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Abstract 

 
NONLINEAR MODE COUPLING COEFFICENTS IN HOT JUPITER SYSTEMS WITH 

NON-SOLAR TYPE HOST STARS 

 

Niyousha Davachi, MS 

 

The University of Texas at Arlington, 2021 
 

Supervising Professor: Nevin N. Weinberg  

 

Short period planets tidally excite internal gravity modes within their host star.  

These excited modes, known collectively as the dynamical tide, dissipate orbital energy 

and cause the planet’s orbit to decay.  In hot Jupiter systems, resonantly excited g-

modes are driven to such large amplitudes in the stellar core that they nonlinearly excite 

a sea of secondary modes.  These secondary modes can greatly enhance the efficiency 

of tidal dissipation compared to linear theory predictions and thus significantly increase 

the rate of orbital decay.   

In this thesis we calculate the three-mode coupling coefficients between the 

excited g-modes of hot Jupiter host stars.  These coefficients determine the strength of 

the nonlinear mode interactions and are thus a crucial quantity needed to determine the 

rate of nonlinear tidal dissipation.  Previous studies only calculated the coupling 

coefficient in solar-type host stars even though hot Jupiters are observed to orbit a wide 

range of stellar types.  We calculate the coupling coefficients for low- and high-mass 

main sequence stars that correspond to the full range of observed hot Jupiter hosts (from 

0.6 𝑀⊙ to 1.6 𝑀⊙).  We find that the coupling coefficient is sensitive to the mass and age 
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of the host star, suggesting that some hot Jupiter systems are much more prone to orbital 

decay than others.  
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Introduction 

The first exoplanet orbiting a sun-like star, 51 Peg b, was detected nearly 30 

years ago (Mayor & Queloz, 1995) and the astronomers who discovered it were awarded 

the Nobel prize in physics in 2019.  51 Peg b has a mass approximately that of Jupiter 

but an orbital period of only 4 days.  Since this first detection, there have been 100s of 

such hot Jupiters detected (see Figure 1-1 for an artistic rendering of a hot Jupiter; they 

are hot because they orbit so close to their host star, with temperatures as high as 2300 

K).  Initially, most hot Jupiters were detected by the radial velocity method, i.e., by 

measuring the Doppler shift of spectral lines from the host star due to its reflex motion 

caused by the orbiting planet.  However, more recently they have been mostly detected 

via the transit method (Catalog, 2021).  An exoplanet transit happens when a planet 

crosses its host star along our line-of-sight, causing a periodic dimming of the star (see 

Figure 1-2).  The depth of the detection signal is proportional to the ratio of the cross-

sectional area of the planet to that of the star’s.  Larger planets in closer orbits thus have 

a higher likelihood of being detected by the transit method.  
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Figure 1-1 Artist’s View of a Hot Jupiter System (NASA, 2015) 

 

 
Figure 1-2 Detecting a Planet via Transit Method (Diagrams, 2015) 

 

It is still not understood how hot Jupiters form.  They are unlikely to form near 

their current orbits since the conditions in the protoplanetary disk so close to the protostar 

are too extreme to form a gas giant.  Most theories therefore favor a formation at larger 

radii (> 1 Astronomical Unit) and a subsequent dynamical process that brings the planet 

into the short period orbits we see them in today (Dawson & Johnson, 2018).  Tides are 

believed to play a crucial role in the formation process and the subsequent evolution of 

the orbit.  In order to understand the formation, evolution, and ultimate fate of hot 

Jupiters, we therefore need to understand their tidal interaction with their host stars.   
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Tidal Dissipation in Hot Jupiter Systems 

Stars and close-in hot Jupiters can be considered extended fluid bodies. They 

are tidally deformed into an ellipsoidal shape due to the variation of the gravitational force 

across the extent of their bodies (rotation causes them to be oblate too).  Dissipation of 

these large-scale, time-dependent tidal distortions continuously changes the system’s 

orbital and rotational parameters.  In particular, tidal dissipation causes the planet’s orbit 

to gradually shrink (i.e., decay) and can ultimately lead to the engulfment of the planet by 

its host star (Ogilvie, 2014). 

In typical hot Jupiter systems, the orbital frequency of the planet Ω is much larger 

than the spin frequency of the star 𝜔.  As we can see in Figure 1-3, in such a situation 

the tidal bulge in the star lags behind the orbiting planet (this is opposite the Earth-Moon 

system since there the Earth spins faster than the Moon orbits).  As a result, friction is 

generated between the moving tides and the star (especially in the convective layers). 

The dissipative nature of the tidal friction causes a loss of orbital energy.  Angular 

momentum is still conserved, though it may be exchanged between the bodies. For a 

star-planet system with Ω ≫ 𝜔, angular momentum is transferred from the orbit to the 

stellar spin.  The dissipation of orbital energy will cause the planet’s orbit to shrink over 

time, and the transfer of angular momentum will spin up the star (Patra, 2018).  
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Figure 1-3 Star Tidal Bulge Lags Behind When Ω ≫ 𝜔 (Patra, 2018) 

 

The large-scale, ellipsoidal distortion of the star (and planet) described above is 

known as the equilibrium tide.  Another type of tide that is important in hot Jupiter 

systems, and is the focus of this thesis, is the dynamical tide.  The dynamical tide 

corresponds to the excitation of internal modes of oscillations (waves) within the star due 

to the time-dependent tidal perturbation it feels from the planet.  Like the equilibrium tide, 

these waves transfer energy and angular momentum from the orbit to the star.  They too 

can therefore cause the planet’s orbit to evolve and decay over time.   

