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ABSTRACT

AUTONOMOUS AERIAL VEHICLES DISTRIBUTED CONTROL AND

INTERACTIVE GAMES

YUSUF KARTAL, Ph.D.

The University of Texas at Arlington, May, 2022

Supervising Professors: Frank Lewis, Atilla Dogan

As the number of quadrotors and other Unmanned Aerial Vehicles (UAVs) in-

creases in industrial and urban areas, the development of reliable engineering methods

to control their behavior as they interact with each other becomes of central interest

in control research. With the increase in demand for UAVs to work together, several

real-life challenges need to be addressed that include the implementation, test, and

validation of the control algorithms in flight test experiments. On the one hand, the

interests of UAVs may be in harmony to perform certain tasks such as transportation,

surveillance and reconnaissance. On the other hand, the interests of UAVs may be

directly opposite such as pursuing an evader UAV, and vice versa. This scenario is

analyzed under category of the pursuit-evasion games in literature but constraints

on the players’ actions are not well considered. One of the primary requirements of

autonomy is to be robust against the external disturbances, which can be achieved by

designing a controller that guarantees L2 gain boundedness by a prescribed attenua-

tion level. Unfortunately, the standard approaches to the such control problems result

in the sub-optimal gain solutions for guaranteed stability. In addition, when multi-

x



agent leader-follower control is considered, the mutual interests among the followers

can be addressed within a well-established game theoretic framework. In particular,

this can achieved via solving an output containment problem by introducing selfish

followers where each follower only considers its own utility. However, standard ap-

proaches result in coupled Riccati equations that are hard to solve. Motivated by the

desire to solve these problems, this dissertation has been written.

This dissertation first proposes a backstepping-based, distributed formation

control method that is stable independent of time delays in communication among

multiple UAVs. The proposed non-standard backstepping technique enables designer

to develop an outer position & velocity control loop that interfaces seamlessly with

the inner attitude controller of the cascaded control system for UAVs. Next, by us-

ing the nonstandard backstepping structure, we present a rigorous formulation for

the pursuit-evasion (PE) game when velocity constraints are imposed on agents of

the game or players. The game is formulated as an infinite-horizon problem using a

non-quadratic functional, then sufficient conditions are derived to prove capture in a

finite-time. Then, a new formulation for the H∞ static output-feedback (OPFB) con-

trol problem that guarantees both stability and L2 gain boundedness of a Linear Time

Invariant (LTI) system is given. This formulation allows us to extend multi-agent dis-

tributed formation control to multi-agent leader-follower (MLF) output containment

game where the agents of game are UAVs. Lastly, the MLF output containment game

is analyzed by introducing a novel cost functional whose solution provides both Nash

and distributed robust control strategies in the sense that each follower uses the state

information of its own and neighbors.
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CHAPTER 1

Introduction

Inspired by the naturally occurring biological groups such as herds and flocks

where each member acts only under the influence of its neighbors [1], formation flight

of quadrotors and other unmanned aerial vehicles (UAVs) has drawn great attention

in recent years, due to their capability to perform certain tasks such as transporta-

tion [2], surveillance and reconnaissance, [3] and target search and detection [4].

With the increase in demand for UAVs to work together to accomplish these tasks,

several real-life challenges need be addressed that include the implementation, test,

and validation of the control algorithms in flight test experiments. In particular, we

examine the challenge of designing a cooperative controller for UAVs to provide capa-

bilities such as, performance despite communication time-delays in a leader-follower

formation, employment of constrained input strategies, being robust against external

disturbances, and adopting optimal actions to optimize mutual cost of the group.

In the second chapter of this dissertation, we propose a backstepping-based,

distributed formation control method that is stable independent of time delays in

communication among multiple UAVs. Instead of directly controlling the thrust gen-

erated by the propellers, we partition the mathematical model of the UAV into two

subsystems, a linear attitude control loop and a nonlinear position control loop [5].

Centralized formation control of UAVs requires each agent to maintain a separa-

tion distance from other agents, which burdens the communication network of the

UAVs. To overcome this problem, we consider a distributed control scheme wherein

each agent updates its attitude and position based on the state information gathered
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through its neighbors. Instead of directly controlling the thrust generated by the

propellers, we partition the mathematical model of the UAV into two subsystems, a

linear attitude control loop and a nonlinear position control loop. A backstepping-

based outer position controller is then designed that interfaces seamlessly with the

inner attitude controller of the cascaded control system. The closed-loop stability is

established using a rigorous Lyapunov-Krasovskii analysis [6] under the influence of

distributed network time delays. Using the directed graph topology and a distributed

backstepping structure, it is shown that the stability criterion is delay-independent.

The proposed control algorithms are verified in simulation and then implemented in

hardware, and actual flight test experiments prove the validity of these algorithms.

This dissertation next copes with constrained input strategies for the pursuit-

evasion (PE) game. A novel tracking Hamilton–Jacobi–Isaacs (HJI) equation asso-

ciated with the non-quadratic value function is employed, which is solved for Nash

equilibrium [7] velocity policies for each agent with arbitrary nonlinear dynamics.

In contrast to the existing remedies for proof of capture in PE game, the proposed

method does not assume players are moving with their maximum velocities and con-

siders the velocity constraints a priori. Attaining the optimal actions requires the

solution of HJI equations online and in real-time. We overcome this problem by pre-

senting the on-policy iteration of Integral Reinforcement Learning (IRL) technique

[8], [9]. The persistence of excitation for IRL to work is satisfied inherently until

capture occurs, at which time the game ends. Furthermore, a nonlinear backstepping

control method is proposed to track desired optimal velocity trajectories for players

with generalized Newtonian dynamics. Simulation results are provided to show the

validity of the proposed methods.

Then, a new formulation for the H∞ [10]-[15] static output-feedback (OPFB)

control problem that guarantees both stability and L2 gain boundedness of a Linear

2



Time Invariant (LTI) system is given. The problem is treated as a zero-sum differen-

tial game by introducing a quadratic performance index, and then a novel augmented

Hamiltonian functional is proposed to solve for the Nash equilibrium point consisting

of minimizing extrema (input) & maximizing extrema (disturbance) for the game of

this kind. Unfortunately, the standard approaches to the H∞ control problem with

static OPFB result in the sub-optimal gain solutions for guaranteed stability [10]-[11],

[16]. In this chapter, we provide necessary and sufficient conditions of the optimal

gain solutions that inherently stabilize the system dynamics while also guaranteeing

Nash equilibrium. To obtain the optimal gain solution, two off-line iterative solution

algorithms are given. The first algorithm is based on Lyapunov iterations requires

an initial stabilizing gain. A second algorithm based on Riccati iterations obviates

the initial stabilizing gain requirement. Then, based on the Lyapunov iterations, an

off-policy Integral Reinforcement Learning (IRL) algorithm [17]-[18] is developed to

learn the optimal gain solution online without requiring any knowledge of system

state, control, and disturbance matrices. Simulation results are provided to show the

validity of the proposed methods.

Finally, multiple leader and follower graphical games that constitute challenging

problems for aerospace and robotics applications are considered. One of the challenges

is to address the mutual interests among the followers with an optimal control point

of view. In particular, the traditional approaches [19]-[20], treat the output contain-

ment problem by introducing selfish followers where each follower only considers its

own utility. In this chapter, we propose a differential output containment game over

directed graphs where the mutual interests among the followers are addressed with

an objective functional that also considers the neighboring agents. The obtained out-

put containment error system results in a formulation where outputs of all followers

are proved to converge to the convex hull spanned by the outputs of leaders [21] in
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a game optimal manner. The output containment problem is solved using the H∞

output feedback method where the new necessary and sufficient conditions are pre-

sented. Another challenge is to design distributed Nash equilibrium control strategies

for such games [22]-[26], which cannot be achieved with the traditional quadratic cost

functional formulation. Furthermore, an L2 gain bound of the output containment

error system that experiences worst-case disturbances with respect to the H∞ crite-

rion is investigated. The proposed methods are validated by means of multi-agent

quadrotor Unmanned Aerial Vehicles (UAVs) output containment game simulations.

The resulting publications are listed below:

1. Yusuf Kartal , Kamesh Subbarao, Nicholas R. Gans, Atilla Dogan, Frank Lewis,

Distributed backstepping based control of multiple UAV formation flight subject

to time delays. Published in IET Control Theory & Applications. Volume 14,

Issue 12. 2020.

https://doi.org/10.1049/iet-cta.2019.1151

2. Yusuf Kartal, Kamesh Subbarao, Atilla Dogan, Frank Lewis, Optimal game

theoretic solution of the pursuit-evasion intercept problem using on-policy rein-

forcement learning. Published in International Journal of Robust and Nonlinear

Control. Volume 31, Issue 16. 2021.

https://doi.org/10.1002/rnc.5719

3. Yusuf Kartal, Wenqian Xue, Atilla Dogan, Frank Lewis, New Solution for H-

infinity Static Output-Feedback Control Using Integral Reinforcement Learning.

2021. Under Review in IEEE Transactions on Cybernetics.

4. Yusuf Kartal, Ahmet Taha Koru, Frank Lewis, Yan Wan, Atilla Dogan, Adver-

sarial Multi-agent Output Containment Graphical Game with Local and Global

Objectives for UAVs. 2021. Under Review in IEEE Transactions on Control of

Network Systems.
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comply with requirements for graduation.
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CHAPTER 2

Distributed Backstepping Based Control of Multiple UAV Formation Flight Subject

to Time Delays

Formation control is a type of multi-agent architecture that relies on relative

motion of agents [28]. There exist different approaches to ensure formation control

for multi-agent systems in the control community. Three recognized categories are

behavior-based approaches [29], virtual structure-based approaches [30] and leader-

follower approaches [31]. In the behavior-based approaches, each agent of the forma-

tion acts according to predefined behavior. This approach is behaviorally inflexible

since motion is predefined. Alternately, virtual structure-based approach introduces

a virtual vehicle for each vehicle in the formation and transforms the formation prob-

lem into a trajectory tracking problem. However, since the virtual vehicles are not

exposed to any type of disturbance in the environment, there is a high chance that

the followers break formation in the event of unexpected environmental disturbances.

On the other hand, the leader-follower approach is easy to implement, and all agents

react to any environmental change, but the network delay must be examined well to

maintain formation.

Several works deal with linear dynamics of multi-agent systems [32, 33, 34, 35,

36]. Particularly, [33] reveals some of the necessary and sufficient conditions to achieve

predefined time-varying formations with switching interaction topologies based on the

algebraic Riccati equation. The authors of [36] propose a distributed adaptive control

technique that uses adaptive gain scheduling to tune the coupling weights between the

individuals of the multi-agent system. Whereas, [37] uses the same technique to satisfy

7



prescribed H-∞ like performance and to manage the side effects of uncertainties in the

system dynamics. However, since most physical systems are intrinsically nonlinear,

these linear cooperative control methods cannot be applied directly [38]. Therefore,

considerable number of works studied nonlinear dynamics of the multi-agent systems

[38, 39, 40, 41, 42]. Neural-network based adaptive control and distributed impulsive

control methods are examined to achieve leader-follower consensus with the class of

nonlinear multi-agent systems in [38] and [39] respectively. The authors prove the

stability of consensus error dynamics with well-known Lyapunov stability analysis

techniques.

However, the problem of designing leader-follower formation strategies in which

agents experience distributed network delays with pinning gain control requires more

attention. One significant challenge associated with this relates to the construction of

an appropriate compact nonlinear mathematical model of the multi-UAV system. In

[6], authors study the effect of commensurate time delays on the closed-loop stabil-

ity using the Retarded Functional Differential Equation (RFDE) form. By modeling

the dynamics of the UAV as a double integrator, [43] and [44] treat each agent of

the multi-UAV system as a point-mass system to apply time-varying consensus-based

approaches on the multi-UAV system. This is a gross oversimplification of the UAV

dynamics, especially for the quadrotor platforms considered in this paper. The in-

ner/outer control loop partitioning allows us to deal with the delays occurring in the

communication network of the UAVs, and to show that the stability of the outer

control loop of the cascaded system is independent of delay. It is then shown that the

closed-loop error dynamics of the whole system is also stable, independent of time

delay.

Moreover, authors of [45, 46, 47, 48, 49] use nonlinear backstepping control

method to deal with recursive design structure. This approach enables designer to

8



solve the stabilization problem partially for each submodule of the system of inter-

est. Particularly, [45] proposes the adaptive backstepping control scheme to possess

stronger stability properties while dealing with parametric uncertainties. [46] extends

the adaptive backstepping control scheme in [45], to achieve both convergence to the

path and predetermined dynamic behavior along the path simultaneously. In [47],

integrator backstepping and quaternion feedback is adopted to stabilize the attitude

of a micro satellite. Authors of [49] work on improving transient response of the

closed-loop system by presenting a generalized backstepping process, based on the

solvability of virtual controllers.

There are three major contributions of this work. Firstly, we use the second-

order nonlinear dynamics of UAVs and synthesize a novel rigorous distributed back-

stepping control technique that has a form that easily extends to multiple UAV dis-

tributed control. Secondly, we partition the mathematical model of UAVs into two

subsystems, an inner attitude control loop which is built into the quadrotor, and outer

position controllers that consider relative motion of neighbors in formation flight. This

allows us to rigorously analyze the delays occurring in the communication network

of the UAVs. We prove that the stability of the outer control loop of the cascaded

system is independent of delay, which implies that the closed-loop error dynamics of

the whole system is also stable independent of delay. Lastly, we employ the directed

graph topology to design formation control of the multi-UAV system, which reduces

the work burden for the UAV communication network. It is rigorously shown that the

stability criterion is delay-independent when each agent of the formation experiences

distributed delays while communicating with its neighbors. The actual flight tests

that show the validity and robustness of the developed control algorithms.

The rest of the paper is organized as follows. In Section 2.1, we provide the

preliminaries of the mathematical model of the quadrotor and graph theory to under-
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stand the basics of the distributed control approach. Section 2.2 brings an analysis

of the control structures proposed, which involves the inner attitude controller and

backstepping-based position controller for the task of trajectory tracking. We first

explain the attitude controller design procedure for the quadrotors. Then we show

the stability analysis of the backstepping control method. Section 2.3 illustrates how

to extend the backstepping control algorithm to control multiple agents using the dis-

tributed backstepping tracker, which has a stable delay-independent system structure

under the influence of non-constant distributed delays. Section 2.4 and 2.5 show the

flight tests on a real UAV, where we illustrate the trajectories followed by AR.Drone

2.0 quadrotor with a full nonlinear backstepping tracker and by multiple AR.Drone

2.0’s with a distributed backstepping trackers.

2.1 Preliminaries

The goal of this paper is to design a distributed controller for multi-UAV sys-

tems. Flying in a formation requires the agents to maintain separate distance from

each other, which burdens the communication network and induces communication

delays. In this section, we give preliminaries of a mathematical model of the quadrotor

and graph theory to clarify the idea of the backstepping-based, distributed formation

control method. In the next section, we present backstepping control for a single UAV.

Then in Section 2.3, we present the formation controller with the network delays.

2.1.1 Mathematical model

This section introduces the standard nonlinear model of the quadrotor dynam-

ics. To localize the quadrotor position, we use the Earth fixed frame. The origin

of the three-dimensional (3D) axis system of the Body frame is assumed to be at

10



the center of mass of the quadrotor. The kinematics of the Euler angle rates can be

expressed as

wB =


p

q

r

 =


1 0 −sθ

0 cϕ cθsϕ

0 −sϕ cθcϕ

 η̇ (2.1)

where c and s refers to cosine and sine respectively and wB ∈ R3 is the angular

velocity in the Body frame components. Particularly, p is the roll rate, q is the pitch

rate, and r is the yaw rate defined in the Body frame. Moreover, η ∈ R3 is the Euler

angle vector (roll, pitch, and yaw) i.e., η = [ϕ θ ψ]T . Note that positive directions of

Euler angles determined by right-hand rule, which are shown in Fig. 1.

The rotational dynamics are given by

IBẇB = S (wB) IBwB + τB (2.2)

where S (wB) ∈ R3×3 is the skew-symmetric matrix [44], τB = [τϕ τθ τψ]T is the

torque vector and IB ∈ R3×3 is the inertia matrix defined in Body frame.

The translational dynamics of the quadrotor, ignoring any aerodynamic effects,

is expressed in the Body frame is obtained to be

mU̇ =


0

0

µ

+RFg (2.3)

where U = [u v w]T is the velocity vector defined in the Body frame, µ is the total

thrust produced by rotors in the Body frame zB-axis. Note that m is mass of the

11



Figure 1: Coordinate systems of the quadrotor.

rigid body, Fg = [0 0 −mg]T is the gravitational force vector and R ∈ R3×3 is the

rotation matrix from the Earth frame to the Body frame. Moreover u, v and w stands

for the velocities of the quadrotor in Body-axis coordinate system given in Fig.1. We

obtain this rotation matrix using the yaw-pitch-roll (3-2-1) sequence. It is given by

R =


cθcψ cθsψ −sθ

−cϕsψ + sϕsθcψ cϕcψ + sϕsθsψ sϕcθ

sϕsψ + cϕsθcψ −sϕcψ + cϕsθsψ cϕcθ

 (2.4)

Note that R belongs to the special orthogonal group and is of rank 3, or SO(3),

whose determinant is equal to 1.

The translational dynamics of the quadrotor in the Earth frame is then formu-

lated as

mξ̈ = mV̇ = F + Fg (2.5)
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where ξ = [x y z]T and V ∈ R3 denotes the position and velocity vectors in the Earth

frame respectively. And, F ∈ R3 is the input force vector defined in the Earth frame.

Then 2.3 and 2.5 gives the following relation

F =


fx

fy

fz

 = RT


0

0

µ

 =


µ(sϕsψ + cϕsθcψ)

µ(−sϕcψ + cϕsθsψ)

µ(cϕcθ)

 (2.6)

2.1.2 Graph Theory

A Graph is constructed with a pairG = (V, E), where the set V = {v1, ..., vN}

defines the nodes or vertices, and E defines edges or arcs. The set E is composed of

edge pairs (vi, vj). If (vi, vj) is equal to (vj, vi) ∀i, j ∈ [0,N] , i 6=j, then graph

is said to be bidirectional. Each edge (vj, vi) ∈ E, has a weight aij > 0 if and

only if there exists a connection from node j to i. The graph is called undirected

if aij= aji, ∀i, j.The undirected graph is said to be weight balanced, which leads to

symmetric adjacency matrix A.

The diagonal matrix D is the ith row sum of A or weighted in-degree. Then,

the Laplacian matrix is defined as

L = D −A. (2.7)

In this paper, the edge weights represent the trust between quadrotors, which

are nodes of the formation graph. We create a graph topology based on adjacency or

connectivity matrix A = [aij], realizing that aii = 0. The Laplacian matrices of all

undirected graphs are real symmetric matrices. On the other hand, this is not valid

for the digraphs. One of the contributions of this paper is proving consensus of the

UAVs by adopting directed graph topology.
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Figure 2: Desired input states calculation for the attitude controller.

2.2 Backstepping control

This section explains the full nonlinear backstepping control design for the

quadrotor. The backstepping control structure derived here is shown in Fig.2. This is

a nonstandard backstepping controller, has a novel form that allows direct extension

to multiple interacting UAV control. Specifically, we derive the UAV error dynamics

(2.33), which has a special form that is easily extended to multiple UAV formation

control in Section 2.3. To apply the backstepping control method to the system

defined in (2.5), we begin by adding and removing Fd, an ideal virtual force input,

and obtain the Newtonian model in terms of the desired forces

mξ̈ = mV̇ = Fd + Fg + F̃d (2.8)

where F̃d = F−Fd. In Section 2.2.1, we show how to obtain desired Euler angle vector

ηd = [ϕd θd ψd]
T to generate Fd, and the time rate of change of desired vertical speed,

ẇd. Then in Section 2.2.2, τB in (3.2) is designed using ηd = [ϕd θd ψd]
T and ẇd to

get F̃d→0. Lastly in Section 2.2.3, Fd is selected to get ξ→ξd, where ξd = [xd yd zd]
T

is the given desired position vector in the Earth frame. Proof of stability and tracking

error convergence is given in Section 2.2.3.
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2.2.1 Desired Euler angles

In Section 2.2.3, we show how to compute desired force vector Fd to obtain

position and velocity tracking. Herein we show how to compute ηd and ẇd from the

desired force data Fd by using the inverse kinematics approach. Suppose we are given

desired force Fd. Note that from (2.6)

Fd =


fxd

fyd

fzd

=


µd(sϕdsψd + cϕdsθdcψd)

µd(−sϕdcψd + cϕdsθdsψd)

µd(cϕdcθd)

 (2.9)

where µd is the desired thrust in the Body frame. (3.47) can be solved for the desired

Euler angles

tanθd =
fxdcosψd + fydsinψd

fzd
,

θd = tan−1
(
fxdcosψd + fydsinψd

fzd

)
, (2.10)

tanϕd =
cosθd (fxdsinψd−fydcosψd)

fzd
,

ϕd = tan−1
(

cosθd (fxdsinψd−fydcosψd)

fzd

)
, (2.11)

µd =
fzd

cosϕd cosθd
. (2.12)

and fzd 6= 0. Although it should be mentioned that fzd = 0 only if θd and/or ϕd = ±π
2

or µd = 0. The condition θd = ±π
2

or ϕd = ±π
2

correspond to singular orientations of

the quadrotor and our domain of operation for θ and ϕ is
(
−π

2
π
2

)
. Further µd = 0

would correspond to zero total thrust. Furthermore, notice that ψd can be arbitrarily

prescribed, and only the variables θd, ϕd and µd must be found. The inner loop

control design of the backstepping method requires the time rate of change of the
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desired vertical speed in the Body frame, ẇd, which is calculated by using (2.3) such

that

ẇd =
µd
m
− gcosϕd cosθd . (2.13)

Note that the information of time rate of change of the desired vertical speed

or simply desired vertical acceleration acts as an input of the attitude controller loop

will be given in Section 2.2.2. Derivation of this data is essential to control the height

of the UAV, while accomplishing the path tracking objective accurately in 3D space.

2.2.2 Inner attitude control loop

In this section, we explain the inner attitude control of the backstepping method

for the quadrotor. The attitude controller is generally built-in to the UAV and cannot

be modified. This implies that the built-in attitude controller is assumed to track the

quantities ηd and ẇd.

