

ADAPTIVE HUMAN-ROBOT MOTION TRANSFER FOR COMPLETE BODY

IMITATION

By

FRANCISCO VILLA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2021

2 | P a g e

Copyright© by Francisco Villa 2021

All Rights Reserved

To my grandmother Doloros Mucek who taught me to think critically and opened my mind. And

my mother and father who raised and supported me.

Acknowledgements

I would like to thank my supervising professor Dr. Manfred Huber for our long and interesting

discussions, for his patience, and his wealth of knowledge. These discussions provided basis to

conduct additional research and gave me many new in-sights. He provided me with an example

to live up to. Patience is something Dr. Manfred Huber greatly excels at, and I am extremely

thankful for it.

I wish to thank my committee members Dr. David Levine and Dr. Farhad Kamangar for attending

my defense committee, being extremely flexible with their schedules, and asking enthusiastic

questions. Without their assistance, I would not be progressing in my life.

Finally, I would like to express my deep gratitude to my grandmother who has encouraged and

inspired me. To this day she still challenges my assumptions. She taught me to think of my past,

present, short, mid, long-term future. I am extremely fortunate to be so blessed. I am also

extremely grateful to my mother, and father for their encouragement and patience. Graduate

school was a long intense ride.

December 16, 2021

1 | P a g e

ABSTRACT

ADAPTIVE HUMAN-ROBOT MOTION TRANSFER FOR COMPLETE BODYIMITATION

By

Francisco Villa, Masters

The University of Texas at Arlington, 2021

Supervising Professor: Manfred Huber

Programming robot systems to perform certain tasks is a big challenge especially if such

programming is to be performed by persons who are not experts in robotics. For example, when

programming a robot to serve as an exercise trainer, the person defining the motions might more

naturally be a person in the exercise domain rather than a robotics expert. To address this, this

thesis investigates programming by demonstration or teleoperation using full direct body motion.

The goal is to reproduce gaits, gestures, and postures on a humanoid robot from observed human

demonstrations. Fine motor movements such as movement of fingers will be excluded from this

thesis’ paradigm.

Mimicking said such movements is straight forward if human and robot dynamics and kinematics

are the same. The robot can move exactly like how his human demonstrator moves. This, however,

is never the case, thus leading to a multidimensional correspondence problem. In this thesis an

approach is presented that attempts to resolve this by addressing four components.

First it addresses linking the degrees of freedom of two similar but different bodies, the human,

and a humanoid robot. Second, it handles linking the image frame related to the observation of the

demonstrator to the demonstrator structure to be able to track locations that have changed, using

2 | P a g e

3D computer vision with a human skeleton model. As such skeleton observations are usually noisy,

a third process is aimed at of filtering out sensor noise and recognition errors, resulting in an

observed motion trajectory. Lastly, to account for the differences between the human and robotic

bodies both in terms of kinematics and dynamic stability, a modeling and learning framework,

PILCO, is adapted to address mapping into an executable imitation that obeys the stability

requirements and limitations of the humanoid robot system.

3 | P a g e

TABLE OF CONTENTS
ABSTRACT .. 1

Table of Figures ... 5

Chapter 1 - Introduction ... 6

1.1 Learning from Demonstration .. 6

1.2 Related Work .. 10

1.2.1 - Gait Generation ... 10

1.2.2 - Motion Control .. 13

1.2.3 – Motion Filtering Methods ... 15

Chapter 2 – Background .. 17

2.1 Kinematics ... 17

2.1.1 Unit Circle ... 18

2.1.2 Forward Kinematics ... 19

2.1.3 Inverse Kinematics ... 19

2.1.4 Gram-Schmidt Process ... 20

2.2 Motion Filtering .. 22

2.2.1 Basic Discrete Kalman Filter ... 22

2.3 Reward-Based Motion Optimization .. 26

2.3.1 PILCO – Probabilistic Inference from Learning Control ... 26

2.3.2 PILCO - Gaussian Process ... 27

2.3.3 PILCO - GP – Hyperparameters .. 30

PILCO - GP – Hyperparameters – Lengthscale .. 31

PILCO - GP – Hyperparameters – Signal Variance ... 32

PILCO - GP – Hyperparameters – Noise Variance ... 33

2.3.4 PILCO – Cost Function .. 34

Chapter 3 - Approach and Implementation .. 38

3.1 – Acquisition of the Kinect Data .. 38

3.2 – Preprocessing the Data .. 43

3.2.1 – Differences in Kinematics of NAO vs Human .. 44

3.2.2 – Compute the Vectors .. 45

3.2.3 – Compute the Synthetic Vectors .. 47

4 | P a g e

3.2.4 – Compute NAO Leg Vector ... 50

3.2.5 – Compute the Joint Angles ... 51

3.2.6 – Discrete Simple Kalman Filter ... 53

3.3 – Modeling Human Demonstration and Stability Using an Inverted Pendulum 56

3.3.1 – Setup ... 57

3.3.2 – Loss Function ... 58

3.3.3 – Pseudo Dynamics – Demonstration to be learned ... 60

Chapter 4 - Conclusion .. 66

References .. 68

5 | P a g e

TABLE OF FIGURES

Figure 1: Unit Circle (From https://www.mometrix.com/academy/unit-circles-and-standard-position/)

 .. 18

Figure 2: Kalman filter uses Gaussian probability distributions ... 24

Figure 3: Kalman Flow Chart ... 25

Figure 4: Gaussian Prior (From http://www.gaussianprocess.org/gpml/chapters/RW.pdf) 28

Figure 5: Gaussian Posterior (From http://www.gaussianprocess.org/gpml/chapters/RW.pdf) 28

Figure 6: Synthetic Function Generation (From https://www.aidanscannell.com/post/gaussian-process-

regression/) ... 29

Figure 7: Lengthscales (From https://infallible-thompson-49de36.netlify.app/) 31

Figure 8: Signal Variance (From https://infallible-thompson-49de36.netlify.app/) 32

Figure 9: Noise (From https://infallible-thompson-49de36.netlify.app/) .. 33

Figure 10: Saturation Loss Function (From https://deisenroth.cc/pdf/thesis.pdf) 35

Figure 11: Double Hinge Loss (From https://www.desmos.com/calculator) ... 36

Figure 12: Gaussian Error Function (From https://www.mathworks.com/help/matlab/ref/erf.html) 37

Figure 13: Body Data Structure ... 41

Figure 14: TransformStamped Message ... 41

Figure 15: Header of TransformStamped ... 42

Figure 16: 3D Vector Data Structure ... 42

Figure 17: The orientation of each “joint” of the NAO robot’s structure is displayed as its 3 basis vectors.

 .. 43

Figure 18: Human Joint Scheme .. 44

Figure 19: NAO Joint Scheme .. 44

Figure 20: Orientation Table ... 46

Figure 21: Synthetic Vector Table ... 48

Figure 22: Joint Angle Calculation Table ... 52

Figure 23: Rviz representation of the NAO ... 52

Figure 24: Matlab representation of the two pendulums .. 58

Figure 25: Double hinge loss ... 60

Figure 26: PILCO Trail #2 ... 62

Figure 27: PILCO Trial #33 ... 63

Figure 28: PILCO Trial # 34 .. 63

Figure 29: PILCO Trial # 35 .. 64

file:///C:/Users/fvill/Desktop/Thesis%20Paper.docx%23_Toc92190490
file:///C:/Users/fvill/Desktop/Thesis%20Paper.docx%23_Toc92190490
file:///C:/Users/fvill/Desktop/Thesis%20Paper.docx%23_Toc92190491
file:///C:/Users/fvill/Desktop/Thesis%20Paper.docx%23_Toc92190491

6 | P a g e

CHAPTER 1 - INTRODUCTION

1.1 Learning from Demonstration

Over time there have been several trends in robot systems. For systems that operate in human

environments and thus must be able to perform human-type tasks, one of these has traditionally

been to make a robotic system as like a human body as possible, stemming from the intuition that

it should be easier to program them, and the resulting capabilities should be as close to the ones of

a human as possible. However, perfectly mimicking capabilities of a human might in the extreme

require building robots with muscles and nerves instead of gears and motors, making it for the

moment unachievable. However even if that technology was developed to the point like human

muscles and nerves, other technologies, including battery technology needs to be developed that

would be able to operate this system reliably and for similar periods of time. At the current state

of progression of those three fields robots cannot be similar enough to directly mimic human

movements directly. As a result, building a robot system that perfectly mimics the kinematic and

dynamic properties of the human body is currently not achievable and thus most humanoid robots,

while outwardly appearing human-like, have significant differences in terms of kinematics and in

terms of dynamic properties. This has consequences in terms of their control as well as in the

possibility to directly transfer human actions to the system with direct consequences for imitation

and programming by demonstration.

Programming by demonstration (or imitation) is a very powerful approach to programming robots

as it can be used by a domain expert in the field in which the system has to operate without the

7 | P a g e

need for that domain expert also to be an expert at the robot or robot programming. Instead, the

robot can be programmed by just demonstrating the task in the intended setting. However, as

bodies as well as the environmental settings are not identical, attempting to mimic another one

must consider carefully what to reproduce. First off when considering preserving the movements

of another, one must keep in mind that there are no two exact same bodies. Thus, objectives must

be considered [1]. This leads to several questions that need to be addressed ant that offer different

options depending on the task for which imitation is intended:

Which to imitate?

• If there are multiple demonstrations with different styles, there is a requirement to handle

which demonstrations are appropriate.

o An averaging strategy?

▪ Positions, velocities, accelerations are all averaged

o Should there be a categorical separation of demonstrations between expert and

novice?

▪ Categorical separation be completed by user or done by machine learning

methods

o A more statistical intuitive approach?

▪ Gaussian process approach?

• A Search of demonstrations of similar states and actions are higher

weighted than outliers.

8 | P a g e

When to imitate?

• Does a specific arm motion make a normally stable posture unstable?

o When is an appropriate time to reproduce this gesture?

▪ Before stability is found

▪ During stabilization

▪ After stabilization

• Should the gesture be retained and the posture modified to maintain stability?

o When should this occur?

▪ Before

▪ During

▪ After

What to imitate?

• What segments of motions should be prioritized?

o Should the user have control of this?

o Should we rely on AI to guess what is important?

9 | P a g e

How to evaluate the human demonstration?

• Human Stability?

• Robot Stability?

• Which human demonstrations are expert and which are novice?

How to evaluate robot imitation?

• How much of the human demonstration exceeds the robotic joint constraints?

• How much of the human demonstration was persevered?

Correspondence Problem

• How to mimic movements of a body similarly but not exactly in a numerical way?

Considering these questions modulates what the imitation process looks like and tries to achieve.

In some situations, imitation is aimed at capturing the outward appearance (such as in many arts

such as ballet or performing arts) while sometimes it is aimed purely at capturing the functional

results of the demonstration (such as in cleaning or care giving tasks). However, under all these

settings it is a useful and very potent means of robot programming. “Monkey see, monkey do” is

a very crude and direct saying to reinforce how powerful imitation learning is. In it observing a

sequence of states leads to a sequence of actions that need to be completed to accomplish this goal.

If a task is being observed, ideally several times, the robot target would attempt to replicate the

task.

10 | P a g e

This thesis develops a set of tools to allow imitation in the context of external appearance-oriented

tasks from human demonstration by a humanoid robot target while maintaining certain stability

requirements that arise from the different dynamics of the target system. This thesis develops an

application to extract the kinematic configuration for a NAO [2] robot that closely mimics a human

demonstration from a 3D vision sensor while obeying the kinematic configuration of the robot.