 

Nonlinear Tidal Dissipation  

The rate of orbital decay due to the dynamical tide depends on how efficiently the 

excited modes dissipate their energy.  Previous work has shown that resonantly excited 

modes can reach such large amplitude in the core of the star that they excite secondary 

modes via nonlinear mode interactions (Barker & Ogilvie, 2010) (Essick & Weinberg, 
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2016).   There can be tens of thousands of such secondary modes excited, many of 

which have very short wavelengths.  The transfer of energy from the orbit to the primary 

mode and subsequently to the secondary modes can greatly enhance the rate of energy 

dissipation compared to linear theory estimates (which do not account for the excitation 

of secondary modes).  Nonlinear mode interactions can therefore greatly increase the 

rate of orbital decay compared to linear theory predictions (Essick & Weinberg, 2016).   

As we describe in Chapter 2, how efficiently the primary mode excites secondary 

modes depends on the strength of their nonlinear coupling.  This strength is quantified by 

a parameter known as the coupling coefficient, which to date has only been calculated for 

hot Jupiters with sun-like host stars (Weinberg, Arras, Quataert, & Burkart, 2012).  

However, as we show in the next section, many observed hot Jupiters orbit non-solar 

type stars.  In this thesis, we calculate the coupling coefficients for a wide range of stellar 

types in order to provide a crucial quantity needed for future studies of nonlinear tidal 

dissipation in hot Jupiter systems. 

 

Mass distribution of Hot Jupiter Host Stars 

In Figure 1-4, we show the observed mass distribution of stars that host hot 

Jupiters (from exoplanets.org).  Although the majority of the observed systems are close 

to one solar mass, a significant fraction are below and above one solar mass.  In this 

thesis, we calculate coupling coefficients across this full range of stellar masses and their 

main-sequence evolutionary states.  As we will show, the magnitude of the coupling 

coefficient is sensitive to the internal structure of the star and thus to its mass and age.  
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Figure 1-4 Hot Jupiter Host Star Mass Distribution 
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Methods 

 
In this chapter, we describe the methods we use in our calculations of the 

coupling coefficients.  First, we describe how we construct the background stellar models 

using the stellar evolution code MESA (Modules for Experiments in Stellar Astrophysics).  

We then describe how we solve for the linear eigenmodes of these models using the 

stellar oscillation code GYRE.  Finally, we describe the key equations that determine the 

weakly nonlinear interactions between the stellar oscillation modes, including the integral 

expression for the coupling coefficient that we need to solve numerically.  

 

Stellar Models 

MESA is an open-source code used for calculating the evolution of stars in 

spherical symmetry (Paxton, et al., 2011) (Paxton, et al., 2019).  To match the observed 

distribution of hot Jupiter host stars shown in Figure 1-4 we used MESA to construct stars 

with masses of {0.6, 0.8, 1.0, 1.2, 1.4, 1.6} 𝑀⊙ at different ages on the main sequence, 

e.g., {1.0, 3.0, 5.0, 7.0, 9.0} Gyr in the case of low mass stars.   In total, we constructed 

30 distinct stellar models.  In Figure 2-1 we show the evolution of the stellar luminosity, 

radius, and effective temperature as a function of age for the 0.6 𝑀⊙and 1.0 𝑀⊙	MESA 

models. We present a MESA inlist sample in Appendix.  
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Figure 2-1 Stellar luminosity, radius, and effective temperature (in solar units) as a 

function of age for MESA models with mass 0.6 𝑀⊙ (left panel) and 1.0 𝑀⊙ (right panel). 

 
 

 

Stellar Eigenfunctions 

GYRE (Townsend & Teitler, 2013) is an open-source code that solves for the 

linear eigenmodes of spherically symmetric stellar models, e.g., those constructed using 

MESA.  When a given stellar model is inputted into GYRE, it calculates the 

eigenfrequencies and eigenfunctions for the normal oscillation modes of that specific 

model.  We passed our MESA model files to GYRE in order to find oscillation mode 

solutions. For our desired set of star masses and ages, we determined which dynamical 

tide modes are most likely to couple well and set the GYRE inlist to find those modes and 

output their structure to a file.  We then use those modes to calculate the coupling 

coefficients as described below.  

As an example, Figure 2-2 shows the radial displacement of a short wavelength 

g-mode (internal gravity wave) as a function of radius for a solar-type star (1.0	𝑀⊙).  It is 
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a short wavelength quadrupolar mode (angular degree l=2) with oscillation period of 5 

days.  A planet with orbital period twice this value would resonantly excite this mode.  We 

see that the mode steepens as it approaches the center of the star before turning around 

and decreasing very close to the center.  This steepening is due to geometric focusing 

and we will see that where the displacement is largest contributes most to the coupling 

coefficient. 

 

 

Figure 2-2 Radial displacement of an l=2 eigenfunction of a 1𝑀⨀ sun-like star. 