We begin with deriving the desired Euler rates wBd = [pd qd rd]
T by using (2.1)

and ηd such that


pd

qd

rd

=


1 0 −sθd

0 cϕd cθdsϕd

0 −sϕd cθdcϕd



ϕ̇d

θ̇d

ψ̇d

 . (2.14)
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Then the following PID controller is designed to generate changes in angular velocity

of the propellers


∆Ωϕ

∆Ωθ

∆Ωψ

=


Pϕ (ϕd−ϕ) +Dϕ (pd−p) +Iϕ

∫
(ϕd−ϕ)

Pθ (θd−θ) +Dθ (qd−q) +Iθ
∫

(θd−θ)

Pψ (ψd−ψ) +Dψ (rd−r) +Iψ
∫

(ψd−ψ)

 . (2.15)

Furthermore, (3.59) is used to obtain the desired angular velocity of each rotor [2]

such that



Ω1d

Ω2d

Ω3d

Ω4d


=



1 0 −1 1

1 −1 0 −1

1 0 1 1

1 1 0 −1





Ωh+∆Ωnet

∆Ωϕ

∆Ωθ

∆Ωψ


(2.16)

where Ωid, i = 1, 2, 3, 4, corresponds to the desired angular velocities of the rotors

and k is the thrust factor. And, Ωh is the rotor speed required to hover such that

Ωh=

√
mg

4k
(2.17)

∆Ωnet is the outcome of desired vertical acceleration in the Body frame, ẇd (2.13), in

the form of

∆Ωnet=
m

8kΩh

ẇd. (2.18)

Notice that while producing Ωh keeps the quadrotor at nominal condition (hover),

∆Ωnet moves the UAV along zB-axis. In addition, producing ∆Ωϕ, ∆Ωθ and ∆Ωψ

deviates quadrotor from hover by resulting in roll, pitch and yaw respectively. Finally,
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(3.60) yields the following torque vector expression, which stabilizes the rotational

dynamics (3.2)

τB=


τϕ

τθ

τψ

=


lk(Ω4d

2−Ω2d
2)

lk(Ω3d
2−Ω1d

2)

d(Ω1d
2 + Ω3d

2−Ω2d
2−Ω4d

2)

 (2.19)

where l is the lever length, and d is the drag factor. The direction of angular velocities

for each rotor is given in Fig.1, while first and third rotor turn anti-clockwise, the

other two turn clockwise to cancel the yawing moments generated when the quadrotor

is at nominal condition. The total thrust, µd, is equal to the sum of thrusts generated

by each rotor, that is

µd=k(Ω1d
2+Ω2d

2+Ω3d
2+Ω4d

2). (2.20)

2.2.3 Outer position control loop

This section explains the outer position control loop of full nonlinear backstep-

ping design for the quadrotor. We derive an expression for Fd that guarantees the

dynamics of (2.8) are stable. A main result is the form (2.33) for the error dynam-

ics, which has a special structure that is directly extended to multiple quadrotors in

Section 2.3.

Begin with defining the position and velocity errors in the Earth frame as

x1 = ep = ξd − ξ,

x2 = ev = Vd − V (2.21)

where Vd = ξ̇d ∈ R3 is the desired velocity vector in the Earth frame.
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The objective of the paper is to demonstrate the performance of the cooperative

controller for any Commercial off the Shelf quadrotor platform with an inbuilt attitude

controller. In such a situation, the assumption is reasonable that the inbuilt attitude

controllers (typically PID) will accomplish this task. Thus the inner loop attitude

controller is not analyzed further. Then to prove the convergence of error dynamics

(3.45), which is the second step of backstepping method given in Section 2.2, we make

following assumption

Assumption 1. The inner attitude controller (3.43), tracks the Euler angles (3.48)-

(3.49) and vertical acceleration (2.13). Hence the equilibrium of inner attitude control

loop is stable.

The next main theorem shows how to compute Fd to guarantee stable position

and velocity tracking of (2.8).

Theorem 1. Under Assumption 1, the following control law, applied to the system

governed by (2.8) ensures that the position and velocity tracking errors in (3.45) → 0

as t→∞.

Fd = mV̇d − Fg + (mK1 +mK2) ẋ1

+ (mI3×3 +mK1K2)x1. (2.22)

Proof. The error dynamics are derived as

ẋ1 − x2 + xv2 − xv2 = 0 (2.23)
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where xv2 is a virtual control signal. Moreover, by using (2.8) the error dynamics

become

ẋ2 − V̇d +
Fd
m

+
Fg
m

+
F̃d
m

= 0. (2.24)

Then, define the following velocity error mismatch variable

x̃2 = xv2 − x2. (2.25)

Substituting (2.25) in (2.23)

ẋ1 − xv2 = −x̃2. (2.26)

Now we pick xv2 = −K1x1 where K1 ∈ R3×3 is a diagonal positive definite matrix.

Then (2.26) becomes

ẋ1 +K1x1 = −x̃2. (2.27)

To examine the stability of (2.27), we pick the Lyapunov function candidate as follows

V =
1

2
x1

Tx1 +
1

2
x̃2

T
x̃2. (2.28)

Then the derivative of Lyapunov function candidate is derived using (2.24) and

(2.26) as

V̇ = x1
T ẋ1 + x̃2

T ˙̃x2

= x1
T (−K1x1 − x̃2)

20



+ x̃2
T

(
ẋv2 − V̇d +

Fd
m

+
Fg
m

+
F̃d
m

)
. (2.29)

To have strictly negative definite Lyapunov function derivative, we set Fd as

Fd = mV̇d − Fg −mẋv2 +mx1 −mK2x̃2

= mV̇d − Fg + (mK1 +mK2) ẋ1

+ (mI3×3 +mK1K2)x1 (2.30)

where K2 ∈ R3×3 is a diagonal positive definite matrix. Then, (2.29) becomes

V̇ = −x1
TK1x1 − x̃2

TK2x̃2 + x̃2
T F̃d
m
,

≤ −λmin(K1,K2) ‖x̃‖2 + x̃2
T F̃d(0)

m
,

≤ −λmin(K1,K2) ‖x̃‖2 + ‖x̃2‖

∥∥∥F̃d(0)
∥∥∥

m
(2.31)

where x̃ =
[
xT1 x̃2

T
]T

and λmin(K1,K2) stands for min eigenvalue of K1 and K2.

Note that in the worst case scenario, λmin(K1,K2) must be bigger than
‖F̃d(0)‖

m
,

which is a sufficient condition for asymptotic stability of origin. Moreover, from

Assumption 1, the inner attitude control loop ensures that the quadrotor tracks the

desired attitude angles ϕd, θd, and the desired thrust µd, i.e ϕ → ϕd, θ → θd, and

µ → µd. From the description of F and Fd in (2.6) and (3.47) respectively, we

conclude that F → Fd and hence, F̃d → 0. Then (2.31) becomes

V̇ = −x1
TK1x1 − x̃2

T
K2x̃2, (2.32)
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which is strictly negative definite sinceK1 andK2 are positive definite matrices. Note

that x̃2→ 0 implies x2→ xv2. Moreover, xv2→ 0 as xv2 = −K1x1. Hence, x2→ 0

and the origin (0,0), which is the equilibrium of (3.45), is globally asymptotically

stable.

Using the control laws derived previously, from (2.30) the tracking error dy-

namics can be written in the state-space form as

ẋ =

 03×3 I3×3

−(K1K2 + I3×3) − (K1 +K2)


︸ ︷︷ ︸

J

x (2.33)

where x =

[
x1

T x2
T

]T
. Note that J is Hurwitz. This form is instrumental in

designing formation controllers for multiple UAV in the next section.

2.3 Distributed backstepping position control loop of multiple UAV with network

delays

This section provides the connection of outer position control loop of backstep-

ping method defined in Section 2.2.3 to the distributed multi-agent case. The error

dynamics (2.33) are in a novel form which is easily extended in this section to multiple

UAV formation.

We first treat the distributed system as delay-less. Then we perform rigorous

stability analysis when agents experience both constant and distributed delays. Define

dynamics (2.5) for each agent as

mξ̈i = mV̇i = Fi + Fg,∀i = 1, ..., N. (2.34)
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2.3.1 No communication delay

In this section, we first extend the error dynamics (2.33) to multiple quadrotors.

If there is no communication delay, define the position-based consensus error

epi =
∑
jεNi

aij (ξj −∆j − ξi +∆i) + gi (ξ0 − ξi +∆i) (2.35)

∀i = 1, ..., N where gi is the pinning gain, ∆i (and ∆j) is the n-dim constant tracking

offset vector of the ith (and jth) UAV with respect to the n-dim position of the leader,

ξ0 ∈ R3, of the formation. Lastly, N is the number of the UAVs in the formation.

Note that gi only takes values different than zero, if the node i is directly connected

to the leader node. For the sake of simplicity, we use following vector notations

ecp = [eTp1 e
T
p2 ... e

T
pN

]T , ecp ∈ RNn

∆ =
[
∆T

1 ∆
T
2 ... ∆T

N

]T
,∆ ∈ RNn

ξc =
[
ξT1 ξ

T
2 ...ξ

T
N

]T
, ξc ∈ RNn (2.36)

V c =
[
V T

1 V
T
2 ...V

T
N

]T
,V c ∈ RNn

F c =
[
F T1 F

T
2 ...F

T
N

]T
,F c ∈ RNn.

By using (2.5), the global system dynamics for followers can be written as

mV̇ c = F c + 1N ⊗ Fg. (2.37)

Then, by using (2.7) and noting the fact L1N = 0N since the row sum of L is

zero, re-write (2.35) as

ep
c = −((L+G)⊗ In) (ξc −∆) + (G⊗ In)(1N ⊗ ξ0)
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= − ((L+G)⊗ In) (ξc −∆− 1N ⊗ ξ0) (2.38)

where 1N is N -dim vector whose all elements are ones and G ∈ RN×N is a diagonal

pinning gain matrix with the diagonal elements of gi ∀i = 1, . . . , N . In addition, ⊗

stands for the Kronecker product. Define ξ
0

= 1N ⊗ ξ0. Then (2.38) becomes

ep
c = ((L+G)⊗ In) (ξ

0
+∆− ξc). (2.39)

The velocity-based consensus error is

ev
c = ((L+G)⊗ In) (V 0 − V c) (2.40)

where V 0 = ξ̇
0
∈ RNn, then the error dynamics are derived as

ėcp = ev
c,

mėcv = ((L+G)⊗ In)
(
mV̇ 0 −mV̇ c

)
. (2.41)

Substituting (2.37) in (2.41) results in

mėcv = ((L+G)⊗ In)
(
mV̇ 0 − (F c + 1N ⊗ Fg)

)
. (2.42)

Now, we set the global desired force vector that contains desired force information

for each agent of the formation (2.36) by using mixed-product property of Kronecker

product, (A⊗B) (C ⊗D) = (AC)⊗ (BD) such that

F c = mV̇ 0 − 1N ⊗ Fg +m(IN ⊗ (K1 +K2))ev
c

+m(IN ⊗ (I3×3 +K1K2))ep
c. (2.43)
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Note that F c is the global form of (2.30). Moreover, ξ
0

+∆ and V 0 are the global

form of ξd and Vd respectively. Then, we end up with the following second-order

error dynamics such that

ėcp = ev
c

ėcv = − ((L+G)⊗ (K1K2 + I3×3)) ep
c

− ((L+G)⊗ (K1 +K2)) ev
c. (2.44)

The state-space form of (2.44) is

ẋc(t) = Jcxc(t) (2.45)

where Jc ∈ R2Nn×2Nn is the global system matrix such that

J
c

=

 0Nn×Nn INn×Nn

−
(
(L + G)⊗

(
K1K2 + I3×3

))
− ((L + G)⊗ (K1 + K2))

 (2.46)

and xc(t) =

[
ep
cT ev

cT

]T
∈ R2Nn×1 is the global state vector. The global

dynamics (2.45) are the combination of the single-agent dynamics (2.33) for the entire

formation. Before we do the stability analysis for the closed-loop error dynamics given

in (2.45), we make following assumption:

Assumption 2. The graph topology of the multi-agent system contains a spanning

tree with the root node being the leader node. This means that there is a directed path

(not necessarily unique) from the leader node to every follower node.

The next theorem extends the single-agent result in Theorem 1 to the multi-

agent case by using M-matrix properties of the digraphs [50].

Theorem 2. Given the Assumption 2, L+G is an irreducible M-matrix and has all

eigenvalues strictly in the open right-half plane [50]. Then, the equilibrium of closed-
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loop error dynamics given in (2.45) is globally asymptotically stable point meaning

that Jc is Hurwitz.

Proof. Use the fact that Kronecker product of a positive diagonal matrix and an M-

matrix has all eigenvalues strictly in the open right-half plane [51, 52]. Then, re-write

(2.45) in form of the second-order differential equation such that

ëcp + ((L+G)⊗ (K1 +K2)) ėcp

+ ((L+G)⊗ (K1K2 + I3×3)) ep
c = 0. (2.47)

Notice that all coefficient matrices of the characteristic polynomial of (2.47) have

eigenvalues at open right half plane, hence the origin is globally asymptotically stable

equilibrium by Routh-Hurwitz test. Note that if the graph topology was undirected,

algorithms proposed in this paper would still work because L+G would be positive

definite symmetric matrix with the assumption of there exists a path from the leader

node to every follower node.

2.3.2 Communication delays

In this section, first we consider the system with constant communication delay,

which occurs while the local positioning system shares the position of each agent to

their neighbors. This delay may be created by processing time of the positioning

system, data header analysis, and storage at routers, etc. Note that this delay is

upper bounded by the practical limitations. Then (2.45) is written in the form of

Retarded Functional Differential Equation [6] such that

ẋc(t) = Jcxc (t) + βJcxc(t− γ) (2.48)
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where γ is the network delay, β is the gain of delayed term and Jc is the system

matrix (2.46).

Theorem 3. For the system in (2.48), the origin is stable equilibrium for β ∈ (−1, 1]

as the system matrix Jc is Hurwitz by Theorem 2.

Proof. As γ → 0, β must be greater than -1 so that the overall system is stable, which

is the lower bound of β.

To find the upper bound, use the fact that ρ
(
(jwI − Jc)−1Jc

)
< 1 ∀w > 0 as

given in [53] where ρ(.) denotes the spectral radius of a matrix and w denotes the

frequency.

First assume that ρ
(
(jwtI − Jc)−1Jc

)
= 1, ∀wt > 0, which implies ejσt is the

eigenvalue of the matrix (jwtI − Jc)−1Jc for σt ∈ [0, 2π]. Then, det
(
I − (jwtI − Jc)−1Jcejγtwt

)
=

0 for γt = σt
wt

, or equivalently by using matrix determinant lemma

det
(
jwtI − Jc − Jcejγtwt

)
= 0. (2.49)

Hence (2.48) is not stable independent of delay with this assumption.

Next, assume that ρ
(
(jwtI − Jc)−1Jc

)
> 1, ∀wt > 0. Since ρ(.) is continuous

function of wt and

lim
wt→∞

ρ
(
(jwtI − Jc)−1Jc

)
= 0. (2.50)

Then ∃wt ∈ (w,∞) such that ρ
(
(jwtI − Jc)−1Jc

)
= 1, which makes (2.48) not

stable independent of delay as this ends up with (2.49). Consequently, we show that

ρ
(
(jwtI − Jc)−1Jc

)
< 1, ∀wt > 0. By using Gelfand Corollaries, this results in

ρ
(
(jwtI − Jc)−1Jc

)
≤ ρ

(
(jwtI − Jc)−1)ρ(Jc)

)
≤ ||Jc||∞√

||Jc||2∞ + wt2
. (2.51)
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Then the upper bound of β must be 1 by (2.51) to have ρ
(
β(jwtI − Jc)−1Jc

)
< 1.

To this end, we proved that as β ∈ (−1, 1], the system represented in (2.48) is stable

independent of delay.

Now, if we consider the system with non-constant distributed delays, (2.45) can

be written as

ẋc(t) = Jcxc(t) + β

∫ 0

−γ
Jcxc(t+ s)ds (2.52)

where s ∈ [−γ, 0], β is the gain of delayed term and γ is the maximum delay.

Theorem 4. The origin is an asymptotically stable equilibrium of (2.52) when there

exist distributed delays in the communication network with gain β ∈ [0, 1], which is a

sufficient condition for asymptotic stability.

Proof. As shown in Theorem 3, the origin is stable equilibrium for β ∈ (−1, 1] since Jc

is proven to be Hurwitz in Theorem 2. With this in mind, pick Lyapunov-Krasovskii

functional as

V (xct) = xcT (t)Pxc (t)

+ β

∫ t

t−γ

[∫ 0

s

xcT (`)Sxc (`) d`

]
ds (2.53)

where P ∈ R2Nn×2Nn and S ∈ R2Nn×2Nn are positive definite, symmetric matrices.

To have strictly positive definite Lyapunov-Krasovskii functional (2.53), the sufficient

condition is β > 0. Before taking the derivative of Lyapunov-Krasovskii functional

and developing stability analysis, we use change of variable f (T ) = xc (t+ T ) for

arbitrary T , to simplify the stability analysis. Then, (2.52) and (2.53) become

ḟ(0) = Jcf(0) + β

∫ 0

−γ
Jcf(s)ds (2.54)
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V (f) = fT (0)Pf (0)

+ β

∫ 0

−γ

[∫ 0

s

fT (`)Sf (`) d`

]
ds. (2.55)

Furthermore, by using the Leibniz Integral Rule and (2.54), the derivative of Lyapunov-

Krasovskii functional (2.55) becomes

V̇ (f) = fT (0)
[
PJc + JcTP + γβS

]
f (0)

+ 2fT (0)

∫ 0

−γ
PJcf (s) ds

− β
∫ 0

−γ
fT (s)Sf (s) ds. (2.56)

To facilitate further development, (2.56) is written as

V̇ (f) = fT (0)
[
PJc + JcTP

]
f (0)

+

∫ 0

−γ
vT

 βS PJc

JcTP −βS

v ds (2.57)

where v =

[
f (0)T f (s)T

]T
. Notice that V (f) ≥ ε

∥∥∥∥ f(0)

∥∥∥∥2 is satisfied for

sufficiently small ε > 0. And,
[
PJc + JcTP

]
≤ −εI since Jc is proved to be

Hurwitz by Theorem 2. In addition, assuming ∃P = P T > 0 and using the linear

matrix inequality [13], the negative definiteness of a matrix

 βS PJc

JcTP −βS

 implies

V̇ (f) ≤ ε

∥∥∥∥ f(0)

∥∥∥∥2. Therefore, all conditions of the asymptotically stability by

analyzing the derivative of Lyapunov-Krasovskii functional given in [23], have met

meaning that the origin is asymptotically stable equilibrium.
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2.4 Experiment design and flight test details

This section addresses the crucial elements of our experiments, which are lab en-

vironment, flight controller design and simulations. An actual flight test is conducted

in Section 2.5.

2.4.1 Lab environment

Equipment used are the Vicon, Parrot AR.Drone 2.0, and the master computer.

Vicon is a motion capture system that provides the position of the UAVs.

The communication between master computer and Vicon is done via User Data-

gram Protocol (UDP). The frequency of the UDP Packets taken from the Vicon mo-

tion capture system is 100 Hz. The AR.Drone 2.0 has a built-in gyroscope and Inertial

Measurement Unit (IMU) sensor suite. In practical applications, many quadrotors

are designed with a built-in attitude controller and AR.Drone has its own attitude

controller. This controller takes the desired values of ϕd, θd and ψd as inputs. The

communication between the master computer and the AR.Drone is done via UDP.

The frequency of UDP packages is set to 500 Hz. MATLAB-Simulink is used to

create UDP nodes that are communicating with AR.Drone and Vicon. The receiver

and the sender UDP nodes are inserted to the Simulink model in the form of S-

functions. The controller and the trajectory generation algorithms are implemented

in the model. Simulink-Desktop Real Time Add-on is used to send the real time com-

mands to the quadrotor. The UDP nodes tolerate up to 10% packet loss rate, which

is necessary to handle communication channel noise created by the lab environment.

2.4.2 Flight controller design

The flight controller is a high-level decision-making mechanism that activates

different modes of operation depending on the state of the UAV. We recognize three
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Figure 3: The flight controller FSM design.

modes of operation in our MATLAB implementation, which are IDLE, HOVER and

TRACK PATH as shown in Fig. 3. The quadrotor enters the IDLE mode, when either

we turn-on the AR.Drone manually or it is landed by receiving the Land command.

While in the IDLE, the UAV is actively receiving the data packets via UDP port

communication and is ready to get the TakeOff command.

When the UAV reaches the desired height, zd, the flight controller switches to

the HOVER mode. In this mode the UAV is at the nominal condition, its attitude is

parallel to ground and motionless in the air. If the Track command is received in the

HOVER mode, the flight controller switches to the PATH TRACK mode. This mode

is triggered after 10 seconds passed from the transmission of TakeOff command. In

this mode, AR.Drone begins to track the predetermined trajectory. The flight control

algorithm, first reads the IMU sensor buffers and then Vicon buffer to construct the

close loop error dynamics. To calculate desired Euler angles, (3.48)-(3.50) is used.

Notice herein the desired yaw angle command is set to an arbitrary constant.

To land the quadrotor on the ground, we use either EmergencyLand or SafeLand

commands. The difference of these two commands is the timing of stopping propeller

movements. If we send the SafeLand command to the quadrotor, it reduces the
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Gains Φ(Roll) θ(Pitch) ψ(Y aw)
P 6.42 6.42 4.82
D 5.54 5.54 7.89
I 1.85 1.85 0.11

Table 1: Inner attitude control loop PID parameters

propellers’ speed till the height is in the range of 0-0.1 meter and shuts down the

propellers. Else if we send the EmergencyLand to the quadrotor, it directly stops the

propellers and lands on the ground. The appropriate structure for implementing the

flight controller is the finite state machine (FSM) since the mode switching event is

driven as shown in Fig. 3.

2.4.3 Simulations

The aim of this section is to verify control algorithms proposed in this paper by

conducting different test scenarios. Before we implement the distributed backstep-

ping control algorithm in the actual hardware, mathematical model in Section 2.1.1,

Backstepping control method in Section 2.2 and distributed backstepping trackers in

Section 2.3 are implemented in the Simulink. We first verified inner attitude control

loop design in Section 2.2.2, the PID gains are given in Table 1.

To derive PID gains given in Table 1, thrust, drag factors, mass and arm length

of the AR.Drone 2.0 must be measured. Mass and arm length of the quadrotor are

measured as m = 0.467kg and l = 0.1785m respectively. To determine the thrust

factor k, we first measure the angular velocity of a propeller with tachometer when

the quadrotor is in hover. Then, we used (3.41) to derive k, which is found as

8 ∗ 10−6N ∗ s2/rad2. After that, using the thrust ratio analysis for small UAVs, the

thrust factor d is derived as 2 ∗ 10−7N ∗m ∗ s2/rad2. Moreover the diagonal elements

of K1, K2 are tuned as 2, 2, 3 and 1.5, 1.5, 3 respectively.
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To construct the desired circular trajectory for the formation leader, xd is set to

cos(ωt(t− ttrack)) and yd is set to sin(ωt(t− ttrack)) where t is simulation time, ttrack

is the time at which the UAV begins to track circular trajectory, and ωt stands for

the frequency of the sinusoidal function. In our simulations, we pick ttrack as 15s and

ωt as 0.5rad/s. Note that before formation leader begins to track circular trajectory,

the xd value is linearly increased by 1m for t ∈ [10, 15]. Therefore, the leader UAV

begins to track circular trajectory at 15s. In Section 2.5.1, we double value of ωt for

yd setting to construct the eight figure trajectory.

2.4.3.1 No delay, undirected graph

The aim of this section is to show validity of the proposed algorithms, when the

undirected graph topology is adopted to design leader-follower formation control while

multi-UAV system does not experience any delays. We share the control histories for

the formation leader in Fig. 4 and Fig. 5. Particularly, in Fig. 4, we show attitude
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Figure 4: The attitude control inputs of leader UAV
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control inputs (3.48)-(2.13) of the leader UAV. In Fig. 5, we show torque (3.43), and

thrust (3.44) controls defined in the Body frame of the formation leader. For this test

scenario, we pick Adjacency, pinning gain matrices and offset vector as follows

A =


0 1 0

1 0 1

0 1 0

 ,G =


1 0 0

0 0 0

0 0 0

 ,
∆T =

[
1.5 0 0 3 0 0 4.5 0 0

]
. (2.58)

Fig. 6 shows the leader and follower positions with the Adjacency and pining

gain matrices given in (2.58), when there is no communication delay in the multi-UAV

communication network.

