
OPTIMAL UTILITY-BASED TRAFFIC CONTROL FOR DATACENTER

NETWORKS

by

AKSHIT SINGHAL

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2022

OPTIMAL UTILITY-BASED TRAFFIC CONTROL FOR DATACENTER

NETWORKS

The members of the Committee approve the doctoral
dissertation of AKSHIT SINGHAL

Dr. Hao Che

Supervising Professor

Dr. Hong Jiang

Dr. Bahram Khalili

Dr. Song Jiang

Dean of the Graduate School

Copyright © by AKSHIT SINGHAL 2022

All Rights Reserved

To my parents, Pramila Gupta and Dr. Lokesh Gupta, and my sister, Nupur

Aggarwal, who supported me during my studies.

ACKNOWLEDGEMENTS

I would like to thank my supervising professor, Dr. Hao Che, for motivating

and inspiring me and for his vital advice during the course of my doctoral studies. It

has been a great pleasure to work with him on research projects. I have learned a lot

through useful discussions with him during my research.

I would also like to thank Dr. Hong Jiang for his continuous guidance. This

work would not have been possible without his wisdom, support and encouragement.

I would also like to express my gratitude to Dr. Bahram Khalili and Dr. Song

Jiang for their interest in my research and for taking time to serve on my dissertation

committee.

I would also like to extend my appreciation to Dr. Bahram Khalili and Ramez

Elmasri for providing me the opportunity of becoming a Graduate Teaching Assitant

and Adjunct Faculty which provided the financial support for my doctoral studies.

I wish to thank our entire ACES group including Dr. Zhijun Wang, Dr. Ning

Li, Prathyusha Enganti, Todd Rosenkrantz, and Xuan Wang for their interest in my

research and the helpful discussions and invaluable comments. I am grateful to all

the professors who taught me during the years I spent in school, first in India and

in the United States. I would like to thank Ashok Kumar and Rahul Majethia for

encouraging and directing me to pursue graduate studies. Finally, I am also extremely

grateful to my family for their sacrifice, encouragement, and patience. I also thank

my friends who have helped me throughout my career.

March 28, 2022

v

ABSTRACT

OPTIMAL UTILITY-BASED TRAFFIC CONTROL FOR DATACENTER

NETWORKS

AKSHIT SINGHAL, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professor: Dr. Hao Che

As datacenter applications with diverse service requirements proliferate, it be-

comes imperative to enable datacenter network flow rate allocation that satisfies min-

imum user-utility requirements, while allowing for user-utility-based fair resource al-

location. Multiple Path Transmission Control Protocols (MPTCPs) allow flows to

explore path diversity of data center networks and multihoming to improve through-

put, reliability, and network resource utilization. The work in this dissertation aims

to develop optimal utility-based datacenter traffic control protocols to meet diverse

service requirements for datacenter applications.

Specifically, this dissertation makes contributions to four highly related research

topics. First, we put forward a HOListic traffic control framework for datacenter

NETworks (HOLNET) that reformulates the network utility maximization (NUM)

framework into a HOLNET NUM framework that fully harnesses the potential of the

existing NUM-based solutions to allow large families of traffic control protocols of

various degrees of sophistication to be developed, i.e., host-based, single, or multiple

Class-of-Service (CoS) enabled, single or multi-path congestion control, with or with-

vi

out in-network load balancing. Case studies, based on both single and multi-path

host-based solutions, demonstrate the viability and flexibility in HOLNET design

space exploration. To further test the backward compatibility and performance with

respect to some existing lightweight solutions, we develop HOLNET-UTA, an inte-

grated congestion control and load balancing protocol, achieving TCP-fair resource

allocation. HOLNET-UTA is found by the simulation to improve the average flow

completion time (FCT) by more than 20%, compared to DRILL [1] with DCTCP [2].

Second, we derive and implement in Linux kernels two distinct families of NUM-

optimal MPTCP protocols, EUTCP(γ), a function of a rate-scaling vector of the sub-

flow rate-scaling coefficients, γ, and WUTCP(ω), a function of a utility weight vector

of the sub-flow weights, ω, respectively. While the former allows resource pooling,

the latter does not. The performance of the two families with equal weight and equal

rate-scaling coefficient for all sub-flows when coexisting with TCP is also analyzed

based on experiments in a testbed.

Third, we propose a Hybrid MPTCP (H-MPTCP) with a built-in mechanism to

incentivize users to use multiple paths with different pricing structures. In the mean-

time, H-MPTCP preserves the nice properties enjoyed by the state-of-the-art MPTCP

solutions. Extensive real Linux implementation results verify that H-MPTCP can in-

deed achieve the design objectives.

Finally, we revisit a state-of-the-art datacenter traffic control protocol, known

as datacenter TCP (DCTP) [2]. DCTCP is empirically designed and hence, does

not have a specific global design objective in mind. In this research, we prove that

with a simple modification of the congestion indicator, DCTCP can be turned into a

NUM-optimal traffic control protocol.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . v

ABSTRACT . vi

LIST OF FIGURES . xi

LIST OF TABLES . xii

Chapter Page

1. INTRODUCTION . 1

1.1 Datacenter Traffic Control Design Space 1

1.2 Challenges . 4

1.3 Dissertation Contributions . 6

1.4 Dissertation Organization . 8

2. HOLNET: A HOLISTIC TRAFFIC CONTROL FRAMEWORK FOR DAT-

ACENTER NETWORKS . 9

2.1 Introduction . 9

2.2 BACKGROUND AND MOTIVATION 10

2.3 HOLNET . 13

2.3.1 HOLNET NUM . 13

2.3.2 HOLNET Design Space . 18

2.4 CASE STUDIES . 24

2.4.1 A FAMILY OF CC/CC-CoS Controllers 24

2.4.2 Multipath Congestion Control 27

2.5 HOLNET-UTA . 29

2.6 CONCLUSION . 33

viii

3. TWO FAMILIES OF UTILITY-BASED OPTIMAL MULTIPATH CON-

GESTION CONTROL PROTOCOLS FOR DATACENTER NETWORKS 35

3.1 INTRODUCTION . 35

3.2 BACKGROUND AND MOTIVATION 38

3.3 TWO FAMILIES OF NUM-OPTIMAL MPTCPs 41

3.3.1 The EUTCP(γ) Family . 41

3.3.2 THE WUTCP(ω) Family . 44

3.4 PERFORMANCE EVALUATION . 45

3.4.1 Algorithm Analysis . 46

3.4.2 Experimental Analysis . 48

3.4.3 EUTCP(γ) . 50

3.4.4 WUTCP(ω) . 56

3.5 Conclusions . 60

4. HYBRID MULTIPATH CONGESTION CONTROL 62

4.1 INTRODUCTION . 62

4.2 Background and Motivations . 64

4.3 Hybrid Multipath Congestion Control 68

4.3.1 EMPTCP . 68

4.3.2 WMPTCP . 69

4.3.3 H-MPTCP . 69

4.4 Performance Evaluation . 70

4.5 Conclusion . 78

5. OPTIMAL-DCTCP . 79

5.1 INTRODUCTION . 79

5.2 Background . 80

5.3 Optimal-DCTCP . 80

ix

5.4 Future Work and Conclusion . 83

6. CONCLUSIONS AND FUTURE WORK 84

REFERENCES . 86

x

LIST OF FIGURES

Figure Page

2.1 Normalized user utilities for four CoSes 11

2.2 Network topologies for (a) MCC controller; (b) CC-CoS controllers. . 25

2.3 (a) Overall utility; Rate allocation for (b) α = 0.5 and (c) α = 0.75. . . 26

2.4 Rate Allocation: (a) MCC Controller; (b) MPTCP 28

2.5 Performance Comparison (Data-mining) 33

3.1 TCP Fairness vs Responsiveness . 36

3.2 Network topology for MPTCP Performance Evaluation 49

3.3 Steady State Performance for MPTCPs in the resource-pool-capable

category . 51

3.4 Responsiveness under sudden link bandwidth changes for MPTCPs in

the resource-pooling-capable category 55

3.5 Steady State Performance for WUTCP(ω) Family 57

3.6 Responsiveness of WUTCP(1
m

) vs EUTCP(1.05) to sudden changes of

a link bandwidth . 58

4.1 A family party example network . 65

4.2 Network Topology for H-MPTCP Performance Evaluation 71

4.3 Performance for H-MPTCP in Case 1 73

4.4 Performance for H-MPTCP in Case 2 74

4.5 Performance for H-MPTCP in Case 3 76

5.1 z(.) function comparison for (a) Current DCTCP vs (b) Optimal-DCTCP 80

xi

LIST OF TABLES

Table Page

1.1 Existing Design Space . 3

2.1 rini,b and routi,(b),l (it represents both routi,l and routi,b,l) vs congestion information 20

2.2 HOLNET Design Space . 23

3.1 Congestion control algorithms in CAP 46

3.2 Average flow throughput (Mbps), TCP unfairness, and aggregate through-

put (Multiple flows of MPTCP flows and single path TCP flows com-

bined) (Mbps) at N1 = N2 = 5. 52

3.3 Convergence times (seconds) of MPTCP flows during bandwidth changes 54

3.4 Performance comparison of MPTCPs 60

4.1 Flow rate allocations for the example 66

4.2 MPTCP Design objectives and performance parameters 68

xii

CHAPTER 1

INTRODUCTION

In this chapter, we first introduce the existing traffic control design space for

datacenter networks in section 1.1. Then we highlight the challenges facing the exist-

ing solutions in section 1.2. Our research contributions to tackle those challenges are

given in section 1.3, followed by section 1.4 which outlines the remaining chapters.

1.1 Datacenter Traffic Control Design Space

Traffic control in today’s loosely controlled public Internet has been largely

limited to end-to-end TCP congestion control [3] and static, equal-cost-multipath

(ECMP) load balancing [4]. In contrast, in a well-controlled environment like a dat-

acenter network, more sophisticated traffic control solutions become viable. This has

led to the proliferation of a wide spectrum of congestion control solutions for datacen-

ter networks in recent years, ranging from congestion control protocols with minimum

involvement of in-network nodes, like DCTCP [2] and D2TCP [5] based on Explicit

Congestion Notification(ECN), all the way to those using the link load information

for the control, e.g., FCP [6], or even clean-slate solutions requiring network archi-

tectural redesign, e.g., NUMFabric [7]. Meanwhile, various dynamic load balancing

solutions have emerged, exploring path diversity to further improve datacenter net-

work resource utilization. Again, the input for the control ranges from purely local,

e.g., DRILL [1], all the way to the path load, e.g., CONGA [8].

The existing traffic control solutions for datacenter networks can be broadly

classified into two categories, i.e., host-based transport congestion control and host-

1

based multipath or in-network load balancing. A partial list of the existing solutions

(including some earlier ones which are not datacenter specific) is given in Table 1.1.

For each solution listed, the performance target(s) and required input information for

the control is also given.

First, we note that the listed solutions in Table 1.1 are point by design with

respect to the following aspects:

1. Except for some host-based solutions, such as MPTCP [9] and NDP [10], con-

gestion control and load balancing are developed independently.

2. The required input for the control can be quite different from one solution to

another, ranging from purely local, all the way to path-utilization-based ones.

3. The performance targets are also quite diverse, e.g., average flow completion

time (FCT), throughput (TP), flow deadline (FD), Network Utility Maximiza-

tion(NUM)1 and utility min-max.

Moreover, some solutions, e.g., pFabric [11], PIAS [12], and D3[13], are clean-slate

and require architectural redesign. Clearly, it is difficult to combine such solutions to

fully explore performance, scalability, and design complexity tradeoffs and to allow

adaptation to software/hardware capability changes for datacenter networks at large.

Moreover, such solutions, when coexisting with one another, may adversely interact

with one another, leading to suboptimal, unexpected performance, or even network

instability [8, 14, 15, 16, 17, 18].

Second, most solutions listed in 1.1 are empirical by design. Although some

solutions are NUM-based, e.g., [6], [7], [19] they are again point solutions with lim-

1NUM is a widely recognized network optimization framework that aims at maximizing the sum

of user utilities as a function of user flow rates, subject to the network resource constraints, where

the user utilities are meant to capture the QoE of the users. Please refer to Eq. (2.1) for the exact

definition.

2

ited scope, applicable to elastic traffic only, and deal with either congestion control

or load balancing, but not both.

Table 1.1: Existing Design Space

Solution Transport Host-based LB In-network LB Input Performance

LB LB Informtation Target (QoS)

DCTCP [2]
√

× × ECN FCT&TP

FCP [6]
√

× × budget/link price NUM

DX [20]
√

× × latency queuing Delay

HULL [21]/DCTCP
√

× × ECN/QL mean & tail PL

D2TCP [5]
√

× × ECN/FDL FD (
√

)

pFabric [11]
√

× × FD FCT (
√

)

ExpressPass [22]
√

× × credit-based signaling FCT (
√

)

pHost [23]
√

× spraying token FCT, TP

NUMFabric[7]
√

× × Weights NUM

RC3[24]
√

× × double loop FCT

XCP[25]
√

× × ECN TP

PIAS[12] DCTCP/TCP × × AQM FCT

PASE [26] DCTCP/D2TCP × × FD/AQM FCT (
√

)

L2DCT [27]
√

× × ECN FCT

DCQCN [28]/PFC [29, 30]
√

× × ECN, Pause PL

TIMELY [31]/PFC (opt)
√

× × RTT, Pause (opt) packet TL/TP

Karuna [14]/DCTCP
√

× × ECN/RTT FD/FCT (
√

)

D3 [13]
√

× ECMP min-rate FD (
√

)

MPTCP [9]
√ √

× source inferred TP

NDP[10]
√ √

× Packet trimming FCT/TP

PDQ[32]/RCP[33]
√ √

ECMP FD,Pause FCT,FD (
√

)

Presto [34] ×
√

× path weights TP

DRB [35] TCP
√

× ECN FCT/TL

FlowBender [36] TCP
√

ECMP ECN FCT/TL

HERMES [37] ×
√

× ECN/RTT/Timeout FCT

Clove [38]/ECMP ×
√ √

ECN/path-utilization FCT

HULA [39] × ×
√

per-hop utilization FCT/TP

LocalFlow [19] TCP ×
√

local NUM

3

RBS [40] × ×
√

path-ECMP Flow paths FCT/TP

MATE [41] × ×
√

edge-based path utilization/delay Min-Cost

TeXCP [42] × ×
√

edge-based path utilization utility Min-Max

Flare [43] × ×
√

local TP

LetFlow [44] × ×
√

none FCT

CONGA [8] × ×
√

edge-based path congestion FCT

Expeditus [45] × ×
√

local/path combined FCT/TL

DRILL [1] × ×
√

local FCT

ECMP [4] × ×
√

none TP

LIA [46]
√ √

× source inferred TP

Semicoupled [47]
√ √

× source inferred TP

OLIA [48]
√ √

× source inferred TP

BALIA [47]
√ √

× source inferred TP

EWTCP [49]
√ √

× source inferred TP

FCT: Flow Completion Time; TP: Throughput; TL: Tail Latency; PL: Packet Latency; FD: Flow Deadline; RTT: Round Trip Time;

NUM: Network Utility Maximization; AQM: Active Queue Management; ECN: Explicit Congestion Notification

1.2 Challenges

In this section, we look at the two major drawbacks of the existing traffic control

design space for datacenter networks:

1. The solutions for traffic control in datacenter networks are mostly point by

design, focusing on one aspect of the traffic control only, e.g., single-path or

multi-path congestion control, or in network load balancing, but not both in

an integrated fashion with various performance targets and input requirements.

More often than not, a point solution has to coexist with some other point solu-

tions in practice, e.g., a newly developed congestion control protocol coexisting

with a load balancing solution and/or a legacy TCP congestion control protocol.

This, however, may adversely impact the effectiveness of all protocols involved.

Indeed, it has been widely recognized [8, 14, 15, 16, 17, 18] that independently

developed traffic control solutions, especially at different layers, may adversely

4

interact with one another, leading to suboptimal, unexpected performance, or

even network instability. Moreover, as point solutions, they cannot easily adapt

to software/hardware capability changes and hence, cannot fully explore the

performance, scalability, and design complexity tradeoffs.

2. Most of the existing solutions for traffic control in datacenter networks are

empirical by design, without provable convergence, stability, and optimality

properties. Although some solutions are NUM-based, e.g., [7, 6, 19], they are

again point solutions with limited scope, applicable to elastic traffic only and

deal with either congestion control or load balancing, but not both. Notable ex-

amples are the two earlier traffic engineering (i.e., load balancing) solutions, i.e.,

MATE [41] and TeXCP [42], and three more recent datacenter network solu-

tions, i.e., NUMFabric[7] and FCP [6] for congestion control, and LocalFlow[19]

for load balancing.

The difficulty lies in the fact that the current NUM framework is incapable of

providing performance guarantee for inelastic flows with diverse performance require-

ments. The root root cause lies in the fact that NUM in the current formulation is

not suitable to support multiple classes of services for three main reasons:

1. NUM cannot provide user utility guarantee: NUM is purely a “social-

welfare” based framework, striving to maximize the sum of user utilities, with

no regard to application-specific requirements, nor meaningful fairness among

users of distinct CoSes. Under this framework, the achievable individual user

utilities, regardless of which CoSes they belong to, are strong functions of traffic

load and traffic mix, which, however, may change over time. For example, For

for a single-link network with bandwidth, C, the sum of user utilities, nu(C/n),

for n non-real-time (NRE) flows with the same concave utility function, u(x), is

an ever-increasing function of n [50]. This means that as n increases, the non-

5

real-time flows with the concave user utility may take over the entire network

resources, while starving real-time flows with non-concave user utilities (see

chapter 2 for more details).

2. A solution to NUM with more than one distinct user utility or even a single

user utility but more than one distinct saturated rate (flow rate that maximizes

the user utility. See chapter 2 for more details) may not provide meaningful

fair flow rate allocation.

3. Generally, it is difficult, if not impossible, to accurately quantify user

utility, as it is just one of many important factors that determine QoE.