Using this as a starting point it then proposes a way to adapt the resulting kinematic task sequence

to also obey dynamic stability constraints of the robot.

The remainder of this thesis initially discusses some related work before presenting background

and used formalisms in Chapter 2. Chapter 3 then introduces the techniques used for motion

mapping from 3D vision to the robot platform, for motion filtering to address observation noise,

and for motion control adaptation to address kinematic and dynamic dissimilarities in the platform

and achieve stability.

1.2 Related Work

To address the imitation problem, [4] identifies three important areas, gait generation, motion

control, and motion filtering.

1.2.1 - Gait Generation

Gait generation is the formation or selection of a sequence of coordinated leg and body motions

that propel a legged robot along a desired path [5]. There are a multitude of methods that were

developed over the years to generate gaits.

11 | P a g e

A first method and one of the most common and direct is breaking down the robotic system into

localized links and joints and solving trigonometric functions on a unit circle. As most humanoid

robotic joints involve revolute joint positions further explanations will be provided in Chapter 2.

To characterize the effects of trigonometric functions on a unit circle, Denavit-Hartenberg

parameters were invented to simplify the kinematic calculations for robot mechanisms. This

framework allows to efficiently characterize the kinematic configuration of a robot system and has

been used frequently, including for the NAO robot used as a target in this thesis [6].

To achieve flexible gaits, there is a method called parametric gait synthesis which uses a

combination of parametric functions that calculate walking motion[7]. This has been used in a

wide range of applications where examples include windup toys or video game characters, that are

commanded to walk in a particular predetermined predictable motion.

On the gait perception side, techniques from computer graphics have been used to characterize

observed gaits. This has become of significant interest upon the arrival of usable 3D vision systems

for gait capture. Since 2011, Microsoft released an affordable human motion capture data device

and software development kit (SDK). This made obtaining this data affordable and

correspondingly gait capture has gained much popularity over the last decade. The Kinect offered

a method to record the gait from a demonstrator in real-time. It accomplished this by drawing a

pseudo skeleton over a person and record the coordinates of the persons approximate joint

locations. This appeared to solve the “correspondence problem” present in stereo vision system

and resulted in representations of observed gait in terms of joint locations without the need to

capture joint angles which are harder to extract from observations. On the flip side, if used not for

computer graphics (displaying the skeleton) but rather to command or mimic corresponding

motions, the absence of kinematic configurations poses the problem of mapping the skeleton onto

12 | P a g e

an actual robot mechanism that can only move or change configuration through the underlying

joints.

First introduced by Emil Post’s dissertation in 1946[8]. The post correspondence problem (PCP)is

simply defined is an undecidable decision problem aimed at mapping one configuration onto a

related system. As an undecidable system, any algorithm or step-by-step solution to addressing it

has the problem that it is not always correct. Computer Vision, especially in the context of imitation

or programming by demonstration experiences the PCP in the context of mapping observed

behavior onto the kinematic and dynamic structure of the robot mechanism, making it relevant to

the scope of this thesis. To oversimplify the general computer vision PCP definition, it is a mapping

of two or more images taken at two different vantage points or reference points and being able to

identify what are same objects. Most living organisms on earth do this quiet easily with their stereo

vision, while computer system tend to encounter significantly more problems when attempting to

do the same.

In the early days, computer vision approaches produced many inconsistencies in mapping out

locations of objects in terms of individual pixel locations relative to the image. First there is a

requirement for an origin from where all the local coordinates begin. Then the chicken and egg

problem of the camera locations relative to all the distances of pixels within each frame must be

addressed. Where am I? Where are you? Because of this it turns out that it is quite difficult to

calculate exact distances from two cameras because of the need to determine consistent feature

picks in the images from the cameras. Expert knowledge and other initial knowledge can assist

with the calculations but in the many situations where this is not available or ambiguous this might

not be sufficient. Here extra sensory equipment might provide a cheap method to solve this

13 | P a g e

dilemma and is the approach taken in most 3D vision systems through the use either of structured

light or time of flight sensors.

There are many algorithms that attempt to solve the correspondence problem in the computer

vision paradigm with varying degrees of success covered in the [9] paper. This thesis builds on the

computer vision framework by calculating joint angles of a human demonstrator from extracted

3D locations using the Microsoft Kinect sensor. The Microsoft Kinect solves part of the

correspondence problem in respect to the computer vision domain by using an infrared sensor to

map out 3 dimensional coordinates to each pixel. Building on this, one of the contributions in this

thesis is solving the subsequent mapping problem between human demonstrator joint locations

and robotic platform joint angles of the NAO robot using the Gram-Schmidt process discussed in

Chapter 2.

1.2.2 - Motion Control

Gait generation is aimed at producing the walking motion [7]. However, in most situations

resulting kinematic gaits are not stable for the dynamics of a robot or are easily disturbed. Even in

these situations the gait is kinematically viable for humans with similar weight proportions but

often needs to be slightly adjusted for humanoid mechanisms with slightly different kinematics

and dynamics.

Motion control’s domain is focused on addressing actual control goals given the dynamics of the

platform. It is often closely linked to gait generation but is more of a complementary domain.

Motion control modifies gait generation to achieve a desired goal, often stability.

14 | P a g e

When stability is the focus, the center of mass and the lower body, specifically the ankles and

knees, are of the utmost importance as they have the most impact on stability. In the paper, [10]

which introduces a study of replication of humanoid motion on a bipedal robot platform, they

excluded the ankle parameter and calculated trigonometric stable solutions in relation with the hips

to simplify the problem as consideration of all joints in the body is highly complex and often

intractable without either decomposition of the structure or simplification.

In other studies [10] and [11] focus on more of a complete analytical solution. This paper [10] does

not describe how exactly they calculated the Center of Mass (COM) but in [11] they explicitly

defined it. In real world applications computing each link may be important depending on the

application and the cost to maintain stable velocities and weights carried by the platform if they

are significant, thus justifying the additional cost of attempting to compute control solutions

involving the complete body.

Most applications for the NAO robot specifically in [10] display in their results that general COM

calculations are mostly sufficient. The torques, precisions, and velocities of the NAO platform

exclude the need for precise calculations. Thus, this thesis, which is also aimed at the NAO root

platform, will follow the result from [10] and calculate a generalized COM.

There are cases where motion control is not focused on function and the immersed paradigm of

stability. For example, [13] displays a novel “fashion model” motion. Parameters of step length,

waist yaw maximum height, maximum ankle yaw and pitch, and the corresponding velocities are

the main focus here, concentrating primarily on the appearance of the gait rather than its stability.

Then a hybrid approach is taken with least squared, and Zero Movement Point (ZMP) criteria

being applied. The goal is to preserve as much as the demonstration as possible while maintaining

a stable posture.

15 | P a g e

1.2.3 – Motion Filtering Methods

While motion control is aimed at modifying or generating motions to address dynamics and

function, motion filtering is observing generated trajectory paths and addressing their variability

and noise from where upon constraints, dynamics, or time can be modified. Constraints such as

motor torque, velocity, positions, gravity, mass, viscosity, etc. can be enhanced by filtering

motions, especially when extracted from observations.

In the domain of animation, filtering methods are used frequently [14]. Filters can be applied to

extract more reliable parameters such as start and goal coordinates as well as duration and then a

trajectory will be calculated and animated. The motion filter is applied to smooth out the entire

process.

While motion filtering is an effective process, it is expensive because of the calculations of past,

present, and future trajectories [14]. Exhaustive filtering and optimization over entire trajectory

sets is thus typically not viable for real time applications.

There is research that simplifies this paradigm [4]. Instead of applying complete kinematic and

dynamic joint models, a full body model, lighting, and shadow observations for trajectories to the

motion filter, the model could be simplified to a simple inverted pendulum when focusing on

stability during trajectory execution. Thus, a complex 20+ degree of freedom (DOF) robot or figure

can be reduced to a 3 DOF pendulum approximation when analyzing stance and gait stability.

Karl Mueceke’s research [4] incorporates two types of filters, constrained Analytical Trajectory

filtering (CATF) and COM-based motion Adaptation (CMA). The CATF’s input accepts COM

parameters and outputs a stable trajectory. The CMA accepts this stable COM and calculates the

joint angles. At first glance, computing inverse kinematics from a stable COM is an intractable

16 | P a g e

problem for a humanoid system because of the infinite number of solutions. But Mueceke

incorporated a constraint that generates single unique solutions. The initial raw reference input of

joint angles that first was sent to the CATF also is also sent to CMA and solutions are biased

towards the joint angle input.

While this thesis shares the goal of the last few papers described and many others, it will not make

assumptions that the complete model of the system is pre-computed and instead employ reward-

based optimization and thus trial and error methods. Typically, such methods are not viable for

robots because of cost, time, and wear of parts as they often require thousands of trials to learn an

effective policy. However, while in the domain of reinforced learning the most popular methods

are model free to avoid model bias, there are techniques that are model based but can over time

reduce model bias. Generally, use of these models reduces the learning time to achieve a sufficient

policy and the work in this thesis will utilize such a model-based technique centered around a

gaussian process model built from sample data.

17 | P a g e

CHAPTER 2 – BACKGROUND

The goal of this thesis is to develop tools to allow programming from demonstration by mapping

observations from a Kinect 3D camera of a human performing motions to a NAO robot. For this,

the differences in kinematic configurations between human and NAO as well as observation noise

in the sensor and differences in stability constraint and body dynamic must be considered. To

perform this mapping this thesis first extracts corresponding NAO kinematics from the

observations requiring extracting corresponding joint angles for the NAO from the observation of

the human skeleton. It then addresses irregularities resulting from sensor noise through filtering

before finally addressing dynamic differences and stability through a reward-based stochastic

optimization approach built on a data-driven system model.

This chapter covers the background of the utilized techniques that will be used in the next chapter

when developing the details of the approach.

2.1 Kinematics

To address mapping of the observed joint positions of a human to joint angles in a. Robot we need

to deal with system kinematics.

18 | P a g e

2.1.1 Unit Circle

Figure 1: Unit Circle (From https://www.mometrix.com/academy/unit-circles-and-standard-position/)

The basis to all the kinematic calculations of humanoid robots starts with the trigonometric

calculations on a unit circle. To compute this requires the trigonometric formulation. The

information required are the locations that make up the edge of the circle and the or angle relative

to the reference. The reference is typically the x vector pointing to the right. To calculate these

positions, the calculations are given below.

X Position = 𝓁 * cos (Θ) Y Position = 𝓁 * sin (Θ)

(x, y) = (𝓁*cos(Θ), 𝓁*sin(Θ))

If the position is known and the angle is required inverse trigonometric equations are required and

supplied below.

 Θ = cos-1(X Position / 𝓁) OR Θ = sin-1(Y Position / 𝓁) OR Θ = tan-1(Y Position / X Position)

19 | P a g e

2.1.2 Forward Kinematics

The goal of forward kinematics is to determine the locations of parts of the mechanism structure

in space from the given joint angles in the kinematic chain:

Given L = (𝓁1, 𝓁 2, …, 𝓁 N) and J = (Θ1, Θ2, …, ΘN)

Find P = (Px, PY, PZ)

Forward kinematics is derived from the trigonometric on the unit circle. It is formally defined as

the mapping from joint space to cartesian space. The goal is to find the end destination when given

joint angles and link length. A 2D method to imagine this is a mapping from unit circles multiplied

by link length to cartesian space.