10 20 30

4.45

4.5

4.55
thrust control

10 20 30

-0.01

-0.005

0

0.005

0.01
torque control for roll

10 20 30

-0.01

-0.005

0

0.005

0.01
torque control for pitch

10 20 30

-0.01

-0.005

0

0.005

0.01
torque control for yaw

Figure 5: Torque and thrust controls of the leader UAV
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Figure 6: The path tracked by the UAVs when there exists no delay and undirected
graph topology is used

2.4.3.2 No delay, directed graph

For this test scenario, along with the offset vector given in (2.58) we pick Ad-

jacency and pinning gain matrices that do no contradict Assumption 2, as follows

A =


0 0 0

1 0 0

0 1 0

,G =


1 0 0

0 0 0

0 0 0

. (2.59)

Note that Fig. 7 is the same as Fig. 6 since the graph topology with the

Adjacency and pinning gain matrices given in (5.56), contains a spanning tree.

35



10 20 30

time (sec)

-1

0

1

x
 (

m
)

Leader

10 20 30

time (sec)

-1

0

1

y
 (

m
)

Leader

10 20 30

time (sec)

-1

0

1

z
 (

m
)

Leader

10 20 30

time (sec)

0.5
1

1.5
2

2.5
x
 (

m
)

Follower1

10 20 30

time (sec)

-1

0

1

y
 (

m
)

Follower1

10 20 30

time (sec)

-1

0

1

z
 (

m
)

Follower1

10 20 30

time (sec)

2

3

4

x
 (

m
)

Follower2

10 20 30

time (sec)

-1

0

1

y
 (

m
)

Follower2

10 20 30

time (sec)

-1

0

1

z
 (

m
)

Follower2

10 20 30

time (sec)

3.5
4

4.5
5

5.5

x
 (

m
)

Follower3

10 20 30

time (sec)

-1

0

1

y
 (

m
)

Follower3

10 20 30

time (sec)

-1

0

1

z
 (

m
)

Follower3

followed trajectory

desired trajectory

Figure 7: The path tracked by the UAVs when there exists no delay and directed
graph topology is used

2.4.3.3 With delay, directed graph

For the last test scenario of simulations, along with the offset vector given in

(2.58), we pick Adjacency and pinning gain matrices given in (5.56). And, to test

the stable independent of delay structure of the algorithms presented in Section 2.3,

we added two seconds delay as a communication delay. By looking at Fig. 8, one

can conclude that stable independent of delay property of the proposed algorithms,

is verified.

2.5 Actual flight test results

This section reveals the flight test results obtained with single and multiple

UAVs under the influence of time delays. We share the graphs of the desired and
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Figure 8: The path tracked by the UAVs when there exists two seconds delay and
directed graph topology is used

followed trajectories when both the proposed methods in Section 2.2.3 and 2.3 is

used.

2.5.1 Controller behavior with a single quadrotor

In this section, we present the performance of the backstepping control algo-

rithm proposed in Section 3 by using both circular and figure-eight trajectories.

For the backstepping controller designed in Section 2.2.3, Fig. 9 and Fig. 10

shows the desired path of the UAV and the path traced by the UAV when both

circular and eight-figure are desired trajectories. Notice that the tracking error is

maintained inside the acceptable bounds, showing the performance of designed back-

stepping controller in terms of path following. Note that diagonal elements of K1

and K2, are assigned respectively as 2, 2, 3 and 1.5, 1.5, 3.

To observe the network communication delay, we plot time vs desired and

tracked positions in 3D space as shown in Fig. 11. Notice that communication delay
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is about 2 seconds and tends to be commensurate through path following experiment.

Moreover, when the quadrotor is following a nonlinear trajectory such as eight-figure

and circular path, there exists time-delay between the desired position and followed

position as shown in Fig. 11. This time delay is the summation of reaction time of

UAV and the network delay caused by the local positioning system. That’s why, the

error seems to be bounded. However, after finishing the complete eight or circular

figure trajectory, the error goes to zero since the desired position is constant at that

time and quadrotor’s position is the same as the desired position. This can be seen

clearly from Fig. 9 and Fig. 10.

2.5.2 Controller behavior with multiple quadrotors

This section shows the formation control performance of the distributed back-

stepping control method given in Section 2.3. In the experiments of this section, the

task of followers is to track the formation leader with a certain position offset. We

show the leader and followers positions in the Fig. 12 and Fig. 13 while the leader
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Figure 9: The path tracked by the UAV with the backstepping controller using 8-
figure trajectory
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Figure 11: Controller behavior with time delay.

of the multi-agent system is following both eight-figure and circular trajectories re-
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spectively. Adjacency and pinning gain matrices along with offset vector used in this

actual hardware implementation are

A =

 0 0

1 0

 ,G =

 1 0

0 0

 ,
∆T =

[
0 −3 0 0 −6 0

]
. (2.60)

Fig. 14 and Fig. 15 show the desired path of the UAVs and the path tracked by

the UAVs when the leader is following both circular and eight-figure type trajectories.

Note that the delay experienced by each agent of the formation is slightly different

than each other. However, if the position offset of the quadrotors gets bigger, agents

of the formation would experience more distributed delays.

We record a video of the experiments described in this section, the interested

reader can use the link ‘https://www.youtube.com/watch?v
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Figure 12: The path tracked by the UAVs with the distributed backstepping controller
when the leader follows an eight-figure trajectory.
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=rmY1LK42oPk’ to have a visual understanding of the paper. Notice in the movie,

formation control using the distributed backstepping method is influenced by the very

strong wind effect that is produced by quadrotors themselves. This demonstrates the

robustness of the proposed control method.
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Figure 13: The path tracked by the UAVs with the distributed backstepping controller
when the leader follows a circular trajectory.
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Figure 14: Observation of time delay graph when the leader follows an eight-figure
trajectory.
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Figure 15: Observation of time delay graph when the leader follows a circular trajec-
tory.
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CHAPTER 3

Optimal Game Theoretic Solution of the Pursuit-Evasion Intercept Problem Using

On-Policy Reinforcement Learning

Inspired by the animal behaviors in hunting scenarios, the pursuit-evasion (PE)

games have drawn great attention due to their applicability in areas such as missile

guidance [55], collision avoidance systems [56] and controller designs [57]. The game

of this kind is defined as a sub-category of differential game theory and provides the

correct framework for the analysis of intercept problem and the choice of optimal

policies for the agents involved in the two-player zero-sum (ZS) game.

Isaacs [7], founder of the differential game theory, initiated the development of

strategic policies for both pursuer and evader in a PE problem. In Isaacs [58], the

homicidal chauffeur game was analyzed in detail regarding players’ speed and ma-

neuverability capabilities. Bryson [59] introduced optimal feedback laws and demon-

strated intercept strategies for players, by using the fixed final-time value function.

Lewis et al. [60] made an extension of the Bellman equation, known as the Hamilton-

Jacobi-Isaacs (HJI) equations to design H∞ control, by employing the ZS games

solutions. Moreover, works [12], [61], and [13] deal with linear-quadratic ZS games,

in which their objective is to minimize the maximum norm of inputs and states,

where the maximum is taken over the unknowns, such as disturbances. Hayoun et

al. [62] reveal a set-based computing method for solving a general class of ZS Stack-

elberg differential games where the authors come up with a novel class of differential

inequalities to get convex outer approximations of backward and forward reachable

sets. Bhattacharya et al. [63] worked on a visibility-based PE game when the envi-
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ronment contains a circular obstacle. Furthermore, Li et al. [64] and Liu et al. [65]

developed an reinforcement learning (RL) algorithm to learn the Nash equilibrium

solution for designing model-free controller by solving the game algebraic Riccati

equation forward in time.

Applications of PE games involve the proximate satellite interception guidance

strategies. The work [66] studied the intercept problem of satellites where both of the

interceptor and target satellite can perform orbital maneuvers with limited thrusts.

In the work [67], the authors analyzed same problem by establishing a local moving

coordinate frame and simplifying dynamics of each player to the linear Clohessy-

Wiltshire equations. Using the terminal time as a cost function, Gong et al. [68]

derived sufficient conditions for capture in the PE problem based on the players’

hyper-reachable domain. Note that the common point of these papers is to utilize

prescribed terminal time on the construction of the game-theoretical cost function.

Jagat et al. [69] proposes quadratic infinite-horizon cost functional for both players

but the finite-time capture is not proven mathematically. Instead, simulations are

provided to show that capture occurs in a finite-time. Carr et al. [70] employ semi-

direct collocation nonlinear programming method to solve optimal actions for agents

of the pursuit–evasion game. Authors solve the minimax problem by considering co-

state dynamics and boundary conditions simultaneously for the dynamical models.

Standard solution to constrained PE game is to impose external velocity or ac-

celeration constraints. Unfortunately, this leads to discontinuous saturated solutions

that are difficult to analyze [59],[60].

Recent works by Hayoun et al. [62], Shaferman et al. [71] and Weintraub et al.

[72] focus on the missile-target engagement where the PE problem is formulated as a

differential game with an objective of optimizing the linear quadratic cost functional.

The work [62] propose bounded maneuverability of the evader to prove the capture
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in ZS game whereas Weintraub et al. [72] consider an engagement scenario by intro-

ducing the defense of a non-maneuverable agent. Further, this work [72] reveals the

inclusion of altitude and dynamics in 3-dimensions, which is more realistic for the

modeling of aerial engagements.

We sum up the contributions of this paper into four categories as:

� Firstly, a backstepping based velocity tracker is developed for PE games where

the pursuer and evader both have arbitrary nonlinear dynamics. Taking a pri-

ori velocity constraints into account, a novel non-quadratic scalar functional is

solved to obtain the smooth optimal velocity policies for each player in contrast

to the standard discontinuous solutions.

� Secondly, with the detailed Lyapunov analysis, sufficient conditions are given

for the case where capture must be attained in finite-time.

� The on-policy Integral Reinforcement Learning method is employed to solve the

corresponding HJI equation and achieve the game optimal velocity policies for

both pursuer and evader.

� Finally, the full rotational dynamics are added to extend the results to full

nonlinear dynamical PE systems.

Rest of the paper is organized as follows. Section 3.2 reviews the exponentially

stabilizing nonlinear backstepping control method to track given velocity trajectories

for a generalized Newtonian system dynamics. Section 3.3 obtains optimal actions

for the players by making use of the Pontryagin’s minimum principle and brings

analysis of a Nash equilibrium in the PE game. Furthermore, having revealed the

sufficient conditions for the asymptotic capture, we prove that PE game ends in a

finite-time based on the derived sufficient conditions. Section 3.4 proposes an on-

policy reinforcement learning algorithm for the solution of HJI equation and derives

the proof of convergence to the optimal policies. Section 3.5 closes the backstepping
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control loop by treating forces and/or moments as finalized inputs to the system and

representing the attitude with unit quaternions to overcome the singularity problem of

the Euler angles. Finally, the proposed control policies are illustrated via simulation

results in Section 3.6.

3.1 Problem formulation and model description

We study the pursuit-evasion (PE) game for general Newtonian dynamics. A

novel approach is given whereby we first design backstepping based velocity controllers

for the pursuer and evader that guarantee a Nash solution to the PE game. We use a

novel value function that ensures a solution under bounded velocities of the pursuer

and the evader. This provides smooth solutions to the bounded velocity PE game

in contrast to standard discontinuous solutions [59]. We conduct a Nash equilibrium

analysis for a game of this kind. Further, we seek to obtain sufficient conditions

for global exponential stability of the origin (equilibrium) using a rigorous Lyapunov

analysis. Finally, we seek to derive conditions for a final time capture, and provide

an upper bound on the time of capture.

The generalized translational and rotational dynamics for the pursuer and the

evader can be modeled in their respective body frames of reference as

miv̇iB = miS(wiB)viB +N if ig + f iB, (3.1)

IiBẇ
i
B = S(wiB)IiBw

i
B + τ iB (3.2)

where the superscript i ∈ {p, e} with p denoting the pursuer and e denoting the

evader respectively. Here, viB ∈ R3, wiB ∈ R3 are the translational and angular

velocities respectively, and f iB ∈ R3, τ iB ∈ R3 are the control forces and moments

respectively, in the body fixed reference frame. Further, IiB ∈ R3×3 is the constant

47



nonsingular inertia matrix defined in the body frame and mi is a scalar quantity that

denotes the mass of players’ rigid bodies. In addition, f ig = [0 0 mig]
T

is the gravita-

tional force vector whose components are written in the Inertial frame. S(wiB) ∈ R3×3

represents a skew-symmetric matrix form of the vector wiB. Moreover, miS(wiB)viB

and S(wiB)IiBw
i
B are due to the derivative of the body referenced linear and angular

momentum of the vehicles relative to the Inertial frame. N i ∈ R3×3 is the rotation

matrix from Inertial to body frame. Later in Section 3.5, we will call this Inertial

frame as earth frame and give detailed explanation for the rotation matrix.

3.2 Developing velocity tracker using backstepping control method

In this section, we present an exponentially stabilizing backstepping control

method to track given velocity trajectories. This velocity tracker is developed in this

section, which uses only the translational dynamics (3.1). In Section 3.3, the velocity

tracker is extended for PE games based on the translational dynamics (3.1) for both

pursuer and evader. Then, in Section 3.5 we also consider rotational dynamics (3.2)

to obtain general controllers for both velocity and attitude for pursuer and evader.

Note, we first derive the required velocity tracking control laws in the Inertial

frame, and then subsequently Section 3.5 shows how they are realized using the

dynamics in (3.1) and (3.2).

Thus, in the Inertial frame the translational dynamics is represented as,

miv̇i = f i + f ig (3.3)
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where vi ∈ R3 is the velocity vector and f i = N iTf iB is the control force, in the

Inertial frame i ∈ {p, e}. Introducing a desired virtual force f id, to the system

dynamics (3.3) we obtain

miv̇i = f id + f ig + f̃ i (3.4)

where f̃ i = f i − f id is the difference of control and desired forces of the Newtonian

system in 3-D.

Define velocity error as

δiv = vid − vi (3.5)

where vid ∈ R3 is the desired velocity designed for pursuer vpd and evader ved in the

next section. Take the derivative of (3.5) and substitute in (3.4) to obtain closed-loop

velocity error dynamics as

miδ̇iv = miv̇id − f ig − f̃ i − f id. (3.6)

Then select ideal desired force as

f id = miv̇id − f ig +miKiδiv (3.7)

where Ki ∈ Rn×n is a positive-definite matrix. Substituting (3.7) in (3.6) yields

δ̇iv = −Kiδiv −
f̃ i

mi
. (3.8)

This enables us to derive exponential stability of the origin, as long as an admissible

f id exists. In Section 3.5 we consider the rotational dynamics and show how to design

the control force, f i and hence f iB in (3.1) and (3.3) respectively, to make f̃ i → 0

[27]. Then (3.8) shows that δiv → 0 exponentially.
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Remark 1. Tracking the vector quantity f id in (3.7) not only guarantees exponential

stability of the equilibrium of (3.6) but also gives the desired attitude of the Newtonian

system (3.3) so that it is aligned with the direction of f id.

The next section deals with the derivation of optimal velocity trajectories vid

for pursuer and evader, employed in (3.5). The design of the desired ideal forces fpd ,

fed is treated in Section 3.5.

3.3 Optimal game theoretic velocity generation for pursuit-evasion game

In this main section, we first propose a formulation of PE game and derive the

optimal bounded desired velocity trajectories vpd,ved in (3.5) for the players. Secondly,

we conduct a Nash equilibrium analysis for the game and derive sufficient conditions

for global exponential stability of the origin by rigorous Lyapunov analysis. Finally,

conditions for finite-time capture and its upper bound are given.

3.3.1 Pursuit-evasion game formulation

Assuming the players are governed by the velocity error dynamics (3.8), this

section presents various definitions to develop the game-theoretically optimal solution

of the PE game satisfying velocity constraints on the players. To simplify the notation,

define desired velocity in (3.5) for the pursuer vp = vpd and the evader ve = ved.

The following kinematic expressions enable us to derive desired velocities and

thereby the forces (3.7) for pursuer and evader

ξ̇p = vp

ξ̇e = ve
(3.9)
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where ξp ∈ R3 and ξe ∈ R3 denote the 3-dimensional position vectors (x, y, z) of

pursuer and evader respectively, which are defined with respect to Inertial frame.

Hence vp ∈ R3 and ve ∈ R3 are desired velocity vectors of the pursuer and evader

respectively. Note that (3.3) employs the translational velocity in the PE game. This

allows analysis of ZS game for general nonlinear systems in Section 3.5.

Now, consider the following formulation for the zero-sum (ZS) PE game. Let

the evader have an objective of maximizing the relative distance δ ∈ R3, defined as

δ = ξp − ξe, (3.10)

whereas the pursuer tries to minimize (3.10). Moreover, let the velocities of both

pursuer and evader be bounded by scalars |vpj | ≤ λp; |vej | ≤ λe∀j = 1, ...n. To satisfy

these constraints, the value functional is defined as

V πp,πe

(δ) =

∫ ∞
t

{δTQδ + U(πp(δ))− U(πe(δ)}dτ (3.11)

where Q ∈ Rnxn is a positive-definite matrix, πp(.) and πe(.) stand for the policies of

pursuer and evader respectively in ZS game such that

πp(δ) , vp

πe(δ) , ve.
(3.12)

Moreover, U(vi) (for i is either p or e) is a generalized non-quadratic scalar functional

[73], which ensures bounded velocities given by

U(vi) = 2

∫ vi

0

(α−1(ui/λi))TRidui, (3.13)
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α−1(ui/λi) =

[
α−1(ui1/λ

i) ... α−1(uin/λ
i)

]T
,

ui =

[
ui1 ... uin

]T
,vi =

[
vi1 ... vin

]T

where Ri ∈ Rnxn is a symmetric positive-definite matrix and α(.) is a bounded one-

to-one smooth function i.e it belongs to C`, ` ≥ 1. This is a monotonic odd function

with its first derivative bounded by a constant. An example of α(.) is tanh(.) and

throughout this paper, we use tanh(.), which constrains the velocity to remain within

predefined limits i.e |vij| ≤ λ,∀j = 1, ...n and ∀i = p, e. In ZS PE games, Ri plays a

key role by restricting the rate of change of optimal velocities and hence constrains

the accelerations of the each player.

The differential equivalent of (3.11) is the ZS game Bellman equation. Using

(3.9), (3.10) and Leibniz’s formula, the Bellman equation is obtained as

H(δ,∇V,vp,ve) ≡ δTQδ + U(vp)− U(ve) +∇V T δ̇

≡ δTQδ + U(vp)− U(ve) +∇V T (vp − ve) = 0 (3.14)

where ∇V = ∂V πp,πe
/∂δ ∈ Rn is the gradient of value function (3.11), and H(.) is

the Hamiltonian.

To find the optimal policies πi∗(δ) = vi∗ (for i = p, e) of players in the game,

check stationarity conditions ∂H/∂vp = 0 and ∂H/∂ve = 0. For the pursuer, apply-

ing Pontryagin’s minimum principle to (3.14) yields

∂H

∂vp
≡ ∂U(vp)

∂vp
+

∂

∂vp
{∇V T (vp − ve)}. (3.15)
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Evaluating the derivatives at the right-hand-side of (3.15) using Leibniz’s formula,

and checking the stationarity condition ∂H/∂vp = 0 yields

2

(
tanh−1(

vp∗

λp
)

)T
Rp = −∇V ∗T . (3.16)

Then, the optimal policy for the pursuer using the definition (3.12) is obtained as

πp∗(δ) , vp∗ = −λp tanh

(
1

2
(Rp)−1∇V ∗

)
. (3.17)

This velocity control bounded as required.

Likewise, one can follow the same steps to derive bounded optimal velocity

policy for the evader as

πe∗(δ) , ve∗ = −λe tanh

(
1

2
(Re)−1∇V ∗

)
. (3.18)

Let V ∗ be the optimal value of (3.11) with the policies given in (3.17) and (3.18).

Then Hamilton-Jacobi-Isaacs (HJI) equation is obtained as

H(δ,∇V ∗,vp∗ ,ve∗ ) ≡ δTQδ + U(vp∗ )− U(ve∗ ) +∇V ∗T (vp∗ − ve∗ ) = 0. (3.19)

Note that the positive and negative definiteness of Hessians, ∂2H/∂vp2 > 0 and

∂2H/∂ve2 < 0, indeed show that pursuer’s optimal policy aims to minimize the

Hamiltonian (3.14) whereas evader’s aims to maximize. Therefore, (vp∗ ,v
e
∗ ) is the

game-theoretic saddle point. Furthermore, this is a Nash equilibrium since the game

is of type ZS and (3.11) is separable [59]. Rigorous analysis of this is shown in

Theorem 1.
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3.3.2 Proof of Nash equilibrium

In this section, we derive the value of PE game at Nash equilibrium. The

following lemmas and corollary are necessary steps to prove that the Nash equilibrium

is reached with policies (3.17) and (3.18).

Lemma 1. Let V πp,πe
(δ) be the corresponding solution of the Hamiltonian (3.14).

Then following equality holds

H(δ,∇V,vp,ve) = H(δ,∇V,vp∗ ,ve∗ ) +∇V T ((vp − vp∗ )

+ (ve∗ − ve)) + U(vp)− U(vp∗ ) + U(ve∗ )− U(ve). (3.20)

Proof. Adding and subtracting the terms U(vp∗ ), U(ve∗ ), ∇V Tvp∗ and ∇V Tve∗ to

Hamiltonian (3.14) yields

H(δ,∇V,vp,ve) = δTQδ +∇V T (vp∗ − ve∗ )U(vp∗ )

− U(ve∗ ) +∇V T ((vp − vp∗ ) + (ve∗ − ve))

+ U(vp)− U(vp∗ ) + U(ve∗ )− U(ve),

(3.21)

which completes the proof.

Lemma 2. Let V πp,πe
(δ) be the corresponding solution of the Hamiltonian (3.14) and

define V (δ(t0)) as the initial value of the game. Then following equality holds

V πp,πe

(δ(t0)) =

∫ ∞
t0

H(δ,∇V,vp,ve)dτ + V (δ(t0)). (3.22)
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Proof. Assume that capture occurs in the interval t ∈ [t0,∞], which implies lim
t→∞

V πp,πe

(δ(t)) =

0. Then adding zero to (3.11) yields

V πp,πe

(δ(t0)) =

∫ ∞
t0

{δTQδ + U(πp(δ))− U(πe(δ))}dτ +

∫ ∞
t0

V̇ πp,πe

dτ + V (δ(t0))

=

∫ ∞
t0

{δTQδ + U(vp)− U(ve)}dτ +

∫ ∞
t0

∇V T (vp − ve)dτ + V (δ(t0))

=

∫ ∞
t0

H(δ,∇V,vp,ve)dτ + V (δ(t0)). (3.23)

This completes the proof.

The next corollary extends the fact given in Lemma 1.

