reward of +3 

if the agent stops within 3m of the goal state and it adds -3 if the result is 

unsuccessful. This strategy used in [Hao T. 2019] works better than the previous 

works which largely relied on one learning approach but still leaves a lot of chance 

for improvement. The results show that this method has proven to be more effective 

than the Extrinsic and intrinsic Reward function used by [Xin W. 2019] but the 

Imitation Learning method only focuses on the nearest navigable viewpoint and the 

on-policy Reinforcement Learning only focuses on the results, rather than the 

progress in the trajectory or the relative position of the navigator with respect to 

natural language instructions. 
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Environmental Dropout method 

 

[Hao T. 2019] attempted to solve the problem of overfitting to known 

environments and the resulting issues with navigating in an unseen environment 

with a simple dropout method. This method randomly drops out the raw features 

from the environment in the VLN method. It is also added to remove image features 

traditionally. The goal of this method is to increase the variety of the visual 

information to represent visually more diverse environments. 

 shows a broad overview of the base architecture with environment dropout 

where the dropout and Instruction Generator is used to increase the size and 

diversity of the instruction-path pair data available to train the Navigator to be better 

able to address previously unseen environments. In this architecture, both the 

environment dropout and the Instruction Generator are trained first using the 

environment data and the initial instruction-path pairs. Once trained, they are then 

used to help train the Navigator to address the VLN task. 

  



 

25 

Chapter 4 

Analysis: Base Architecture 

To investigate the potential for improvements to the existing base 

architecture, an analysis of failure conditions in both seen and previously unseen 

environments were performed. A failure as defined in the Room-to-Room 

dataset/simulator is a path execution that does not end within a predefined distance 

of the target location. Similarly, an oracle failure is any path that does not pass 

within that predefined distance of the target, thus corresponding to the situation 

where an oracle for stopping upon completion was available. As oracle success 

rates and success rates were virtually identical for this architecture, the analysis 

here focuses on path failures. 

Failure Analysis 

 Overall failure rates for the base architecture are shown in Figure 6 

for training, previously seen, and previously unseen environments. This data shows 

a strong tendency to overfit the training data as demonstrated by the failure rate of 

4.69% vs a failure rate of 35.16% on evaluation paths even in the same 

environments contained in the training set. This failure rate further increases to 

51.68% when applied to previously unseen environments. 
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Figure 6: Failures in the Training, Seen Test, and Unseen Test Cases  

This overfitting suggests that the system over-emphasizes the vocabulary 

and sentences in the training set over the broader language and visual feature set. 

Moreover, the difference between seen and unseen environments suggests some 

degree of attenuation to the specifics of the trained environments despite the 

environment dropout components. All this suggests that training the language and 

image feature used in a broader context could be useful. 

To obtain more information regarding the reasons for failure, in particular, 

whether recognizing the intermediate or goal locations or looping represent major 

challenges for this architecture, a more detailed analysis of navigation errors in 

terms of distance from the goal reached and path length and path type in the failed 

cases was performed. 
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It was found that continuous looping does not occur for any trajectories. 

Some trajectories do form loops, but they do not continue looping as they move 

forward. 

Navigation Errors and Path Lengths 

Below is the histogram of the navigation errors whose path lengths are more 

than the shortest length and for the ones which are less than the shortest length.  

 

Figure 7: Navigation Errors whose paths are more and less than the shortest path 

  

 

0.00000

2.00000

4.00000

6.00000

8.00000

10.00000

12.00000

train seen unseen

N
av

 E
rr

o
r

Navigation Errors with path lengths more and 
less than the shortest

nav_error_more

nav_error_less



 

28 

 

Figure 8: Percentage of Path more and less than the shortest path 

 

From the above graphs, we can see that there is no trend for the path lengths 

of the failed cases when compared with the shortest path length.  