This process is repeated from the base frame defined in Cartesian space as the origin and is

continued until the end of the “kinematic chain” to calculate the end of the chain.

End destination location = (Px, PY, PZ)

Unit circle = (sinΘ1cosΘ1, sinΘ2cosΘ2, …, sinΘNcosΘN)

Link length = (𝓁1, 𝓁 2, …, 𝓁 N)

2.1.3 Inverse Kinematics

Inverse kinematics addresses the reverse problem of determining joint angles that achieve a given

location of a part of the robot mechanism:

Given P = (Px, PY, PZ) and L = 𝓁1, 𝓁 2, …, 𝓁 N). Find J = (Θ1, Θ2, …, ΘN)

20 | P a g e

Inverse Kinematics aims at answering the question what my joint angles are given my desired end

effector position and orientation. The trajectory of the end effector is directly influenced by the

trajectory of the joint angles. Thus, inverse kinematics is defined as mapping cartesian space to

joint space.

A solution to translate cartesian space to joint space is not arbitrary but for redundant kinematic

mechanisms such as most humanoid skeletons there are an infinite number of joint configurations

given an arbitrary trajectory. Thus, to make this problem tractable constraints must be imposed

that differentiate solutions to make the problem analytically solvable. Typically, constraints are

most energy efficient, shortest trajectory for all relevant motors, or similar optimization criteria.

2.1.4 Gram-Schmidt Process

The Gram-Schmidt process [15] is the process of orthonormalizing a set of vectors in inner product

space. Orthonormalizing is a fusion of two words ortho “upright” and normalizing “to make

normal”. Thus, a set of orthonormal vectors consists of vectors that are perpendicular and have a

length of 1. Each vector is upright relative to each other and have a normal length of 1.

Inner product space is a vector space that includes both complex and real vectors that combine two

vectors into a single scalar value derived from the inner product. The purpose of inner product

space is to provide a quick intuitive observation of two vectors with a single scalar value. For

example, if the two vectors are perpendicular, their resulting scalar value will be zero. If the vectors

are exact opposites they will result in a negative value, and the lengths would be multiplied. If they

are pointing in the same direction their scalar value will be positive and lengths multiplied.

Vector �⃗� is “projected” orthogonally onto a line spanned by vector �⃗⃗�.

21 | P a g e

𝑃𝑟𝑜𝑗�⃗⃗⃗��⃗� =
⟨�⃗⃗�, �⃗�⟩

⟨�⃗⃗�, �⃗⃗�⟩
�⃗⃗�

The Gram-Schmidt process operator is as follows:

ℝ1: u1 = v1

There are no other vectors in first dimension with a length or different direction, u1 is the

orthogonal vector.

ℝ2: u2 = v2 – proju1 (v2)

Projection of �⃗�2 onto �⃗⃗�1 is the rotation of v2 on to u1. The orthogonal vector is obtained by

subtracting that projection from v2.

⟨�⃗⃗�1, �⃗�2⟩

⟨�⃗⃗�1, �⃗⃗�1⟩
�⃗⃗�1

Projection is the measure of how similar the two vectors are. Gram-Schmidt’s method says it’s the

ratio of �⃗�2’s length and the rational similarity of �⃗�2and �⃗⃗�1.

Similarity refers to the following:

If the dot product is within the domain of ||�⃗�2||*||�⃗⃗�1|| > 0, the angle between the two vectors is

acute. Thus, categorized as “similar”.

If the dot product equals zero, then categorized as not similar and perpendicular.

If the dot product is within the domain of −(||�⃗�2||*||�⃗⃗�1||), the angle between the two vectors is

obtuse. Thus, categorized as “different”.

22 | P a g e

The inner product maps length and angle into a scalar value. This is our first operation, the inner

product between �⃗�2 and �⃗⃗�1. A division by the length of �⃗⃗�1 cancels out length from the scalar value

derived from the inner product of �⃗�2 and �⃗⃗�1. This gives the “ratio of �⃗�2’s length and the rational

similarity of �⃗�2and �⃗⃗�1.”

Next, the scalar ratio is transferred to �⃗⃗�1 effectively rotating it and scaling the length.

Finally, subtracted from �⃗�2 and scaled and rotated, �⃗⃗�1 computes the orthogonal vector and

normalizes it to give us the orthonormal vector.

This process can be repeated to ℝ𝑛 with the following equation:

𝑢𝑚 = 𝑣𝑚 − ∑ (proj𝑢𝑛
(𝑣𝑚))

𝑚−1

𝑛=1
 𝑒𝑚 =

𝑢𝑚

||𝑢𝑚||

2.2 Motion Filtering

Motion filtering is aimed mainly at eliminating noise and variation to obtain a better estimate of

the true value in environments with observation noise, such as vision domains. The most used

technique due to its formal foundation and relatively low computational complexity is the discrete

Kalman filter [16].

2.2.1 Basic Discrete Kalman Filter

The Kalman filter’s objective is to intuitively guess predictive values. It is an iterative

mathematical process that uses a set of equations and consecutive data inputs to quickly estimate

23 | P a g e

the true value, position, velocity, etc. of the object being measured while the measured values

contain unpredicted random error, uncertainty, or variation.

It is important to know and understand the inputs of the Kalman filter. In a spatial domain, data

points are just points on a graph indicating a single exact location. The Kalman filter uses Gaussian

probability distributions instead of points to be able to keep track of the possible true locations and

not to have to commit to a specific estimate at an early point in time. The location relative to the

center of this distribution reflects the likelihood of a point to be the true point with the maximum

likelihood being at the center of the distribution. In this Gaussian, lines of equal probability form

ellipsoids and areas within an ellipsoid correspond to a set of points that cover a certain likelihood

that the true point is contained within that set. Thus, the distribution reflects the unpredicted

random error, uncertainty, or variation. The Kalman filter deals with uncertainties and not

absolutes and estimates the true distribution of the possible estimates for the true point. This is

accomplished by having the states and inputs treated as Gaussian distributions. A mean and a

corresponding covariance matrix can fully represent this distribution. Since these distributions are

closed under the required fusion operations, this effectively models the estimate of data points as

Gaussian distributions, i.e. a bell curve in which the highest probability for the correct data point

is at the center of the curve. Ellipsoidal areas thus reflect probability regions, specially, with a 68%

likelihood the correct prediction of the data point will be within 1 standard deviation and with 95%

probability it would be within the domain of 2 standard deviations.

An intuitive perspective, rotating the curve to view it from a bird’s eye view the probability regions

of the bell curve in 2 dimensions look like circular/ellipse shapes with identical centers at the mean.

Distributing the intuitive perspective upon this bird’s eye view ellipse, the observer would see 3

24 | P a g e

pseudo ellipses, each one standard deviation larger than the previous and representing increasing

probability regions as in the following figure:

Note: Not to scale

Kalman Gain

The next important aspect of the Kalman filter is the Kalman gain and how it is derived. The

Kalman gain represents the amount of focus to put on the predictive model and the sensor/input

readings. It depends on the calculated error between the prediction calculations and the sensor

error. Below is the example operation of the filter in a 1-dimensional case to simplify.

𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑡
=

𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ∗ 𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑡−1

𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + 𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑡−1

, 𝑤ℎ𝑒𝑟𝑒 𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑠 "𝑡𝑢𝑛𝑒𝑑"

Kalman Gain is computed:

𝐾𝑎𝑙𝑚𝑎𝑛 𝐺𝑎𝑖𝑛 =
𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
, 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝐾𝑎𝑙𝑚𝑎𝑛 𝐺𝑎𝑖𝑛 ≤ 1

Kalman Gain is applied:

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑡 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑡−1
+ 𝐾𝐺[𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑡−1

]

99% 95% 68%

Figure 2: Kalman filter uses Gaussian probability distributions

25 | P a g e

EMeasured depends on the measurement noise where it varies from application to application. As for

the Kalman gain, when it approaches 1 the prediction model is ignored and the system completely

relies on the sensor input. On the other hand, if the Kalman gain approaches 0, the prediction is

accurate and should be focused on over sensor data, thus the sensor data is ignored.

Intuitively, if the Kalman gain is approaching 1, a large amount of focus will be applied to the

measured sensor data and the current estimate will be updated based on the sensor data minus the

expected sensor data from the previous estimate to obtain a new estimate of the true value.

Below is the overall process of the Kalman filter.

‘

Initial Error

Estimate

Calculate

Kalman Gain
Calculate Current

Estimate

Initial
Measurement

Error

Error in

Estimate

Calculate new

Error Estimate

Update

Estimate

Error in

Measurement
Measured

Value

Previous

Estimate

Initial Measured

value
Initial

Estimate

Figure 3: Kalman Flow Chart

26 | P a g e

2.3 Reward-Based Motion Optimization

To adapt movement to the dynamics of a different platform while optimizing second criterion this

thesis builds on a previous framework, PILCO, that avoids requiring an explicit model while

limiting the need for experimentally collected data. For this, it builds a model in the form of a

Gaussian process model and then utilizes a reward-based optimization framework to derive model-

based optimal control given the used cost criteria.

2.3.1 PILCO – Probabilistic Inference from Learning Control

Marc Peter Deisenroth published his dissertation November 20, 2010, and later revised it on

August 4, 2019 [3], introducing a control optimization framework that reduced the amount of data

required. His work is revolutionary in robots and efficient learning. Most traditional reinforcement

learning methods often require a large amount of data and trials to learn how to complete a task.

These tasks are broken down to simple segments learned separately then concatenated all together.

Model-free reinforcement learning in this form is not practical for robotic applications because the

amount of time to learn these tasks and in particular the number of actual operations before

knowing the solution and thus at risk to produce system failures is often too large to be practical.

Marc Peter Deisenroth developed a method that increased data efficiency that does not require

prior expert knowledge in terms of demonstrations or differential equations. Instead, a general

policy-search framework for data-efficient learning from scratch was developed. He goes in detail

how this is accomplished in his dissertation and publications.

In the following, this thesis will introduce the three main points of focus, the Gaussian process

(GP), hyperparameter optimization, and cost function optimization. The GP is the method that

27 | P a g e

forms the probabilistic model that is the foundation of the model-based optimization framework.

Hyperparameters are used that precondition the data to make the GP effective. The cost functions

represent the optimization criterion and thus are ultimately used to determine what actions and

states are “good” and which are “bad”. The determination of these desired states allows

“reinforcement learning” to occur.

2.3.2 PILCO - Gaussian Process

Like many other supervised machine learning methods, the goal of Gaussian process is it attempts

to statistically predict the hidden function given a data set. Gaussian processes are a way to learn

a distribution of functions from a dataset where the distribution is represented captured in terms of

Gaussian distributions representing the function value range over different samples. Bayesian

modeling of functions is how the Gaussian process attempts to predict the hidden function of a

data set.

In a Gaussian process, the goal function is estimated from a set of observed functions. Starting

from a prior function, observations of functions are integrated to estimate new means and

covariances at different points in the input space.

28 | P a g e

Figure 4: Gaussian Prior (From http://www.gaussianprocess.org/gpml/chapters/RW.pdf)

Above is the prior which is in this case is a constant function with value 0 with a high covariance.

