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ABSTRACT 

 

Robust Noise-Based Attacks Against Audio Event Detection Systems 

 

Rodrigo Augusto Silva dos Santos, Ph.D. 

The University of Texas at Arlington, 2022 

 

Supervising Professor: Shirin Nilizadeh 

 

The massive advances on the field of deep neural networks in the 2000 and 2010 

decades led to an overwhelming adoption of these algorithms on all sorts of domains and 

applications. Under this widespread adoption scenario, it is natural that these neural 

networks have also been employed on safety-related use cases, bringing substantial 

improvements to the performance of existing as well as novel systems. Examples of these 

safety-inclined applications include scene recognition, object detection and tracking, 

speech recognition, audio event detection and classification, just to cite a few ones. 

Unfortunately, these neural network algorithms have been shown to be vulnerable 

to different forms of attacks that can prevent them from performing as intended and as 

designed. These attacks have also, so far, been shown to be impossible to be fully 

eliminated or even dealt with to a definitive degree of satisfaction. This is because these 

attacks exploit the very fundamental way these algorithms are conceived in the first place, 

deriving their malicious efficacy from the very intrinsic neural networks properties.  
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The focus of this dissertation is on audio event detection (AED) systems and on to 

seek to contribute for the advance of neural network safe use on the AED domain. 

Existing real AED systems are tested to exhaustion to evaluate the state-of-the-art. 

Research and implementation efforts are then switched to neural networks (NN), the main 

component behind the AED capabilities by several of these modern systems.  

Throughout this doctoral research, different state-of-the-art AED devices are field 

tested, several AED classifiers are implemented, attacked, as well as defended, and a 

full End-to-end AED system is proposed. These experiments are done under the objective 

to generate new knowledge to contribute to the mitigation and bridging of the existing 

gaps in practical AED systems. 
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CHAPTER 1: AUDIO EVENT DETECTION 

In this chapter, the foundations of this doctoral research are presented. As 

such, in section 1.1 the full research background as well as the two fundamental 

knowledge areas for this dissertation, namely deep neural networks and audio 

event detection are introduced; in section 1.2, an overview is provided on some of 

the relevant technical challenges pertaining the practical intersection of these two 

key knowledge areas; in section 1.3, an early overview is provided on the proposed 

scientific contributions to be originated from this doctoral research; in section 1.4 

an outline of what will be addressed in each subsequent chapter of this dissertation 

is discussed, which includes an overview of the final work to be carried out during 

the last year of doctoral research. 

 

1.1 RESEARCH BACKGROUND 

 

The Internet of Things, or simply IoT, is a term introduced back in 1999 

[Ahsan2016] that describes an unprecedented network made of electrical or 

heterogeneous “electronic devices of various sizes and capabilities that are 

connected to the internet” [Miraz2015]. According to [Larrucea2017], these 

“networked sensors and smart objects” serve the purpose of measuring / 

controlling / operating on an environment in order to make it intelligent, usable, 

programmable, and capable of providing useful services to humans".  

Practical applications of IoT devices include but are not limited to 

environmental monitoring, infrastructure management, manufacturing, home 
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automation, smart cities, transportation, medical and health care systems, and 

others. According to [Hognelid2015], IoT has been described as the third wave of 

information technology-driven transformation, the first dating back to the 1960`s 

and 1970`s, when computers became able to perform previously manual tasks and 

processes, and the second dating back to the 1980s and 1990s, when connectivity 

and communication between machines and humans became ubiquitous.  

According to [Husamuddin2017], by 2020, it is expected that IoT will reach 50 

billion connected devices, and by 2025, according to [Al-Fuqaha2015], the whole 

annual economic impact to be caused by IoT will be over 6 trillion dollars. These 

forecasts, according to [Shrestha2014], offer great opportunity for IoT users to be 

connected to anything, whenever needed, wherever needed. With so many users’ 

devices connected among themselves, one can infer that the amount of data 

collected by such devices is massive. To serve IoT users efficiently, these huge 

amounts of data should be worked in real-time [Al-Fuqaha2014]. 

In other words, the data must go through “several levels of processing in order 

to produce a high-level description of the environment with discrete semantic 

states called context” [Venkatesh2017]. This IoT vision, according to [Singh2014], 

will be built on top of the diverse sensors available to users, and these are the 

basic way in which these large volumes of raw data will be gathered for subsequent 

“churning out” in an understandable manner. Still within the presented context, IoT 

based Cyber-Physical Systems (CPSs) go even further, including not only 

embedded sensors and processors, but also actuators, allowing these systems not 

only to sense but also to interact with the physical world.  