This then begs the following fundamental question that motivates the work in

this dissertation: Can NUM be reformulated in such a way to produce rich, optimal

distributed solutions to create solutions with a common global objective and fairness

criterion?

1.3 Dissertation Contributions

In this section, we highlight the contributions of the work in this dissertation

in four highly related research topics, aiming at addressing the above challenges.

First, we reformulate the NUM framework to fully harness its potential in terms

of enabling large families of traffic control protocols for datacenter applications. We

put forward a HOListic, user-utility-based flow rate allocation framework for data-

center NETworks (HOLNET). It makes the following contributions:

1. HOLNET allows large families of congestion control and load balancing proto-

cols of various degrees of sophistication to be developed, with all the protocols

in a family achieving a common global objective and fairness criterion.

2. All the protocols developed under HOLNET enjoy provable convergence, sta-

bility, and optimality properties by design.

6

3. It allows fully integrated host-based (multipath) congestion control and in-

network load balancing protocols to be developed, making fair resource allo-

cation in the presence of both congestion control and load balancing a reality.

4. With proper design, HOLNET leads to protocols that are backward compatible

with TCP and hence are TCP friendly by design.

Second, based on the HOLNET framework, we derive and implement in Linux

two families of MPTCPs, i.e., Equal Utility MPTCP with sub-flow rate-scaling vector,

γ = {γ1, ..., γm} (EUTCP(γ)) and Weighted Utility MPTCPs with sub-flow weight

vector, ω = {ω1, ..., ωm} (WUTCP(ω)), where m is the number of sub-flow paths.

This work makes the following contributions:

1. We demonstrate that the family members of EUTCP(γ) with rate-scaling co-

efficient in the range of [1,1.1] outperforms three well-known MPTCPs with re-

source pooling capability, including LIA, OLIA, and Balia, in terms of achieving

satisfactory tradeoffs among responsiveness, fairness, and throughput.

2. We show that the Semicoupled algorithm [47] and EWTCP [49] are in fact

EUTCP(1) and WUTCP(1/m2), where m is the number of sub-flow paths, and

hence, are NUM-optimal.

Third, to address the case where different paths may use a different pricing

models, e.g., Wi-Fi versus cellular connections, we propose a hybrid EUTCP-and-

WUTCP algorithm to incentify users with multihoming to use multipath. This work

helps us tackle the challenge of improving user’ QoE by providing better throughput

and responsiveness over other MPTCPs as well as single-path protocols with different

pricing models.

Finally, based on the HOLNET framework, we revisit the state-of-the-art, em-

pirically designed datacenter protocol, i.e. DCTCP [2] and we propose Optimal-

7

DCTCP to prove that a simple modification of the congestion indicator, DCTCP can

be turned into a NUM-optimal traffic control protocol.

This dissertation aimed at addressing challenges with existing datacenter traffic

control design space being point and empirical in design. Our work can provide the

framework to achieve these 2 main objectives and convert two of the more related

state-of-the-art solutions of MPTCPs and DCTCP into NUM-optimal solutions. We

also look at the practical aspect of the design of MPTCP protocols under different

pricing models and provide a solution for it.

1.4 Dissertation Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we

put forward a traffic control framework for datacenter networks called HOLNET [51]

which is principled and systematic in approach. We also introduce a family of pro-

tocols called HOLNET with Utility-of-TCP-based flow rate Allocation (HOLNET-

UTA) which is TCP friendly by design and backward compatible with TCP Reno.

Chapter 3 presents the two families of optimal MPTCPs for datacenter Networks.

Chapter 4 proposes the Hybrid MPTCP solution for using multiple paths with differ-

ent pricing structures. Chapter 5 introduces the NUM-optimal solution for DCTCP.

Finally, chapter 6 makes concluding remarks and discusses our future research plan.

8

CHAPTER 2

HOLNET: A HOLISTIC TRAFFIC CONTROL FRAMEWORK FOR

DATACENTER NETWORKS

2.1 Introduction

In this chapter, we put forward a HOListic traffic control framework for dat-

acenter NETworks (HOLNET). The approach taken by HOLNET is principled and

systematic. At the core of HOLNET is the introduction of the notion of center-

of-utility fairness and the reformulation of the NUM framework into what we call,

HOLNET NUM. HOLNET NUM fully harnesses the potential of the existing NUM

solutions, allowing a whole new spectrum of traffic control protocols to be developed.

The protocols developed under HOLNET can provide (soft) minimum flow rate guar-

antee and center-of-utility fair sharing of network resources for diverse applications.

Hence, HOLNET makes a key contribution to bridge the gap between the existing

solutions to NUM and their practical application to the design of traffic control pro-

tocols in support of diverse applications. More specifically, HOLNET possesses the

following salient features:

1. It allows large families of congestion control and load balancing protocols of var-

ious degrees of sophistication to be developed, with all the protocols in a family

achieving a common global objective and fairness criterion. Protocols from a

given family can be selected to fully explore the performance, scalability, and

design complexity tradeoffs and adapt to various possible software/hardware

capability changes.

9

2. All the protocols developed under HOLNET enjoy provable convergence, sta-

bility, and optimality properties by design.

3. It allows fully integrated host-based (multipath) congestion control and in-

network load balancing protocols to be developed, making fair resource allo-

cation in the presence of both congestion control and load balancing a reality.

4. With proper design, HOLNET leads to protocols that are backward compatible

with TCP and hence are TCP friendly by design.

The flexibility for the HOLNET protocol design space exploration is demon-

strated by the design of protocols, i.e., an end-to-end multi-Class-of-Service (CoS),

single-path congestion control protocol, and an end-to-end single-CoS multipath con-

gestion control. To further test the backward compatibility, scalability, extensibility,

and performance of HOLNET-based solutions, we introduce a family of protocols,

called HOLNET with Utility-of-TCP-based flow rate Allocation (HOLNET-UTA)

and we study one member of this family, a congestion control protocol with in-network

load balancing. HOLNET-UTA is TCP-friendly by design and backward compatible

with TCP Reno [3]. It is found by the simulation to reduce average FCT by more

than 20% compared to DRILL [1] with DCTCP [2].

2.2 BACKGROUND AND MOTIVATION

Since HOLNET is also rooted in NUM, in what follows, we first give a back-

ground overview of NUM. As discussed in chapter 1, the three major drawbacks of

NUM, which motivates our work and also helps to explain why the existing NUM-

based solutions are point by design and have limited scope.

NUM and NUM Solutions: NUM can be formally stated as

max{V (x) =
n∑
i=1

wiui(xi)}, (2.1)

10

Figure 2.1: Normalized user utilities for four CoSes

subject to link bandwidth constraint (i.e., the total flow rate for flows sharing a link

must not exceed the link bandwidth), where n is the number of active flows, ui(xi)

and wi are the normalized user utility function of the allocated flow rate xi and the

weight for flow i respectively. V (x) is the sum of the weighted user utilities for all

active flows. Here ui(xi)’s are meant to be used to characterize Quality of Experience

(QoE) in terms of bandwidth demand for users of diverse applications. Note that

QoE or how a user feels about a service is, in general, a complex function of many

factors, e.g., TP, FCT, packet delay and delay jitter, and even price paid for using the

service. Meeting the bandwidth demand of a user may be viewed as the first-order

approximation of meeting QoE.

For example, in his seminal work [50] back in 1995, Shenker discussed protocol

design challenges for the future Internet in the context of NUM and defined four broad

CoSes to meet diverse application requirements, in terms of four different types of

user utilities, as illustrated in Figure 2.1, i.e., uNRE, uRDA, uRRA, and uHRT , for Non-

Realtime Elastic (NRE), Realtime Delay Adaptive (RDA), Realtime Rate Adaptive

(RRA) and Hard Realtime (HRT) CoSes, respectively. Rs in Figure 2.1 is defined

as the saturated flow rate that maximizes the user utility, e.g., the highest encoding

rate for an application of RRA CoS or maximum link bandwidth for an application

11

of NRE CoS. In general, any flow i with rate xi, is associated with a given user utility

function, Ui(xi), and the corresponding normalized user utility ui(xi), where,

ui(xi) = Ui(xi)/Ui(Rs,i) (2.2)

and Rs,i is the saturated rate for flow i. Clearly, ui(xi) is a more convenient measure

of the degree of user satisfaction than Ui(xi).

To design the Internet protocols on the basis of the above NUM, the first thing

one must do is to find distributed solutions to NUM. The first breakthrough came

along in 1998 when Kelly, et. al. [52] showed that the utility function of logarithm

form, i.e., ui(xi) = log(xi) ∈ uNRE , for ∀i, results in a solution in the form of a

distributed flow rate adaptation algorithm that resembles the distributed TCP con-

gestion control, achieving the so-called proportional fairness. This encouraging result

has stimulated the research interests in finding more general distributed solutions

to NUM. In particular, Low [53, 54] proposes a distributed primal-dual congestion

control solution to NUM with arbitrary concave user utilities in uNRE CoS. This so-

lution requires that the flow rate at the source of a flow and a variable, called price (a

function of the link load), at each and every link along the flow path are iteratively

updated and exchanged. This solution provided the theoretical underpinning for all

the aforementioned NUM based datacenter network traffic control protocols of the

NRE CoS, including NUMFabric [7] and FCP [6] for flow rate control, and LocalFlow

[19] for load balancing.

Another line of research based on Sliding Mode in control theory [55] has culmi-

nated in the finding of distributed solutions spanning a large design space, allowing

for flow multipath and in-network flow load balancing with minimum information

exchange, and admitting flow rate constraints and both concave (e.g., uNRE) [56, 57]

and non-concave [58] (e.g., uRDA, uRRA, and uHRT) user utilities.

12

Although promising, so far, we have seen no application of the above NUM

solutions as the theoretical underpinning for the design of traffic control protocols for

inelastic datacenter applications. The root cause lies in the fact that NUM in the

current formulation is not suitable to support multiple CoSes for three main reasons

as discussed in chapter 1.

2.3 HOLNET

In this section, we first introduce HOLNET NUM which overcomes the three

drawbacks of NUM. Then we characterize the design space of HOLNET solutions.

2.3.1 HOLNET NUM

As discussed above, NUM fails to provide:

1. User utility guarantee

2. Meaningful fairness in the presence of flows with different user utilities and/or

saturated rates

3. Faithful characterization of user utility

HOLNET NUM directly addresses (1) and (2) by providing minimum user utility

guarantee and center-of-utility fairness, respectively, which together capture the es-

sential characteristics of user utility, hence, to a great extent, achieving (3).

MINIMUM USER UTILITY GUARANTEE: We note that a user utility

is generally composed of two parts, i.e., a non-concave lower part and a concave higher

part, e.g., the parts below and above the inflection points XRRA (XRDA) for RRA

(RDA) as shown in Figure 2.1. For instance, XRRA may be the lowest level encoding

rate for an adaptive video stream. NRE and HRT are two extreme cases, one without

a lower part and the other without a higher part. While offering more bandwidth or

user utility beyond the lower part may make a user happier, which, however, is not

13

critically important, satisfying the lower part of the user utility, called the minimum

user utility in this paper, is likely to be essential to the user satisfaction of the service

and hence, cannot be compromised.

The minimum user utility for a datacenter service is often spelled out by dat-

acenter service providers in terms of a given service level objective (SLO), e.g., a

tail-latency SLO for a user-facing interactive service. Since an SLO, in turn, can be

translated into given flow rates or flow deadlines [13], many existing traffic control so-

lutions aim at providing minimum flow rate or the flow deadline guarantee [11, 26, 32],

without having to explicitly construct the user utility function. Likewise, HOLNET

aims at providing minimum flow rate guarantee, assuming that the minimum flow

rate required to achieve the minimum user utility is already known.

To this end, HOLNET NUM simply extends NUM to allow the minimum flow

rate, e.g., θ, to be enforced as a flow rate constraint, i.e., x ≥ θ. Clearly, any feasible

solution to HOLNET NUM provides the minimum flow rate, or equivalently, the

minimum user utility guarantee, regardless of the traffic load and flow mix pattern.

CENTER-OF-UTILITY FAIRNESS:

HOLNET NUM aims to enable a meaningful user-utility-aware fairness criterion

for flow rate allocation among flows with different user utilities, called the center-of-

utility fairness. First, we define center-of-utility, xci , for flow i, that captures the

average user utility of flow i, as follows,

xci =

∫ Rs,i
0

xi
dUi(xi)
dxi

dxi

Ui(Rs,i)
=

∫ Rs,i

0

xi
dui(xi)

dxi
dxi. (2.3)

The concept for the center-of-utility is borrowed from mechanics in physics.

More specifically, if we view the user utility density, dUi(xi)/dxi, as the mass density

at xi for an uneven bar of length, R(s, i), and total mass, Ui(Rs,i), then the center of

mass [59] of the bar is xci , hence the name. xci is the center, to which the user utility,

14

Ui(xi), is concentrated. Hence, xci is the exact measure of the average bandwidth

demanded by the users of flows with user utility, Ui(xi).

We now propose to enable the center-of-utility fair flow rate allocation, i.e.,

xi
xj

=
xci
xcj
, (2.4)

for any pair of flows i and j sharing a bottleneck link. As a result, HOLNET aims

to achieve center-of-utility fair flow rate allocation, provided that the minimum

flow rates to sustain the minimum user utilities are satisfied.

The rationale behind the use of the above fairness criterion can be best illus-

trated by an example. Consider an adaptive audio flow and an adaptive video flow

sharing a bottleneck link. It is clear that both the average bandwidth demands (i.e.,

the center-of-utilities) and the minimum encoding rates (i.e., the flow rates to sustain

the minimum user utilities) for the audio and video applications are quite different,

say, 50 Kbps versus 5 Mbps, and 10 Kbps versus 1 Mbps, respectively. With the

center-of-utility fairness, the video flow will then be allocated 100 times of the ad-

ditional link bandwidth than the audio flow, provided that the minimum encoding

rates for the two flows, i.e., 10 Kbps and 1 Mbps, are satisfied. Clearly, this flow

rate allocation solution captures the QoE in terms of user bandwidth demand well,

i.e., the guaranteed minimum user bandwidth and additional bandwidth allocation

in proportion to the relative bandwidth demands.

However, as we mentioned earlier, it is generally difficult to exactly quantify

Ui(xi), which, in turn, makes it difficult to quantify xci as it is derived from Ui(xi).

Fortunately, however, with the minimum user utility guaranteed, it is no longer es-

sential to allocate the additional resource among flows perfectly in proportion to the

relative bandwidth demands, which by itself, is difficult to define. So, in practice,

xci may be roughly estimated in terms of the order of the bandwidth demand of the

15

underlying application without having to know the exact Ui(xi). For example, as-

sume that an adaptive audio application has several encoding levels in the range of

10Kbps-100Kbps. It suffices to set xci at around 50Kbps to capture the order of the

overall bandwidth demand of this application.

Next, we recast NUM in Eq. (2.1) in such a way that it will indeed lead to the

fair flow rate allocation defined in Eq. (2.4). To this end, we define HOLNET NUM

as follows,

max {V (x) =
n∑
i=1

wiUc(xi)}, (2.5)

subject to both link bandwidth constraints and flow rate constraints for flows with

minimum user utility requirements, where Uc(x) is a concave user utility called the

base utility, shared by all the flows1. In other words, our design goal of HOLNET

NUM is no longer to maximize the sum of the user utilities, but to achieve center-of-

utility fair flow rate allocation via careful design of wi and Uc(x) as follows.

Consider flows sharing a bottleneck link. With the Lagrange multiplier tech-

nique [60], it can be easily shown that to maximize the sum of wiUc(xi) for all the

flows sharing this link, we must have,

wi
wj

=
dUc(xj)/dxj
dUc(xi)/dxi

, ∀i, j, (2.6)

for any pair of flows i and j bottlenecked at this link.

For instance, a widely studied family of concave-fairness user utilities [61], is

given as,

Uα(α, x) = x1−α/(1− α), for α ∈ (0,∞). (2.7)

1While on the surface, using a single concave utility with weights in NUM is not new [7], HOLNET

uses it in a completely different way than the traditional one, i.e., realizing the center-of-utility fair

flow rate allocation, rather than achieving some network-centric performance target, e.g., minimizing

average FCT [7]

16

Now let Uc(x) = Uα(α, x) defined in Eq. (2.7), we have,

wi/wj = (xi/xj)
α, ∀i, j. (2.8)

Here, the weight, wi, for any user utility, Ui(xi) can be calculated against the weight,

w0 = 1, for the base utility, U0(x0) = Uc(x0), with a base center-of-utility, xc0, calcu-

lated from Eq. (2.3). Here, w0 is set to 1, without loss of generality. By substituting

Eq. (2.4) into Eq. (2.8), we have,

wi = (xci/x
c
0)α, ∀i. (2.9)

Then, substituting the above wi and Uc(xi) = Uα(α, xi) into Eq. (2.5), we

arrive at a new NUM, called HOLNET NUM, achieving center-of-utility fair flow rate

allocation with minimum user utility guarantee. It can be easily shown that HOLNET

NUM also works for the case where each flow xi can be split into L subflows, xi,l for

l = 1, ..., L, with each subflow taking different paths to the same destination. A nice

property of HOLNET NUM is that it only deals with a single concave user utility.

As such, all the existing solutions to NUM with concave user utilities can be applied

to HOLNET NUM, hence harnessing the potential of NUM, to be described in the

next section.

Finally, we note that in HOLNET, the user utility information for a given flow

i, including the minimum user utility and center-of-utility fairness, is incorporated

in HOLNET NUM only through a pair of parameters, θi and wi. This means that

HOLNET can also be used to enable user-utility-agnostic traffic control solutions, as

long as this pair is properly defined. For example, this pair may be tied to a pricing

model to achieve price-proportional flow rate allocation and fairness.

17

2.3.2 HOLNET Design Space

In this section, we first formally state the problem and its solutions. Then we

outline the design space of the solutions.