Corollary 1. Suppose V ∗ satisfies the HJI equation (3.19). Then H(δ,∇V ∗,vp∗ ,ve∗ ) =

0 and (3.20) becomes

H(δ,∇V ∗,vp,ve) = ∇V ∗T ((vp−vp∗ ) + (ve∗ −ve)) +U(vp)−U(vp∗ ) +U(ve∗ )−U(ve).

(3.24)

The next theorem derives the optimal value of the ZS game and proves Nash

equilibrium reached.

Theorem 1. Consider kinematic expressions for the players (3.9) with the value

function given in (3.11). Let V ∗ be a positive definite smooth solution of HJI equation

(3.19). Then, (vp∗ ,v
e
∗ ) given by (3.17),(3.18) is the Nash equilibrium and V ∗(δ(t0))

is the value of PE game.

Proof. Using the facts given in Lemma 2 and Corollary 1, (3.23) becomes

V πp,πe

(δ(t)) =

∫ ∞
t

{∇V ∗T ((vp − vp∗ ) + (ve∗ − ve))

+ U(vp)− U(vp∗ ) + U(ve∗ )− U(ve)}dτ + V ∗(δ(t0)). (3.25)
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To prove (vp∗ ,v
e
∗ ) is the Nash equilibrium of the game, we need to show that when

the pursuer adopts policy given in (3.17), the best action for the evader to maximize

the value function (3.11) is ve∗. Likewise, when the evader adopts policy given in

(3.18), the best action for the pursuer to minimize the value function (3.11) is vp∗

i.e.

V πp∗,πe

(δ(t)) ≤ V πp∗,πe∗
(δ(t)) ≤ V πp,πe∗

(δ(t)). (3.26)

Note that V πp∗,πe∗
(δ(t)) = V ∗(δ(0)) and call the integral term in (3.25) as β(V πp,πe

).

Now we need to show β(V πp∗,πe
) ≤ 0 and β(V πp,πe∗

) ≥ 0 so that (3.26) holds. Then

using (3.13), (3.17),(3.18) and (3.25) we obtain

β(V πp∗,πe

) =

∫ ∞
t

{∇V ∗T (ve∗ − ve) + U(ve∗ )− U(ve)}dτ

=

∫ ∞
t

{−2(tanh−1(ve∗/λe))TRe(ve∗ − ve) + 2

∫ ve∗

ve
(tanh−1(u/λe))TRedu}dτ.

(3.27)

Now define φT (.) = tanh−1(.) and note that φT (.) is monotonically increasing function

in the interval [−λe, λe]. To complete the proof, first assume that ve∗ ≥ ve and apply

integral mean value theorem on (3.27)

β(V πp∗,πe

) =

∫ ∞
t

{−2φ(ve∗/λe)Re(ve∗ − ve) + 2

∫ ve∗

ve
φ(u/λe)Redu}dτ

≤
∫ ∞
t

{−2φ(ve∗/λe)Re(ve∗ − ve) + 2φ(ve∗/λe)Re(ve∗ − ve)}dτ = 0.

(3.28)

Then assume that ve∗ < ve and again apply integral mean value theorem on (3.27)

β(V πp∗,πe

) =

∫ ∞
t

{2φ(ve∗/λe)Re(ve − ve∗)− 2

∫ ve

ve∗

φ(u/λe)Redu}dτ
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≤
∫ ∞
t

{2φ(ve∗/λe)Re(ve − ve∗ )− 2φ(ve∗/λe)Re(ve − ve∗ )}dτ = 0,

(3.29)

which shows that β(V πp∗,πe
) ≤ 0. The same procedure can be performed to show

β(V πp,πe∗
) ≥ 0. Then the inequality given in (3.26) is verified, which implies that

(vp∗ ,v
e
∗ ) is the Nash equilibrium and V ∗(δ(t0)) is the value of the PE game.

3.3.3 Stability and finite-time capture analysis

This section first reveals the sufficient conditions for the asymptotic capture

of the evader by the pursuer. Then, by making use of these conditions, derives the

globally exponential stability of the origin. Finally it is shown that under certain

conditions, finite-time capture is ensured.

Before developing analysis for the asymptotic capture, let Ri in (3.17) and

(3.18) be a diagonal matrix with elements of rij > 0,∀j ∈ {1, 2, 3} and ∀i = p, e. This

enables us to simplify the analysis that will be developed in the rest of the paper.

Employing this assumption, the next theorem shows the sufficient conditions for the

asymptotic capture in ZS PE games.

Theorem 2. Consider kinematic expressions for the players (3.9) with the value func-

tion given in (3.11). Then the equilibrium of tracking error dynamics δ̇ = vp∗− ve∗,

is asymptotically stable point with candidate Lyapunov function L(δ) = V πp∗,πe∗
(δ).

The sufficient conditions for asymptotic capture are λp > λe and rei ≥ rpi∀i = 1, ...n.

Proof. Since V πp∗,πe∗
(δ) does not depend on the time explicitly, equality L̇(δ) =

∇LT δ̇ holds. By (3.14), derivative of the Lyapunov function, L̇(δ) is obtained as

L̇(δ) = −δTQδ − U(vp∗) + U(ve∗). (3.30)
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Assumption of the equality Rp = Re, implies the pursuer and evader are moving in

the same direction by (3.17) and (3.18). For intercept, the position of the pursuer and

evader must be equal. To meet this criteria, we propose λp > λe so that asymptotic

capture occurs as the row elements of optimal actions satisfy |vp∗|i > |ve∗|i ∀i = 1, ..., n

. Furthermore, taking (3.30) into account, the condition of Rp = Re is relaxed as

Re ≥ Rp since proposition λp > λe implies U(vp∗) ≥ U(ve∗), L̇(δ) becomes strictly

negative definite. Then sufficient conditions for the asymptotic capture is proved to

be λp > λe and rei ≥ rpi∀i = 1, ...n.

Remark 2. Aysmptotic capture in Theorem 2 can be strengthened to finite-time cap-

ture with the assumption that players involved in the game satisfy the sufficient con-

ditions derived in the proof of Theorem 2. See Lemma 3.

Following theorem extends the Theorem 2 to exponential stability of the origin.

Theorem 3. Consider sufficient conditions and Lyapunov function, L(δ) given in

Theorem 2. Then, there exists positive scalars c1, c2 and ε, which satisfies

c1||δ||22 ≤ L(δ) ≤ c2||δ||22

L̇(δ) ≤ −εL(δ),

(3.31)

which implies that the origin is an exponentially stable equilibrium. Furthermore,

radially unboundedness of the L(δ) implies the globally exponentially stability of the

origin [74], which is an essential result as the initial positional offset between the

pursuer and evader should not be problem to prove the capture in PE game.

Proof. The inequality U(vp∗) ≥ U(ve∗) by Thoerem 2 and the strict convexity of

U(vi) (for i = p, e), imply the existence of positive scalars c1 and c2 [75]. Now, define
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Figure 16: Sphere of collisions for players and their frames in 3-dimensions used for
finite-time capture analysis.

convex function Us(δ) that satisfies the inequality Us(δ) ≤ U(vp∗) − U(ve∗). Using

this and (3.30), the following inequality is derived as

L̇(δ) ≤ −δTQδ − Us(δ). (3.32)

Substituting (3.32) in (3.11) with the optimal policies (3.17) and (3.18), results in

L(δ) ≤
∫ ∞
t

{δTQδ + Us(δ)}dτ , (3.33)

which stands for the proof of L̇(δ) ≤ −εL(δ) for sufficiently small ε, which completes

the proof.

Notice that PE game given in Section 3.3 is formulated by treating the players

as unit masses since the kinematic expressions (3.9) is employed in the value function

(3.11). In Section 3.5, we consider full nonlinear dynamics (3.1), (3.2). Now, consider
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the volume of pursuer and evader in 3-dimensional space and let the pursuer and

evader have a sphere of collision with radius rp and re respectively, as illustrated in

Fig. 26. Then capture occurs when the distance between the center of masses of

players is less than rp + re. With this in mind, the next main lemma proves that the

capture of evader by pursuer indeed occurs in finite-time in PE game.

Lemma 3. There exists an upper-bound for the capture time in PE game when the

conditions λp > λe and rei ≥ rpi∀i = 1, ...n derived in Theorem 2 are satisfied. This

also implies that the PE game ends in finite-time as required.

Proof. The globally exponentially stability of the origin derived in Theorem 3 implies

the equation of positional offset between the players is in the form of

||δ(t)||2 ≤ b1||δ(t0)||2e−b2(t−t0) ∀t > t0 (3.34)

where bi is a positive scalar ∀i = 1, 2. Then the upper bound for capture time tc is

derived as

tc ≤ t0 +
1

b2
log (

b1||δ(t0)||2
re + rp

) (3.35)

where log(.) is a natural logarithm function and this completes the proof.

Remark 3. It is seen that for finite-time capture, the velocity bound λp for the pursuer

must be greater then the velocity bound λe on the evader. Moreover, the sufficient

condition on weights (3.13) is found as rei ≥ rpi∀i = 1, ...n. Note that capture time is

also studied for multi-agent systems in the work [76] by assuming the players are using

their maximum efforts. In Lemma 3, we showed that capture time is upper bounded

under certain conditions even the players are not using their maximum efforts.
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3.4 Online solution of HJI equation using integral reinforcement learning (IRL)

The PE game formulation in Section 3.3 requires the generation of velocity set-

points online and in real-time for both agents of the game. With this in mind, we

employ the following synchronous IRL algorithm [8] to solve the HJI equation (3.19)

in real-time and hence, reach the Nash equilibrium velocity policies (vp∗ ,v
e
∗ ) online

by observing measured data. In the work [28], it is emphasized that persistence of

excitation condition must be satisfied so that the IRL algorithm convergences. This

is achieved in most applications [8]-[9] by adding small probing noise. In our case, the

persistence of excitation for IRL to work is satisfied inherently until capture occurs,

at which time the game ends.

The tracking HJI equation (3.19) is nonlinear in the value function gradient

∇V ∗, and non-quadratic partial differential equation that is extremely difficult to

solve. However, (3.36) can be solved for the value function and its gradient by col-

lecting position data over some interval [t, t + T ]. Therefore, finding the value of

game optimal velocity policies by solving (3.36) is easier than solving (3.19). This is

the motivation of introducing an iterative algorithm for approximating the tracking

HJI solution, which is necessary to evaluate game optimal velocity policy for pursuer

(3.17), and evader (3.18).

3.4.1 Policy iteration solution for PE game

In this section, we present a policy iteration algorithm that avoids solution of

(3.19) and also does not require knowledge of the system dynamics. The following

lemma enables us to recognize IRL form of the value function (3.11).
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Lemma 4. Let V πp,πe
(δ) be the corresponding solution of the Bellman equation

(3.14). Then, the value function (3.11), can be written in the IRL form as

V πp,πe

(δ(t)) =

∫ t+T

t

{δTQδ + U(πp(δ))− U(πe(δ))}dτ + V πp,πe

(δ(t+ T )). (3.36)

Proof. The equality V̇ πp,πe
= −δTQδ − U(πp(δ)) + U(πe(δ)) holds by the differen-

tiation of ZS game Bellman equation (3.14). Then integrating both sides from t to

t+ T , results in

∫ t+T

t

V̇ dτ = −
∫ t+T

t

{δTQδ + U(πp(δ))− U(πe(δ))}dτ , (3.37)

which verifies (3.36).

The online policy-iteration Algorithm 1 performs a sequence of four-step itera-

tions to find the optimal control policies for players. Notice that these policies stand

for the optimal desired velocities, which are employed in (3.5). Furthermore, they are

also Nash equilibrium velocity policies by Theorem 1.

1. Select any policy πp0 and πe0 for the players
2. Policy evaluation

V πp
j ,π

e
j (δ(t)) =

∫ t+T

t

{δTQδ + U(πpj (δ))− U(πej (δ)}dτ + V πp
j ,π

e
j (δ(t+ T )). (3.38)

3. Policy improvement

πpj+1(δ) = −λp tanh (
1

2
(Rp)−1∇V πp

j ,π
e
j ),

πej+1(δ) = −λe tanh (
1

2
(Re)−1∇V πp

j ,π
e
j ).

(3.39)

4. On convergence stop; else go to step 2. �
Algorithm 1: Online policy-iteration algorithm
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Notice that the position data of each player is collected through each iteration

over the period T . The proof of convergence of Algorithm 1 to the optimal policies

is shown in the following theorem.

Theorem 4. Using the temporal difference (TD) learning method, Algorithm 1 con-

verges to the Nash value V ∗(δ(t0)) and Nash equilibrium policies (πp∗, πe∗), which

optimizes velocity trajectories for the players in a game theoretic manner.

Proof. First, evaluate the value function V πpj ,πej
(δ(t)), which solves the (3.38) by TD

method. Then by Theorem 1, Isaacs’ condition is derived as

H(δ,∇V,vp∗ ,ve) ≤ H(δ,∇V,vp∗ ,ve∗ ) ≤ H(δ,∇V,vp,ve∗ ). (3.40)

Noting β(V πp∗,πe
) ≤ 0 and β(V πp,πe∗

) ≥ 0 is proved in the Theorem 1, the uniform

convergence of Algorithm 1 immediately follows from Dini’s theorem as reinforcement

H(δ,∇V j,vp,ve) converges to H(δ,∇V ∗,vp∗ ,ve∗ ) = 0 by Corollary 1. Moreover, due

to the uniqueness of the value function (3.11), it follows that limj→∞V
πp
j ,π

e
j (δ(t)) =

V ∗(δ(t0)).

3.4.2 Value function approximation to find game optimal pursuer and evader velocity

policies

This section presents a critic neural network structure for policy-evaluation step

in Algorithm 1.

Remark 4. The IRL method given in Algorithm 1 requires the value function approx-

imation (VFA), which can be achieved in a least-squares sense that is also known as

single hidden layer critic Neural Network (NN). We employ this technique as in [8]

that guarantees the successive least-squares iterations converge to the optimal value

function of the HJI equation (3.19), and hence ∇V ∗.
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Remark 5. Note that the pair (vp∗ ,v
e
∗ ) stands for the Nash equilibrium by Theorem

1, thereby the Algorithm 1 converges to optimal actions for both players. Unlike

the works [9] and [77] that use the IRL technique to reach min or max point of the

value functional, we employ this technique to converge game theoretic saddle point by

using the Isaacs’ condition derived in Theorem 4. In addition, the system dynamics

(3.1) does not appear in the value functional, which implies that we do not need to

implement actor NN [77] [78] and the solution of HJI (3.19) can be obtained by using

only critic NN, see [79].

By Remarks 4 and 10, we approximate the game optimal value functional in

step 2 of Algorithm 1 using Weierstrass approximator such that

V̂ (δ) = Ŵ TΦ(δ),

∇V̂ = Φ(δ)TŴ (3.41)

where Φ(δ) ∈ Rnk is the k-times concatenated basis function vector, n = 3 as δ ∈ R3,

and Ŵ is a critic NN weight vector to be determined. Using (3.41), the policy

evaluation step of the IRL Algorithm 1 can be re-written as

eb = Ŵ T4Φ(δ)− κ(t) (3.42)

where eb is the continuous-time counterpart residual error of the TD, 4Φ(δ) =

Φ(δ(t))− Φ(δ(t+ T )), and reinforcement

κ(t) =

∫ t+T

t

{δTQδ + U(πp(δ))− U(πe(δ))}dτ . (3.43)
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Therefore, (3.42) implies that the problem of solving the HJI equation is converted

to tuning the critic NN weights such that eb to be minimized. Now, to adjust these

weights, the following objective function is employed

Eb =
1

2
e2b . (3.44)

Then, the TD gradient descent algorithm [77] to minimize eb is obtained by using the

chain rule

˙̂
W = − αL4Φ(δ)

(1 +4Φ(δ)T4Φ(δ))2
eb (3.45)

where αL > 0 is the learning rate. The proof of convergence of critic NN weights is

shown in the Theorem 3 of Modares et al. [77].

3.5 Generalized rotational dynamics of the pursuer and evader

The analysis in the preceding sections has shown how to derive velocity tracker

for the PE game given velocity dynamics (3.3). In this section, we analyze the general

rotational dynamics (3.2) that are coupled to (3.1), and hence (3.3). We first derive

the desired attitude of the system by using the Z-Y -X Euler angle rotation matrix

from [E] (earth frame) to [Bi] (body frames of pursuer or evader) as shown in Fig. 26,

and desired force vector f id in (3.7). Then, by the analysis developed on the desired

Euler angles, we propose the desired attitude representation with unit quaternions

to overcome the singularity problem of the Euler angles. Lastly, by treating forces

and/or moments as final inputs to the Newtonian system, we close the backstepping

control loop to track desired force vector f id in (3.7). Note that in this section, i

represents either p or e.
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Assume that the gravity g is constant and the Earth is flat in the 3-dimensional

space as illustrated in the Fig. 26. Then, the vehicle carrier frame is aligned with the

body frame [Bi]. Thereby the rotation matrix from [E] to [Bi] frames shown in Fig.

26, can be given in terms of the Euler angles as

N(ηi) =


cθicψi cθisψi −sθi

−cϕisψi + sϕisθicψi cϕicψi + sϕisθisψi sϕicθi

sϕisψi + cϕisθicψi −sϕicψi + cϕisθisψi cϕicθi

 (3.46)

where c and s refers to cosine and sine respectively, and ηi = [ψi θi ϕi]
T

is the Euler

angle vector. Note that N(ηi) belongs to the special orthogonal group and is of rank

3, or SO(3), whose determinant is equal to 1.

Assuming the direction of the thrust force to be along the nose of players’ bodies

or positive xi-axis (∀i = p, e). This enables us to write that the desired force vector

is indeed in the form of f iBd
= [µid 0 0]

T
, whose components written in [Bi]. Using

(3.7) and expressing the desired force [µid 0 0]
T

in [E] by f id = NT (ηid)f
i
Bd

, following

relation is derived

f id =


f ixd

f iyd

f izd

 = NT (ηid)


µid

0

0

=


µid(cθ

i
dcψ

i
d)

µid(cθ
i
dsψ

i
d)

µid(−sθid)

 (3.47)

where ηid = [ψid θ
i
d ϕ

i
d]
T

is the desired Euler angle vector.

Then, (3.47) can be solved for desired attitude angles θd, ψd and µd as

θid = −tan−1

(
f izd

fxdcosψid + f iydsinψ
i
d

)
, (3.48)
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ψid = tan−1

(
f iyd
f ixd

)
, (3.49)

µid =
√
f ixd

2 + f iyd
2 + f izd

2. (3.50)

Note that ϕid can be arbitrarily prescribed. However, (3.48)-(3.50) assumes that the

equality conditions f ixd = 0, f iyd = 0 cannot occur simultaneously since (3.48) and

(3.49) become indefinite. This singularity problem is also known as gimbal lock, which

is associated with θid = π/2.

To avoid gimbal lock, define the following unit quaternion representation

qi =
[
qi0 q

i
1 q

i
2 q

i
3

]T
=
[
qi0; q

i
v

]
(3.51)

qi0 = cosφi/2 (3.52)

qiv = ki sinφi/2 (3.53)

where φi is the rotation about equivalent axis ki. Moreover, the kinematics equation

for unit quaternion is

q̇i =
1

2
JT (qi)wiB (3.54)

where J(qi) ∈ R3×4 satisfies the equalities J(qi)JT (qi) = I3×3, J(qi)qi = 0, and

can be expressed as

J(qi) = [−qiv S(qiv) + qi0I3×3] (3.55)

where S(qiv) =


0 q3 −q2

−q3 0 q1

q2 −q1 0

 .
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Then, the rotation matrix from [Bi] to [E] in terms of the unit quaternion (3.51) is

given by

NT (qi) = I3×3 − 2qi0S(qiv) + 2S2(qiv), (3.56)

which is also known as Rodrigues formula. The following set of equations can be

obtained by substituting the rotation matrix with the argument qid (3.56) into (3.47)

along with selected ϕid 
f ixd

f iyd

f izd

 = µid


1 + 2(−qi2d

2 − qi3d
2
)

2qi0dq
i
3d

+ qi1dq
i
2d

−2qi0dq
i
2d

+ qi1dq
i
3d

 (3.57)

ϕd = tan−1
( 2(qi0dq

i
1d

+ qi2dq
i
3d

)

1− 2(qi1d
2

+ qi2d
2
)

)
.

Notice that f id =
[
f ixd f

i
yd
f izd
]T

, ϕid and µid are known by (3.7) and (3.48)-(3.50).

Thence, (3.57) can be solved for the desired unit quaternion qid =
[
qi0d q

i
1d
qi2d q

i
3d

]T
as (3.57) represents four equations with four unknowns, which are the elements of

qid. Further substitute qid into kinematics equation (3.54) to find the desired angular

velocity wiBd
such that

wiBd
= 2J(qid)q̇

i
d. (3.58)

Remark 6. For any Newtonian system (3.1) or (3.3) and (3.2), we know that forces

and moments are coupled to each other, which implies that τ iB is required to be com-

patible with the selected desired force f id in (3.7).

Then applying the dynamic inversion technique, τ iB is given using (3.58) as

τ iB = IiBẇ
i
Bd
− S(wiBd

)IiBw
i
Bd
. (3.59)
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Notice that we treat τ iB as final input for the general rotational dynamics (3.2).

Consequently, we will not develop further analysis by giving location of thrusters

and actuators, which is a control allocation problem and out of scope of this paper.

Interested reader can check our work [27] to examine how to generate τ iB for the

quadrotors.

3.6 Implementation on dynamic system

This section reveals the simulation results of ZS PE game with different scenar-

ios. First, we consider when both the pursuer and evader follows their game optimal

velocities given in (3.17) and (3.18) respectively. Then, we show the scenario in

which the pursuer tracks its game optimal velocity (3.17) whereas the evader adopts

a sub-optimal velocity policy.

In order to model the constrained optimal velocity trajectories, (3.13) is evalu-

ated for pursuer and evader. Then, the resultant integral is found as

U(vi
∗
) = λi(∇V ∗)T tanh(vi

∗
)− 2λiRi log(cosh(vi

∗
)) ∀i = p, e (3.60)

where log(.) is the natural logarithm, Ri , diag(Ri) = [ri1 r
i
2 r

i
3]
T , and vi

∗
stands

for the optimal velocity policy given by (3.17) and (3.18) ∀i = p, e.

When the evader is moving with the sub-optimal velocity, we set U(πe(δ)) term

in (3.11) to zero and thereby we obtain Hamilton Jacobi Bellman (HJB) equation

instead of HJI (3.19). Notice that HJB equation in this case stands for the single

player game where the pursuer is the only player. Furthermore, the existence of

unique Nash equilibrium by Theorem 1 implies that the value functional (3.11) is

convex in vp∗ for |vej | ≤ λe ∀j ∈ {1, 2, 3} given in (3.13), and the functional (3.11) is

concave in ve∗ for |vpj | ≤ λp ∀j ∈ {1, 2, 3}. Then, (3.11) is separable, and solution of
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Figure 17: Position of the pursuer and evader: (a) πp(δ) , (3.17), πe(δ) ,
suboptimal, (b) πp(δ) , (3.17), πe(δ) , (3.18). L2 norm of (3.10): (c) πp(δ) , (3.17),
πe(δ) , suboptimal, (d) πp(δ) , (3.17), πe(δ) , (3.18).

the HJB in terms of the optimal velocity policy for the pursuer remains the same as

(3.17).