 
For comparison, Figure 2-3 shows the radial displacement of an l=2 mode in a 

more massive star, namely, a 1.6	𝑀⊙ star. The image is taken from the star at the age of 

1.5 Gyr.  We see that the structure of the mode is very different from the mode in the 

solar-type star.  In particular, rather than increasing in amplitude near the core, the 

displacement decreases exponentially. This is because the core of this more massive 

star is convective.  The restoring force of g-modes is buoyancy and since convection 
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zones are neutrally buoyant, g-modes are evanescent in these regions, i.e., they do not 

propagate (Aerts, Christensen-Dalsgaard, & Kurtz, 2010).  This is why the exponential 

decline in displacement starts near a radius of 1e10 cm, which is the top of the 

convective core.   As we will see, this difference between the low and high mass stellar 

structures and thus eigenfunctions has important implications for the magnitude of the 

nonlinear coupling coefficients. 

                
 

Figure 2-3 Similar to Figure 2-2 except for a 1.6	𝑀⨀ star with age 1.5 Gyr. 

 

Another way to understand why the mode structures are so different between the 

low mass and high mass stars is to look at the profile of the Brunt-Vaisala frequency 𝑁(𝑟) 

(also known as the Brunt frequency and the buoyancy frequency).  In regions where 𝑁	 >

0 the fluid is buoyant and g-modes propagate. Figure 2-4 shows 𝑁"	for a solar mass star 

at different ages.  We see that it is positive for about the inner 70% of the star and 

negative for about the outer 30% (we plot the absolute value in order to display it on the 
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log plot).  These correspond, respectively to the radiative and convective regions of the 

star.  Comparing with Figure 2-2, we see that the mode oscillates in the region where 

𝑁 > 0 and that the Brunt frequency sets the inner and outer turning points of the mode. 

In Figure 2-5 we show the Brunt frequency for a high mass star.  We see that 

now N<0 in the core of the star, where it is convective.  Comparing with Figure 2-3, the 

displacement decreases exponentially precisely where N<0 (note the log vs linear scale 

in the x-axis of the two plots).   

 
 

Figure 2-4 Brunt frequency squared for the solar-mass model at different ages 
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Figure 2-5 Higher Mass Star Brunt Frequency 

 
 

Non-Linear Amplitude Equations 

As described in the introduction, the tide due to a hot Jupiter excites g-modes 

within the host star.  These modes can reach such large amplitude near the center of the 

star that the linear approximation is not valid (just like Hooke’s law for a spring is not valid 

if the mass attached to the spring is pulled too far) and the modes can nonlinearly excite 

secondary modes. 

We use the formalism developed in WAQB (Weinberg, Arras, Quataert, & 

Burkart, 2012) for studying the tides in close binary systems in which weakly nonlinear 

wave interactions are important. The reader should refer to that paper for more in-depth 

discussions.  

The Lagrangian displacement 𝝃(𝒓, 𝑡) of the stellar fluid at position r and time t 

relative to the unperturbed background gives us the following equation of motion  
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𝜌�̈� = 𝒇"[𝝃] + 𝒇#[𝝃, 𝝃] + 𝜌𝒂$%&', 

Equation 2-1 

where 𝜌 is the background density, 𝑓# and 𝑓" are the linear and leading-order nonlinear 

restoring forces, 

𝒂$%&' =	−𝛁𝑈 − (𝝃. 𝛁)𝛁𝑈	 

Equation 2-2 

is the tidal acceleration, and 𝑈 is the tidal potential. We only consider the dominant 𝑙 = 2 

tidal harmonic. The displacement 𝝃 is expanded in terms of the eigenfunctions of the star 

𝝃𝜶 as follows 

8 𝝃(𝒓, 𝑡)𝜕$𝝃(𝒓, 𝑡)
< ==𝑞((𝑡)

(

	8 𝝃((𝒓)
𝑖𝜔(𝝃((𝒓)

<	 

Equation 2-3  

where 𝛼 labels a linear eigenmode with eigenfunction 𝜉%, eigenfrequency 𝜔%, and 

amplitude 𝑞%(𝑡).  Since the eigenfunctions form a complete basis, any displacement 𝝃  

can be expanded in this way (similar to the sine/cosine expansion of a Fourier series).  

This approach to solving a partial differential equation (i.e., Equation 2-1) is sometimes 

referred to as the method of weighted residuals.  There is a freedom in how the 

eigenmodes are normalized.  We normalize them such that 

𝐸) ≡	
𝐺𝑀#

𝑅 = 2𝜔(#E𝑑* 𝑥𝜌𝝃(∗ . 𝝃( 

Equation 2-4 

With this normalization, a mode with dimensionless amplitude |𝑞%| = 1 has energy 𝐸& 

(which is approximately the binding energy of the star – thus, ordinarily |𝑞%| ≪ 	1). . We 
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then plug Equation 2-4 into Equation 2-1 and add a linear damping term. Using the 

orthogonality of eigenmodes leads us to the following equation 

𝑞(̇ + (𝑖𝜔( +	𝛾()𝑞( = 𝑖𝜔(	[𝑈((𝑡) +	=𝑈(-∗

-

(𝑡)𝑞-∗ +=𝜅(-.∗

-.

𝑞-∗𝑞.∗ 		] 

Equation 2-5 Amplitude Equation 

where the coefficients 

𝑈((𝑡) = 	−
1
𝐸)
	E𝑑* 𝑥𝜌𝝃(∗ 	. 𝛁𝑈 

Equation 2-6 

𝑈(-(𝑡) = 	−
1
𝐸)
	E 𝑑* 𝑥𝜌𝝃( . (𝝃- . 𝛁)𝛁𝑈 

 
Equation 2-7 

𝜅(-. =	
1
𝐸)
	E𝑑* 𝑥𝜉( . 𝑓#[𝜉- , 𝜉.] 