Consider a network with a set of nodes (i.e., switches) B. Let Lb be the set of

all links l connected to node b. Lbsi be the set of all outgoing links l of a source node

Si and xi,l be the subflow rate of flow i through link l. Namely, flow i is split into ni

subflows, which are mapped to different first-hop nodes and we have,

xi =

ni∑
l∈Lbsi

xi,l, ∀i. (2.10)

This setup allows for host-based multipath or multi-next-hop congestion control

and load balancing. Now HOLNET NUM is to achieve the global objective given in

Eq. (2.5), subject to the network link bandwidth constraints and the following flow

rate constraints,

θi ≤ xi ≤ Θi, ∀i. (2.11)

Different values of lower bound θi and upper bound Θi can be used to provide

minimum user utility guarantee for different CoSes. For example, for NRE, θi = 0

and Θi =∞; for HRT, θi = Θi > 0; for RRA and RDA, θi > 0 and Θi =∞.

HOLNET is underpinned by the family of optimal, distributed traffic control

solutions to NUM with concave user utilities given by Su, et. al. [57], rather than

the family of primal-dual solutions [53, 54], which underpin all the aforementioned

datacenter NUM-based protocols. The former one is adopted because it is most

sophisticated one that

1. accommodates flow rate constraints

2. covers a large design space, including integrated (multi-path) congestion control

and load balancing

18

3. allows for the exploration of performance, scalability, and design complexity

tradeoffs and adaption to hardware/software changes.

In other words, HOLNET NUM fully harnesses the potential of the most sophisticated

NUM solutions for the design of a whole new set of families of traffic control protocols.

In its most general form, these families of solutions are applicable to a multi-

domain environment. The families of solutions are generally composed of a set of user-

utility-based, multi-next-hop-enabled congestion controllers running at hosts (i.e.,

servers) and a set of in-network load balancers running at network nodes.

Multi-next-hop-enabled congestion controller: The families of optimal

congestion controllers for flow i at source host Si can be generally written as [57],

ẋi,l = zi(t, xi, cgl, r
out
i,l)[fi(xi)− (1− cglrirouti,l)], (2.12)

where

fi(xi) = 1− e−∂Ui(xi)/∂xi , (2.13)

where Ui(xi) can be any concave function and for HOLNET NUM, Ui(xi) = wiUc(xi)

where each Uc(xi) defines a family of congestion controllers, cgl is a local congestion

indicator, taking value 1 if the outgoing link l is congested and 0 otherwise. cgl is

the logic negation of cgland zi(.) is a user-defined piecewise continuous positive scalar

function. ri is determined by the Cos as follows,

ri =


rCoSmax if xi < θi

1 if θi ≤ xi ≤ Θi

rCoSmin if xi ≥ Θi,

(2.14)

an extension to the results in [57]. Here rCoSmax > 1 and rCoSmin < 1 are tunable

constants and routi,j is determined by the congestion information fed back from the first

hop node (i.e., a top-of-rack (ToR) switch in the context of a datacenter network),

19

a per-flow-based single-hop signaling. It is calculated based on Table (2.1), where

rmax > 1 and rmin < 1 are design parameters.

Table 2.1: rini,b and routi,(b),l (it represents both routi,l and routi,b,l) vs congestion information

Congested
next hop local rini,b routi,(b),l

yes yes rmax rmin
yes no rmax rmin
no yes rmax 1
no no 1 1

Here are some salient features of the above families of congestion controllers:

1. A congestion controller for any given flow i is dependent on the user utility

function, Ui(xi), or in the case of HOLNET, θi and wiUc(xi), for flow i only

(see Eq. (2.13)). As we shall see shortly, the in-network load balancers are

user-utility agnostic. This means that flows belonging to a new CoS with a

new user utility function can be added by simply activating a new congestion

controller with its minimum flow rate and weight value properly set at runtime.

2. The only nonlocal information is the congestion feedback, routi,l , from the first-

hop nodes, making the congestion control highly scalable.

3. With multi-next-hop flow load balancing capability, these families of congestion

controllers enable host-based load balancing features, as well as both host and

in-network load balancing features by working seamlessly with in-network load

balancers.

4. Each base utility, Uc(x), defines a family of congestion controllers. Each fam-

ily is composed of congestion controllers of various degrees of sophistication.

Different congestion controllers may take as input different information for the

20

control, by engineering zi(.) as a function of various additional information,

ranging from the local information, all the way to the entire path information

for performance enhancement, without changing the global design objective and

fairness criterion.

5. The above families of congestion controllers degenerate into families of transport

congestion controllers [56] by simply setting routi,l = 1, if the in-network nodes

are not involved. cgl now represents the congestion indicator for path l from

the source to the destination host, which may be

(a) inferred by the source host, resulting in highly scalable end-to-end solu-

tions, similar to the end-to-end TCP congestion control

(b) acquired explicitly using ECN [62], leading to lightweight ECN-based so-

lutions, similar to DCTCP and D2TCP

(c) explicit link load or even path information

In-network load balancer: At each node b, the outgoing data rate xouti,b,l from

node b through link l (l = 1, 2, ..., ni,b) is given by,

ẋouti,b,l = zi,b(t, xi, cgl, r
in
i,b, r

out
i,b,l)[−1 + c̄glr

in
i,br

out
i,b,l)], (2.15)

where n(i, b) is the number of next-hop nodes for flow i, which may be determined

locally by node b. z(i, b)(.) is again a piecewise continuous positive scalar function.

r(i, b, l)
out and r(i, b)

in are determined by the local and next-hop congestion infor-

mation, respectively, given in Table 2.1. Again, r(i, b, l)
out enables per-flow-based

congestion feedback. This family of load balancers can be directly applied to HOL-

NET NUM without further modification.

Here are some salient features of the above load balancers:

1. They are independent of user utilities

2. They are flow rate constraint unaware

21

These two features make the load balancing user-utility agnostic and scalable.

To further improve the scalability, [57] introduces a percentage-based destina-

tion node-based load balancer that further reduces the total number of load balancers

per node to be the number of edge nodes. Let pi,b,l be the percentage of all incom-

ing traffic (
∑

j x
in
i,b,j) at node b routed to outgoing link l towards destination i. The

control law for the outgoing traffic xouti,b,l through l is given by,

xouti,b,l = pi,b,l
∑
j∈Lb

xini,b,j (2.16)

and

ṗi,b,l = zi,b(t, xi, cgl, r
in
i,b, r

out
i,b,l)(ẋ

out
i,b,l

∑
j∈Lb;j 6=l

pi,b,j − pi,b,l
∑

j∈Lb;j 6=l

ẋouti,b,j), (2.17)

with

xouti,b,l = −1 + c̄glr
in
i,br

out
i,b,l (2.18)

HOLENT DESIGN SPACE: The above HOLENET-NUM based families

of solutions span a large design space, as shown in Table 2.2, from single-path rate-

adaptive congestion control to the most comprehensive ones involving both multi-CoS,

multipath congestion control, and in-network load balancing.

The HOLNET-NUM based families of solutions span a large design space, as

shown in Table 2.2, from single-path rate adaptive congestion control to the most

comprehensive ones involving both multi-CoS, multipath congestion control and in-

network load balancing.

1. CC and MCC on the top of the list are the two simplest solutions among all,

which are rate-adaptive congestion control solutions without and with multi-

path, respectively. CC-CoS and MCC-CoS further enable services with min-

imum user utility guarantee. All four types of solutions are host-based and

can be end-to-end (as scalable as end-to-end TCP), ECNbased (as scalable as

22

DCTCP), link-load-based, or even pathload-based, leading to a wide range of

solutions of various degrees of sophistication, allowing for full exploration of the

performance, scalability, and design complexity tradeoffs.

2. The next four solutions take advantage of path diversity to further improve the

flow performance via in-network load balancing. In addition to the congestion

controllers running at hosts, these solutions require that a network node im-

plement a set of load balancers with per-hop signaling for flow aggregates at

some given granularities, e.g., ToR-to-ToR or destination-ToR based. These

congestion controllers and load balancers use the local and next-hop congestion

information as input for the control2.

Table 2.2: HOLNET Design Space

Solution Host-based Host-based LB In-network LB Multi-CoS Comments

CC yes no no no Elastic Congestion Control (CC)

MCC yes yes no no Multipath CC (MCC)

CC-CoS yes no no yes CC and multi-CoS

MCC-CoS yes yes no yes multipath CC-CoS

CC-LB yes no yes no CC with in-network load balancing

(LB)

MCC-LB yes yes yes no Multi-next-hop CC-LB

CC-CoS-LB yes no yes yes CC-CoS with LB

MCC-CoS-LB yes yes yes yes MCC-CoS with LB

Practical Applicability of HOLNET: As stated at the beginning of the

introduction section, sophisticated traffic control solutions, such as those with QoS

2The proposed four solutions are the most lightweight and hence the most scalable optimal

solutions possible. Indeed, it is shown by example [8] that load balancing with pure local information

can result in worse performance than a traffic-oblivious solution, like ECMP. This means that to

achieve optimal control, the input for the control must be at least per-hop based, which is the case

for the current solution.

23

features derivable from HOLNET (i.e., the types of protocols involving CoS features

listed in Table 2.2), clean-slate, and flow-deadline aware protocols listed in Table

1.1 become viable only in a well-controlled environment like a datacenter. This is

simply because in a loosely controlled environment, such as the public Internet, selfish

users can cheat the system by using protocols with better QoS features or more

aggressive user utilities than needed. In contrast, in a well-controlled environment,

what user utility, or equivalently, what HOLNET protocol may be used by a host

(e.g., a server in a datacenter) in that environment is under the full control of the

network operator/service provider in that environment. Moreover, to support users

of the applications/services that require strict minimum user utility guarantee, some

additional mechanisms, such as a call admission or a network resource monitory

mechanism, must be in place, which is feasible only in a well-controlled environment.

2.4 CASE STUDIES

This section aims to demonstrate the viability and flexibility of HOLNET design

space exploration. Specifically, we develop a family of CC-CoS congestion controllers

and an MCC congestion controller and test them by ns-3 simulation.

2.4.1 A FAMILY OF CC/CC-CoS Controllers

To limit the exposure, we skip the subscription, i, for flow in for the rest of the

section. The family of CC-CoS controllers using Uc(x) = Uα(α, x) as the base utility

with z(.) = γxα can be easily derived from Eq. (2.12) with routl = 1, as follows,

ẋ =

 γxα(r − e−wx−α) if cg = 0

−γxαe−wx−α if cg = 1.
(2.19)

24

Figure 2.2: Network topologies for (a) MCC controller; (b) CC-CoS controllers.

where r is the same as ri defined in Eq. (2.14) and we set rCoSmax at 3 for all the

case studies for this chapter. These controllers are then turned into window-based

congestion control protocols. In this case study, we only consider end-to-end control,

meaning that the controllers use only source inferable information for the control, i.e.,

the three replicated acknowledgments (ACKs) and timeout, similar to TCP Reno.

The only difference is that for the current controllers, the rate adjustment is the same

for both timeout and three duplicated ACKs. These controllers are as scalable as

TCP Reno.

We first apply a CC controller in the above families of controllers with base

utility, Uc(x) = Uα(0.5, x) or α = 0.5, to two NRE flows (i.e., θ = 0 and r = 1) with

the same user utility, U1(x) = U2(x) = Uα(0.5, x) which share a 100 Mbps link, as

shown in Figure 2.2 (a). The saturated rates, Rs’s, for the two are set at 400 Mbps

and 100 Mbps, respectively. The center-of-utility ratio for the two flows can then be

calculated (i.e., Eq. (2.3)), which turns out to be 4, resulting in the weight ratio of

2 (i.e., Eq. (2.8)). In other words, the optimal flow rate allocation should be 4:1,

or 80 Mbps and 20 Mbps for flow 1 and flow 2, respectively, in order to achieve the

center-of-utility fairness.

25

(a) (b) (c)

Figure 2.3: (a) Overall utility; Rate allocation for (b) α = 0.5 and (c) α = 0.75.

Figures 2.2 (a) and (b) depict the achieved normalized V (x) in Eq. (2.5) and

flow rate allocations against their respectively optimal ones. As one can see, both

converge to near optimal values quickly, resulting in the flow rate ratio of 3.61, close

to, but lower than the optimal ratio of 4. This is because flow x1, which has a higher

flow rate than flow x2 generally senses more congestion and hence achieves a lower

than expected flow rate. Note that the aggregated flow rate is less than the link

bandwidth of 100 Mbps, due to discrete-time window-based control that cannot fully

utilize the link bandwidth.

Now we apply a different family of the CC-CoS controllers, i.e., the α-utility

with α=0.75 as the base utility. Consider an NRE flow, x1, with UNRE(x1) = log(1 +

x1), and a RRA flow, x2, with URRA(x2) = (x2 − xRRA2)1/3 + (xRRA2)1/3 and xRRA2 =

θ = 20 Mbps sharing a 100 Mbps link, as shown in Figure 2.2 (a), and flows have

the same saturated rate Rs,1 = Rs,2 = 100 Mbps. The center-of-utility ratio for the

two flows is then 5.59 (resulting in a weight ratio of 3.63) and hence the optimal flow

rates for NRE and RRA flows should be 15.2 Mbps and 84.8 Mbps, respectively.

26

As one can see from Figures 2.3 (a) and (c), the simulated utility and flow

rate allocation well match with the optimal ones. The flow ratio is 5.24, close to the

optimal value, 5.59. Since the overall rate is higher than the minimum required rate

of 20 Mbps for the RRA flow, the minimum rate does not play a role in the rate

allocation.

2.4.2 Multipath Congestion Control

Now we develop a scalable elastic, NRE (i.e., r = 1), end-to-end multipath

congestion controller. More specifically, we assume that all the flows have the same

center-of-utility and saturated rate. This means that all the flows have the same

weight, which can then be set to 1, without loss of generality. We let Uc(x) = εlog(x)

= εlog(
∑L

l=1 xl), where xl is the flow rate of the subflow l , x =
∑L

l=1 is the flow rate

and ε is a constant. We set, z(.) = γxl, where γ is a constant. The values for γ and

ε are chosen such that the control law degenerates to the TCP AIMD (i.e., additive

increase and multiplicative decrease) control in the case of a single-path flow. Then

the optimal controller for subflow l can be readily derived from Eq. (2.12) with r =

1 and routi,l = 1, as follows,

ẋl =

 γxl(1− e−ε/x) if cg = 0

−γxle−ε/x if cg = 1.
(2.20)

The above controller can be understood as follows. When x >> ε, Eq. (2.20)

can be approximated as ẋl ≈ γεxl/x at cg = 0 and ẋl ≈ −γxl at cg = 1. Namely,

when congestion is detected, which is source inferred, flow decrease rate is similar to

that of TCP congestion control. In the absence of congestion, on the other hand, the

flow increase rate is inversely proportional to its overall flow rate x, meaning that a

subflow increase rate becomes smaller if the overall flow rate becomes larger. This

27

Figure 2.4: Rate Allocation: (a) MCC Controller; (b) MPTCP

controller is similar to and as scalable as MPTCP [9, 46], allowing all flows to evenly

share network bandwidths.

Consider a multipath flow with two subflows x1,1 and x1,2 and a single-path flow

x2 that share a network, shown in Figure 2.2 (b). Subflow, x1,1, takes a path with

the bandwidth of 60 Mbps, and subflow x1,2 and x2 share a 100 Mbps link. With this

network and flow path configurations, it can be easily shown that the optimal flow

rate allocation for this HOLNET NUM problem is: x1,1 =60 Mbps, x1,2 = 20 Mbps,

and x2 = 80 Mbps, i.e., to equalize the flow rates. The performance of the MCC

controller is tested against this optimal flow rate allocation (for this and all the rest

of the case studies, we only show flow rate allocation, not V (x), as the latter is just

a means to achieve the former). It is also compared against MPTCP based on the

ns-3 open-source code [63].

Figure 2.4 presents the performance results. As one can see, overall both MCC

controller and MPTCP are able to allocate flow rates evenly between the two flows.

For the MCC controller, x2 is slightly lower than the optimal one (73 vs 80 Mbps)

while the other two subflows are nearly equal to their respective optimal ones. The

reason is the same as the previous case. Namely, a flow with a higher rate (i.e.,

28

x2) generally senses more congestion than a flow with a lower rate (i.e., x1,2), thus

resulting in a more reduced rate, compared to the optimal one. Since MPTCP is em-

pirically designed, its flow rate allocation cannot be easily interpreted with reference

to the optimal one. Indeed, for MPTCP, x2 actually achieves a higher rate than the

optimal one, whereas x1,2 is lower than the optimal one.

2.5 HOLNET-UTA

In this section, we develop a pragmatic family of lightweight traffic controllers,

called HOLNET with Utility-of-TCP-based flow rate Allocation (UTA), or HOLNET-

UTA in short. HOLNET-UTA is TCP-friendly and backward compatible with TCP

Reno. Since in HOLNET, both minimum user utility and the center-of-utility are

factored into the congestion controller in terms of θ and w, in this study, we assume

θ and w are given and focus on the testing of traffic controller performance. Since

HOLNET-UTA is lightweight, requiring only per-hop feedback from network nodes,

it is only compared against some well-known lightweight transport and in-network

load balancing solutions. Furthermore, since all the solutions to be compared against

aim at achieving network-centric performance targets, such as FCT, we adopt the

same performance targets.

First, to be TCP-friendly by design, HOLENET-UTA uses TCP utility as the

base utility. We adopt the following TCP utility function and its z-function for

TCP Reno, derived in [56]. Let ρx and βx be the multiplicative increase rate and

multiplicative decrease rate, respectively. The TCP utility function in the SSP is

then given by,

Utcp(x) = xlog(1 +
ρ

β
), (2.21)

29

and in the congestion avoidance phase (CAP) is given by,

Utcp(x) = (
µ

β
+ x)[log(µ+ βx)− 1]− x[log(βx)− 1], (2.22)

where µ is the additive-increase rate. The z-function of the TCP control law is derived

in [56] as,

ztcp(t, x, cg, z) =

 (ρ+ β)x for SSP

µ+ βx for CAP
(2.23)

With Uc(x) being the TCP utility function in Eqs. (2.21) and (2.22) and z(.)

given above. Then HOLNET-UTA family of congestion controller are readily derived

from Eq. (2.12) as,

ẋ =

 (rrout − (1 + ρ
β
)−w(ρ+ β)x if cg = 0

−21−wβx if cg = 1,
(2.24)

for the SSP, and

ẋ =

 [−(βx
µ+βx

)w + rrout](µ+ βx) if cg = 0

−(βx
µ+βx

)w(µ+ βx) if cg = 1
(2.25)

for the CAP. Here r is given by Eq. (2.14) for flows with minimum user utility

requirements otherwise r = 1.