Many of these IoT CPS systems include audio-related capabilities.  
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1.1.1 AUDIO EVENT DETECTION 

 

Audio-enabled CPS systems can obtain the audio input from some acoustic 

sensors and then can process it for some specific purpose. Among those purposes 

one could name speech recognition (SR) and audio event detection (AED), just to 

cite a few. While both SR and AED systems work on audio samples, their goals 

and algorithms are different. Speech recognition works on vocal tracts and 

structured language, where the units of sound (e.g., phonemes) are similar. As 

such, SR systems require an approach for linking these basic units of sounds to 

form words and sentences, which then in turn, become recognizable and 

meaningful to humans [Bilen2020, Cowling2003, Jose2020].  

AED systems, on the other hand, cannot look for specific phonetic 

sequences to identify a specific sound [Hamid2014], and because of very distinct 

patterns presented by different sound events (e.g.: dog bark vs. gunshot) a 

different AED algorithm should be used for every specific sound event combo. 

Also, for AED, the Signal-To-Noise Ratio (SNR) tends to be low, being even lower 

when the distance between acoustic source and the microphones performing the 

audio capture increases [Crocco2016]. As such different authors indicate that 

developing algorithms for detecting audio events is more challenging than 

developing algorithms for SR [Bilen2020, Cowling2003, Hamid2014, Crocco2016]. 

Both SR and AED are relevant and applicable to a wide variety of domain 

problems. This doctoral dissertation, however, will focus on AED applications for 

the safety domain. This is due to safety being a major concern in people’s lives. 

For instance, gun shooting represents one of the major threats to safety every 
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person is exposed to [Nytimes2018]. Situations like the Las Vegas Mandalay Bay 

hotel massacre, where a shooter fired his guns at defenseless and innocent 

country music concertgoers, killing 58 and harming over 850 people, are good 

examples of how everything can suddenly run out of control, bringing major impact 

to the lives of individuals, families, and authorities.  

There have been over 300 mass shootings in the US in 2018 alone, according 

to the Business Insider [Robinson2018], which contributes to statistics pointing out 

to the trend that it is more likely that Americans will die to gun violence than many 

of the other leading causes of deaths combined. With numbers such as these, it is 

not surprising that governmental efforts and reports such as [HHS2014] try to 

convey to organizations and the general public the need for preparedness for 

situations that involve risks to safety, such as that of active shooters.  

The approach on [HHS2014] as well as other similar approaches usually rely 

on some sort of planning and preventive actions, followed by response actions to 

be employed once the emergency occurs. While one cannot overstate how 

important such efforts are in improving the general public's response to emergency 

situations, this doctoral dissertation also advocates for the continuous advance on 

the field of emergency technology through research efforts that ultimately lead to 

new knowledge as well as technological improvements.  

This work, thus seek to achieve such improvements through the promotion of 

advances on safety-related application of AED systems, capable of detection and 

subsequent classification of safety related sonic events of interest, such as 

gunshots and glass breakage. In the last decades there has been a surge on the 

research and development of Machine Learning-enabled AED systems, and this 

dissertation leverages this trend. 
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1.1.2 DEEP LEARNING AND NEURAL NETWORKS 

 

Machine Learning, while a subfield of Artificial Intelligence, is, according to 

[Somvanshi2016], “the ability of machines to learn”, through the employment of 

algorithms, tied to mathematical optimization, and that can be used on many 

computational tasks. Machine Learning is a huge technological trend and is now 

omni present, playing a vital role in diverse fields by using data to train 

[Shailaja2018] and then to generate knowledge [Reddy2018] by discovering and 

extracting patterns from subsequently supplied data.  

This dynamic is extremely relevant for decision-making on many different 

practical problem domains and has the potential to provide breakthrough 

innovation when coped together with the vast amounts of data harnessed by IoT / 

CPS systems / devices. Machine Learning algorithms can be generally categorized 

as supervised, unsupervised and reinforcement based. According to 

[Somvanshi2016], supervised ML algorithms are provided with sample inputs for 

training data, mapping these inputs to outputs, analyzing, and studying this data, 

and producing an inferred function that can be used to classify new input data.  