 
Equation 2-8 

 
The coefficient 𝛾( is the linear damping rate of the mode, 𝑈( and 𝑈(- are linear 

and nonlinear tidal force, and 𝜅(-. represents the three-mode coupling coefficient.  As 

we can see, 𝜅(-. is an important quantity needed to determine 𝑞((𝑡) and we are 

interested in calculating it for different stellar models.  The results of our calculations are 

presented in Chapter 3.   

Note that Equation 2-1 is the amplitude equation for only mode 𝛼 and that the 

nonlinear terms on the right-hand side involve sums over other modes 𝛽, 𝛾 etc.  Each of 

these other modes also satisfy an amplitude equation analogous to Equation 2-1.  All the 

modes are therefore coupled to each other through a set of nonlinear ordinary differential 
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equations.  The solution of these coupled equations determines each modes time-

dependent amplitude 𝑞((𝑡) and thus the energy dissipation 𝛾(|𝑞(|# due to each mode. 

By summing over all the excited modes, the total rate of tidal dissipation can be 

determined. 

 

Numerically Useful Form for Non-Linear Coupling Coefficient 

In this section we provide details on how we calculate the coupling coefficients 

𝜅(-. .  Due to the oscillatory nature of the modes, the integral needs to be done with 

great care to avoid numerical error. WAQB derive a form for the integral that is 

numerically useful and minimizes sources of numerical error.   The expression derived 

there and which we use in order to numerically integrate 𝜅(-. (here written as 𝜅/01)	for 

the different MESA models, is as follows.  
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𝜅/01 =	
1
2𝐸)

	E 𝑑𝑟	 8𝑇	𝑟#𝑝 SΓ"(Γ" + 1) +
𝜕Γ"
𝜕 ln 𝜌W 𝛁. 𝒂𝛁. 𝒃𝛁. 𝒄

+ 𝑇𝑟𝜌Γ"	(𝛁. 𝒂𝛁. 𝒄{𝑏2Λ0# − 4𝑏3} + 𝛁. 𝒂𝛁. 𝒃{𝑐2Λ1# − 4𝑐3}

+ 	𝛁. 𝒃𝛁. 𝒄{𝑎2Λ/# − 4𝑎3}) + 𝑇
𝑑𝜌
𝑑 ln 𝑟 a4𝑔 + 𝑟

𝑑𝑔
𝑑𝑟c 𝑎3𝑏3	𝑐3

+ 𝑇𝜌𝑟 a4𝑔 + 𝑟
𝑑𝑔
𝑑𝑟c

{𝛁. 𝒂𝑏3𝑐3 + 𝛁. 𝒃𝑐3𝑎3 + 𝛁. 𝒄𝑎3𝑏3}

− 𝜌𝑟𝑎2𝑏2𝑐2{𝜔/#𝐺/ + 𝜔0#𝐺0 + 𝜔1#𝐺1}

− 𝜌𝑟𝑎3𝑏2𝑐2{(𝜔/# − 3𝜔0# − 3𝜔1#)𝐹/ − 2(𝜔0#𝐹0 + 𝜔1#𝐹1)}

− 𝜌𝑟𝑏3𝑐2𝑎2{(𝜔0# − 3𝜔1# − 3𝜔/#)𝐹0 − 2(𝜔1#𝐹1 + 𝜔/#𝐹/)}

− 𝜌𝑟𝑐3𝑎2𝑏2{(𝜔1# − 3𝜔/# − 3𝜔0#)𝐹1 − 2(𝜔/#𝐹/ + 𝜔0#𝐹0)}

+ 𝜌𝑟𝑎2𝑏3𝑐3{𝜔0#𝐹0 + 𝜔1#𝐹1 − 6𝜔/#𝑇}

+ 𝜌𝑟𝑏2𝑐3𝑎3{𝜔1#𝐹1 + 𝜔/#𝐹/ − 6𝜔0#𝑇}

+ 𝜌𝑟𝑐2𝑎3𝑏3{𝜔/#𝐹/ + 𝜔0#𝐹0 − 6𝜔1#𝑇}

+ 𝜌 S
𝑑 ln 𝜌
𝑑 ln 𝑟 𝑎3𝑏3 + 𝑟

(𝑎3𝛁. 𝒃 + 𝑏3𝛁. 𝒂)W a𝑟
𝑑𝛿𝜙1
𝑑𝑟 + 2𝛿𝜙1c𝑇

+ 𝜌 S
𝑑 ln 𝜌
𝑑 ln 𝑟 𝑎3𝑐3 + 𝑟

(𝑎3𝛁. 𝐜 + 𝑐3𝛁. 𝒂)W a𝑟
𝑑𝛿𝜙0
𝑑𝑟 + 2𝛿𝜙0c 𝑇

+ 𝜌 S
𝑑 ln 𝜌
𝑑 ln 𝑟 𝑏3𝑐3 + 𝑟

(𝑏3𝛁. 𝒄 + 𝑐3𝛁. 𝒃)W a𝑟
𝑑𝛿𝜙/
𝑑𝑟 + 2𝛿𝜙/c𝑇< 

 