HOLNET-UTA covers a large part of the HOLNET design space, i.e., CC/CC-

CoS and CC-LB/CC-CoS-LB, in Table 2.2. It is minimalistic, meaning that it uses the

minimal information feedback (i.e., source inferred or per-hop) and simplest possible

queuing mechanism, i.e., a single FIFO queue per output port and enabling soft CoS

features without call admission control. Hence, the HOLNET-UTA family is highly

scalable.

To test, we derive an example CC-LB controller from the above family, i.e.,

by simply setting r = 1 (i.e., θ = 0) and w = 1 in Eqs. (2.24) and (2.25) and test

30

its performance against some well-known lightweight transport and in-network load

balancing solutions using a widely adopted realistic workload, i.e., data mining [64].

In our design, each source host runs a set of congestion controllers for its flows

and each datacenter network node runs a set of load balancers for flow aggregates

(i.e. Eq. (2.16)). Now we discuss some important design aspects in more detail:

1. Congestion Detection – In our design, the congestion for any given output

port is detected, when the queue level for the buffer corresponding to that port

reaches a pq% threshold. In our case pq = 80%. This does not mean that when

congestion is detected, the incoming packets are blocked. In fact, they are still

allowed to enter the output buffer until buffer overflow, when the incoming

packets are dropped.

2. Load Balancing – In a two-tier leaf-spine datacenter network, to be used

for our case study, load balancing is done only by the source host side leaf

nodes. The load balancing is coarse-grained, with only one load balancer per

destination-leaf flow aggregate, regardless of flow types. The flow aggregate

rate allocation to the multi-path is based on the percentage-based load balancers

given in Eq. (2.17) by setting z(.) = 1. Initially, the percentage of each outgoing

port in the multi-path is assigned proportionally to their bandwidth capacities.

For example, with n outgoing ports, each has bandwidth Bi, for i = 1, 2, ..., n

the initial percentage assignments are set at, pi = Bi/
∑n

j=1Bj. After that, the

percentages are updated periodically at a given time interval, which is set at

RTT/4. At each update epoch, a leaf node checks if any outgoing port or its

next hop is congested. If yes, then the percentage is updated according to Eqs.

(2.16) - (2.18).

3. Packet loss recovery - Since HOLNET-UTA can sense congestion before

buffer overflow, the packet drop rate is very low, particularly in the spine and

31

sender-side leaf nodes. So, we turn off the fast retransmission feature of TCP

(i.e., retransmission upon receiving three duplicated ACKs) and solely rely on

retransmission timeout for packet loss recovery. When a timeout occurs, for sim-

plicity, the source host retransmits all the packets from the timed-out packet

(similar to go back N). In our solution, a timeout will not trigger congestion con-

trol. Instead, it solely relies on the local and the next-hop feedback information

for the control.

We compare the performance of HOLNET-UTA by simulation against DCTCP,

combined with one of the two load balancing solutions, i.e., ECMP [4] or DRILL [1].

DRILL is found in [1] to offer better performance than most of the existing schemes,

including CONGA [8] that uses global information.

A widely adopted performance metric for load balancing is FCT. So, we use

average FCT as the main performance metric in the context of overall flows, small

flows (size < 100K), huge flows (size > 10M bytes), and the 99th FCT for overall

flows. A 6x6 leaf-spine network topology with 24 hosts per rack is simulated. The

bandwidth/propagation delay is set at 10Gbps/10µs between a host and a leaf node,

and at 20Gbps/30µs between a leaf and a spine node. The queue size in a leaf/spine

node is 150/300 Kbytes. The ECN marking threshold is set at 65% of queue size, the

typical value used in DCTCP [2]. The control parameters are set at rmin = 0.1 and

rmax = 1.5. Flows arrive following a Poisson process. The network load is adjusted

with the change of flow arrival rate. When a flow arrives, a host is randomly selected

as the sender host and then a host in a different rack is randomly selected as the

destination host.

Figure 2.5 gives the results (normalized to DRILL) for the data-mining workload

case. UTA outperforms both DRILL and ECMP for most cases studied. Particularly,

for the heavy load case, UTA outperforms DRILL (ECMP) by more than 20% (60%)

32

Figure 2.5: Performance Comparison (Data-mining)

in terms of average FCT, average FCT for huge flows, and 99th percentile and it is

on par with DRILL for the small flow case. This is because, with per-hop congestion

feedbacks and integrated congestion control and load balancing, UTA can respond

to network congestions much faster and allow better-balanced load than both ECMP

with DCTCP and DRILL with DCTCP, which are not integrated solutions.

2.6 CONCLUSION

This chapter presents HOLNET, a holistic traffic control framework for data-

center networks. HOLNET allows large families of traffic control protocols of various

degrees of sophistication to be developed. Unlike the existing solutions that are

largely empirical by design, HOLNET is a principled, systematic solution. Proto-

cols in each family developed under HOLNET share a common, user-defined global

optimization objective. As a result, the protocols in each family can be fairly com-

pared and carefully selected to fully explore the performance, scalability, and design

complexity tradeoffs. As an example, we develop HOLNET-UTA, a family of inte-

grated congestion controllers and load balancers, maximizing the sum of weight TCP

33

utilities. The large-scale simulation demonstrates the backward compatibility and

flexibility of HOLNET.

34

CHAPTER 3

TWO FAMILIES OF UTILITY-BASED OPTIMAL MULTIPATH CONGESTION

CONTROL PROTOCOLS FOR DATACENTER NETWORKS

3.1 INTRODUCTION

With the advent of multi-homed networks, mobile devices supporting multiple

interfaces, and datacenters allowing multiple paths, the need for a new protocol that

makes use of multiple paths to improve application performance was perceived by

Raiciu et al. in their paper (Data Center Networking with Multi-path TCP). MPTCP

has the potential to enhance application performance by providing better throughput

and network resource utilization.

Just like end-to-end TCP, most prevalent MPTCPs, such as LIA [46], OLIA [48],

and Balia [47], are end to end, involving two endpoints only. This chapter exclusively

focuses on the design of end-to-end MPTCPs. However, despite the significant effort

made in the past twenty years in an attempt to develop optimal MPTCPs [17], the

existing MPTCPs are largely empirical by design. In their seminal work on LIA [46],

which is standardized by IETF [65], Wischik, et. al. acknowledge that due to the

lack of theoretical underpinning, LIA can only be designed empirically. Khalili, et. al.

[48] further show that LIA is not even Pareto optimal and propose a Pareto-optimal

MPTCP, known as OLIA, however, is again designed with no global optimization

objective in mind. Peng, et. al. [47] classify and study major MPTCP algorithms

with respect to some necessary conditions to achieve optimal traffic control in terms of

network utility maximization (NUM), hence, making another step towards the design

of an optimal MPTCP. However, the algorithm proposed by the authors, known as

35

Figure 3.1: TCP Fairness vs Responsiveness

Balia, that seeks to improve responsiveness and TCP friendliness over LIA and OLIA,

is again, designed empirically. Interestingly enough, an MPTCP algorithm studied in

and cited by [47] as the Semicoupled algorithm given in [46]1 turns out to be NUM-

optimal, as we shall show in this chapter. Although EWTCP [49] also turns out to

be NUM-optimal, as we shall also prove in this chapter, it is again originally designed

empirically without a global objective in mind.

Fig. 3.1 illustrates the whereabouts of some well-known MPTCPs as well as

EUTCP(γ) and WUTCP(ω) (to be defined shortly) in the responsiveness-and-TCP-

fairness design space2. Without resource pooling, the WUTCP(ω) family including

EWTCP (i.e., WUTCP({1/m2}), as we shall show later, are highly responsive to

network dynamics but cannot guarantee fairness with respect to TCP. Here resource

pooling refers to the ability to dynamically allocate sub-flow rates based on the overall

resource availability among all sub-flow paths. All the rest of MPTCPs allow resource

pooling and hence can achieve better fairness with respect to TCP, at the cost of

1To the best of our judgement, the algorithm studied in [47] does not match the Semicoupled

algorithm in [46]. In this chapter, the Semicoupled algorithm is specifically referred to as the one

presented in [47].
2As we shall show, the throughput differences among different MPTCPs are relatively minor and

hence is not considered here.

36

reduced responsiveness in general. As one can see, as a family of NUM-optimal

MPTCPs, EUTCP(γ) including Semicoupled (i.e., EUTCP(1), as we shall prove

later) covers a relatively large design space (i.e., the area covered by the oval) on the

upper-right corner and hence, allow better exploration of the design tradeoffs between

responsiveness and TCP fairness than the existing ones.

In this chapter, by leveraging the NUM-optimal solution for concave utilities

given by Lagoa, et. al., [66] and the concave TCP utility given by Wang, et. al. [67],

we derive and implement in Linux two families of MPTCPs, i.e.,

1. (EUTCP(γ))

Equal Utility MPTCP with sub-flow rate-scaling vector, γ = {γ1, ..., γm}

2. (WUTCP(ω))

Weighted Utility MPTCPs with sub-flow weight vector, ω = {ω1, ..., ωm}

, where m is the number of sub-flow paths. Specifically, we consider two different

utility functions for multipath flows, i.e., the TCP utility function of a rate-scaled

sum of the sub-flow rates and a weighted sum of TCP utility functions of the sub-flow

rates. Then by applying the solution given by Lagoa, et. al. [66] to these two utility

functions, we arrive at EUTCP(γ) and WUTCP(ω). We then show that the Semicou-

pled algorithm [47] and EWTCP [49] are in fact EUTCP(1) and WUTCP({1/m2}),

respectively, and hence, are NUM-optimal. The performance of the two families with

equal rate-scaling coefficient (i.e., γl = γ, ∀l) and equal weight (i.e., ωl = ω, ∀l) when

coexisting with TCP is also analyzed based on experiments in a testbed.

For EUTCP(γ), comparative performance analyses are carried out between its

family members and some well-known resource-pooling-capable MPTCPs, including

LIA[46], OLIA[48], and Balia[47]. The test results demonstrate that the family mem-

bers in EUTCP(γ) with γ in the range of [1, 1.1] outperform the other three MPTCPs

in terms of responsiveness and fairness and is on par with the other three in terms

37

of overall throughput performance. For WUTCP(ω), we compare three family mem-

bers at ω = 1/m2, 1/m, and 1/
√
m. We conclude that for the TCP fairness criterion

defined in [49], ω = 1/m should be used, instead of ω = 1/m2, as suggested in [49].

3.2 BACKGROUND AND MOTIVATION

The existing MPTCPs can be broadly classified into two categories, with and

without resource pooling capability.

For the category without resource pooling capability, a straightforward but

naive solution is to simply run subflows as independent TCP flows. This approach,

however, is too aggressive and unfair to single-path TCP flows, and without resource

pooling, cannot balance the loads among subflow paths. This leads to the design

of EWTCP [49], an equally weighted MPTCP. EWTCP attempts to achieve TCP

fairness by modifying the previous solution, i.e., reducing the TCP window increase

rate by a factor of 1/m2 for all m TCP-based subflows. However, besides the lack of

load balancing capability inherited from the previous approach, EWTCP may lead

to a flow rate lower than the best case single-path TCP3, discouraging users to use

it.

For the other category, i.e., the one with resource pooling capability, there has

been a great effort made in the latest twenty some years in an attempt to develop

MPTCP algorithms that are proven to be globally optimal in terms of network utility

maximization (NUM), which in the form of a fluid-flow model, can be formally stated

as follows:

3The best-case single-path TCP is defined as the maximum flow rate single-path TCP can achieve

on any of the sub-flow paths available to MPTCP.

38

max

n∑
i=1

Ui(xi,1, xi,2, ..., xi,mi), (3.1)

subject to link bandwidth constraints,

∑
i,j:l∈Li,j

xi,j − cl ≤ 0; l ∈ L, (3.2)

where n, mi, L, and Li,j are the number of active flows, the number of subflows in

flow i, the set of links in the network, and the set of links lie in the path of subflow j in

flow i, respectively; cl is the link bandwidth for link l ∈ L; and Ui(xi,1, xi,2, ..., xi,mi) is

the user utility for flow i as a function of flow rates, xi,j, for subflow j, j = 1, 2, ...,mi.

The design goal is to find distributed solutions to the above NUM problem

in the form of distributed flow rate control laws for individual subflows, using only

binary congestion information feedback for control, i.e., whether a sub-flow/flow path

is congested or not, which is essential to facilitate the development of end-to-end

protocols including MPTCPs. Such control laws can then serve as the theoretical

underpinning for the design of optimal rate or window-based MPTCP algorithms for

any given user utilities that dictate the fairness criterion for resource allocation.

Kelly, et. al. [17] and Han, et. al. [6] convert the NUM problem into its

Lagrange dual problem and then solves a relaxation of the dual problem by closely

approximating it by incorporating a price function in the utility function. This ap-

proach is Pareto optimal, but it is not strictly NUM-optimal and it only selects one

subflow path at a time and hence, suffers from flappiness and slow responsiveness [46].

Inspired by this approach, Rauciu, et. al. [46, 9, 65] propose LIA, which modifies the

previous approach to allow flow rate load balancing among multiple paths to avoid

flappiness and improve response time, at the cost of losing the Pareto optimality.

Khalili, et. al. [48] propose OLIA, an improved version of LIA, which possesses the

Pareto optimality. Using a duality model, Low, et. al. [53, 54] finds a heuristic model

39

in an attempt to solve the above NUM, which underlies Balia [47]. On the basis of

the work in [53, 54], Peng, et. al. [47] further classify and study major MPTCP

algorithms with respect to some necessary conditions to attain the NUM objectives,

making another step towards the design of an optimal MPTCP. However, the pro-

posed Balia that seeks to improve responsiveness and TCP friendliness over LIA and

OLIA, is again, heuristic by design.

Meanwhile, in a series of publications, Lagoa, et. al. [66, 68, 57, 56] directly

solve a generalized version of the above NUM that permits sub-flow rate constraints

by means of Sliding Mode Control in control theory [55]. The resulting control laws

enable multiple classes of service and require only binary congestion information feed-

back for control, hence are particularly suitable to serve as the theoretical underpin-

ning for the design of MPTCPs. Wang, et. al. [69, 67] successfully apply this solution

to reverse engineer TCP to arrive at the TCP utility function corresponding to the

TCP Reno congestion control4 and subsequently, design a TCP-friendly, end-to-end,

single-path soft-minimum-rate-guaranteed congestion control protocol. Wang, et. al.

[51] also successfully apply this solution to the development of integrated congestion

control and load balancing framework for datacenter networks, including a toy ex-

ample demonstrating the viability of the solution for the development of MPTCP

algorithms. Our work is motivated by these results. In particular, by leveraging the

results given by Lagoa, et. al. [66] and Wang, et. al. [69], and with proper selection

of user utility functions for multipath flows, we are able to derive two families of

NUM-optimal MPTCPs, covering both MPTCP categories.

4Note that this TCP utility function is the first one that captures both the slow start and

congestion avoidance phases of TCP Reno

40

3.3 TWO FAMILIES OF NUM-OPTIMAL MPTCPs

In this section, we use the NUM-optimal multipath congestion control solu-

tion and the TCP utility function given in chapter 2, and derive EUTCP(γ) and

WUTCP(ω), in separate subsections.

3.3.1 The EUTCP(γ) Family

Utility function of an MPTCP flow:

Theoretically, to ensure that a NUM-optimal MPTCP is friendly to TCP Reno

by design, one can simply apply the TCP Reno utility function to the total flow rate

of a multipath flow as follows,

U(x1, x2, ..., xm) = Utcp(
m∑
j=1

xj), (3.3)

In other words, the NUM-optimal solution is to equalize user utilities by balancing

the sub-flow rates among sub-flow paths (hence, is resource pooling capable), which

equalizes the rate allocation among both MPTCP and TCP flows, and hence, achieve

TCP-friendly resource allocation.

However, our experiment results (see Table 2) show that, just like LIA, OLIA,

and Balia, the resulting MPTCP corresponding to the above utility leads to skewed

flow rate allocation with MPTCP flow rates higher than TCP flow rates. We find

that the reason is that, just like TCP, to allow sub-flow windows to increase when

network resources become available, an MPTCP flow must maintain a positive mini-

mum rate/window for each of its sub-flow, despite the fact that the optimal control

law that underpins the MPTCP algorithm may require that the sub-flow rates be

allowed to drop to zero when congestion occurs. Since TCP Reno uses 2×MSS as

its minimum window size, most existing MPTCPs set the minimum window size for

each sub-flow to be 2×MSS. This effectively makes the minimum window for the en-

41

tire MPTCP flow to be 2m×MSS, leading to skewed flow rate allocation in favor of

MPTCP flows over TCP flows in practice, and the higher the number of sub-flows,

m, the more skewed the flow rate allocation is.

One possible approach to remedying the above problem is to set the minimum

window for each sub-flow to be one MSS instead of 2×MSS, as is the case for Balia.

While our experiment shows that using one MSS in the MPTCP corresponding to

the above utility can lead to almost perfect equal flow rate allocation in most cases,

for some corner cases, it may cause unstable flow rate allocation. Namely, a sub-flow

competing with TCP flows may not be able to grow its window back once the window

reaches its minimum.

In this chapter, we tackle the above challenge by using the following family of

rate-scaled user utility functions instead,

U(x1, x2, ..., xm) = Utcp(
m∑
j=1

γjxj), (3.4)

where γj is a rate-scaling coefficient for sub-flow, j, for j = 1, ...,m. By setting

some or all of the coefficients to be slightly larger than one, the NUM-optimal rate

allocation that attempts to equalize user utilities is expected to allocate less rates to

MPTCP flows than TCP flows, compensating for the skewed resource allocation.

