
Using antipatterns to improve database code fragments, and utilizing knowledge

graphs and NLP patterns to extract standardized data element names

by

BADER ALSHEMAIMRI

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2022

Using antipatterns to improve database code fragments, and utilizing knowledge

graphs and NLP patterns to extract standardized data element names

The members of the Committee approve the doctoral
dissertation of Bader Alshemaimri

Ramez Elamsri

Supervising Professor

Christoph Csallner

Leonidas Fegaras

David Levine

Dean of the Graduate School

Copyright © by Bader Alshemaimri 2022

All Rights Reserved

To my mother, my father, my wife and my sons Khalid and Saud

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious, the Most Merciful. Thanks to Allah

above all for giving me the strength and time to complete this work. Thanks to my

greatest teacher, prophet Mohammad, peace be upon him, who encouraged us to

obtain knowledge from birth until death.

I would like to thank my supervisor, Dr. Ramez Elmasri, who has been a great

mentor to me since I started my program at UTA. I am honored to be one of his

Ph.D. students. I really appreciated his continuous guidance, support, and motivation

during my doctoral program. I would also like to thank my academic committee

members: Dr. Christoph Csallner, Dr. Leonidas Fegaras, and Mr.David Levine, for

being my teachers during Ph.D. programs and for their insightful comments.

I would like to thank my parents, Khalid Alshemaimri (may he rest in peace)

and Sherifah Alwetaid, for all they have provided me in life and are still providing,

I would not have been able to complete this work without your continuous love and

support. I lost my father during my fourth year of study. It was a great lost and had

an impact on me. May he rest on peace. I would also like to thank my wife, Mona

Alhusayni, our sons, Khalid and Saud, for their support, patience, and encouragement

during my program.

My sincere gratitude goes to King Saud University and the government of Saudi

Arabia for funding and supporting me during my ESL, and higher education.

Last but not least, I would like to thank my friend Dr. Tariq Alsahfi for his

time and effort to evaluate and review my work. I would like also to thank Michael

Ellis, a data engineer at BNSF, for his great feedback and comments. I would also to

vi

thank my friends Dr. Mousa Almoutairi, Dr. Bhanu Jain, Mary Koone, Mohammed

Shito, and all members of the MAST lab.

March, 2022

vii

ABSTRACT

Using antipatterns to improve database code fragments, and utilizing knowledge

graphs and NLP patterns to extract standardized data element names

Bader Alshemaimri, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professor: Ramez Elamsri

Database code fragments exist in software systems by using SQL as the stan-

dard language for relational databases. Traditionally, developers bind databases as

backends to software systems for supporting user applications. However, these bind-

ings are low-level code and implemented to persist user data, so Object Relational

Mapping (ORM) frameworks take place to abstract database access details. These

approaches are prone to problematic database code fragments that negatively im-

pact the quality of software systems. In the first part of the dissertation, we survey

problematic database code fragments in the literature and examine antipatterns that

occur in low-level database access code using SQL and high-level counterparts in ORM

frameworks. We also study problematic database code fragments in different popular

software architectures such as Service Oriented Architecture (SOA), Microservice Ar-

chitecture (MA), and Model View Controller (MVC). We create a novel categorization

of both SQL schema and query antipatterns in terms of performance, maintainability,

portability, and data integrity.

viii

In the second part of this dissertation, we create NLP patterns that support

data architects when modeling and naming data element definitions. We design and

develop rule-based natural language processing (NLP) techniques to automatically

extract standardized data element names from data element definitions written in

American English. The goal is to study how using NLP techniques can improve the

accuracy of extracting standardized data element names in a domain-independent

context. It is a challenge to come up with NLP patterns in natural language definitions

as opposed to unambiguous code.

To achieve automated data element naming, we first identify heuristic patterns

that mine noun phrases and relationships from data element definitions. Then, we

use these noun phrases and relationships as input to determine components of data

element names. The output of the patterns is reviewed by a domain expert. We

apply our method to extract the five standard components of a data element name

in the Railway and Transportation domains. We first achieved 80% accuracy, then

by improving the rules and adding a similarity function using knowledge graphs, we

improved the accuracy to 95% in our final experiments.

We also introduce our tool entitled as Data Element Naming Automation

(DENA) tool. The tool consists of four components: DENA NLP, DENA assem-

bly, preprocessing, and duplicate checker. In the last part of the dissertation, we

propose how we preprocess data element definitions and evaluate the deduplication

detection.

ix

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . vi

ABSTRACT . viii

LIST OF ILLUSTRATIONS . xiv

LIST OF TABLES . xv

Chapter Page

1. INTRODUCTION . 1

1.1 Definition and Motivation of Patterns and Antipatterns for Database

Code Fragments and Data Element Names from Natural Language . . 2

1.2 Dissertation Contributions . 3

1.3 Dissertation Organization . 4

1.4 Published Papers . 5

2. A Survey of SQL Antipatterns (Drafted from [1]) 7

2.1 Introduction and Motivation . 7

2.1.1 Terminology and Concepts Used 13

2.2 Review of SQL Problematic Code Fragments 14

2.2.1 SQL Antipatterns . 14

2.3 Support for Identifying SQL Antipattern 19

2.3.1 Identifying SQL (Schema) Antipatterns by Querying the Schema

Stored in RDBMS Catalog . 20

2.3.2 Identifying SQL Antipatterns by Statically Analyzing Database

Schema Using the Schema Dump 21

2.3.3 Identifying SQL Query Antipatterns Using the Query Parser . 21

x

2.3.4 Identifying SQL Schema Antipatterns Using the Query Parser

from Software Repositories . 22

2.4 Categorization of SQL Antipatterns based on Schema 23

2.5 Categorization of SQL Antipatterns based on Query 40

2.6 Categorization of SQL Antipatterns based on Security Breaches . . . 48

3. Framework-Specific Antipatterns (Drafted from [1]) 53

3.1 Architecture-Specific Antipatterns . 53

3.2 ORM Antipatterns . 57

3.3 Categorization of Framework-Specific Antipatterns based on Schema . 60

3.3.1 Shared Persistency/data Ownership: 60

3.3.2 Active Record Anti-pattern: 61

3.3.3 Fat Repository/Generic Repository: 62

3.3.4 Missing Fields (MF): . 64

3.4 Categorization of Framework-Specific Antipatterns based on Query . 65

3.4.1 The Eager Fetching Problem 65

3.4.2 Row-by-row . 69

3.4.3 Inappropriate Service Intimacy 71

3.4.4 Brain Repository . 71

3.4.5 Laborious Repository Method 72

3.4.6 Meddling Service . 73

3.4.7 Chatty (Web) Service . 74

3.4.8 CRUDy Interface . 76

3.4.9 Maybe It Is Not RPC . 77

3.4.10 Data (Web) Service . 78

3.4.11 Sand Pile . 79

3.4.12 Nested Transaction . 79

xi

3.4.13 Unexpected Transactional Behavior 81

3.4.14 Inconsistent Transaction Read-write Level 83

3.4.15 Sequence Name Mismatch . 85

3.4.16 Incorrect SQL Orders . 86

3.4.17 Inefficient Computation (IC) 88

3.4.18 Unnecessary Computation (UC) 90

3.4.19 Unnecessary Data Retrieval (UD) 92

3.4.20 Inefficient Rendering (IR) . 93

3.4.21 Inefficient Data Accessing (ID) 94

4. Extracting Standardized Data Element Names from Natural Language Def-

initions . 97

4.1 Introduction . 97

4.2 Related Work . 100

4.3 Data Element Naming Standard . 101

4.3.1 Data Element . 101

4.3.2 Data Element Naming Standards 102

4.3.3 Data Element Name Components 103

4.4 Data Element Naming Automation Tool 106

4.4.1 DENA NLP . 106

4.4.2 DENA Assembly . 107

4.4.3 Storing the Extracted DEN in the Knowledge Graph using

Neo4j. 110

4.5 Results and Discussions . 112

4.6 Conclusion . 114

5. DENA: Data Element Naming Automation Tool 116

5.1 Introduction . 116

xii

5.2 Related Work . 119

5.3 Data Element . 119

5.3.1 Data Element Naming . 120

5.4 Framework and Algorithm . 121

5.4.1 Preprocessing Data Element Definitions 122

5.4.2 Data Element Name Extraction 127

5.4.3 Searching for Duplicates of the Extracted Data Element Name 128

5.5 Results . 130

5.6 Conclusion . 131

6. CONCLUSION . 132

6.1 Summary of Contributions . 132

6.2 Future work . 133

Bibliography . 135

BIOGRAPHICAL STATEMENT . 150

xiii

LIST OF ILLUSTRATIONS

Figure Page

4.1 A definition and an extracted Data Element Name 101

4.2 Data Element Naming Automation (DENA) Tool 103

4.3 A Definition and an extracted Data Element Name from our tool . . . 109

5.1 A definition and an extracted data element name 118

5.2 Four stages of DENA tool: Preprocessing the definition, natural lan-

guage processing (DENA NLP), assembling the data element name, and

searching for duplicate components. 122

5.3 DENA preprocess a data element definition that contains two classifi-

cations of preprocessing errors: undesired synonym and unknown term. 124

5.4 Undesired Synonym Algorithm . 126

6.1 Summary of contribution . 133

xiv

LIST OF TABLES

Table Page

2.1 Classification of SQL Anitpatterns by Karwin [2]. 15

2.2 Classification of SQL Anitpatterns by Red Gate [3]. 19

2.3 Categorization of SQL Schema Antipatterns. 24

2.4 Categorization of SQL Query Antipatterns. 49

2.5 Categorization of SQL Antipatterns based on Security Breaches. 52

3.1 Categorization of Framework-Specific Schema Antipatterns. 66

3.2 Categorization of Framework-Specific Query Antipatterns. 96

4.1 Patterns for extracting relationships from definitions 105

4.2 Accuracy results for extracting Data Element Names from definitions . 112

5.1 Patterns for searching combinations from names 129

5.2 Comparison table between Duke and DENA 131

xv

CHAPTER 1

INTRODUCTION

This dissertation addresses two problems that are highly relevant for software

development that depends on database access. The first problem is how to iden-

tify and deal with bad database code fragments in software, commonly referred to

as database antipatterns. The second problem is how to extract and standardize

database element names in large organizations with many diverse databases. In this

chapter, we briefly introduce these two problems, discuss our contributions, and then

give an outline for the chapters of the dissertation.

These two problems might appear different, but they share the same goal of

creating useful, correct, efficient and standardized software to access databases. These

two problems are related because they make use of better database practices. On

one hand, implementing tools that can spot database antipatterns helps achieve the

goal of correct and efficient software. This problem addresses applying standardized

database designs and programming constructs. Without a comprehensive catalog of

antipatterns, these tools will not achieve the goal. On the other hand, implementing

an automation tool for the standardized naming of data elements cannot be done

without a standardized knowledge graph model and representation. This helps achieve

the goal of useful and standardized database software.

In section 1.1, we start this chapter with definitions and motivation for utilizing

patterns and antipatterns to improve database code fragments, and using NLP pat-

terns and knowledge graphs to extract standardized data element names from natural

language definitions. Then we summarize our research contributions in section 1.2.

1

After that, Section 1.3, gives an outline of the remaining chapters of the dissertation

and how it is organized.

1.1 Definition and Motivation of Patterns and Antipatterns for Database Code Frag-

ments and Data Element Names from Natural Language

Generally, when a software system uses SQL as means of communicating with

a database, database code fragment is written as a set of Data Definition Language

(DDL) or Data Manipulation Language (DML) statements. A problematic database

code can be a bug, SQL smell, or SQL antipattern. Bugs manifest errors that cause a

software system to crash. SQL antipatterns allow executing programs, but they have

quality problems, as we shall discuss. Some research papers use SQL antipatterns

term, and others coin them as SQL code smells even though they are slightly different.

A data element is the smallest level of granularity of data that has a precise

meaning and is both unique and of interest and use to the business is a data element.

Data modelers write data element definitions to describe a data element by stating

its complete and precise meaning in a unique English statement.

Hence, a database is an integral part of any software system. Having high-

quality databases lead to high-quality software systems that have a fewer number of

problematic database code fragments. Developers should know which parts of the

source code degrade database quality. Several studies compile database-related cate-

gorization of problematic database code [ref: 14,15,16]. Developers can use software

tools that implement these categorizations to automatically perform database analysis

to determine flaws affecting the quality of software systems. However, these software

tools require comprehensive categorization of problematic database code fragments

in various application domains. As yet, there has been no systematic investigation of

database problematic code fragments in disparate software systems
2

1.2 Dissertation Contributions

The contributions of this dissertation can be divided into two parts. In the first

part, we provide two categorizations of antipatterns that represent bad practices of

database programming and design. To achieve these categorizations, we surveyed 42

database-related antipatterns in various application domains and higher-level frame-

works. These surveyed 42 database related antipatterns can have a bad effect on

four non-functional requirements of software systems: performance, maintainability,

portability, and data integrity. These anti-patterns degrade the quality of software

systems and creating these categorizations allow researchers to develop software tools

that can identify such problematic database code fragments. We analyze the impact

of each categorized database-related antipattern to allow researchers and developers

to identify and correct any given antipattern.

In the second part, we address and propose a solution to a problem that affects

many large organizations: namely to understand, standardize, and avoid duplication

of data element definitions and names in the many diverse databases within the or-

ganization. Large organizations migrate data in databases from one generation to

another. They also might acquire other organizations that use different naming con-

ventions for data. Data modelers often use the same data elements but may write

different definitions and use different naming conventions. In some cases, similar

data element names may have different meanings in diverse databases. Thus, it is

important for such an organization to have a standardized way of naming these data

elements, with standard terminology for all databases. At a minimum, different names

for the same data element must be identified as duplicates of the same concept to

avoid confusion and misunderstanding. In this part of the dissertation, we extract

standardized data element names from definitions written by data modelers. These

standardized data element names help resolve inconsistent data element names within
3

an organization. Our contribution led to developing a prototype system that includes

the following: preprocessing NLP definitions to identify noun phrases and relation-

ship using NLP tools; developing heuristic rules to create the data element names by

assembling its components from the noun phrases and relationships; creating a knowl-

edge graph that models these terms and relationships of data element components;

and utilizing the knowledge graph to improve accuracy and identify duplicates.

1.3 Dissertation Organization

In Chapter 2, we review existing studies on SQL antipatterns, and we define

these antipatterns and provide a classification to group antipatterns into schema

antipatterns and query antipatterns. We further classify these antipatterns based on

the four nonfunctional requirements of software systems: performance, maintinability,

portability and data integrity. We also provide the support for SQL antipatterns by

reviewing the state of the art tools that use these antipatterns to improve the quality

of database within software systems.

In Chapter 3, we survey framework-specific antipatterns and we classify them

the same way as we did in Chapter 2. Framework-specific antipatterns include an-

tipatterns relating to different software architectures: Model View Controller (MVC),

Service Oriented Architecture (SOA), and Microservice Architecture (MA). Framework-

specific antipatterns also contain ORM antipatterns and these antipatterns might

show issues in different ORM vendors such as Hibernate and Ruby on Rails.

In Chapter 4, we introduce the problem of extracting components of data el-

ement names from natural language definitions. We discuss the related work and

explain the data element naming standard that is vital for a large organization. We

also discuss the five component of a standardized data element name. We use patterns

4

to create the standardized name and assemble its components using NLP techniques

in Spacy.

In Chapter 5, we define and describe a Data Element Naming Automation

(DENA) tool. We also go through the inner workings of DENA’s framework. We

discuss how DENA preprocesses a definition so that we have a normalized definition

after replacing terms such as common misspellings, undesired synonyms, American

English in the definition. Then, we explain a deduplication checker functionality

that DENA calls to search for duplicats in the knowledge graph. DENA can rank

all possible duplicates and sort them based on name rank, definition rank and a

combination of both.

In Chapter 6, the future proposed work is discussed.

1.4 Published Papers

As a result of my research, some articles were published during my Ph.D. study.

The following are the published papers:

• B. Alshemaimri, R. Elmasri, T. Alsahfi, and M. Almotairi, “A survey on prob-

lematic database code fragments in software systems,” Engineering Reports, vol.

3, no. 10, pp. 53–66, Jul 2021. Available: https://doi.org/10.1002/eng2.12441

• Tariq Alsahfi, Mousa Almotairi, Ramez Elmasri, and Bader Alshemaimri.

2019. Road Map Generation and Feature Extraction from GPS Trajectories

Data. In Proceedings of the 12th ACM SIGSPATIAL International Workshop

on Computational Transportation Science (IWCTS’19). ACM, New York, NY,

USA, Article 2, 1–10.

• Bader Alshemaimri,Michael Elli, Ramez Elmasri, and Abdullah Almoqbil.

2021. Extracting Data Element Names from Natural Language Definitions.

5

In Proceedings of The 19th International Conference on Scientific Computing

(CSC 2021). Springer International Publishing.

• Bader Alshemaimri, Michael Elli, Ramez Elmasri, and Tariq Alsahfi. "DENA:

Data Element Naming Automation." The International FLAIRS Conference

Proceedings. Vol. 35. 2022. (submitted)

6

CHAPTER 2

A Survey of SQL Antipatterns (Drafted from [1])

2.1 Introduction and Motivation

The Structured Query Language (SQL) is the standard language for relational

databases. SQL is the most popular language to communicate with a database. As

stated by the 2019 survey of StackOverflow[4], SQL is the third most popular pro-

gramming language gaining only fewer votes than JavaScript and HTML/CSS and

more votes than popular programming languages such as C/C++, C, and Python.

Generally, when a software system uses SQL as means of communicating with a

database, SQL is written as a set of Data Definition Language (DDL) or Data Ma-

nipulation Language (DML) statements [5]. These statements comprise the concept

of low-level database access code. Database access code written using SQL is a data

sublanguage in the host programming language. Alternatively, programming lan-

guages have Object-relational Mapping (ORM) frameworks, which mitigate writing

database access code and rely on SQL to be the chosen standard language for querying

databases in the industry.

Binding databases to software systems. One way to write database ac-

cess code is to implement low level database-related binding styles. There are three

traditional binding styles between the host programming language and the Domain

Specific Language (DSL i.e. SQL): Module Language, Embedded SQL, and SQL

Call Level Interface SQL/CLI[6]. Module Language binding style (also referred to

as a database programming language) encourages writing all SQL statements in one

or more modules, also known as Stored Procedures. Stored procedures are vendor-

7

specific SQL statements written outside of the host programming language programs,

and these programs can call stored procedures. The stored procedure defines pro-

gramming language constructs such as looping, branching, and merging with the

DBMS at the server-side; thus, it reduces the overhead that results from network

round trips between client and server. For instance, Procedural Language/Struc-

tured Query Language (PL/SQL) is an example of stored procedures for the Oracle

DBMS.

In the embedded SQL approach, database access code can be written by stati-

cally or dynamically embedding SQL into the application source code layer. Statically

embedded SQL is a way to intertwine SQL statements with programming language

source code. For example, SQLJ, an extension to Java, integrates static SQL state-

ments with Java source code. In SQLJ, the precompiler can statically extract em-

bedded SQL code fragments from the application and send them to the database

management system (DBMS) to process and execute the query. SQLJ is not com-

monly used in the industry because it lacks IDE support, type safety, and dynamic

SQL binding. A successor of SQLJ, termed Java Object-Oriented Query JOOQ [7],

was developed to overcome these issues. An equivalent component, called LINQ to

SQL, exists for the .NET framework as well. Dynamically embedded SQL statements

are not known at compilation time since they are interactive and require user input

beforehand. SQLJ is not able to dynamically bind SQL, while JOOQ and LINQ to

SQL have dynamic features. However, the latest versions of SQLJ support dynamic

SQL embedding.

SQL/CLI binding style, also known as Function call libraries, allows program-

mers to communicate with the DBMS by providing a library of database functions in

which developers can dynamically pass queries as strings and bind parameters at run-

time. Examples of SQL Call Level Interface that access the library of database API

8

calls from the host languages are Open Database Connectivity (ODBC), which allows

source programs to use operations from various DBMS vendors, and Java Database

Connectivity (JDBC). JDBC, for instance, enables one java program to link to mul-

tiple vendor-specific DBMSs. JDBC does not abstract database schema and, unlike

ORM, enables developers to write complex queries. The three binding styles between

the host language and the data sublanguage, SQL, form the low-level database access

details.

ORM frameworks. As an alternative to using traditional binding styles, de-

velopers can use an ORM framework to implement database access code without

dealing with the low-level database access details. The ORM abstracts SQL queries

by adding a high-level vendor-specific query language to ease developers’ develop-

ment time. For instance, Hibernate, an ORM framework for Java, implements Java

Persistence API (JPA) and uses JDBC connections, adds Hibernate Query Language

(HQL), and maps the database accesses written using the host language to the SQL

flavor of the relational DBMS (RDBMS). It lets developers deal with persistent ob-

jects rather than table rows. Goeminne et al [8] conduct a survival analysis of 3,707

GitHub projects implemented in Java. They state that JDBC, Hibernate, and Java

Persistence API (JPA) are the top popular technologies to interact with a DBMS.

Hibernate tends to be used along with other database frameworks such as JDBC and

JPA, while 56.3% of the GitHub projects use JDBC alone to facilitate database access

[8].

Regardless of which way Object-Oriented Programming Language (OOPL) is

used to interact with the RDBMS, the object-relational impedance mismatch prob-

lem, which is the differences of converting database model to the object-oriented

paradigm, exists [9]. Instead of conversion, using only one language representing

either an application program or the database eliminates the impedance mismatch
9

program. This application program implemented by a host language can either di-

rectly embed/integrate SQL into the host language constructs. Another way to solve

the impedance mismatch problem is by using an abstraction that maps OOPL ob-

jects into relational constructs and abstracts low-level database access code using an

ORM framework, such as Hibernate. Using DBMS integrated languages, such as DDL

and DML, in either low-level database access code or ORM can include problematic

database codes.

Problematic database access. The focus of our paper is to survey the types

of problematic database code fragments. We categorize them based on those con-

cerning schema or query and the impact on various system factors that include per-

formance, maintainability, portability, and data integrity. A problematic database

code can be a bug, SQL smell, or SQL antipattern. Bugs manifest errors that cause

a software system to crash. SQL antipatterns allow executing programs, but they

have quality problems, as we shall discuss. Some research papers use SQL antipat-

terns term, and others coin them as SQL code smells even though they are slightly

different. Sharma et al. [10] discuss whether SQL smells and SQL antipatterns are

synonyms. They treat them differently because poorly chosen design decisions lead to

SQL antipatterns, while SQL smells occur unintentionally due to developers’ obliv-

ion. SQL code smells are hints that might indicate there is something wrong with

your code, but it is not for granted. Kent Beck introduced the term code smells

when he presents "Once and only once" in his blog[11]. Unlike SQL smells, SQL

antipatterns surely lead to less maintainable, slow-performing, corrupted data, and

platform-dependent source code eventually. Koenig [12] introduces the notion of an-

tipattern as "a common solution to a recurring problem that is usually ineffective

and highly counterproductive". Linares-Vásquez et al. [13] illustrate that software

anti-patterns are framework-specific and found in different application domains. SQL

10

antipatterns follow the definition of antipatterns. SQL, as a DSL, has its code smells

and antipatterns in its domain. Various application domains use SQL as a data

sublanguage and SQL antipatterns can manifest differently in these domains. For

this reason, we study problematic database code fragments in various and popular

software architectures.

Other software architectures for problematic database code. We review

problematic database code fragments in different architectural application domains

such as Service Oriented Architecture (SOA) [14], Microservice Architecture (MA)

[15], and Model View Controller (MVC) [16]:

• SOA is an architectural style that decomposes monolithic software systems into

standalone, maintainable, and platform-neutral software components, called ser-

vices. These services can be used with web services and communicate with

protocols such as Remote Procedure Call (RPC), Single Object Access Proto-

col (SOAP), JavaScript Object Notation (JSON), and Extensible Markup lan-

guage (XML) by sending and receiving messages. A successor of SOA, known

as Microservice Architecture (MA), has emerged and embraced some concepts

of SOA, but they differ in service characteristics.

• MA has fine-grained services, while SOA has coarse-grained services. SOA has

component sharing as one of its basic tenets, but MA embraces "share as little

as possible". Problematic database code can vary between the two approaches,

but both need to be analyzed when developers request for services using either

SOA or MA.

• MVC is another architectural design that partitions application development

into model, view, and controller to separate concerns. Examples of MVC web

frameworks are Ruby on Rails and Spring MVC, a popular Java project. Trans-

actions in Spring MVC differ from transactions in Hibernate because Spring

11

manages configuration and dependencies across objects while Hibernate ab-

stracts database components to class objects. Generally, web applications fol-

low MVC pattern[16] and problematic database code can occur in either one of

these three layers.

A database is an integral part of any software system. Having high-quality

databases lead to high-quality software systems that have a fewer number of prob-

lematic database code fragments. Developers should know which parts of the source

code degrade database quality. Several studies compile database-related categoriza-

tion of problematic database code [2], [3], [17]. Developers can use software tools

that implement these categorizations to automatically perform database analysis to

determine flaws affecting the quality of software systems. However, these software

tools require comprehensive categorization of problematic database code fragments

in various application domains. As yet, there has been no systematic investigation

of database problematic code fragments in disparate software systems. Furthermore,

as antipatterns can appear in any framework or application domain [13], it is cru-

cial to study its characteristics and impacts to foster the development of software

tools that capture such antipatterns. To encourage more research in this direction,

we review the literature about database problematic code across legacy information

system applications, service-based applications, microservice-based applications, and

web applications. We also categorize problematic database code in terms of the im-

pact they leave on software systems such as performance, maintainability, portability,

and data integrity.

Our contributions can be summarized as follows:

• We introduce two categorizations of the studied 42 database-related antipatterns

in various application domains and higher-level frameworks.

12

• We classify database-related antipatterns based on the impact on non-functional

requirements such as performance, maintainability, portability and, data in-

tegrity.

• We analyze the impact of each categorized database-related antipattern.

2.1.1 Terminology and Concepts Used

Problematic Database Code: A poorly written database access code that

is a result of either inefficiently connecting to the database, querying the database,

making a database transaction, or returning the result from the DB causes problems

in terms of performance, maintainability, portability, and data integrity.

• Performance Antipatterns: A poorly written database access code that

causes performance degradation of overall software systems. Reasons vary from

improper data retrieval and excessive data processing in memory or data trans-

mission. Performance antipatterns slow down the overall system.

• Maintainbility Antipatterns: Maintainability antipatterns make the system

harder to maintain, leading to higher maintenance time and costs.

• Portability Antipatterns: Portability antipatterns prevent the system from

migrating to a different system architecture or database engine.

• Data Integrity Antipatterns: Data integrity antipatterns make the overall

system unreliable since it corrupts or conceals data; thus, it forces the system

state to be inconsistent.