This prior distribution of functions is represented as the grey region, representing the set of

functions that stay within this region. The red and green lines are two synthetic functions generated

and evaluated at many points. The dotted blue function is the hidden true function. Prior to

applying the GP, the confidence area, displayed as the shaded grey area, shows the normalized

standard deviation of 2σ of the Gaussians at each point. The two generated functions here have no

correlation with hidden function. Starting from the prior, the GP observes multiple noisy versions

of the underlying function and accordingly modifies the gaussian estimates to better capture the

possible true functions considering the underlying Gaussian noise assumptions

Figure 5: Gaussian Posterior (From http://www.gaussianprocess.org/gpml/chapters/RW.pdf)

29 | P a g e

The posterior example above displays the prior’s conditioned outcome drawn from 5 observations,

3 of which are indicated by the colored lines. It can be seen that in the posterior the uncertainty

region has moved and shrunk depending on the variation in the sample functions at that point. The

synthetic functions allow the GP’s estimate to coverage upon the observed data points and

confidence areas are more certain where data is available.

A simplistic way of explaining the methodology of Gaussian process regression is that it generates

multiple plausible functions given a data set and formulates a Gaussian distribution over those

synthetically generated plausible functions. Because of how this is accomplished, the Gaussian

process suffers from reduced model bias because the extra layer of mathematical abstraction. It is

crucial to note that while outlier functions still have an impact upon the Gaussian process, it is

significantly reduced. While impact is diminished it still influences estimating the underlying

function. The following shows this interpretation by showing sets of possible functions.

Figure 6: Synthetic Function Generation (From https://www.aidanscannell.com/post/gaussian-process-regression/)

The black dots are the data points that each of the synthetic functions converge on. The colored

lines are the synthetically generated functions. For large data sets (n > 10,000), generation of each

of these plausible functions and the required computation and storage of an order O(N3) is not

30 | P a g e

practical for modern computer systems (Gaussian Processes for Machine Learning) and thus

representing the distribution as a Gaussian process is significantly more efficient.

Because of these synthetic function generations, the Gaussian process is ideal for scarce data sets,

and converges upon a good estimate function quickly due to its data efficiency. Data efficiency is

accomplished though extrapolating additional data or hypotheses from the data set that presents

more data without the requirement of larger data sets.

2.3.3 PILCO - GP – Hyperparameters

There are situations where generated functions are not converging es expected due to sporadic

nature or sparseness of the data set. Thus, there are 3 hyperparameters used as a mechanism to

tune. These hyperparameters are integral to the Gaussian process’ ability to predict the hidden

function that is actively estimated. Hyperparameters are tuned on the training set.

The process of tuning inputs to generate meaningful functions is like a lens bending light to a focal

point. Lengthscale and signal variance hyperparameters refer the order of magnitude relative to

length and indirectly amplitude or size respectively. To keep the generating functions meaningful,

these parameters require to be tuned precisely so the lens, i.e. the Gaussian process, reveal the

focal point, i.e. the hidden function. While length scale and signal variance are the tuning

parameters for the lens, noise variance is a parameter to describe the blemishes of the lens. Thus,

giving a way to describe measurement noise into the Gaussian process.

31 | P a g e

PILCO - GP – Hyperparameters – Lengthscale

Lengthscale describes an order of magnitude in respect to length. The desire is to focus on one

specific order of magnitude. Basically, they limit how fast a function can change over the input

and thus represent a property akin to smoothness. Lengthscale is also very useful to avoid model

overfitting. Short lengthscales promote overfitting while longer reduce it. While tuning this

parameter it is recommended to select longer over shorter, especially if only small datasets are

available.

Lenthscale depends on scaled closeness of the inputs where,

d = ||x – x’||

and the length scale,

d/ 𝓁 = ||x – x’||/ 𝓁

The figure below shows examples with 3 different lengthscales from small (left) to large (right).

Figure 7: Lengthscales (From https://infallible-thompson-49de36.netlify.app/)

A risk with longer lengthscales is that they could distort the inputs enough to smooth out all the

features of the generating functions and make it impossible to estimate the hidden function. Longer

lengthscales map the input data to narrow ranges causing the data to be strongly correlated, while

32 | P a g e

shorter keep most of the features. A lengthscale of 1 keeps all the features and increasing the value

causes smooth distortion throughout.

Data consistency is the key. If data has all differing order of magnitude lengthscales then increasing

the lengthscale to map the data to narrow ranges is the objective. For example, mapping time vs

meters and time vs millimeters increasing the lengthscale by a factor of two to three would be

ideal.

PILCO - GP – Hyperparameters – Signal Variance

Signal variance describes fluctuation of the input data. Indirectly, signal variance influences

amplitude.

𝐴𝑚𝑝𝑡𝑖𝑡𝑢𝑑𝑒 = √𝜎2

The figure below shows examples with different signal variance from small (left) to large (right).

Figure 8: Signal Variance (From https://infallible-thompson-49de36.netlify.app/)

As with the lengthscales the variance must be consistent for the Gaussian process to accurately

estimate the latent function. There are two key goals while tuning signal variance.

33 | P a g e

First, prior knowledge of the observed function values is extremely helpful and can assist in

initializing the value correctly.

Second, knowledge of the signal to noise (S/N) ratio is useful. If the noise is higher than the signal,

meaning S/N < 1, then there is no point applying the Gaussian process.

PILCO - GP – Hyperparameters – Noise Variance

Noise is a separate, typically unwanted signal that comes from the environment or even the system.

It distorts the data’s true positions. Having a good estimate of the noise through the noise variance

parameter has two benefits for the Gaussian process.

First, if the hyperparameter closely approximates the true noise variance then it will be effectively

accounted for and be at least in part “filtered” out.

Second, this hyperparameter indirectly simplifies the mean functions and indirectly assists with

the lengthscale function by avoiding model overfit. This hyperparameter is useful in cases where

there is very little noise but complex latent functions.

The following figure shows examples with 3 different noise variance parameters from small (left)

to large (right).

Figure 9: Noise (From https://infallible-thompson-49de36.netlify.app/)

34 | P a g e

The hyperparameters are parameters that set up the Gaussian process to be more effective by

manipulating the data to be more consistent. While there are methods to optimize these parameters,

it is beneficial to initialize them to approximately correct values with prior knowledge so they will

avoid incorrect local minima as only limited amounts of data are available.

2.3.4 PILCO – Cost Function

For the learning to occur a cost function must be selected that is specific to the task at hand and

encode the important aspects of the task. In this thesis, two loss functions have been selected,

namely one utilizing saturated loss and one using a double hinge loss which are added together.

The task is defined to maintain stability in an inverted pendulum with an arbitrary Zero Movement

Point (ZMP) (encoded as a double hinge loss) while following a directed demonstration (encoded

as a saturated loss). No knowledge of the demonstration to be followed nor the dynamics of the

pendulum will be encoded beforehand but rather both will have to be inferred from observed

trajectories and controls.

The saturated loss function is defined below,

𝑐(𝑥) = 1 − 𝑒
(−

1
2𝑎2 𝑑(𝑥,𝑥𝑡𝑎𝑟𝑔𝑒𝑡)

2
)

This saturated loss maps similarity to demonstration to cost as seen below.

35 | P a g e

Figure 10: Saturation Loss Function (From https://deisenroth.cc/pdf/thesis.pdf)

This immediate cost function does not explicitly encode any knowledge of the task. The sole

purpose is to penalize the geometric distance of the current state to the target state. D(x,xtarget),

which returns the geometric distance from current position to target state. The main benefit of

saturated loss is it saturates at 1 and thus does not grow towards infinity for larger distances. It is

perfect for small immediate adjustments in certain ranges.

The double hinge loss function models a preference region with increasing cost as the system

leaves this region. In this thesis this will be used to provide stability-related costs where the

preferred region is when the COM is within the support triangle for statically stable motion while

cost increases as the system leans beyond this region. The following shows the base form of the

double hinge loss function:

36 | P a g e

Figure 11: Double Hinge Loss (From https://www.desmos.com/calculator)

For a point from a Gaussian distribution will incur an expected cost under a double hinge loss

function of

𝑐(𝑥) = 𝑎(
2𝑏

2𝑒𝑟𝑓𝑏 + 𝑐 + 𝑏
)

Where the parameters a, b, and c as well as the underlying function erfb are:

Slope of double hinge:

𝑎

Corner points:

𝑏 = [𝑏1 𝑏2]

From the Gaussian process, Covariance matrix:

𝑠

And the law of facility of errors:

𝑐 = (√
𝑠

𝜋
)𝑒−𝑠𝑏2

37 | P a g e

Finally the Gauss Error function:

erf 𝑏 =
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
𝑏/√2𝑠

0

 Which is also shown in the following figure:

Figure 12: Gaussian Error Function (From https://www.mathworks.com/help/matlab/ref/erf.html)

The point of the double hinge function is to encode b with the ZMP calculated by the location of

the feet thus the function will be dynamic based on the foot placement. This function does not

saturate, allowing to impose priority of stability over imitation as represented by the saturation

function.

38 | P a g e

CHAPTER 3 - APPROACH AND IMPLEMENTATION

This chapter will explain the process of the work completed in this thesis. Chapter 3.1 will be the

Acquisition of the data and how that is accomplished. Due to limitations with the used Kinect V2

sensor, this will take place on a windows Computer. Chapter 3.2 will describe the preprocessing

of the data received from the Kinect on the Linux computer. Chapter 3.3 will elucidate the Kalman

filter method. The final part of the chapter in Section 3.4 will bring to light the learning process to

adapt to the different dynamics by addressing the tradeoff between demonstration and stabilization.

3.1 – Acquisition of the Kinect Data

The first step of adaptive human-robot motion transfer for complete body imitation starts by

extracting 3D coordinates from the Kinect V2. The device comes with a software development kit

(SDK) [17]. This greatly assists in accessing the Kinect’s sensor readings and Microsoft’s

proprietary software. The Kinect V2 can recognize human shapes with a certain degree of accuracy

and is able to synthetically extract and draw a skeleton upon the human shape and display this via

their Kinect V2 studio.

To be able to interface to the robot platform, Linux has a well-known platform called Robotic

Operating System (ROS) [18]. It provides tools, libraries, and capabilities to develop robotic

applications and interface to robot simulations and robot hardware. In this paradigm, ROS will be

used as a messaging system where each process can know the location of each other and

39 | P a g e

communicate with each other. In addition, catkin will be used to adapt their use of macros to cross

compile different packages whether in C, C++, Python, etc. using catkin make command.

Computer system setup required Ineracting Windows and Linux computers to utilize Kiect V2 and ROS

Integration between the two systems is required for this project. At the time of the development of

this project ROS-Windows did not have a lot of support thus it was disregarded as an option. The

initial framework for the integration of the Kinect V2 and ROS was derived from

https://github.com/msr-peng/kinect_v2_skeleton_tracking. The open-source algorithm is a plugin

that contains the Kinetic V2 libraries, ROS library, and other various files. The Windows plugin

copies the position and orientation of each joint the kinetic is currently tracking and sends it via

the ROS serial Windows extension to the wider ROS network with the ROS master on the Linux

computer. The Kinect V2 orientation information was disregarded because it contained the

orientation of the joint relative to the base frame, and this was not useful information for this

project and will have to be computed relative to their appropriate respective joints.

The Windows plugin algorithm can track up to 6 different people and transfer their joint

information. Possible but due to the limitations of the Kinect V2 infrared sensors it would be

extremely difficult to produce accurate readings [19]. The algorithm first initializes the data, by

40 | P a g e

creating a pointer to the location of the Kinect data structure, pointer to current frame, and pointer

to each body that is tracked.