We conducted two simulation scenarios to validate the proposed methods in

this paper. We first consider ZS game with the value functional (3.11), and get the

players track desired game optimal velocity trajectories (3.17), (3.18) by selecting

ideal forces of players derived in (3.7) and corresponding moments (3.59). Then, we

set U(πe(δ)) term in (3.11) to zero, and by solving the corresponding HJB equation,

we played single-player game where the pursuer is the only player. Fig. 27 shows the

trajectories followed by the players for each of these scenarios.

In these simulations (Figs. 27 and 28), parameters of the system (3.1), (3.2)

are selected as mi = 1kg, g = 9.81m/s2, IiB = I3×3, where I3×3 is a 3x3 identity
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matrix. The backstepping gain Ki = 5I3×3. In addition, the bounds (3.13) are

λp = 5,λe = 4, and value functional parameters (3.11) are Q = 3I3×3, Rp = 0.1I3×3,

Re = 0.125I3×3. The position data of each player is collected through each iteration

over the period T = 0.01s. Lastly re + rp (3.35) and shown in Fig. 26 is selected as

0.25m.

Notice that Fig. 27 shows the trajectories of the players (Figs. 17a and 17b),

and corresponding L2 norm of the position offset (Figs. 17c and 17d). In addition,

regarding the optimal velocity policies for the pursuer and evader, i.e. when πp(δ) ,

(3.17), πe(δ) , (3.18), Fig. 28 illustrate optimal velocities (3.17),(3.18), control forces

(3.47), L2 norm of velocity error (3.5), and Euler angles (3.48),(3.49).

Fig. 30 shows the simulation results of the PE game when the velocity bounds

are λp = 10, λe = 9, and other simulation parameters remain the same as in the PE

game illustrated in Figs. 27 and 28.
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New Solution for H-infinity Static Output-Feedback Control Using Integral

Reinforcement Learning.

Yusuf Kartal, Wenqian Xue, Atilla Dogan, Frank Lewis, 2021. Under Review in

IEEE Transactions on Cybernetics.
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Figure 18: PE game when λp = 5, λe = 4: (a) game-optimal velocity of the pursuer
and evader ∀i ∈ {x, y, z}, (b) control force of the pursuer (3.47), (c) control force of
the evader (3.47), (d) L2 norm of (3.5) for each player, (e) Euler angles of the pursuer
by (3.47), (f) Euler angles of the evader by (3.47), (g) body evaluated control force
of the players (3.50), (h) weights ∀i ∈ {x, y, z} convergence for the critic NN (3.45).
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Figure 19: PE game when λp = 10, λe = 8: (a) game-optimal velocity of the pursuer
and evader ∀i ∈ {x, y, z}, (b) control force of the pursuer (3.47), (c) control force of
the evader (3.47), (d) L2 norm of (3.5) for each player, (e) Euler angles of the pursuer
by (3.47), (f) Euler angles of the evader by (3.47), (g) body evaluated control force
of the players (3.50), (h) weights ∀i ∈ {x, y, z} convergence for the critic NN (3.45).
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CHAPTER 4

New Solution for H-infinity Static Output-Feedback Control Using Integral

Reinforcement Learning

One of the primary objectives in control system design is often to seek a sta-

bilizing controller to regulate the output of a system that experiences disturbances.

However, stability is not the only requirement in control system design. An L2 gain

bound of the system, optimality of the control method and detectability of unknown

system parameters are other common design specifications. Existing solutions of H∞

static output-feedback (OPFB) yield stability and bounded L2 gain, but employee

non-Nash equilibrium solutions. The new formulation of H∞ static OPFB control

method developed in this paper, is a key to meet these requirements since it guar-

antees L2 gain bound of the system by a prescribed attenuation level, asymptotic

stability of equilibrium point, and also Nash equilibrium solutions. Then, the inte-

gral reinforcement learning technique based on H∞ static OPFB Lyapunov iterations

is presented to deal with unknown system parameters.

H∞ control methods has been widely studied in the literature, [10], [11], [12],

[13], [14], [15] due to their applicability in variety of engineering areas. Some of these

methods guarantee stability and bounded L2 gain, but an extra condition is required

to yield Nash equilibrium. [10] uses this method to design a gain-scheduled normal

acceleration control loop for an air-launched unmanned aerial vehicle. Authors of

[11] apply this control method on an industrial-type mass spring damper system.

The efficacy of control law and the disturbance accommodation properties are shown

on a rotor-craft design example in [16]. Moreover, [80] develop an autopilot controller
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for an F-16 aircraft by using the H∞ static OPFB control method on a linear discrete-

time system.

During the last few years, reinforcement learning (RL) algorithms [81], [82]

has been used extensively to replace model parameters with a collected system’s

data [83], [84], [18], [85], [86], [87]. Particularly, offline iterative RL algorithms were

studied in [88], [89], and [90]. The work by [88] consider the two-player policy iter-

ations to solve for the feedback strategies of a continuous-time zero-sum game [91]

in a sub-optimal manner that requires complete knowledge of system parameters.

[84] presented an online RL algorithm to solve the linear quadratic tracking (LQT)

problem for partially-unknown continuous-time systems. In [92], authors prove the

convergence of IRL algorithm to a sub-optimal OPFB solution without considering

the disturbance term when the drift dynamics are unknown. The optimal average

cost learning framework is introduced to solve output regulation problem for linear

systems with unknown dynamics is studied in [93].

To design an efficient RL algorithm and achieve data-driven optimal control, the

RL-based controller designs with neural networks (NNs) in an actor-critic structure

[94], critic-only form [79] are proposed. In the off-policy RL algorithm, the system

data, which are used to learn the solution of corresponding Hamiltonian, can be

generated with arbitrary policies rather than the evaluating policy. This approach is

suitably implemented using NNs in [17] and [18].

Standard existing solutions to the static OPFB regulator problem [10], [92],

[95], [96], [97] require some additive gain matrix to prove the stability of equilibrium.

Unfortunately, this results in the non-Nash equilibrium solutions. In this paper, we

propose a novel augmented Hamiltonian, and develop a new iterative algorithms based

on stationarity conditions of the augmented Hamiltonian to obtain Nash equilibrium

solutions. The salient contributions of this paper summed up into four categories as:
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� This paper presents a new solution of the H∞ static OPFB control problem.

This solution guarantees not only stability and bounded L2 gain but also Nash

equilibrium solutions considering corresponding min-max game.

� Our new solution for static OPFB may have a solution when there is no static

OPFB solution using existing techniques.

� Two off-line iterative solution algorithms are given. The first algorithm is based

on the Kleinman’s algorithm and updates the disturbance gain term. A second

algorithm is developed to get the Kleinman’s algorithm in the IRL applicable

form that only updates the control gain.

� Two off-policy Integral Reinforcement Learning (IRL) algorithms are developed

based on the stationarity conditions of an augmented Hamiltonian. This enables

the designer to learn the Nash equilibrium solution online without requiring any

knowledge of system dynamics’ state, control, and disturbance matrices.

The rest of paper is organized as follows. In Section 4.1, preliminaries on control

design requirements are introduced, and the formulation of H∞ static OPFB control

presented. A new solution of optimal H∞ control problem and corresponding offline

iterative solution algorithms are given in Section 4.2. In Section 4.3, an online off-

policy IRL algorithm is developed based on stationarity conditions obtained in Section

4.2. Finally, we have shown the effectiveness of proposed algorithms by applying them

to the linearized lateral dynamics of the F-16 aircraft at a particular flight condition

in Section 5.

Notations. We use the following notations throughout this paper In ∈ Rn×n is

the identity matrix. The condition A > 0 (≥ 0) denotes the positive (semi) definite-

ness of a matrix. The operator tr() denotes trace of a matrix. C+ = CT (CCT )−1 is

the right-inverse of the full row-rank matrix C and the Kronecker product operator

is denoted by ⊗. The determinant of a square matrix is denoted by |.|. vec(A) stands
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for the mn-vector formed by stacking the columns of A ∈ Rn×m on top of one an-

other, i.e., vec(A) = [aT1 ... a
T
m]T where ai ∈ Rn are the columns of A. Lastly, diag(ζi)

represents a diagonal matrix with ζi ∀i ∈ 1, ..., N on its diagonal.

4.1 Preliminaries and problem formulation

In this section, preliminaries on Linear Time Invariant (LTI) system, and the

corresponding controller design requirements are first introduced. Then, the problem

description is presented.

4.1.1 System description and definitions

This section introduces system dynamics and performance specifications that

are of interest. Consider the state-space representation of the continuous-time LTI

system as

ẋ = Ax+Bu+Dd

y = Cx

(4.1)

where A ∈ Rn×n, B ∈ Rn×m, D ∈ Rn×p are system-state, input, disturbance matri-

ces, and C ∈ Rq×n is assumed to be a full row-rank output matrix to avoid redundant

measurements. The corresponding vectors x(t), u(t), d(t), and y(t) stand for the

state, input, disturbance and output respectively.

Assumption 3. The pair (A,B) is stabilizable and the pair (A,C) is detectable.

Assumption 4. The system (4.1) is OPFB stabilizable in the sense that the row-space

of output matrix C contains the sub-space that is spanned by the right eigenvectors

correspond to the unstable modes of A.

Assumption 5. The non-zero columns of the output matrix C are linearly indepen-

dent.
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Remark 7. The Assumption 7 can be interpreted such that all unstable modes are

measured by the output matrix C that represents the sensors installed in the system

(4.1). The Assumption 8 enables us to recover a state element xi precisely from the

output vector y once it is left multiplied with C+.

Now, define the fictitious performance output z(t) that satisfies

‖z‖22 = xTQx+ uTRu (4.2)

where Q ≥ 0 and R > 0 are symmetric design matrices with appropriate dimensions.

We assume that Q is selected such that the pair (A,
√
Q) is observable, which is

a standard assumption [60]. Using the property ‖d‖22 = dTd, a realization of the

following inequality ∀d ∈ [0,∞) implies that the system L2-gain is bounded by a

prescribed disturbance attenuation level denoted by γ

∫ ∞
0

‖z‖22dt ≤ γ2
∫ ∞
0

‖d‖22dt+ β (4.3)

for any non-zero energy-bounded disturbance input d [98] where β is a non-negative

constant. The condition (5.12) is also called as non-nexpansivity constraint in [74].

Call γ∗ the minimum gain for which this occurs. In [99] and [100], an algorithm to

find γ∗ is given, and a formulation for explicit γ∗ that depends on Riccati equation

solution is derived for LTI systems under some assumptions. In this paper, we assume

that the attenuation level is prescribed and satisfies γ > γ∗.

A static OPFB control to regulate the system (4.1) is

u = −Ky = −KCx (4.4)
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where K ∈ Rm×q is the gain matrix. Note that main objective of H∞ control using

OPFB is to find the stabilizingK in an optimal manner while satisfying the condition

(5.12), which can be achieved by solving corresponding Hamilton-Jacobi-Isaacs (HJI)

equation.

4.1.2 Problem formulation and existing solution of static OPFB Problem

In this section, we relate zero-sum differential game theory to the static OPFB

regulation problem in a global optimal manner by revealing various definitions. To

satisfy L2-gain bound (5.12) with the stabilizing gain in (5.13), an objective functional

defined as

J(u,d) =

∫ ∞
0

(xTQx+ uTRu− γ2dTd)dτ . (4.5)

Now H∞ control problem can be represented as a two-player zero-sum differential

game by treating u(t) as a minimizing player, whereas d(t) maximizing player of

(4.5). Then, the game can be formulated as

V (x(0)) = J(u∗,d∗) = min
u

max
d

J(u,d) (4.6)

where V (x) denotes the value functional corresponding to (4.5) such that

V (x) =

∫ ∞
t

(xTQx+ uTRu− γ2dTd)dτ . (4.7)

and the pair (u∗,d∗) denotes the game theoretic saddle point. The game of this kind

admits a unique solution pair (u∗,d∗), if the following Nash condition holds

min
u

max
d

J(u,d) = max
d

min
u
J(u,d). (4.8)
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The next theorem recalls the necessary and sufficient conditions for the sub-

optimal H∞ OPFB control method [10].

Theorem 5. The system (4.1) is OPFB stable using the control ueo = −Ke
oy with

L2 gain bounded by γ > γ∗ if and only if

1. (A,B) is stabilizable and (A,C) is detectable.

2. There exists Ke
o and L such that

Ke
o = R−1(BTP +L)C+ (4.9)

where P = P T > 0 is the solution of Riccati equation

PA+ATP − PBR−1BTP +Q+ γ−2PDDTP +LTR−1L = 0. (4.10)

Proof. See [10] and [98] for the same proof. �

Remark 8. On the one hand, introducing the additive gain matrix L provides the

extra design freedom. Note that if L = 0 there may not be a stabilizing solution to

(4.9),(5.22) (See Theorem 1 in [10]). On the other hand, this results in a sub-optimal

solution for the gain Ks (4.9). The Nash equilibrium gain occurs if the Theorem 5

holds with L = 0.

The following lemma recalls the Nash equilibrium solution for the standard H∞

control problem.

Lemma 1. The pair (u∗, d∗) constitutes the Nash equilibrium of the game (4.8) such

that

u∗ = −K∗x = −R−1BTPx, (4.11)

d∗ = γ−2DTPx. (4.12)
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Proof. Begin with deriving the Hamiltonian to solve the game theoretic saddle

point or Nash equilibrium strategy of the game (4.8) as

H(Vx,u,d) = xTQx+ uTRu− γ2dTd+ Vx(Ax+Bu+Dd) (4.13)

where Vx = ∂V/∂x is the co-state vector. Using the quadratic form V (x) = xTPx,

and applying the stationarity conditions ∂H(Vx,u,d)/∂u = 0 and ∂H(Vx,u,d)/∂d =

0 yields the optimal control and disturbance respectively as (5.20) and (5.21).

Notice that the sign of Hessians, ∂2H(Vx,u,d)/∂u2 > 0 and ∂2H(Vx,u,d)/∂d2 <

0, along with unboundedness of the limits limd→∞ J(u∗,d), limu→∞ J(u,d∗) indeed

show that (5.20) and (5.21) are the global optimal minimizing and maximizing ex-

trema respectively [61]. This indeed verifies that the pair (u∗,d∗) denotes the Nash

equilibrium point, which completes the proof. �

Remark 9. The HJI equation can be obtained as H(Vx,u
∗,d∗) = 0 with the bound-

ary condition V(0)=0, which also verifies the sub-optimality of gain expression (4.9).

Additionally, considering Nash equilibrium policies (5.20) and (5.21), the Game Al-

gebraic Riccati Equation (GARE) is obtained as

PA+ATP − PBR−1BTP +Q+ γ−2PDDTP = 0. (4.14)

If there is no Ks to satisfy (4.9) and (5.22), the OPFB H∞ control problem

may not have even a sub-optimal solution. In the next section, we rigorously analyze

this and reveal some novel results.
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4.2 New solution of OPFB H∞ game

Notice that Theorem 5 provides necessary and sufficient conditions for static

OPFB in a sub-optimal manner. Thence, this does not yield a Nash equilibrium

solution unless L = 0. Moreover, there may not even exist a static OPFB solution

to the equations in Theorem 5. In this main section, two methods are proposed to

solve H∞ OPFB problem. The first method parameterizes the state feedback gains

by using the Nash strategies, and applies them to the OPFB design. The second

method derives the new optimal H∞ OPFB regulator formulation by introducing an

augmented Hamiltonian. This method is introduced by [60], but is highly overlooked

in the literature. However, it appears to be instrumental in H∞ regulator design.

4.2.1 Necessary and Sufficient Conditions for the Stabilizing Nash Gain

Herein, we first parameterize static state feedback gains, and then explain how

to apply them to the H∞ OPFB design.

Note that the Assumptions 7 and 8 are missing in the papers [10], [11], [16],

and [98]. However, they are indeed required when applying state feedback gains to

the OPFB design.

Theorem 6. Given the necessary conditions in the Assumption 3 and the sufficient

condition BR−1BT ≥ γ−2DDT . The system (4.1) is asymptotically stable using the

control u∗ = −R−1BTPx (5.20) with d = 0, and L2 gain bounded by γ ∀ ‖d‖2 ∈

(0,∞).

Proof. To prove L2 gain bound condition (5.12), first re-write the Hamiltonian

(4.13) by completing the squares as

H(Vx,u,d) =H(Vx,u
∗,d∗) + (u− u∗)TR(u− u∗)

− γ−2(d− d∗)T (d− d∗). (4.15)
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Then, the objective functional can be re-expressed as

J(u,d) =

∫ ∞
0

(
H(Vx,u

∗,d∗) + (u− u∗)TR(u− u∗)

− γ−2(d− d∗)T (d− d∗)
)
dt+ V (x(0)). (4.16)

Realize that the non-expansivity constraint (5.12) implies that J(u, d) ≤ β. Select

β = V (x(0)), u = u∗, and note that HJI equation H(Vx,u
∗,d∗) = 0 holds with the

boundary condition V(0)=0. Then, (5.52) reduces to

J(u∗,d) = −
∫ ∞
0

γ−2(d− d∗)T (d− d∗)dt+ V (x(0)),

≤ V (x(0)), ∀ ‖d‖2 ∈ (0,∞). (4.17)

This proves that the L2 gain bound condition (5.12) holds with β = V x(0)), u = u∗.

Additionally, the value of game (4.8) with u = u∗ and d = d∗ is V (x(0)) by (5.52).

To verify asymptotic stability, consider Lyapunov function V (x) = xTPx

where P is solution of the GARE (4.14). Note that for BR−1BT ≥ γ−2DDT ,

the GARE (4.14) has a unique stabilizing solution P = P T , which is indeed positive

definite. This is illustrated in the following realization

V̇ = ẋTPx+ xTP ẋ

= xT
(
− PBR−1BTP −Q+ γ−2PDDTP

)
x

≤ −xTQx ⇐ BR−1BT ≥ γ−2DDT . (4.18)

Then, the observability of (A,Q) verifies that the undisturbed system (4.1), i.e.,

d = 0, is asymptotically stable by LaSalle’s invariance principle [74]. This completes

the proof. �
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Corrolary 1. To verify asymptotic stability of the disturbed system, benefit from gain

margin [clower,∞) with clower <
1
2

property of the H∞ control [74]. Note that the H∞

has gain margin less than 1
2

by Chapter 10 in [74] but the lower bound clower is not

precisely defined. Then, if the sufficient condition in Theorem 6 is strengthened as

BR−1BT ≥ 2γ−2DDT , the disturbed system (4.1) with d = d∗, becomes asymptoti-

cally stable. Thence, the closed-loop matrix A−BR−1BTP + γ−2DDTP becomes

Hurwitz.

Till now, we actually parameterize all the stabilizing static state-feedback gains

since we used the Nash strategies (5.20) and (5.21) in the proof of Theorem 6. The

following Remark explains how to apply them to the H∞ OPFB design.

Remark 10. Instead of Nash strategies (5.20) and (5.21), assume that the control

and disturbance are selected as

u∗
o = −(R−1BTPC+)C(C+y) = − (R−1BTPC+)︸ ︷︷ ︸

K∗o

y (4.19)

d∗
o = (γ−2DTPC+)C(C+y). (4.20)

Note that if C is an invertible matrix, then all states would be regulated optimally

by Theorem 6. On the other hand, if it is not square but full row-rank, then only

the states spanned by row space of the output matrix C would be regulated optimally

given the Assumption 8, and the fact that C+C projects Rn onto the row space of

C. Additionally, the other states would converge to the origin given the Assumption

7. Realize that the Assumption 3 implies that there could be an unstable mode that

is observable but does not belong to the row space of C. Therefore, the Assumptions

7 and 8 are indeed required to apply static state feedback gains to the OPFB design.

Lastly, the system (4.1) is stable against the worst-case disturbance (4.20), which
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affects only the states that belong to the row space of C if BR−1BT ≥ 2γ−2DDT by

Corollary 1.

4.2.2 A Direct Method to Obtain OPFB Optimal Gain Solutions

In this section, we propose a new methodology to obtain stabilizing Nash solu-

tions for the H∞ OPFB control. This method is direct in the sense that it reaches

the same gain solutions as the Section 4.2.1 but do not require two step

Consider the optimal value obtained in the Theorem 6 that corresponds to the

zero-effort for each player such that

J0 = xT (0)Px(0) = tr(PX0) (4.21)

where tr() stands for the trace of a matrix, and X0 = x(0)xT (0).

The following Lemma is an essential step before introducing the augmented

Hamiltonian.

Lemma 2. Given the Assumption 3, let Ka be a gain that stabilizes the system (4.1),

and the corresponding OPFB control is uao = −Ka
oy. Additionally, let the disturbance

takes the form dao = Noy to guarantee it does not affect unobservable modes of the

system (4.1). Then the corresponding Lyapunov equation can be derived as

PAc +AT
c P +CTKa

o
TRKa

oC − γ2CTNT
o NoC +Q ≡ T (4.22)

where T = T T = 0 and Ac = A−BKa
oC +DNoC.
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Proof. Consider the quadratic form of the value functional (4.5) as V (x) =

xTPx, and then substitute expressions u = −Kay and dao = Noy into (4.5) to

obtain

xTPx =

∫ ∞
t

xT (CTKa
o
TRKa

oC +Q− γ2CTNT
o NoC)xdτ . (4.23)

Now, take the derivative of left-side (4.23) and substitute (5.21), u = −KaCx

expressions. Lastly, take the derivative of integral in right-side (4.23) using Leibniz’s

rule, which yields

x(AT
c P + PAc)x =

xT (−CTKa
o
TRKa

oC −Q+ γ2CTNT
o NoC)x. (4.24)

Realize that the zero equivalent is nothing but the Lyapunov equation given in (4.22).

This completes the proof. �

It is now clear that performing a min-max operation on (4.5), subject to dy-

namical constraint (4.1) is equivalent to the algebraic problem of finding the pair

(Ka
o ,No) that performs min-max of (4.21) subject to the constraint (4.22). Define

following augmented Hamiltonian to solve this modified problem as

Ha(Ka
o ,No,S) = tr(PX0) + tr(TS) (4.25)

where S ∈ Rn×n is a symmetric matrix of Lagrange multipliers [60] that needs to be

determined, and T is given in (4.22).

The next main theorem is a key to find S along with a Nash equilibrium control

matrix Ka
o with respect to (4.25).
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Theorem 7. Given the Assumptions 3, 7, and 8, the system (4.1) is asymptotically

stable using the control uao = −Ka
oy with dao = 0 and L2 gain bounded by γ if

∂Ha

∂S
≡ PAc +AT

c P +CTKa
o
TRKa

oC − γ2CTNT
o NoC +Q = 0, (4.26)

∂Ha

∂P
≡ SAT

c +AcS +X0 = 0, (4.27)

∂Ha

∂Ka
o

≡ 2RKa
oCSC

T − 2BTPSCT = 0, (4.28)

∂Ha

∂No

≡ −2γ2Na
oCSC

T + 2DTPSCT = 0. (4.29)

Furthermore, the following gain expressions solves the H∞ static OPFB problem in

an optimal manner

Ka
o = K∗

o = R−1BTPC+ (4.30)

No = γ−2DTPC+ (4.31)

Proof. Consider (4.25), which is a constant along the system trajectories since

the system (4.1) is LTI and z(t) (4.2) is not explicit function of time. This implies

that we can apply the constraint test and check the stationarity conditions on the

augmented Hamiltonian (4.25) that yields the second-order Lyapunov equation (4.26)

and standard Lyapunov equation (4.27) respectively.