We organize the rest of the paper as follows. Section 2.2 reviews the literature of

SQL problematic code fragments, including generic SQL antipatterns and framework-

specific antipatterns because it is evident that antipatterns vary across application

domains. As a result, we discuss a set of frameworks and their related antipatterns. In

section 2.3, we study the support for SQL antipatterns and others’ work at detecting

13

such antipatterns so that it is possible to extend these catalogs and categorize them.

We discuss our findings and categorizations of SQL antipatterns in section ??. We

conclude about our findings in section ??.

2.2 Review of SQL Problematic Code Fragments

In this section, we review the literature on SQL problematic code fragments.

By problematic code fragments, we mean antipatterns in software artifacts that are

symptoms resulting in eventual errors or quality problems. We introduce the stud-

ied SQL antipatterns in Section 2.2.1. In section 3, we review the literature about

SQL antipatterns that are specific to frameworks such as architectural application

frameworks and object-relational mapping frameworks.

2.2.1 SQL Antipatterns

SQL antipatterns found in database code can eventually affect software sys-

tems with problems in performance, maintainability, portability, and data integrity.

Karwin [2] outlines SQL antipatterns from developers’ point of view that lead to

problems with SQL. As he stated in his book, “SQL Antipatterns describe the most

frequently made missteps I’ve seen people naively make while using SQL.”. He clas-

sifies SQL antipatterns into three categories: database design antipatterns, including

physical and logical database design antipatterns, query antipatterns, and application

development antipatterns.

In addition, other books exist identifying SQL code smells [3] and SQL an-

tipatterns [17]. Red Gate [3] documents 119 SQL code smells, concerning database

design issues, table design, data types, expressions, naming, routines, query syntax,

and security loopholes.

14

We introduce SQL antipatterns based on schema and SQL antipatterns based

on query in sections 2.2.1.1 and 2.2.1.2.

2.2.1.1 SQL Antipatterns Based on Schema

In this section, we introduce and review low-level database problematic code

fragments in terms of SQL schema antipatterns. Karwin [2] classifies SQL schema

antipatterns into physical and logical database design antipatterns. He lists 8 antipat-

terns for the logical database design antipatterns and 4 antipattens for the physical

database design antipatterns. The table 2.1 shows the SQL Antipatterns based on

Schema that are classified into logical and physical database design antipatterns by

Karwin [2]. We will not categorize Rounding errors and Phantom Files because these

are subjective and are not implemented in tools that support these antipatterns.

Table 2.1: Classification of SQL Anitpatterns by Karwin [2].

Schema Query

Logical Database Design Physical Database Design

Compound Attribute Rounding Errors Buried NULL

Adjacency List Values in Attribute Definition Reference Nongrouped Column

Superfluous Key Phantom Files Random Selection

Missing Constraints Index Shotgun Pattern Matching Predicates

Metadata as Data Spaghetti Query

Polymorphic Associations Implicit Columns

Multicolumn Attribute Poor Man’s Search Engine

Clone Tables

15

Sharma et al [10] enhances the catalog of Karwin [2] in terms of SQL schema

antipatterns by introducing 4 more antipatterns gathered from the literature, industry

and online discussions [[2], [3], [18]]:

• Mutlicolumn attribute.

• God table.

• Meaningless name.

• Overloaded attribute names.

Redgate [3] categorizes SQL smells into many dimensions, but we only focus on

problems with database design, table design, and query syntax. Table 2.2 shows the

list of antipatterns for each dimension. Most of these antipatterns exist in Karwin’s

catalog [2], but they have different name and description. We will include these

antipatterns in our categorization except contrived interfaces and using command-line

and OLE automation antipatterns from database design antipatterns. For problems

with table design, we will also categorize these antipatterns except creating a table

without specifying a schema.

The following maps the two lists of items in Table 2.1, 2.2 as well as antipatterns

found in Sharma’s catalog [10]:

• Compound Attribute: It is also known as packing lists, complex data, or

other multivariate attributes into a table column.

• Adjacency List: It is also known as storing the hierarchy structure in the

same table as the entities that make up the hierarchy.

• Missing Constraints: It includes not using referential integrity constraints.

• Polymorphic Association: It is also known as using a polymorphic associa-

tion.

• Clone Tables: It is also known as creating dated copies of the same table to

manage table sizes.
16

• God Table [10]: It is also known as creating tables as ’God’ Objects.

• Values in Attribute Definition: It is also known as using constraints to

restrict values in a column.

• Index Shotgun: It is also known as using too many or too few indexes.

• Overloaded Attribute Names: It is also known as using the same column

name in different tables but with different data types.

The antipattern Buried NULL from Table 2.1 that was classified as query an-

tipattern has a similar definition to the definition of misusing Null values antipattern

that was classified as problems with Table Design in Table 2.2. Since we classify

problems related to database design and table design into schema antipatterns, we

found a conflict between these categories. We shall explain and classify most of the

above SQL schema antipatterns from Tables 2.1 and 2.2 in more detail in section 2.4

2.2.1.2 SQL Antipatterns Based on Query

We describe and analyze low-level database problematic code fragments in terms

of SQL query antipatterns. Table 2.1 shows a column of query antipatterns where

all query antipatterns are addressed by Karwin [2]. We will not categorize Spaghetti

Query and Implicit Columns because these are subjective and are not implemented

in tools that support these antipatterns.

Redgate [3] also classifies some SQL smells into query syntax. Table 2.2 shows

antipatterns that have problems with query syntax. The following groups similar

query antipatterns:

• Buried Null: It includes not handling NULL in nullable columns and using

’= NULL’ or ’<> NULL’ to filter a nullable column.

• Pattern Matching Predicates: It is also known as using LIKE in a WHERE

clause with an initial wildcard character.
17

• Spaghetti Query: It is also known as creating UberQueries (God-like Queries).

• Row-by-row or one-by-one [19]: It is also known as using correlated sub-

queries instead of a JOIN. The row-by-row antipattern will be discussed in

section 3.2.

• Implicit Columns: It is also known as using INSERT INTO without specifying

the columns and their order.

• Using Union or Distinct to Remove Join Duplicates [20]: It is also

known as using SELECT DISTINCT to mask a joining problem.

We shall define and classify these SQL query antipatterns in more detail in section

2.5.

2.2.1.3 SQL Antipatterns Based on Security Breaches

In this section, we introduce and review the literature concerning SQL antipat-

terns that can impact the security of software systems. Karwin [2] categorizes this

group of antipattern into application development antipatterns. This group of an-

tipatterns contains six antipatterns in total. Two of the six antipatterns are SQL

antipatterns related to security breaches. Table 2.1 shows schema and query antipat-

terns as two groups of the classification.

Another study surveys SQL antipatterns in local databases that mobile appli-

cations rely on heavily [21]. They identified eleven SQL antipatterns through their

literature review. They classified eight of them into the runtime and energy consump-

tion antipatterns and the rest as security antipatterns. The following shows the list

of the antipatterns:

• Vulnerable Query: It is also known as SQL Injection.

• Unbounded-Query: It is also known as Unnecessary Computation [22].

• Readable Password:. Not encrypting user password poses a security threat.
18

Table 2.2: Classification of SQL Anitpatterns by Red Gate [3].

Schema Query

Problems with Database
Design

Problems with Table De-
sign

Problems with Query Syn-
tax

Packing lists, complex data, or
other multivariate attributes
into a table column

Using constraints to restrict
values in a column

Creating UberQueries (God-
like Queries)

Storing the hierarchy structure
in the same table as the enti-
ties that make up the hierar-
chy

Not using referential integrity
constraints

Using correlated subqueries in-
stead of a JOIN

Using an Entity Attribute
Value (EAV) model

Using too many or too few in-
dexes

Using INSERT INTO with-
out specifying the columns and
their order

Using a polymorphic associa-
tion

Misusing NULL values Not handling NULL values in
nullable columns

Creating tables as ‘God Ob-
jects’

Creating a table without spec-
ifying a schema

Using LIKE in a WHERE
clause with an initial wildcard
character

Contrived interfaces Using the same column name
in different tables but with dif-
ferent data types

Using ‘= NULL’ or ‘<>
NULL’ to filter a nullable col-
umn

Using command-line and OLE
automation to access server-
based resources

Creating dated copies of the
same table to manage table
sizes

Using SELECT DISTINCT to
mask a join problem

2.3 Support for Identifying SQL Antipattern

In the following, we discuss recent studies that identify SQL antipatterns from

different points of view: querying system catalogs in section 2.3.1; parsing database

schema (DDL) in section 2.3.2; parsing SQL statements (DML) extracted from SQL

parser in section 2.3.3; and mining software repositories to identify SQL schema

antipatterns in section 2.3.4.

19

2.3.1 Identifying SQL (Schema) Antipatterns by Querying the Schema Stored in

RDBMS Catalog

Based on [2], many research studies analyze system catalogs and schema

to identify SQL antipatterns. Eessar [23] analyzes 11 SQL antipatterns including 8

logical and 3 physical design anti-patterns presented by [2]. Then, he creates a list

of 14 SQL detection queries to search for these 11 SQL antipatterns and conduct

semiautomate analysis of the quality of databases.

In a later work, Eessar [24] assesses the anti-pattern-detection queries by using

them to evaluate 41 databases designed by students, introduce more design questions

about conceptual data modeling of SQL databases and study potential application

uses of the queries. As a result of executing detection queries, he found 81 cases that

refer to antipattern occurrences in the student database designs. Out of 81, 23 real

cases are results of manually checking the database specifications. Eight cases out of

23 are subject to false-positives.

Querying database schema to search for potential database design anti-patterns

is also discussed by other researchers. Khumnin et al. [25] propose research about how

they can help database administrators detecting SQL anti-patterns and recommend

refactoring techniques similar to the way developers perform it with code antipatterns.

They aim to automate the process of identifying SQL anti-patterns by implementing a

tool that employs Transact-SQL language to query and examine the database schema.

Khumnin et al. [25] experiment on the five logical database design anti-patterns out

of 8 in total. The tool can document prospective anti-patterns by following a query-

based detection/heuristic approach to find them.

Khummin et al [25] compare their findings with earlier work of [23]. Khummin

et al [25] implement generic query detections, whereas in [23] detection queries are

bound by written SQL queries as examples in [2]. They mention that the work of [23]
20

excludes any query evaluation, but the authors can compare their query performance

with their later work [24]. In this work, the authors consider different cases of missing

constraints antipatterns, while in Eessar’s work, missing foreign key constraints is the

only analyzed case.

2.3.2 Identifying SQL Antipatterns by Statically Analyzing Database Schema Using

the Schema Dump

One study parses the internal structures of database schema to find SQL an-

tipatterns. Delplanque et al. [26] examine the database schema to evaluate the

quality of the database code they embed. They believe that only querying the system

catalog is not enough to locate SQL antipatterns in triggers and stored procedures.

Consequently, they treat the database as source code when applying software quality

and tools. They implement DBCritics, which is a tool to analyze PostgreSQL schema

dumps. The tool parses the schema dump conforming to PL/SQL as an input, and it

generates a model. The three usage scenarios that the authors use Dbcritics for are

SQL antipattern detection, DBMS migration, and database schema consistency [26].

The first usage scenario applies to the scope of our paper.

2.3.3 Identifying SQL Query Antipatterns Using the Query Parser

Another study aims to identify SQL antipatterns in embedded queries using

SQL query parser. Nagy et al. [27] propose a prototype tool developed to inspect

SQL queries written within Java source code without running the code and recognize

SQL query antipatterns described in [2]. The prototype tool consists of two main

components: SQL extractor and SQL code smell detector. The input of the SQL

extractor is Java source code. Then, by using a string resolution technique confined

within a procedural along with Abstract Syntax Tree (AST), the SQL extractor gen-

21

erates several SQL statements with call stack information that shows tracing of these

SQL statements in a call chain. They design their tool to identify SQL query an-

tipatterns such as buried NULL, ambiguous group, random selection, and implicit

columns. However, they excluded Spaghetti Query and Poor Man’s Search Engine

antipatterns because there is no objective definition for Spaghetti Query that makes

the query Spaghetti (too large), and the solution for the Poor Man’s Search Engine

using pattern matching predicates is dependent on DBMS. This publicly available

tool can distill SQL queries from the source code before it runs, then analyze embed-

ded SQL statements in the program, the database model, and the data to determine

antipatterns in the queries.

2.3.4 Identifying SQL Schema Antipatterns Using the Query Parser from Software

Repositories

A study aims to explore the presence of SQL antipatterns [2] in source code and

analyze their correlations between other software artifacts by mining embedded SQL

in software systems. Sharma et al. [10] used regular expressions to extract embedded

SQL statements from the repositories and then find SQL antipatterns. They catego-

rize SQL antipatterns into SQL schema antipatterns, SQL query antipatterns, and

SQL data antipatterns. Sharma et al. [10] examine SQL statements in 357 industrial

and 2568 open-source projects to evaluate how schema quality of relational database

affects the performance and maintainability of software systems. They specifically

investigate how frequent SQL schema antipatterns occur in software systems and to

what degree SQL schema antipatterns correlate with each other. They also explore

the aspects that impact the density of SQL antipatterns. The aspects are the size of

the project, database, and source code.

22

They survey developers’ perspectives about SQL schema antipatterns to un-

derstand their views. Sharma et al. [10] implement a DbDeo tool that is a smell

detection to distill embedded SQL statements from source code programs. The Db-

Deo tool relies on a third-party tool called SQLParse to analyze SQL statements

and generate metadata. The DbDeo smell detection tool exercises the meta-model

to identify SQL schema antipatterns. The survey results indicate that being aware

of SQL antipatterns is essential to design and develop high-quality software systems.

However, it depends on the developer’s perception of whether the problematic code

is indeed a SQL antipattern or if it serves a particular purpose in source code [10].

Their tool detection results show that index abuse is the most common SQL schema

antipattern, and some antipatterns, such as adjacency list, are more likely to exist in

industrial projects than open-source projects by a measurable difference. Sharma et

al. [10] find that using an ORM framework does not hinder SQL antipatterns.

2.4 Categorization of SQL Antipatterns based on Schema

In this section, we define and classify 11 SQL schema antipatterns based on

the underlying four system factors of performance, maintainability, portability, and

data integrity. Table 2.3 shows the result of the classification. We identify 9 schema

antipatterns as performance antipatterns. Out of the 15 studied antipatterns, we

categorize 8 schema antipatterns into maintenance antipatterns. We assign almost

half of these schema antipatterns into portability and data integrity classification

groups. We define all the schema antipatterns in a separate section for each and then

discuss their effects on performance, maintainability, portability, and data integrity.

23

Ta
bl

e
2.

3:
C

at
eg

or
iz

at
io

n
of

SQ
L

Sc
he

m
a

A
nt

ip
at

te
rn

s.

R
ef

er
en

ce
A

nt
ip

at
te

rn
P
er

fo
rm

an
ce

M
ai

nt
ai

na
bi

lit
y

P
or

ta
bi

lit
y

D
at

a
In

te
gr

it
y

[2
,
1
8
,
3
,
1
0
]

C
o
m

p
o
u
n
d

A
t
t
r
ib

u
t
e

X
X

X
X

[2
,
3
,
1
0
]

A
d
ja

c
e
n
c
y

L
is

t
X

X
X

[2
,
1
0
]

S
u
p
e
r
fl
u
o
u
s

K
e
y

X

[2
,
3
,
1
0
]

M
is

s
in

g
C

o
n
s
t
r
a
in

t
s

X
X

[2
,
3
,
1
0
]

M
e
t
a
d
a
t
a

a
s

D
a
t
a

X
X

[2
,
3
,
1
0
]

P
o
ly

m
o
r
p
h
ic

A
s
s
o
c
ia

t
io

n
X

X

[2
,
1
8
]

M
u
lt
ic

o
lu

m
n

R
e
p
e
a
t
in

g
A

t
t
r
ib

u
t
e

X
X

[2
,
1
0
]

C
lo

n
e

T
a
b
le

s
X

X
X

X

[2
,
1
0
]

V
a
lu

e
s

in
A

t
t
r
ib

u
t
e

D
e
fi
n
it

io
n

X
X

X

[2
,
3
,
1
0
]

I
n
d
e
x

S
h
o
t
g
u
n

X
X

[1
8
,
3
,
1
0
]

G
o
d

T
a
b
le

X
X

X

24

2.4.0.1 Compound Attributes Anti-pattern:

Definition: This antipattern emerges when developers utilize a column to store

a comma-separated value for a compound attribute. For instance, when they want to

store license plates for cars in the database, they might use a non-atomic attribute,

i.e., (state, number) to save cars’ license plates. The following impacts discuss a case

where a compound attribute store comma-separated lists as values. This antipattern

is bad because it complicates querying the DBMS. It also does not allow developers

to easily use aggregate queries that include functions such as SUM() and Average().

Impact on performance: It affects performance if not used properly. If pro-

grammers have foreign keys organized in comma-separated lists, they cannot benefit

from pattern matching and indexes. Thus, they have to write slower, complex queries,

and they need to parse them. It is better to separate the component into individual

attributes. Then, programmers can create a compound index on the combination of

attributes if needed, or individual indexes on the individual attributes.

Impact on maintainability: Developers traditionally use Aggregate func-

tions such as SUM(), COUNT(), etc over rows with atomic attributes, so by using

these comma-separated lists, developers need to increase their effort at debugging and

maintaining their database schema.

Impact on portability: As discussed in the impact on performance, each

vendor has its syntax, when it comes to pattern matching, so the SQL statement is

tied to a portability constraint.

Impact on data integrity: This antipattern affects data integrity for two

reasons. With comma-separated lists, developers cannot prevent users from entering

invalid entries like a word in a language that is different from English. It will not

be an error, but the integrity of data is at stake. Choosing a separator character

25

is another reason why this antipattern degrades data integrity. If developers chose

comma to separate values in a list, how would they assure that a comma will not

appear in the entry? Using the comma as a separator character between entries

might be ambiguous. Denormalization and storing a comma-separated value does

not help the database to preserve data integrity, but it might increase performance.

Solution: Developers should create an intersection table of license plate states

and numbers. They can name it as StateNumber table. This intersection table

has a many-to-many relationship between State table and Licence Number table.

Developers can eliminate this antipattern by creating the intersection table.

2.4.0.2 Adjacency List Anti-pattern:

Definition: This antipattern arises when a column in a table references another

record in the same table. Specifically, it is an antipattern when developers query hi-

erarchical data such as organizational structures, product categorization, and thread

discussions, and they only depend on one node’s parent to query the given node’s

descendants or ancestors at various levels. It is also referred to as a recursive re-

lationship [5]. The adjacency list becomes an antipattern when developers want to

query all descendants of a tree. The reason why it is bad is that it enforces developers

to overuse joins for each decedent of the tree.

Impact on performance: This antipattern is categorized into performance

antipatterns because developers need to write additional queries for each deeper level

in the hierarchy when querying tree data structures. It shows up in cases such as

querying a hierarchical structure and deleting a node in the structure. Developers

sometimes depend on only one parent of a given query when they query a tree data

structure at various depth levels. In this case, Adjacency List should not be used [2],

[3], [10] because it is expensive to query all descendants of a given node in the tree
26

data structure using join strategies. The authors [28] recommends avoiding the join

strategies if programmers can transform an SQL statement to a simpler equivalent.

This antipattern is categorized into performance antipatterns because various tree

data models have different uses, and choosing the right data model for the needed

task helps to generate the best performance. We discuss these alternative solutions

next.

Impact on maintainability: Using a traditional adjacency list without re-

cursion and using only the immediate parent of a given node results in maintaining

many numbers of SQL queries. Therefore, we also categorize this antipattern into

one of the maintenance antipatterns.

Impact on portability: This antipattern affects portability because some

DBMSs implement their own tree data model, and developers need extra efforts to

migrate between these proprietary data models. An online discussion requests an

alternative solution to replace Hierarchyid, a data type implemented by SQL server,

with its equivalent MySQL data type [29]. The developer wants to migrate its DB

from MS SQL to MySQL to support a specific tree data model.

Solution: Developers can also use Recursive Common Table Expression (CTE)

with the adjacency list pattern to overcome generating queries for each hierarchy

level. CTE is known as a recursive query in SQL3 or later versions. In SQL3,

developers can write it as a single query, but the performance is dependent on how

developers implement their systems. Alternatives to the Adjacency List, tree models

are proposed such as path enumeration, nested sets, and closure table. Some of these

are easier than others when querying a tree, querying children, inserting or deleting

a node, and handling referential integrity to mitigate such performance overhead.

27

2.4.0.3 Superfluous Key Anti-pattern:

Definition: It occurs when you define a surrogate key, also known as an arti-

ficial key, over a natural key from other attributes in a table that fits the database

schema. Developers learning SQL might comprehend the idea that any column named

ID is always a primary key. For instance, they might define an ID column as the only

primary key in addition to Student ID in a Student table. Developers may also fall

into a situation of having an intersection of two tables, each of which has a primary

key. They might define a surrogate key (ID column) and leave these two candidates

to become a compound key; thus, this primary key, in turn, creates duplicate rows.

Impact on data integrity: We classify this antipattern into one of data

integrity antipatterns since using the additional surrogate key creates duplicate rows,

and a normalized table should have distinct rows. However, they can define a unique

constraint over the compound key to solve the problem of duplicate rows.

Solution: Developers should select meaningful names for their primary key.

For example, the primary key of the Employees table ought to be emp_id. Devel-

opers should also use compound keys when they are suitable. Listing ?? solves the

example of Superfluous key antipattern illustrated in Listing ??.Listing ?? removes

the misunderstood ID column as the primary key and chooses the primary key to be

the compound key (emp_id, depart_id), instead.

2.4.0.4 Missing Constraints Anti-pattern:

Definition: Developers sometimes choose not to include referential integrity

constraints. When this occurs, they run into a missing constraint anti-pattern, forcing

them to apply manually referential integrity at the application level.

28

Impact on maintainability: Missing referential integrity constraints will in-

crease the time to develop the code because developers have to check referenced and

referencing tables by writing SQL select statements. As a result, this escalates main-

tenance issues, and they have to lock tables before sending any DML queries because

some other queries might go in the middle. Deleting a row or querying all children of

a given row might introduce errors to the database [10]. Queries need to include joins

for each level of the tree, so developers have to be careful and aware of what they issue

to their database schema. They have to maintain and debug nested SQL statements

of joins; thus, it minimizes the maintainability of such DBMS in a software system

and increases the likelihood of introducing errors in the database.

Impact on data integrity: In a concurrent scenario and unlike single-threaded

applications, when developers want to insert a new row into a database, they need

to search a table and then insert the row if not found. Other developers might insert

the same row while developers search for it. Developers will end up having duplicate

rows. Preventing such a race condition requires locking the table because developers

are inserting a new row, and there is no row to lock. Without referential integrity

constraints, developers have to run select queries to check before they insert a child

row and delete or update a parent row. In a concurrent scenario, it is not enough to

check with select queries. They might also need to lock the table to prevent multiple

changes from occurring. Developers do not need to run periodic quality scripts to

remedy orphaned rows because referential integrity ensures it. The referenced and

referencing tables can have mismatched rows when developers choose not to enforce

referential integrity constraints. As a result, this antipattern affects the performance,

maintainability, and data integrity factors of the database.

Solution: Enforcing referential integrity constraints minimizes the time it takes

for developers to correct and check for data integrity mistakes. Developers can avoid

29

them from bypassing the database in the first place. Referential integrity constraints

also have a cascading updates feature which cannot be replicated at the application

level. This feature lets developers to update or delete the parent row and allows the

database to carry out the same task on any child rows that reference the parent row.

Even though referential integrity constraint brings some overhead, it proved to have

better performance compared to the alternative. Developers do not need to write

SELECT queries to verify before they insert, delete or update. Developers also do

not need to lock tables to prevent associated table changes.

2.4.0.5 Metadata as Data Anti-pattern:

Definition: This antipattern occurs when developers want to support storing

variable attributes. They can do it by creating a second table, storing attributes

as rows in the form of EAV (entity-attribute-value). They use a generic attribute

table that consists of an entity or child table which is a foreign key referencing a

parent table, an attribute name defined in each row, and the value belonging to the

entity for that attribute. The reason why this antipattern is bad is that using the

EAV design sacrifices many advantages that a traditional database design would have

given developers.

Impact on performance: Using this EAV design destroys all benefits of the

conventional database design such as using SQL data types, enforcing referential in-

tegrity, and checking for consistent attribute names. Using EAV design, fetching a

single row is complex and error-prone since it involves writing many mandatory outer

joins as the number of defined attributes in the EAV design is increased. Retrieving

the mixture of metadata and data results in performance degradation because alter-

native solutions such as single table inheritance, concrete table inheritance, and class

table inheritance allow developers to reconstruct a single row using one or two SQL
30

statements and the query is not attribute-centered and is decoupled from how many

attributes are in the database schema. Chen et al. [30] investigated performance is-

sues of using EAV in a clinical database and found that performance using EAV was

three to five times slower than using the conventional database design. One industry

white paper lists EAV as a SQL code smell. Red Gate [3] proposes using XML in case

developers are unaware of the nature of data being stored so that they can utilize

XML Schema Definition (XSD) to impose XML constraints, generate indexes on the

data, and utilize XML Path Language (XPath) for retrieving specific elements within

the XML.

Impact on data integrity: When using EAV design, developers lose many

advantages that are offered by a traditional database design. This antipattern is

categorized into data integrity antipatterns because of the following reasons. Each

attribute and its value are stored as a pair in each row, so developers cannot enforce

mandatory columns because, in a traditional database, they can define a NOT NULL

constraint for a column. Instead, developers need to define a constraint for each row

that exists for a particular attribute and its value. Nevertheless, they have to develop

this constraint since this feature is not offered by SQL. In EAV design, users might

enter any value with different data types and formats, but this design cannot deter

them from inserting into the database. However, they can add a column storing a

data type as a value, but this will complicate querying the database. Unlike conven-

tional database design, EAV design does not support referential integrity because it

is applied on a column not a row. Database tables might result in rows with incon-

sistent attribute names in EAV design. Both intend to give the same information.

Developers need a way to enforce data integrity by checking for inconsistent data.

Solution: Developers should use other modeling techniques to represent their

data as EAV. They can model their data using single table inheritance or concrete

31

table inheritance [2]. With single table inheritance, the table contains a column that

determines which type this row belongs two. For instance, modeling animal as EAV,

developers might use a single table animal with a column species that tells whether

this row is a cat or dog. For concrete table inheritance, developers may create one

table for each subtype. For example, when developers model animals, they need to

create a table for cats and another for dogs with some columns exclusive for each

subtype.

2.4.0.6 Polymorphic association:

Definition: This occurs when developers use polymorphic association. One

example is when people and companies can own a car. How can you tell who owns

the car? Developers introduce polymorphic anti-pattern by adding an extra attribute

in addition to a foreign key in a table that has two parent tables. This additional

column tells what is the parent of the specified row. This is also sometimes referred

to as a union type [5]. This reason why this antipattern is bad is because it does

not enforce this association in meta data when referential integrity constraint is not

in place. The reason why this antipattern is bad is because solving the complexity

of having a large table by partitioning it creates another hurdle of having to manage

many number of table partitions.