After the pointers are assigned, it attempts to establish a connection with ROS on the Linux

computer. The idea is to first establish a connection with the Kinect V2 device and then to establish

a connection with the Linux computer. Once completed, ROS topics user_0 to user_5 will be

broadcasted via ethernet connection between the two devices. These are the body structures that

can be tracked.

The algorithm structures each possible person as an object “body0” to “body5”. If the body was

“tracked” its Boolean value will be marked as true. Each body object housed an array of joints,

and each joint again a Boolean tracked, where each joint tracked will be propagated with position

and orientation. Each joint will be related to a name based on the index; for example, base spine

“joint” ID is 0 and this system is applied to all the other joints. If the joint was tracked, then the

position and orientation information would be propagated into this object structure. If the body or

joint was not tracked, then that part of the structure would be omitted.

The table below displays the structure of the Body represented in the algorithm.

41 | P a g e

Figure 13: Body Data Structure

The information recorded is “published” via ROS protocol standards as a geometry_msgs/

TransformStamped Message. The following table contains the structure of the message.

Message Type Message

geometry_msgs TransformStamped

Message

std_msgs Header header

string child_frame_id

geometry_msgs Transform transform

Figure 14: TransformStamped Message

Body Body [0] … Body [5]

Body

Tracked

True or False … True or False

Joint Joint

[0]

… Joint

[19]

… Joint

[0]

… Joint

[19]

Joint

Tracked

True or False … True or False

Joint Name “Base Spine”- “Shoulder Spine” … “Base Spine”- “Shoulder Spine”

Position Pos

[0]

Pos

[1]

Pos

[2]

… Pos

[0]

Pos

[1]

Pos

[2]

Orientation Or [0] Or [1] Or [2] Or [3]

… Or [0] Or [1] Or [2] Or [3]

42 | P a g e

The following contains the header information of each message.

Message

Header header

uint32 seq

struct time

stamp

string frame_id

Figure 15: Header of TransformStamped

In the table below is the structure for the position as a 3D vector (Vector3) and the orientation

represented in Quaternions.

The following displays the Vector3 “3D-Vector”, and Orientation represented in Quaternions.

Message

Transform transform

geometry_msgs Vector3

geometry_msgs Quaternion

Figure 16: 3D Vector Data Structure

Message

Vector3

float64 x

float64 y

float64 x

Message

Orientation

float64 x

float64 y

float64 x

float64 w

43 | P a g e

Once all the data is published and sent over the ethernet connection there is a sleep for 50ms

because of the framerate of the Kinect V2 plus the processing time required. Pointers are then

reset, including the pointers of the body structure and Kinect V2 structures in case of interruption

between frames.

3.2 – Preprocessing the Data

The Kinect V2 provides the crucial position data on which all the calculations will be based. But

it does not provide the directions of the vectors that are required to translate these into joint angles

in the NAO robot’s kinematic structure. What is required is the direction from the elbow to the

right hand and the direction from elbow to shoulder. This will provide the basis for the inverse

kinematics calculations.

Figure 17: The orientation of each “joint” of the NAO robot’s structure is displayed as its 3 basis vectors.

44 | P a g e

3.2.1 – Differences in Kinematics of NAO vs Human

The main difference between the human kinematics and the human are the arrangement of the

NAO joints in the human ball joints (shoulder, wrist, and hip), as well as the more limited NAO

hip and human hip Z rotation. Figure 6 displays the Z axis plane. Human hip rotation is

approximately the Z plane rotation. However, the NAO hip the case is not. The rotation directly

effects yaw and pitch. As shown in Figure 18 “NAO Joint scheme”, the NAO HIP indicated by

the blue cylinder, is rotated 45 degrees from the x axis plane.

Figure 18: Human Joint Scheme Figure 19: NAO Joint Scheme

45 | P a g e

The second step as mentioned will be the preprocessing through the inverse kinematics,

transforming from human joint positions to NAO robot joint angles while preserving the

appearance of the human demonstration. There are several methods for how this can be

accomplished but the data from the Kinect V2 is structured as vectors, favoring an algebraic

method. Assuming the length of the limbs will remain constant, the method of using vector math

and Gram-Schmidt method will be used and explained.

3.2.2 – Compute the Vectors

Initially, the algorithm computes all the vectors with useful orientation information for the NAO

joint rotations from the human skeleton observations. All vectors will be computed such that the

head of the vector is the direction it is pointing towards, and the tail is the trailing end as indicated

below.

All the vectors computed as such are thus:

𝑉 = ℎ𝑒𝑎𝑑 − 𝑡𝑎𝑖𝑙

�⃗�[0] = 𝑝𝑜𝑠. 𝑥(ℎ𝑒𝑎𝑑) − 𝑝𝑜𝑠. 𝑥(𝑡𝑎𝑖𝑙)

�⃗�[1] = 𝑝𝑜𝑠. 𝑦(ℎ𝑒𝑎𝑑) − 𝑝𝑜𝑠. 𝑦(𝑡𝑎𝑖𝑙)

�⃗�[2] = 𝑝𝑜𝑠. 𝑧(ℎ𝑒𝑎𝑑) − 𝑝𝑜𝑠. 𝑧(𝑡𝑎𝑖𝑙)

The following table shows the important orientation-relevant vectors extracted:

46 | P a g e

 Vectors

Left Hip and Right Hip 𝐿𝐻⃗⃗⃗⃗⃗⃗ = 𝐿𝐻 − 𝑅𝐻 𝑅𝐻⃗⃗⃗⃗⃗⃗⃗ = 𝑅𝐻 − 𝐿𝐻

Left Upper Leg and Right Upper Leg 𝐿𝑈𝐿⃗⃗⃗⃗⃗⃗⃗⃗⃗ = 𝐿𝐾 − 𝐿𝐻 𝑅𝑈𝐿⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑅𝐾 − 𝑅𝐻

Left Lower Leg and Right Lower Leg 𝐿𝐿𝐿⃗⃗⃗⃗⃗⃗⃗⃗ = 𝐿𝐴 − 𝐿𝐾 𝑅𝐿𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑅𝐴 − 𝑅𝐾

Left Upper Arm and Right Upper Arm 𝐿𝑈𝐴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝐿𝐸 − 𝐿𝑆 𝑅𝑈𝐴⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = 𝑅𝐸 − 𝑅𝑆

Left Lower Arm and Right Lower Arm 𝐿𝐿𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝐿𝐻𝑎 − 𝐿𝐸 𝑅𝐿𝐴⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗ = 𝑅ℎ𝑎 − 𝑅𝐸

Up Back and Down Back 𝑈𝐵⃗⃗ ⃗⃗ ⃗⃗ = 𝑆𝑆 − 𝐵𝐿 𝐷𝐵⃗⃗⃗⃗⃗⃗⃗ = 𝐵𝐿 − 𝑆𝑆

Left Shoulder and Right Shoulder 𝐿𝑆⃗⃗⃗⃗⃗ = 𝐿𝑆 − 𝑆𝑆 𝑅𝑆⃗⃗⃗⃗⃗⃗ = 𝑅𝑆 − 𝑆𝑆

Left Foot and Right Foot 𝐿𝐹⃗⃗ ⃗⃗⃗ = 𝐿𝐹 − 𝐿𝐴 𝑅𝐹⃗⃗⃗⃗⃗⃗ = 𝑅𝐹 − 𝑅𝐴

Figure 20: Orientation Table

Abbreviations

LH Left hip RH Right Hip

LK Left Knee RK Right Knee

 LA Left Ankle RA Right Ankle

 LE Left Elbow RE Right Elbow

 LS Left Shoulder RS Right Shoulder

Lha Left Hand Rha Right Hand

47 | P a g e

LF Left Foot RF Right Foot

 BL Base Link SS Shoulder Spine

UB Up Back DB Down Back

3.2.3 – Compute the Synthetic Vectors

Calculation of the NAO hip will be more involved. The objective is to create a synthetic NAO hip

vector. The purpose is to calculate the rotation effect this joint will incur on the rest of the leg.

Rotational effects will incur error in all rotational planes if not calculated correctly. Thus, the

Gram-Schmidt method is used to calculate the orthogonal basis of the two vectors, then

normalization is applied. The desire is to have two vectors, namely the hip vector and up back

vector which points straight up towards the head, to be perpendicular. When those two vectors are

subtracted it will give the 45-degree NAO hip vector:

𝑅𝑁𝐴𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
ℎ𝑖𝑝 =

𝐺𝑆(𝑅𝐻⃗⃗⃗⃗⃗⃗⃗, 𝑈𝐵⃗⃗ ⃗⃗ ⃗⃗)

|𝐺𝑆(𝑅𝐻⃗⃗⃗⃗⃗⃗⃗, 𝑈𝐵⃗⃗ ⃗⃗ ⃗⃗)|
−

𝑅𝐻

|𝑅𝐻⃗⃗⃗⃗ ⃗⃗ ⃗⃗ |

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝐿𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
ℎ𝑖𝑝 =

𝐺𝑆(𝐿𝐻⃗⃗⃗⃗⃗⃗ , 𝑈𝐵⃗⃗ ⃗⃗ ⃗⃗)

|𝐺𝑆(𝐿𝐻⃗⃗⃗⃗⃗⃗ , 𝑈𝐵⃗⃗ ⃗⃗ ⃗⃗)|
−

𝐿𝐻

|𝐿𝐻⃗⃗⃗⃗⃗⃗⃗⃗ |

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

Where Gram-Schmidt Method is,

𝐺𝑆(�⃗�1, �⃗�2) = �⃗�2 − ((
 �⃗�1

 |𝑣⃗⃗⃗⃗ 1|
∙ �⃗�2) ∙

�⃗�1

|𝑣⃗⃗⃗⃗ 1|
)

Where the length of |v| is defined,

|𝑣| = √𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2

48 | P a g e

Next the computation of other synthetic vectors is required to compute additional angles needed

in the next section.