EUTCP(γ): Let zl(t, xl, cgl) for each subflow l take the same format as its single-

path counterpart is given in Eq. (2.23) with rate scaling, i.e.,

zl(t, xl, cgl) =


(α + β)γlxl in SSP

µ+ βγlxl in CAP.

(3.5)

42

Then substitute Eqs. (3.4) and (3.5) into Eqs. (2.12) and (2.13), we arrive at

EUTCP(γl) as follows:

In SSP:

ẋl =


αγlxl if cg = 0

−βγlxl if cg = 1.

(3.6)

In CAP:

ẋl =


µ+βγlxl
µ+βγlx

µ if cg = 0

−µ+βγlxl
µ+βγlx

βγlx if cg = 1.

(3.7)

Considering the fact that the multiplicative increase rate is much larger than

the additive increase rate, i.e., βxl � µ, and βx� µ, Eq.(3.7) can be approximated

as

ẋl ≈


xl
x
µ if cg = 0

−βγlx if cg = 1.

(3.8)

EUTCP(γl) above simply states that the subflow increase rate is proportional

to the ratio of the subflow rate and the overall flow rate, i.e., xl/x, while its decrease

rate is that of TCP Reno scaled by γl. It degenerates to TCP Reno at m = 1 and

γ = 1.

Now we transform the above EUTCP(γ) to a window-based one.

Let x = W ×MSS/τ and xl = Wl×MSS/τ . Then the congestion window size

change for subflow l in each RTT, ∆Wl, according to Eqs. (3.6) and (3.8), are,

In SSP:

∆Wl ≈


γlWl if cgl = 0

−γlWl

2
if cg1 = 1.

(3.9)

43

In CAP:

∆Wl ≈


Wl

τl
∑m
j=1Wj/τj

if cg = 0

−γlWl

2
if cg = 1.

(3.10)

3.3.2 THE WUTCP(ω) Family

Utility function of an MPTCP flow:: Now we consider the following family

of utility functions,

U(x1, x2, ..., xm) =
m∑
j=1

ωjUtcp(xj), (3.11)

where ωj is the utility weight for sub-flow j. Clearly, this family of utility

functions will lead to optimal rate allocation without resource pooling. For example,

at ωj = 1 for ∀j, each sub-flow in a multipath flow is then treated the same way as

a single path TCP flow, the most naive MPTCP solution in the category without

resource pooling.

WUTCP(ω): Let,

zl(t, xl, cgl) =


(α + β)xl in SSP

µl + βxl in CAP.

(3.12)

Here µl = MSS/τl is the additive increase rate for subflow l. Similarly, we can easily

get WUTCP(ω) as follows.

In SSP, we have,

ẋl =


3
2
(1− 3−ωl)αxl if cgl = 0

−31−ωlβxl if cgl = 1.

(3.13)

In CAP, we have,

ẋl =


[1− (βxl

µl+βxl
)ωl](µl + βxl) if cgl = 0

−(βxl
µl+βxl

)ωl(µl + βxl) if cg − l = 1.

(3.14)

44

Similarly, considering βxl � µl, then Eq. (3.14) can be approximated as

ẋl ≈


ωlµl if cg = 0

−βxl if cg = 1.

(3.15)

From Eq. (3.15), we know that the rate increase for a subflow l is proportional

to the utility weight ωl. If ωl < 1, the subflow increase rate is smaller than that

in a single-path TCP flow (i.e.,ωlµl vs µl). If we set ωl < 1 for any subflow l, then

each subflow obtains no more flow rate than that of a single path TCP in a shared

link. WUTCP(ω) can allocate more bandwidth to a multipath flow than the best

case single-path TCP in some cases, but it may also allocate less bandwidth to a

multipath flow than the best case single-path TCP in other cases, as we shall see

later.

Now we convert WUTCP(ω) above into a window-based one.

In SSP, we have,

∆Wl =


3
2
(1− 3−ωl)Wl if cgl = 0

−31−ωl
2
Wl if cgl = 1,

(3.16)

and in CAP, we have,

∆Wl ≈


ωl if cg = 0

−Wl

2
if cg = 1.

(3.17)

3.4 PERFORMANCE EVALUATION

In this section, we evaluate the performance of EUTCP(γ) and WUTCP(ω)

against some well-known MPTCPs, including EWTCP [49], LIA [46], OLIA [48]

and Balia [47]. We first present, compare and analyze different congestion control

algorithms and then perform experimental testing of those algorithms focusing on

the fairness, responsiveness, and throughput performance metrics.

45

3.4.1 Algorithm Analysis

In the following algorithm analysis, we only analyze CAP for all the MPTCP

algorithms for two reasons. First, the existing MPTCPs are mainly focused on the

design and analysis of CAP, assuming that SSP for individual sub-flows follows that

of TCP. Second, as aforementioned, the retransmission timeout is treated the same

way as three duplicated ACKs in our solutions, meaning that once entering CAP after

initial SSP, the system will stay in CAP, and hence, the long-run flow rate allocation

is determined by CAP only.

For the convenience of comparison, Table 3.1 lists the congestion control algo-

rithms in CAP for all the MPTCPs to be studied in this section.

Table 3.1: Congestion control algorithms in CAP

Solution Increase Decrease Comments
(per Ack) (per loss)

With Resource Pooling

LIA (Coupled) [17, 70, 46]
(Wl/τ

2
l)

(ΣiεRWi/τi)2
Wl

2

Semicoupled [47] (optimal) 1
τl(ΣiεRWi/τi)

Wl

2

OLIA [48]
(Wl/τ

2
l)

(ΣiεRWi/τi)2
+ δ

Wl

Wl

2
δ is modulation

factor

Balia [47]

{
(Wl/τ

2
l)

(ΣiεRWi/τi)2

}
(1+αl

2
)(4+αl

5
) Wl

2
min{αl, 3

2
} αl

∆
= max

jεR
{xj}/xl

EUTCP(γ) (optimal) 1
τl(ΣiεRWi/τi)

γlWl

2
γl is the scaling

coefficient
Without Resource Pooling

EWTCP [49] (optimal) α
Wl

Wl

2
α is weight for

each route
WUTCP(ω) (optimal) ωl

Wl

Wl

2
ωl is the subflow

utility weight

46

The algorithms belonging to the two distinct categories, i.e., with or without

resource pooling capability, are listed separately. Note that the increasing part of

each algorithm is given on a per ACK basis, not per RTT. As a result, the per-RTT-

based window increase formula in Eq. (3.10) and Eq. (3.17) must be divided by Wl

to arrive at the corresponding increase parts in Table 3.1.

For the category with resource pooling capability, we first observe that the

Semicoupled algorithm is indeed a family member of EUTCP(γ), i.e., EUTCP ({1}),

meaning that it is NUM-optimal, achieving the global objective given in Eq. (3.4)

at γl = 1, ∀l. Second, we note that compared with all the other algorithms in the

category, the EUTCP(γ) family including the Semicoupled are the least complex

and hence, most computationally efficient ones. This also implies that if some other

algorithms also turn out to be NUM optimal, the corresponding utility functions are

likely to be substantially more complex and hence, harder to interpret, particularly

with respect to the fairness to TCP.

For the category without resource pooling, it becomes clear that EWTCP is

indeed a family member of WUTCP(ω) with ωl = α, ∀l, and hence, is NUM optimal

as well. In fact, in the original paper on EWTCP [49], it is suggested that α = 1/m2

should be used. By doing so, the paper shows that each sub-flow of an EWTCP

flow sharing a bottleneck link with a TCP flow will then be allocated one mth of

the TCP flow rate and hence is TCP fair, in the sense that the overall EWTCP flow

rate is equal to the TCP flow rate if each and every sub-flow shares a bottleneck link

with a TCP flow. The proof, however, is based on a TCP throughput model given

in [71] that assumes that the retransmission timeout is a more frequent event than

the three duplicated ACKs and the TCP goes back to the slow start phase after the

retransmission timeout happens.

47

In fact, since we now know that EWTCP is NUM-optimal and its utility func-

tion is given by Eq. (3.11) with ωl = α for l = 1, ...,m, we can prove that to satisfy

the above TCP fairness criterion, α should be set at 1/m, instead of 1/m2. First,

we note that since βx � µ, Utcp in Eq. (3.11) can be approximately written as

Utcp ≈ µ
β
log(βx), i.e., a log function of x. Then it can be easily shown [51] that for

any given number of sub-flows, each having the weighted utility, αUtcp, which share

a bottleneck link with any given number of TCP flows, the sum of the utilities for

all the flows/sub-flows sharing this link is maximized if each sub-flow is allocated α

times of the rate allocated to each TCP flow. This means that to meet the above TCP

fairness criterion for EWTCP, α should be 1/m, not 1/m2. This is also confirmed by

the experiment results presented in the following section.

Nevertheless, the work in this chapter is not meant to give a definitive answer

as to what fairness criteria and hence, what parameters, ω and γ, or equivalent,

which family members of the two families, should be adopted in practice. Instead,

the objective of this work is to reveal the performance tradeoffs among the members

of the two families as well as the other MPTCPs in the list so that users can make

an informed decision as to which MPTCP should be adopted to best serve their

application needs. For example, in a multi-homing scenario, different paths may

charge different usage fees and/or offer different service qualities. In this case, a user

may want to assign different ωl’s or γl’s for different sub-flows to fully explore the

tradeoffs between the performance and cost.

3.4.2 Experimental Analysis

For the ease of comparison with Balia [47], the state-of-the-art solution, we

adopt the same network topology as the one used in [47]. Namely, all the test cases

are performed based on the topology shown in Fig. 3.2. It involves two source hosts,

48

Figure 3.2: Network topology for MPTCP Performance Evaluation

S1, sending N1 MPTCP flows with two sub-flows (i.e., m = 2), x11 and x12, and S2,

sending N2 TCP flows, to the same destination host D. Nodes, b and a, provide a

single path from S1 to D via b and two sub-flow paths from S2 to D, via a (i.e.,

sub-flow x12) and b (i.e., sub-flow x11), respectively.

The hosts (i.e., S1, S2, and D) are Dell Poweredge servers, each equipped with

8-core processors with 10GB memory and running Linux 16.04. Nodes a and b are

Dell N4032F switches, each with multiple 1 Gbps Ethernet interfaces running Ubuntu

16.04.1 LTS (Linux kernel 4.19.98). The link bandwidth for all the links can be con-

figured at any rate lower than or equal to 1 Gbps through the networking interface

traffic control command tc, allowing for the testing of the MPTCP responsiveness to

sudden link bandwidth changes. Both MPTCP families are implemented by modi-

fying the open-source Linux kernel codes of LIA and Balia [72]. The source code of

both families will be made available in the public domain, upon the publication of

the work.

49

For both EUTCP(γ) and WUTCP(ω) families, we only test the single param-

eter cases, i.e., the cases where γl = γ and ωl = ω, ∀l. Hence, they can be simply

written in terms of a single parameter, i.e., EUTCP(γ) and WUTCP(ω). We present

the results for the two families and the related MPTCPs in the two categories, sepa-

rately, focusing on the fairness, throughput, and responsiveness performance metrics.

3.4.3 EUTCP(γ)

In this section, we study the performance of three family members, EUTCP(1),

EUTCP(1.05), and EUTCP(1.1), together with LIA, OLIA, and Balia.

TCP Fairness and Throughput: First, we test the performance of these

MPTCPs in a balanced network by setting C1 = C2 = 1024 Mbps (i.e. 1 Gbps link)

and N1 = N2 = 1, i.e., one multipath flow and one TCP flow (the TCP Reno in the

Linux kernel is applied without modification). With this setup, all the MPTCPs will

strive to equalize and maximize the flow rates for the two flows, i.e., all targeting at

the optimal flow rate allocation: x1 = x2 = 1024 Mbps, x11 = 1024 Mbps and x12 = 0

Mbps.

In this experiment, we consider steady state performance. The two flows are

long-lived, meaning that each flow has an unlimited amount of data to send and

hence, lasts throughout the entire measurement window. Each flow reaches its stable

rate quickly and in Figs. 3.3 (a)-(f) we present the results in steady state for LIA,

OLIA, Balia, EUTCP(1), EUTCP(1.05), and EUTCP(1, 1), respectively.

First, we note that for all MPTCPs, x11 (green) and x2 (yellow) are below their

respective optimal flow rate targets, i.e., the link bandwidths, whereas x12 (blue) are

above its optimal flow rate target that is zero. This is inevitable. The former is due to

the discrete-time (once every RTT) window-based adaptive flow control with delay,

which guarantees that the achievable flow rate cannot saturate the link bandwidth.

50

(a) LIA (b) OLIA

(c) Balia (d) EUTCP(1)

(e) EUTCP(1.05) (f) EUTCP(1.1)

Figure 3.3: Steady State Performance for MPTCPs in the resource-pool-capable category

The latter is caused by the need to set a non-zero minimum window for a sub-flow as

explained earlier, which prevents it from being allocated zero bandwidth. This also

contributes to the reduction of the flow rate, x2. Moreover, all the MPTCPs are able

to achieve almost the same flow rate allocation for x11. This is easy to understand as

the entire sub-flow path is dedicated to this sub-flow without congestion.

51

Second, we note that in terms of flow rate allocation for x2 and x12, LIA offers

the lowest performance among all, OLIA and Balia perform almost equally well, but

not as good as the three family members in the EUTCP(γ) family, all of which perform

equally well. A point to make here is that EUTCP(1) or the Semicoupled algorithm

given in [47] turns out to perform better than Balia, which does not agree with the

finding in [47]. This, however, may be because in [47], the Semicoupled algorithm

tested is the one given in [46], not the one listed in [47] and tested in our chapter (see

footnote one for more explanation).

Table 3.2: Average flow throughput (Mbps), TCP unfairness, and aggregate throughput
(Multiple flows of MPTCP flows and single path TCP flows combined) (Mbps) at N1 =
N2 = 5.

MPTCP TCP unfairness (%) Aggregate
Throughput Throughput Throughput

LIA 1061.92 926.99 14.56 1988.91
OLIA 1032.78 955.33 8.11 1988.11
Balia 1022.01 961.48 6.29 1983.49
EUTCP(1) 1023.54 963.92 6.18 1987.46
EUTCP(1.05) 1022.07 965.69 5.83 1987.75
EUTCP(1.1) 1034.19 953.87 8.42 1988.06

In our next experiment, we study the average throughput and TCP fairness

performance for long-lived MPTCP flows in steady state. The experiment setup is

the same as the previous one, except now we have, N1 = N2 = 5. To quantify the

TCP fairness, we define a TCP unfairness measure in Eq. (3.18). The smaller the

TCP unfairness is, the fairer the MPTCP is with respect to TCP.

TCP Unfairness = per MPTCP flow throughput−per TCP flow throughput
per TCP flow throughput

× 100 (%).

(3.18)

52

For each MPTCP algorithm, we repeat the experiment three times and take the aver-

age throughput. The results are shown in Table 3.2, including average flow through-

put for both multipath flows and TCP flows, the TCP unfairness, and the aggregate

throughput, i.e., the throughput for TCP and multipath flows combined. As one

can see, LIA is the least fair to TCP with TCP unfairness of 14.56%. OLIA and

Balia significantly improve the TCP fairness over LIA, with TCP unfairness of 8.11%

and 6.29%, respectively, at the cost of almost negligible deduction of the aggregate

throughput, consistent with the results given in [47].

Interestingly enough, again we observe that the Semicoupled algorithm or EUTCP(1)

offers better performance than Balia in both TCP fairness and aggregate through-

put. Moreover, EUTCP(γ) reaches the smallest TCP unfairness at about γ = 1.05

and then grows back up as γ further increases, as evidenced by the results for

EUTCP(1.05) and EUTCP(1.1). The reason is that increasing γ from one makes

the sub-flow window for x12 drop faster as the congestion occurs (see the decreasing

part of the algorithm in Table 3.1), reducing the skewed flow rate allocation and

hence, improving TCP fairness. However, as the sub-flow window decreases faster, it

also increases faster in the absence of congestion, simply because the sub-flow window

increase rate is inversely proportional to the sum of sub-flow window sizes (see the

increasing part of the algorithm in Table 3.1). These two competing effects result

in the existence of a γ value around 1.05, where the TCP unfairness is minimized,

i.e., about 5.83%, the smallest among all MPTCPs studied, without scarifying the

throughput performance.

In fact, the differences of the aggregate throughput among all the MPTCP al-

gorithms in Table 3.2 are extremely small and can be largely neglected. Furthermore,

we note that EUTCP(1.05) improves EUTCP(1) over the TCP fairness performance

53

by about 6%, implying that EUTCP(γ) is not too sensitive to the setting of γ and

setting γ anywhere close to 1.05 should be good.

The above test results clearly demonstrate that EUTCP(γ) with γ taking a

value in the range of [1, 1.1] offers the best performance among all the MPTCPs in

the resource-pool-capable category.

Responsiveness: Next, we test the performance of these MPTCPs in terms

of responsiveness in a dynamically changing environment. To this end, we consider

N1 = N2 = 1 and set the link bandwidth C1 = C2 = 1024 Mbps in the initial first

5 seconds; then suddenly change C2 from 1024 Mbps to C2 = 8 Mbps for the next 7

seconds (i.e., from second 6 to second 12); and finally switch it back to C2 = 1024

Mbps. With this setup, all the MPTCPs will strive to arrive at the following flow

rate allocation that equalizes and maximizes the flow rates for the two flows: x11 =

x2 = 1024 Mbps and x12 = 0 Mbps, before the 6th second and after 12th second,

and x11 = 8 Mbps, x12 = 508 Mbps and x2 = 516 Mbps from the 6th second to 12th

second.

The throughput of the flows is given in Fig. 3.4 and the flow rate convergence

times for all the MPTCPs except OLIA upon the bandwidth changes are given in

Table 3.3.