Impact on performance: This anti-pattern is classified as one of the perfor-

mance anti-patterns even though foreign constraints have no direct effects on perfor-

mance. However, having foreign key constraints allows developers to manually create

indexes that increase performance gains and are targets for search optimizations. The

query optimizer hardly can provide good plans for joins that are used to query poly-

morphic anti-pattern because its join predicate can only be met by one of the parent

tables. Not only the optimizer might face difficulties dealing with this join, but also
32

developers have to discern the complicated logic behind it. ORM frameworks, for

instance Hibernate, allow developers to use polymorphic associations, while RDBMS

does not permit them to use polymorphic association. The benefit developers can

get from using ORMs is that the complexity behind the polymorphic association is

abstracted away by these frameworks.

Impact on maintainability: As discussed in the impact on performance,

a foreign key constraint cannot be used because a foreign key must state exactly

one table. Introducing the extra attribute causes the query to be complicated and

undermines the ability to read and understand SQL code.

Solution: This antipattern has two solution as suggested by [2]. One solution

is to simply reverse the reference of the polymorphic relationship. Instead of one

child referencing more than one parent, it can be modeled the way around. Another

solution is to create interesection tables. For instance, developers can create two

intersection tables for people and companies owning cars. These intertsection tabels

can be names as personalCars and businessCars.

2.4.0.7 Multicolumn Repeating Attribute:

Definition: It emerges when developers create multiple columns for an at-

tribute. For instance, cars can have multiple colors, and developers might define

three columns as colors for a car table. Using this anti-pattern complicates tasks

such as searching for values, adding and removing values, ensuring uniqueness, and

handling growing sets of values for an attribute in the conventional database design.

Developers address growing sets of values by altering a table to include a given number

of columns for a specific attribute. This is also sometimes referred to as a multivalued

attribute, or repeating group [5].

33

Impact on performance: Creating multiple columns for an attribute incurs

a cost in many ways because changing the structure of a table that holds data might

need locking. Locking affects performance because a user process holds a lock on the

old table and causes lock contention until this process releases the lock to the other

user process trying to access the table.

Impact on maintainability: Developers might define a new table matching

the structure of the old table and copy data from the old table to the new table,

but this transfer can take time because the old table might have large data. When

developers alter the table to have new columns, they need to revisit source programs

that interact with the database to apply changes to SQL statements so that they

can have the newly created columns. In addition, when searching for values for this

attribute, developers need to examine all columns created for that particular attribute;

thus, making the ability to read such SQL statements worse compared to using joins as

a result of creating a dependent table storing those values as rows instead of columns.

This antipattern also violates the Don’t Repeat Yourself (DRY) principle [31] and

enforces the query to be constrained to a fixed number of column values. Since using

this smell affects the readability of SQL code, we classify the antipattern as one of the

maintainability antipatterns. When adding and removing values, developers become

uncertain about which column is NULL or not, so they have to retrieve this row and

check by themselves at the application level. The database also cannot help ensuring

uniqueness when developers use a multicolumn attribute.

?? Creating a dependent table with one column for the multivalue property is

the best way. Numerous values should be stored in multiple rows rather than multiple

columns. For instance, a dependent table can be named as colors. It contains two

attributes such as car_id and color. The primary key is the combination of the two

attributes. You can insert colors for a specific car by executing this query: INSERT

34

INTO Colors (car_id, color) VALUES (1010, ’gray’), (1011, ’black’), (1011, ’blue’);

searching for cars with multiple colors becomes easier using this dependent table.

2.4.0.8 Clone Tables:

Definition: It is also called sharding or horizontal partitioning. Developers

create clone tables when they manually split one table horizontally to support scal-

ability without using the capabilities of DBMSs. This antipattern is bad because

the number of tables or columns continue to grow, since new data values can make

developers create new schema objects . For instance, partitioning can be done based

on a date attribute, so data is inserted into tables based on the value year.

Impact on performance: Those clone tables might contain large data, and

developers might need to query all clone tables at once; thus, performance becomes

worse for any query as the volume of data increases. DBMSs cannot prevent devel-

opers from inserting into wrong clone tables, but they can define check constraints to

verify whether data is added in concert with a date. However, some DBMSs, such as

MySQL, do not support check constraints, so developers have to define them in their

DDL query.

Impact on maintainability: For synchronizing data, developers might change

the value of the date attribute, making it an invalid row for this table, so they have to

move the abnormal row from one table to another by updating the row and inserting it

into its applicable table. In order to ensure uniqueness, developers must create a table

that has a super serial key that is unique across clone tables. Querying across tables is

cumbersome as time goes on because developers need to create new tables as the year,

which is the partitioned attribute, progresses, so they need to revisit their application

to update written queries to have the newly created table. This results in an added

level of the chore of maintaining the co-evolution between source programs and the
35

database. Splitting a table into many identical tables complicates maintenance tasks

[32] because creating many identical tables is a maintenance nightmare. This is the

reason why we categorize this antipattern into maintenance antipatterns.

Impact on portability: As discussed in the impact on maintainability, To

query across tables, developers union all clone tables and query that as a derived table.

Relying on Union to query across all clone tables is not always a good solution because

not all DBMSs, such as MySQL, support Union. We categorize this antipattern into

portability antipatterns.

Impact on data integrity: Developers cannot obtain referential integrity

when clone tables have a dependent table because of the aforementioned reason that

the foreign key cannot reference more than one parent. The absence of referential

integrity enforces developers to enforce it manually by adding checking constraints,

so when a check constraint is missing, data integrity is at stake.

Solution: An alternative to dividing the table into clone tables by developers,

horizontal partition, vertical partition, and dependent tables are solutions to clone ta-

bles antipattern. Horizontal partitioning (also known as sharding) is done by creating

a logical table with specifying how to form a partition, i.e., using hash partitioning,

range and etc. and how many partitions a table is going to be horizontally distributed

across disk volumes. Sharding is recommended when there are write scaling problems.

Sharding address specific use cases to improve performance. One use case is cleans-

ing old data by partitioning them into separate tables to improve performance [32].

Vertical partitioning splits the table based on columns when some columns are large

such as TEXT or BLOB or rarely required such as variable-length strings. Developers

can access some columns efficiently if they execute a query without projecting these

columns. They might sometimes use select * wildcard to query all columns without

recognizing that one column can have large a file that is seldom needed at the time

36

of the query which is intentionally affecting performance. The solution is to store

seldom needed columns outside their current table. For instance, MySQL’s MyISAM

storage engine queries a table more efficiently when the records contain fixed size,

so columns with VARCHAR data type should be stored in a separate table because

these columns affect performance.

2.4.0.9 Values in Attribute Definition:

Definition: This antipattern arises when developers restrict a column to spe-

cific values. For instance, a student table might have a status column that indicates

whether a student is FULL-TIME, PART-TIME, ON-LINE, and so on. It is not a

good practice to mix meta-data with data. Developers define such columns using a

check constraint.

Impact on performance: To get all possible values of the status column,

developers need to query its definition from the metadata. When using the ENUM

data type, developers have to parse the result set that is returned by the information

schema. When changing the list of possible values of the status column, they have to

write an ALTER statement to redefine the column definition. This results in a large

performance penalty since it is required to lock and rebuild the table.

Impact on maintainability: As discussed in the impact on performance and

portability, because ALTER statements are not supported by all DBMSs, developers

need to drop the table, recreate the table with an updated definition, and insert the

data again. If a table is referred by other entities, developers need to drop them too

before they drop the table. This complicates the task of maintaining an attribute

definition. As a result, this is why we classify this antipattern under maintainability

anti-patterns.

37

Impact on portability: As discussed in the impact on performance, the AL-

TER statement is used to modify the attribute definition. However, the ALTER

statement is not supported by all DBMS. As a result, This anti-pattern affects porta-

bility. To resolve the issue of being importable, developers have to drop the table,

redefine its definition and import its data [33].

Solution: Some DBMSs support a nonstandard data type called ENUM. Other

solutions exist, such as domains, user-defined types (UDT), and using triggers.

2.4.0.10 Index shotgun:

Definition: This antipattern occurs when developers use the indexes ineffi-

ciently. Index misinterpretations can happen in three ways: 1) using no indexes or

insufficient indexes 2) using too many indexes or indexes that do not help 3) executing

SQL statements that no index can help.

Impact on performance: Even though using the indexes brings overhead,

they have their benefits. Once developers create the B-tree, a data structure that

implements the indexes, the DB retains the index automatically. When developers

execute INSERT, UPDATE, or DELETE on a given table, the DBMS must keep

track of the index data structures for it to be consistent. As a result, their subsequent

searches utilize the index structure to get the requested number of records efficiently

and keep the tree in balance. Adding indexes to the database gives no guarantees that

the performance of the database is going to increase, so it is a tradeoff that needs to

be considered [34]. Being a victim of index shotgun forces developers to have queries

that last longer times than usual because they might not have indexes or they have

slow indexes. Thus, it affects the performance of the DB.

Impact on portability: As discussed in the impact on performance, devel-

opers can use query execution plan (QEP) to monitor their queries to check to see
38

how the DB optimizer chooses to use indexes. This antipattern also affects the porta-

bility factor because QEP and database profilers that help optimize the queries are

vendor-specific.

Solution: The solution to this antipattern is having good judgement about

whether to have indexes or remove them. Karwin outlines a checklist for applying

one’s discretion which includes measure, explain, nominate, test, optimize and re-

build. Measuring your database operations is important because it lets identify one

query that takes most time to execute. After developers identify such query, they

need to explain why it causes overhead by using optimizer for any database vendor.

The optimizer gives query execution plan (QEP) for the selected query. Then, the

developer needs to analyze the report to come up with a strategy. Nominating which

cases of the query access the table without indexes is the next step. After developers

decide to use index on any query, they need to test and evaluate changes. Optimizing

and rebuilding are used to enhance the usage of computing resoruces.

2.4.0.11 Denormalized/god Table:

Definition: This antipattern occurs when developers mistakenly put all at-

tributes in one table and avoid normalizing the table to minimize redundancy. Soft-

ware developers coin this as a god table or universal table since it includes all at-

tributes even though this well-known concept is called denormalization in the database

community.

Impact on performance: This denormalization process might result in an

update, insert, or delete anomalies, which in turn bring unnecessary updates to the

table that affect the performance of database systems. Denormalization can improve

database performance when developers apply it as an additional step between physical

and logical designs of the database and use in tandem with application requirements
39

[35, 36]. As a result, denormalization takes effect after developers normalize their

database designs. Developers need to balance between normalization and denormal-

ization because write-intensive operations require normalized data across tables in

different locations, while read-intensive operations need de-normalized data to avoid

joins that minimize the performance of the database.

Impact on maintainability: As discussed in the impact on data integrity,

even though denormalization increases performance, it makes the database vulnerable

to data inconsistencies. Developers sometimes write application code that prevents

violations of data integrity. When it occurs, they need to manually fix these inconsis-

tencies by changing data values that belong to different tables. This process affects

the maintainability factor of the database system. Generally, a normalized database

is more maintainable and stable than a denormalized one.

Impact on data integrity: As discussed in the impact on performance, the

denormalization process might result in an update, insert and delete anomalies which

in turn bring inconsistencies to database tables. Non-normalized tables have duplicate

data that developers store in different locations. Developers usually prevent such

inconsistencies by implementing logic in the high-level application. Developers may

likely update one value without updating the rest of the copies in other tables. When

it occurs, developers introduce inconsistency to one part of their database [37].

Solution: Views or table-valued functions can usually take their place [3].

Although indexed views have a higher maintenance cost, they are far preferable to

denormalization.

2.5 Categorization of SQL Antipatterns based on Query

In this section, we define all 6 SQL query antipatterns in a separate section for

each, and then we analyze and categorize their effects on performance, maintainability,
40

portability, and data integrity. Table 2.4 shows the result of the classification. We

find that 4 SQL query antipatterns are performance antipatterns. Out of 6, we

categorize only one SQL query antipattern into maintainability antipatterns. Two

antipatterns affect the portability factor of software systems. We classify one SQL

query antipattern as data integrity antipatterns.

2.5.0.1 Reference Nongrouped Columns

Definition: This antipattern appears when developers’ goal is executing a

query that includes an aggregate function such as MAX(), MIN(), and AVG() to get

an aggregate value in a group and other columns of the record where that value is

returned. Listing 2.1 shows an example of an incorrect SQL query that results in

an error or unreliable answer in MySQL or SQLite DBMSs. The antipattern occurs

when a non-aggregated column is not used in the group by clause. Two students can

have the same name, so it is a nonaggregated column, and it violates the single value

rule, whereas student IDs are unique for each student.

We recommend developers to follow the single-value rule that all columns within

a select clause of the query need to have a unique value per record group. The

aggregate functions are guaranteed to end in a single value for each group. However,

developers fall into the misconception that SQL will pick a value for attributes that

are not followed by a group by clause. They, for instance, might think that the DBMS

will have a single value per group for courseId in as in listing 2.1. The DBMS cannot

guarantee that any column mentioned in the select clause will have the same value

stored in every row for one group.

Portability Impact: This antipattern has an impact on portability because

each database vendor deals differently with this antipattern. Database vendors send

error messages when developers write database queries that violate the single-value
41

rule. If a column is neither listed in an aggregate function or group by clause, it

technically violates the rule. Some database brands figure out functionally dependent

columns when developers group them by a primary key column. For instance, SQLite

and MySQL allow such ambiguous groups when developers group by a primary key

because these database brands can determine dependencies on the fly.

Solution: Querying functionally dependent columns and using a correlated

subquery, derived table, and join are ways to solve this antipattern. Developers need

to measure the performance of some solutions. Querying functionally dependent

columns which is the easiest form of solution is done by removing ambiguous columns

from the query. For listing 2.1, developers should remove courseId from the query. An

associated inner query includes a reference to the higher-level query, so it produces

various outcomes for each record of the higher-level query [2]. However, this solution

may not be best for performance because they are just hidden cursors run once for

each record of the high-level query. Developers can utilize an inner query as an

extracted table, which creates an interim result. Then, they rely on this result for

joining against tables, but the database must save the temporary result set in a short-

term table, so this solution is still not good for performance. Developers should use

window functions instead as they usually carry out the same operations much faster,

or they should replace them with JOIN queries because they are simpler and faster.

import java . s q l . ∗ ;

public class SimpleDemoSQLJ

{

public Void NonGroupedColumn ()

throws SQLException

{

42

#SQL I t e r a t o r Student I t e r (Integer , Float , I n t eg e r) ;

S tudent I t e r s t i ;

#SQL s t i = {SELECT studentId , avg (GPA) as MyGPA, cour se Id

FROM StudentGrades

GROUP BY studentId ; }

While (S tudent I t e r . hasNext ()) {

System . out . p r i n t l n (s t i . studentID () + "�" + s t i . name ()) ;

}

}

}

Listing 2.1: Example of Reference Nongrouped Columns illustrated in SQLJ

2.5.0.2 Joining Data in Memory

Definition: DBMSs offer JOIN as a SQL query to easily and efficiently combine

two sets of data, but developers might not choose it to carry out their tasks for many

reasons and create a solution that fetches the first and second sets of data separately to

the database client and builds an algorithm using a programming language that joins

those two data sets into one within a PL’s main memory. Performance, scalability,

memory utilization, and maintainability are reasons why this approach is problematic

[38].

Performance Impact: It is slow because network bandwidth is an issue when

developers transfer a large amount of data twice over a network to perform the join.

Also, the data mass is another reason that adds a burden to the network. The

43

larger data is being transferred, the more time the network needs to handle it. The

main memory also would not handle such large data. The implementation of this

antipattern that needs to be fixed is scattered across the system; thus, it hurdles the

refactoring process of this antipattern.

Solution: When this antipattern occurs and results in problems as discussed in

the impact on performance, solving this antipattern causes the system to be unusable;

thus, it leads to loss of customers. The solution of this antipattern is not straight-

forward and requires multiple testing and fixing cycles. This approach does not only

affect performance but also maintainability and complexity because developers build

everything from scratch and they have to maintain it.

2.5.0.3 Buried Null

Definition: Forgetting or misusing Null in any DBMS is considered as a smell.

DBMSs respond and behave differently when it comes to Null. Unlike programming

languages, Null is a special value that is different from zero, false, or an empty string.

Listing 2.2 shows an example of arithmetic operation with a major attribute that

is Null. The DBMS should return NULL. Another example of this smell is when

developers equate any variable to Null using an equal sign ’=’. They should use the

phrase: is Null, instead.

Maintainability Impact: Many developers choose not to adhere to this guide-

line. Treating Null as a special value solves many unseen problems, but if they desire

to choose another way to represent the unknown, they have to make their way to

settle changes. For instance, let us say they choose 1 to represent an unknown value.

They restrict themselves to this numeric number. They cannot use aggregate func-

tions anymore, such as AVG() and SUM(), if one record contains 1. The value 1 may

be important in another column, so they select a different value on a case-by-case
44

basis for each column; thus, they have to document and do unnecessary transactions

that affect the DBMS maintainability.

SELECT major + 10 from Students ;

Listing 2.2: an SQL query

Solution: Developers should think of NULL as unique values. Developers

are used to traditional two way logic in programming, whereas in SQL, they should

think using three way logic including NULL as an additional value. NULL is neither

TRUE or FALSE. Database vendors define predicates for searching for NULL because

neither equality or inequality with NULL returns expected values.

2.5.0.4 Using UNION or DISTINCT to Remove JOIN Duplicates

Definition: Developers can witness JOIN duplicates for two reasons. They

may fall into the misconception that it is guaranteed to have the same number of

rows in a left table when they use a left join. It is guaranteed to have at least as

many rows as the left table contains. Developers also might forget to add JOIN

or ON predicates when multi-column foreign key relationships are included in the

SQL statement. For both reasons, they might use UNION or DISTINCT to remove

duplicate rows. In addition to overstating results, this antipattern will not solve the

problem, but the symptoms. This antipattern is a mistake that developers can make

when using Java with JDBC or JOOQ.

Performance Impact: Using UNION or DISTINCT with many columns and

hundreds of records is slow. Using DISTINCT requires using ORDER BY that re-

orders all result sets to remove duplicates. This antipattern is also categorized as a

performance antipattern. Using UNION or DISTINCT might solve the symptoms

45

but not the issue. It might not solve the symptoms in edge-cases. Specifically, some

duplicates might not be deleted when developers use UNION or DISTINCT.

Data Integrity Impact: As discussed in the impact on performance, develop-

ers misunderstand that using UNION or DISTINCT is guaranteed to have the same

number of rows in a left table when they use a left join. However, they might get the

same number of rows, but they are not identical rows. This antipattern affects data

integrity. Using UNION or DISTINCT might solve the symptoms but not the issue.

It might not solve the symptoms in edge-cases. Specifically, some duplicates might

not be deleted when developers use UNION or DISTINCT.

Solution: It is better if developers determine why the join query generates

duplicate rows without using UNION or DISTINCT to delete them. Then, they

should be able to fix the problem.

2.5.0.5 Pattern Matching Predicates

Definition: When any application stores documents or texts, it might offer a

search feature for its users. Developers use SQL to store a large amount of data, but

they may find difficulties when they try to offer the data at greater speeds via the

search function. This antipattern occurs when developers choose pattern matching

predicates, a feature, offered by SQL to search for texts. The Like operator is the

most widely supported among pattern matching predicates which accepts a wildcard

(%) that equals zero or more characters. Listing 2.3 shows an example of how to

search for a text using pattern matching. The search keyword is SQL and it comes

after the LIKE construct. Then, it is surrounded by wildcard signs.

Performance Impact: Pattern matching operators incur poor performance

because they cannot benefit from a traditional index. Even so, they may not find the

intended search results. However, if queries that are built for full-text search are a
46

few, sometimes developers do not need to optimize for performance since maintaining

an index is costly.

SELECT ∗

FROM databases

WHERE name LIKE ’%SQL%’ ;

Listing 2.3: an example of using Like predicate in SQL

Portability Impact: Pattern matching predicates is well suited for simple

cases, and it does not yield good results with hard ones. We recommend to avoid

SQL and use a specialized text search engine technology that is supported by different

vendors or a third party. If developers do not want to use those options, they can

build an inverted index, which is a list of all words that one might search for and

save search keywords in a table. The index associates these words with the text

entries that have the respective word in a many-to-many relationship. For instance,

a keyword such as SQL can exist in many database names, and every database name

may have other tokens.

Solution: Developers should use vendor extensions for full text search ca-

pability or implement their own search functionality. These vendor extensions are

not equivalent and offer different features. On the other hand, implementing search

functionality can be done using inverted index [2].

2.5.0.6 Random Selection

Definition: This antipattern occurs when developers want to fetch a sample

row from the database. The most popular SQL stratagem to choose an arbitrary

record from the result of a SQL query is to put the query in order randomly and

choose the first sorted row. Listing 2.4 shows an example of such a query.

47

Performance Impact: Listing 2.4 has a vulnerability because it uses RAND(),

as a nondeterministic expression that sorts without respect to the index. This is a

problem because the query does not use an index, and the DBMS does a table scan,

instead which manually sorts all rows by saving them into a temporary table and

swapping them physically. An index-assisted sort is much faster than a table scan

sort, and the performance increases proportionally to the size of the data set. We

categorize this antipattern as one of the performance antipatterns.

SELECT ∗

FROM Students

ORDER BY RAND() LIMIT 1 ;

Listing 2.4: an example of fetching random row in SQL

Solution: Developers should rely on the chosen primary key and choose its

value randomly using a variety of techniques as suggested by ??. They can also count

number of the rows and choose a random row as an offset between zero and count.

2.6 Categorization of SQL Antipatterns based on Security Breaches

In this section, we define and classify 3 SQL security breaches based on the

four nonfunctional requirements: performance, maintainability, portability and data

integrity. Table 2.5 shows the result of the classification. We classify all of them

as performance antipatterns. We also identify 3 SQL antpatterns as antipatterns

affecting data integrity. None of these antipatterns have an impact on maintainability

and portability of the system factors.

48

Ta
bl

e
2.

4:
C

at
eg

or
iz

at
io

n
of

SQ
L

Q
ue

ry
A

nt
ip

at
te

rn
s.

R
ef

er
en

ce
A

nt
ip

at
te

rn
P
er

fo
rm

an
ce

M
ai

nt
ai

na
bi

lit
y

P
or

ta
bi

lit
y

D
at

a
In

te
gr

it
y

[2
],
[2

7
]

R
e
fe

r
e
n
c
e

N
o
n
g
r
o
u
p
e
d

C
o
lu

m
n

X

[3
8
],
[2

0
]

J
o
in

in
g

D
a
t
a

in
M

e
m

o
r
y

X

[2
],

[3
],

[2
7
]

B
u
r
ie

d
N

u
ll

X

[2
0
]

U
s
in

g
U

n
io

n
o
r

D
is

t
in

c
t

t
o

R
e
m

o
v
e

J
o
in

D
u
p
li
c
a
t
e
s

X
X

[2
]

P
a
t
t
e
r
n

M
a
t
c
h
in

g
P

r
e
d
ic

a
t
e
s

X
X

[2
]

R
a
n
d
o
m

S
e
le

c
t
io

n
X

49

2.6.0.1 Vulnerable Query

Definition: This antipattern becomes apparent when unsanitized input is

passed to a query at run time. For instance, when an input string comes from an

unreliable user and is appended to a database query, this final query would be catego-

rized as vulnerable query. This antipattern is bad because it affects the confidentiality,

integrity and authorization of the database system [39].

Performance Impact: The findings of Lyn’s work [21] revealed that cleaning

the sensitive input can increase runtime and energy usage by 18% and 16%. How-

ever, their analysis indicated that the cost was quite low. For the most part, the

improvements in performance did not reach statistical significance. Calling the sani-

tiazation API along incurs performance overhead alone when authors want to secure

the concatenated query. For these reasons, we categorize this antipattern as one of

performance antipatterns.

Data Integrity: This query has an impact on data in general. if one attacker

is able to gain access using such query, the stakes will be high because data might

be lost or altered. One reason is enough to place this antipattern into antipatterns

affecting data integrity.

Solution: This antipattern can be solved using sanitization or parameter-

ized query. The authors sanitized the input query using encoding schemes from the

OWASP Enterprise Security API (ESAPI) Toolkits [40]. The encoding routines clean

the provided input and use the database’s suitable escape technique. The DBMS will

not mix up the sanitized input with the developer’s SQL code, preventing SQL in-

jection vulnerabilities. Karwin [2] explained how the antipattern can be solved using

parameterized queries although Lyn et al [21] prefers sanitizing the input because

parameterized queries incur performance overhead.

50

2.6.0.2 Readable Passwords

Definition: Some applications give users the option to reset their password

by requesting an email that shows their password in clear text. This is a serious

database design issue that causes a number of security risks, including the possibility

of unauthorized users gaining privileged access to the application. This antipattern

occurs when a password is stored as a string literal in an insert or update statement.

For instance, “SELECT * FROM Users WHERE user id = ‘123’AND password =

‘mypassword’ ”.

Performance Impact: Lyn et al [21] showed that this antipattern has a

slight impact on performance. The runtime and energy were increased 0.5% and

0.1% on average. This is the reason why we categorize this antipattern as performance

antipattern.

Data Integrity: Exposing passwords and storing them in a database allows

attackers to search for readable password in logs and steal them. Then, attackers can

have access to a target system by utilizing this readable password and gain access to

data which makes data integrity at risk.

Solution: To fix this antipattern, developers should use hash and salt to hide

the readable passwords before keeping it in the dataset as suggested by Karwin [2].

51

Ta
bl

e
2.

5:
C

at
eg

or
iz

at
io

n
of

SQ
L

A
nt

ip
at

te
rn

s
ba

se
d

on
Se

cu
rit

y
B

re
ac

he
s.

R
ef

er
en

ce
A

nt
ip

at
te

rn
P
er

fo
rm

an
ce

M
ai

nt
ai

na
bi

lit
y

P
or

ta
bi

lit
y

D
at

a
In

te
gr

it
y

[2
1
,
2
]

V
u
ln

e
r
a
b
le

Q
u
e
r
y

X
X

[2
2
]

U
n
b
o
u
n
d
e
d

Q
u
e
r
y

X
X

[4
1
]

R
e
a
d
a
b
le

P
a
s
s
w

o
r
d
s

X
X

52

CHAPTER 3

Framework-Specific Antipatterns (Drafted from [1])

In this section, we review the literature on antipatterns that occurred in various

application domains. We first discuss problems of misusing Active Record pattern,

Model View Controller (MVC), and Service-Oriented Architecture (SOA) antipat-

terns in section 3.1. These antipatterns are architecture-specific and cause different

types of problems. We find a couple of antipatterns and the target domain in which

the antipattern appears. Linares-Vásquez et al. [13] shows that it is possible to dis-

cover new antipatterns when developers test a different framework. We then review

ORM related performance antipatterns in section 3.2. We find antipatterns, relating

to data manipulation language (DML), main memory-related, database access (such

as Hibernate), and associations between classes.