Resulting Vector Calculation

𝐿𝑆⃗⃗⃗⃗⃗ ⊥ 𝐿𝑈𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐺𝑆(𝐿𝑆, 𝐿𝑈𝐴)

𝑅𝑆⃗⃗⃗⃗⃗⃗ ⊥ 𝑅𝑈𝐴⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ 𝐺𝑆(𝑅𝑆, 𝑅𝑈𝐴)

𝐿𝐻⃗⃗⃗⃗⃗⃗ ⊥ 𝐿𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
ℎ𝑖𝑝 𝐿𝐻 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⨂ 𝐿𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

ℎ𝑖𝑝

𝑅𝐻⃗⃗⃗⃗⃗⃗⃗ ⊥ 𝑅𝑁𝐴𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
ℎ𝑖𝑝 𝑅𝐻 ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⨂ 𝑅𝑁𝐴𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

ℎ𝑖𝑝

𝐿𝐿𝑒𝑔⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗
𝑛𝑜𝑟𝑚 See Below

𝑅𝐿𝑒𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑛𝑜𝑟𝑚 See Below

𝐿𝐿𝑒𝑔⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗
𝑛𝑜𝑟𝑚 ⊥ 𝐿𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

ℎ𝑖𝑝 𝐿𝐿𝑒𝑔⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗
𝑛𝑜𝑟𝑚⨂ 𝐿𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

ℎ𝑖𝑝

𝑅𝐿𝑒𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑛𝑜𝑟𝑚 ⊥ 𝑅𝑁𝐴𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

ℎ𝑖𝑝 𝑅𝐿𝑒𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑛𝑜𝑟𝑚⨂ 𝑅𝑁𝐴𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

ℎ𝑖𝑝

𝐿𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
ℎ𝑖𝑝 ⊥ 𝐿𝐿𝑒𝑔⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗

𝑛𝑜𝑟𝑚 ⊥ 𝐿𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
ℎ𝑖𝑝

⃗⃗ ⃗⃗
 𝐿𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

ℎ𝑖𝑝⨂𝐿𝐿𝑒𝑔⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗
𝑛𝑜𝑟𝑚⨂𝐿𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

ℎ𝑖𝑝
⃗⃗ ⃗⃗

𝑅𝑁𝐴𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
ℎ𝑖𝑝 ⊥ (𝑅𝐿𝑒𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑛𝑜𝑟𝑚 ⊥ 𝑅𝑁𝐴𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
ℎ𝑖𝑝)

⃗⃗ ⃗
 𝑅𝑁𝐴𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

ℎ𝑖𝑝⨂(𝑅𝐿𝑒𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑛𝑜𝑟𝑚⨂ 𝑅𝑁𝐴𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

ℎ𝑖𝑝)
⃗⃗ ⃗⃗

Figure 21: Synthetic Vector Table

While most of the vector calculations were reliable, the leg normal was not stable because any of

the leg normal vectors taking the cross product of the upper leg with the lower leg or foot with the

lower leg sometimes would be exactly 180 degrees, thus not allowing to extract a unique vector

orthogonal to both and creating not a number (NaN) because of the calculation. Thus, an algorithm

had to be developed to test the stability of the Leg normal vector. The algorithm simply would take

the length of all the normal vectors which are the following:

49 | P a g e

𝐹𝑜𝑜𝑡 ⊥ 𝐿𝑜𝑤𝑒𝑟 𝐿𝑒𝑔

𝑈𝑝𝑝𝑒𝑟 𝐿𝑒𝑔 ⊥ 𝐿𝑜𝑤𝑒𝑟 𝐿𝑒𝑔

𝑈𝑝𝑝𝑒𝑟 𝐿𝑒𝑔 + 𝐿𝑜𝑤𝑒𝑟 𝐿𝑒𝑔 ⊥ 𝐹𝑜𝑜𝑡

𝐹𝑜𝑜𝑡 + 𝐿𝑜𝑤𝑒𝑟 𝐿𝑒𝑔 ⊥ 𝐹𝑜𝑜𝑡

Any length less than .0001 was discarded

1. Compute the Θ between normal vector and corresponding hip vector. If Θ was greater than

90-degrees, it was discarded.

a. If left leg then left hip vector was used and the same applied for the right leg.

2. Longest length vector would be chosen to be the “best normal vector”

The longest length vector was chosen because it would be the “most stable” and the logic was

which normal vector to choose if all of them fit within the constraints implemented. Upon

reviewing the vector lengths there were typically some of a very short length of less than .001.

Prior to the implementation of this algorithm the leg of the NAO virtual model would behave

extremely strange. After this algorithm was implemented, it was significant more stable.

The selection of additional synthetic vectors for this was required for the situations where the leg

was complete straight (Θ = 180), and the foot would appear to be straight with the leg. These were

measured upon first developing the algorithm. The general idea is to generate a vector that pointed

in the correct y-axis plane for the hip joint that was also meaningful.

50 | P a g e

3.2.4 – Compute NAO Leg Vector

To refresh from earlier, the NAO hip is the largest kinematic difference between human and NAO.

Because of this there is a requirement to account of this difference. Under the simulation, the leg

vectors are independent from one another; however, the real NAO platform’s hip yaw has only

one motor. In that case, implementation of only one side would be necessary.

Using the calculations above, the NAO basis, i.e. the 3 basis vectors of the 45-degree vector of the

hip yaw joint can be represented as:

𝑁𝐴𝑂𝑏𝑎𝑠𝑖𝑠 =

[

 𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

ℎ𝑖𝑝𝑥
𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

ℎ𝑖𝑝 ⊥ (𝐿𝑒𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝑛𝑜𝑟𝑚 ⊥ 𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

ℎ𝑖𝑝)
⃗⃗ ⃗

_𝑥 𝐿𝑒𝑔⃗⃗⃗⃗ ⃗⃗ ⃗⃗
𝑛𝑜𝑟𝑚 ⊥ 𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

ℎ𝑖𝑝
⃗⃗ _𝑥

𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
ℎ𝑖𝑝𝑦

𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
ℎ𝑖𝑝 ⊥ (𝐿𝑒𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑛𝑜𝑟𝑚 ⊥ 𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
ℎ𝑖𝑝)

⃗⃗ ⃗
_𝑦 𝐿𝑒𝑔⃗⃗⃗⃗ ⃗⃗ ⃗⃗

𝑛𝑜𝑟𝑚 ⊥ 𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
ℎ𝑖𝑝

⃗⃗ _𝑦

𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
ℎ𝑖𝑝𝑧

𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
ℎ𝑖𝑝 ⊥ (𝐿𝑒𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑛𝑜𝑟𝑚 ⊥ 𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
ℎ𝑖𝑝)

⃗⃗ ⃗
_𝑧 𝐿𝑒𝑔⃗⃗⃗⃗ ⃗⃗ ⃗⃗

𝑛𝑜𝑟𝑚 ⊥ 𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
ℎ𝑖𝑝

⃗⃗ _𝑧]

Then the NAO x-axis rotation matrix is used rotate the NAO leg vector.

𝑁𝐴𝑂𝑟𝑜𝑡 = [

1 0 0
0 cos(𝑦𝑎𝑤) −sin(𝑦𝑎𝑤)
0 sin(𝑦𝑎𝑤) cos(𝑦𝑎𝑤)

]

Finally, the setup of all that is required to calculate the NAO leg has been completed:

𝑁𝐴𝑂𝑙𝑒𝑔 = 𝑁𝐴𝑂𝑏𝑎𝑠𝑖𝑠 ∗ 𝑁𝐴𝑂𝑟𝑜𝑡 ∗ 𝑁𝐴𝑂𝑏𝑎𝑠𝑖𝑠
𝑇 ∗ 𝑈𝑝𝑝𝑒𝑟𝐿𝑒𝑔

This matrix multiplication is typically used to transform one coordinate domain to another, and

this situation calls for it. The change of domain from the Kinect V2 input to the NAO modified

leg is then performed and the yaw rotation is applied. Following this the domain is reverted and

finally the input leg is applied to it and the NAO leg is computed.

What this calculation exactly does in this case is to negate the offset the NAO hip rotation would

apply. A very simple example, if the demonstrator would rotate his leg in place, without rotation

51 | P a g e

of the pitch or roll of the hip, the NAO would appear to kick as the offsets were so vast. Direct z-

axis or yaw rotation of the leg would infer a x-axis or pitch and y-axis roll offset. While just a pitch

hip rotation would not incur any noticeable offset. But a roll rotation would incur an offset. Thus

the correction is necessary to achieve correct inference of the joint angles.

Calculation of the NAO leg vector was one of the last challenging parts of the mimicry. There

were some noticeable differences that can be attributed to the sensor error because of small

difference between the foot and the ground. If the feet where not in the correct positions for the

infrared sensors to accurately determine their coordinates, the foot vector would noticeably twitch.

To remedy this, a filter would have to be integrated for this application which will be described in

a later section.

3.2.5 – Compute the Joint Angles

As we now have the coordinate axes of each of the joints, the dot product is what is required to

compute the angles between each vector thus giving us the joint angle we require. This is defined

as displayed below.

𝜃 = cos−1(
�⃗�1 ∙ �⃗�2

|𝑣1| ∗ |𝑣2|
)

Before the calculation of the joint angles, it is important to note the standard starting joint angles

for the NAO robot, i.e. the angels considered to be 0. Figure 8 displays such a configuration for

all but the elbow angles.

The following will explicitly define the calculations of the joint angles:

52 | P a g e

Θ Left Right

Elbow
cos−1(

𝐿𝑈𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ∙ 𝐿𝐿𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

|𝐿𝑈𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗| ∗ |𝐿𝐿𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |
)

cos−1(
𝑅𝑈𝐴⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ∙ 𝑅𝐿𝐴⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗

|𝑅𝑈𝐴⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ | ∗ |𝑅𝐿𝐴⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗|
)

Shoulder

Roll cos−1 (
𝐿𝑈𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ∙ 𝐿𝑆⃗⃗⃗⃗⃗

|𝐿𝑈𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗| ∗ |𝐿𝑆⃗⃗⃗⃗⃗|
) −

𝜋

2
 cos−1(

𝑅𝑈𝐴⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ∙ 𝑅𝑆⃗⃗⃗⃗⃗⃗

|𝑅𝑈𝐴⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ | ∗ |𝑅𝑆⃗⃗⃗⃗⃗⃗ |
) −

𝜋

2

Shoulder

Pitch cos−1(
𝐷𝐵⃗⃗⃗⃗⃗⃗⃗ ∙ 𝐺𝑆(𝐿𝑆⃗⃗⃗⃗⃗, 𝐿𝑈𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)

|𝐷𝐵⃗⃗⃗⃗⃗⃗⃗| ∗ |𝐺𝑆(𝐿𝑆⃗⃗⃗⃗⃗, 𝐿𝑈𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)|
) −

𝜋

2

cos−1(
𝐷𝐵⃗⃗⃗⃗⃗⃗⃗ ∙ 𝐺𝑆(𝑅𝑆⃗⃗⃗⃗⃗⃗ , 𝑅𝑈𝐴⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗)

|𝐷𝐵⃗⃗⃗⃗⃗⃗⃗| ∗ 𝐺𝑆(𝑅𝑆⃗⃗⃗⃗⃗⃗ , 𝑅𝑈𝐴⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗)
) −

𝜋

2

Knee
cos−1(

𝐿𝑈𝐿⃗⃗⃗⃗⃗⃗⃗⃗⃗ ∙ 𝐿𝐿𝐿⃗⃗⃗⃗⃗⃗ ⃗⃗

|𝐿𝑈𝐿⃗⃗⃗⃗ ⃗⃗⃗⃗⃗| ∗ |𝐿𝐿𝐿⃗⃗⃗⃗⃗⃗ ⃗⃗ |
)

cos−1(
𝑅𝑈𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ∙ 𝑅𝐿𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

|𝑅𝑈𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗| ∗ |𝑅𝐿𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |
)

Hip

Pitch cos−1(
𝐿𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

�⃗�𝑒𝑔 ∙ (𝐿𝐿𝑒𝑔⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑛𝑜𝑟𝑚⨂𝐿𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

ℎ𝑖𝑝)

|𝐿𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
�⃗�𝑒𝑔| ∗ |(𝐿𝐿𝑒𝑔𝑛𝑜𝑟𝑚⨂𝐿𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

ℎ𝑖𝑝)|
) +

𝜋

2

cos−1(
𝑅𝑁𝐴𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

�⃗�𝑒𝑔 ∙ (𝑅𝐿𝑒𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑛𝑜𝑟𝑚⨂𝑅𝑁𝐴𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

ℎ𝑖𝑝)

|𝑅𝑁𝐴𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑙𝑒𝑔| ∗ |(𝑅𝐿𝑒𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑛𝑜𝑟𝑚⨂𝑅𝑁𝐴𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
ℎ𝑖𝑝)|