Table 3.3: Convergence times (seconds) of MPTCP flows during bandwidth changes

LIA Balia EUTCP(1) EUTCP(1.05) EUTCP(1.1)
x11 2 2 2 2 2
x12 2.5 2.5 2 1.5 2

First, we note that among all the MPTCPs, OLIA is the least responsive, even

though it outperforms LIA in terms of TCP fairness. It does not even come close to

the new optimal flow rate allocation, compared with all the other MPTCPs, which

54

(a) LIA (b) OLIA

(c) Balia (d) EUTCP(1)

(e) EUTCP(1.05) (f) EUTCP(1.1)

Figure 3.4: Responsiveness under sudden link bandwidth changes for MPTCPs in the
resource-pooling-capable category

is the reason why it is excluded from Table 3.3 for convergence comparison. LIA,

Balia, EUTCP(1.1), and EUTCP(1) (or semicoupled algorithm) are on par with one

another. Clearly, EUTCP(1.05) performs the best among all MPTCPs with the

smallest convergence time.

55

However, one may notice that for all the MPTCPs, x12 (x2) converges to a

flow rate lower (higher) than the optimal one, similar to the experimental results

given in [47]. We find that this skewed flow rate allocation in favor of the single-path

TCP is largely caused by the way such protocols are normally implemented. A TCP

flow, whether it is single-path or multipath is normally run by a single thread. As a

result, the processing resource allocated to the window control for each sub-flow in a

multipath flow reduces, and hence, the processing delay for each sub-flow increases,

as the number of sub-flow paths increases. For a sub-flow shares its sub-flow path

with a TCP flow (e.g., x12 and x2 in our case), it sees a larger RTT than the TCP

flow as it incurs a larger processing delay, hence, receiving lower flow rate allocation.

This is particularly problematic in an experimental environment of ours, where the

entire testbed is hosted in a single rack, where the end-to-end propagation delay

is negligible, making the RTT and hence, the performance highly sensitive to the

processing delay. The following experiment results will further confirm this is indeed

the case. A possible way to fix this problem is to assign more processing resources

to MPTCP flows than TCP flows. How much more should be assigned to MPTCP

flows, however, is an implementation issue to be addressed in the future.

Based on the above performance analysis, we conclude that the family members

in EUTCP(γ) with γ taking values in the range of [1, 1.1] offer the best tradeoffs

among TCP fairness, responsiveness, and throughput in the resource-pooling-capable

category.

3.4.4 WUTCP(ω)

Now we present the test results for the WUTCP(ω) family including EWTCP

or WUTCP(1
m2) in terms of TCP fairness, throughput, and responsiveness.

56

TCP fairness and Throughput: Again, we first consider the following net-

work setup: C1 = C2 = 1024 Mbps and N1 = N2 = 1. As aforementioned, the

optimal rate allocation for a WUTCP(ω) sub-flow is approximately ω times of a

TCP flow sharing the same bottleneck link. Hence with this setup, the optimal flow

rate allocation is: x11 = 1024 Mbps, x12 = 1024 × ω
1+ω

Mbps and x2 = 1024 × 1
1+ω

Mbps.

(a) WUTCP(1/
√
m) (b) WUTCP(1/m)

(c) WUTCP(1/m2)

Figure 3.5: Steady State Performance for WUTCP(ω) Family

Fig. 3.5 (a), (b), and (c) plot the results for the EUTCP(ω) members at ω =

1√
m

, ω = 1
m

and ω = 1
m2 , respectively. Again, without experiencing any congestion,

the sub-flow rate, x11 (green), is almost the same for all three cases. Also for all the

cases, the flow rate allocated to, x2 (x12), is always slightly higher (lower) than the

corresponding optimal one, for the same reason discussed in the previous case.

57

The results clearly demonstrate that the case with ω = 1/m = 1/2 indeed gives

flow rate allocation much closer to the desired ratio, x12
x2

= 1
2

than the case with

ω = 1/m2 = 1/4, which instead gives the ratio, x12
x2

= 1
4

with pretty high accuracy

as our model predicts. These results further support our earlier claim that to satisfy

the TCP fairness criterion given in the chapter on EWTCP [49], the weight α should

be set at α = 1
m

, not 1
m2 .

Responsiveness: As shown in Fig.3.1 and also discussed in Section 3.2,

MPTCPs without resource pooling capability, including WUTCP(ω), cannot respond

to network dynamics effectively, especially in terms of maintaining TCP fairness. In

what follows, we only give the experiment results on WUTCP(1
m

) to demonstrate

this.

Consider the same experimental setup as the previous responsiveness testing

case for EUTCP(γ). The only difference is that now the MPTCP flow, x1, is run by

WUTCP(1
m

).

(a) WUTCP(1/m) (b) EUTCP(1.05)

Figure 3.6: Responsiveness of WUTCP(1
m) vs EUTCP(1.05) to sudden changes of a link

bandwidth

As shown in Fig. 3.6 (a), as C1 drops from 1024 Mbps to 8 Mbps, x12 and

x2 change slightly. In fact, in theory, they should not change at all because without

58

resource pooling capability, EUTCP(γ) controls the send windows for individual sub-

flows independently, as evidenced by the EUTCP(γ) algorithm given in Table 1. The

fact that both x12 and x2 moved closer to their respective optimal values during the

time period where C1 = 8 Mbps further confirms that the actual processing resources

allocated to individual sub-flows have an impact on the flow rate allocation. When

C1 drops from 1024 Mbps to 8 Mbps, the transmission delay for packets in the sub-

flow x11 increases substantially, resulting in more than 10× increase of its RTT, as

the measured statistics show. This means that the processing resource demand for

sub-flow, x11, is also reduced by that many times, yielding much of the processing

resource to sub-flow, x12. This effectively reduces the RTT for x12 and hence, the

competitiveness of x12 with respect to TCP flow, x2, resulting in reduced skew for

flow rate allocation during the time period when C1 = 8 Mbps. Similar behaviors are

also observed for other family members in EUTCP(γ). This case study also confirms

the earlier claim that MPTCP without resource pooling may perform worse than the

best case single-path TCP.

In contrast, as plotted in Fig. 3.6 (b) again for the case of EUTCP(1.05), the

resource pooling capability of EUTCP(1.05) helps to balance the flow rate allocation

to maintain an equal share of the flow rate allocation, or to meet the same fairness

criterion, in response to C1 changes.

Based on the above performance analyses, we summarize the performance in

terms of fairness and responsiveness in Table 3.4. Note that the aggregate throughputs

for different MPTCPs are close to one another as shown in Table 3.2 and hence the

throughput is not included as a performance metric in the table. From the summary

given in this table, we conclude that EUTCP(γ) with γ in the range of [1, 1.1] offer

the best overall performance among all the MPTCPs tested in this chapter.

59

Table 3.4: Performance comparison of MPTCPs

Solutions TCP fairness Responsiveness

With Resource Pooling

LIA (Coupled) poor medium

Semicoupled or EUTCP(1) good fast

OLIA fair poor

Balia good medium

EUTCP(1.05) very good very fast

EUTCP(1.1) fair fast

Without Resource Pooling

EWTCP or WUTCP(1
m2) poor fast

WUTCP(1
m

) fair fast

3.5 Conclusions

In this chapter, we derive and implement in Linux two distinct families of

Network Utility Maximization (NUM)-optimal Multiple Path Transmission Control

Protocol (MPTCP) protocols, EUTCP(γ) and WUTCP(ω), by leveraging the TCP

utility function and the NUM solution for concave utilities, respectively. EUTCP(γ)

is a function of a rate-scaling vector of the sub-flow rate-scaling coefficients, γ and

WUTCP(ω) is a function of a utility weight vector of the sub-flow weights, ω. We also

show that the Semicoupled algorithm is a protocol in the family of EUTCP(γ) with

γ = 1 and EWTCP is a protocol in the family of WUTCP(ω) with ω = 1/m2, where

60

m is the number of sub-flow paths, and hence, are NUM-optimal. The performance

of the two families when coexisting with TCP is also analyzed based on experiment

in a testbed. The test results demonstrate that the family members with equal sub-

flow rate-scaling coefficient setting in the range of [1, 1.1] in EUTCP(γ) outperform

three well-known MPTCPs with resource pooling capability, including LIA, OLIA

and Balia, in terms of responsiveness and fairness and are on par with the three

MPTCPs in terms of the throughput performance.

61

CHAPTER 4

HYBRID MULTIPATH CONGESTION CONTROL

4.1 INTRODUCTION

A widely accepted design objective for MPTCP is three-pronged[46]: (i) the

overall flow rate for an MPTCP flow should be at least as high as the highest flow

rate a single-path TCP can achieve using any of the sub-flow paths of the MPTCP

flow, and the single-path TCP flow that achieves this flow rate is called the best

single-path TCP flow; (ii) to be fair to a single-path TCP, the total flow rate for any

number of subflows of an MPTCP flow sharing a bottleneck link with a single-path

TCP flow should not exceed the flow rate of the single-path TCP flow; and (iii) an

MPTCP flow must be able to balance the load among subflow paths [46]. Notable

MPTCPs that meet the three-pronged objective include Semi-coupled, LIA, OLIA,

and Balia [46, 49, 47, 48]. In this chapter, we generally call these MPTCPs Equal

bandwidth shared MPTCP (EMPTCP) because they tend to distribute the flow rates

evenly among all flows, regardless of how many subflows there are in a flow.

In this chapter, we argue that the above three-pronged design objective should

be augmented with yet another aspect, making it a four-pronged design objective, i.e.

to provide a mechanism to incentivize users to use the protocol. Although the first of

the three prongs of the above objective does provide some incentive for a user to use

EMPTCP over single-path TCP, an EMPTCP may end up discouraging users from

using it. This is simply because different paths used by an EMPTCP may be owned by

different Internet service providers based on different pricing structures. For example,

mobile devices, such as cell phones, are equipped with both WiFi connectivity and

62

cellular data service (e.g., 3G/4G/5G) most of the time. Usually, the WiFi connection

is without usage fee and the mobile data service may charge a usage fee based on the

amount of data sent/received. Considering the scenario of a social gathering, e.g., a

family party, where many guests may want to use their mobile phones to browse the

Internet, watch online videos, sending/receiving messages, and so on, via the host’s

WiFi network. This may result in low flow rates seen by and hence, poor Internet

experiences for individual guests. When this happens, a guest with a cellular data

service may be tempted to turn on an EMPTCP that meets the three-pronged design

objective, thinking that by doing so, his/her cellular data service may help prop

up the bandwidth needed to gain good experience at the cost of paying a small

amount of cellular data service fee. In reality, however, he/she may end up using the

cellular data service almost entirely and receiving a hefty bill later. This may well

be the case because an EMPTCP may attain the desired flow rate using the cellular

connection only, hence giving up much of the free/low-cost bandwidth on the WiFi

side. Obviously, this resource allocation is unfair to the guest who uses EMPTCP,

and hence, would discourage him/her from using EMPTCP again in the future. This

example clearly indicates that to incentivize users to use MPTCP in the face of

multiple paths with different pricing structures, the three-pronged design objective

should be augmented to a four-pronged one, with the fourth one being subflow path

pricing structure aware.

A naive solution is to simply use a weighted single-path TCP for each subflow

and assign a heavier weight to a subflow with a lower price. In this chapter, we call

this kind of MPTCP weighted MPTCP (WMPTCP). Note that an earlier MPTCP

protocol, known as equal-weight MPTCP [49] is a special case of WMPTCP, which

assigns the same weight to all the subflow paths. Again, using the above scenario

as an example, one may assign, e.g., 75% and 25% weights to subflows using WiFi

63

and cellular, respectively. By doing so, the guest who uses WMPTCP can get 75%

of the single-path TCP flow rate from the WiFi side for sure. In the meantime, it

can still compete for the bandwidth on the cellular side, but much less aggressively.

Unfortunately, however, WMPTCP does not meet the first and the third prongs of

the three-pronged design objective, meaning that it may lead to the overall flow rate

lower than that of the best single-path TCP flow and cannot balance the load.

In this chapter, we propose a new MPTCP that meets the four-pronged design

objective. The idea is to combine an EMPTCP with a WMPTCP to come up with

a hybrid MPTCP (H-MPTCP). H-MPTCP leverages the ability of WMPTCP to

allow price-aware subflow path rate allocation and the ability of EMPTCP to meet

the three-pronged objective, hence resulting in its ability to achieve the four-pronged

design objective. We implement the proposed protocol in Linux Kernel based on

the open-source MPTCP source codes [72]. Extensive test results demonstrate that

H-MPTCP can indeed achieve the four-pronged design objective. In the meantime,

it outperforms EMPTCP, WMPTCP, and some well-known MPTCP protocols (i.e.,

LIA[46] and Balia[47]) in terms of throughput and responsiveness.

4.2 Background and Motivations

A straightforward but naive approach to end-to-end MPTCP design is to simply

run independent end-to-end TCP flows as subflows on different paths. This approach,

however, is too aggressive and unfair to single-path TCP flows, and cannot balance

the loads among subflow paths. This leads to the design of EWTCP [49], a member

of the WMPTCP family. EWTCP attempts to achieve TCP fairness by modifying

the previous approach, i.e., reducing the TCP window increase rate by a factor of

wl = 1/S2 for all S TCP-based subflows. However, besides the lack of load balancing

capability inherited from the previous approach, EWTCP may lead to inefficient use

64

Figure 4.1: A family party example network

of networks and flow rates lower than the best single-path TCP. The shortcomings of

EWTCP further lead to the design of a coupled congestion control algorithms, also

known as the Linked Increases Algorithm (LIA) [65], [46]. LIA is purposely designed

to meet the three-pronged design objective and standardized by IETF. OLIA [48]

improves over LIA in terms of the Pareto optimality. More recently, semi-coupled

and Balanced linked adaptation (Balia) algorithm [47] were proposed to strike a good

balance between TCP-friendliness, responsiveness, and window oscillation, especially

to further improve responsiveness when network condition changes. All these solutions

(i.e., LIA, OLIA, semi-coupled, and Balia) meet the three-pronged design objective

and hence, are members of the EMPTCP family.

However, neither the WMPTCP family nor the EMPTCP family is capable of

achieving the four-pronged design objective. To demonstrate this, we take a closer

look at the family party example. Consider the network topology shown in Fig.4.1.

Adam is a MPTCP user who can use both WiFi free of charge and cellular with 10

cents per unit bandwidth per hour charge. Ken is a single-path TCP user who only

uses WiFi for free. So, we have two users where Adam and Ken can both use WiFi

service and Adam can also use cellular service. Assume that the maximum data rates

for both Adam’s and Ken’s applications are 100 bandwidth units. The link band-

65

Table 4.1: Flow rate allocations for the example

Scenario WiFi=Cellular=100 Cellular=5, WiFi=100
Adam Ken Adam Ken

Subflows Cellular WiFi Total WiFi Cellular WiFi Total WiFi
Best-case TCP 100($10) N.A. 100 100 N.A. 50 50 50
Equal MPTCP 100($10) 0 100 100 5($0.5) 47.5 52.5 52.5
Weighted MPTCP 57 ($5.7) 43 100 57 5($0.5) 43 48 57

widths for both WiFi and cellular connections represent the capacity of the bottleneck

link bandwidths of the connections. Now, we consider two different scenarios, where

in the first scenario, both WiFi and cellular connections can support up to 100 units

of bandwidth, and in the second scenario where WiFi has 100 units of bandwidth but

cellular has only 5 units of bandwidth. For both scenarios, EMPTCP will attempt

to equalize the flow rate allocation between both users, whereas WMPTCP will at-

tempt to allocate flow rates in proportion to their weights. For WMPTCP, we further

assume that the weights assignments are 0.75 and 0.25 for WiFi and cellular, respec-

tively. This will allow the subflow using the WiFi network to be allocated roughly

75% of the flow rate of a single-path TCP flow on the same network, resulting in a

potentially much reduced flow rate needed for the subflow on the cellular network

side.

Table 4.1 gives the flow rate allocation and costs for both Adam and Ken as well

as the best single-path TCP flow when Adam uses either EMPTCP or WMPTCP for

both scenarios. For the first scenario on the left, EMPTCP for Adam equalizes the

flow rate allocation by fully utilizing the cellular connection, yielding to the single-

path TCP flow for Ken completely on the WiFi connection. This results in Adam

paying for the full usage fee of the cellular link of $10 per hour, whereas Ken enjoys

the same flow rate performance for free. In contrast, WMPTCP that has a weight of

0.75 for WiFi and 0.25 for cellular is able to rip 43% of the WiFi link bandwidth and

66

57% of cellular link bandwidth, resulting in the same total flow rate of 100 units, as

the cost of $5.7 per hour, more than 40% lower than the case of EMPTCP. In other

words, in this scenario, WMPTCP offers a better incentive to users to use MPTCP

than EMPTCP by reducing the usage costs. These weights may be set as a function

of the pricing models of individual subflow paths to further incentivize users to use

them.

For the second scenario on the right in Table 4.1, to equalize the flow rate

allocation, EMPTCP has to take up a much bigger chunk of the bandwidth from

WiFi connection, i.e. 47.5, to be exact. So, EMPTCP is able to achieve a total

bandwidth of 52.5 units. In contrast, with the weight of 0.75, WMPTCP still can

only grab 43% of the bandwidth from a WiFi connection, leaving it with a total

flow rate, 48 units, lower than both EMPTCP and the flow rate of 50 for the best

single-path TCP.

The above example clearly demonstrates the need for a new MPTCP, which mo-

tivates us to propose H-MPTCP. As we shall demonstrate, in scenario 1, H-MPTCP

will automatically select WMPTCP over EMPTCP, whereas in scenario 2, it will

automatically select EMPTCP. In either case, H-MPTCP results in better than the

best single-path TCP performance at a lower cost than EMPTCP, hence, meeting

the four-pronged design objective.

Based on the discussion so far and the performance data to be presented in the

later sections, Table 4.2 provides a summary of the features for some notable end-to-

end MPTCP protocols as well as H-MPTCP. As one can see, H-MPTCP possesses

the most desirable features among all MPTCPs.