3.1 Architecture-Specific Antipatterns

Several research studies on design antipattern characterization and detection are

domain-specific. In this section, we list architectural software antipatterns. One study

addresses antipatterns that are specific to a web MVC architecture [41]. They

conducted a layer-focused survey, role-focused survey, and unstructured interviews

with industrial developers to find the following system architecture antipatterns for

web MVC architecture:

• Brain repository antipattern, AKA "Complex Logic in the Repository": This

specialized object is allocated to help persist other objects in the database using

SQL or JPQL (Java’s JPA query language). However, when a repository class

53

has complicated business logic or even complex queries, some survey participants

confirm this class as a smelly class.

• Fat repository antipattern, AKA "a Repository managing too many entities":

An Entity and a Repository have a common one-to-one relationship, so de-

velopers should have a separate repository per class domain. If a repository

deals with more than one entity at once, this might lead to low cohesion and

maintenance problems.

• Laborious repository method antipattern, AKA "a Repository method having

multiple database actions": if a single method sends more than one database

request, it would be an antipattern since it affects the method readability.

• Meddling service antipattern, AKA "Services that directly query the database":

Developers should place in repositories instead of services because services

contain code that implements business rules and relationships among domain

classes.

We believe these antipatterns relate to Repositories or Data Access Object

(DAO) classes within MVC pattern [42] because these classes are responsible for deal-

ing with the communication towards the databases in MVC applications. We find

that other antipatterns identified in [41] such as promiscuous controller and brain

controller are not related to problematic database code, so we omit them from the

list. The authors confirmed those antipatterns with an industry expert in Spring

MVC as problematic. They also propose detection strategies and implement a tool

that can find these antipatterns using those detection strategies.

Another study provides two catalogs of service-based antipatterns for two ar-

chitectural styles, including service component architecture (SCA) and web services

of service-based systems (SBSs) based on Service Oriented Architecture (SOA).

54

Palma et al. [43] classify service antipatterns that are prevalent in SCA or web ser-

vices. SCA abstracts away different communication standards that service consumers

can call via APIs such as JSON or SOAP. They classify antipatterns based on whether

they are intra-service or inter-service. They also classify antipatterns by whether the

antipatterns are static, dynamic, or both. The catalog in SOA includes the following

database-related web service antipatterns:

• Chatty Web Service.

• CRUDy Interface.

• Data Web Service.

• Maybe It’s Not RPC.

We believe the link between Chatty Web Service antipattern and the database

is the fact that Chatty Web Service is an anemic object or model that contains

numerous attribute values, also known as setters and getters, and lacks logic. It is

the class in a database. CRUDy Interface is derived from Chatty Web Service. It

is related to database because the antipattern involves the basic database operations

such as create, read, delete and update. In a later section, we categorize and explain

the CRUDy Interface, which is a mapping between database entries and objects, and

also Chatty Web Service, and Maybe It’s Not RPC antipatterns. The catalog also

lists the following database-related SCA antipatterns:

• Sand Pile.

• Chatty Service.

• Data service.

We believe the link between sand pile and database is that when Sand Pile oc-

curs, its service comprises of more than one service components sharing common data.

Since these service components access the same data, we consider this antipattern as

problematic database code. Chatty service refers to the fact that services exchange a
55

lot of small data. We also include this antipattern to database related antipatterns

because this antipattern sends and receives data.

Bogner et al. [44] create a comprehensive repository of service-based antipat-

terns for both SOA and Microservice Architecture systems. They review 14

research papers in the literature and distilled 36 SBS related antipatterns from them.

Bogner et al. [44] classify antipatterns into two dimensions: the abstraction level

of their applicability and influence, and the domain in which antipatterns have an

impact such as architecture, application, and business. Their categorization differen-

tiates antipatterns that belong to either SOA, MA, or both. They generate a JSON

schema and utilize it to record these antipatterns. Antipatterns found in the pre-

vious study are included in the work of [44]. Bogner et al. [44] study additional

antipatterns related to persistence mechanisms. These antipatterns are data-driven

migration, on-line only, shared persistency, and transactional integration.

Another similar study creates a catalog of smells on cloud-native applications

based on microservices. Taibi et al. [45] analyzed 265 bad practices conducted by 72

experienced developers to produce a catalog of 11 antipatterns. Inappropriate ser-

vice intimacy and shared persistency are database-related antipatterns of the catalog.

They apply an open and selective coding procedure [46] to obtain the antipattern cat-

alog from the developers’ opinions. Taibi et al. [45] consider practice as an antipattern

if it degrades characteristics of software quality such as maintainability, extensibility,

understandability, reusability, and testability of the developed system. They create a

description for each identified antipattern, propose a detection strategy, and explain

the problem that it may cause along with its adopted solutions.

We shall explain and classify the architecture-specific antipatterns in more detail

in sections 2.4 and 2.5.

56

3.2 ORM Antipatterns

Many authors have investigated object-relational mapping concerning software

design. From the point of the pragmatic programmer’s view, Karwin [2] provides an

overview of SQL design anti-patterns, but he explicitly spots one antipattern that is

related to ORM. He only studies the active record antipattern. The active record

antipattern mirrors an object to a given row in a relational table. Developers usually

deal with the active record antipattern when they develop a web application using

a web application framework based on the model-view-controller (MVC). Being a

popular architectural design pattern for web applications, MVC separates concerns

for better reuse of components, but when developers treat the M of the MVC as the

active record pattern, it becomes an antipattern, and three issues occur as a result of

adopting this approach:

• Models and database schemas are tightly coupled. Whenever a schema evolves,

the model reaches an inconsistent state.

• A class with CRUD operations (CREATE, READ, UPDATE, DELETE) reveals

those operations to any children classes inheriting from it, permitting direct

database access, minimizing cohesion.

• Active record encourages anemic data model, an antipattern identified by Mar-

tin Folwer [47]. Active record classes exclude business logic implementation and

include only data access objects without behavior. The active record pattern

can be an antipattern if developers misuse it.

Karwin [2] excludes performance issues because the scope of his book is to

classify missteps people make while working with SQL.

Some work concentrates on how developers implement ORM code. Chen et al.

[19] show that ORM anti-patterns involve repetitive structures such as loops, which

are considered as memory-efficient in the source code but not for the database access
57

part. Being able to be optimized by SQL engines, set-based queries usually promote

productivity and communication. Chen concentrates on two ORM performance anti-

patterns: the eager fetching problem and the row-by-row problem [19]. We will further

analyze and categorize these antipatterns in 3.4.1 and 3.4.2 .

In a later work, Chen et al [48] document 5 framework-specific antipatterns

of database access code. They implement these 5 antipatterns to their developed

static bug detection tool, called DBChecker [19]. These antipatterns are the source of

both functional and non-functional problems of the studied industrial systems. They

analyze a bug using its impact on the system, which is functional or non-functional,

its description, an example, and the developer’s awareness towards it. With the

help of developers’ feedback, they found the following database access antipatterns

in Hibernate:

• Nested transaction.

• Unexpected transaction behavior.

• Inconsistent transaction read-write level.

• Sequence name mismatch.

• Incorrect SQL orders.

Yang et al. [22] made a comprehensive study of 12 ORM applications which

led them to generate 9 generic ORM patterns that address the performance and

scalability of web applications. We omit the Application Functionality Trade-Off

(FT) and Content display trade-offs (DT) from the categorization because we only

focus on database-related antipatterns. The following is a list of 7 database-related

antipatterns that they identified:

• Inefficient computation (IC).

• Unnecessary computation (UC).

58

• Unnecessary data retrieval (UD): Four types of redundant data problems are

analyzed in Chen’s study [49] as follows:

– Select all. ORM query language, i.e., Hibernate Query Language (HQL),

select all columns of a database table even though developers select only

some attributes from an entity class.

– Update all. Once developers update some object attributes of a class, the

ORM updates all associated columns of an object attribute.

– Excessive data. Unlike select all, excessive data is concerned with querying

associated entities (more than one entity that participates in an association

such as @ManyToOne, and other types).

– Per-transaction cache. ORM queries are repeatedly generated for each

transaction to get a result even though the result is not changed. Such

queries are redundant across transactions and, their results can be found

in a cache.

• Inefficient rendering (IR).

When a view file renders a set of objects, it indicates a balance that must be

taken into consideration between performance and readability .

• Missing fields (MF):

• Missing Indexes (MI):

• Inefficient data accessing (ID).

The causes of inefficiencies of these antipatterns are database design problems,

application design tradeoffs, and ORM API misuses. Instead of analyzing the client-

side, Yang et al [22] analyze the performance issues on the backend because they

suppose it is a solution to having efficient ORM applications.

We shall explain and categorize these ORM antipatterns of database access

code in section 2.5
59

3.3 Categorization of Framework-Specific Antipatterns based on Schema

In this section, we describe and categorize 4 framework-specific schema antipat-

terns based on the underlying four system factors of performance, maintainability,

portability, and data integrity. Table 3.1 shows the result of the classification. We

identify 3 schema antipatterns as performance antipatterns. Two of these antipatterns

are ORM antipatterns, while the remaining antipattern is architectural. Out of the 4

studied antipatterns, we categorize 3 schema antipatterns into maintenance antipat-

terns. Two of these antipatterns belong to ORM antipatterns, and the remaining

antipattern is an architecture-specific antipattern. We categorize one schema an-

tipattern into portability and data integrity antipatterns. We define all the schema

antipatterns in a separate section for each and then discuss their effects on perfor-

mance, maintainability, portability, and data integrity.

3.3.1 Shared Persistency/data Ownership:

Definition: Various microservices communicate with the same database or

even worse, they access the same entities of the same database without any concur-

rency control [45]. This is also proposed as a data ownership antipattern. Various

services should not directly share data unless the database has strong atomicity, con-

sistency, isolation, and durability (ACID) properties, and they should keep their data

private and accessed via APIs [50]. Richardson term this antipattern as a shared

database antipattern.

Impact on performance: All services accessing the same database may im-

pede with one another [51]. For instance, one service might execute a long transaction

that places a lock on any table of the shared database. It degrades the overall per-

formance of the DBMS, so we classify it as one of the performance antipatterns.

60

Impact on maintainability: As discussed in the impact on performance,

services access the same relational database, or even in the worst scenario the same

entities of the same relational tables. This antipattern increases the coupling between

services and lessens team and service independence. Working on different services that

share the same database results in schema changes that need to be maintained and

coordinated between developers. Maintaining schema changes for a shared database

between services is more troublesome than maintaining a database per service. This

antipattern complicates maintenance, and that is why we categorize the antipattern

into maintenance antipatterns.

Solution: Database per service is another approach that eliminates coupling

between services. Unless developers prefer ACID guarantees that are offered by the

DBMS, they should choose the other approach.

3.3.2 Active Record Anti-pattern:

Definition: The active record design pattern as a persistence layer that reflects

an object to a specific record in RDBMS. Being a popular architectural design pattern

for web applications, model-view-controller (MVC) separates concerns for better reuse

of components, but when developers treat the M of the MVC as the active record

pattern, it becomes an antipattern because Active Record couples models to the

schema, exposes CRUD functions and encourages anemic domain model [47], treating

models as simple access objects.

Impact on performance: Because rows in a database and objects in an

OOPL are not loosely coupled, the database needs to be statically connected most of

the time. This results in performance bottlenecks when thousands of users establish

many databases hits from any domain business model [52].

61

Impact on maintainability: Using the active record antipattern increases

the coupling between objects and database entities. Developers have to maintain

the database and objects at the same time; it complicates the maintainability of the

system.

Impact on portability: Since the active record antipattern increases the

coupling between objects and database entities as we discussed in the impact on

maintainability, the DBMS becomes harder to decouple itself from the application

program. Thus, developers cannot switch their DBMS vendors i.e., from MySQL to

Postgres, affecting the portability of the DBMS.

Impact on data integrity: Domain entities know about their own persistence

in software systems implemented using such a pattern. Objects of domain entities

tend to be more like SQL objects [52]. Using the active record antipattern reveals

CRUD operations to other programmers in the team because they can have access to

the database (table) from any entities. They might utilize the model class to bypass

some intended usage that violates business requirements. It affects the data integrity

of the underlying DBMS.

Solution: The solution is to avoid misusing Active Record pattern. As

suggested by [2], understanding the model by decoupling domain model classes from

DAO classes, consulting with information expert, utilizing controllers and views to

use domain classes and disconnect their interactions from databases and putting the

model into action help solve the Active Record antipattern.

3.3.3 Fat Repository/Generic Repository:

Definition: Fowler [42] defines a repository as the intermediary that separates

the domain and data mapping layers and is represented as an in-memory domain

object collection. In other words, a repository encapsulates persistence logic. This

62

antipattern occurs as a result of relating a repository to many entities. In other words,

developers end up having a generic repository interface that consists of methods, such

as get, update and save. They think that it applies to all entities of their business

domain. They implement the interface by creating a generic repository class for all

entities. An entity should be related to an equivalent repository class that implements

its specific repository interface which is unique and part of the domain.

Impact on maintainability: Listing 3.1 shows an example of a generic repos-

itory. T can be any type of object. Using such a repository causes low cohesion and

makes maintenance harder because it does not adhere to a contract between domain

objects and data stores. Instead, a generic repository passed as a dependency to enti-

ties excluding specific database queries and tend to have CRUD operations imitating

the job of ORM [53]. It makes the generic repository a useless abstraction. The ORM

is responsible for the generic query mechanism. The repository pattern addresses spe-

cific queries for the business domain; thus, a repository class is a part of the domain

model. It is not easy to work with composite keys with a generic repository.

public interface IRepos i tory<T>

{

IEnumerable<T> GetAll () ;

IEnumerable<T> Find (Express ion<Func<T, bool>> query) ;

T GetByID(int id) ;

void Add(T item) ;

void Update (T item) ;

void Delete (T item) ;

}

Listing 3.1: an example of using generic repository in Java

63

Solution: The proposed solution is that developers should use one repository

per an entity, so they should create one repository for each entity. This would actually

cause an increase in cohesion and solve maintenance problems.

3.3.4 Missing Fields (MF):

Definition: This antipattern concerns the decision on what object fields are

persisted in the database. Missing fields are attributes that are selected to be transient

where they should be persisted by the application. If developers choose some transient

object fields or attributes, they can decide that they do not these attributes after

executing the application. Developers can derive these transient attributes from other

persisted attributes using some way of calculation, which can be expensive if repeated

many times.

Impact on performance: Yang et al [22] show that transient attributes incur

computation costs when authors derive them. The location_name of a string diary

in Openstreetmap [54] can be derived from using latitude and longitude attributes.

Developers can cache the result of the computation, but using a cache is not rec-

ommended, which is confirmed by SO developer, using core data framework in Swift

because it cannot lead to performance gains [55]. Instead, we can persist in transient

attributes because we avoid the need to recompute the result every time developers

request access to such transient attributes. Yang et al [22] explain why developers

need to eliminate unnecessary computation overhead by storing the result of loca-

tion_name of the diary in the database. This antipattern affects the performance of

a software system.

Solution: Profiling software systems is critical when execution time takes

longer than expected. Developers might create a correlated column for a database

table that is as a result of using other columns in the table. Removing such columns

64

enhances the time it takes to execute any operation related to the modeled table.

For instance, removing location string from Openstreetmap [54], which is created as

a result of using longitude and latitude columns in the same table, reduces execution

time for the overall software system.

3.4 Categorization of Framework-Specific Antipatterns based on Query

In this section, we define all 21 framework-specific query antipatterns in a sepa-

rate section for each, and then we analyze and categorize their effects on performance,

maintainability, portability, and data integrity. Table 3.2 shows the result of the clas-

sification. We found that 13 query antipatterns could be classified as performance

antipatterns. Two third of these performance antipatterns are ORM antipatterns, and

the remaining are architecture-specific antipatterns. Out of 21, 9 query antipatterns

are categorized into maintainability antipatterns. More than half of the maintain-

ability antipatterns are architecture-specific antipatterns. A few antipatterns affect

the portability factor of software systems, and all of them are architecture-specific

antipatterns. Some antipatterns are found to have an impact on data integrity. Only

one of these antipatterns belongs to ORM antipatterns, and the rest are architecture-

specific antipatterns.

3.4.1 The Eager Fetching Problem

Definition: The Eager Fetching Problem, also known as Excessive Data, brings

unnecessary associated data with the queried object, and when the anti-pattern is alle-

viated, the system under study exhibits 71% increase in performance [19]. Listing 3.2

shows that a university class is associated with a student class (access to the univer-

sity class will lead to access to the student class) and includes students as a collection

of instances that are eagerly loaded. Listing 3.3 shows if we run Excessive.java, using

65

Ta
bl

e
3.

1:
C

at
eg

or
iz

at
io

n
of

Fr
am

ew
or

k-
Sp

ec
ifi

c
Sc

he
m

a
A

nt
ip

at
te

rn
s.

R
ef

er
en

ce
A

nt
ip

at
te

rn
T

yp
e

P
er

fo
rm

an
ce

M
ai

nt
ai

na
bi

lit
y

P
or

ta
bi

lit
y

D
at

a
In

te
gr

it
y

[4
5
,
5
0
]

S
h
a
r
e
d

P
e
r
s
is

t
e
n
c
y
/
D

a
t
a

O
w

n
e
r
s
h
ip

A
r
c
h
i
t
e
c
t
u
r
e

X
X

[2
]

A
c
t
iv

e
R

e
c
o
r
d

O
R
M

X
X

X
X

[4
1
]

F
a
t

R
e
p
o
s
it

o
r
y
/
G

e
n
e
r
ic

R
e
p
o
s
it

o
r
y

A
r
c
h
i
t
e
c
t
u
r
e

X

[2
2
]

M
is

s
in

g
F
ie

ld
s

(
M

F
)

O
R
M

X

66

ORM configuration that is set in Listing 3.2, the execution of this program would cre-

ate database access code to extract university objects and students objects from the

database because the fetch type is set to the EAGER setting on the student instance

variable in University.java, although we do not use Student objects in Excessive.java.

We categorize this antipattern into SQL query smells since an ORM generates SQL

queries from OOPL code and using either annotations, declarations, or a separate

XML file for the persistence mechanism.

Performance Impact: The author [19] confirms the performance impact by

having unnecessary data retrieval in Excessive.java as illustrated by listing 3.3. They

insert 300 rows into one table and 10 rows for each one of those 300 rows in the

associated table. The response time before repairing Execssive.java is 1.68 seconds,

while repairing the performance antipattern brings down the response time to 0.48

seconds, leading to a 71% performance improvement. As a result, this antipattern is

categorized as one of the performance antipatterns because it drastically affects the

system performance running such code patterns. The N+1 selections problem has

received quite attention in the industry. Munhoz [56] explains why loading initially

the full collection is not advised. Loading the full collection would waste a lot of

resources unnecessarily and would maximize lock time in the database which can

have a direct influence on the concurrency of the application.

Solution: Changing the fetch type from EAGER to LAZY (the original

setting in University.java) is one method to remedy this performance anti-pattern as

suggested by Chen et al [19]. The author conducts the experiment of having 300 rows

to analyze the proposed solution by decreasing the response time from 1.68 seconds

to 0.48 seconds.

@Entity

67

@Table (name = " un i v e r s i t y ")

public class Unive r s i ty {

@Id

@Column(name=" un ive r s i ty_id ")

private long un i v e r s i t y I d ;

@Column(name="university_name")

private St r ing universityName ;

@OneToMany(mappedBy=" un i v e r s i t y " , f e t ch = FetchType .EAGER)

private List<Student> student ;

Void setUnivers ityName (St r ing name){

this . univers ityName = name ;

}

. . . o ther s e t t e r s and g e t t e r s f unc t i on s .

}

Listing 3.2: University.java file that shows how to associate entities using eager loading

for (Un ive r s i ty u : u n i v e r s i t yL i s t){

u . getUniversityName () ;

68

}

Listing 3.3: An application program, Excessive.java, that generates unnecessary data

retrieval

3.4.2 Row-by-row

Definition: The row-by-row, or one-by-one, anti-pattern occurs when devel-

opers perform a task that requires a large number of requests. It is derived from the

Empty Semi Trucks anti-pattern [57], which happens when performing a task that

requires a large number of requests. This antipattern can occur in the context of

ORM and it is also known as joining data in memory or N+1 query problem because

developers mistakenly try to join data from two different queries in a main memory

of applications.

for (Un ive r s i ty u : u n i v e r s i t yL i s t){

for (Student s : u . getStudent (){

s . getStudentName () ;

}

}

Listing 3.4: An application program, RowByRow.java, that generates a huge number

of select statements

Performance Impact: RowByRow.java, as in listing 3.4, illustrates a source

program that loops through all the universities (universityList) and gets the student

attribute, which is a name, for all students in each university. If we run RowBy-

Row.java using ORM configuration of listing 3.2 except that we change extract type

69

to LAZY loading instead of EAGER, it would create one select student statement for

each university object. Too many SQL select statements are generated and sent to

the database which impacts the overall performance. The author [19] experiment the

performance by filling the database with 300 records in one table and 10 records for

each one of those 300 records in the associated table. They confirm the performance

impact by creating 10 * 300 select student statements for each university object as

illustrated by RowByRow.java in the same listing. The response time before repairing

RowByRow.java is 1.68 seconds, while repairing the performance antipattern brings

down the response time to 1.39 seconds, leading to a 17% performance improvement.

The reason why this antipattern is coined as the N+1 query problem is that it

generates one select statement for the outer query and then N additional selects. It

is slow because it can generate hundreds or thousands of queries for N. The nested

select problem is still an issue and a subject for online blogs [58]. For every query

that is sent to the database, it incurs database execution time, network response time,

and bandwidth, which are multiplied by the number of queries. The bottleneck is the

network response time, while the previous antipattern’s limiting factor is bandwidth.

The antipattern belongs to the category of performance antipatterns. Listing 3.5

shows an example of N+1 query problem.

for each row from outer query :

for each row from i nne r query :

j o i n r e s u l t s to new data s t r u c tu r e from query 1 row and query 2 row

end loop

end loop

Listing 3.5: A pseudocode that shows the join operation

70

Solution: The proposed solution is to use batching with a specific number of

queries to limit the number of queries in each batch.

3.4.3 Inappropriate Service Intimacy

Definition: This antipattern is identified when a microservice incessantly tries

to query the private data owned by other services instead of using its data. A mi-

croservice’s data should be private and accessed via an API gateway or using its

API. Maintainability Impact: The coupling can be increased if the microservice

connects to the private data of other microservices. With tight coupling, when devel-

opers make changes to one service, other services need to be changed as well; thus, it

is slow for developers to build, test, and deploy tightly coupled services. Developers

have to maintain services as they would with a monolithic application because the

core benefit of microservice architecture is wasted.

Data Integrity Impact: By using a database per service pattern, developers

might experience catastrophic issues caused by tight coupling such as data inconsis-

tencies and/or data loss. For instance, a service trying to connect other services’

databases can change their entries without changing their own. This antipattern is

certainly classified into a group of antipatterns that affects data integrity and main-

tainability.

Solution: Developers should consider combining microservices as suggested

by [59].

3.4.4 Brain Repository

Definition: A repository is simply an in-memory collection of objects. This

antipattern is classified under query antipattern since it supports the querying capa-

bilities of in-memory objects.

71

Portability Impact: Repositories loosely decouple business domain and per-

sistence mechanisms. When developers mix business logic and database related code,

they create a brain repository antipattern that adds a pointless abstraction on top of

other abstractions such as ORM. As a result, it affects the portability factor of such a

system. For instance, because of how business domain and persistence code is tightly

coupled, developers cannot change their underlying persistence framework, i.e., from

the Entity framework to Hibernate.

Solution: Developers should place the sophisticated logic in one method and

the SQL query in another. They can move the sophisticated logic to a COMPONENT

if it is used by other repositories. This solution is proposed by [60].

3.4.5 Laborious Repository Method

Definition: Developers call more than one method within a repository class

because they might join data to satisfy a business rule/logic. Developers should apply

at a higher level.

Performance Impact: In general, calling a database more than one time

within the same method repository might cause performance issues. Since this an-

tipattern occurs in an MVC web architecture, resources such as network, bandwidth,

and possibly a database are shared. However, sometimes it is required to add a call

to a database within a repository method for validation [61]. For instance, developers

might check user credentials before they proceed and fetch database records.

Solution: They should separate database methods that reside in one repos-

itory class into independent methods as suggested by Aniche et al [60]. The newly

formed methods may or may not be private to that REPOSITORY; for example, the

new method may be public if a persistence action may be utilized independently.

72

3.4.6 Meddling Service

Definition: This antipattern is classified under query smells because a service

queries a database directly. In MVC architecture, the service layer should not directly

expose database internals to the application and should delegate another layer,.i.e, a

repository, or data access object (DAO) to query the database.

Maintainability Impact: Three reasons why a service layer exists are the

separation of concerns, security, and loose coupling [62]. By calling the database

through the service layer, developers overlap the service and persistence layer, causing

tight coupling, possible code duplication, scattered bugs, and code inflexibility [63].

Portability Impact: As discussed in maintainability impact, by mixing busi-

ness logic with data access details, developers couple the business and persistence

layers. For instance, let us suppose that developers have 50 methods in a controller

class, which in turn calls 20 methods in a Data Access Object (DAO) layer. If they

decided to change the DAO layer, which the controller relies on to support different

persistence strategies, they would also change the code, which resides in the controller

class. Thus, it is harder to maintain such code and ported to another DBMS. The

antipattern affects the data integrity, maintainability, and portability of the DBMS.

Data Integrity Impact: As discussed in maintainability impact, having

database queries inside a service layer degrades security and exposes the database

to the attacker [62]. Developers should abstract away the service layer from any per-

sistence details; thus, it adds an extra layer that is isolated from the database and

enhances the security of the overall system by hiding persistence details from the

attacker when using the application. As a result, the data integrity of such a service

is at stake.

Solution: Developers should place SQL queries in repository classes [60].

73

3.4.7 Chatty (Web) Service

Definition: Developers complete one abstraction by invoking many fine-grained

operations. When methods calls or data web services are abundant to complete one

abstraction, this antipattern is called chatty web service. Such methods are typically

attribute-level setters or getters. This antipattern is classified as one of the query

antipatterns because it relies on data web service as an access point to query. For

instance, instead of returning all attributes of user status in a user’s profile such as

wins, losses, and emotions in a game app using setUserProfile() and getUserProfile(),

developers can call setters and getters of each attribute of a user profile. They end

up having six setters and six getters, depending on the number of attributes. Listing

3.6 shows an example of setting and getting the emotion attribute.

Performance Impact: This antipattern results in poor performance because

it is a variant of the chatty interface where developers have to communicate with its

operations multiple times through service to fulfill one overall process. One process

may require some fine-grained operations to be called, and it depends on how granular

operations are within such an interface. Each fine-grained operation has a penalty

in terms of performance [64]. Because this chatty interface usually contains a high

number of fine-grained operations, it becomes confusing. Developers are unaware of

the order in which they can invoke these operations. It is harder to change the order

of method calls, leading to an overall higher response time [43].