Author [Somvanshi2016] also defines unsupervised ML, stating that it is 

provided with inputs but has no desired output, the classification thus being done 

with the purpose of correctly differentiating between different supplied datasets. 

Finally, [Somvanshi16] describes reinforcement ML as actions taken by software 

to maximize the notion of cumulative reward, being employed in fields such as 

swarm intelligence and genetic algorithms. The exact same, previously presented 
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categories are also applicable to the machine learning specialized subfield called 

known as Deep Learning.  

Deep Learning (DL) advances traditional machine learning by addressing 

some of its known drawbacks. For instance, it reduces the need for the specialized 

domain knowledge required to feature engineer the massive amounts of data. In 

other words, DL brings much more automation to the crucial step of input data 

feature extraction. This in turn allows DL classifiers to perform their task with 

significantly less human intervention. This is largely possible due to advances in 

one class of deep learning algorithms, called (Deep) Neural Networks. 

Neural Networks (NN) algorithms received such name from their loose 

inspiration on the way biological brains work and they are called deep because of 

the multilayer architecture they adopt, consisting of several stacked layers (hence 

being deep). As pointed out by [Jordan and Mitchell], these algorithms support 

decision making purposes across many aspects of science, commerce, and 

government. This is thanks to the capabilities of NNs to generate predictions, in 

other words, their ability to generate an output correlated to a given input. 

The recent growth in the use of deep learning for the enhancement of 

speech recognition and audio event detection capabilities [Austin2020, Eagle2020, 

Abdullah2019, Choi2005], especially on safety-driven domains has raised 

concerns about their robustness against adversarial attacks. 
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1.1.3 ADVERSARIAL ATTACKS 

 

In the context of machine / deep learning, adversarial attacks happen where 

the adversary (the attacker) tries to fool the machine / deep learning algorithms 

being employed under a specific purpose. Some studies have already shown that 

deep neural network classifiers are susceptible to adversarial attacks aimed at 

causing misclassifications [Carlini2017, Goodfellow2014].  

An adversarial example is defined as a sample of input data which has been 

modified in a way that is intended to cause a machine learning algorithm to 

misclassify [Kurakin2016]. Another possibility is to evade detection altogether, in 

other words, by using adversarial examples, the attacker may fully evade the 

detection and subsequent correct event classification. 

 

1.2 RELATED WORK AND RESEARCH CHALLENGES 

 

Research on these detection and classification evasion attacks through 

adversarial examples have so far largely focused on image-based tasks 

[Akhtar2018, Athalye2017, Hendrik2017, Su2019]. For the audio processing 

domain, most of adversarial research focused so far or on speech and speaker 

recognition applications [Carlini2018, Kwon2019, Abdullah2019, Zhang2017].  

On said domain, evasion attacks crafted to fool SR systems usually involve 

generating malicious audio commands that are recognized and interpreted by the 

audio models, used in voice processing systems, but that are either inaudible or 



 

 

20 

that at least have a low degree of perceptibility to the human ear. On the AED front, 

however, adversarial research has been shy.  

Recently, [Subramanian2020] studied the transferability of adversarial 

attacks in sound event classification, generating adversarial examples based on 

the Carlini and Wagner attack [Carlini2018]. Some other work has studied 

countermeasure techniques for improving the resilience of AED systems against 

adversarial attacks [Roy2018, Carlini2018, Mao2020], however, most of these 

techniques are passive in nature, besides working on the image space (e.g.: 

adversarial spectrograms) rather than the audio space.  

 

1.3 DISSERTATION CONTRIBUTIONS 

 

This doctoral dissertation proposes to focus its research efforts on the 

advance of neural network-enabled audio event detection systems. More 

specifically, this proposal is about focusing its research efforts on understanding 

how well state-of-the-art AED real systems work in practice, and later focus on the 

audio processing portion of AED systems, hence on the study, research and 

development of audio attack and corresponding defense approaches, applicable 

to neural networks, tailored for AED tasks.  

These networks make up the main component of modern AED systems, and 

advances on them can directly contribute to a broader spectrum of safer AED 

applications, thus leading to a better future where these applications, not 

completely ubiquitous now, but that will, undoubtedly, become ubiquitous in the 

near future.  To reach such advances, this doctoral research was proposed as a 
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concatenation of three distinct phases, summarized in section 1.4 and shown in 

Figure 1. 