Equation 2-9  
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Here 𝑝 is the background pressure 𝜌 is the background density, 𝑔 is the 

gravitational acceleration, 𝜔/	is the eigenfrequency of mode a,  𝑎3 	and 𝑎2 are the radial 

and horizontal Lagrangian displacements, and 𝜙/	is the Eulerian perturbation to the 

gravitational potential (and similarly for modes b and c). The term 𝑇 is an angular integral 

over triple products of the spherical harmonics 𝑌/. It can be reduced to an expression 

involving the Wigner 3 − 𝑗 symbols 

𝑇	 ≡ 	E𝑑Ω	𝑌/𝑌0 𝑌1 = 

k
(2𝑙/ + 1)(2𝑙0 + 1)(2𝑙1 + 1)

4𝜋 n
"/#

	a 𝑙/ 𝑙0 𝑙1
𝑚/ 𝑚0 𝑚1

c	p𝑙/ 𝑙0 𝑙1
0 0 0r 

Equation 2-10 

where the 𝑙/ etc. are the angular degree of the modes and the last two terms are 

the Wigner 3 − 𝑗 symbols (not matrices) which we calculate using a publicly available 

python function. The 𝐹 and 𝐺 parameters in  

Equation 2-9 can be written in terms of 𝑇 as 

𝐹/ ≡	
𝑇
2	
(Λ0# + Λ1# − Λ/# ) 

Equation 2-11 

𝐺/ ≡
𝑇
4	
[Λ/5 − (Λ0# − Λ1#)#] 

Equation 2-12 

where Λ/# =	 𝑙/(𝑙/ + 1).   The modes only couple if they satisfy the angular selection 

rules |𝑙/ − 𝑙0| ≤ 𝑙/ ≤ 𝑙0 + 𝑙1 with 𝑙/ + 𝑙0 + 𝑙1 even and 𝑚/ +𝑚0 +𝑚1 = 0, 
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where 𝑚 is the azimuthal order of the mode.  These selection rules ensure angular 

momentum conservation of the mode interactions. 
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Results 

In this chapter, we present our calculations of the nonlinear coupling coefficients.  

We first present our results for the case of 1.0	𝑀⊙ stars at different ages.  We describe 

the steps of that calculation in detail.  We then show our results for the case of both lower 

mass and higher mass main sequence stars. 

 

Solar Mass Stars 

Kappa Results 

We use MESA to construct 1.0	𝑀⊙ stellar models at different ages; specifically, 

at {1,3,5,7,9} Gyr one.  We then feed each MESA model to the oscillation code Gyre to 

obtain the g-modes needed for the coupling coefficient (i.e., kappa) calculation.   

In more detail, we start by extracting each of the variables needed for our kappa 

calculation shown in  

Equation 2-9.  Our code reads through MESA and Gyre files and loads all the 

needed variables. We convert some of the variables of Gyre to our choice of units. We 

then use the python interpolate package to interpolate all the variables across radius 

(using cubic spline).  This ensures we have sufficient resolution to compute the kappa 

integral of  

Equation 2-9, which as we will show oscillates rapidly in radius. After all the 

required variables are loaded into our code, we use the python integration package to 

numerically compute kappa.  
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To do the integration, we need to select three g-modes. One mode is the parent and the 

other two are the daughter modes it excites.  Since the tide is quadrupolar (𝑙 = 2) it most 

strongly excites 𝑙 = 2 parent modes.  We therefore have Gyre return 𝑙 = 2 g-modes at 

the specific periods detailed below.  By the angular selection rules, such a parent can 

couple to 𝑙 = 2 daughter modes.  We chose daughters with frequency near half the 

parent frequency (twice its period) since such triplets are most likely to be unstable to 

three-mode coupling.  We took all three modes to have 𝑚 = 0.  Different values of 𝑚 

would only slightly change the results and moreover their kappa can be determined from 

our results by scaling to different values of the angular integral 𝑇.  Figure 3-1 shows the 

kappa integrand  
&7
&3
	 of  

Equation 2-9 of a sun-like star (1.0	𝑀⊙ and age of 5 Gyr). For this triplet of g-

modes, the parent has a period very close to five days, and the daughters have periods 

very close to ten days (slight differences in their periods yield similar results).  We see 

that the integrand is highly oscillatory and that it peaks near the center of the star.  It 

peaks there because that is where the mode amplitudes peak (see Figure 2-2) and 

therefore that is where the modes are most nonlinear and where their nonlinear coupling 

is strongest. 
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Figure 3-1 Kappa integrand 
&7
&3

 ( 

Equation 2-9) as a function of fractional radius for a sun-like star 

 

For the case of a sun-like star, we used Gyre to find 𝑙 = 2 g-mode parents with 

periods of 1, 2, 3, 4, 5 days and then find the corresponding 𝑙 = 2 g-mode daughters 

(those with periods close to twice the parent’s).  Such parents are resonant with the tidal 

driving from a planet at orbital period 2, 4, 6, 8, 10 days, respectively.  The result of 

integrating  

Equation 2-9 for each if these triplets is shown in Figure 3-2.   We see that kappa 

increases significantly with increasing parent mode period.  This is because at longer 

periods, the parent penetrates closer to the center of the star and its peak amplitude is 

therefore larger. 
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Figure 3-2 Kappa for a sun-like star as a function of parent mode period 

 
Power-law fit for kappa 

In Figure 3-3 we show the same result on a log-log plot (blue line).  We see that 

kappa very nearly follows a power-law with period, increasing as period-squared.  Our 

result is in good agreements with the previous results for a sun-like star (Weinberg, 

Arras, Quataert, & Burkart, 2012): 

𝜅(-. 	≃ 2	 × 10* a
𝑇
0.2c a

𝑃(
1	𝑑𝑎𝑦c

#

 