Maintainability Impact: Because this chatty interface usually contains a

high number of fine-grained operations, it becomes confusing. Developers are unaware

of the order in which they can invoke these operations. If developers combine these

operations into fewer coarse-grained operations, these operations would be easier to

be invoked; thus, it makes the interface more readable and understandable [64]. This

74

antipattern complicates the system maintainability. As a result, it is harder to change

the order of method calls.

Solution: Developers should specify parameters of the web service or API

call to return only intended data pertaining to selected parameters. This would solve

the performance overhead. The API documentation normally explains what kind of

parameters it supports so that developers can choose needed parameters.

f unc t i on getEmoticon () {

i f ($ th i s−>emoticon) {

re turn $th i s−>emoticon ;

}

$stmt = $th i s−>conn−>prepare (’SELECT� emoticon�FROM� p r o f i l e �WHERE� id =: u s e r i d ’) ;

$stmt−>execute (array (’ u s e r i d ’ => $th i s−>use r i d)) ;

$row = $stmt−>fe t ch () ;

r e turn $th i s−>emoticon = $row [’ emoticon ’] ;

}

func t i on setEmoticon ($emoticon) {

$stmt = $th i s−>conn−>prepare (’UPDATE� p r o f i l e �SET� emoticon=: emoticon�WHERE� id=� : id ’) ;

$stmt−>execute (array (’ id ’ => $th i s−>user id , ’ emoticon ’ => $emoticon)) ;

r e turn $th i s−>emoticon = $emoticon ;

}

Listing 3.6: Example of Chatty Web Service Interface antipattern

75

3.4.8 CRUDy Interface

Definition: This antipattern occurs when SOA and distributed system archi-

tecture developers reveal business functionality wrapping data access and providing

a complete abstraction that involves more than one operation (an aggregate of more

than one operation). Developers design service with RPC-like behavior that imple-

ments CRUD operations instead of sending a well-defined message that dictates the

action to be taken using REST. Listing 3.7 shows an example of CRUDy Interface

that does not encapsulate knowledge about its processes.

Performance Impact: Calling these CRUD operations can entail chatty re-

sponses that affect system performance. This antipattern can cause API chatty service

antipattern to occur if multiple CRUD operations are inevitable to finish one abstrac-

tion since multiple calls are required to attain one objective [43]. It can appear in

.NET (i.e., using VB.net).

Data Integrity Impact: As discussed in performance impact, services im-

plementing CRUDy interfaces reveal business functionality. Developers should not

expose services to consumers in this manner because they allow mixing internal be-

havior and data with public interfaces. Developers also need to know the order in

which they can call these operations. If not, the service can make the data to be

inconsistent. For instance, when developers call to create an operation to create an

instance of any entity, the system will not instantiate this instance. Since developers

forget to call the commit function within the interface, the service leaves the data in

an inconsistent state.

Solution: Developers should design composed business-based interfaces in-

stead of CRUDy interfaces. CreateCustomer is not good candidate for a business

usecase. Instead, they should create granular interfacers and represent the whole

business proces such as ServeCustomer.
76

s e r v i c e . CreateCustomer (c) ;

f o r each (Group group in c . Groups)

s e r v i c e . AddCustomerToGroup (c . CustomerId , group . GroupId) ;

f o r each (Person person in c . Contacts)

s e r v i c e . AddCustomerContact (c . CustomerId , person) ;

Listing 3.7: Example of Service Interface Using CRUDy antipattern

3.4.9 Maybe It Is Not RPC

Definition: This antipattern arises when a remote procedure call (RPC) is

used to intentionally exchange documents that are inherently suited for document-

style interactions (electronic document interchange). Document-style interactions

interchange instances of significant business entities. The motive behind such an ex-

change is to apply CRUD operations on such entities. The RPC approach is not

suitable for implementing CRUD operations on entities or business documents be-

cause it generates operations that have a lot of parameters with custom types, SOAP

document fragments, and so on [64].

Performance Impact: it manifests within the Web service that mostly issues

CRUD operations. These CRUD operations come with a large number of parameters

causing poor system performance [43]. The reason why it impacts performance is

that client threads are stuck waiting for synchronous responses [64]. Clients may

experience the system freezing because the service uses RPC-style interactions with

77

synchronous requests. When synchronous requests are used altogether, it can be

disastrous, so we classiy this antipattern into one of the performance antipatterns.

This antipattern can occur using Java (specifically J2EE) [64].

Maintainability Impact: As discussed in the impact on performance, the web

service require a large number of parameters to communicate via RPC-style. However,

these parameters might be user-defined types or document fragments, confirming that

they are parts of documents [43]. These document parts are communicated individu-

ally as separate elements using RPC-style exchange format instead of document-style

interactions as a whole. As a result, Clients may have to create instances of document

fragments that would likely be better constructed as a document. It complicates the

maintenance factor of the underlying web service.

Solution: Developers should change RPC-based communication to document-

based communication to solve this antipattern. There are proposed steps to faciliate

the conversion including defining an XML schema for the document, making Web

Services Description Language (WSDL) changes, making service endpoint changes,

and making service client changes for client [64].

3.4.10 Data (Web) Service

Definition: Data service antipattern, known as data class [65], resembles a

service that has only setters and getters of a given class, acting as an access point to

a distributed database in SOA.

Maintainability Impact: Developers simply use this service to execute simple

data retrieval information and includes only basic read operations. This data service

might consist of many low cohesive operations. Palma et al. [43] suppose that it

can hurt maintainability. We categorize this antipattern as one of the maintainability

antipatterns.

78

Solution: As suggested by [66], developers should remove setters by setting

attribute in the constructor. They also can remove getters by implementing a visitor

pattern.

3.4.11 Sand Pile

Definition: This antipattern appears when developers implement an SOA with

one basic service per software component. It leads to many smaller services sharing

common data. This abundant number of services per software component might cause

inefficiencies and maintenance problems [43]. We classify this antipattern as one of

the maintainability antipatterns.

Maintainability Impact: A wrong grouping of atomic capabilities cause

Sand Pile. Even though this antipattern is applicable for SOA based systems, it is

not an antipattern for Microservice Architecture-based systems. When the developer

replied to a question about having one service per multiple contracts or many services,

he recommended to create fine-grained services such as GetUser(userObject user)

and avoid finer services such as GetUserByName(string Name) [67]. The developer

contradicted his reply by confirming that API chatty web service and Sand Pile are

not antipatterns for MA-based systems [67].

Solution: Developers should recombine related basic services into a single

software component with a common interface.

3.4.12 Nested Transaction

Definition: This antipattern appears when developers use Spring framework

transaction management along with Hibernate. Specifically, developers can annotate

methods or classes with @Transactional wrapping them in a transaction, and then

within them, they can call other methods. Properties of a transaction can be specified

79

such as REQUIRES_NEW or NOT_SUPPORTED. When developers annotate the

called method with transactional property and specify it as REQUIRES_NEW, the

transaction manager will create a nested transaction that suspends the transaction

from which the call originates.

Listing 3.8 shows an example of a nested transaction managed by the Spring

transaction management framework. When the framework executes the Foo1 method,

the framework creates a transaction with a timeout of 300ms. Then, this method will

call another method, Foo2, which creates a nested transaction. The nested transaction

suspends the outer transaction and continues executing Foo2. The reason why a

nested transaction is bad is that the outer transaction might timeout. Also, Using

incorrect properties causes database deadlocks [48].

Performance Impact: This antipattern results in smelly code that may intro-

duce problems such as timeout, and deadlock [48]. The authors comment that it has

a nonfunctional impact without elaborating in many details in terms of performance.

The execution of a transaction can be bound by configuring a timeout, for in-

stance, 300ms. When the timeout is elapsed while waiting for the subsequent method

to be executed, it causes transaction overhead by rolling back the outer transaction

as illustrated in Listing 3.8. The outer transaction will throw TransactionTimedOu-

tException since the inner transaction takes longer than the specified time to execute.

Any RuntimeException promotes rollback, and any checked Exception does not. Such

overhead affects the performance of the overall system. The lock only occurs when the

suspended transaction acquires a lock on the same object that the nested transaction

tries to grant the lock. We found a developer on a StackOverflow providing problems

that can happen when using transactions [68]. Locking on the DB level, which can

be a row, table, or a cell value, is among the problems and developers should avoid

it [68]. Thus, we categorize this antipattern into performance antipatterns.

80

Solution: Depending on the nature of the situation, there are a variety of

options as suggested by [48]. Developers can, for example, remove the transaction

property if the transaction isn’t required, or perform the second transaction asyn-

chronously if the two transactions aren’t interdependent. It’s also possible to fix the

code to include the annotation in other methods or create new APIs with alternative

transactional behaviors.

Class A{

@Transact ional (t imeout=300ms)

Publ ic void Foo1 (){

Foo2 () ;

}

}

class B{

@Transact ional (REQUIRES_NEW)

Publ ic void foo2 (){

. . .

}

}

Listing 3.8: Nested transaction in Spring

3.4.13 Unexpected Transactional Behavior

Definition: This antipattern appears when a calling method and called method

to reside within the same class. Spring creates proxy when developers annotate

methods or classes with @Transactional. Spring will not create a proxy if developers

81

annotate two methods with @Transactional and reside within the same class. Spring

creates proxies using either standard Java proxies or CGLIB, a code generation library.

A proxy object intercepts incoming external calls that originate from a class that is

different from the class of the proxy because Spring wraps transactional methods in a

try-catch block and rolls back if an exception is triggered. Developers are oblivious of

the way Spring implements transactions, so they write code that shows unexpected

transactional behavior. They should annotate functions carefully and avoid nested

transnational behavior. Listing 3.9 shows an example of such behavior. When a Foo1

method is annotated with @Transactional and calls another method Foo2 that is

also tagged with @Transactional inside the same class, the outer transaction created

by Foo1 will not create a nested transaction. A self invocation will not start a new

transaction even though it is annotated as illustrated in Listing 3.9. Even if developers

remove @Transactional from the Foo1 method, it will not create a transaction in the

Foo2 method.

Maintainability Impact: As an application gets larger, it is harder to spot

unexpected transactions behavior in Spring transaction management; thus, develop-

ers might find it difficult to find such problems in the code. Since developers might

not be aware of how proxies handle transactions, it takes time to manually debug

their code finding bugs that occur as a result of @transactional annotation. There

are many posts on StackOverflow about how to maintain self-invocation transactions.

One developer explained why he advises developers to be cautious when using self

invocation [69]. It is implicit and buried within the framework, so it is not good prac-

tice to maintainable code. Some developers are unaware that @transactional should

be applied only to public methods when using proxies [70]. Applying the notation

to private methods will not lead to any effects. Chen er al [48] confirm that when

developers deal with complicated systems, it is difficult and time-consuming to look

82

for bugs caused by using the notations. This antipattern impacts the maintainability

factor of software systems.

Solution: Refactoring the code so that methods annotated with @Transac-

tional(REQUIRES NEW) are in a different class than the caller is one solution for

Unexpected Transaction Behaviour [48].

Class A{

@Transact ional

Publ ic void Foo1 (){

Foo2 () ;

}

@Transact ional

Publ ic void Foo2 (){

. . .

}

}

}

Listing 3.9: Unexpected transaction behavior in Spring

3.4.14 Inconsistent Transaction Read-write Level

Definition: This antipattern occurs when developers use the read-write level

property as a default for Spring transactions with read operations. Developers should

annotate read transactions with read-only as a hint for the Hibernate engine even if

DBMSs do not support read-only transactions because they incur lower performance

83

overhead. Listing 3.10 shows an example of a transaction with a default read-write

level, but the function only reads data from the database.

Transactions might not change the status of the database. Specifically, they

only fetch database tables or rows to read the content, instead of adding, updating,

or deleting database records. If so, developers can specify the property of a transaction

with read-only when its method or subsequent methods do not change data in the

database. Listing 3.10 illustrates a simple retrieval case from the database. The

default property is set to be read-write level. It should be changed to be read-only

level. Modifying the property level to read-only might enhance the performance of

the system because fewer lock conflicts can occur.

Performance Impact: Developers can make use of Hibernate performance

boosts by specifying read-only level with @Transactional annotation. Developers

are aware of reasons why they should mark transactions as read-only [71]. Specific

DBMS such as MySQL can optimize read-only transactions in the InnoDB engine

starting from the 5.6.4 version. InnoDB can evade the overhead by creating transac-

tions ID for read-only transactions. A transaction ID is required when transactions

include write operations or locking read such as SELECT ... FOR UPDATE. Extra-

neous transaction IDs are removed minimizing the size of the internal data structure

required. These internal data structures are referenced whenever a query or data

change statement constructs a data view. The same developer [71] also illustrates an-

other optimization that prevents transactions from dirty checks because Spring sets

the FlushMode to MANUAL in case of read-only transactions while developers use

Hibernate. This antipattern clearly shows that it affects performance because these

reasons can convince developers to not use the default read-write level property.

Solution: For functions that do not modify data in the DBMS, the solution

would necessitate changing the annotated transaction to a read-only transaction [48].

84

@Transact ional

Publ ic Employee readEmployeeByID (int id){

return s e s s i o n . f i nd (Employee . class , id) ;

}

Listing 3.10: Unspecified transaction readonly level property

3.4.15 Sequence Name Mismatch

Definition: Hibernate allows developers to choose a sequence object in the

DBMS by annotating an instance variable with @SequenceGenerator to identify the

name of the sequence object that the variable utilizes. Sequence objects produce

numbers sequentially when new sequence objects are constructed. Nevertheless, de-

velopers might mismatch the name of the sequence object in the source code with the

one in the schema file, so duplicated sequence numbers can occur and might be the

basis of redundant primary key errors. Listing 3.11 shows an example of a mismatch

between the DB and source code.

class Employee{

@Id

@SequenceGenerator (sequenceName="employee_seq")

@Column(name="employee_id")

Pr ivate int id ;

}

employee_schema . s q l

85

employee_id BIGINT NOT NULL DEFAULT nextva l (’ employee_id_seq ’)

Listing 3.11: Names mismatch between an annotation of instance variable and schema

file

As illustrated by listing 3.11, the Employee class represents the employee table

in the database. The employee identifier attribute of the employee class links the

employee_id column, which is a primary key of the employee table in the database

management system (DBMS), but the sequence name object "employee_seq" in the

annotation does not match the one in the schema file ’employee_id_seq’. Chen et al

[48] claim that copy-and-pasted code can cause such inconsistent naming.

Maintainability Impact: As brought by [48], we confirm there are no dis-

cussions online commenting on the impact of such mismatch. However, Chen et al.

[48] believe such mismatch might be related to common copy-paste problems in prac-

tice. We think copy-paste problems have a significant impact on maintainability.

StackOverflow question [72] phrased as, what hurts maintainability? and developers

answered by writing duplicated code. Copying and pasting code results in duplicated

code, so it drastically affects maintainability. A developer illustrates an answer in SO

with an example of frequent maintenance of scattered and duplicated code. Every

time the developer fixes an issue of a given code fragment, the same issues will show

up with the same fix [72]. Thus, it hinders developers’ productivity and development

time.

3.4.16 Incorrect SQL Orders

Definition: This antipattern appears when the order of the database access

code is different from the order of generated SQL queries by Hibernate. Writing

database access code using a framework such as Hibernate generates SQL statements

86

that are dissimilar to the developer’s intended order in the database access code. For

instance, deleting an employee using a unique key and then reinserting the employee

with updated key results in an update followed by a delete which is not similar to

the order of logic in the database access code. This incorrect SQL order is caused by

Hibernate because it performs optimizations on SQL statements by reordering them.

Listing 3.12 shows an example of such mismatch.

group . getEmployeeList () . c l e a r () ;

group . addEmployee (Employee) ;

update (group) ;

// r e s u l t i n g SQL que r i e s

I n s e r t i n to Employee Values . . .

De lete from Employee Where . . .

Listing 3.12: A mismatch of order between database access code and generated SQL

statementes in Hibernate

Initially, Chen et al [48] clear all employees in the group. Then, they insert a

new Employee into the group. Nevertheless, Hibernate generated SQL queries that

are inserting a new Employee followed by deleting Employees from the group. The

order does not match and it might be a source of duplicate key problems and or

produce unanticipated results.

Data Integrity Impact: When Hibernate reorders SQL statements, it may

lead to constraint violations. An online post inquires about modeling bidirectional

parent-child relationships with ordered children [73]. The generated SQL statements

by Hibernate violate unique constraints because updating a sibling is being executed

before deleting one child (target) from the same parent. When developers ignore

87

unique constraints, data becomes exposed to unauthorized edits. Thus, this is why

this antipattern has an impact on data integrity.

Solution: One solution of this antipattern is to call the Hibernate method

flush() to force the reorder and send SQL statements. a JPA provider,i.e., ORM,

implement the flush() method, and it varies from one provider to another. Thorben

Janssen [120] considered using the flush() method without a reason as a mistake.

When developers use the flush() method after updating a persisted entity, they en-

force Hibernate to execute a dirty check on all managed entities and to create and

execute SQL statements for all pending INSERT, UPDATE or DELETE operations.

Using the flush() method without a reason slows applications because it deters Hi-

bernate from applying optimizations on the generated SQL statements. Hibernate

keeps track of all managed entities in the persistence context and attempts to post-

pone the execution of write operations as long as possible. This way of handling the

antipattern degrades performance. Thus, we classify this antipattern as one of the

performance antipatterns.

3.4.17 Inefficient Computation (IC)

Definition: This antipattern appears when the badly running code conducts

useful computation but inefficiently. Inefficient computation can be a result of hav-

ing inefficient queries or having computation in the incorrect component of the web

application, such as the DBMS instead of the server or vice versa. Inefficient queries,

for instance, can happen when developers use any? instead of exists? [22]. Different

ORM APIs can implement the same functionality on the persisted data with differ-

ent performance overheads. Listing 3.13 illustrates how a shopping system checks

whether the inventory of the product variants is not tracked. The only difference

between the two Ruby statements is in the call of any? versus exists?.

88

Performance Impact: Useful computation but inefficient computation con-

sists of more than %10 of performance problems in the bug reports [22]. The generated

queries by different ORM APIs that implement the same functionality can incur ex-

tremely various performance overheads [22]. They claim that the research community

has not touched this area for ORM applications.

Inefficient queries can happen when developers use any? instead of exists? [22].

Using any? keyword generates a query that iterates through table rows to calculate

occurrences of missing indices, while using exists? requires scanning and locating the

first row if the predicate is equal to true. This is the case if developers use Rails 5.0

or below, but the implementation of any? has changed since Rails 5.1. It is similar

to exists? except that it is not memorized unless loaded. Another typical issue is

when developers use API calls that create queries’ results in a useless sequence. For

instance, some developers in one of the studied projects call Object.where(c).first for

retrieving an object that meets predicate c instead of Object.find_by(c), becoming

oblivious of the fact that using the API call with where clause arranges Objects

by primary key after evaluating predicate c [22]. This is different from Incorrect

SQL antipattern where we have a mismatch between the database access code and

the generated SQL by Hibernate. The unnecessary order here reflects the ordered

records caused by the generated SQL statement.

Generated queries sometimes incur unnecessary network Round Trip Time (RTT),

or consuming computation on the server-side instead of the DBMS, leading to per-

formance degradation. For instance, one project report uses pluck(:total) instead

of sum(:total) which generates a query to load the total column of all correspond-

ing records and then calculates the sum in memory, while calling sum(:total) issues a

query that directly carries out the sum in the DBMS without returning actual records

to the server. On the other hand, developers should move other computation cases

89

to the server from the DBMS. For instance, developers substitutes Object.count with

Object.size in 17 locations [22]. We classify this antipattern as a query antipattern

that affects the performance of a given system.

Solution: As illustrated in Listing 3.13, solving this kind of antipattersn

require ORM expertise. Developers should use the keyword exists? instead of any?

to eliminate performance overhead caused by inefficient query.

One way to check (i n e f f i c i e n t)

va r i an t s . where (track_inventory : fa l se) any?

The genera ted SQL query i s i n e f f i c i e n t because o f t a b l e scan

SELECT COUNT(∗) FROM var i an t s WHERE track_inventory = 0?

Another way (e f f i c i e n t)

va r i an t s . where (track_inventory : fa l se) e x i s t s ?

The genera ted SQL query i s e f f i c i e n t because o f l im i t i n g the r e s u l t to one row

SELECT 1 AS ONE FROM var i an t s WHERE track_inventory = 0? LIMIT 1

Listing 3.13: Ways of checking the product inventory by the online shopping system

using any? and exists?

3.4.18 Unnecessary Computation (UC)

Definition: This antipattern occurs when unnecessary queries are generated

and executed. These generated queries can be loop-invariant queries, dead-store

queries, and queries with known results. Loop-invariant queries are generated when

an ORM API is called within a loop. Dead-store queries are repeatedly issued similar

to loop-invariant queries. However, they fetch different database contents into the

same main-memory object, and developers do not use the results of database con-

90

tents between the iterations in the same object. Developers issue Queries with known

results even though their results are already fetched.

Performance Impact: Developers are oblivious of the fact that these re-

peatedly generated queries retrieve the same database contents which slow down the

overall system. We recommend developers to hit the database a fewer number of

times. Two reasons as follows are discussed in Online discussion [74]. Developers can

obtain the best optimization from the database because it is best at retrieving all

things at once. By doing so, developers also eliminate the overhead associated with

calling the database multiple times.

Dead-store queries are repeatedly issued similar to loop-invariant queries. How-

ever, they fetch different database contents into the same main-memory object, and

developers do not use the results of database contents between the iterations in the

same object. For instance, in a shopping cart application, the order table has one

to many relationship with line-items. Order is not complete until users check out

their shopping carts, so there is no need to call reload in the order table whenever

users update their line-items. Reload calls should be placed inside the payment table

when users already check out their shopping carts. The reason behind doing this is

because of the underlying implementation of the Rails framework. The ORM of this

framework, ActiveRecord, has an associated overhead, and developers can prevent

such overhead by using bulk updates [75]. Reloading line items of order generates

bulk updates to the database. The best way to optimize the Rails framework is to

utilize its memory. Developers need to be aware of how much ActiveRecord takes a

large amount of main memory.

Queries with known results are issued even though their results are already

fetched. Consequently, such queries cause additional query processing time and net-

work round trips. Thus, the solution would be simply to use a cache and execute

91

only the minimum number of queries. We classify the unnecessary computation an-

tipattern into performance antipatterns.

Solution: This can be broken down into the three typs of unnecessary comm-

putation. For loop-invariant queries, developers should remove any loop that re-

peateadly issues the same query on the same set of attributes. For dead-store queries,

developers should make sure that the query is issues differently on different reload

session in main memory. This way ensures that each data fetched in different reload

session is used efficiently. For queries with known results, developers should set

thresholds for queries that retrieve the same known results, repeatedly; it ensures

that these queries do not incur unnecessary communication overhead between a sys-

tems and database.

3.4.19 Unnecessary Data Retrieval (UD)

Definition: This antipattern appears when either select all, update all, exces-

sive data, or per-transaction cache is detected in the generated queries. It occurs

when the application gets data and this data is already stored in the database, but it

is not utilized later. Unnecessary data retrieval is carefully studied in [49]. They check

unnecessary data retrieval by comparing the requested database accesses (those are

the generated SQL statements during program execution) and the needed database

accesses (defined as how functions in these accesses are called during execution).

Performance Impact: Fixing update all by eliminating unnecessary columns

improves the performance of the studied systems by 4-7% [49]. The more unused

columns the ORM sends to the DBMS, the more likely performance is going to be

affected. When the generated SQL statements are updating columns that are not

used by developers and non-cluster indexed, it can slow down performance. work in

[49] shows that studied systems such as Pet Clinic, ES, and Broad Leaf have suffered

92

from a performance impact by using select all, one kind of redundant data problem.

There is a need in practice to fix select all kind of data retrieval antipattern because

it degrades performance [76]. With Hibernate, developers can use projections from

Hibernate criteria query API to eliminate such unnecessary columns to enhance the

performance of the data retrieval. Hibernate Criteria Query API is more complex,

harder to maintain, and it is suited for dynamic queries. Excessive data is discussed

in detail when we classified paper [19]. Per-transaction cache is the fourth type of

unnecessary data retrieval. Authors in [49] witnessed cases of using per-transaction in

the large-scale industry systems in which redundant SQL queries are generated many

times to fetch a result that is already found in the cache. For instance, Hibernate

expert recommends utilizing QueryCache to stay away from firing additional SQL

queries to get the same result [77]. We classify this antipattern as one of the 13

performance antipatterns.

Solution: For update all, developers should use projection by selecting which

columns they need in their applications. For select all, they should delete the eagerly

fetched table in SQLs where the fetched data is not utilized in the code. For exessive

data, developers should change the fetch type of transactions. For per-transaction

cache, developers should adjust cache configurations pertaining to queries that fetch

the same data sequentially without changing the data.

3.4.20 Inefficient Rendering (IR)

Definition: When developers use Object Relational Mapping as an abstraction

layer on top of the DBMS, they need to worry about the time the ORM takes to

interact with the application, for the database to execute queries and return the

result and also render the result via application views. When a view file renders a set

93

of objects, it indicates a balance that developers must take into consideration between

performance and readability.

Performance Impact: It is true that Inefficient rendering indeed causes per-

formance overhead, but it is negligible when compared to the performance impact

caused by inefficient queries. Partial rendering slows down the performance of the

system if developers iterate through each partial and Rails evaluate each one in turn

[78].

Maintainability Impact: Regarding performance impact caused by ineffi-

cient queries, IR antipattern enforces developers to consider the trade-off between

readability and performance. Looping through each partial is better in terms of code

readability [74]. Developers can use one part to create a view and use string sub-

stitution to change views without additional rendering time. Although using this

alternative method is better for performance, it has an impact on code readability

which affects how developers maintain the system.

Solution: Shao et al [79] suggested a solution for fixing this antipattern by

Using more performant APIs for view rendering.

3.4.21 Inefficient Data Accessing (ID)

Definition: This antipattern appears when inappropriately developers use

batch processing or real-time processing by sending individual queries to the database

to be executed. Inefficient lazy loading case, N+1 query problem, is discussed in The

Row-by-row antipattern in section 3.4.2. Another case of Inefficient data accessing is

inefficient eager loading. We also discuss in Excessive data antipattern in the same

section. Inefficient updating is a third case that generates N queries separately with-

out combining them into one query (as a batch) to modify N database rows. Listing

3.14 shows an example of a Rails code that issues N queries individually. This antipat-

94

tern can occur in another framework (i.g., Hibernate) [80]. However, with Hibernate,

developers cannot create one SQL statement that updates N records. They need to

use native SQL or JPA to implement bulk updates. We categorize this antipattern

into performance antipatterns.

Performance Impact: This antipattern causes data transfer overhead, in-

cluding not batching data transfers (e.g., the well-known “N+1” problem) or batching

too much data into one transfer [22]. This is related to inefficient lazy loading, inef-

ficient eager loading and inefficient updating.