Define the variable X = xxT that includes the system state information, and

take the derivative using (4.1) to obtain

XAT
c +AcX = Ẋ. (4.32)

Now, assume that Ac is Hurwitz. Then, taking the integral of both sides (4.32) from 0

to∞ yields (4.27) where S =
∫∞
0
Xdt, thereby Ka

o should not depend on the solution
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S. Therefore, the gain solutions (4.30) and (4.31) are immediate. Realize that the

stability of an LTI system does not depend on the initial condition, i.e, local stability

implies the global stability. Thence, the gain solutions (4.30) and (4.31) should not

depend on S that depends on the initial condition X0. This also verifies our reason

to select gain solutions in the given forms, which completes the proof. �

Remark 11. The Theorem 11 gives the necessary conditions, i.e. the Assumption 3

and 7, and sufficient condition BR−1BT ≥ γ−2DDT to prove L2 gain boundedness

by a prescribed attenuation level γ (5.12) and OPFB stability considering the worst-

case disturbance (4.20). Realize that the condition BR−1BT ≥ γ−2DDT is only a

sufficient condition, which implies that there may be an optimal gain solution which

stabilizes (4.1) but does not satisfy BR−1BT ≥ γ−2DDT . However, in that case,

one may not achieve a positive definite solution P for the Riccati equation (5.22).

Additionally, the positive definiteness of the Riccati equation solution plays a key role

for the Kleinman’s algorithm in Section 4.2.3, and the IRL algorithm in Section 4.3.

Remark 12. The Theorem 11 proves that the condition BR−1BT ≥ γ−2DDT is

sufficient to obtain the Nash equilibrium solution. The gain Ke
o in Theorem 5 is a

sub-optimal stabilizing gain solution with respect to the value functional (4.7). How-

ever, the gain solution Ka in Theorem 11 always gives a stabilizing Nash equilibrium

gain solutions with respect to the game (4.8).

Remark 13. Note that the system (4.1) is stable in the presence of matched distur-

bances with the gains (4.30) and (4.31). The unmatched disturbances are only L2

gain bounded by Theorem 6. Thence, the control (4.19) is robustly stabilizing the

equilibrium origin even if the unmatched disturbances exist given Assumptions 7-8.

The next section proposes an offline model-based algorithm to find the optimal

gain solution Ka
o iteratively, that plays a key role to develop the IRL Algorithm that

will be detailed later in Section 4.3. Note that given the necessary and sufficient
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conditions in Theorem 11 and Remark 11, one does not need an iterative solution

algorithm to find optimal stabilizing gain Ka
o (4.30). However, to develop a model-

free algorithm, an iterative solution algorithm is required.

4.2.3 Offline Iterative Solution Algorithms for H∞ OPFB

This section presents two iterative solution algorithms to obtain minimizing

gain (4.30) by using the conditions given in (4.26)-(4.28). In the first algorithm,

we employ Kleinman’s algorithm (4.26) to obtain Nash equilibrium gain solutions

(4.30) and (4.31), whereas in the second algorithm, we use a corresponding Lyapunov

equation to not deal with the disturbance gain term No.

The next algorithm performs a sequence of four-step iterations based on the

Kleinman’s Algorithm [101] to find the optimal control gains (4.30) and (4.31).

Algorithm 1. (Offline iterative solution with Lyapunov equations. Kleinman’s Al-

gorithm.)

1. Initialize: Set k = 1, P0 = 0, N0 = 0 and given the Assumption 3 and the

sufficient condition BR−1BT ≥ 2γ−2DDT , select a gain F0 such that A−BF0

is asymptotically stable.

2. kth iteration: Solve for Pk

0 = PkAk +AT
kPk + F Tk−1RFk−1 +Q (4.33)

where Ak = A−BFk + 1
2
DNk. Finally, update the gains

Fk = R−1BTPk, (4.34)

Nk = γ−2DTPk. (4.35)
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Set the cost Jk = tr(PkX0).

3. Check: If Fk−1 and Fk are close enough to each other, go to step (4) else go to

step (2).

4. Terminate: Given the Assumptions 7 and 8, set the OPFB gains Ka
o = FkC

+,

No = NkC
+ and the cost J = Jk. �

Note that the closed-loop stability, and L2 gain boundedness implies that (4.36)

has a unique stabilizing optimal solution P > 0 by Theorem 6. A comprehensive

study for the solution of generalized Riccati equations can be found in [102]. The

Algorithm 2 is based on the iterative solution algorithm presented in [103] whose

convergence is proved by establishing the connection between Newton’s method in

[104]. Additionally, by considering the condition BR−1BT ≥ γ−2DDT , the mono-

tonic convergence, i.e, Pk < Pk−1, is straight-forward from the Theorem 13.5.8 in

[104]. A related algorithm is also examined in Chapter 8 of the book [60].

Now, to develop an algorithm that accounts only the optimal gain Ka
o , we

manipulate the steps of the Algorithm 1. The resultant Algorithm 2 finds the the

optimal control gain Ka
o (4.30) iteratively.

Algorithm 2. (Offline iterative solution with Lyapunov equations. Modified Klein-

man’s Algorithm.)

1. Initialize: Set k = 1, P0 = 0, and given the Assumption 3 and the sufficient

condition BR−1BT ≥ 2γ−2DDT , select a gain F0 such that A − BF0 is

asymptotically stable.

2. kth iteration: Solve for Pk

0 = PkAk +AT
kPk + F Tk−1RFk−1 +Q+ γ−2Pk−1DD

TPk−1 (4.36)
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where Ak = A−BFk. Finally, update the gain

Fk = R−1BTPk. (4.37)

Set the cost Jk = tr(PkX0).

3. Check: If Fk−1 and Fk are close enough to each other, go to step (4) else go to

step (2).

4. Terminate: Given the Assumptions 7 and 8, set the OPFB gain Ka
o = FkC

+

and the cost J = Jk. �

The next section uses the Algorithm 2 to develop model-free algorithms con-

sidering different scenarios for the availability of system data.

4.3 Online integral reinforcement learning solution algorithm for H∞ OPFB

In this section, we first develop an online off-policy integral reinforcement learn-

ing (IRL) algorithm [105], which is a model-free version of the Algorithm 2. This

algorithm assumes that the system state data is available to deal with unknown A,

B and D matrices. Then, we develop a novel IRL algorithm that solves the optimal

H∞ regulator problem by learning the Nash equilibrium gain solution (4.30) without

requiring knowledge of the system state data.

4.3.1 Online off-policy IRL algorithms

This section introduces an off-policy IRL algorithm to deal with the unknown

system matrices A, B and D. In this case, both of Algorithm 1 and 2 lose their

applicability as they are model-based. However, we still benefit from the convergence
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properties of Algorithm 2 while developing off-policy IRL method. To this end, we

represent system dynamics (4.1) as

ẋ = Ax+Buk +Dd+B(u− uk)

= Akx+Dd+B(u− uk) (4.38)

where uk = −Fkx ∈ Rm is the control policy to be updated with Fk given in

Algorithm 2.

Firstly, to obtain Pk without information of the system matrices A, B and

D, take the derivative of value functional V (x(t)) = xT (t)Px(t) by using the new

representation of the system dynamics (4.38)

V̇ = xTAT
kPkx+ xTPkAkx

+ 2dTDTPkx+ 2(u+ Fkx)TBTPkx. (4.39)

To employ the approach given in Algorithm [101], we define the following two new

variables

Gk+1 = γ−2DTPk, Fk+1 = R−1BTPk. (4.40)

Re-write (4.36) in terms of new variable (4.40) to get the Algorithm 2 in the Klein-

man’s form as

Q̄ = PkAk +AT
kPk (4.41)

where Q̄ = −F Tk RFk −Q − γ2GT
kGk. Additionally, express (4.39) in terms of the

new variables introduced in (4.40) and (4.41) as

V̇ = 2(γ2dTGk+1 + (u+ Fkx)TRFk+1)x+ xT Q̄x. (4.42)
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Then, integrate both sides from t to t+ T to obtain

V (t+ T )− V (t) =

∫ t+T

t

2(u+ Fkx)TRFk+1xdτ

+

∫ t+T

t

2γ2dTGk+1xdτ +

∫ t+T

t

xT Q̄xdτ. (4.43)

Based on these manipulations, the online off-policy IRL algorithm can be developed.

Note that this new IRL algorithm and the Algorithm 2 are equivalent. However,

on the contrary offline Algorithm 2, the IRL Algorithm 3 does not require information

of A, B and D matrices. It only requires the sufficient amount of data that belongs

x(t), u(t), and d(t) vectors, which can be collected online.

Algorithm 3. (Off-policy IRL algorithm assuming x is given.)

1. Initialize: Set k = 1, G0 = 0 and given Assumption 3 determine a stabilizing

gain F0.

2. kth iteration: Use (4.43) to update Pk, Gk+1 and Fk+1 simultaneously

xT (t+ T )Pkx(t+ T )− xT (t)Pkx(t)−
∫ t+T

t

2γ2dTGk+1xdτ

−
∫ t+T

t

2(u+ Fkx)TRFk+1xdτ =

∫ t+T

t

xT Q̄xdτ. (4.44)

Set the cost Jk = tr(PkX0).

3. Check: If Fk and Fk+1 are close enough to each other, go to step (4) else go to

step (2).

4. Terminate: Given the Assumptions 7 and 8, set Ka
o = Fk+1C

+ and J = Jk.

�

Remark 14. Note that right-side of the equation (4.44) in the Algorithm 3 consists of

known terms, and hence it can be solved for Pk, Gk+1 and Fk+1 matrices using well
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established least-squares technique by converting them to the set of linear equations

[17]. Since (4.44) does not use any system matrix information except from C, the

Algorithm 3 is said to be model-free. Realize that the output matrix C represents the

sensors placed to the system (4.1), which is clearly known.

Realize that the Algorithm 3 achieves the static OPFB gain assuming x is

available. However, we are only given the output data y. Therefore, we need to come

up with an another algorithm that does not require system state data. One approach

is to make use of the observability matrix while developing a model free algorithm

[106]. However, this approach indeed requires the pair (A,C) to be observable.

Thence, from now on we assume that the detectability condition in the Assumption

3 is strengthened as observability condition.

Theorem 8. For any given n-dimensional observable system, there exists a suffi-

ciently small time interval [0 T ] such that if N sampling times satisfy 0 ≤ t− i∆t ≤

T ∀i ∈ 1, ..., N where ∆t is the delayed time and assumed fixed, then the system is

N-sample observable.

Proof.: See [107] for the same proof.

To make use of the observability matrix define

x(t)TPx(t) = Y T (t)P̃ Y (t) (4.45)

where Y (t) = [yT (t) ẏT (t) ... yn−1T (t)]T = Ox, and hence P̃ = OTLPOL with

OL ∈ Rn×nq is the left-inverse of the observability matrix O ∈ Rnq×n. Note that

each derivative of the output y can be obtained by making use of the Taylor Se-

ries expansion on the collected data y(t + i∆t) around y(t). An example is ÿ =

y(t+∆t)+y(t−∆t)−2y(t)
∆t2

where y(t + ∆t) = y(t) + ∆tẏ(t) + 0.5∆2tÿ(t) and y(t −∆t) =

y(t)−∆tẏ(t) + 0.5∆2tÿ(t).
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Now, select Q = kCTC with k > 0 is a scalar, and define the following variables

F̃k = FkOL, G̃k = GkOL, (4.46)

and the known term Q̃ = −F̃ Tk RF̃k−Q̂−γ2G̃T
k G̃k where Q̂ = k[Iq 0 ... 0]Tqn×q[Iq 0 ... 0]q×qn.

Realize that xTQx = yTy = Y T Q̂Y holds when Q = kCTC, and it enables us to

treat Q̃ as a known term. Further, since the pair (A,C) is observable (A, kCTC) is

also observable. Based on these manipulations, a new Algorithm 4 can be developed.

Algorithm 4. (Off-policy IRL algorithm, x is not required but the pair (A,C) must

be observable.)

1. Initialize: Set k = 1, G̃0 = 0 and given Assumption 3 determine a stabilizing

gain F̃0.

2. kth iteration: Update P̃k, G̃k+1 and F̃k+1 simultaneously

Y T (t+ T )P̃kY (t+ T )− Y T (t)P̃kY (t)−
∫ t+T

t

2γ2dT G̃k+1Y dτ

−
∫ t+T

t

2(u+ F̃kY )TRF̃k+1Y dτ =

∫ t+T

t

Y T Q̃Y dτ. (4.47)

Set the cost Jk = tr(P̃kX0).

3. Check: If F̃k and F̃k+1 are close enough to each other, go to step (4) else go to

step (2).

4. Terminate: Given the Assumptions 7 and 8, set u = −F̃k+1Y and J = Jk. �

Realize that the Algorithm 4 converges with the static state feedback expres-

sion since u = −F̃k+1Y = −R−1BTPkOLOx = −R−1BTPkx (5.20). Thence, it

regulates not only the state elements spanned in the row-space of C but all states.

However, it creates additional complexity as it requires more data to be collected to

converge. On the other hand, the Algorithm 4 does not require system state data
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x, and it directly achieves the Nash equilibrium control u by making use of the new

variables F̃k+1 and Y instead of calculating the OPFB gain Ka
o . Additionally, since

the Algorithm 4 is obtained with the change of variables in the Algorithm 3, it shares

the similar convergence properties with the Algorithm 3, and hence the Algorithm 2.

The next section shows a way of solving coupled linear equations.

4.3.2 Data-based implementation of the IRL Algorithm

This section introduces a least-squares method to solve step (2) in Algorithm

3. Although, value function approximation is a popular tool and can be employed to

solve step 2 in Algorithm 3, it requires three Neural Networks (NNs), i.e., the actor

NN to approximate the value functional (4.7), the critic NN to update control policy

and the disturber NN to update disturbance policy [18]. This causes a complicated

NN design procedure. Instead, we use a least-squares method to solve for Pk in step

(2) of Algorithm 3, however, we first need to find Pk.

Now, we use the Kronecker product property aTWb = (bT ⊗ aT )vec(W ) to

rewrite (4.44) as

[x̂(t+ T )− x̂(t)]T P̂k − 2γ2(

∫ t+T

t

xT ⊗ dT dτ)vec(Gk+1)

− 2(

∫ t+T

t

xT ⊗ [(u+ Fkx)TR]dτ)vec(Fk+1) =

∫ t+T

t

xT Q̄xdτ (4.48)

where the vectors x̂ ∈ R
n(n−1)

2 and P̂k ∈ R
n(n−1)

2 are defined in the following forms

x̂ = [x21, 2x1x2, · · · , 2x1xn, x22, · · · , 2xn−1xn, x2n]T

P̂k = [Pk(11), · · · , Pk(1n), Pk(22), · · · , Pk(2n), · · · , Pk(nn)]T . (4.49)
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To solve Pk, Gk+1 and Fk+1 in (4.48), define

dx = [x̂(t+ T )− x̂(t), · · · , (4.50)

x̂(t+ s1T )− x̂(t+ (s1 − 1)T )]T ∈ Rs1×n(n−1)
2 ;

Ixd = [

∫ t+T

t

(x⊗ d)dτ, · · · , (4.51)∫ t+s1T

t+(s1−1)T
(x⊗ d)dτ ]T ∈ Rs1×np;

Ixu = [

∫ t+T

t

x⊗ (u+ Fkx)dτ, · · · , (4.52)∫ t+s1T

t+(s1−1)T
x⊗ (u+ Fkx)dτ ]T ∈ Rs1×nm;

Φ = [dx,−2Ixd,−2Ixu(In ⊗R)]; (4.53)

Ψ = −[

∫ t+T

t

xT Q̄xdτ, · · ·
∫ t+s1T

t+(s1−1)T
xT Q̄xdτ ]T , (4.54)

where integer s1 > 0 is sampling data group number. Then solution can be obtained

by


P̂k

vec(Gk+1)

vec(Fk+1)

 = (ΦTΦ)−1ΦTΨ . (4.55)

Remark 15. To ensure that (4.55) achieves the unique solution, the persistence of

excitation condition needs to be satisfied. To this end, probing noise should be injected

to control input u in (37). This is also called as exploration noise that does not affect

the convergence [17]. In addition, the data group number s1 should be no less than

n(n+1)
2

+ np + nm, which is the number of unknown parameters to be calculated by

(4.55).

98



In the next section, the correct performance of the proposed methods are vali-

dated by applying them to the lateral control control of linearized F-16 dynamics.

4.4 Simulation results

In this section, an example is given to verify the correct performance of proposed

algorithms that solves optimal H∞ static OPFB regulator problem. We used the F-16

linearized lateral dynamics at a particular flight condition given in example 5.3-1 of the

book [108]. Parameters of the linearized F-16 lateral dynamics and the corresponding

system vectors are

A =



−0.32 0.064 0.036 −0.992 0 0.001

0 0 1 0.004 0 0

−30.65 0 −3.68 0.665 −0.733 0.132

8.54 0 −0.025 −0.476 −0.032 −0.062

0 0 0 0 −20.2 0

0 0 0 0 0 −20.2


;

B =

0 0 0 0 20.2 0

0 0 0 0 0 20.2


T

;

C =



0 0 0 57.2958 0 0

0 0 57.2958 0 0 0

57.2958 0 0 0 0 0

0 57.2958 0 0 0 0


;

x =

[
β φ p r δa δr

]T
; u =

[
ua ur

]T
;

y =

[
r p β φ

]T

(4.56)
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Figure 20: System response when no control is applied.

where β denotes the side-slip, φ is the bank angle, p is the roll rate, r is the yaw rate,

δa is the aileron actuator angle, δr is the rudder actuator angle, ua is the aileron servo

input, ur is the rudder servo input. The factor of 57.2958 in the output-matrix C

converts radians to degrees.

Additionally, the objective functional (4.5) parameters are selected as Q =

diag([50 100 100 50 0 0]), R = ρ × diag([0.1 0.7]) with ρ = 0.3 for computation of

the OPFB gain. Also, select the disturbance matrix as

D =

0 0 0 0 3 0

0 0 0 0 0 2


T

, (4.57)

and set the attenuation level γ = 2.5. To examine the robustness, assume that

the system (4.1) experiences the worst-case disturbance (4.20). Realize that all

of the Assumptions 3-8, and the sufficient condition BR−1BT ≥ 2γ−2DDT are

satisfied with the given parameters in (4.56) and (4.57). Now, we first illustrate the
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Figure 21: System response when the Nash gains (4.30) and (4.31) are employed.

performance of model-based Nash gain solutions (4.30) and (4.31), and then check

whether the the Algorithms 1 and 2 converges the same game solutions as (4.30) and

(4.31). After verifying the correctness of them, we illustrate the performance of the

Nash solutions obtained in the Algorithms 3 and 4 that are model-free.

The Fig. 26 illustrates the zero control-effort response of the system (4.1). The

Fig. 27 illustrates the optimal stabilizing gain (4.30) performance, which is derived

in Theorem 11. The Nash OPFB gains found by (4.30) and (4.31) are

Ka
o =

−0.1395 −0.8714 1.4785 −1.0000

−0.1410 0.0273 −0.1070 0.0330

 , (4.58)

No =

−0.0001 −0.0006 0.0011 −0.0007

−0.0005 0.0001 −0.0004 0.0001

 . (4.59)
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Figure 22: Convergence of the gain matrix Ka
o parameters by using the Algorithms

1 and 2.

Now, to examine the performance of the Algorithms 1 and 2, we set the initial

sub-optimal stabilizing gain as

F0 =

−0.0888 −0.1875 0.7076 −0.2328

−0.1382 0.0105 −0.0884 0.0141

C. (4.60)

The convergence of optimal gain matrix parameters Ka
o can be observed from

Fig. 28. Note that their convergence properties are exactly the same as each other

and they converge to the same gain matrix (4.58) as expected. Therefore, the output

trajectories figure with this resultant optimal stabilizing gain Ka is the same as

Fig. 27. Now compare the system responses in Fig. 26 and Fig. 27 to observe the

regulation performance. The convergence of disturbance gain matrix parameters No

is also illustrated in Fig. 30. Note that the converged parameters of No are the same

the OPFB disturbance gain given in (4.59) as illustrated.
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Figure 23: Convergence of the No matrix parameters by using the Algorithm 1.

Next, to show the correct performance of model free Algorithm 3, we set the

initial stabilizing gain F0 as the same as (4.60). Then, based on the state information

gathered from the system, the Algorithm 3 is employed to learn the Nash equilibrium

gain solution Ka
o online. Once the IRL Algorithm converged, we applied the corre-

sponding control u = −Ka
oy using to the actual system (4.1). The Algorithm 3 is

also converged to the same Nash gain Ka
o (4.58), thereby the resultant output vector

states are the same as Fig. 27 as expected.

On the other hand, to check the correctness of the Algorithm 4, we select

Q = kCTC with k = 0.05 as explained in the Section 4.3.1. The resultant output

trajectories are shown in the Fig. 6. Additionally, we have calculated the the Nash

state feedback gain expression K∗ given in (5.20), and also the observability matrix

O for the system (4.1). Then, we compared the K∗ with the F̄k+1O. It has been

seen that the two matrices have almost the same elements and L2 norm difference of

them is calculated as 0.84, which verifies the correct performance of the Algorithm 4.
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Figure 24: Convergence of the gain matrix Ka
o parameters by using the Algorithm 3.

Lastly, the critical attenuation level obtained in the Theorems 6 and 11 is

γ∗ = 0.05. Note that with this critical attenuation γ∗ level, the sufficient condition

BR−1BT ≥ 2(γ∗)−2DDT is relaxed. However, this condition indeed required for

the Kleinman based Algorithms 1-4, and the critical attenuation level is obtained

as γ∗ = 0.49, which is also compatible with the sufficient condition BR−1BT ≥

2(γ∗)−2DDT . Therefore, we conclude that the model free algorithms reduces the L2

gain performance.
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Figure 25: Performance of the Algorithm 4.
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CHAPTER 5

Adversarial Multi-agent Output Containment Graphical Game with Local and

Global Objectives for UAVs

Multi-agent systems (MAS) control is one of the most widely studied phenom-

ena in recent years, due to the capability of MAS to perform certain tasks such

as transportation [109], surveillance and reconnaissance [110], and target search and

detection [111]. Three recognized categories of MAS control are single-leader & single-

follower [112], single-leader & multi-follower [96], and multi-leader & multi-follower

(MLF) [19]. For the MLF systems, one control objective is to guarantee the con-

vergence of the output of each follower to the dynamic convex hull spanned by the

outputs of leaders [19], [20], [21] which can be achieved by regulating the correspond-

ing output containment error. These studies do not consider a practical case where

the followers have mutual interests. Formulating the MLF system as a differential

graphical game can address the mutual interests among the agents, and hence con-

stitute a correct framework for the analysis of the MLF systems.

In the last decade, extensive efforts have been made to achieve Nash equilibrium

strategies in differential graphical games [22],[23], [24], [25], [26]. The Nash equilib-

rium strategy in [22] is a centralized one since it requires to access the global state

information of MAS. Min-max strategies in [76] guarantee a security-level perfor-

mance when a Nash solution to graphical game does not exist. A modified objective

functional in [23] guarantees the existence of both distributed and Nash solutions for

the single-leader & multi-follower MAS.
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In practice, besides Nash strategies, a MAS control design requirements may

include L2 gain boundedness, robustness against external disturbances, and output-

feedback stabilizability. These design specifications are indeed local objectives of the

graphical MLF game. Therefore, a new concept so called local and global objectives

arises in the literature [113]. The works [76], [114], [115] are indeed related to the this

new concept. [76] analyzed the multi-agent pursuit-evasion game where pursuer group

have local objective, staying together, and global objective, capturing the evaders.