) −
𝜋

2

Hip Roll
cos−1(

𝐿𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
�⃗�𝑒𝑔 ∙ 𝐿𝐻⃗⃗⃗⃗⃗⃗

|𝐿𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
�⃗�𝑒𝑔| ∗ |𝐿𝐻⃗⃗⃗⃗⃗⃗ |

) +
𝜋

2

cos−1(
𝑅𝑁𝐴𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑙𝑒𝑔 ∙ 𝑅𝐻⃗⃗⃗⃗⃗⃗⃗

|𝑅𝑁𝐴𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
�⃗�𝑒𝑔| ∗ |𝑅𝐻⃗⃗⃗⃗⃗⃗⃗|

) −
𝜋

2

Hip

Yaw −cos−1(
𝐺𝑆(𝐿𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

ℎ𝑖𝑝 , 𝐿𝐻)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∙ 𝐺𝑆(𝐿𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
ℎ𝑖𝑝 , 𝐿𝐿𝑒𝑔𝑛𝑜𝑟𝑚)

|𝐺𝑆(𝐿𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
ℎ𝑖𝑝 , 𝐿𝐻)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ | ∗ |𝐺𝑆(𝐿𝑁𝐴𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

ℎ𝑖𝑝 , 𝐿𝐿𝑒𝑔𝑛𝑜𝑟𝑚)|
)

−cos−1(
𝐺𝑆(𝑅𝑁𝐴𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

ℎ𝑖𝑝 , 𝑅𝐻)⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗ ∙ 𝐺𝑆(𝑅𝑁𝐴𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
ℎ𝑖𝑝, 𝑅𝐿𝑒𝑔𝑛𝑜𝑟𝑚)

|𝐺𝑆(𝑅𝑁𝐴𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
ℎ𝑖𝑝 , 𝑅𝐻)⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗| ∗ |𝐺𝑆(𝑅𝑁𝐴𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

ℎ𝑖𝑝 , 𝑅𝐿𝑒𝑔𝑛𝑜𝑟𝑚)|
)

Figure 22: Joint Angle Calculation Table

Figure 23: Rviz representation of the NAO

53 | P a g e

The elbow and knee angles are straightforward calculations by taking the dot product and applying

the inverse cosine to calculate the joint angle. However, the shoulder pitch and roll require an

offset of 90-degrees because of the “reference” vector used to measure the correct axis relative to

the NAO. The reference vector for the shoulder pitch was the down back and a vector that would

be measured in the x-axis rotation plane. For the hip pitch and roll the reference vector depending

on left or right side would point in front of or behind the NAO robot and thus the offsets would

require to be added or subtracted. The NAO leg vector would successfully negate the influence

that the NAO hip would have imposed and is vital for the calculations. As for the hip yaw

calculation, it required measuring the difference between a vector that was not a part of the leg and

in this case was the hip vector and measuring rotation angle difference.

3.2.6 – Discrete Simple Kalman Filter

As indicated previously, sensor noise in the detection of the foot location sometimes causes erratic

behavior. To address this a motion filter is applied to the corresponding joints. The Kalman filter

was selected here for its low computation cost and ease to implement. In Chapter 2, details of the

Kalman filter were introduced. Within this chapter practical application will be explicit described.

The system and sensor models of the Kalman filter represents the way that the system evolves over

time and how the sensor readings relate to the system state.

The A-Matrix is referred to as the “System Dynamics Matrix”. What this implies is that this matrix

indicates the change in the system state over a time step dt. dt could be setup dynamically to

account for lag or set as a constant value based on what the refresh rate of the sensor in question

is. In this application, it was decided to set it to current time and each time current time was updated

54 | P a g e

the difference would be calculated from the previous time. Thus, the dynamic option was chosen

to represent constant velocity motion for the joint and thus set to:

𝐴 = [
1 𝑑𝑡 0
0 1 𝑑𝑡
0 0 1

]

The C-Matrix alludes to as the “Output Matrix”. Is represents the relation between the actual sensor

value and the system state. In this case, the observation is the joint angle derived from the Kinect

sensor readings, resulting in the matrix below. The Q and R values which represent the associated

uncertainties will be described later.

𝐶 = [1 0 0]

The Q-Matrix is describes as the “Process Noise Covariance Matrix”. This matrix represents the

amount of “noise” the user believes the model has and thus characterizes the amount the system

deviates from the behavior indicated by the A matrix. This matrix will generally be a constant and

not be set dynamically nor would any calculation be applied to find an optimal Q value. A standard

initial recommend value would be used of .05 in this case.

𝑄 = [
. 05 . 05 0
. 05 . 05 0
0 0 0

]

The R matrix is cited as “Measurement Noise Covariance Matrix”. It characterizes the noise in the

sensor reading and since the senor reading in this case is a scalar, the R matrix here is a scalar

value. This value introduces the amount of error the user believes the sensor has. This value will

be constant and not be set to dynamically change at any time. Nor were there any calculations to

find an optimal R value. A standard initial recommendation value of 5 will be used here.

𝑅 = 5

55 | P a g e

The P matrix is the “Estimate Error Covariance”. This matrix represents the resulting uncertainty

in the filter estimate resulting from the integration of the sensor readings. Typically, the estimate

error covariance matrix would be a lot lower than the noise of the sensor. In this case, it would

also be expected that the system error covariance is lower than the sensor variance as indicated by

the chosen values for Q and R. The P matrix has to be initialized with constant values representing

the uncertainty in the initial guess and are then updated with the calculations as a part of the

Kalman process. The initial values used here are:

𝑃 = [
. 1 . 1 . 1
. 1 10000 10
. 1 10 100

]

The Kalman filter is initialized with the initial values using the matrices describe. Time is

initialized to 0 and our initial state is a 3-vector filled with ones. Then a Boolean check variable

would be set to true to imply that the initial states are set. A NaN check was implemented to not

break the matrix multiplication. The Kinect V2 will send NaN if a position was not tracked, and

this would occur frequently. If this case would happen it was instructed to use the previous state

value as an observation and not update the filter until a real number would be sent in.

Next the Kalman calculations would be implemented. Predicted state estimate would be applied.

This would give the predicted change in state:

𝑥′ = 𝐴 ∗ 𝑥

Predicted Error Covariance is updated:

𝑃 = 𝐴 ∗ 𝑃 ∗ 𝐴𝑇 + 𝑄

56 | P a g e

Kalman Gain computed:

𝐾 = 𝑃 ∗
𝐶𝑇

𝐶 ∗ 𝑃 ∗ 𝐶𝑇 + 𝑅

The final prediction is computed by integrating the Kinect-based observation:

𝑥′ = 𝑥′ + 𝐾(𝑥 − 𝐶 ∗ 𝑥′)

And the corresponding Process Error Estimate is calculated:

𝑃 = (𝐼 − 𝐾 ∗ 𝐶) ∗ 𝑃

The Kalman filter would be applied to each of the joints. As mentioned in the previous section,

this implementation of the Kalman filter noticeably cleared the foot twitch and other joint twitches

within the NAO model. However, it also reduces the ability of the imitation to track very fast

changes in movements caused by strong acceleration events due to the constant velocity system

model. In the future we will implement proper calculations of the Q and R values but for this

application the recommended values were satisfactory.

3.3 – Modeling Human Demonstration and Stability Using an Inverted Pendulum

A background was provided on the learning method selected. An optimized Gaussian Process

method was selected for many positive attributes. The method is used in sparse data environments,

leads to reduced model bias, incorporates a reinforcement learning facet to minimize the need for

system knowledge, and can estimate the hidden function at a rapid rate with relatively accurate

results. The open-source software provided by the creator Marc Peter Deisenroth made it a perfect

application to select as it is easy to adapt to the problem at hand.

57 | P a g e

The reason why the Gaussian Process thrives in sparse data environments is because of the nature

of the algorithm. It generates user defined synthetic functions to guess effectively mathematically

what the hidden function is. Learning is flexible and can change over time. These changes could

be the environment, friction from the motors, or any other unknown variable. It links theory to

practical applications.

In this section, the cost functions and the pseudo dynamic environment function insights will be

explained. Why certain values were chosen and why each cost function was chosen is also

explained. The main goal of this application is to learn to adapt to the dynamic constraints of the

robot platform and to closely imitate the demonstration while maintain a stable posture.

3.3.1 – Setup

As the simplified stability model models the mechanism as an inverted pendulum with the COM

at the tip and an angular stability region which represents the conditions under which the COM is

within the support polygon, two inverted pendulums would be set up, one representing the

demonstration and one the imitating agent. As we are here interested in control commands for

higher level position control, simplified equations of motion are applied to these pendulums where

the demonstrator pendulum is driven by a pre-coded sequence corresponding to a recorded

demonstration and the imitator pendulum follows a position controller, thus allowing direct

velocity control of the joint. The goal is to simulate the demonstration (blue) which will be the

human viewed by the Kinect V2 and the actual platform NAO robot (red). For the initial testing

stages this system was not directly integrated with the joint angle system and real demonstrations.

Rather, an oscillation function will be used to simulate a demonstration. The state of the Gaussian

process thus includes both the angles and angular velocities of the demonstration and of the

58 | P a g e

imitation with the objective of determining controls for the imitation pendulum to maintain

stability while following the demonstration.

Initial angle states are set as zero. Which is the straight up and measured in radians. And cost

functions inputs will be in radians. Figure 24 shows an example of the graphical representation of

the simulation of the demonstration and imitation pendulums.

Figure 24: Matlab representation of the two pendulums

3.3.2 – Loss Function

To learn the imitation strategy, a cost function has to be provided that represents both the closeness

between the demonstrator and the imitator state and the degree of risk in terms of stability to the

imitator. Thus, a requirement to make the simulation possible is a loss function to penalize not

following the displayed demonstration. Saturated loss was selected to penalized up to a maximum

of 1 loss based on the difference between the two angles.

𝑐(𝑥) = 1 − 𝑒
(−

1
2𝑎2 𝑑(𝑥,𝑥𝑡𝑎𝑟𝑔𝑒𝑡)

2
)

59 | P a g e

The target was set to zero meaning that the pendulum angle difference between the demonstration

and the current state should be zero if not a penalty will incur. The maximum loss of 1 is on purpose

because of the use of a second cost function representing stability violations and in particular to

ensure that this second function will dominate the first whenever stability would be critically

violated even if maintaining stability would require dramatic deviations in angles from the

demonstration. The whole reason to use two cost functions is to easily fine tune and understand

what is being adjusted.

The “a” variable is used to adjust how fast the exponential function initially increases.

Recommended value is the distance between current state and target state divided by 10.

𝑎 =
𝑑(𝑥, 𝑥𝑡𝑎𝑟𝑔𝑒𝑡)

10

The second cost function is a double hinge that provides 0 error if the system is still far from the

edges of the stability area and then increases towards infinity as it moves towards the critical

boundary where the system would fall.

𝑐(𝑥) = 𝑎(
2𝑏

2𝑒𝑟𝑓𝑏 + 𝑐 + 𝑏
)

The variables of importance are the “a” and “b”. The “b” would be where the slope of would

initially start at, thus representing the interval in which the system is securely stable. The “a” will

be the steepness of the slope, indicating how fast the risk of falling increases. This gives the ability

to encode our ZMP angles into our cost function. The slope is a linear increase of the cost and was

set to 3 to penalize quickly if the bounds were breached. The “b” value was set π/8 and -π/8.