 

 

Figure 1: Doctoral research roadmap 

 

 

1.4 DISSERTATION ORGANIZATION 

 

In Chapter 2, the foundation blocks of this doctoral research are presented. 

Neural network classifiers, tailored for AED purposes, are built, and are attacked 

by an early form of audio attack, made of white noise. While this early attack is 

neither inaudible not stealthy, it has several advantages, such as that of being 

easily reproducible, even by non-technology-savvy individuals, thus being practical 

for a large roster of adversaries. It also becomes a prime candidate to be employed 
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as part of concrete attacks, to be carried out in on-the-field fashion against physical 

AED-capable devices.  

In chapter 3, the white noise attacks are once again employed against better 

refined neural network classifiers, specifically built for AED purposes. These white 

noise disturbances are now also employed against actual AED-capable gear. More 

specifically, the disturbances are reproduced, in on-the-field fashion, using audio 

and computing commodity devices, against AED-capable Google Nest devices, 

which, as a safety-oriented device, can detect safety-related suspicious sounds, 

such as those of glass breakage. 

Also in chapter 3, existing and actively research defenses are tested out 

against the white noise attacks. The first line of defense consists of adversarial 

training, a technique widely employed on the image processing domain, however, 

used with less intensity in the audio domain. Oversampling, another technique 

largely employed on the image space is also employed here in the audio space, 

though to a smaller extent and less relevance than adversarial training. 

Also, in chapter 3, an experimental denoising technique, derived from the 

audio denoising function available in the world-wide known Audacity audio 

processing tool is tried out as a defense mechanism. An important feature of the 

experimental implemented function is that unlike in the original, where two audio 

profiles are needed (one with the audio to be denoised, another one with the known 

noise to be removed), only a single audio profile is needed and computed for the 

denoising to take place.  

The implementation is said to be experimental because despite bringing at 

this point relevant improvements to classification results performed on top of 

denoised audio input, it is known that the denoising algorithm can be further 
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optimized and should be tweaked in order to generalize better, as currently, it not 

only brings with it the denoising capability itself, but also brings audio losses, 

having its effectiveness limited to a few audio classes only. Finally, chapter 3 is 

closed with different variants of noisy disturbances, as well as signal-to-noise ratio 

experiments being introduced. 

In chapter 4, the attacks against actual AED capable gear are expanded in 

scope, now including stealthy variants. This is in addition to an extended roster of 

AED capable black-box devices under test. And E2E AED capable system is also 

proposed, and this is achieved by coupling previously used in-house built 

classifiers to external components (i.e.: microphone). As such, evaluations are 

performed not only against 3rd-party AED devices, but also against a system 

originated from this research. The E2E AED system outperforms the state-of-the 

art black box devices while it showcases the shortfalls of adding components to 

the data pipelines used by DL-enabled AED systems. 
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CHAPTER 2: DISTUPTING AED CLASSIFIERS WITH WHITE NOISE 

In the second chapter of this dissertation, the first phase of this doctoral research 

and all its early and foundational blocks are introduced. More specifically, in 

section 2.1 a brief introduction to the research direction is presented, followed by 

the research motivation and rationale in section 2.2. In section 2.3 the early 

research methodology is introduced, including detailed information on the 

implemented state of the art neural networks, suited for, and employed for audio 

event detection purposes. Details on the planning and design of the early 

laboratory-level experiments are also provided in this section. In 2.4 the results 

obtained from the execution of the planned experiments are provided and 

discussed. A concluding overview of the knowledge generated during the first 

phase of this research, as well as its next steps are brought in in section 2.5. 

 

2.1 INTRODUCTION 

 

Convolutional Neural Networks (CNN) and Convolutional Recurrent Neural 

Networks (CRNN), built to be suited for the task of audio event detection and 

classification, are developed, and tested, initially under ideal conditions. Next, 

these classifiers are attacked with white noise disturbances, conceived to be 

simple and straightforward to be implemented and employed, even by non-

technology-savvy attackers. The scenario under which these tests and attacks 

take place is safety-oriented (AED systems tailored to perform safety-related 

sound detection and classification, such as gunshots).  
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2.2 BACKGROUND AND MOTIVATION 

 

AED systems for long have been employed for safety purposes, through the 

detection of suspicious sounds such as gunshots, footsteps, and others. Gunshot 

sound detection has been extensively researched and represented a good starting 

point for this doctoral research. AED systems for gunshot detection can be 

employed anywhere, from home to business, and even public spaces, where they 

are able to constantly monitor the environment for suspicious events.  