Equation 3-1 

 
where 𝑃( is the period of the parent mode and 𝑇	 ≈ 0.1 − 1 is the angular integral 

whose exact value depends on each mode’s 𝑙 and 𝑚.   
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The other lines in Figure 3-3 show our kappa calculation for 1.0𝑀⊙ stars of 

different ages.  We see that to a very good approximation, kappa increases as 𝑃# in all 

these stellar models as well.1  The only difference is the overall magnitude of kappa. We 

call this overall magnitude scale 𝜅) and note that in the case of a sun-like star 𝜅) =

2 × 10* (see Equation 3-1).  From the plot, we see that as the star evolves, 𝜅) 

increases.  This is because as the star evolves, the core contracts slightly and the 

buoyancy frequency increases (Figure 2-4).  As a result, a parent mode of a given period 

penetrates closer to the center of the star and its peak amplitude, and hence degree of 

nonlinearity, increases.   

In Table 3-1 we give the numerical value of 𝜅) found in our fits for each of the 

solar mass models shown in Figure 3-3.  We display these results on a plot of stellar 

mass versus stellar age in Figure 3-4.  By plotting it this way, we can compare how 𝜅) 

varies with not only the age of the star but also with its mass.  We will consider the low 

mass stars shown in Figure 3-4 in the next section.  First, we discuss how we determine 

the numerical accuracy of our kappa calculations.  

 
1 There is a slight deviation from this trend for the 9 Gyr model at 5 days.  However, this is a 
numerical artifact due to difficulties integrating modes with extremely short wavelengths (with 
over 1000 radial nodes through the star).  We discuss numerical errors later in the section. 
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Figure 3-3 Power-law fit (lines) to numerically computed kappa (points) for 1.0𝑀⊙ stars 

of different ages. 

 

Age Mass (𝑀⊙) Numerical 𝜅& Theoretical 𝜅& 
9 G 1 6800 NA 

7 G 1 7500 NA 

5 G 1 2400 2000 

3 G 1 1200 NA 

1 G 1 500 NA 

 

Table 3-1 Solar Mass 𝜅) Values 
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Figure 3-4 The value of 𝜅) as a function of stellar mass and age for stars at and below a 

solar mass. 

 
Error Analysis 

In order to carry out the nonlinear coupling coefficient integration, we used a 

python package called 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒. 𝑞𝑢𝑎𝑑 (SciPy, n.d.).  This package returns the 

integration result and an estimate of the numerical error. In addition, it gives us the option 

to pick the level of integral limit, which is a variable that gives the integration more 

accuracy by cutting it into more integration areas. 

  Figure 3-5 shows kappa (points) and its error (error bars) as a function of the 

python integration limit parameter for the case of a sun-like star.  We see that the kappa 

values are very consistent regardless of the limit we have chosen for the integration as 

long as we set it to be greater than about 50.  This implies that we are obtaining 
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numerically converged results.  We picked a limit value around 120 for different cases as 

that is a number that consistently generated the smallest error and the most stable 

integration result as we will see in future plots within chapter 3.  

Figure 3-6 shows the same error analysis for a solar mass star at the age of 9 

Gyr.  The error is noticeably more erratic, suggesting that the spurious point at 9 Gyr 

shown in Figure 3-3 is affected by numerical error (see Footnote 1). 

 
 

Figure 3-5 Error analysis for a sun-like star. The top panel shows just kappa as a function 

of the integral limit parameter in python’s integrate function while the bottom panel shows 

kappa with error bars. 
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Figure 3-6 Similar to Figure 3-5 but at an age of 9 Gyrs 

 

Lower Mass Stars 

In this section, we present our results for the case of lower mass main sequence 

stars. The calculations and the process of obtaining these results is exactly the same as 

what we described in the solar mass stars section.  We first present our kappa results 

and fits followed the error analysis.  

 

Kappa Results 

We used MESA to generate stellar models with masses of 0.6𝑀⊙ and 0.8𝑀⊙ 

at different ages along the main sequence.  As an example, Figure 3-7 shows the kappa 
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integrand 
&7
&3

 as a function of radius for a 0.6𝑀⊙ at 5 Gyrs and Figure 3-8 shows kappa 

as a function of period for the same model (compare with Figure 3-1 and Figure 3-2). 

 
 

Figure 3-7 Kappa integrand 
&7
&3

 as a function of fraction radius for a 0.6𝑀⊙ star at 5 Gyr. 
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Figure 3-8 𝜅) vs parent mode period for the 0.6𝑀⊙ model at 5 Gyr. 

 

As we can see in Figure 3-8, the lower mass main sequence star shows a similar 

trend as the solar-mass star in that kappa increases significantly with increasing period.  

However, unlike the solar mass case, the trend does not perfectly follow a 𝑃" power-law 

slope anymore. This is a behavior we saw in all the lower mass plots we created, and we 

will look deeper into them in the next section.  

 
Power-law fit for kappa 

In this section, we present our stack plot of all the lower mass 𝜅) values we 

calculated. As we can see in the following plot, these stars do not perfectly follow the 𝑃# 

rule for kappa vs period.  However, except for the youngest model at 1Gyr, it 

approximately follows a 𝑃# trend.  
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Figure 3-9 kappa vs parent mode period for the 0.6𝑀⊙ model at different ages. 