Training Data 

9 shows a histogram of the path errors, i.e. the distance to the target location 

reached, of failed navigation tasks in the training data. 
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Figure 9: Navigation Errors in the Training Set 

 

In the training data, most of the path errors are between 3 to 5.7 m. This 

shows that even while training the vision-language grounding is a problem. The 

navigator comes close to the goal state even in most failed paths but does not 

identify the goal. One possible reason could there be that the navigator is not able 

to correlate the word vectors with the features in the environments. 

Seen Data 

10 shows the same path error analysis for failed paths in new examples in 

the same environments as used in the training set (i.e. in the same room 

arrangements with the same visual features and objects). 
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Figure 10: Nav Error Seen 

 

Almost, 40% of the data has a higher navigation error than 8.5 meters, 

which is significant. This means the agent is not able to match the language to the 

visual environment correctly. This could be due to a number of reasons like Vision-

Language grounding and the progress of the navigation instruction is not taken into 

consideration with respect to the environment.  

Most of the instructions have low navigation errors. The number of paths 

that do not get to within a few meters, however, is significantly larger than for the 

training data. That means that while the agent again comes close to the goal state 

but is not able to identify the goal frequently, there are also conditions where it does 

not get close enough to be near the relevant features. 
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Unseen Data 

11 shows the path error analysis for failed paths in the Unseen test set, i.e. 

in new paths that are executed in previously unseen environments. 

 

Figure 11: Navigation Errors in the Unseen Test Set 

  

This has the highest number of failure cases and again, the highest number 

of failure conditions have low navigation errors. However, the distribution has a 

much longer tail, also containing a reasonable percentage of example paths where 

the system does not get close to the target and often is more than a room away. That 

means about half the time the agent still comes close to the goal state but is not able 

to identify the goal, while the other half of the time it is not able to get close to the 

goal.  
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Comparison 

Figure 12 shows the development of navigation error through the training 

process for training, seen, and unseen data sets.  

 

Figure 12: Nav Error Comparison  

These graphs show a significant difference between the three conditions 

throughout the entire training process with the largest gap between training and test 

data and an increasing gap between seen and unseen test sets. The former indicates 

significant overfitting to the language used in the training set while the latter 

suggests a growing adaptation to the features in the training environment. From 

Figure 12 we can see that after a given point the model stops improving. 

Considering the complexity of the Vision and Language Navigation problem we 

can say that for an improved dataset this problem may occur at a much later point.   
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Success Rate 

The plot of success rates during training in  similarly shows a significant 

gap between training and test conditions and an increasing gap between unseen and 

seen test cases. 

 

Figure 13: Success Rate Comparison 

 

Above, when we observe Figure 12 and Figure 13, there is a huge gap 

between the success rate of seen data and training data. This gap is wider than the 

one between validation seen and unseen data. This means even after training in the 

same environment the agent is not able to match all the features with the word 

embeddings.  

  



 

34 

Chapter 5 

Proposed Improvements 

Overview 

Based on the failure analysis in the previous chapter, two main architecture 

modifications are proposed here and evaluated in the next chapter to attempt to 

address the overfitting of the language components through a broader word 

embedding task and to achieve a broader relationship between language and vision 

through the inclusion of auxiliary reasoning tasks. The goal of these proposed 

modifications in the present architecture is to allow pretraining or co-training with 

additional tasks and datasets to make sure that the vision-language task is aligned 

temporally and spatially and is grounded.  

In the previous architecture, the language semantics are not used while 

training. Here, we include language semantics along with the visual features 

through the use of pre-trained word embeddings that capture broader language 

semantics. The second modification, the inclusion of auxiliary tasks during 

Navigator training by contrast is aimed at providing more continuous feedback to 

the learner to allow for a closer correlation of language, vision, and action 

throughout the training process.   
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Pre-trained Word Embeddings 

We can observe that most of the previous work disregard the language 

semantics when training the data. One component of the language semantics in 

terms of word similarities is encoded in the word embedding used as part of the 

Instruction Generator component of the base architecture. Hence, to understand the 

effect of language semantics better on the Instruction Generator as well as on the 

Navigator, we use pre-trained GloVe embeddings [Jeffrey P. 2014]. I have used 

GloVe embeddings with 300 dimensions trained from the Common Crawl dataset 

(42B tokens, 1.9M vocab, uncased, 300d vectors). I have fine-tuned the word 

vectors later in the training environment.  