Solution: Developers should batch the N update queries into a single query.

#I t e r a t i n g through an array o f o b j e c t s to genera te N que r i e s

ob j e c t s . each | o | o . update end)

One Rai l s s ta tement t ha t i s s u e s N query as a batch to update N database rows .

ob j e c t s . update_al l

Listing 3.14: Inefficient updating before and after the fix

95

Ta
bl

e
3.

2:
C

at
eg

or
iz

at
io

n
of

Fr
am

ew
or

k-
Sp

ec
ifi

c
Q

ue
ry

A
nt

ip
at

te
rn

s.

R
ef

er
en

ce
A

nt
ip

at
te

rn
T

yp
e

P
er

fo
rm

an
ce

M
ai

nt
ai

na
bi

lit
y

P
or

ta
bi

lit
y

D
at

a
In

te
gr

it
y

[1
9
],
[7

4
]

E
a
g
e
r

F
e
t
c
h
in

g
P

r
o
b
le

m
O
R
M

X

[1
9
],
[3

8
],
[2

0
],
[7

4
]

R
o
w

-
b
y
-
r
o
w

O
R
M

X

[4
5
]

I
n
a
p
p
r
o
p
r
ia

t
e

S
e
r
v
ic

e
I
n
t
im

a
c
y

A
r
c
h
i
t
e
c
t
u
r
e

X
X

[4
1
]

B
r
a
in

R
e
p
o
s
it

o
r
y

A
r
c
h
i
t
e
c
t
u
r
e

X

[4
1
]

L
a
b
o
r
io

u
s

R
e
p
o
s
it

o
r
y

m
e
t
h
o
d

A
r
c
h
i
t
e
c
t
u
r
e

X

[4
1
]

M
e
d
d
li
n
g

S
e
r
v
ic

e
A
r
c
h
i
t
e
c
t
u
r
e

X
X

X

[4
3
],
[4

4
]

C
h
a
t
t
y

S
e
r
v
ic

e
A
r
c
h
i
t
e
c
t
u
r
e

X
X

[4
3
]

C
R

U
D

y
I
n
t
e
r
fa

c
e

A
r
c
h
i
t
e
c
t
u
r
e

X
X

[4
3
],
[6

4
]

M
a
y
b
e

I
t
s

n
o
t

R
P

C
A
r
c
h
i
t
e
c
t
u
r
e

X
X

[6
5
],

[4
3
],
[4

4
]

D
a
t
a

S
e
r
v
ic

e
A
r
c
h
i
t
e
c
t
u
r
e

X

[4
3
],
[4

4
],
[6

7
]

S
a
n
d

P
il
e

A
r
c
h
i
t
e
c
t
u
r
e

X

[4
8
]

N
e
s
t
e
d

T
r
a
n
s
a
c
t
io

n
O
R
M

X

[4
8
],
[6

9
],
[7

0
]

U
n
e
x
p
e
c
t
e
d

T
r
a
n
s
a
c
t
io

n
a
l
B

e
h
a
v
io

r
O
R
M

X

[4
8
]

I
n
c
o
n
s
is

t
e
n
t

T
r
a
n
s
a
c
t
io

n
R

e
a
d
-
w

r
it

e
L
e
v
e
l

O
R
M

X

[4
8
]

S
e
q
u
e
n
c
e

N
a
m

e
M

is
m

a
t
c
h

O
R
M

X

[4
8
],
[8

1
]

I
n
c
o
r
r
e
c
t

S
Q

L
O

r
d
e
r
s

O
R
M

X

[2
2
]

I
n
e
ffi

c
ie

n
t

C
o
m

p
u
t
a
t
io

n
(
I
C

)
O
R
M

X

[2
2
]

U
n
n
e
c
e
s
s
a
r
y

C
o
m

p
u
t
a
t
io

n
(
U

C
)

O
R
M

X

[1
9
],

[4
9
],
[7

4
],

[7
6
],

[7
7
]

U
n
n
e
c
e
s
s
a
r
y

D
a
t
a

R
e
t
r
ie

v
a
l

O
R
M

X

[7
4
],

[7
8
]

I
n
e
ffi

c
ie

n
t

R
e
n
d
e
r
in

g
(
I
R

)
O
R
M

X
X

[7
4
],

[8
0
]

I
n
e
ffi

c
ie

n
t

D
a
t
a

A
c
c
e
s
s
in

g
(
I
D

)
O
R
M

X

96

CHAPTER 4

Extracting Standardized Data Element Names from Natural Language Definitions

In this chapter, we design and develop rule-based natural language processing

(NLP) techniques to automatically extract data element names from data element

definitions written in American English. The goal is to study how using NLP tech-

niques can improve the accuracy of extracting standardized data element names in

a domain-independent context. To achieve this, we first identify heuristic patterns

that mine noun phrases and relationships from data element definitions. Then, we

use these noun phrases and relationships as input to determine components of data

element names. The output of the patterns is reviewed by a domain expert. We

apply our method to extract the 5 standard components of a data element name in

the Railway and Transportation domains. We first achieved 80% accuracy, then by

improving the rules and adding a similarity function, we improved the accuracy to

95% in our final experiments.

4.1 Introduction

Enterprises need specific data and information to run their operations. The

smallest level of granularity of data that has a precise meaning and is both unique

and of interest and use to the business is a data element. Data modelers write data

element definitions to describe a data element by stating its complete and precise

meaning in a unique English statement. They manually create unique data element

names by which data elements can be identified within a business. They are the

basis for all other technical data names. Enterprises aim to manage their data in a

97

centralized manner. However, they tend to have data silos separated across different

data centers. These data silos meet the need for the common business meaning.

ISO framework for Data Element Naming. Data element names stored

in different data silos need one language to communicate. There exist Data Element

Framework’s naming and identification principles, ISO/IEC 11179-5 [82], that facili-

ties such communication. Among organizations, railroads require a standardized way

of communicating data element names, and they are nominated as Class I, II, or II

in the United States. We develop a Class I Railroad’s naming standard from the ISO

Framework. Their Framework only had 4 components of a data element name: an

object class, property qualifier, property, and class word qualifier. We added the fifth

one, the Class Word component, and many additional rules for creating the data ele-

ment names. Not adhering to a data element naming standard causes organizations,

namely Class I railroad, to have erroneous operations.

NASA’s Mars Climate Orbiter, for instance, burned up in the Martian atmo-

sphere in 1999 because engineers failed to convert units from English to metric [83].

The problem was in the software controlling the orbiter’s thrusters. The software cal-

culated the force the thrusters needed to exert in pounds. A separate piece of software

took in the “Thruster Force” data assuming it was in the metric unit: Newtons. This

discrepancy between the two measures, a factor of 4.45 Newtons per pound, caused

the orbiter to approach Mars at too low an altitude. The result was the loss of a

$1251 million spacecraft and a significant setback in NASA’s ability to explore Mars.

The solution is that NASA should have used a name for the data like “Thruster Force

Pounds” that clearly specified the unit of measure for thruster force. Class I railroads

can develop naming standards to avoid the problem of inconsistent data.
1An amount adjusted for inflation, since that was 1999.

98

Class I Railroad Naming Standards. Class I Railroad’s Data Element

Naming Standards are designed to allow any Data Element to be used in any context

(operational or analytical) anywhere in the organization – alone or in combination

with any other Data Element(s). To achieve this and to support both current and

future design methods and technologies, all Data Elements must be uniquely named.

However, the definition of Data Elements exists in the form of text, and there is a

need for text extraction techniques to support naming standards.

Open Information Extraction. Data Element Definitions contain data that

can be extracted using open information extraction techniques to generate data ele-

ment names. Open information techniques take the definition as input and extract

relationships as triples (subject, predicate, object) in a domain-independent man-

ner [84]. We identify patterns on the extracted triples to mine data element names

from data element definitions. Open information extraction techniques suffer from

high precision and low recall.Some relationships are verbal and other are non-verbal

such as prepositional predicates. These prepositional predicates are polysemous; they

minimize the accuracy of extracting a data element name from a definition.

The experiments show that our patterns may play supportive roles in the ex-

traction of data element names from natural language. This is one of the first works in

which NLP techniques are used on a random set of industrial data element definitions

written by domain experts. We contribute by comparing the manual techniques used

in industry for naming, and our method based on NLP for extracting data element

names.

The remainder of this paper is organized as follows: Section 4.2 describes related

work. In Section 4.3, we introduce the Data Element Naming standard and describe

its components. Then, we describe Data Element Naming Automation (DENA) tool

99

that we implement for the Data Element Naming standard in section 4.4. Finally,

Section 4.6 concludes our work and discusses future work.

4.2 Related Work

To the best of our knowledge, we have not found work related to extracting data

element names from English statements. However, we find three research directions

that are partially related to our research.

Extracting Patterns. Definition/inclusion or facts/case relations are ways

to determine the semantic relationships between data element components. Defini-

tions/inclusion (Dallas is a city) denote hyponymy relations that are addressed by

Hearst patterns [85]. We use heuristic patterns based on linguistics to extract data

element names from unstructured text. These patterns rely on a dependency parser

and trained model. We believe having a good number of these patterns serves as

a basis for solving the problem of extracting data element names. These patterns

target one component, the object class, which sets the domain for a data element

name. However, the literature is lacking empirical studies on the application of these

patterns in industrial settings.

Attribute based Access Control (ABAC) standardized policy docu-

ments. (author?) [86] propose a framework to extract authorization attributes from

Natural Language Access Control Policy (NLACP). Their attribute extraction mod-

ule detects values of attributes in sentences defining policies. We focus on what is

related partially. They use a deep learning approach, but we utilize NLP techniques

and heuristics patterns for extracting information. Due to our small number of avail-

able test data input and output samples, we decided to use the above-mentioned

approach to tackle the problem.

100

Figure 4.1: A definition and an extracted Data Element Name

Categorization of Semantic roles in dictionary definitions. Building

a knowledge graph from natural language definitions has been studied, and many

methods depend on dependency parsers for finding patterns that show relationships

between words [87]; [88]; [89]; [90]. One of the early studies shows the creation of

LKB, a Lexical Knowledge Base based on a set of attributes for a given concept

such as the concept of drink and its attributes "origin", "color", "smell", "taste" and

"temperature" [91]. The authors parse definitions from machine-readable dictionary

definitions to mine the definiendums’ genus and differentiae. They only consider the

entities with their relevant attributes in a restricted domain. However, in our study,

we consider them in a domain-independent manner.

4.3 Data Element Naming Standard

Data element naming standard is the set of rules that guide the construction of

consistent Data Element Names. These rules identify the various “parts” of a name –

what words/terms can and should be used and in what order they should appear.

4.3.1 Data Element

We define what a Data Element is and the characteristics required to be con-

sidered a Data Element. A Data Element is the smallest level of granularity of data

that has a precise meaning and is both unique and of interest and use to the business.

For instance, many enterprises create a single Data Element for 10-digit telephone

number data (without including international code), while telecommunications enter-

101

prises use three separate and distinct Data Elements: area code (3 digits), a central

office code (3 digits), and a line number (4 digits).

Any Data Element has to include metadata about the data it represents in

terms of classifying the data, representing the data as a specific feature or quality,

and attributing the feature or quality to entities or concepts. The data’s classification

tells us what kind of general data it is. It, for instance, can be a Date, Image,

Number, Code, Rate and etc. The data can represent specific qualities or features

such as Telephone Number, Last Name, Temperature, Weight, etc. These qualities or

features belong to many entities or concepts such as a Company, Employee, Person,

etc.

The Data Element can also include additional components that represent the

data in terms of its context and domain values. The Data Element can be used in

various contexts including specific industries, locations, and/or professions. We can

use the Data Element in Railroad Industry, Finance, a Hospital, Pest Exterminator.

In addition to values imposed by the data’s classification, the Data Element might

also contain valid values about the data it represents. For example, these data values

are normally a range or enumerated list of values such as a day of the week: Sunday,

or Monday.

4.3.2 Data Element Naming Standards

Once a clear, concise, accurate, complete data element definition has been ob-

tained, a new Data Element can be named by following the Naming Standard, which

is defined by a set of lexical and semantic rules that govern a Data Element Name’s

construction. These rules identify the various components of a Data Element Name,

define the composition of each component, specify the order in which those compo-

102

Figure 4.2: Data Element Naming Automation (DENA) Tool

nents appear in the name, resolve conflicts arising from combining components, and

cover special formatting situations.

Class I Railroad’s goal is to solve the following naming problems of the past:

• Duplicate names with more than one meaning.

• Different names with the same meaning.

• Ambiguous names that can be interpreted as having more than one meaning.

• Misleading names that appear mean one thing but mean something else.

4.3.3 Data Element Name Components

A Data Element Name (DEN) is a single noun phrase that consists of one or

more words that represent the meaning of data it entails. The Class I Railroad Data

Element Naming standard has recognized 5 separate components that can be part of

a DEN. The Object Class, Property, and Class Word components are required for all

Data Elements, while Property Qualifier and Class Word Qualifier are only required

103

for some Data Elements. The following are the components and a description for each

component:

• Object Class: is a word or phrase that represents a person, place, or thing in

the real world that is recognized by the business with specific boundaries and

meaning.

• Property Qualifier: is a word or phrase that, if needed, differentiates, limits,

and/or modifies the meaning of a Property.

• Property: is a word or phrase that represents the main idea in a Data Element

Name. Each Property is a noun phrase that represents a discrete (separate and

distinct) quality or feature that is common to all members of an Object Class,

for which the business wants to retain data. The property component can be

further classified into:

– Strong Property: A property whose meaning is clear, and whose Data

Classification is intuitively obvious as belonging under only one of the

existing approved Class Words. For example, width is a Strong Property

under a Class Word measure.

– Weak Property: A property whose meaning may not be clear, and whose

Data Classification is not intuitively obvious as belonging under only one

of the existing approved Class Words. I.e., the Property could be validly

classified under two or more existing approved Class Words. For instance,

speech is a Weak Property under two Class Words: video and audio.

• Class Word Qualifier: is a word or phrase that modifies the meaning of a

Class Word by more accurately describing the type of data it represents.

• Class Word: is a word used for distinctly classifying data within organizations.

It describes the content and type of information such as date, name, amount,

etc., or its function such as Code or ID.

104

Figure 5.1 shows an example of a Data Element Definition and corresponding

Data Element Name. As an input to our tool, a Data Element Definition should be

preprocessed by making grammar correction, punctuation correction, and word usage

correction. The data element name is composed of 5 data element components. It

starts with the company as the Object Class in red. The second component is annual,

which is underlined and its color is blue. Annual as Property Qualifier could be used

to constrain the Property’s period. The third and fourth components, Property and

Class Word Qualifier, are gross revenue and Mexican Peso, and we color them with

green and purple, respectively. Classifying Data Elements makes it easier to apply

proper governance, which assists in maintaining good data quality.

Table 4.1: Patterns for extracting relationships from definitions

Pattern Pattern Rule

1 A verb follows a noun subject

2 A verb with open clausal complement follows a noun subject

3 A preposition does not follow a verb

4 A preposition follows a verb, and the verb should not be proceeded by
an auxiliary verb

5 An adverb modifier follows noun or pronoun, and an auxiliary verb
should not follow the adverb modifier

6 A definition starts with a verb and then a noun follows the verb

7 An adposition follows a verb, and a noun or determiner comes after the
adposition

8 A verb which is not part of a relative clause follows a particle such as to,
the dependency of the particle is auxiliary and auxiliary verbs cannot
follow the particle.

105

4.4 Data Element Naming Automation Tool

In this section, we introduce and describe the components of the Data Element

Naming Automation (DENA) tool for extracting Data Element Name components.

The DENA tool consists of a DENA Natural Language Processing (NLP) in section

4.4.1 and DENA Assembly in section 4.4.2 .

4.4.1 DENA NLP

4.4.1.1 Spacy

Spacy is an open-source Natural Language Processing (NLP) framework used

to heuristically extract relationships and Data Element Name components. We use

Spacy’s dependency parser to come up with rules for extracting relationships and

components. The dependency parser can parse and tag the words in a definition

that is fed into the Spacy framework. The Spacy framework also generates base

noun phrases that act as arguments between the extracted relationships. Figure

4.2 illustrates the components of the Data Element Naming Automation tool that

is constructed using the NLP component. We parse definitions using the English

language and load large vector models designed for different tasks in NLP.

4.4.1.2 Heuristic Rules for Extracting Noun Phrases and Relationships

Noun Phrases. As starters, we want to rely on Spacy’s base noun phrases,

also known as chunks. These chunks have a noun as their head. They exclude

coordination, prepositional phrases, or relative clauses. Later we implement utility

functions that create these complicated phrases.

Relationships. We utilize the output of Spacy’s dependency parser to curate

a list of heuristic rules for extracting relationships from definitions. In the context

106

of relationship extraction (RE), we use Spacy’s POS tagger to generate candidate

instances by matching against predefined POS patterns. POS is also beneficial in

providing lexical information needed to design RE models. Definitions can be incom-

plete sentences and some open information extraction systems cannot handle such

sentences. Figure 4.2 shows a relationship extraction process of the tool. Table 4.1

shows a list of heuristic patterns that are used to extract such relationships. The

extracted relationships from sentences are represented using two arguments and a

predicate (arg1, predicate, arg2).

4.4.2 DENA Assembly

This part of the tool is responsible for finding the components of the data

element name, namely the Object Class, Property Qualifier, Property, Class Word

Qualifier, and Class Word. We use the output of the DENA NLP part in the pipeline

to derive the heuristics. We introduce the heuristic rules that are used for extracting

the Object Class component in section 4.4.2.1. Then, we describe and explain our

method for extracting the other four components in section 4.4.2.2

4.4.2.1 Heuristic Rules for Extracting the Object Class Component of a DEN

We start by finding the object class. Then, we find the class word. If a class word

qualifier exists, it will be extracted as the third component. The fourth component

that we later extract is property. Lastly, we extract property qualifier if it exists.

We iterate through relationships that are extracted from definitions in section

4.4.1.2 to find the object class. The object class component can span either:

• A single-word noun phrase (NP): It occurs within at most one relationship.

Figure 5.1 shows an example of a single-word NP object class such as a company

107

• multiple-word noun phrases (NP): It occurs within at least one relation-

ship. [Make figure 2 with an example of customer contact]

A single-word NP Object Class. We apply rules to find candidate rela-

tionships where the object class can be found. We use the following rules to find the

single word candidate object class.

• Object Classes tend to exist in the first sentence. They appear in later sentences

with pronouns.

• Object Classes do not appear in subordinate clauses. They can appear in main

clauses and relative clauses.

• Object Classes appear in the right entity of a prepositional relationship. Similar

to class word qualifiers, they also exist as the right entity of verb + preposition

pattern.

• Object Classes also appear in the right entity of active voice verbs and left entity

of passive voice verbs.

We cannot use the Class I Railroad Common and Business Terms catalog to

distinguish between Object Classes and Properties. Some terms can be both Object

Classes and Properties.

We read relationships from the DENA NLP component to determine whether

an Object Class is a single-word or multiple-word NP.

multiple-word NP Object class. We iterate through relationships that are

extracted in section 4.4.1.2 to find the multiple-word NP object class. We specifically

use the following patterns to create the multi-NP object class:

• We use the found single-word NP object class as a basis of finding the multiple-

word NP object class.

108

• We use dictionaries of strong and weak properties and the Class I Railroad’s

Class Word List to create the multiple-word NP Object Class for one or more

relationships.

• We check whether the other NP in a relationship where the object class is found

is a property. If so, we combine the NP with the single world object class to

become the multiple-word NP Object Class.

We believe that there are no generic tools that can identify the best appropri-

ate noun phrase that consists of multiple words. We think that this is an active and

ongoing research area, and the complications of natural language multi-word expres-

sions make it currently impossible to identify the most desirable multi-word noun

phrase without the help of a domain expert. In our tool, the domain expertise is

represented by the dictionaries that hold the previously-identified noun phrases and

their classifications.

Figure 4.3: A Definition and an extracted Data Element Name from our tool

109

4.4.2.2 Heuristic Rules for Extracting Other Components of a DEN

Class word. We iterate through noun phrases to find the class word. We only

equate one noun phrase with the class word component. We use the following logic

when extracting the class word component from a data element definition:

1. We check whether a NP is a Strong property or not.

2. If not, we check whether a NP is a Class Word Qualifier.

3. If not, we check whether a NP is a Class Word from the Class I Railroad’s list

of Class Words.

4. If not, we check whether a NP is a Weak Property.

Property. We iterate through relationships to find the property. We investi-

gate whether one or more NPs is tagged with Object Class because it sets the context

and identifies the location where the property can appear in a sentence. If we find

an object class in one entity of a relationship (more likely to be a left entity) and the

other entity (more likely to be the right entity) is neither a class word nor object, it

becomes the property.

As a result, we assign noun phrases to the DEN components. However, we

cannot rely on only noun phrases to extract object and property components. We

also use relationships to extract part of object or property components within predi-

cates. Once we find the object class component, we assign other components to each

remaining and untagged noun phrase.

4.4.3 Storing the Extracted DEN in the Knowledge Graph using Neo4j.

We store 121 data element definitions and their equivalent data element names

in the Neo4j graph database. We propose this approach because our method of

extracting an Object Class component rely on checking whether an Object Class is a

110

single-word NP or multiple-word NP. An extracted relationship can have the following

possibilities:

• Property phrase, relationship and object phrase. → (single-word NP Object

Class)

• Object phrase, relationship and another object phrase. → (multiple-word NP

Object Class)

The knowledge graph stores data element definitions and data element compo-

nents as nodes with labels. The knowledge graphs store nodes with different labels

such as ObjectClass, Property_Qualifier, Property, ClassWord_Qualifier and Class-

Word. These labels will help answer the question about whether an entity is an object

class or property. We want to compare the similarity at the definition and compo-

nent level. IF DENA recognizes the data element definition which is stored in the

knowledge graph using a similarity function, we have a perfect match, and DENA

only return its equivalent data element name components from the knowledge graph.

DENA can also compare the input to the stored data element name components in

the knowledge graph. DENA can evaluate to the following:

• Known Object class and Known Property (Perfect match at the component

level).

• Known Object class and unknown Property.

• Unknown Object class and known Property.

• Unknown Object class and unknown property.

Coding will utilize this new Knowledge Graph to help determine whether Noun

Phrases in Definitions are Object Classes or Properties.

Due to the change in our approach of utilizing Knowledge Graphs, a new esti-

mate has been proposed for the completion of the third test. We propose this change

to allow DENA to accurately extract data element names based on prior knowledge.

111

4.5 Results and Discussions

We find that applying patterns to extract data element names from natural

definitions is possible with high accuracy and in short time. Manually extracting

data element names from data element definitions by data modelers is subject to

errors, and it is also a time-intensive process.

An Example of A Data Element Name. Figure 4.3 shows the resut of

our tool when it extracts data element names from data element definitions using

patterns. We start by finding the object class using the following relationships:

• The average temperature of rail.→ (The right entity rail, as the object class, is

overwritten because we have remaining relationships need to be visited)

• The average temperature for a track segment.→(last seen object class)

• The average temperature measured in Celsius.→ (The right entity is class word

qualifier, so do not use it and back track to get track segment, instead)

We iterate through the following noun phrases to find the class word:

• Average temperature. → (Because temperature is a Strong Property and clas-

sified under measure in the Class I Railroad’s list of Class Words, measure

becomes the Class Word. Average Temperature becomes part of the Property)

• Track segment → (Skipped NP)

• Celsius → (Skipped NP)

Table 4.2: Accuracy results for extracting Data Element Names from definitions

Test Number Number of Data Element Definitions Passed Failed Accuracy

1 20 17 3 85%

2 20 16 4 80%

3 20 19 1 95%

112

Q1 - What is the accuracy of the NLP patterns for extracting data

element names from definitions?

We evaluate our tool on three different experiments each of which contain 20

test examples. The domain expert chooses these 20 test examples, and he makes sure

that each test trial contains a different set of test examples. Table 4.2 shows the

accuracy results of the three test. We evaluate 20 Test Data Examples in the first

test, and 17 of these 20 test examples pass the criteria set by the domain expert. The

most important criterion is that the tool should extract correct noun phrases and

relationships from a data element definition and, these extracted noun phrases and

relationships should match the manually extracted noun phrases and relationships

determined by the domain expert. We find that our tool fails to generate the correct

noun phrases and relationships for the remaining 4 test examples. On the other hand,

in the second and third tests, the tool determines the exact phrases to assign to each

component of a Data Element Name, based on its definition, with an accuracy of

80%. 16 and 19 of the second and third test data examples pass the criterion with

an accuracy 80% and 95%, respectively. The only passing criterion is that the tool

should generate correct components of a data element name and, these extracted

components should match the manually extracted components by the domain expert.

We create different test criteria for the third test, which will include:

• Five Data Elements that are already incorporated into the new KG.

• Five New Data Elements that are partially incorporated into the new KG,

sharing known Object Classes.

• Five New Data Elements that are partially incorporated into the new KG,

sharing known Properties.

• Five New Data Elements that are NOT incorporated into the new KG

113

On average, an experienced modeler can name a data element in 5-10 minutes.

The question is how good is it? And did they duplicate something while naming the

data element definition? They might have to go back and rename it. In some cases,

it might be less than that 5 minutes. However, it can take longer than 5 minutes. On

the other hand, our tool takes one minute to mine a data element name.

Q2 - Which are the cases of inaccuracy of the NLP patterns for

extracting data element names?

Definition normalization.We find that it is harder to extract data element

names from some data element definitions because these data element definitions need

to be normalized so that it better fits the heuristics. To improve the coverage of these

patterns, we have to deal with complicated phrases that do not fit into any one of

created patterns. Normalizing a data element definition removes any extra phrase

that hinders extraction of a specific component for a data element name.

Word inflections. We observe that the first and second tests have data el-

ement definitions that require word inflection, such as nounification, within the ex-

tracted verb phrases. In the third test, we improve the accuracy by implementing a

function that uses NLTK library for extracting derivationally related forms.

For instance, we had to inflect the verb arrived to arrival to denote train arrival,

which is an Object Class component of the data element name.

4.6 Conclusion

Data management is a key for many organizations, including Class I railroad.

These organizations require a common and standardized meaning to communicate

using their data element names, because they have many separate but overlapping

databases. Data modelers describe data elements in plain text, and data element def-

initions contain domain-independent knowledge that require both natural language
114

processing and information extraction techniques. We develop a Data Element Nam-

ing Automation (DENA) tool that uses information extraction techniques to identify

heuristic patterns and extract data element names from data element definitions.

We achieve 95% accuracy using a knowledge graph and 80% accuracy with just us-

ing heuristic patterns. In our future work, we intend to include a preprocessing

pipeline that extracts common misspelling, undesired synonyms, unknown and dic-

tionary terms from data element definitions using our knowledge graph and one of

the popular dictionary APIs.