 
In Figure 3-4 we show the best fit values of 𝜅) for the 0.6𝑀⊙ and 0.8𝑀⊙ 

models at different ages.  We see that 𝜅) decreases with decreasing stellar mass.  This 

is because lower mass stars have smaller buoyancy frequencies in the core and 

therefore the parent modes at a given period do not have as a large a peak amplitude. 

 
 

Error Analysis  

As we did in the solar-mass case, in this section, we look at a 0.6𝑀⊙ at different 

ages to see the effects of varying the integral limit parameter on the final value of our 

calculated 𝜅). Figure 3-10 shows the result for the 5 Gyr old model.  We see that if we 
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set the integral limit value between 125 and 200, we obtain consistent values for kappa. 

Figure 3-11 shows the result for the 9 Gyr old model  Again we see that for integral limit 

values above 100 the results are very consistent.  

 
 

Figure 3-10 Error analysis for the 0.6𝑀⊙ model at 5 Gyr. 
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Figure 3-11 Error analysis for the 0.6𝑀⊙ model at 9 Gyr. 

 
Higher Mass Stars 

In addition to solar mass and lower mass stars, we also calculated kappa 

analysis for higher mass stars that match the range observed to host hot Jupiters.  

Specifically, we used MESA to construct 1.2𝑀⊙, 1.4𝑀⊙,	and 1.6𝑀⊙ models at different 

ages all along the main sequence. In the next subsection we will describe the kappa 

results for a single case, followed by general results in future subsections. 

 

Kappa Results 

Here we present our results for the case of a 1.6	𝑀⨀	at the age of 1.3 Gyr. Figure 

3-12 shows the kappa integrand 
&7
&3

 as a function of radius.  We see the result looks very 
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different from the corresponding plots from the low mass stars (e.g., Figure 3-7).  In 

particular, although the integrand again steepens towards the center of the star, rather 

than peak at small radii, the integrand vanishes in the inner ≈ 10% of the star’s radius.  

This is because the core is convective at these radii and the displacement of g-modes 

are evanescent in convection zones (see Figure 2-4 and Figure 2-5).   

            
 

Figure 3-12 Kappa integrand 
&7
&3

 as a function of fraction radius for a 1.6𝑀⊙ star at 1.3 

Gyr. 
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Figure 3-13 kappa vs period for a 1.6	𝑀⨀ model a 1.3 Gyr 

 

As we can see in Figure 3-13, the trend of kappa vs period for the 1.6	𝑀⨀ model 

is different compared to solar and lower mass stars as it does not increase as a power-

law with period. Figure 3-14 shows kappa vs period for the 1.2	𝑀⨀ at different ages and 

again we see it does not follow a power law but instead increases very little with period 

and fluctuates somewhat in value. For comparison, the 𝑃# fit is added, but we can see 

they do not follow that trend.   
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Figure 3-14 kappa vs parent mode period for the 1.2𝑀⊙ model at different ages. 

 
Although kappa does not follow the the 𝑃# trend in high mass stars, for the 

purpose of comparing our calculation to the results for the low mass stars, in Figure 3-15 

we show the value kappa for each stellar model averaged over the period range 1.0 to 

5.0 days.  Comparing this to the corresponding plot for low mass stars shown (Figure 

3-4), we see that kappa is much smaller for high mass stars (kappa is on the order of 10 

in high mass stars compared to 100-1000 in low mass stars).  In addition, kappa does not 

necessarily increase with mass or age, unlike in the low mass stars.  These differences 

arise because the g-modes are evanescent in the convective core. Thus, the modes are 

not nearly as nonlinear, and their nonlinear coupling coefficients kappa are much smaller. 
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Figure 3-15 The value of the average kappa as a function of stellar mass and age for 

stars above a solar mass on the main sequence. 

 

Error Analysis  

As we did in the solar-mass and low mass cases, in this section, we look at 

varying the integral limit parameter of the python integrate package affects the calculated 

value of kappa.   As we can see in Figure 3-16, Figure 3-17, Figure 3-18, and Figure 

3-19 the calculated kappa values for the high mass models are nearly constant with the 

integral limit as long as it is set to a sufficiently large value (>100).  This suggests we are 

obtaining numerically convergent results.   
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Figure 3-16 Error Analysis for a 1.2	𝑀⨀ at Age 1.3 Giga Years 

 

       
 

Figure 3-17 Error Analysis for a 1.2	𝑀⨀ at Age 1.5 Giga Years 
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Figure 3-18 Error Analysis for a 1.6	𝑀⨀ at The Age of 1.3 Giga Years 

 

 
 

Figure 3-19 Error Analysis for a 1.6	𝑀⨀ at the Age of 1.5 Giga Years 
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Conclusions 

In this thesis, we presented the calculation of the nonlinear coupling coefficient of 

g-modes excited in hot Jupiter host stars.  The nonlinear excitation of such modes in the 

star dissipates the orbital energy, causing the gradual decay of the orbit of hot Jupiters.  

Understanding the efficiency of this process is important for our understanding of the 

evolution and fate of hot Jupiter systems. 

Previous calculations in the literature only considered the coupling coefficient in 

hot Jupiter systems with sun-like stars (1.0𝑀⊙ and 4.6 Gyr).  However, hot Jupiters are 

observed to orbit a range of stellar types (Figure 1-4).  This thesis addresses this 

shortcoming by calculating kappa for stars with mass between 0. 6𝑀⊙ to 1.6𝑀⊙ at 

different ages along the main sequence, in order to better match the full range of stars 

observed with hot Jupiter companions.   