[113] employed local objectives for a subset of agents, which on the other hand, are

tasks determined around the global objective by agent-specific exosystems. Most of

these works do not yield local and graphical Nash solutions simultaneously.

The standard existing solutions to the output containment MLF games uses an

additive gain matrices to prove stability [19], [20]. In [19], sufficient local conditions

in terms of stabilizing the local followers’ dynamics and satisfying a certain H∞ crite-

rion are investigated without considering mutual interests among the followers. The

resulting strategies do not constitute a Nash equilibrium solution. In this paper, we

propose graph theoretic and algebraic conditions to obtain Nash equilibrium strate-

gies for the output containment of a MLF system. The salient contributions of this

paper summed up into four categories as:

� The graphical output containment game is introduced where the mutual inter-

ests among the followers that experiences worst-case disturbances is addressed

by introducing differential graphical games. For this graphical game, the output

containment problem is the global objective of the follower group and distur-

bance attenuation is the local objective for some agents.

� A new solution to the H∞ static output feedback (OPFB) control problem that

yields Nash equilibrium strategies for the graphical game is presented. The Nash

solutions are proved to guarantee stability and bounded L2 gain considering
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corresponding local min-max game worst-case disturbances with the developed

novel necessary and sufficient conditions.

� The conditions for the distributed strategy based on available output data is

presented to accomplish the local H∞ objective and the global output contain-

ment objective for the MLF system.

� To verify correctness of the proposed methods, the linear quadrotor model is

developed around a particular flight condition. Then, the strategies constituting

Nash equilibrium solution to output containment game are tested by means of

the MLF quadrotor UAV simulations.

The rest of the paper is organised as follows. Section 5.2.1 considers a local H∞

game where the control inputs aim to minimize corresponding objective functional,

whereas the disturbances aim to maximize. This corresponds to a well-known zero-

sum game concept [61]. After playing the local game, we consider differential graphical

game in Section 5.2.2 where followers’ mutual interests are addressed. Furthermore,

we give sufficient conditions on the objective functional’s design parameters to satisfy

both of the local and global objectives simultaneously. Section 5.3 reveals the L2 gain

bound stability analysis of the games introduced. Lastly, the proposed methods are

tested by means of the MLF quadrotor UAV simulations in Section 5.4.

Notations. We use the following notations throughout this paper. In ∈ Rn×n

is the identity matrix, 1N ∈ RN is a vector whose elements are all ones, and similarly

0N ∈ RN is a vector whose elements are all zeros. 0n×m ∈ Rn×m is a matrix whose

elements are all zeros. diag(ζi) represents a diagonal matrix with ζi ∀i ∈ 1, ..., N on

its diagonal. The condition A > 0 (≥ 0) denotes the positive (semi) definiteness of a

matrix. The operator tr() denotes the trace of a matrix. C+ = CT (CCT )−1 is the

right-inverse of the full row-rank matrix C and the Kronecker product operator is

denoted by ⊗. The determinant of a square matrix is denoted by |.|. Lastly, distance
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from x ∈ Rn to the set C ⊆ Rn is defined via Euclidean norm as dist(x,C) =

infy∈C ||x− y||2.

5.1 Preliminaries

This section presents various definitions on adversarial multi-agent leader-follower

(MLF) games by revealing multi-agent system dynamics and communication graph

topologies that are of interest. Till the simulation section, the MLF game with gener-

alized Linear Time Invariant (LTI) system dynamics are analyzed. Then, the specific

LTI system dynamics are introduced for quadrotor UAVs in the Section 5.4.

5.1.1 Graph Topologies

A communication graph for N followers is denoted with a pair Gf = (V f , Ef ),

where the set V f = {vf
1, ..., v

f
N} denotes the nodes, and Ef stands for the edges,

which is composed of node pairs (vf
i , v

f
k). Each edge

(
vf
k, v

f
i

)
∈ Ef , has a weight

afik = 1 if node k is connected to node i and afik = 0 otherwise. The graph is called as

undirected if afik= afki, ∀i, k, otherwise it is termed a digraph. The in-degree matrix

Df = diag{dfi } where dfi =
∑N

k=1 a
f
ik. The matrix Af = [afik] ∈ RN×N denotes the

adjacency or connectivity matrix. Then, the graph Laplacian matrix for the follower

group is defined as Lf = Df −Af . In this paper, we assume that Gf is a digraph

that does not contain self loops, i.e, afii = 0.

In addition, define a bipartite graph Gb = (V f , V l, Eb) that consists of follower

nodes V f , leader nodes V l, and edges Eb, which captures the information exchange

among the follower and leader groups. Let gbji denote the pinning of follower i to

leader j, with gbji = 1 if follower i is connected to leader j, and gbji = 0 otherwise.

Additionally, let gbij denote the pinning of leader j to follower i, with gbij = 1 if leader

j is pinned to follower i, and gbij = 0 otherwise. Then pinning matrices of follower i

109



𝑎𝑖𝑘
𝑓𝑦𝑖

𝑓 𝑦𝑘
𝑓

𝑁 𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠 𝑀 𝐿𝑒𝑎𝑑𝑒𝑟𝑠

𝑦𝑗
𝑙

𝑔𝑗𝑖
𝑏

𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒𝑠Gf

Gb

Figure 26: Layout of Adversarial Leader-Follower Graphical Game

and leader j in Gb are Gb
j and Gb

i respectively. One of the contributions of this paper

is to analyze MLF games with directed communication graph topologies that lead

to the limited measurement capabilities among the agents (Gf nodes) of game. Note

that the graph formulation in this paper is valid for the non-negative connectivity

and pinning weights i.e., afik ≥ 0 and gfij ≥ 0 but they are selected as ones and zeros

so as not to increase gain of outer control loop for quadrotor UAVs in Section 5.4.

5.1.2 Multi-agent System Dynamics and Local Errors

Consider a follower group consisting of N agents with the dynamics given by

ẋfi = Axfi +Bui +Dwi

yfi = Cxfi ,

(5.1)

∀i ∈ {1, ..., N}, where A ∈ Rn×n, B ∈ Rn×m, D ∈ Rn×p are system-state, input,

disturbance matrices, and C ∈ Rq×n is assumed to be a full row-rank output matrix

to avoid redundant measurements. The corresponding vectors xfi (t), ui(t), wi(t), and

yfi (t) stand for the state, input, disturbance and output of ith follower respectively.
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Additionally, consider a leader group that consists of M agents with the dynamics

given by

ẋlj = Axlj

ylj = Cxlj ,

(5.2)

∀j ∈ {1, ...,M}, where vectors xlj(t), and ylj(t) stand for the state, and output of jth

leader respectively.

Assumption 6. The pair (A,B) is stabilizable and the pair (A,C) is detectable.

Assumption 7. The system (5.1) is OPFB stabilizable in the sense that the row-space

of output matrix C contains the sub-space that is spanned by the right eigenvectors

corresponding to the unstable modes of A.

Assumption 8. The non-zero columns of the output matrix C are linearly indepen-

dent.

Remark 16. The Assumption 7 can be interpreted such that all unstable modes are

measured by the output matrix C that represents the sensors installed in the systems

(5.1) and (5.2). The Assumption 8 enables us to recover a state element xi that

is spanned in the row space of C precisely from the output vector y once it is left

multiplied with C+.

Definition 1. A set S is convex if the line segment between any two points in S lies

in S, i.e., (θs1 + (1 − θ)s2) ∈ S holds for any s1, s2 ∈ S and any θ ∈ [0, 1] [116].

The convex hull of a set X = {x1, ...,xM is denoted by conv(X ) = {
∑M

j=1 γjxj |xj ∈

X , γj ≥ 0,
∑M

j=1 γj = 1}.

Let YGl = {yl1, ...,ylM} be a set of leaders’ positions. Note that the centroid

of leaders’ positions
∑M

j=1 γjy
l
j with γj = 1/M,∀j ∈ {1, ...,M} is an element of

conv(YGl).
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Definition 2. Consider the ith follower dynamics (5.1) and the jth leader dynamics

(5.2). The outputs of all followers are said to converge to the convex hull spanned by

the outputs of leaders if

lim
t→∞

dist(yfi , conv(YGl)) = 0,∀i ∈ 1, ..., N. (5.3)

Motivated by [19], the local relevant output containment vector for ith follower

is defined as

ξi =
N∑
k=1

afik(y
f
k − y

f
i ) +

M∑
j=1

gbij(y
f
j − y

l
i)

=
M∑
j=1

(
1

M

N∑
k=1

afik(y
f
k − y

f
i ) + gbij(y

f
j − y

l
i)

)
.

(5.4)

The global form of (5.4) is

ξ = −
M∑
j=1

(
(ψj ⊗ Iq)(yf − ylj)

)
(5.5)

where ξ = [ξT1 , ..., ξ
T
N ]T , ψj = 1

M
Lf +Gb

j , y
l
j

= 1N ⊗ ylj , and yf = [yf1 ′, ...,y
f
N ′]T .

The following steps enable us to verify that the output containment control objective

(5.3) is achieved if limt→∞ ξ = 0.

Definition 3. A matrix is called semi-simple if the geometric multiplicity of each

eigenvalue is equal to its algebraic multiplicity.

It is known that a matrix is diagonalizable over real set R, if it is semi-simple

and every eigenvalue is real [117].

Definition 4. A follower is called a well-informed one if it is pinned to the all leaders

and uninformed one if it is not pinned to any leader.

Assumption 9. The follower i in Gf is either a well-informed one or an uninformed

one. There exists a directed path from one of the well informed followers k to an
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uninformed follower i with k 6= i ∀k = {1, ..., N} in Gf . Additionally, the graph

is assumed to be acyclic and there is no directed connection from any uninformed

follower i to well informed follower k.

Note that the existence of directed path from well-informed follower k to un-

informed follower i is standard in multi-leader output containment control [19],[20].

Apart from this, we also assume that the graph Gf is acyclic and there is no directed

connection from any uninformed follower i to well informed follower k, which allows us

to modify the standard objective functionals in the MLF games. The next corollary

is an essential step before we introduce further details on the MLF games.

Remark 17. Given Assumption 9, ψj and
∑M

j=1ψj are non-singular M matrices,

and hence the real parts of their eigenvalues are positive [118]. Furthermore, since the

graph Gb is assumed to be acyclic, the pinned Laplacian matrix (
∑M

j=1ψj) is indeed

a simple matrix that has purely positive real eigenvalues, which is introduced in the

Chapter 5.7.3 of [119].

Remark 18. Assumption 9 also implies that there exists a directed path from at least

one of the leaders to any follower in a unified communication graph Gf ∪ Gb. This

allows us to verify non-singular M-matrix property of the matrices ψj and
∑M

j=1ψj.

Therefore, their inverses, (ψj)
−1 and (

∑M
j=1ψj)

−1, exist and are non-negative. A

comprehensive fifty properties of M-matrices are detailed in [120].

Lemma 3. Given the Assumption 9, consider the follower and leader dynamics in

(5.1) and (5.2). The condition (5.3) is achieved if limt→∞ ξ = 0.

Proof : Re-write the global form of relevant output containment vector (5.5)

as

ξ = −

(
M∑
j=1

(ψj ⊗ Iq)

)
yf +

M∑
j=1

(
(ψj ⊗ Iq)ylj

)
(5.6)
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limt→∞ ξ = 0 implies that

yf →

(
M∑
j=1

(ψj ⊗ Iq)

)−1 M∑
j=1

(
(ψj ⊗ Iq)ylj

)

→
M∑
j=1

( M∑
r=1

(ψr ⊗ Iq)

)−1
(ψj ⊗ Iq)ylj


→

M∑
j=1

( M∑
r=1

ψr

)−1
ψj1N

⊗ ylj


(5.7)

as t→∞. Realize that

M∑
j=1

( M∑
r=1

ψr

)−1
ψj1N

 =

(
M∑
r=1

ψr

)−1( M∑
j=1

ψj1N

)

= 1N ,

(5.8)

which implies that each row sum of the vectors
(∑M

r=1ψr

)−1
ψj1N ∀j ∈ 1, ...,M is

equal to 1. Using Remarks 17 and 18, one can derive non-negative definiteness of

each entry of the vectors
(∑M

r=1ψr

)−1
ψj1N [118]. Therefore, limt→∞ ξ = 0 indeed

verifies that the objective (5.3) is achieved by Definition 1. This completes the proof.

�

5.1.3 Multi-agent Error Dynamics and L2 Gain Bound

Based on (5.7) in Lemma 3, define the global output containment vector as

δy = yf −

(
M∑
j=1

(ψj ⊗ Iq)

)−1 M∑
j=1

(
(ψj ⊗ Iq)ylj

)
. (5.9)

114



Note that limt→∞ δy = 0 =⇒ limt→∞ ξ = 0 and (5.3) holds. Then, the global state

containment vector is

δ = xf −

(
M∑
j=1

(ψj ⊗ In)

)−1 M∑
j=1

(
(ψj ⊗ In)xlj

)
(5.10)

where δ = [δT1 , ..., δ
T
N ]T , xf = [xf1 ′, ...,x

f
N ′]T and xlj = 1N ⊗ xlj .

Consider the global containment vectors (5.9) and (5.10), and the follower dy-

namics in (5.1) and the leader dynamics in (5.2). Then, by using the fact that

ξ = −
(∑M

j=1(ψj ⊗ Iq)
)
δy, the output containment error system can be written in

the following global form

δ̇ = (IN ⊗A)δ + (IN ⊗B)u+ (IN ⊗D)w

ξ = −

(
M∑
j=1

(ψj ⊗C)

)
δ.

(5.11)

where u = [uT1 , ...,u
T
N ]T , and w = [wT1 , ...,w

T
N ]T .

Definition 5. Realization of the following inequality ∀w ∈ [0,∞) implies that the L2

gain of system (5.11) is bounded by a prescribed disturbance attenuation level denoted

by γ ∫ ∞
0

ξT ξ

‖CTC‖2
dt ≤ γ2

∫ ∞
0

wTwdt+ β (5.12)

where β is a non-negative constant. The condition (5.12) is also called as nonexpan-

sivity constraint in [74].

The following Lemma is inspired by [96].
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Lemma 4. Given the Assumption 9 and the output containment error system (5.11).

Assume that a stabilizing static output feedback (OPFB) control takes the form

ui = −ciKiξi. (5.13)

where c is a positive constant. Then, the output containment objective (5.3) and L2

gain bound condition (5.12) hold if the distributed N systems

˙̂δi = Aδ̂i +Bûi +Dŵi

= (A− ciλiBKiC)δ̂i +Dŵi

ξ̂i = −λiCδ̂i

(5.14)

are both asymptotically stable and L2 gain bounded by γ > 0, where λi are eigenvalues

of the matrix
∑M

j=1ψj.

Proof : By Definition 3, the M-matrix
∑M

j=1ψj is diagonalizable given the

Assumption 9, thereby there exists an invertible transformation matrix T such that

T (
M∑
j=1

ψj)T
−1 = Λ = diag(λ1, ..., λN). (5.15)

Let δ̂ = (T ⊗ In)δ, w = (T−1 ⊗ Ip)ŵ, and ξ̂ = (T ⊗ Iq)ξ. Then (5.14) can be

written in the global form as

˙̂
δ = (IN ⊗A− ciΛ⊗BKC)δ̂ + (IN ⊗D)ŵ

ξ̂ = −(Λ⊗C)δ̂.

(5.16)

Realize that the L2 norm equivalence of the pairs (ξ, ξ̂) and (w, ŵ) are straight

forward as T is invertible, and hence (5.11) and (5.16) have the same L2 gains.
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Additionally, since they have the same transfer function, stability of the equilibrium

(origin) in both systems are equivalent, which completes the proof. �

5.2 Multi-agent leader-follower game formulation

In this section, two types of games are analyzed. The first game is a local game,

which is played between the control and disturbance terms of the ith follower. On the

other hand, the second game is a global graphical game, which is played between the

ith and jth followers considering the worst case disturbance that is achieved in the

corresponding local game.

Remark 19. Herein, we employ state feedback control method to derive the Nash

equilibrium strategies. Then, the achieved control strategies can be re-written in the

OPFB form given the Assumptions 6-8. This will be illustrated later in the Section

5.3.

5.2.1 Local H∞ Game Solution

This section presents a local H∞ game solution, which is formulated in the form

of zero-sum game by introducing the following objective functional

Ji(ûi, ŵi) =

∫ ∞
0

(δ̂Ti Qiδ̂i +
1

ciλi
ûTi Riûi − γ2ŵTi ŵi)dτ (5.17)

where Qi ≥ 0 and Ri > 0 are symmetric design matrices with appropriate dimen-

sions. We assume that Si is selected such that the pair (A,
√
Qi) is observable.
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Now the H∞ control problem can be solved by treating ûi as a minimizing

player, whereas ŵi as a maximizing player of the cost (5.17). Then, the game can be

formulated as

Vi(δ̂i) , Ji(û∗
i , ŵ

∗
i ) = min

ûi

max
ŵi

Ji(ûi, ŵi)

= max
ŵi

min
ûi

Ji(ûi, ŵi)
(5.18)

where Vi(δ̂i) denotes the value functional such that

Vi(δ̂i) =

∫ ∞
t

(δ̂Ti Qiδ̂i +
1

ciλi
ûTi Riûi − γ2ŵTi ŵi)dτ , (5.19)

and the pair (û∗
i , ŵ

∗
i ) is the local game theoretic saddle point (local game Nash

equilibrium).

Lemma 5. The pair (û∗
i , ŵ

∗
i ) constitutes a Nash equilibrium of the game (5.18) if

û∗
i = −ciλiR−1

i BTPiδ̂i, (5.20)

ŵ∗
i = γ−2DTPiδ̂i, (5.21)

where Pi is the solution of corresponding Game Algebraic Riccati Equation (GARE)

such that

PiA+ATPi − ciλiPiBR−1
i BTPi +Qi + γ−2PiDDTPi = 0. (5.22)

Proof : Begin with deriving the Hamiltonian to solve the minimizing &

maximizing extrema that satisfies the Nash condition (5.18) as

Hi(∇Vi, ûi, ŵi) = δ̂Ti Qiδ̂i +
1

ciλi
ûTi Riûi − γ2ŵTi ŵi

+∇VTi (Aδ̂i +Bûi +Dŵi) = 0

(5.23)
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where ∇Vi = ∂Vi/∂δ̂i is the co-state vector and the boundary condition is Vi(0) = 0.

Using the quadratic form Vi(δ̂i) = δ̂Ti Piδ̂i where Pi = PTi , and applying the station-

arity conditions ∂Hi(∇V∗i , ûi, ŵi)/∂ûi = 0 and ∂Hi(∇V∗i , ûi, ŵi)/∂ŵi = 0 yields the

optimal control and disturbance respectively as (5.20) and (5.21). Additionally, sub-

stituting (5.20) and (5.21) into (5.23) and equating resultant HJI equation to zero,

gives the Riccati equation (5.22).

Note that the sign of Hessians, ∂2Hi(∇V∗i , ûi, ŵi)/∂û2
i > 0 and ∂2Hi(∇V∗i , ûi, ŵi)/∂ŵ2

i <

0, along with the unboundedness of limits limd→∞ Ji(û∗
i , ŵi), limûi→∞ Ji(ûi, ŵ∗

i ) in-

deed show that (5.20) and (5.21) are the global optimal minimizing and maximizing

extrema respectively. This indeed verifies that the pair (û∗
i , ŵ

∗
i ) denotes the Nash

equilibrium, which completes the proof. �

Remark 20. The main purpose of introducing the local game (5.18 is to find the

worst case disturbance for the ith follower (5.1). Since ith player is responsible for

acting according to not only the worst case disturbance but also strategy of the jth

player, û∗
i (5.20) is not the finalized control strategy yet.

Corrolary 2. Let the distributed N systems (5.14) experience the worst-case dis-

turbance derived in (5.21), i.e., ŵi = ŵ∗
i , and introduce a new matrix F = A +

γ−2DDTPi to facilitate the analysis. Then, the transformed local output contain-

ment error dynamics become

˙̂
δi = (A− ciλiBKC + γ−2DDTPi)δ̂i

= F δ̂i +Bûi

ξ̂i = −λiCδ̂i

(5.24)
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as following is the natural outcome of using transformations δ̂ = (T ⊗ In)δ and

w∗ = (T−1 ⊗ Ip)ŵ∗ on (5.21) such that

ŵ∗ = γ−2(IN ⊗DTPi)δ̂. (5.25)

5.2.2 Global Graphical Game Solution

This section proposes a modified cost functional for the graphical game whose

players are the nodes of Gf . The main challenge in graphical games, is to design

distributed Nash equilibrium control strategies, which cannot be achieved with the

traditional quadratic cost functional formulation [23]. Therefore, a modified cost

functional that provides both Nash and distributed control strategies in the sense

that each follower uses the state information of its own and neighbors can be defined

such that

Ji(ûi, û−i) =

∫ ∞
0

N∑
k=1

(δ̂TikQikδ̂ik +
1

ciλi
ûTi Riûi −

afik
(ciλi)2

ûTkRikûk)dτ . (5.26)

where δ̂ik = [δ̂Ti , δ̂
T
k ]T , Qik = [Q̃i,0n×n; 0n×n, Q̂ik], and û−i is the set of control

strategies of the kth player in Gf where k 6= i. Then, the corresponding game is

defined as

V g
i (δ̂i, δ̂−i) , Ji(û

g
i , û

g
−i) ≤ Ji(ûi, û

g
−i) (5.27)

where the N-tuple {V g
1 (δ̂1, δ̂−1), ..., V g

N(δ̂N , δ̂−N )} is called the global Nash equilib-

rium outcome and the N-tuple {ûg1, ..., û
g
N} denotes the Nash equilibrium strategies

of the game (5.27).
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Remark 21. A distributed Nash equilibrium strategy can be achieved if the func-

tional V g
i (δ̂i, δ̂−i) depends on the its argument δ̂i solely, i.e., V g

i (δ̂i, δ̂−i) = V g
i (δ̂i).

Otherwise, the resultant game optimal strategy would not be a distributed strategy.

Define a quadratic function that will play a key role in the corresponding Hamil-

tonian derivation such that

Vi(δ̂i, δ̂−i) , Vi(δ̂i). (5.28)

By the Remark 21, the following holds

∂Ṽ T
i

∂δ̂ik

˙̂
δik =

[
∂Ṽ T

i

∂δ̂i

∂Ṽ T
i

∂δ̂k

]T  ˙̂
δi

˙̂
δk


=
∂Ṽ T

i

∂δ̂i

(
F δ̂i +Bûi

)
.