115

CHAPTER 5

DENA: Data Element Naming Automation Tool

Semantic interoperability of data terminology has pressed obstacles to unify

data elements from different data sources. Because different data modelers can define

the same data elements in different ways, this might result in communication failures

and erroneous operations. In this paper, we design and develop an automation tool

that can intelligently preprocess a data element definition written by data modelers,

extract a standardized data element name, and check for possible duplicates of the

extracted data element name. The Data Element Naming Automation (DENA) tool

uses a ranking algorithm that can sort similar data element names based on multi-

ple features, including data element name, name rank, data element definition rank,

and best rank. Our experiments are evaluated in two different ways. We compare

our results with other semantic tools and evaluate them with a domain expert. The

experiments show that DENA produces highly accurate results and correct identi-

fication of duplicate names. DENA introduces a novel technique for preprocessing

data element definitions using NLP and additional rules that are incorporated into

DENA’s knowledge graph.

5.1 Introduction

Railroad industries use sophisticated technologies such as smart sensors, inter-

net of trains, Positive Train Control (PTC), and Global Positioning System (GPS)

tracking during the lifecycle of railroad equipment. These technologies create data at

a faster speed, and they store them in various storage mediums. Because the railroad

116

business is so fragmented, railroad business providers create lifecycle data on an in-

dividual basis and store them in their repositories [92]. Sharing and integrating data

within a railroad industry promotes data reusability, which translates to less data

duplication, better decision support systems, and more production.

The smallest level of granularity of data that has a precise meaning and is both

unique and of interest and use to the business is a data element. Data modelers

write data element definitions to describe a data element by stating its complete and

precise meaning in a unique English statement. They manually create unique data

element names by which data elements can be identified within a business. They are

the basis for all other technical data names. Enterprises aim to manage their data

in a centralized manner by meeting the need for the common business meaning. The

railroad industry, on the other hand, has yet to achieve a high level of interoperability

[93].

Semantic interoperability concerns the problem of having two repositories that

might not agree on a unique business description of the same data element name [94].

Data element names may differ among repositories in the fragmented railroad domain.

Polysemy and synonymy are two main linguistic roadblocks to semantic integration

of a diverse set of repositories [95]. Polysemy describes situations in which a single

data element name has many meanings depending on the context. The disparity

in meaning is due to the diversity and transient nature of data element definitions,

as well as differences in writing styles curated by data modelers [96]. Synonymy,

on the other hand, is related to the disparity of data element names for the same

data element in different systems. Polysemy can result in a mismatch between two

semantically distinct data element names and definitions, while synonymy can fail to

aggregate comparable data elements.

117

Most similar tools use machine learning (ML) which requires training and pa-

rameter tuning to extract the semantic meaning of terms and their relationships

[97, 98]. Our focus is on a semantic-based tool that uses NLP processors and a Neo4j

database [99] to store the knowledge graph.

We use this approach to show that it can achieve very high accuracy without

having to go through the trial and learning process of machine learning. compared

with other semantic tools [100, 101], our tool gives slightly better results. Our focus

is to use newer technologies such as Neo4j and Spacy [102] to develop a tool that

uses a data element definition to derive a standardized data element name and then

uses both the definition and name to find any preexisting duplicates in the railroad

domain.

To fill this gap, this paper implements a data element naming automation

(DENA) tool that preprocesses data element definitions, generates data element

names, and checks for duplicate data element names and definitions. DENA vali-

dates the automatically generated data element name by searching for duplicates in

the knowledge graph. This tool does not require human involvement in gathering de-

sign documents. Instead, DENA preprocesses a data element definition by identifying

unknown terms, common misspellings, undesired synonyms, and American English

terms. DENA uses a knowledge graph and 3rd-party APIs that incrementally build

appropriate terminology to create consistent data element names.

Figure 5.1: A definition and an extracted data element name

118

5.2 Related Work

Some research papers have used ontologies, libraries, and taxonomies [103, 104].

A semantic resource focuses on the description of terms based on their lexical rela-

tionships. They lack comprehensive vocabularies in the railroad domain regardless

of their years of effort because they require manual efforts from developers and they

consume their time. Another line of research uses machine learning to identify the se-

mantic relation between a new concept and the existing data element names [98, 97].

Based on the specified lexical relations supplied in WordNet, the algorithm detects

possibly related concepts. This method would not scale well on matching terms in

a railroad domain because WordNet is a broad lexicon that lacks concepts in several

transportation sectors [98]. Another work uses NLP in addition to machine learning,

but their tool is not fully automated and it expects human involvement for validating

the automatically generated data sets [97].

Knowledge graphs need a preprocessing stage to give users accurate results.

There are a couple of tools that conduct duplication detection in knowledge graphs

[105, 100]. Duke and LIMES tools can preprocess text before they find duplicate

matches in the knowledge graphs.

5.3 Data Element

We define what a data element means and how it is used in DENA. A data

element is the lowest level of granularity of data that has a precise meaning and is both

unique and of interest and use to the business. It roughly corresponds to an attribute

of a relational database table. For example, many organizations generate a single data

element for 10-digit telephone number data (without including international code),

119

while telecommunications enterprises use three separate and distinct data elements:

area code (3 digits), a central office code (3 digits), and a line number (4 digits).

Organizations create metadata about the data it represents to attain gover-

nance. They can reach the goal when metadata is able to classify the data, represent

the data as a given feature or quality, and attribute the feature or quality to entities.

DENA helps data engineers achieve such a goal by assisting them to create unique

data element names.

5.3.1 Data Element Naming

Once a clear (unambiguous and easy to understand), concise (short but still

clear), accurate (correct), complete (containing all relevant information) business def-

inition has been obtained, a new data element can be named by following the Naming

Standard, which is defined by a set of rules that govern a data element name’s con-

struction. Figure 5.1 shows an example of a data element definition and data element

name, that is extracted by DENA.

A Data Element Name (DEN) is a single noun phrase that consists of one or

more words that represent the meaning of the data it entails. The following are the

five components of a DEN and a description for each component:

• Object Class: is a word or phrase that represents a person, place, or thing in

the real world that is recognized by the business with specific boundaries and

meaning.

• Property Qualifier: is a word or phrase that, if needed, differentiates, limits,

and/or modifies the meaning of a Property.

• Property: is a word or phrase that represents the main idea in a data element

name. Each Property is a noun phrase that represents a discrete (separate and

distinct) quality or feature that is common to all members of an Object Class,

120

for which the business wants to retain data. The property component can be

further classified into:

– Strong Property: A property whose meaning is clear, and whose Data

Classification is intuitively obvious as belonging under only one of the

existing approved Class Words. For example, width is a Strong Property

under the Class Word measure.

– Weak Property: A property whose meaning may not be clear, and whose

Data Classification is not intuitively obvious as belonging under only one

of the existing approved Class Words. I.e., the Property could be validly

classified under two or more existing approved Class Words. For instance,

speech is a Weak Property under two Class Words: video and audio.

• Class Word Qualifier: is a word or phrase that modifies the meaning of a

Class Word by more accurately describing the type of data it represents.

• Class Word: is a word used for distinctly classifying data within organizations.

It describes the content and type of information such as date, name, amount,

etc., or its function such as Code or ID.

5.4 Framework and Algorithm

This section introduces the four stages of DENA. We will explain the first stage

of the tool, which is the preprocessing stage of data element definitions. Then, when

the data element definition is clear, and DENA is aware of all the terms that are used

in the definition, DENA can generate a data element name from the preprocessed

definition. DENA finalizes the pipeline by giving its users the ability to check for

duplicates of the extracted data element name. Figure 5.2 shows the prepossessing

stage of the entered definition, DENA NLP, which is the information extraction stage,

data element naming assembly, and searching for duplicate components.
121

Figure 5.2: Four stages of DENA tool: Preprocessing the definition, natural lan-
guage processing (DENA NLP), assembling the data element name, and searching
for duplicate components.

5.4.1 Preprocessing Data Element Definitions

DENA can address the research question of how to incrementally build internal

knowledge for data element names and externally gather terms that can improve the

accuracy of DENA. First, we define different types of preprocessing phrases and give

an example of each. Then, we explain the inner workings of one of the preprocessing

phrases: undesired synonyms. Due to space constraints, we omit the explanation of

how DENA finds common misspellings, American English terms, and unknown terms

in definitions.

DENA can preprocess a data element definition when it finds a word or phrase

that falls under one of four classifications: undesired synonyms, common misspellings,

unknown terms, and American English terms.

• Undesired Synonym - A valid, correctly spelled term, that for a specific

context shares the same definition with one or more company’s terms, but is

not the term that should be used in data naming. For instance, U.S. Dollar is
122

an undesired synonym for USD. DENA can highlight in yellow and annotate

the phrase U.S. Dollars as an undesired synonym in the sentence. Figure 5.3

shows a definition entered by a user and a preprocessed definition where the

undesired synonym is annotated and highlighted in yellow.

• Common Misspelling - A spelling that is often used for the intended term

and that is either an actual misspelling or is another correct spelling for the

same term that we have declared as misspelled so as not to allow multiple valid

spellings of the same term. For example, "UUID ID" is a common misspelling

for "UUID (Universally Unique Identifier)". Some data modelers use incorrect

acronyms by adding an extra ID (Identifier). DENA can highlight in red and

annotate the phrase "UUID ID" as a common misspelling in the sentence.

• American English Dictionary Term - A valid, correctly spelled American

English word or phrase that can be found in an American English Dictionary,

and that might or might not currently be Approved by an organization through

DENA for use in data naming.

• Unknown Term - A string that cannot be found in any current Term refer-

ences. For instance, "tie plate" is an unknown term to the internal knowledge

of the organization. Namely, the company does not have the term stored in the

knowledge graph. DENA annotates and highlights the unknown term in gray

when it finds the term. Figure 5.3 shows the preprocessed definition containing

the unknown term "tie plate" in the definition.

123

Figure 5.3: DENA preprocess a data element definition that contains two classifica-

tions of preprocessing errors: undesired synonym and unknown term.

Undesired Synonyms. We step through how DENA preprocesses definitions

that contain undesired synonyms. Figure 5.4 illustrates how DENA approaches the

preprocessing stage when a data element definition contains undesired synonyms.

When DENA annotates and highlights undesired synonyms in yellow, a user can click

on any undesired synonym. As a result, DENA interacts with the user by suggesting

undesired synonyms corrections and similar terms and matching user term definitions.

Suggesting undesired synonym corrections and similar terms- The first part of

the algorithm is auto-correction. DENA suggests undesired synonyms corrections

and similar terms to the user when he clicks on any highlighted undesired synonyms.

DENA provides the user with a list of the following corrections:

• One or more company’s terms which includes preferred Abbreviations or Acronyms

that have the User’s Term as an Undesired Synonym or as a Common Mis-

spelling.

• company’s terms that are a near lexical match to the User’s Term.

• American English Terms that are a near lexical match to the User’s Term.

DENA also displays definitions for each of the terms above. The company’s

terms come from the company’s internal knowledge, whereas DENA integrates Amer-

124

ican English terms by using unofficial Google Dictionary API 1 and DataMuse API
2. DENA gives the user the option to re-enter the term or to declare that his Term is

correct as entered.

The auto-correction part contains three functions that DENA uses to normal-

ize definitions using approved terms from the knowledge graph including verifying

undesired synonyms, confirming the replacement of undesired synonyms, sending the

company’s term change request for approval, and selecting user term definition.

1. Verify Undesired Synonym: DENA verifies the chosen undesired synonym

with the user by confirming that the term is correct. When the user acknowl-

edges that his term is correct, he ignores the list of suggested terms and wants

to find only the right definition for his highlighted undesired synonym. As a

result, DENA provides the user with a list of one or more company’s terms

which includes Preferred Abbreviations/Acronyms and their definitions, where

the company’s term has the User’s Term as an Undesired Synonym. Then,

DENA prompts the User to select the company’s term Definition that seman-

tically matches the User’s intended Definition for their Term or indicate that

there is no semantic match on the list provided.

2. Confirm Replacement of Undesired Synonym : DENA confirms with the

user to replace his Term (the Undesired Synonym) with the company’s term

(which may be a Preferred Abbreviation/Acronym) having the User’s chosen

Term Definition, or change the company’s term to the user’s Term (the Unde-

sired Synonym in yellow). environment.

3. Send the Company’s Term Change Request for Approval: For the User

Term and User Term Definition, DENA allows users to submit an Abbrevia-
1
https://github.com/meetDeveloper/freeDictionaryAPI

2
https://www.datamuse.com/api/

125

https://github.com/meetDeveloper/freeDictionaryAPI
https://www.datamuse.com/api/

tions and Acronyms Request to Abbreviation Support to change the current

company’s term to the user’s Term.

4. Select User Term Definition: DENA gives users the ability to select a Def-

inition for their entered term from the list of one or more Definitions found in

the source reference through dictionary APIs or manually input their definition,

if no definitions on the list are a semantic match. For example, if the term is

from the American English Dictionary, the list would be of all definitions for

that Term in that Dictionary.

Figure 5.4: Undesired Synonym Algorithm

Matching user term definition - DENA determines if the user’s term definition is

a semantic match or near semantic match to any existing company’s term definition.

Sending a new company’s term request for approval, suggesting the company’s terms

for user term definitions, and sending the company’s term change request are three

steps that contribute to incrementally building the company’s knowledge graph.

1. Send A New Company’s Term Request for Approval: For the user term

and user term definition, DENA keeps track of submitted company’s abbrevia-

tions and acronyms requests and sends them to the knowledge graph for a new

company’s term.

126

2. Suggest the Company’s Terms for User Term Definition: DENA pro-

vides users with a list of the company’s terms (which includes Preferred Abbre-

viations/Acronyms) and Definitions where users’ definition is a semantic match

or near semantic match to any company’s term definition, and give users the

option to declare that their Term is correct as entered.

3. Send the Company’s Term Change Request for Approval: For the user

term and user term definition, DENA submits an Abbreviations and Acronyms

Request to the knowledge graph to change the current company’s term to the

user’s Term.

5.4.2 Data Element Name Extraction

In this section, we explain how DENA extracts the data element name from the

preprocessed definition. We published the findings of the naming extraction compo-

nent in previous work (Anonymous 2022). We use Spacy [102], an NLP framework,

to work with text as it provides pretrained models of dependency tags for each word

in a sentence. Figure 5.2 shows DENA NLP and DENA assembly as steps of data

element name extraction.

DENA NLP. We devise heuristics that use dependency tags as patterns to

extract the five components of the data element name. DENA utilizes Spacy’s base

noun phrases. Space omits the implementation of prepositional phrases, coordination,

or relative clauses in their models. We support DENA with component phrases that

generate these complicated phrases. We utilize the output of Spacy’s dependency

parser to generate a list of heuristic rules for distilling relationships from definitions.

In the context of relationship extraction (RE), we use Spacy’s Part of Speech (POS)

tagger to create candidate phrases by matching them against heuristic patterns cre-

127

ated using dependency tags. POS is also beneficial in providing lexical information

needed to create relationship models.

DENA Assembly. We also use heuristics to assemble the five components

of the name. DENA assembly accepts noun phrases and relationships as input to

facilitate assembling the components of the name.

5.4.3 Searching for Duplicates of the Extracted Data Element Name

We introduce and explain the last stage of the tool in this section. DENA

searches all existing data element names and definitions and determines the proba-

bility that the new data element has already been stored in the knowledge graph and

is in fact redundant. DENA performs the search based on which words it assigns to

each Data Element Name Component. If likely to be redundant, DENA allows the

user to review the names and descriptions of the existing data element(s) that are

possible matches.

DENA identifies all existing data element names, definitions, and the combi-

nations thereof that might constitute a duplicate match to the new data element,

providing a stated match confidence percentage. Table 4.1 shows the list of the 13

patterns that DENA uses to match against generated combinations of the name. As

a result, DENA generates DEN search name combinations, assigns a pattern ranking

from the list, and calculates a ranking factor based on the matching words in the

search name combination and its total word count.

We use a ranking factor that ranks all matches of generated combinations con-

cerning extracted data element name by DENA. The ranking factor is described by

the following equation

R = (M/len(N))(M · S)

128

Table 5.1: Patterns for searching combinations from names

Pattern
Ranking

DEN Search Component Pattern

1 Object Class + Property Qualifier + Property + Class Word Qualifier + (Class

Word)

2 Object Class + Property Qualifier + Property + (Class Word)

3 Object Class + Property + Class Word Qualifier + (Class Word)

4 Object Class + Property + (Class Word)

5 Property Qualifier + Property + Class Word Qualifier + (Class Word)

6 Property Qualifier + Property + (Class Word)

7 Property + Class Word Qualifier + (Class Word)

8 Property + (Class Word)

9 Object Class + Property Qualifier + Class Word Qualifier + (Class Word)

10 Object Class + Property Qualifier + (Class Word)

11 Object Class + Class Word Qualifier + (Class Word)

12 Object Class + Class Word

12 Class Word

where R is a ranking factor, N is the extracted data element name from DENA,

M and S are the matching words and total words in the search name combination,

respectively.

DENA outputs name rank and definition rank separately. The name rank uses

ranking factor results of the matched search name combinations that are found in the

knowledge graph. Then, DENA calculates the best rank between the two ranks and

displays it to the user. A complete example of the data element name and search

name combinations can be found online.3

3
https://docs.google.com/spreadsheets/d/1meQeaHUnSLoSfW4Zm9XtANGj6KfSiWwyWFh9LQlD8cY/

edit?usp=sharing

129

https://docs.google.com/spreadsheets/d/1meQeaHUnSLoSfW4Zm9XtANGj6KfSiWwyWFh9LQlD8cY/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1meQeaHUnSLoSfW4Zm9XtANGj6KfSiWwyWFh9LQlD8cY/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1meQeaHUnSLoSfW4Zm9XtANGj6KfSiWwyWFh9LQlD8cY/edit?usp=sharing

5.5 Results

We tested the tool twice with the domain expert. The first test used a prelimi-

nary version of DENA and yielded only about a 60% accuracy. Based on these results,

we created a more sophisticated version of DENA. We conducted the second test on

twenty data element definitions using the new version of DENA. This test yielded

about a 95% success, with 18 out of 20 names being exact matches with expected

results and an additional 5% contributed to partial matches. This increase occurred

as a result of using a knowledge graph along with information extraction heuristics

to extract the name.

We refer to the survey conducted on duplication detection tools to evaluate

our duplicate check functionality [101]. The survey claims that Duke has the best

execution time and accuracy at finding duplicates in one dataset, so we evaluate

DENA against Duke [100]. Duke has some preprocessing techniques that include

basic string and parsing cleaners. On the other hand, DENA cleans and normalizes

text by choosing terms that exist in the knowledge graph. If they do not exist,

DENA incrementally builds terminology with the user and enhances the accuracy of

extracting the name and finding duplicates.

We tested our dataset using the Duke tool. We used the record linkage mode

since we compared one record against a set of records to find duplicates. We inject

the dataset with 20 duplicates. We run DENA and it is able to detect the 20 dupli-

cates along with its name rank and definition rank. Table ?? shows F-score for all

different metrics that can be tuned in Duke. DENA outperforms Duke for all metrics

except the QGramComparator metric where it gives a comparable performance. The

QGramComparator gives the best precision and recall in combination. QGramCom-

parator only misses one record when it has a poor definition. Duke is not able to find

such records, while DENA finds duplicates in names and definitions individually. As
130

Table 5.2: Comparison table between Duke and DENA

User Metric TP FN TN FP F-score

JaroWinkler 17 3 62 58 %35.7

Levenstein 6 14 120 0 %46.1

QGramComparator 19 1 120 0 %97.4

ExactComparator 2 18 120 0 %18.2

DifferentComparator 19 1 118 2 %92.4

DiceCoefficientComparator 11 9 118 2 %66.5

DENA’s RankingFactor 20 0 120 0 %100

an improvement over Duke, we implement some suggested improvements mentioned

in the survey. DENA shows status information by browsing through logs. These logs

show what terms and phrases are normalized and swapped to desired synonyms in

the knowledge graph. DENA also shows statistical results; it displays sorted results

of ranked definitions and names along with the accuracy of the ranking factor.

5.6 Conclusion

We present a software tool, DENA, that cleans data element definitions by

normalizing terms with approved terms in the knowledge graph, extracts standardized

data element names from definitions and finds duplicates in the knowledge graph, and

alerts users with record linkage capability that avoids duplication. We compared our

results with a pioneer tool in the literature. DENA also introduces a novel technique

for preprocessing data element definitions using NLP and additional rules that are

incorporated into DENA’s knowledge graph.

131

CHAPTER 6

CONCLUSION

6.1 Summary of Contributions

The first part of this dissertation made use of the concepts of antipatterns such

as SQL antipatterns and framework-specific antipatterns in order to create useful and

efficient software for database access. The second part of the dissertation analyzes

DENA extraction patterns, DENA assemply patterns and DENA search patterns to

standardize database naming in large organizations. We proposed categorizations

and applications to work with both antipatterns and patterns. In chapter 2, we

introduced a categorization entitled as A Survey of SQL Antipatterns in which we

reviewed the literature on SQL schema antipatterns, SQL query antipatterns, SQL

security breaches and tools for identifying SQL antipatterns. After that, in chapter

3, we introduced a categorization of architecture-specific antipatterns and ORM an-

tipatterns based on both schema and query. In chapter 4, we proposed a novel method

to extract standardized data element names from natural language definitions. Then,

in the last chapter 5 we proposed our Data Element Naming Automation (DENA)

with techniques for preprocessing and finding duplicates of data element definitions

and names, respectively.

The main contributions of the first part of the dissertation are the following:

• Two categorizations of antipatterns representing bad practices of database pro-

gramming and design.

• Analysis of the impact of each categorized database-related antipatterns.

The main contributions of the second part of the dissertation are the following:

132

• A prototype system for the naming problem that many organizations face in-

volving standardization and duplication detection.

• A preprocessing of data element definitions.

• Heusirics rules for extracting data element names from data element definitions

and assembly patterns for the final deliverable data element names.

• A duplication detection stage of both data element definitions and data element

names.

Figure 6.1: Summary of contribution

6.2 Future work

In our future work related to antipatterns, we intend to:

• Analyze the impact of antipatterns on other nonfunctional requirements of soft-

ware systems.

• Study the interaction of antipatterns and find casual relationships.

• Build a tool that can identify the antipatterns categorizaed in this dissertation.

133

In our future work related to domain name standardization, we plan to do the

following:

• Add more data element definitions and names from other domains.

• Apply one of graph neural networks algorithms such as GraphSage that can

study the structure of graphs and input a few labeled data.

• Conduct use case studies with potential users of DENA.

134

Bibliography

[1] B. Alshemaimri, R. Elmasri, T. Alsahfi, and M. Almotairi, “A survey of prob-

lematic database code fragments in software systems,” Engineering Reports,

vol. 3, no. 10, 2021.

[2] B. Karwin, SQL antipatterns avoiding the pitfalls of database programming.

The Pragmatic Bookshelf, 2014.

[3] “119 sql code smells,” https://www.red-gate.com/library/119-sql-code-smells,

Last accessed on 2019-02-20.

[4] “Stack overflow developer survey 2019,” https://insights.stackoverflow.com/

survey/2019, Last accessed on 2018-11-30.

[5] R. Elmasri and S. Navathe, Fundamentals of database systems. Pearson Ed-

ucation, 2017.

[6] M. Venkatrao and M. Pizzo, “Sql/cli; a new binding style for sql,”

SIGMOD Rec., vol. 24, no. 4, pp. 72–77, Dec. 1995. [Online]. Available:

http://doi.acm.org/10.1145/219713.219763

[7] “The easiest way to write sql in java,” https://www.jooq.org/, Last accessed on

2019-01-14.

[8] M. Goeminne and T. Mens, “Towards a survival analysis of database frame-

work usage in java projects,” 2015 IEEE International Conference on Software

Maintenance and Evolution (ICSME), 2015.

135

https://www.red-gate.com/library/119-sql-code-smells
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
http://doi.acm.org/10.1145/219713.219763
https://www.jooq.org/

[9] C. Ireland, D. Bowers, M. Newton, and K. Waugh, “A classification of

object-relational impedance mismatch,” 2009 First International Conference on

Advances in Databases, Knowledge, and Data Applications, 2009.

[10] T. Sharma, M. Fragkoulis, S. Rizou, M. Bruntink, and D. Spinellis, “Smelly

relations,” Proceedings of the 40th International Conference on Software

Engineering Software Engineering in Practice - ICSE-SEIP 18, 2018.

[11] K. Beck, “Once and only once,” http://wiki.c2.com/?OnceAndOnlyOnce, Last

accessed on 2019-01-25.

[12] A. Koenig, Patterns and Antipatterns. USA: Cambridge University Press,

1998, p. 383–389.

[13] M. Linares-Vásquez, S. Klock, C. Mcmillan, A. Sabané, D. Poshyvanyk, and Y.-

G. Guéhéneuc, “Domain matters: bringing further evidence of the relationships

among anti-patterns, application domains, and quality-related metrics in java

mobile apps,” Proceedings of the 22nd International Conference on Program

Comprehension - ICPC 2014, 2014.

[14] T. Erl, Service-oriented architecture: concepts, technology, and design. Pren-

tice Hall Professional Technical Reference, 2016.

[15] M. Fowler, “Microservices,” https://www.martinfowler.com/articles/

microservices.html, Last accessed on 2019-02-6.

[16] G. Krasner and S. Pope, “A description of the model-view-controller user inter-

face paradigm in the smalltalk-80 system,” J Object-Orient. Prog., vol. 1(3), 01

2000.

[17] P. Robson and S. Faroult, The art of SQL. Oreilly, 2006.
136

http://wiki.c2.com/?OnceAndOnlyOnce
https://www.martinfowler.com/articles/microservices.html
https://www.martinfowler.com/articles/microservices.html

[18] “what are the most common sql anti-patterns?” 2009, http://stackoverflow.

com/questions/346659/, Last accessed on 2018-3-02.

[19] T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser, and P. Flora,

“Detecting performance anti-patterns for applications developed using object-

relational mapping,” Proceedings of the 36th International Conference on

Software Engineering - ICSE 2014, 2014.

[20] L. Eder, “10 common mistakes java developers make

when writing sql,” 2013, https://blog.jooq.org/2013/07/30/

10-common-mistakes-java-developers-make-when-writing-sql/ , Last accessed

on 2019-07-17.

[21] Y. Lyu, A. Alotaibi, and W. G. Halfond, “Quantifying the performance impact

of sql antipatterns on mobile applications,” 2019 IEEE International Conference

on Software Maintenance and Evolution (ICSME), 2019.

[22] J. Yang, P. Subramaniam, S. Lu, C. Yan, and A. Cheung, “How not to structure

your database-backed web applications,” Proceedings of the 40th International

Conference on Software Engineering, 2018.

[23] E. Eessaar, “On query-based search of possible design flaws of sql databases,”

in Innovations and Advances in Computing, Informatics, Systems Sciences,

Networking and Engineering, T. Sobh and K. Elleithy, Eds. Cham: Springer

International Publishing, 2015, pp. 53–60.