Finally, we note that there are other works that focus on specific aspects of the

MPTCP protocol design challenges, e.g., bottleneck detection [73]−[74] and packet

67

Table 4.2: MPTCP Design objectives and performance parameters

Design Performance
Objectives Evaluation

Solutions Best-case TCP Load Adoption Responsiveness
TCP Friendliness Balancing Incentive

EWTCP[49] No Yes No Yes High
LIA [46] Yes Yes Yes No Low
Balia[47] Yes Yes Yes No Medium
H-MPTCP Yes Yes Yes Yes High

scheduling [75]−[76]. However, they are not concerned with new end-to-end MPTCP

protocol design, which is the main focus of this chapter.

4.3 Hybrid Multipath Congestion Control

In this section, we first briefly describe EMPTCP and WMPTCP. Then we

introduce H-MPTCP.

4.3.1 EMPTCP

For EMPTCP, the congestion window size (Wl) for subflow (l) in each RTT

in the slow start phase is the same as that in TCP Reno. The congestion window

change for subflow l in each RTT in the congestion avoidance phase is,

∆Wl =


Wl

τl
∑S
j=1Wj/τj

if cg = 0

−Wl

2
if cg = 1.

(4.1)

where Wj and τj are the congestion window size and RRT for subflow j (j = 1, ..., S).

In this chapter, we choose semicoupled mentioned in Balia[47] for EMPTCP, but in

general, we can use any members in the EMPTCP family.

From Equation (4.1), we know that the subflow increase rate is proportional to

the ratio of the subflow rate with the overall flow rate, i.e., xl/x while its decrease

68

rate is the same as that in TCP Reno. It means that the subflow rate increase is

slower for a multipath flow with a higher flow rate, or the network tries to evenly

allocate the flow rate to all flows. For single-path TCP, Wl = W , then the congestion

window change degenerates to single-path TCP Reno.

4.3.2 WMPTCP

For WMPTCP, the change in congestion window size (Wl) for subflow (l) in

each RTT in the slow start phase is the same as that in TCP Reno in the slow start

phase. The congestion window change for subflow l with weight (ωl) in each RTT in

the congestion avoidance phase is,

∆Wl =


ωl if cg = 0

−Wl

2
if cg = 1.

(4.2)

From Equation (4.2), we know that the rate increase for a subflow l is propor-

tional to the weight ωl. If ωl < 1, the subflow increase rate is smaller than that in a

single path TCP flow. If we set ωl < 1 for any subflow l, then each subflow obtains

no more flow rate than that of a single path TCP in a shared link. WMPTCP can

allocate more bandwidth than the best single-path TCP in some cases, but it may

not guarantee the rate of WMPTCP flow always be no less than the best single TCP

flow rate as shown in Table 4.1. If ωl = 1 for any subflow l, the congestion window

change of each subflow is the same as in TCP Reno. In this case, a multipath flow is

just the combination of S individual single TCP flows.

4.3.3 H-MPTCP

To meet the four-pronged design objective, we now design H-MPTCP. We set

the weight 1/S ≤ 1 for each subflow of an MPTCP flow with S subflows. With

69

such weight assignment, each subflow can get no more flow rate than that of a single

TCP flow rate for a shared link. But the overall flow rate of an MPTCP may have a

chance to get more rate than its best single-path TCP flow. In the slow start phase,

H-MPTCP behaves the same as TCP-Reno. In the congestion avoidance phase, H-

MPTCP selects the larger subflow increase rate from the increased rates of EMPTCP

and WMPTCP, i.e.,

∆Wl = max(∆WEqual
l ,∆WWeighted

l), (4.3)

where ∆WEqual
l and ∆WWeighted

l are the congestion window increases in each RTT

defined in Equation. (4.1) and Equation. (4.2) in case of no congestion, respectively.

Under ”normal” situation, e.g., scenario one in the example given in Section

4.2, WMPTCP is likely to be automatically selected because it is more respon-

sive/aggressive than EMPTCP [47]. EMPTCP will take over only under ”abnormal”

situations, e.g., scenario two in Section 4.2, when WMPTCP fails to reach flow rate

equal to or higher than the best single-path TCP. In this case, EMPTCP will ensure

that the flow rate will be balanced to further improve the flow rate performance.

In summary, in the slow start phase, we have,

∆Wl =


Wl if cgl = 0

−Wl

2
if cg1 = 1.

(4.4)

and in the congestion avoidance phase, we have,

∆Wl =


max(ωl,

Wl

τl
∑S
j=1Wj/τj

) if cg = 0

−Wl

2
if cg = 1.

(4.5)

4.4 Performance Evaluation

In this section, we evaluate the proposed H-MPTCP compared to the EMPTCP

and WMPTCP and the existing MPTCP solutions LIA [46] and Balia [47] in Linux

70

Figure 4.2: Network Topology for H-MPTCP Performance Evaluation

kernel implementation on a testbed. The hosts (i.e., S1, S2, and D) are Dell Pow-

eredge servers, each equipped with 8-core processors with 10 GB memory and running

Linux 16.04. Node b is a Dell N4032F switch with multiple 1 Gbps Ethernet interfaces

running Ubuntu 16.04.1 LTS (Linux kernel 4.19.98). The link bandwidth for all the

links can be configured at any rate lower than or equal to 1 Gbps through the net-

working interface traffic control command tc, allowing for the testing of the MPTCP

responsiveness to sudden link bandwidth changes. H-MPTCP is implemented by

modifying the open-source Linux kernel codes of LIA and Balia [72].

We use the network topology as shown in Fig. 4.2. In the network, source S1 has

a single path TCP flow x2 running TCP Reno, and source S2 have an MPTCP flow

with two subflows x11 and x12. Subflow x12 representing the Wi-Fi link shares the link

from node b to destination D with flow x2. We set different bandwidth combinations

of C1 and C2 to test the flow rate allocation in different MPTCP solutions. This

network topology is also adopted in Balia [47] for the testing of their solution.

We test the performance of the proposed protocol in three different cases, each

has a different network setup (i.e., different bandwidth C1 and C2). For the test,

each source has a huge data to send to the destination D, and each flow can be

viewed as an infinite data flow during our test (i.e., the test is finished before the

71

data is fully sent out). In this case, the MPTCP user is trying to get the maximum

bandwidth available to improve the flow completion time. Each flow reaches its stable

rate quickly and we present the first 10-second results in the first two cases and the

first 20-second for the third case. The weight values in WMPTCP is set as 1/2 for

both subflows x11 and x12. Flow x2 and the two subflows of x1 (i.e., x11 and x12) start

at the same time in each test.

Case 1: First we test the performance of MPTCP solutions in a symmetric

network by set C1 = C2 = 1024 Mbps (i.e. 1 Gbps link). With this setup, the rate

allocation for EMPTCP are x11 = 1024 Mbps, x12 = 0 Mbps (i.e., the overall flow

rate x1 = 1024 Mbps) and x2 = 1024 Mbps and for WMPTCP are x11 = 1024 Mbps,

x12 ≈ 341 Mbps (i.e., the overall flow rate x1 ≈ 1365 Mbps) and x2 ≈ 683 Mbps,

respectively.

Fig. 4.3 shows the results of rate allocation (the average rate in a second) in

the proposed protocol compared with EMPTCP, WMPTCP, LIA, and Balia. The

rate of each flow/subflow is also presented using a dashed line with the same color as

the real measured rate in an MPTCP solution. As LIA and Balia have equal sharing

of the bandwidth, they achieve similar rate allocations as EMPTCP, and hence the

theoretical rates in EMPTCP are also listed in LIA and Balia results for comparison.

From the results, we know that the rate allocations in EMPTCP and WMPTCP are

closely matched to their corresponding theoretical rates with little lower rates. The

results indicate that EMPTCP and WMPTCP can really achieve the rate allocation.

The lower rate is due to the discrete-time control and network condition feedback

delay, these make the protocols unable to achieve full bandwidth usage. LIA and

Balia also achieve their design objective, i.e., sharing network bandwidth to all flows

as even as possible. In this case, WMPTCP allows the MPTCP flow x1 to obtain a

higher flow rate than the best single-path TCP flow. As WMPTCP has a higher flow

72

(a) LIA (b) Balia

(c) EMPTCP (d) WMPTCP

(e) H-MPTCP (f) MPTCP flow rate comparison

Figure 4.3: Performance for H-MPTCP in Case 1

rate than EMPTCP, H-MPTCP selects WMPTCP and hence achieves the same flow

rate allocation as that in WMPTCP (see Fig. 4.3 (e)).

The overall flow rate of the MPTCP flow (i.e., x1) and its theoretical best single-

path TCP flow rate (denoted as dashed red line) are shown in Fig. 4.3 (f). From

the results, we can see that all EMPTCP, LIA, and Balia are just achieve close to

the theoretical best single-path TCP flow rate. Although they make flow x2 to get a

73

higher flow rate, they may have no incentives for the usage of MPTCP. WMPTCP/H-

MPTCP achieves a higher MPTCP flow rate than the best single flow rate. It also

benefits flow x2 in case x1 was using a single path TCP as congestion control and

chooses the path x12. Hence WMPTCP/H-MPTCP gives more incentives to users to

apply MPTCP.

(a) LIA (b) Balia

(c) EMPTCP (d) WMPTCP

(e) H-MPTCP (f) MPTCP flow-rate comparison

Figure 4.4: Performance for H-MPTCP in Case 2

74

Case 2: Now we test the performance of MPTCP solutions in an asymmetric

network by set C1 = 8 Mpbs and C2 = 1024 Mbps. With this setup, the rate

allocation for EMPTCP are x11 = 8 Mbps, x12 = 508 Mbps (i.e., the overall flow

rate x1 = 516 Mbps) and x2 = 516 Mbps and for WMPTCP are x11 = 8 Mbps,

x12 ≈ 341 Mbps (i.e., the overall flow rate x1 ≈ 349 Mbps) and x2 ≈ 683 Mbps,

respectively. In this case, x1 in WMPTCP has a lower flow rate than that of the best

single path TCP flow. As EMPTCP can achieve a higher flow rate, H-MPTCP selects

EMPTCP to increase the rate and hence achieves the same flow rate allocation as

that in EMPTCP, as shown in Fig. 4.4 (c) and Fig. 4.4 (e). Fig. 4.4 shows the results

of rate allocation in the MPTCP solutions. Again, we see that the rate allocations of

EMPTCP/H-MPTCP and WMPTCP closely match their corresponding theoretical

rates. From Fig. 4.4 (f), we can see that all the protocols can still get more rates

(516 vs. 512 Mbps theoretically) than that of the best single-path TCP. Although the

path S2 to D has very limited bandwidth but EMPTCP, H-MPTCP, LIA, and Balia

can still balance the rates and benefit the single path flow x2. This indicates that

MPTCP can be useful to balance the traffic and increase network utilization. From

both case 1 and case 2, we know that H-MPTCP can guarantee an MPTCP flow to

achieve at least the best single-path TCP flow rate as that in EMPTCP while it can

try to obtain higher flow rate as many as possible and hence can encourage users to

use it.

Case 3: Finally, we test the performance of the proposed protocol in a dynamic

network environment to see the responsiveness to network changes. In this case, we

set the link bandwidth C1 = C2 = 1024 Mbps in the first 6 seconds and change the

bandwidth C2 = 8 Mbps in the next 7 seconds (i.e., from second 7 to second 13),

and then C2 is switched back to 1024 Mbps. As this setup, the rate allocation in the

proposed protocol during the first 6 seconds and after the second 13 are the same

75

(a) LIA (b) Balia

(c) EMPTCP (d) WMPTCP

(e) H-MPTCP (f) MPTCP flow-rate comparison

Figure 4.5: Performance for H-MPTCP in Case 3

as that in case 1, and the rate allocation during the time period between the second

6 to second 13 is the same as that in case 2. For H-MPTCP, it always selects the

higher flow from EMPTCP and WMPTCP, and hence it selects WMPTCP congestion

control in the first 6 seconds and after the second 13 and chooses EMPTCP during

the time period from second 6 to second 13.

76

Fig. 4.5 shows the results of rate allocation in the five MPTCP solutions. From

the results, we see that EMPTCP, WMPTCP, and H-MPTCP can closely match their

rates in this dynamic network environment. Now let us look at the flow rate change

during the network bandwidth changes.

First, we note that the subflow rate x12 in WMPTCP has no change, because

the weight for the subflow is only dependent on the number of subflows, and hence

the flow rate allocation in the shared link does not change.

Second, in EMPTCP, LIA and Balia, we can see that the subflow rate of x11

(denoted as a green line) drops to 8 Mbps almost the same time in all the three

protocols, this is because subflow x11 does not compete with the bandwidth with any

other flow/subflow. As the subflow rate x11 is reduced, the rate of subflow x12 is then

increased in all three protocols, and hence the flow rate x2 should be reduced because

of the shared bandwidth with x12. From Fig. 4.5 (a), Fig. (b) 4.5, and Fig. 4.5 (c),

we can see that the transition time for flow x2 (i.e., yellow line) dropped to its new

balanced rate has almost the same time in the three protocols.

Third, from Fig. 4.5 (a), Fig. (b) 4.5, and Fig. 4.5 (c), we know that the tran-

sition time for subflow x12 (i.e., blue line) reaching its new balanced rate is different

in the three protocols. In LIA and Balia, the transition time takes about 3 seconds

from second 6 to about second 9 while in EMPTCP, the transition time is about 2

seconds from second 6 to about second 8. This indicates that EMPTCP can be more

quickly to catch up with the network condition change to reach the new balanced

rate than LIA and Balia. This is because Semicoupled has higher responsiveness as

compared to LIA and Balia as mentioned in the Balia paper[47].

Fourth, H-MPTCP switches from WMPTCP at second 6 and switches back to

Weighted-MPCTP at second 13. The transition time in H-MPTCP is similar to that

in EMPTCP as shown in Fig. 4.5 (d).

77

From the results, we can also see that H-MPTCP always chooses the higher flow

rate from EMPTCP and WMPTCP, and hence benefits the user to apply MPTCP.

The results show that EMPTCP/H-MPTCP can quickly respond to the network

condition change and reaches its new balanced state.

Through the three-case studies, we conclude that the proposed H-MPTCP so-

lution is ready to be applied in today’s Internet and can meet the MPTCP design

goals and give more incentives for users to apply the MPTCP solutions.

4.5 Conclusion

In this chapter, we propose a Hybrid-MPTCP(H-MPTCP)that always achieves

a higher flow rate from EMPTCP and WMPTCP and provides a built-in mecha-

nism that can encourage users to apply it over other MPTCPs as well as single-path

protocols with different pricing structures. Extensive real Linux implementation test

results verify that the proposed H-MPTCP can indeed achieve the design objectives.

78

CHAPTER 5

OPTIMAL-DCTCP

5.1 INTRODUCTION

Datacenter networks are significantly different from the public Internet. The

round trip time (RTT) for a datacenter network is usually much smaller (less than

200 µs versus tens to hundreds of milliseconds in the public Internet). As a result, a

data flow may consume a huge amount of bandwidth at very low packet latency. TCP

is particularly ineffective in such a high-bandwidth-low-latency environment, causing

excessive packet queuing delay and packet losses, especially in the presence of incast

congestion [2]. On one hand, DCTCP [2] manages to address the above shortcomings

of TCP by employing the ECN mechanism for earlier congestion detection, allowing

switches to maintain short queues and hence, reducing packet latency. However,

DCTCP is an empirical solution. Therefore, in this chapter, we revisit this state-of-

the-art datacenter protocol and derived the NUM-optimal congestion control protocol

for DCTCP using our HOLNET framework. First, we give some background of

the existing state-of-the-art DCTCP protocol and the reason for it not being NUM-

optimal. Then we propose the new NUM-optimal DCTCP(O-DCTCP) and prove

that with a simple modification of the congestion indicator, DCTCP can be turned

into a NUM-optimal traffic control protocol. Finally, we discuss the future work and

conclusions for this chapter.

79

Figure 5.1: z(.) function comparison for (a) Current DCTCP vs (b) Optimal-DCTCP

5.2 Background

Here we analyze the current DCTCP algorithm. DCTCP uses α, i.e., the

fraction of packets that are marked in one RTT as a measurement of the degree of

congestion. DCTCP relies on α and reacts in proportion to the extent of congestion,

not its presence. The current DCTCP traffic control algorithm according to [2] can

be defined as

ẋ =

 µ if cg = 0

−αβx if cg = 1
(5.1)

5.3 Optimal-DCTCP

In this section, we use the HOLNET framework and the TCP utility function

given in chapter 2 and derive a new NUM-Optimal Utility function for DCTCP.

Using Eq. (2.22), i.e. TCP utility function as the base utility in the CAP is

given by,

U(x) = (
µ

β
+ x)[log(µ+ βx)− 1]− x[log(βx)− 1], (5.2)

80

where µ is the additive increase rate and βx is the multiplicative decrease.

We take the first order derivative of (5.2) as,

dU(x)

dx
= [[log(µ+βx)−1]∗1+(

µ

β
+x)∗(

β

µ+ βx
)]− [[log(βx)−1]∗1+x∗ β

βx
] (5.3)

dU(x)

dx
= [[log(µ+ βx)− 1] + (

µ+ βx

β
) ∗ (

β

µ+ βx
)]− [[log(βx)− 1] + 1] (5.4)

dU(x)

dx
= [[log(µ+ βx)− 1] + 1]− [[log(βx)] (5.5)

dU(x)

dx
= [log(µ+ βx)− log(βx)] (5.6)

dU(x)

dx
= log(

µ+ βx

βx
). (5.7)

.

Now, using Eq. (5.7) in Eq. (2.13) gives us

f(x) = 1− e−log(
µ+βx
βx

), (5.8)

f(x) = 1− elog(
βx

µ+βx
), (5.9)

f(x) = 1− βx

µ+ βx
, (5.10)

f(x) =
µ

µ+ βx
, (5.11)

81

Let zDCTCP (t, x, cg) be the positive piecewise continuous scalar function for

DCTCP. Even though DCTCP is empirical in design, we use the congestion control

laws defined by HOLNET NUM and define the z(.) function for the current DCTCP

as

zDCTCP (t, x, cg) = ztcp(t, x, cg) ∗ (αcg + c̄g). (5.12)

For DCTCP, cg = 0 when α =0 and cg = 1 when α > 0. So, the defined

z(.) function is discontinuous at instants the congestion status changes (i.e., from

congestion to non-congestion and vice versa) as shown in Figure 5.1 (a). Since the

z(.) function is discontinuous, the current DCTCP’s optimality cannot be proved

according to [55].