(5.29)

Theorem 9. Given the cost functional (5.26), local output containment error dy-

namics and quadratic form (5.28). Assume that the element of matrix Qik satisfies

Q̂ik = afikP̃kBR
−1
k RikR

−1
k BT P̃k (5.30)

where P̃i and P̃k solve the corresponding algebraic Riccati equations such that

F T P̃i + P̃iF + Q̃i − ciλiP̃iBR−1
i BT P̃i = 0, (5.31)

F T P̃k + P̃kF + Q̃k − ckλkP̃kBR−1
k BT P̃k = 0. (5.32)

Then, the Nash equilibrium strategy for ith follower in the graphical game (5.27) takes

the following form

ûgi = −ciλiR−1
i BT P̃iδ̂i. (5.33)
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Proof : This proof consists of two parts. The first part deals with the selection

of Qik to satisfy (5.28) and the second part rigorously analyzes the Nash equilibrium

property of minimizing controls ûi derived in the first part.

Selecting Qik: By (5.29), the Hamiltonian associated with the cost functional

(5.26) is

H i(∇Ṽi, ûi, û−i) =
N∑
k=1

(
∇Ṽ T

i (F δ̂i +Bûi)
)

+
N∑
k=1

(δ̂TikQikδ̂ik +
1

ciλi
ûTi Riûi −

afik
(ciλi)2

ûTkRikûk) = 0

(5.34)

where ∇Ṽi = ∂Ṽi/∂δ̂i with the boundary condition Ṽi(0) = 0. To find the best

responses, check the stationarity condition ∂Hi(∇Ṽ g
i , ûi, û−i)/∂ûi = 0, which yields

ûgi = −ciλi
2
R−1
i BT∇Ṽ g

i (5.35)

Substituting (5.35) into (5.34) yields the Hamilton-Jacobi (HJ) equation, i.e., Hi(∇Ṽ g
i , û

g
i , û

g
−i) =

0. Additionally, using the quadratic form of Ṽi(δ̂i) (5.28) in the HJ equation, one ob-

tains

Hi(∇Ṽ g
i , û

g
i , û

g
−i) =∑

N
k=1δ̂

T
i (F T P̃i + P̃iF + Q̃i − ciλiP̃iBR−1

i BT P̃i)δ̂k

+
∑

N
k=1δ̂

T
k (Q̂ik − afikP̃kBR

−1
k RikR

−1
k BT P̃k)δ̂k = 0.

(5.36)

This gives the element of matrix Qik (5.30), and the Riccati equations (5.31)-(5.32),

which completes the first part of the proof.

Graphical Nash Equilibrium: In this part, we prove that the N-tuple {ûg1, ..., û
g
N}

indeed constitutes the Nash equilibrium strategies of the game (5.27). Realize that

substituting the quadratic form (5.28) into (5.35) yields (5.33).
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Now re-write the Hamiltonian (5.34) as

Hi(∇Ṽi, ûi, û−i) =
N∑
k=1

Hik(∇Ṽi, ûi, û−i) (5.37)

where Hik(∇Ṽi, ûi, û−i) can be expressed by completing the squares as

H ik(∇Ṽi, ûi, û−i) = Hik(∇Ṽi, ûgi , û
g
−i)

+
1

ciλi
(ûi − ûgi )

TRi(ûi − ûgi )−
afik

(cλk)2
(ûk − ûgk)TRik(ûk − ûgk)

− 2afik
(cλk)2

ûgk′Rik(ûk − ûgk)

(5.38)

since the equality ∇Ṽ T
i Bu

g
i = −2

c
(ûgi )

TRiû
g
i holds by (5.35). Having the fact that

the Hamiltonian (5.34) is a differential equivalent of the cost functional (5.26), we

can write

Ji(ûi, û−i) =

∫ ∞
t0

N∑
k=1

Hik(∇Ṽi, ûi, û−i)dt+ Vi(δ̂i(t0)). (5.39)

According to rules of the game (5.27), select ûk = ûgk and use the Hamiltonian form

(5.38) in (5.39) to obtain

Ji(ûi, û
g
−i) =

∫ ∞
t0

N∑
k=1

1

ciλi
(ûi − ûgi )

TRi(ûi − ûgi )dt+ Vi(δ̂i(t0)), (5.40)

which clearly satisfies the game condition Ji(û
g
i , û

g
−i) ≤ Ji(ûi, û

g
−i), and hence the N-

tuple {ûg1, ..., û
g
N} is indeed the Nash equilibrium of the game (5.27). This completes

the second part of the proof. �

Remark 22. Realize that the local H∞ Nash control strategy û∗
i (5.20) does not have

the same form as the global graphical Nash control ûgi (5.33). Therefore, we have not

obtained a control strategy that belongs to Nash equilibrium for both games (5.18) and
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(5.27). The next Theorem 10 gives the necessary conditions to provide a dual Nash

control strategy by selecting appropriate Q̃i and Rik design matrices.

Theorem 10. The Nash equilibrium control strategy û∗
i (5.20) for the local H∞ game

(5.18) stands for the same Nash equilibrium control strategy ûgi (5.33) for the global

graphical game (5.27) if the design matrices Q̃i and Rik are selected as

Q̃i = −γ−2PiDDTPi +Qi (5.41)

Rik = N2BTPiQ̃iPiB + R̃ik (5.42)

where R̃ik > 0.

Proof : First we work on selection of the design matrix Q̃i. Begin with

expanding the Riccati equation (5.31) using F = A+ γ−2DDTPi, which yields

P̃iA+AT P̃i − ciλiP̃iBR−1
i BT P̃i + Q̃i

+ γ−2(P̃iDD
TPi +PiDDT P̃i) = 0.

(5.43)

Select Q̃i as in (5.41), and assume that the positive definite matrix Pi solves the

local H∞ GARE (5.22). Then, to verify that it also solves the graphical game Riccati

equation (5.43), it is required to obtain the equality P̃i = Pi where P̃i is the solution

of Graphical Riccati equation (5.43), illustrated in the following realization

(P̃i −Pi)DDT (P̃i −Pi) = P̃iDD
T P̃i +PiDDTPi

− P̃iDDTPi −PiDDT P̃i.

(5.44)

Thereby (5.43) can be expressed in terms of P̃i with selected Q̃i (5.41 as

P̃iA+AT P̃i − ciλiP̃iBR−1
i BT P̃i +Qi + γ−2P̃iDD

T P̃i = 0. (5.45)
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Realize that (5.45) has a dual form of (5.22). Therefore, the Nash equilibrium control

strategies û∗
i (5.20), and ûgi (5.33) are the same as each other since the Riccati

equation (5.22) has a unique positive definite solution under some conditions that

will be detailed in Section 5.3. Additionally, setting the disturbance matrix D = 0

guarantees the equality P̃i = Pi as Q̃i becomes Qi and (5.43) reduces to (5.45).

To complete the proof, the weighting matrix Qik in (5.26 should be at least

positive semi-definite with the selected design matrices (5.30) and (5.41)-(5.42). This

can be achieved if both Q̃i and Q̂ik are at least positive semi-definite matrices by

applying the Schur complement method. Since Q̂ik is clearly positive semi-definite,

we conclude that Qi must be selected large enough to make Q̃i positive semi-definite

as well. This completes the proof. �

Remark 23. Theorem 10 implies that ith player can minimize its global cost (5.26)

by only playing the local H∞ (5.18) game. Hence, if the ith player stabilizes the local

error dynamics (5.14) with the Nash equilibrium control strategy (5.20), then both of

the local and global objectives can be satisfied simultaneously.

5.3 Stability and L2 gain bound analysis with output feedback

This section re-formulates the control strategy (local and global) derived in the

Section 5.2 using the static output feedback method, and establishes corresponding

L2 gain bound by a prescribed attenuation level.

Remark 24. Given the design parameters (5.30) and (5.41)-(5.42), the local H∞

game (5.18) solution and global graphical game (5.27) are indeed the same as each

other by Theorem 10. Therefore, the stability and L2 gain bound analysis conducted

in this section, is valid for both games.
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Now, realize that the OPFB of ith follower’s control (5.13) can be re-written in

the transformed coordinates as

ûi = −ciλiKiCδ̂i. (5.46)

The next main theorem is a key to find the OPFB matrix K∗
i .

Theorem 11. Given Assumptions 6-8, the undisturbed system (5.14), i.e., ŵi = 0,

is asymptotically stable if

ci =
1

λi
; BR−1

i BT ≥ γ−2DDT (5.47)

where γ∗ is the critical attenuation level [102]. Furthermore, the disturbed system

(5.14) is L2 gain bounded by γ and asymptotically stable using the control ûi = cK∗
i ξ̂i

(5.46) and the disturbance ŵi = −N∗
i ξ̂i where

K∗
i = R−1

i BTPiC+ (5.48)

N∗
i = γ−2DTPiC+ (5.49)

if the following sufficient condition is satisfied

ci =
1

λi
; BR−1

i BT ≥ 2γ−2DDT . (5.50)

Proof : Herein, we first derive full state feedback gains and then explain how

to apply them to the OPFB design. The proof consists of two parts, we first prove

the L2 gain bound condition (5.12) and then asymptotic stability of the equilibrium

origin considering the system (5.14) without and with the worst-case disturbance.
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L2 gain bound condition: Select ci as given in (5.50) and re-write the Hamilto-

nian (5.23) by completing the squares as

Hi(∇Vi, ûi, d̂i) =Hi(∇Vi, û∗
i , d̂

∗
i ) + (ûi − û∗

i )
TRi(ûi − û∗

i )

− γ−2(d̂i − d̂∗
i )
T (d̂i − d̂∗

i ). (5.51)

Note that the HJI equation Hi(∇Vi, û∗
i , d̂

∗
i ) = 0 holds with the boundary condition

Vi(0) = 0. Then, the objective functional (5.17) can be re-expressed as

Ji(ûi, ŵi) =

∫ ∞
0

(
(ûi − û∗

i )
TRi(ûi − û∗

i )

− γ−2(d̂i − d̂∗
i )
T (d̂i − d̂∗

i )
)
dt+ Vi(δ̂i(0)). (5.52)

Realize that the condition Ji(ûi, ŵi) ≤ β implies that the non-expansivity constraint

(5.12) holds. Select β = Vi(δ̂i(0)), ûi = û∗
i . Then, (5.52) reduces to

Ji(û∗
i , ŵi) = −

∫ ∞
0

γ−2(d̂i − d̂∗
i )
T (d̂i − d̂∗

i )dt+ Vi(δ̂i(0))

≤ Vi(δ̂i(0)), ∀d̂i ∈ (0,∞). (5.53)

This proves that the L2 gain bound condition (5.12) holds with β = Vi(δ̂i(0)), ûi =

û∗
i . Additionally, the value of game (5.18) with ûi = û∗

i and d̂i = d̂∗
i is Vi(δ̂i(0)) by

(5.52).

Asymptotic stability (5.14): To verify asymptotic stability of the undisturbed

system (5.14), we consider the algebraic Riccati equation (5.45) and benefit from gain

margin [clower,∞) with clower <
1
2

property of the H∞ control[74]. Note that the H∞

has gain margin less than 1
2

by Chapter 10 in [74] but the lower bound clower is not

precisely defined, and hence the conditions given in (5.47)-(5.50) are only sufficient.

127



With this in mind, if K∗
iC = R−1

i BTPi and ci = 1
λi

, the control (5.46) becomes

ûi = −R−1
i BTPiδ̂i.

Now, consider the Lyapunov function candidate V(δ̂i) = δ̂Ti Piδ̂i. Realize that

Pi is the unique positive definite solution of GARE (5.22) if the condition BR−1BT ≥

γ−2DDT is satisfied. This is illustrated in the following realization

V̇ = ˙̂
δ
T

i Piδ̂i + δ̂Ti Pi
˙̂
δi

= δ̂Ti
(
−PiBR−1

i BTPi −Qi + γ−2PiDDTPi
)
δ̂i

≤ −δ̂Ti Qiδ̂i ⇐ BR−1
i BT ≥ γ−2DDT . (5.54)

Then, the observability of (A,
√
Qi) verifies that the undisturbed system (5.14) is

asymptotically stable. Notice that the condition BR−1
i BT ≥ γ−2DDT only enables

designer to prove asymptotic stability of the closed-loop matrix (A− ciλiR−1
i BTPi)

by solving GARE (5.22) [102]. To prove stability of the closed-loop matrix (A −

ciλiR
−1
i BTPi + γ−2DTPiδ̂i) that considers ŵi = ŵ∗

i (5.21), use the gain margin

approach. Herein the disturbance gain N∗
i C = γ−2DTPi is employed. According to

the gain margin approach, the sufficient condition (5.50) is immediate. Futhermore,

since the upper bound for gain margin is infinite, the strict equality conditions in

(5.47)-(5.50) can be relaxed as inequaility conditions such that ci ≥ 1
λi

.

Lastly, we explain how to apply state feedback gains to the OPFB design.

Note that if C is an invertible matrix, then all local errors (5.14) would be regulated

optimally asC+ becomesC−1, andK∗
iC = R−1

i BTPiC−1C withK∗
i in (5.48). On

the other hand, if it is not square but full row-rank, then only the states spanned by

row space of the output matrix C would be regulated optimally given Assumptions 7-

8, and the fact thatC+C projects Rn onto the row space ofC. Additionally, the other

states would converge to the origin given Assumption 7. Realize that Assumption 6
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implies that there could be an unstable mode that is observable but does not belong

to the row space of C. Therefore, Assumptions 7 and 8 are indeed required to apply

static state feedback gains to the OPFB design. Lastly, the system (5.14) is stable

against the worst-case disturbance ŵi = −N∗
i ξ̂i with N∗

i in (5.49), which affects

only the states that belong to the row space of C given the condition (5.50). This

completes the proof. �

Remark 25. Note that the condition BR−1
i BT ≥ 2γ−2DDT is only sufficient con-

dition for the stability of the disturbed system i.e., there may be a Nash gain solution

which stabilizes (5.14) but does not satisfy BR−1BT ≥ 2γ−2DDT . This is because of

the critical attenuation level γ∗ that is introduced in [102]. According to the Chapter

2 of [102], the undisturbed system (5.14) is asymptotically stable when γ > γ∗. How-

ever, in that case, one may not achieve a positive definite solution P for the GARE

(5.22), which should be avoided by Theorem 10. On the other hand, Assumptions 6-9

are indeed necessary for the MLF game to have a stabilizing Nash solution.

Remark 26. Note that the proposed methods in this paper aim to regulate the output

containment error vector ξ (5.5) instead of global state vector δ (5.11). The reasoning

behind this approach is not to deal with inner loop of the system dynamics of the agents

for the graphical game (5.27) since they can be treated separately from the outer loop.

An example for the inner loop is the attitude control loop of the Unmanned Aerial

Vehicles (UAVs) [5]. Interested reader can examine our work [27] to observe how to

design a controller to deal with the attitude and position control loops of the multi-

quadrotor systems seperately. Herein, we only aim to control the position of the UAVs

that correspond to the outer position loop, and the attitude controller is assumed be

stable by Assumption 7.

Remark 27. If the graph Gf is a tree with the root node being a well informed

follower k and each follower’s connectivity weight in Af is multiplied with M and
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Figure 27: The communication graph of the four followers and three leaders MLF
game.

all pinning gains are multiplied with 1/M , the pinned Laplacian matrix (
∑M

j=1ψj)

would have all eigenvalues ones since the Laplacian matrix of the graph Gf , i.e.,

Lf is nilpotent matrix [121] in this case. Then, the term λi can be removed from

the objective functionals (5.17) and (5.26), and hence from the corresponding Nash

strategies (5.20) and (5.33). Therefore, the condition (5.47) would be modified as

c = 1.

5.4 Simulation results

In this section, we first introduce the multi-agent quadrotor Unmanned Aerial

Vehicle (UAV) dynamics by using the backstepping control phenomena from our

previous works [5] and [27]. Then, we apply the proposed methods to the MLF UAV

game to verify correct performances of them.
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It is well-known that the quadrotor linear model can be obtained around a flight

condition that is called as hover where quadrotor’s Body frame is aligned with the

Earth (Inertial) frame (See Fig. 1 in [27] for frame illustrations and North-West-Up

coordinate axis system convention). Then, the system matrices for linear model of

the quadrotor’s outer position & velocity control loop can be obtained as

ẋfi =

 03×3 I3

03×3 03×3

xfi +



03 03 03 03

g 0 0 0

0 −g 0 0

0 0 0 1
m


ufi (5.55)

where xfi = [xi yi zi ui vi wi]
T is a vector of stacked position and velocity vectors,

ufi = [θi φi ψi µi]
T is a vector of stacked Euler angles and total thrust produced by

the quadrotor, g = 9.81m/sec2 is the gravitational acceleration and m = 0.467kg

is the mass of the quadrotor UAV. To test the robustness, the disturbance matrix

is selected as D = [0 0 0 0 0 1]T . In this case, the output matrix is an identity

matrix, which means that the follower group is required to measure only position

and velocity information from the leader group, and hence there is no need for the

attitude information of any agent in the MLF UAV game. Notice that Assumptions

7 and 8 are naturally satisfied with this well partitioned UAV model.

The nonstandard backstepping control method in [27] aims to find the desired

Euler angles that needs to be tracked by the attitude controller. Herein, we use the

same convention but assume that the θ pitch angle and φ roll angle remains in the

interval [−π/6, π/6] to make sure that the quadrotor UAV shows a linear behaviour

as small angle approximation is valid in this interval [5]. Furthermore, since the

linear model of quadrotor is obtained around the hover flight condition, the input
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Figure 28: Path tracked by the UAVs in the MLF game.

parameters of (5.55) should be summed with the nominal flight condition parameters,

i.e, uhover = [θ = 0 φ = 0 ψ = cψ µ = mg]T before using them as set points for the

attitude control loop. The attitude controller is taken from our work [27], and the

proof of stability for the backstepping method is omitted.

The adjacency matrix Af that connects N = 4 followers or nodes of the graph

Gf and the bipartite communication graph parameters Gb
j j ∈ {1, ...,M = 3} that do

not contradict with Assumption 9 are selected as

Af =



0 0 0 0

1 0 0 0

0 1 0 0

1 0 1 0


, gb11 = gb12 = gb13 = 1. (5.56)

The MLF game communication graph is illustrated in Fig. 27. Note that the

root node is selected as the first follower yf1 according to the Assumption 9. There
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Figure 29: Output containment position error for each follower in three dimensional
space.

is also no connection from uninformed followers (yf2 ,y
f
3 ,y

f
4 ) to the well informed

follower yf1 and the follower graph is an acyclic digraph. The eigenvalues of the

pinned Laplacian matrix (
∑M

j=1ψj) are 3.000, 0.667, 0.333, 0.333 that are all positive

real numbers as required.

Now, to verify the correct performance of the proposed methods, the control for

each follower is selected as (5.13) and the worst-case disturbance is set tow1 = −N1ξ1

for the well-informed follower UAV. Then, all seven quadrotor models implemented

in the MATLAB Simulink. To derive the Nash strategy gain expressions Ki and Ni,

MATLAB’s icare command is used. The objective functional parameters for (5.17)

are selected as

Qi =

 0.1I3 03

03 5I3

 , Ri = 10I4, γ = 3,

c1 = 0.333, c2 = 1.5, c3 = c4 = 3. (5.57)
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Figure 30: The Euler angles and total thrust of first follower UAV.

The input weighting matrix Ri parameters are selected big with respect to the state

weighting matrixQi to make sure that the Euler angles θ pitch angle and φ roll angle

remains in the interval [−π/6, π/6]. Note that the condition (5.50) is satisfied for all

followers with these parameters.

Since the quadrotor’s linear model is obtained around the hover flight condition,

the leader’s positions are stationary in three-dimensional space. This is shown in the

Fig. 28. Additionally, we illustrate attitudes of the quadrotor UAVs in Figures 30-33.

The leaders’ attitudes at the condition that we linearize the quadrotor’s dynamics is

hover, and hence their attitude data simply are [θ = 0 φ = 0 ψ = cψ µ = mg]T .

Realize that the disturbance acting on the well informed first UAV affects not

only its stability but also the other uninformed followers. Thence, the uninformed

followers’ attitudes are nosier with respect to the well-informed UAV and also they

become nosier as the nodes of the graph Gf gets away from the well informed fol-

lower node. Nevertheless, the H∞ control method is robust enough to overcome the
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Figure 31: The Euler angles and total thrust of second follower UAV.
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Figure 32: The Euler angles and total thrust of third follower UAV.

disturbance affect as shown in Figures 30-33. Lastly, all of the Euler angle values

are converging to zero as expected and the total thrust values are converging to
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Figure 33: The Euler angles and total thrust of fourth follower UAV.

mg = 4.5126 N as can be seen Figures 30-33. This is the value of thrust to make the

quadrotors motionless in three-dimensional space.
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CHAPTER 6

Conclusions and Summary

In the first chapter of this dissertation, a method of distributed backstepping

method to have formation flight of multiple quadrotors with distributed time delays is

discussed. The proposed algorithms are validated by using Vicon Tracker, AR.Drone

2.0 and a master computer. Through rigorous experimentation and stability analysis,

we showed that distributed backstepping control method provides a guaranteed per-

formance for follower agents to track the leader agent with a predetermined position

offset. We give the trajectories followed by the single quadrotor under the influence of

commensurate delay and by the multiple quadrotors under the influence of distributed

delays.

Next, we worked on the game theoretic solution of pursuit-evasion intercept

problem when the velocity constraints are imposed on both pursuer and evader.

By solving the HJI equation corresponds to the novel non-quadratic functional, we

showed that game-optimal velocity trajectories are smooth and satisfies the prede-

termined boundaries. Using the rigorous Lyapunov analysis, we proved that the PE

game ends in a finite-time under certain conditions, which indeed implies that inter-

cept or capture occurs in finite-time. To solve the HJI equation, the IRL method

with critic NN structure is used. Consequently, we showed the simulation results of

the PE game when the evader adopts both game optimal and sub-optimal velocity

policy while the pursuer tracks corresponding game optimal velocity trajectory with

the nonlinear backstepping tracker. Simulations showed that when the evader adopts
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its game optimal velocity policy, it takes more time to be intercepted by the pursuer

compared to the scenario, in which the evader employs a sub-optimal velocity policy.

In the third chapter, we proposed a novel augmented Hamiltonian, and develop

a new iterative algorithms based on stationarity conditions of the augmented Hamil-

tonian to obtain optimal gain solutions for H∞ (OPFB) control problem. These gain

solutions guarantees both stability and L2 gain boundedness of an LTI system when

the H∞ static OPFB control method is employed. Convergence properties of two

off-line iterative solution algorithms are given. We showed that solving the Riccati

equation iteratively obviates the initial stabilizing gain requirement of Algorithm 1.

Then based on Lyapunov iterations, an online off-policy IRL algorithm which is a

model-free version of the offline Algorithm 1, is developed to solve the optimal H∞

regulator problem by learning the optimal gain solution without requiring system

state, control, and disturbance matrices. Lastly, we applied proposed algorithms

to the linearized F-16 lateral dynamics at a particular flight condition to verify the

correct performance of proposed algorithms.

In the last chapter, we proposed novel local and global objectives for the MLF

output containment game for the LTI multi-agent systems. The local H∞ game is

solved for the Nash equilibrium strategies where controls are minimizing and distur-

bances are maximizing players. On the other hand, the graphical game is introduced

as a global objective to address mutual interests among the followers. Then, it has

been shown that the local and global objectives can be optimized simultaneously un-

der certain conditions. Rigorous L2 gain bound and asymptotic stability analyses are

provided. The proposed methods are tested by means of the MLF quadrotor UAV

game simulations. The results indeed verify the efficacy of the proposed methods.
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