[24] E. Eessaar and J. Voronova, “Using sql queries to evaluate the design of sql

databases,” Lecture Notes in Electrical Engineering New Trends in Networking,

Computing, E-learning, Systems Sciences, and Engineering, p. 179–186, Aug

2014.
137

http://stackoverflow.com/questions/346659/
http://stackoverflow.com/questions/346659/
https://blog.jooq.org/2013/07/30/10-common-mistakes-java-developers-make-when-writing-sql/%20
https://blog.jooq.org/2013/07/30/10-common-mistakes-java-developers-make-when-writing-sql/%20

[25] P. Khumnin and T. Senivongse, “Sql antipatterns detection and database refac-

toring process,” 2017 18th IEEE/ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and Parallel/Distributed

Computing (SNPD), 2017.

[26] J. Delplanque, A. Etien, O. Auverlot, T. Mens, N. Anquetil, and S. Ducasse,

“Codecritics applied to database schema: Challenges and first results,” 2017

IEEE 24th International Conference on Software Analysis, Evolution and

Reengineering (SANER), 2017.

[27] C. Nagy and A. Cleve, “A static code smell detector for sql queries embedded in

java code,” 2017 IEEE 17th International Working Conference on Source Code

Analysis and Manipulation (SCAM), 2017.

[28] P. Gulutzan and T. Pelzer, SQL performance tuning:. Addison-Wesley, 2006.

[29] “Mysql: Alternate solution of sql server’s hierarchyid

datatype,” 2014, https://stackoverflow.com/questions/24525634/

mysql-alternate-solution-of-sql-servers-hierarchyid-datatype/37000707, Last

accessed on 2019-7-2.

[30] R. S. Chen, P. Nadkarni, L. Marenco, F. Levin, J. Erdos, and P. L. Miller,

“Exploring performance issues for a clinical database organized using an entity-

attribute-value representation,” Journal of the American Medical Informatics

Association, vol. 7, no. 5, p. 475–487, Jan 2000.

[31] “Normalization: What does "repeating groups" mean?”

2014, https://stackoverflow.com/questions/23194292/

normalization-what-does-repeating-groups-mean, Last accessed on 2019-

6-16.
138

https://stackoverflow.com/questions/24525634/mysql-alternate-solution-of-sql-servers-hierarchyid-datatype/37000707
https://stackoverflow.com/questions/24525634/mysql-alternate-solution-of-sql-servers-hierarchyid-datatype/37000707
https://stackoverflow.com/questions/23194292/normalization-what-does-repeating-groups-mean
https://stackoverflow.com/questions/23194292/normalization-what-does-repeating-groups-mean

[32] “Mysql large table sharding to smaller table based on

unique id,” 2019, https://stackoverflow.com/questions/54283154/

mysql-large-table-sharding-to-smaller-table-based-on-unique-id, Last accessed

on 2019-4-05.

[33] “Mysql enum performance advantage,” 2009, https://stackoverflow.com/

questions/766299/mysql-enum-performance-advantage, Last accessed on 2019-

7-7.

[34] “Will more indexes on a table affect performance?”

2013, https://dba.stackexchange.com/questions/17830/

will-more-indexes-on-a-table-affect-performance, Last accessed on 2019-4-

11.

[35] G. Sanders and S. Shin, “Denormalization effects on performance of rdbms,”

Proceedings of the 34th Annual Hawaii International Conference on System

Sciences.

[36] “How far should we go with normalization?” 2001, https://dba.stackexchange.

com/questions/505/how-far-should-you-go-with-normalization, Last accessed

on 2019-4-14.

[37] “What will happen if a database of 30 tables is

not normalized?” 2017, https://www.quora.com/

What-will-happen-if-a-database-of-30-tables-is-not-normalized, Last accessed

on 2019-5-16.

[38] V. Bilopavlović, “Antipatterns in data access, part 1-

memory joins,” 2019, https://www.linkedin.com/pulse/

139

https://stackoverflow.com/questions/54283154/mysql-large-table-sharding-to-smaller-table-based-on-unique-id
https://stackoverflow.com/questions/54283154/mysql-large-table-sharding-to-smaller-table-based-on-unique-id
https://stackoverflow.com/questions/766299/mysql-enum-performance-advantage
https://stackoverflow.com/questions/766299/mysql-enum-performance-advantage
https://dba.stackexchange.com/questions/17830/will-more-indexes-on-a-table-affect-performance
https://dba.stackexchange.com/questions/17830/will-more-indexes-on-a-table-affect-performance
https://dba.stackexchange.com/questions/505/how-far-should-you-go-with-normalization
https://dba.stackexchange.com/questions/505/how-far-should-you-go-with-normalization
https://www.quora.com/What-will-happen-if-a-database-of-30-tables-is-not-normalized
https://www.quora.com/What-will-happen-if-a-database-of-30-tables-is-not-normalized

antipatterns-data-access-part-1-vedran-bilopavlović/ , Last accessed on

2019-7-17.

[39] R. Johari and P. Sharma, “A survey on web application vulnerabilities (sqlia,

xss) exploitation and security engine for sql injection,” 2012 International

Conference on Communication Systems and Network Technologies, pp. 453–

458, 2012.

[40] “the owasp enterprise security api,” https://www.owasp.org/index.php/

Category:OWASP_Enterprise_Security_API, accessed: 2022-03-10.

[41] M. Aniche, G. Bavota, C. Treude, A. V. Deursen, and M. A. Gerosa, “A

validated set of smells in model-view-controller architectures,” 2016 IEEE

International Conference on Software Maintenance and Evolution (ICSME),

2016.

[42] M. Fowler, “P of eaa: Repository,” https://martinfowler.com/eaaCatalog/

repository.html, Last accessed on 2019-3-22.

[43] F. Palma and N. Mohay, “A study on the taxonomy of service antipat-

terns,” 2015 IEEE 2nd International Workshop on Patterns Promotion and

Anti-patterns Prevention (PPAP), 2015.

[44] J. Bogner, T. Boceck, M. Popp, D. Tschechlov, S. Wagner, and A. Zimmermann,

“Towards a collaborative repository for the documentation of service-based an-

tipatterns and bad smells,” 2019 IEEE International Conference on Software

Architecture Companion (ICSA-C), 2019.

[45] D. Taibi and V. Lenarduzzi, “On the definition of microservice bad smells,”

IEEE Software, vol. 35, no. 3, p. 56–62, 2018.

140

https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
https://martinfowler.com/eaaCatalog/repository.html
https://martinfowler.com/eaaCatalog/repository.html

[46] J. Corbin and A. L. Strauss, Basics of qualitative research: techniques and

procedures for developing grounded theory. SAGE, 2015.

[47] “Anemic domain model,” 2003, https://www.martinfowler.com/bliki/

AnemicDomainModel.html, Last accessed on 2018-3-16.

[48] T.-H. Chen, W. Shang, A. E. Hassan, M. Nasser, and P. Flora, “Detecting

problems in the database access code of large scale systems,” Proceedings of

the 38th International Conference on Software Engineering Companion - ICSE

16, 2016.

[49] T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser, and P. Flora,

“Finding and evaluating the performance impact of redundant data access for

applications that are developed using object-relational mapping frameworks,”

IEEE Transactions on Software Engineering, vol. 42, no. 12, p. 1148–1161, Jan

2016.

[50] “Avoiding microservice megadisasters,” presentation at 2017 NDC London Conf,

Ed., 2017, https://www.youtube.com/watch?v=gfh-VCTwMw8, Last accessed

on 2019-5-16.

[51] M. Fowler, “Shared database,” https://microservices.io/patterns/data/

shared-database.html, Last accessed on 2019-4-22.

[52] “What are the drawbacks to the activerecord pattern?” 2011,

https://softwareengineering.stackexchange.com/questions/70291/

what-are-the-drawbacks-to-the-activerecord-pattern, Last accessed on 2019-4-

28.

141

https://www.martinfowler.com/bliki/AnemicDomainModel.html
https://www.martinfowler.com/bliki/AnemicDomainModel.html
https://www.youtube.com/watch?v=gfh-VCTwMw8
https://microservices.io/patterns/data/shared-database.html
https://microservices.io/patterns/data/shared-database.html
https://softwareengineering.stackexchange.com/questions/70291/what-are-the-drawbacks-to-the-activerecord-pattern
https://softwareengineering.stackexchange.com/questions/70291/what-are-the-drawbacks-to-the-activerecord-pattern

[53] “How should i manage generic repository pattern when

the works of different entities are pretty much differ-

ent?” 2018, https://stackoverflow.com/questions/49974181/

how-should-i-manage-generic-repository-pattern-when-the-works-of-different-entit.

htm , Last accessed on 2019-7-15.

[54] “Openstreetmap,” https://www.openstreetmap.org, Last accessed on 2019-5-08.

[55] “Why would i use a transient attribute to represent a derived read

only property?” 2018, https://stackoverflow.com/questions/7957130/

why-would-i-use-a-transient-attribute-to-represent-a-derived-read-only-property,

Last accessed on 2019-5-12.

[56] J. Munhoz, “Hibernate and the n+1 selections prob-

lem,” 2019, https://medium.com/quintoandar-tech-blog/

hibernate-and-the-n-1-selections-problem-c497710fa3fe , Last accessed on

2019-8-21.

[57] C. U. Smith and L. G. Williams, Performance solutions: a practical guide to

creating responsive, scalable software, 2002.

[58] V. Bilopavlović, “Antipatterns in data access, part 2-

nested select,” 2019, https://www.linkedin.com/pulse/

antipatterns-data-access-part-2-nested-selects-vedran-bilopavlovi%C4%87/

, Last accessed on 2019-7-17.

[59] D. Taibi, V. Lenarduzzi, and C. Pahl, “Microservices anti-patterns: A taxon-

omy,” Microservices, p. 111–128, 2019.

142

https://stackoverflow.com/questions/49974181/how-should-i-manage-generic-repository-pattern-when-the-works-of-different-entit.htm
https://stackoverflow.com/questions/49974181/how-should-i-manage-generic-repository-pattern-when-the-works-of-different-entit.htm
https://stackoverflow.com/questions/49974181/how-should-i-manage-generic-repository-pattern-when-the-works-of-different-entit.htm
https://www.openstreetmap.org
https://stackoverflow.com/questions/7957130/why-would-i-use-a-transient-attribute-to-represent-a-derived-read-only-property
https://stackoverflow.com/questions/7957130/why-would-i-use-a-transient-attribute-to-represent-a-derived-read-only-property
https://medium.com/quintoandar-tech-blog/hibernate-and-the-n-1-selections-problem-c497710fa3fe
https://medium.com/quintoandar-tech-blog/hibernate-and-the-n-1-selections-problem-c497710fa3fe
https://www.linkedin.com/pulse/antipatterns-data-access-part-2-nested-selects-vedran-bilopavlovi%C4%87/%20
https://www.linkedin.com/pulse/antipatterns-data-access-part-2-nested-selects-vedran-bilopavlovi%C4%87/%20

[60] M. Aniche, G. Bavota, C. Treude, M. A. Gerosa, and A. van Deursen, “Code

smells for model-view-controller architectures,” Empirical Software Engineering,

vol. 23, no. 4, p. 2121–2157, 2017.

[61] “Are multiple database calls really significant with a network call for a web

api?” 2015, https://softwareengineering.stackexchange.com/questions/255275/

are-mutliple-database-calls-really-significant-with-a-network-call-for-a-web-api

, Last accessed on 2019-7-26.

[62] K. Alam, “Why to use service layer in spring mvc,” 2018, https://medium.

com/stackavenue/why-to-use-service-layer-in-spring-mvc-5f4fc52643c0 , Last

accessed on 2019-8-12.

[63] “Java persistence layer in regards to service/repository lay-

ers,” 2015, https://stackoverflow.com/questions/25313231/

java-persistence-layer-in-regards-to-service-repository-layer , Last accessed on

2019-8-12.

[64] B. Dudney, S. Asbury, J. K. Krozak, and Wittkopf, J2EE AntiPatterns. John

Wiley Sons, 2003.

[65] M. Fowler, Refactoring: improving the design of existing code. Addison-Wesley,

2019.

[66] B. Aaronson, “How do you avoid getters and setters?” Mar 1963. [Online].

Available: https://softwareengineering.stackexchange.com/questions/284215/

how-do-you-avoid-getters-and-setters

[67] “Wcf decision: One service multiple contracts or many ser-

vices,” 2014, https://stackoverflow.com/questions/17424392/

143

https://softwareengineering.stackexchange.com/questions/255275/are-mutliple-database-calls-really-significant-with-a-network-call-for-a-web-api%20
https://softwareengineering.stackexchange.com/questions/255275/are-mutliple-database-calls-really-significant-with-a-network-call-for-a-web-api%20
https://medium.com/stackavenue/why-to-use-service-layer-in-spring-mvc-5f4fc52643c0%20
https://medium.com/stackavenue/why-to-use-service-layer-in-spring-mvc-5f4fc52643c0%20
https://stackoverflow.com/questions/25313231/java-persistence-layer-in-regards-to-service-repository-layer%20
https://stackoverflow.com/questions/25313231/java-persistence-layer-in-regards-to-service-repository-layer%20
https://softwareengineering.stackexchange.com/questions/284215/how-do-you-avoid-getters-and-setters
https://softwareengineering.stackexchange.com/questions/284215/how-do-you-avoid-getters-and-setters
https://stackoverflow.com/questions/17424392/wcf-decision-one-service-multiple-contracts-or-many-services%20
https://stackoverflow.com/questions/17424392/wcf-decision-one-service-multiple-contracts-or-many-services%20

wcf-decision-one-service-multiple-contracts-or-many-services , Last accessed

on 2019-8-18.

[68] “Spring transnational slows down complete pro-

cess,” 2018, https://stackoverflow.com/questions/46214484/

spring-transactional-slows-down-complete-process , Last accessed on 2019-8-27.

[69] “Spring @transactional annotation: Self invocations,”

2015, https://stackoverflow.com/questions/23931698/

spring-transactional-annotation-self-invocation , Last accessed on 2019-9-

18.

[70] “@transactional spring chaining self invoking,” 2019, https://stackoverflow.

com/questions/54698150/transactional-spring-chaining-and-self-invoking ,

Last accessed on 2019-9-28.

[71] “Why do i need transaction for read-only opera-

tions?” 2013, https://stackoverflow.com/questions/13539213/

why-do-i-need-transaction-in-hibernate-for-read-only-operations , Last

accessed on 2019-9-08.

[72] “What hurts maintainability?” 2012, https://softwareengineering.

stackexchange.com/questions/123293/what-hurts-maintainability/123296 ,

Last accessed on 2019-10-05.

[73] “How to change the ordering of sql execution in hiber-

nate,” 2014, https://stackoverflow.com/questions/20395543/

how-to-change-the-ordering-of-sql-execution-in-hibernate , Last accessed

on 2020-10-14.

144

https://stackoverflow.com/questions/17424392/wcf-decision-one-service-multiple-contracts-or-many-services%20
https://stackoverflow.com/questions/17424392/wcf-decision-one-service-multiple-contracts-or-many-services%20
https://stackoverflow.com/questions/46214484/spring-transactional-slows-down-complete-process%20
https://stackoverflow.com/questions/46214484/spring-transactional-slows-down-complete-process%20
https://stackoverflow.com/questions/23931698/spring-transactional-annotation-self-invocation%20
https://stackoverflow.com/questions/23931698/spring-transactional-annotation-self-invocation%20
https://stackoverflow.com/questions/54698150/transactional-spring-chaining-and-self-invoking%20
https://stackoverflow.com/questions/54698150/transactional-spring-chaining-and-self-invoking%20
https://stackoverflow.com/questions/13539213/why-do-i-need-transaction-in-hibernate-for-read-only-operations%20
https://stackoverflow.com/questions/13539213/why-do-i-need-transaction-in-hibernate-for-read-only-operations%20
https://softwareengineering.stackexchange.com/questions/123293/what-hurts-maintainability/123296%20
https://softwareengineering.stackexchange.com/questions/123293/what-hurts-maintainability/123296%20
https://stackoverflow.com/questions/20395543/how-to-change-the-ordering-of-sql-execution-in-hibernate%20
https://stackoverflow.com/questions/20395543/how-to-change-the-ordering-of-sql-execution-in-hibernate%20

[74] “Which is more expensive for loop or database

call?” 2010, https://stackoverflow.com/questions/1390757/

which-is-more-expensive-for-loop-or-database-call. , Last accessed on 2019-9-

10.

[75] “Rails performance - what do you need to know,” https://www.airpair.com/

ruby-on-rails/performance#1-introduction , Last accessed on 2019-9-13.

[76] “Hibernate criteria query to get specific columns,” 2013, https://stackoverflow.

com/questions/11626761/hibernate-criteria-query-to-get-specific-columns ,

Last accessed on 2019-9-12.

[77] T. Janssen, “Hibernate tips: Use the querycache to

avoid additional queries,” 2013, https://thoughts-on-java.org/

hibernate-tips-use-querycache-avoid-additional-queries/ , Last accessed

on 2019-9-16.

[78] A. Rodi, “Partial rendering performance in rails,” 2017, https://medium.com/

@coorasse/partial-rendering-performance-in-rails-101fdfb6ffb9 , Last accessed

on 2019-9-16.

[79] S. Shao, Z. Qiu, X. Yu, W. Yang, G. Jin, T. Xie, and X. Wu, “Database-access

performance antipatterns in database-backed web applications,” 2020 IEEE

International Conference on Software Maintenance and Evolution (ICSME),

2020.

[80] T. Janssen, “5 common hibernate mistakes that cause

dozens of unexpected queries,” https://thoughts-on-java.org/

5-common-hibernate-mistakes-that-cause-dozens-of-unexpected-queries/ ,

Last accessed on 2019-9-16.
145

https://stackoverflow.com/questions/1390757/which-is-more-expensive-for-loop-or-database-call.%20
https://stackoverflow.com/questions/1390757/which-is-more-expensive-for-loop-or-database-call.%20
https://www.airpair.com/ruby-on-rails/performance#1-introduction%20
https://www.airpair.com/ruby-on-rails/performance#1-introduction%20
https://stackoverflow.com/questions/11626761/hibernate-criteria-query-to-get-specific-columns%20
https://stackoverflow.com/questions/11626761/hibernate-criteria-query-to-get-specific-columns%20
https://thoughts-on-java.org/hibernate-tips-use-querycache-avoid-additional-queries/%20
https://thoughts-on-java.org/hibernate-tips-use-querycache-avoid-additional-queries/%20
https://medium.com/@coorasse/partial-rendering-performance-in-rails-101fdfb6ffb9%20
https://medium.com/@coorasse/partial-rendering-performance-in-rails-101fdfb6ffb9%20
https://thoughts-on-java.org/5-common-hibernate-mistakes-that-cause-dozens-of-unexpected-queries/%20
https://thoughts-on-java.org/5-common-hibernate-mistakes-that-cause-dozens-of-unexpected-queries/%20

[81] ——, “10 common hibernate mistakes that cripple

your performance,” 2019, https://thoughts-on-java.org/

common-hibernate-mistakes-cripple-performance/. , Last accessed on 2019-9-

05.

[82] “Information technology — Specification and standardization of data elements

— Part 5: Naming and identification principles for data elements,” International

Organization for Standardization, Geneva, CH, Standard, 1995.

[83] R. Lloyd and C. I. S. Writer, “Metric mishap caused loss of nasa orbiter,” CNN

Interactive, 1999.

[84] M. Banko, M. J. Cafarella, S. Soderland, M. A. Broadhead, and O. Etzioni,

“Open information extraction from the web,” in CACM, 2008.

[85] M. A. Hearst, “Automatic acquisition of hyponyms from large text corpora,”

in Coling 1992 volume 2: The 15th international conference on computational

linguistics, 1992.

[86] M. Alohaly, H. Takabi, and E. Blanco, “Automated extraction of attributes from

natural language attribute-based access control (abac) policies,” Cybersecurity,

vol. 2, no. 1, p. 2, 2019.

[87] N. Calzolari, “Acquiring and representing semantic information in a lexical

knowledge base,” in Workshop of SIGLEX (Special Interest Group within ACL

on the Lexicon). Springer, 1991, pp. 235–243.

[88] P. Vossen, “Converting data from a lexical database to a knowledge base (tech-

nical report esprit bra-3030 acquilex wp 027). amsterdam, the netherlands:

University of amsterdam,” English Department, 1991.

146

https://thoughts-on-java.org/common-hibernate-mistakes-cripple-performance/.%20
https://thoughts-on-java.org/common-hibernate-mistakes-cripple-performance/.%20

[89] ——, “The automatic construction of a knowledge base from dictionaries: a

combination of techniques,” Euralex’92 Proceedings I-II, Tampere, Finland,

1992.

[90] P. Vossen and A. Copestake, “Untangling definition structure into knowledge

representation,” in Inheritance, defaults and the lexicon. Cambridge University

Press, 1994, pp. 246–274.

[91] A. Copestake, “The lkb: a system for representing lexical information ex-

tracted from machine-readable dictionaries,” in Proceedings of the ACQUILEX

Workshop on Default Inheritance in the Lexicon, Cambridge, 1991.

[92] F. Harrison, M. Gordon, and G. R. Allen, “Leadership guide for strategic infor-

mation management for state departments of transportation,” NCHRP Report,

2016.

[93] N. Lefler, “Roadway safety data interoperability between local and state agen-

cies,” NCHRP Synthesis of Highway Practice, 2014.

[94] S. Heiler, “Semantic interoperability,” ACM Comput. Surv., vol. 27, pp. 271–

273, 1995.

[95] N. Noy, “Semantic integration: a survey of ontology-based approaches,”

SIGMOD Rec., vol. 33, pp. 65–70, 2004.

[96] C. M. Walton, D. P. K. Seedah, C. Choubassi, H. Wu, A. K. Ehlert, R. Harri-

son, L. Loftus-Otway, J. T. Harvey, J. Meyer, J. Calhoun, L. Maloney, S. Crop-

ley, and F. Annett, “Implementing the freight transportation data architecture:

Data element dictionary,” 2015.

147

[97] T. Le and H. D. Jeong, “Nlp-based approach to semantic classification of het-

erogeneous transportation asset data terminology,” Journal of Computing in

Civil Engineering, vol. 31, p. 04017057, 2017.

[98] J. Zhang and N. El-Gohary, “Automated information transformation for auto-

mated regulatory compliance checking in construction,” Journal of Computing

in Civil Engineering, vol. 29, 2015.

[99] I. S. Robinson, J. Webber, and E. Eifrém, “Graph databases,” 2013.

[100] L. M. Garshol and A. Borge, “Hafslund sesam - an archive on semantics,” in

ESWC, 2013.

[101] E. Huaman, E. Kärle, and D. A. Fensel, “Duplication detection in knowledge

graphs: Literature and tools,” ArXiv, vol. abs/2004.08257, 2020.

[102] M. Honnibal and M. Johnson, “An improved non-monotonic transition system

for dependency parsing,” in Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing. Lisbon, Portugal: Association

for Computational Linguistics, September 2015, pp. 1373–1378. [Online].

Available: https://aclweb.org/anthology/D/D15/D15-1162

[103] J. Tutcher, J. M. Easton, and C. Roberts, “Enabling data integration in the

rail industry using rdf and owl: The racoon ontology,” ASCE-ASME Journal of

Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, vol. 3,

2017.

[104] S. Bischof and G. Schenner, “Rail topology ontology: A rail infrastructure base

ontology,” in SEMWEB, 2021.

148

https://aclweb.org/anthology/D/D15/D15-1162

[105] A.-C. N. Ngomo, M. A. Sherif, K. Georgala, M. M. Hassan, K. Dreßler, K. Lyko,

D. Obraczka, and T. Soru, “Limes: A framework for link discovery on the

semantic web,” KI - Künstliche Intelligenz, pp. 1–11, 2021.

149

BIOGRAPHICAL STATEMENT

Bader Alshemaimri is a PhD candidate in the Department of Computer Science

and Engineering, at the University of Texas at Arlington and a lecturer at the Software

Engineering Department at King Saud University. He completed his Bachelor in 2012

and his Master’s in 2015 in Computer Science. His research interest is the artificial

intelligence, natural language processing, software engineering for intelligent systems.

150

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	INTRODUCTION
	Definition and Motivation of Patterns and Antipatterns for Database Code Fragments and Data Element Names from Natural Language
	Dissertation Contributions
	Dissertation Organization
	Published Papers

	A Survey of SQL Antipatterns (Drafted from alshemaimri2021survey)
	Introduction and Motivation
	Terminology and Concepts Used

	Review of SQL Problematic Code Fragments
	SQL Antipatterns

	Support for Identifying SQL Antipattern
	Identifying SQL (Schema) Antipatterns by Querying the Schema Stored in RDBMS Catalog
	Identifying SQL Antipatterns by Statically Analyzing Database Schema Using the Schema Dump
	Identifying SQL Query Antipatterns Using the Query Parser
	Identifying SQL Schema Antipatterns Using the Query Parser from Software Repositories

	Categorization of SQL Antipatterns based on Schema
	Categorization of SQL Antipatterns based on Query
	Categorization of SQL Antipatterns based on Security Breaches

	Framework-Specific Antipatterns (Drafted from alshemaimri2021survey)
	Architecture-Specific Antipatterns
	ORM Antipatterns
	Categorization of Framework-Specific Antipatterns based on Schema
	Shared Persistency/data Ownership:
	Active Record Anti-pattern:
	Fat Repository/Generic Repository:
	Missing Fields (MF):

	Categorization of Framework-Specific Antipatterns based on Query
	The Eager Fetching Problem
	Row-by-row
	Inappropriate Service Intimacy
	Brain Repository
	Laborious Repository Method
	Meddling Service
	Chatty (Web) Service
	CRUDy Interface
	Maybe It Is Not RPC
	Data (Web) Service
	Sand Pile
	Nested Transaction
	Unexpected Transactional Behavior
	Inconsistent Transaction Read-write Level
	Sequence Name Mismatch
	Incorrect SQL Orders
	Inefficient Computation (IC)
	Unnecessary Computation (UC)
	Unnecessary Data Retrieval (UD)
	Inefficient Rendering (IR)
	Inefficient Data Accessing (ID)

	Extracting Standardized Data Element Names from Natural Language Definitions
	Introduction
	Related Work
	Data Element Naming Standard
	Data Element
	Data Element Naming Standards
	Data Element Name Components

	Data Element Naming Automation Tool
	DENA NLP
	DENA Assembly
	Storing the Extracted DEN in the Knowledge Graph using Neo4j.

	Results and Discussions
	Conclusion

	DENA: Data Element Naming Automation Tool
	Introduction
	Related Work
	Data Element
	Data Element Naming

	Framework and Algorithm
	Preprocessing Data Element Definitions
	Data Element Name Extraction
	Searching for Duplicates of the Extracted Data Element Name

	Results
	Conclusion

	CONCLUSION
	Summary of Contributions
	Future work

	Bibliography
	BIOGRAPHICAL STATEMENT