Next, we show the z(.) function for O-DCTCP.

zO−DCTCP (t, x, cg) = ztcp(t, x, cg) ∗ (αcg + (1− α)c̄g), (5.13)

where ztcp is the z-function of the TCP control law in CAP as derived in Eq. (2.23).

As shown in Figure 5.1 (b), the point of congestion status change is now for α =0.5.

So the z(.) function remains a continuous function and hence its optimality can be

proven.

Now by substituting Eq. (5.13) and (5.11) into Eq. (2.12), we derive the new

OPTIMAL-DCTCP conegstion control procotol as,

ẋ =

 (1− α)µ if cg = 0(α < 0.5)

−αβx if cg = 1(α >= 0.5)
(5.14)

for the CAP.

The main difference between the existing and the new O-DCTCP lies in the z(.)

function. The current DCTCP goes to the decreasing part as ECN bits are marked,

i.e., α > 0. Changing the point of congestion status change (i.e., from congestion to

82

non-congestion and vice versa) to α = 0.5 makes the z(.) function continuous and

makes the DCTCP protocol NUM-optimal.

5.4 Future Work and Conclusion

Based on the HOLNET framework, we revisit the state-of-the-art, but empiri-

cally designed datacenter protocol, i.e. DCTCP [2] and propose a new NUM-optimal

traffic control protocol called Optimal-DCTCP(O-DCTCP). We plan to focus on fur-

ther testing of the proposed solution for O-DCTCP in handling different kinds of

workloads and different datacenter topologies.

83

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This dissertation aimed at addressing challenges with existing datacenter traffic

control design space being point and empirical in design. We reformulated the NUM

framework to fully harness its potential in terms of existing, rich distributed solu-

tions, to enable large families of traffic control protocol for datacenter applications.

We presented HOLNET, a holistic traffic control framework for datacenter networks.

HOLNET allows large families of traffic control protocols of various degrees of sophis-

tication to be developed. Protocols in each family developed under HOLNET share a

common, user-defined global optimization objective. As a result, the protocols in each

family can be fairly compared and carefully selected to fully explore the performance,

scalability, and design complexity tradeoffs. As an example, we develop HOLNET-

UTA, a family of integrated congestion controllers and load balancers, maximizing the

sum of weight TCP utilities. The large-scale simulation demonstrates the backward

compatibility and flexibility of HOLNET.

Using the HOLNET framework, the dissertation also introduces two distinct

families of Network Utility Maximization (NUM)-optimal Multiple Path Transmission

Control Protocol (MPTCP) protocols, i.e., Equal Utility MPTCP with sub-flow rate-

scaling vector, γ = {γ1, ..., γm} (EUTCP(γ)) and Weighted Utility MPTCPs with

sub-flow weight vector, ω = {ω1, ..., ωm} (WUTCP(ω)), where m is the number of

sub-flow paths. The performance of the two families when coexisting with TCP is

also analyzed based on an experiment in a testbed.

84

This dissertation also proposes a Hybrid-MPTCP (H-MPTCP) that always

achieves a higher flow rate from EMPTCP and WMPTCP and provides a built-

in mechanism that can encourage users to apply it over other MPTCPs as well as

single-path protocols with different pricing structures.

In the last part of this dissertation, we revisit another state-of-the-art datacenter

protocol that is empirically designed, i.e. DCTCP, and present how to make this

protocol NUM-optimal.

In our next steps, we plan to focus on further testing of the proposed solution for

NUM-optimal DCTCP. In our future work, we also plan to work on a NUM-optimal

Hybrid-MPTCP solution.

85

REFERENCES

[1] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian, “DRILL:

Micro Load Balancing for Low-latency Data Center Networks,” in Proceedings

of ACM SIGCOMM, 2017.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,

S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),” in Proceedings

of ACM SIGCOMM, 2010.

[3] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling TCP Reno

performance: a simple model and its empirical validation,” IEEE/ACM Trans-

actions on Networking, vol. 8, pp. 133–145, 2000.

[4] C. E. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,” in RFC 2992.

[5] B. Vamana, J. Hasan, and T. Vijakumar, “Deadline-Aware Datacenter TCP

(D2TCP),” in Proceedings f ACM SIGCOMM, 2012.

[6] D. Han, R. Grandl, A. Akella, and S. Seshan, “Fcp: A flexible transport frame-

work for accommodating diversity,” ACM SIGCOMM Computer Communication

Review, vol. 43, no. 4, pp. 135–146, 2013.

[7] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Alizadeh, and S. Katti, “

NUMFabric: Fast and Flexible Bandwidth Allocation in Datacenters,” in Pro-

ceedings of the 14th ACM SIGCOMM, 2014.

[8] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fin-

gerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese, “ CONGA:

Distributed Congestion-Aware Load Balancing for Datacenters,” in Proceedings

of ACM SIGCOMM, 2014.

86

[9] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley,

“Improving Datacenter Performance and Robustness with Multipath TCP,” in

Proceedings of ACM SIGCOMM, 2011.

[10] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Noore, G. Antichi, and

M. Wojcik, “Re-architecting datacenter networks and stacks for low latency and

high performance,” in Proceedings of ACM SIGCOMM, 2017.

[11] M. Alizadeh, S. Yang, M. Sharif, and S. Katti, “pFabric: Minimal Near-Optimal

Datacenter Transport,” in Proceedings of ACM SIGCOMM, 2013.

[12] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and W. Sun, “PIAS: Practical

Information-Agnostic Flow Scheduling for Data Center Networks,” in Proceedings

of the 13th ACM Workshop on Hot Topics in Networks, 2014.

[13] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron, “Better Never than

Late: Meeting Deadlines in Datacenter Networks,” in Proceedings of ACM SIG-

COMM, 2011.

[14] L. Chen, K. Chen, W. Bai, and M. Alizadeh, “Scheduling Mix-flows in Com-

modity Datacenters with Karuna,” in Proceedings of ACM SIGCOMM, 2016.

[15] D. Acemoglu, R. Johari, and A. Ozdaglar, “Partially Optimal Routing,” IEEE

Journal of Selected Areas of Communications, vol. 25, pp. 1148–1160, 2007.

[16] L. Qui, Y. R. Yang, Y. Zhang, and S. Shenker, “On Selfish Routing in Internet-

like Environments,” in Proceedings of ACM SIGCOMM, 2003.

[17] F. Kelly and T. Voice, “Stability of end-to-end algorithms for joint routing and

rate control,” ACM SIGCOMM Computer Communication Review, vol. 35, no. 2,

pp. 5–12, 2005.

[18] Y. Liu, H. Zhang, W. Gong, and D. F. Towsley, “On the interaction between

overlay routing and underlay routing,” in Proceedings of IEEE INFOCOM, 2005.

87

[19] S. Sen, D. Shue, S. Ihm, and M. J. Freedman, “Scalable, optimal flow routing in

datacenters via local link balancing,” in Proceedings of ACM CoNEXT, 2013.

[20] C. Lee, C. Park, K. Jang, S. Moon, and D. Han, “Accurate latency-based con-

gestion feedback for datacenters,” in Proceedings of USENIX ATC, 2015.

[21] M. Alizadeh, A. Kabbani, T. Edsall, and B. Prabhakar, “Less is More: Trading

a little Bandwidth for Ultra-Low Latency in the Data Center,” in Proceedings of

USENIX NSDI, 2012.

[22] I. Cho, K. Jang, and D. Han, “Credit-Scheduled Delay-Bounded Congestion

Control for Datacenters,” in Proceedings of ACM SIGCOMM, 2017.

[23] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and S. Shenker, “

pHost: Distributed near-optimal datacenter transport over commodity network

fabric,” in Proceedings of ACM CoNEXT, 2015.

[24] R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker, “Recursively Cautious Con-

gestion Control,” in Proceedings of the 14th ACM Workshop on Hot Topics in

Networks, 2014.

[25] D. Katabi, M. Handkwy, and C. Rohrs, “ Congestion control for high bandwidth-

delay product networks,” in Proceedings of ACM SIGCOMM, 2002.

[26] A. Munir, G. Baig, S. M. Irteza, I. A. Qazi, A. X. Liu, and F. a. Dogar, “Friends,

Not Foes: Synthesizing Existing Transport Strategies for Data Center Networks,”

in Proceedings of ACM SIGCOMM., 2014.

[27] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. Ismail, M. S. Iqbal, and

B. Khan, “Minimizing Flow Completion Times in Data Centers,” in Proceedings

of IEEE INFOCOM, 2013.

[28] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,

S. Raindel, M. Haj, and Y. Ming, “Congestion Control for Large-Scale RDMA

Deployments,” in Proceedings of ACM SIGCOMM, 2015.

88

[29] IEEE, “DCB. 802.1Qbb - Priority-based Flow Control,” 2011. [Online].

Available: http://www.ieee802.org/1/pages/802.1bb.html

[30] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn, “RDMA

over Commodity Ethernet at Scale,” in Proceedings of ACM SIGCOMM, 2016.

[31] R. Mittal, U. C. Berkeley, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. G.

Microsoft, A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “TIMELY : RTT-

based Congestion Control for the Datacenter,” in Proceedings of ACM SIG-

COMM, 2015.

[32] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with pre-

emptive scheduling,” in Proceedings of ACM SIGCOMM, 2012.

[33] N. Dukkipati and N. Mckeown, “Why Flow-Completion Time is the Right metric

for Congestion Control and why this means we need new algorithms,” ACM

SIGCOMM Computer Communication Review, vol. 36, pp. 59–62, 2006.

[34] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella, “Presto:

Edge-based Load Balancing for Fast Datacenter Networks,” in Proceedings of

ACM SIGCOMM, 2015.

[35] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu, Y. Xiong,

and D. Maltz, “Per-packet Load-balanced , Low-Latency Routing for Clos-based

Data Center Networks Categories and Subject Descriptors,” in Proceedings of

ACM CoNEXT, 2013.

[36] A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene, “FlowBender: Flow-level

Adaptive Routing for Improved Latency and Throughput in Datacenter Net-

works,” in Proceedings of ACM CoNEXT, 2014.

[37] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, “Resilient Datacenter

Load Balancing in the Wild,” in Proceedings of ACM SIGCOMM, 2017.

89

[38] N. Katta, A. Ghag, M. Hira, I. Keslassy, A. Bergman, C. Kim, and J. Rexford,

“Clove: Congestion-Aware Load Balancing at the Virtual Edge,” in Proceedings

of ACM CoNEXT, 2017.

[39] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “HULA: Scalable Load

Balancing Using Programmable Data Planes,” in Proceedings of ACM SOSR,

2016.

[40] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the Impact of Packet

Spraying in Data Center Networks,” in Proceedings of ACM INFOCOMM, 2013.

[41] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS Adaptive Traffic

Engineering,” in Proceedings of IEEE INFOCOM, 2001.

[42] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the Tightrope :

Responsive Yet Stable Traffic Engineering,” in Proceedings of ACM SIGCOMM,

2005.

[43] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load balancing with-

out packet reordering,” ACM SIGCOMM Computer Communication Review,

vol. 37, no. 2, p. 51, 2007.

[44] E. Vanini, R. Pan, M. Alizadehand, P. Taheri, and T. Edsall, “Let It Flow :

Resilient Asymmetric Load Balancing with Flowlet Switching,” in Proceedings

of ACM NSDI, 2017.

[45] P. Wang, H. Xu, Z. Niu, D. Han, and Y. Xiong, “Expeditus : Congestion-aware

Load Balancing in Clos Data Center Networks,” in Proceedings of ACM SoCC,

2016.

[46] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design, implementation

and evaluation of congestion control for multipath tcp,” in Proceedings of NSDI,

vol. 11, 2011, pp. 8–8.

90

[47] Q. Peng, A. Walid, J. Hwang, and S. H. Low, “Multipath tcp: analysis, design,

and implementation,” IEEE/ACM Transactions on Networking (TON), vol. 24,

no. 1, pp. 596–609, 2016.

[48] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec, “Mptcp is not pareto-

optimal: Performance issues and a possible solution,” IEEE/ACM Transactions

on Networking, vol. 21, no. 5, pp. 1651–1665, 2013.

[49] M. Honda, Y. Nishida, L. Eggert, P. Sarolahti, and H. Tokuda, “Multipath

congestion control for shared bottleneck,” in Proceedings of PFLDNeT workshop,

vol. 357. Citeseer, 2009, p. 378.

[50] S. Shenker, “Fundamental design issues for the future internet,” IEEE Journal

of Selected Areas in Communications, vol. 13, pp. 1176–1188, 1995.

[51] Z. Wang, A. Singhal, Y. Wu, C. Zhang, H. Che, H. Jiang, B. Liu, and C. Lagoa,

“Holnet: A holistic traffic control framework for datacenter networks,” in 2020

IEEE 28th International Conference on Network Protocols (ICNP). IEEE, 2020,

pp. 1–12.

[52] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for communication

networks: shadow prices, proportional fairness and stability,” Journal of the

Operational Research Society, vol. 49, no. 1, pp. 237–252, 1998.

[53] S. H. Low and D. E. Lapsley, “Optimization Flow Control I: Basic Algorithm

and Convergence,” IEEE/ACM Transactions on Networking, vol. 7, no. 6, pp.

861–874, 1999.

[54] S. H. Low, “A Duality Model of TCP and Queue Management Algorithms,”

IEEE/ACM Transactions on Networking, vol. 11, no. 4, pp. 525–536, 2003.

[55] S. Korovin and V. Utkin, “Using sliding modes in static optimization and non-

linear programming,” Automatica, vol. 10, no. 5, pp. 5250–532, 1974.

91

[56] B. A. Movsichoff, C. Lagoa, and H. Che, “End-to-End Optimal Algorithm for

Integrated QoS, Traffic Engineering, and Failure Recovery,” ACM/IEEE Trans-

actions on Networking, vol. 15, no. 4, pp. 813–823, 2007.

[57] W. Su, C. Liu, C. Lagoa, H. Che, K. Xu, and Y. Cui, “A Family of Optimal,

Distributed Taffic Control Laws in a Multidomain Environment,” IEEE Trans-

actions on Control System Technology, vol. 23, no. 4, pp. 1373–1386, 2015.

[58] M. Ashour, J. Wang, C. M. Lagoa, N. Aybat, and H. Che, “Non-Concave network

utility maximization: A distributed optimization approach,” in Proceedings of

IEEE INFOCOM, 2017.

[59] “Center of mass,” https://en.wikipedia.orgwikiCenter of mass.

[60] “Lagrange multiplier,” https://en.wikipedia.orgwikiLagrange multiplier.

[61] J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,” pp.

556–567, 2000.

[62] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ECN in Multi-Service Multi-

Queue Data Centers,” in Proceedings of ACM NSDI, 2016.

[63] M. Kheirkhah, I. Wakeman, and G. Parisis, “Multipath-TCP in ns3,” in Pro-

ceedings of ACM Workshop on ns-3, 2014.

[64] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.

Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible Data Center

Network,” in Proceedings of ACM SIGCOMM, 2009.

[65] C. Raiciu, M. Handley, and D. Wischik, “Coupled congestion control for multi-

path transport protocols,” in RFC6356, 2011.

[66] C. Lagoa and H. Che, “Decentralized Optimal Traffic Engineering in the Inter-

net,” ACM SIGCOMM Communication Review, vol. 3, pp. 1007–1018, 2000.

[67] L. Ye, Z. Wang, H. Che, and C. M. Lagoa, “TERSE:A Unified End-to-End

Traffic Control Mechanism to Enable Elastic, Delay Adaptive, and Rate Adaptive

92

Services,” IEEE Journal on Selectied Areas in Communications, vol. 29, no. 5,

pp. 938–950, 2011.

[68] C. M. Lagoa, H. Che, and B. A. Movsichoff, “Adaptive control algorithms for de-

centralized optimal traffic engineering in the Internet,” ACM/IEEE Transactions

on Networking, vol. 12, no. 3, pp. 415–428, 2004.

[69] L. Ye, Z. Wang, H. Che, H. B. Chan, and C. M. Lagoa, “Utility function of tcp,”

Computer communications, vol. 32, no. 5, pp. 800–805, 2009.

[70] H. Han, S. Shakkottai, C. Hollot, R. Srikant, and D. Towsley, “Overlay tcp for

multi-path routing and congestion control,” in IMA Workshop on Measurements

and Modeling of the Internet, 2004.

[71] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling tcp throughput:

A simple model and its empirical validation,” in Proceedings of the ACM SIG-

COMM’98 conference on Applications, technologies, architectures, and protocols

for computer communication, 1998, pp. 303–314.

[72] S. B. C. Paasch, “Multipath TCP in the Linux Kernel,” http://www.multipath-

tcp.org/, 2019, [Online].

[73] S. Hassayoun, J. Iyengar, and D. Ros, “Dynamic window coupling for multipath

congestion control,” in 2011 19th IEEE International Conference on Network

Protocols. IEEE, 2011, pp. 341–352.

[74] W. Wei, Y. Wang, K. Xue, D. S. Wei, J. Han, and P. Hong, “Shared bottleneck

detection based on congestion interval variance measurement,” IEEE Communi-

cations Letters, vol. 22, no. 12, pp. 2467–2470, 2018.

[75] F. H. Mirani, N. Boukhatem, and M. A. Tran, “A data-scheduling mechanism

for multi-homed mobile terminals with disparate link latencies,” in 2010 IEEE

72nd Vehicular Technology Conference-Fall. IEEE, 2010, pp. 1–5.

93

[76] K. Xue, J. Han, D. Ni, W. Wei, Y. Cai, Q. Xu, and P. Hong, “Dpsaf: Forward

prediction based dynamic packet scheduling and adjusting with feedback for

multipath tcp in lossy heterogeneous networks,” IEEE Transactions on Vehicular

Technology, vol. 67, no. 2, pp. 1521–1534, 2017.

94