Our results showed that kappa for solar mass and low mass models follows (or 

very nearly follow) a quadratic trend with orbital period.  Moreover, kappa was found to 

increase with increasing stellar age.  By contrast, we found that high mass stars (above a 

solar mass) show no such a trend with orbital period or age.  In addition, we showed that 

high mass stars have significantly smaller kappa values due to differences in their 

internal structure (specifically, the presence of a convective core).  

Our calculations provide a crucial ingredient for determining the efficiency of tidal 

dissipation in hot Jupiter host stars and solve for their orbital evolution.  Using our kappa 

results, the next step would be to solve the amplitude equation (Equation 2-5) for the 

network of nonlinear coupled modes.  Such a calculation was previously only done for hot 
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Jupiters hosting solar type stars (Essick & Weinberg, 2016).  With our kappa calculations, 

such a calculation can now be done for hot Jupiters with non-solar type hosts.   

Our results suggest that nonlinear dissipation might be important for lower mass 

and solar mass stars given that we found they have large kappa.  By contrast, nonlinear 

dissipation is less likely to be important in high mass stars given that we found they have 

small kappa.  This suggests that low mass systems might be much more likely to 

undergo rapid orbital decay.  To confirm this, future studies are needed.  
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  Appendix 

 
 

&star_job  

 

      show_log_description_at_start = .false. 

 

      load_saved_model = .true. 

      saved_model_name = 'start.mod' 

 

      save_model_when_terminate = .true. 

      save_model_filename = 'end_core_h_burn.mod' 

      required_termination_code_string = 'xa_central_lower_limit' 

 

 

      change_D_omega_flag = .true. 

      new_D_omega_flag = .true. 

       

 

      !pgstar_flag = .true. 

 

/ ! end of star_job namelist 

 

&eos 
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/ ! end of eos namelist 

 

&kap 

      Zbase = 0.02d0 

 

      kap_file_prefix = 'gs98' 

      use_Type2_opacities = .true. 

 

/ ! end of kap namelist 

 

&controls 

 

      write_pulse_data_with_profile = .true. 

      pulse_data_format = 'GYRE' 

 

      xa_central_lower_limit_species(1) = 'h1' 

      xa_central_lower_limit(1) = 0.0001 

 

      use_dedt_form_of_energy_eqn = .true. 

 

      num_trace_history_values = 2 

      trace_history_value_name(1) = 'rel_E_err' 

      trace_history_value_name(2) = 'log_rel_run_E_err' 
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      ! limit max_model_number as part of test_suite 

      max_model_number = 2000 

          

      initial_mass = 1.0 

      initial_z = 0.02d0 

 

      max_center_cell_dq = 1d-14 

 

      ! R_function = R_function_weight*log10(1 + (r/Rsun)/R_function_param) 

      R_function_weight = 300 

      R_function_param = 1d-9       

 

      am_nu_visc_factor = 0 

      am_D_mix_factor = 0.0333333333333333d0 

      D_DSI_factor = 0 

      D_SH_factor = 1 

      D_SSI_factor = 1 

      D_ES_factor = 1 

      D_GSF_factor = 1 

      D_ST_factor = 1 

       

      varcontrol_target = 1d-3 

      delta_lgL_He_limit = 0.01d0 

      



 

56 

      cool_wind_full_on_T = 9.99d9 

      hot_wind_full_on_T = 1d10  

      cool_wind_RGB_scheme = 'Reimers' 

      cool_wind_AGB_scheme = 'Blocker' 

      RGB_to_AGB_wind_switch = 1d-4 

      Reimers_scaling_factor = 0.8d0   

      Blocker_scaling_factor = 0.7d0 ! 0.8d0         

 

      photo_interval = 50 

      profile_interval = 1 

      history_interval = 10 

      terminal_interval = 10 

      write_header_frequency = 10 

 

 

/ ! end of controls namelist 

 

 

 

&pgstar 

 

          

 

          

      Grid6_win_flag = .true. 
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      Grid6_win_width = 11 

          

      !Grid6_file_flag = .true. 

      Grid6_file_dir = 'png' 

      Grid6_file_prefix = 'grid6_' 

      Grid6_file_interval = 5 ! output when 

mod(model_number,Grid6_file_interval)==0 

      Grid6_file_width = -1 ! (inches) negative means use same value as for 

window 

      Grid6_file_aspect_ratio = -1 ! negative means use same value as for window 

 

      Summary_Burn_xaxis_name = 'mass'  

      Summary_Burn_xaxis_reversed = .false. 

      Summary_Burn_xmin = 0.00 ! -101d0 ! only used if /= -101d0 

      Summary_Burn_xmax = 2.1  ! only used if /= -101d0 

       

      Abundance_xaxis_name = 'mass'  

      Abundance_xaxis_reversed = .false. 

      ! power xaxis limits -- to override system default selections 

      Abundance_xmin = 0.00 ! -101d0 ! only used if /= -101d0 

      Abundance_xmax = -101d0 ! only used if /= -101d0 

      Abundance_log_mass_frac_min = -6 ! only used if < 0 

 

      !Profile_Panels4_win_flag = .true. 

      !Profile_Panels4_win_width = 6 



 

58 

          

      ! Abundance window -- current model abundance profiles 

       

         !Abundance_win_flag = .true. 

       

         Abundance_win_width = 9 

         Abundance_win_aspect_ratio = 0.75 ! aspect_ratio = height/width 

    

/ ! end of pgstar namelist 
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