Auxiliary Reasoning Tasks 

To take the feedback from the navigator continuously and to make the 

training process more grounded I have adapted the Auxiliary Reasoning training 

method from [Fengda Z. 2020]. The main difference is that I have focused on the 

temporal and spatial features rather than orientation. The goal of this method is to 

achieve a tighter coupling between language, vision, and action by incorporating 

additional training tasks that are related to the overall task but can be evaluated at 

each time step rather than only at the end of a navigation trajectory. Inclusion of 

these tasks should ideally accelerate training and prevent overfitting by requiring 

feature spaces to be sufficient not only for the navigation task but also for the 
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auxiliary tasks uses. Here I have used the Progress Estimation and Cross-modal 

matching tasks along with the teacher forcing method to train the Instruction 

Generator. The main difference between my method and the previously mentioned 

is that my method uses pre-trained embeddings and the Environment Dropout 

method along with the previously mentioned task, and I do not include the Angle 

Predictor here as this gives us a better idea of training with the image and word 

features rather than the orientation. Figure 14 shows the architecture of the 

Navigator after adding the Auxiliary Tasks which are similar to [Fengda Z. 2020]. 

 

 

Figure 14: Proposed Architecture with Pretrained Embeddings and Auxiliary Tasks 
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Progress Estimator   

This task is used to train the navigator instead of just using imitation 

learning. This auxiliary task aims at predicting the amount of progress made in 

completing the navigation task at each point in the trajectory. Here, Cross Modal 

context and the percentage of steps is used to represent the progress and converted 

into an auxiliary loss function that is added to the overall loss during training. Cross 

modal context is nothing but the attended language feature similar to the one used 

in [Fengda Z. 2020]. This task helps in vision language grounding by more tightly 

correlating a part of the language description to the visual input at the particular 

stage in the trajectory.   

Cross-Modal Matching 

This task uses the hidden language feature vector of the navigator encoder 

and the attended vision-language features to calculate the loss. It tries to make sure 

that the trajectory and the instruction match each other by trying to align the 

historical vision-language features. It is calculated by shuffling the feature vector 

and then supervising the prediction results similar to [Fengda Z. 2020]. 

Feature Predictor 

A third auxiliary task added here is aimed at aligning a broader set of visual 

features with the state of the navigation task by utilizing predictions of visual 

features from multiple viewpoints in an additional loss function term. This takes 
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into consideration the angle of the teacher action in the imitation learning and 

reinforcement learning task and encoded feature of the navigator. This function 

gives information about the semantics of the room and the relationship of the visual 

features between different viewpoints. 
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Chapter 6 

Experiment and Implementation Detail 

Dataset 

I have evaluated the proposed model using the Room-to-Room (R2R) 

environment dataset based on the [Matterport3D] simulator. It contains 90 different 

housing environments. Using Matterport3D region annotations 7,189 paths are 

sampled, capturing most of the diverse surroundings in the dataset. The navigation 

instructions have been collected via Amazon Mechanical Turk. It is split into train 

set, validation seen set, and validation unseen set. The training set contains 61 

environments with 14,025 instructions, in the same environment Validation seen 

data contains 1,020 instructions, and validation unseen data is set in 11 new 

environments with 2,349 instructions. 