60 | P a g e

Figure 25: Double hinge loss

3.3.3 – Pseudo Dynamics – Demonstration to be learned

The demonstration that was designed is an oscillating sine wave function that will occur penalties

if followed perfectly as its amplitude exceeds the limits of the stable region. This was by design to

learn an oscillation with a truncated amplitude that incurs fewer penalties by preserving stability

throughout.

The following displays the positions the demonstration pendulum will be oscillating at.

𝜃𝐷𝑒𝑚𝑜 = .5 ∗ sin (𝑡)

The velocity of the demonstration pendulum is thus,

𝜃𝐷𝑒𝑚𝑜 = 2.5 ∗ cos (𝑡 ∗ 5)̇

The difference in the position of the learning pendulum and the demonstration is,

𝜃𝑙𝑒𝑎𝑟𝑛 = 𝑓(𝑡) − 𝜃𝐷𝑒𝑚𝑜(𝑡 − 1)

And the velocity difference of the demonstration and the learning pendulum is,

�̇�𝐿𝑒𝑎𝑟𝑛 =
1

𝑑𝑡
(𝑓(𝑡) − �̇�𝐷𝑒𝑚𝑜(𝑡 − 1)

The f(t) is the policy applied which is effectively a position command. The Gaussian process will

be derived from initially from a set of random control trajectories and applied to learn a policy that

61 | P a g e

attempts to minimize the difference to the demonstration while staying within the stability region.

The loss hinge loss function will incur a penalty to follow this demonstration because the

oscillation will exceed the ZMP bounds that was setup. Thus, it is expected to see the pendulum

learn to oscillate with the approximate function that will effectively cut the tops of the sine wave

to avoid instability in the extremes but otherwise closely follow the sine wave.

The following shows the learning progress in terms of the predicted cost by the GP and the actual

cost during learning. The system starts initially with a random policy, generating a set of 10 largely

random executions to form an initial Gaussian process model. After this initial phase, in each

subsequent trial the GP is used to update the policy before a set of 10 additional trajectories are

generated with the resulting policy, and the GP is updated accordingly. Figure 26 shows the

performance after Trial #2. Trial #1 is disregarded because the initial policy implementation was

random. This figure shows the cost and cost predictions over time with the blue curve representing

the mean of the GP prediction, the blue intervals indicating the corresponding confidence intervals,

and the red curve showing the actual cost incurred when executing the policy learned in this trial.

This figure shows that initially, based on largely random trials, the GP predicts a relatively high

cost throughout the execution with very high confidence intervals. Also, it shows that this

corresponds to the initial policy which also produces large costs due to the fact that it has not yet

learned that following the demonstration will reduce cost. The initial drop, however, shows that

some learning has taken place where the system avoids staying at the expected cost of a pure

random policy.

62 | P a g e

Figure 26: PILCO Trial #2

After 33 to 35 additional trials, which corresponds to a total of about one minute of actual policy

execution time, the results in Figure 27, Figure 28 and Figure 29 show that the system over time was

able to successfully learn to reduce the cost, resulting in the anticipated behavior.

These figures show that the overall cost incurred as well as the cost predicted have dropped by

more than 2 orders of magnitude, indicating that the system has learned to follow the demonstration

and to avoid instability. Looking at the actual cost (red line), it can be seen that it initially spikes

before reducing close to 0 with largely periodic small spikes of around 0.04 in Trials #33 and #34

and even smaller very periodic spikes of 0.02 after Trial #35. While in Trials #33 and #34 these

later spikes are still somewhat asymmetric and of different magnitude, after trial #35 their periodic

character can be clearly seen.

63 | P a g e

Figure 27: PILCO Trial #33

Figure 28: PILCO Trial # 34

64 | P a g e

Figure 29: PILCO Trial # 35

The reason for this behavior is that as the demonstration starts with a speed of 2.5 while the imitator

starts at a speed of 0, the two pendulums have to initially diverge before the imitator can catch up

with the demonstration. Once that happens, the imitator successfully tracks the demonstration, as

shown by the cost going to 0, but has to incur a cost by stopping short every time the demonstration

leaves the imitator’s own stable region. Once the system has reached this point in learning, it can

within a very small number of trials optimize this deviation from the demonstration in the extremes

to maintain stability, leading to the periodic cost fluctuations seen in Trial #35 in which the policy

is close to converged.

As displayed for these PILCO trials, the cost is rapidly converging close to a zero mean with mean

deviations at points where perfect imitation would violate stability. This demonstrates the

approach’s progress in learning a policy to follow the presented demonstration while avoiding

becoming unstable. As indicated, the initial spike is the adjustment to the velocity of the initially

stationary position of the imitator to the velocity of the presented demonstration. These trials

display in simulation that an arbitrary demonstration can be learned. However, further research

65 | P a g e

needs to be conducted to determine whether this framework can learn a stationary policy that can

successfully imitate any given demonstration without the need for additional trials for new

demonstrations.

66 | P a g e

CHAPTER 4 - CONCLUSION

This thesis explored a method of translating human motions observed by a 3D camera to robot

motion and provides supporting simulated data that the method explored is effective. It used

existing technologies such as the Microsoft Kinect V2 to greatly assist in solving the

correspondence problem for the observation of human behavior. To obtain the observations, it

applied existing acquisition methods to gather data from the Kinect V2. Using this skeleton data,

it then developed a framework to translate the observed skeleton to the NAO kinematics using

trigonometric equations. The Gram-Schmidt process greatly assisted in the ease of the calculations.

To address sensor noise resulting in joint “twitching”, a Kalman Filter was integrated and through

this implementation significant improvements in the reliability and accuracy of the acquired data

was achieved. To further adapt the kinematically translated motions to address the dynamic and

stability differences, an approach that simplifies the stability problem for the NAO robot to an

inverted pendulum control problem and then applies a modified version of PILCO, a model-based

policy search method based on cost optimization, that is adjusted to learn imitation tasks with

stability constraints is proposed and applied in simulation. The thesis explored multiple learning

methods and chose PILCO as an effective tool to learn a stable arbitrary demonstration due to its

efficient use of data. Experiments with simple demonstration tasks show the ability of this system

to learn control strategies that trade off imitation accuracy against stability considerations in an

effective and efficient manner without the need for excessive amounts of system operation.

67 | P a g e

While this thesis introduces a set of viable techniques and demonstrates their potential, it is only

the beginning of the research. In future work, we plan full integration of the two paradigms, PILCO

and body imitation, into a complete imitation system for humanoid robots. For this, we plan to

utilize Gazebo [20] physics simulation with the final goal of moving the learned imitation policy

onto a real NAP robot. Gazebo simulates a real-life environment which will allow testing out the

complete framework for adaptive human-robot motion transfer for complete body imitation.

68 | P a g e

REFERENCES

[1] Alissandrakis, C.L. Nehaniv, K. Dautenhahn, Imitation with ALICE: learning to imitate

corresponding actions across dissimilar embodiments. IEEE Trans. Syst. Man Cybern. Syst.Hum.

32(4), 482–496 (2002)

[2] Marc Peter Deisenroth, Andrew McHutchon, Joe Hall, and Carl Edward Rasmussen.

PILCO Code Documentation v0.9, July 4, 2013

[3] Marc P. Deisenroth and Carl E. Rasmussen. PILCO: A Model-Based and Data-Efficient

Approach to Policy Search. In Proceedings of the International Conference on Machine Learning,

pages 465 - 472, New York, NY, USA, June 2011. ACM.

[4] Muecke K, Hong D (2008) Investigation of an analytical motion filter for humanoid robots.

In: Proceedings of the fifth international conference on ubiquitous robots and ambient intelligence

[5] David Wettergreen and Chuck Thorpe (1992) Gait Generation for Legged Robots. In

Proceedings of the IEEE International Conference on Intelligent Robots and Systems, July 1992

[6] Kofinas, N., Orfanoudakis, E. & Lagoudakis, M.G. Complete Analytical Forward and

Inverse Kinematics for the NAO Humanoid Robot. J Intell Robot Syst 77, 251–264 (2015).

https://doi.org/10.1007/s10846-013-0015-4

[7] Muecke, Karl, and Dennis Hong. Constrained Analytical Trajectory Filter for stabilizing

humanoid robot motions. Intelligent Service Robotics 4, no. 3: 203-218. 2011

[8] E. L. Post (1946). "A variant of a recursively unsolvable problem" (PDF). Bull. Amer.

Math. Soc. 52 (4): 264–269. doi:10.1090/s0002-9904-1946-08555-9.

69 | P a g e

[9] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo

correspondence algorithms. International Journal of Computer Vision, 47(1/2/3):7-42, April-June

2002.

[10] Y. Kondo, S. Yamamoto and Y. Takahashi, "Real-Time Posture Imitation of Biped

Humanoid Robot Based on Particle Filter with Simple Joint Control for Standing Stabilization,"

2016 Joint 8th International Conference on Soft Computing and Intelligent Systems (SCIS) and

17th International Symposium on Advanced Intelligent Systems (ISIS), 2016, pp. 130-135, doi:

10.1109/SCIS-ISIS.2016.0039.

[11] Muscolo, Giovanni & Caldwell, Darwin & Cannella, Ferdinando. (2017). Calculation of

the Center of Mass Position of Each Link of Multibody Biped Robots. Applied Sciences. 7.

10.3390/app7070724.

[12] Graf C., Röfer T. (2012) A Center of Mass Observing 3D-LIPM Gait for the RoboCup

Standard Platform League Humanoid. In: Röfer T., Mayer N.M., Savage J., Saranlı U. (eds)

RoboCup 2011: Robot Soccer World Cup XV. RoboCup 2011. Lecture Notes in Computer

Science, vol 7416. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32060-6_9

[13] K. Harada et al., "Toward human-like walking pattern generator," 2009 IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2009, pp. 1071-1077, doi:

10.1109/IROS.2009.5354557.

[14] Andrew Witkin and Michael Kass. 1988. Spacetime constraints. In Proceedings of the 15th

annual conference on Computer graphics and interactive techniques (SIGGRAPH '88).

Association for Computing Machinery, New York, NY, USA, 159–168.

DOI:https://doi.org/10.1145/54852.378507

70 | P a g e

[15] Cheney, Ward; Kincaid, David (2009). Linear Algebra: Theory and Applications. Sudbury,

Ma: Jones and Bartlett. pp. 544, 558. ISBN 978-0-7637-5020-6.

[16] Kalman, R. E. 1960. “A New Approach to Linear Filtering and Prediction Problems,”

Transaction of the ASME—Journal of Basic Engineering, pp. 35-45 (March 1960).

[17] Citation: Geerse DJ, Coolen BH, Roerdink M (2015) Kinematic Validation of a Multi-

Kinect v2 Instrumented 10-Meter Walkway for Quantitative Gait Assessments. PLoS ONE 10(10):

e0139913. https://doi.org/10.1371/journal.pone.0139913

[18] Stanford Artificial Intelligence Laboratory et al. (2018). Robotic Operating System.

Retrieved from https://www.ros.org

[19] Nguyen, Chuong & Izadi, Shahram & Lovell, David. (2012). Modeling Kinect Sensor

Noise for Improved 3D Reconstruction and Tracking. 10.1109/3DIMPVT.2012.84.

[20] N. Koenig and A. Howard, "Design and use paradigms for Gazebo, an open-source multi-

robot simulator," 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS) (IEEE Cat. No.04CH37566), 2004, pp. 2149-2154 vol.3, doi:

10.1109/IROS.2004.1389727.