Implementation Details 

I have used popularly used pretrained visual feature vectors which are 

generated from the final convolutional layer of ResNet [Kaiming H. 2015] trained 

on the ImageNet [Olga R. 2015] classification dataset. I have used GloVe vectors 

for pre-trained word embeddings for text to be fine-tuned after freezing them for a 

number of initial iterations. We have used the results of a single run for evaluation 

and analysis and we do not use pre-exploration for our experiments.  
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I have included Back translation, Environment Drop, Data Augmentation, 

and Imitation Learning, and Reinforcement Learning for my initial experiments. I 

use this as the Base Architecture of the Experiments to compare against the 

modified architecture proposed here. As these modifications affect both the 

Instruction Generator (through the word embeddings) and the Navigator, both of 

these are trained, and evaluation is performed on both of them in order to determine 

the effects of the different modifications and their interactions. To evaluate the use 

of pre-trained word embeddings to incorporate more language semantics, a two-

stage experiment without Auxiliary Tasks was performed as follows: 

1. I have first pre-trained the Instruction Generator which also allows us 

the gather the Augmented data for paths. I have allowed the pre-trained 

GloVe embeddings to be frozen for the first 25,000 iterations and then 

let it be fine-tuned in the Matterport3D environment till 80,000 

iterations. After this, the Instruction Generator is evaluated in terms of 

the language properties of the generated instructions. 

2. Then the Navigator is trained with the augmented dataset from the 

Instruction Generator using the mixture of imitation and reinforcement 

learning with Environment Dropout. The same model is then fine-tuned 

by the augmented data with environment dropout.  



 

41 

To investigate the effect of auxiliary tasks, a second experiment is 

performed. Here, I have added Auxiliary Reasoning Tasks for training the 

Navigator and observed the results. Again this involves a two-stage training process 

as follows: 

1. I have first pre-trained the Agent with the Instruction Generator which 

also allows us the gather the Augmented data for paths. As before, I 

have allowed the pre-trained GloVe embeddings to be frozen for the 

first 25,000 iterations and then let it be fine-tuned in the Matterport3D 

environment till 80,000 iterations. 

2. Then the Navigator is trained using the auxiliary reasoning tasks, along 

with a mixture of imitation and reinforcement learning with 

Environment Dropout. The same model is then fine-tuned by the 

augmented data with environment dropout.  

Evaluation Metrics 

To evaluate the Instruction Generator, we use Bleu1, Bleu2, Bleu3, Bleu4, 

and Bleu Score for the evaluation [Kishore P. 2002]. These metrics are aimed at 

capturing semantic similarity between the generated instructions and the original 

ground truth instructions stored with the original data.  

For the evaluation of our final data, the primary evaluation metrics are the 

Success Rate (SR): it measures the rate at which the agent successfully reaches the 
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goal, the trajectory is considered to be a success if the navigation error is less than 

3m.; and the Navigation Error (NE): it measures the average distance of the shortest 

path from the last position in the selected path to the goal position. We also consider 

Path Length (PL) while analyzing the data. In addition to these metrics, we also try 

to observe differences based on the different loss values.   
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Chapter 7 

Analysis: Pre-trained Word Embeddings 

To investigate the influence of broader language semantics through pre-

trained word embeddings on the language descriptions generated the Bleu scores 

of generated language instructions of the Instruction Generator are evaluated using 

different Bleu scores. After adding pre-trained word embeddings, I have fine-tuned 

it with the given dataset.  

5 shows the scores for the Bleu 1 – Bleu 4 metrics with and without pre-

training on generated instructions for new paths in environments from the training 

set. Similarly, 6 shows the scores for unseen environments. 

 

Figure 15: Bleu Values of Generated Instructions Before and After Use of GloVe Pre-

Trained Word Embeddings on Previously Seen Environment Data 
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Figure 16: Bleu Values of Generated Instructions Before and After Use of GloVe Pre-

Trained Word Embeddings on Previously Unseen Environment Data 

  

With these graphs, we observe that while the pre-trained models initially 

achieve higher Bleu scores, there is not much difference in the output of the 

Instruction Generator once completely trained even after using the pretrained 

graphs. Similar can be observed in a more detailed view of the combined Bleu value 

for the case of previously unseen environments in 7. 
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Figure 17: Bleu Values for Generated Instructions Before and After Use of Pre-Trained 

GloVe Word Embeddings for Previously Unseen Environment Data 

 

This figure shows more clearly the initial benefit of the pre-trained 

embedding in terms of the quality of the generated instruction semantics. However, 

this benefit seems to reduce even before fine-tuning after the first 25,000 iterations 

and seems to disappear completely during fine-tuning. Note, however, that this does 

not necessarily imply that the generated instructions are not more diverse but rather 

only that they are not more semantically similar to the ground truth instructions 

than the ones without pre-training. To fully evaluate this, its effect on the Navigator 

has to be evaluated in the next section. 
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Chapter 8 

Results and Conclusions 

To evaluate the ultimate benefit of the modifications, the overall 

performance of the Navigator was evaluated with and without the modifications. 

The results show that in our original baseline model if we use pre-trained word 

embeddings, they behave almost the same way if we let it fine-tune on the model 

even on the later stage.  

The base model has Back Translation (BT), Environment Drop (ED), 

Imitation Learning (IL), Reinforcement Learning (RL). After adding Auxiliary 

Reasoning Tasks (AuxR) and pretrained embeddings to our previous model we do 

not see many improvements in the final results. The final results can be seen in 

Table 1. 

 

 Train Seen Unseen 

Matrices SR NE SR NE SR NE 

Base Model 96.4% 0.20 64.8% 5.02 50% 9.92 

Base +Pre 96% 0.3 64% 5.0 50% 9.9 

Base + AuxR 94.7% 0.37 60.6% 6.4 48.6% 10.6 

Table 1: Results in Terms of Performance of the Navigator 
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The architecture with Environment Drop overfits the limited available 

feature at a much later stage as it was initially included as a solution for overfitting 

problem and improving with the same base architecture is harder. At the same time, 

the architecture fails to identify the features in seen data even though it has been 

trained in the same environment. It is not able to identify the visual features with 

the textual information resulting in a huge gap between training and seen results.  

Environment drop, even though it by itself has benefits for unseen 

environments, makes it more difficult to apply modifications to improve the 

architecture with Environment Drop as it generates visual features that were not 

present in any actual environment and might yield misleading training data with 

inconsistent language and vision feature relations.  

To find a solution to the overfitting problem, Data Augmentation and 

increasing the actual data with a better variation in it will surely help the results. I 

have analyzed the Instructor Generator in detail and have found that using pre-

trained embeddings which are allowed to be fine-tuned even at a later stage of 

training do not change the outputs of the Instructor Generator or the Navigator in a 

significant manner. Pre-training the textual embeddings and the image features with 

relevant datasets and making sure that they do not overfit the data by early stopping 

or keeping the weights constant may help the results. 
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Adding Auxiliary Reasoning Tasks does not make the success rate of our 

Base Architecture better. Potential improvements can be made by removing 

Environment Dropout from the base architecture when using the Auxiliary 

Reasoning Tasks or by utilizing ony trials without environment drop in the learning 

trials for the Auxiliary Reasoning loss functions. There is still a lot of work to be 

done with Auxiliary Reasoning Tasks. It calls for further study and analysis of the 

results. 
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Chapter 9 

Conclusion and Future Work 

 

This thesis studied failure conditions for the commonly used speaker-

follower architecture in the Vision and Language Navigation domain and proposes 

two modifications to attempt to achieve a stronger integration of language 

semantics through pre-trained word embeddings and coupling between language, 

vision, and action spaces through the use of auxiliary tasks. While the results using 

the modifications on the base architecture do not show significant improvements 

and auxiliary tasks even incurred a performance drop, they give some insight into 

the benefits and suggest a number of additional modifications that might provide 

the benefit sought. Here, we can conclude that for increased improvement in the 

results, removing the Environment Drop from the architecture will potentially be 

beneficial when using the loss with Auxiliary Reasoning Tasks.  

There is still a lot of work to be done with Auxiliary Reasoning Tasks. It 

calls for further study and analysis. 

The Vision and Language Navigation problem can be approached with 

more datasets in the future and increased pretraining with relevant data so that the 

grounding of vision-language is better possible. 
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