These safety-oriented AED systems, just like any other orientation AED 

system, nowadays make extensive use of state-of-the-art deep learning classifiers, 

such as convolutional neural networks (CNN) [Zhou2017] and convolutional 

recurrent neural networks (CRNN) [Lim2017], as their primary detection and 

classification algorithms. This is due to performance gains these networks 

generate when compared to legacy approaches. 

These gains allowed for widespread CNN and CRNN algorithms 

employment, reason why this dissertation starts by having both a CNN and a 

CRNN, tailored for AED purposes, chosen as classifiers to be implemented and 

employed on the several experiments to follow. The attacks, on this case made of 

white noise, are employed with the intents of negatively affecting both classifiers’ 

AED performance.  

This is because several studies have shown that unwanted noise can have 

a detrimental effect on neural network classifier performance [Alraddadi2019, 

Boyat2015]. It is one of the objectives of this doctoral research to study these 

negative effects brought by such disturbances on deep learning-enabled AED 
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systems, hence, leading next to the study of countermeasures that can potentially 

mitigate these negative effects. 

 

2.3 THREAT MODEL 

 

In the adopted threat model (seen in Figure 2), it is assumed that the 

attacker, while attempting to cause harm, actively adds white noise perturbations 

to the sound being fed to the AED system. Such threat model was reproduced 

within the confines of a research laboratory, in other words, white noise was 

digitally overlaid to the gunshot sounds being used as the AED input. The attacker 

has no knowledge of the inner implementation details of the AED system. 

 

 

Figure 2: Phase 1 threat model 
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2.4 MATERIALS AND METHODS 

 

2.4.1 CNN 

 

Convolutional neural networks are considered to be the best among 

learning algorithms in understanding image contents [Khan2019]. CNNs were 

inspired by the organization of the animal visual cortex [Yamashita2018], providing 

increasingly better performance as they become deeper, while also becoming 

harder to train [Thakkar2018].   

An AED-tailored CNN model based on the work of Zhou et al. [Zhou2017], 

was implemented. Such tailoring was reached after some initial experimentation, 

and the final model available for phase 1 of this doctoral research came to be 

composed by the following components: 

 

• Convolutional layers: three convolutional blocks, each one with two 

convolutional 2D layers. These layers have 32, 64, 64, 64, 128 and 128 

filters (total of 480) of size 3 by 3. Same padding is also applied to the 

first convolutional layer of each block. 

• Pooling layers: three 2 by 2 max pooling layers, each coming right after 

the second convolutional layer of each convolutional block. 

• Dense layers: two dense (also known as fully connected) layers come 

after the last convolutional block.  

• Activation functions: these functions compute the weighted sum of 

inputs and biases, and as such, are responsible for the firing or no firing 
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of neurons [Nwankpa2015]. For the presented CNN, ReLU activation is 

applied after each convolutional layer as well as after the first fully 

connected layer, while Softmax activation is applied only once, after the 

second fully connected layer. In other words, ReLU is applied to all inner 

layers, while Softmax is applied to the most outer layer; 

• Regularization: applied in the end of each convolutional block as well as 

after the first fully connected layer, with 25, 50, 50 and 50% respectively. 

Regularization, also known as dropout, per [Srivastava2014], addresses 

the overfitting problem, among other common neural network issues. 

The CNN uses sparse categorical cross entropy as a loss function and 

RMSprop as an optimizer. A visual representation of its architecture can 

be seen in Figure 3. 

 

Figure 3: Architecture adopted for Convolutional Neural Network classifier 
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2.4.2 CRNN 

 

Convolutional recurrent neural networks (CRNN) address one shortfall of 

regular CNNs - the lack of memory about long-term dependencies over sequences 

[Fu2017, Gao2018]. Xinyu Fu [Fu2017] proposed to implement a CRNN, where 

common sigmoid activation function is replaced by a long short-term memory 

(LSTM) advanced activation. It was shown that CRNNs work better with longer or 

lengthier inputs [Gao2018] because LSTM activation ensures that outputs of the 

previous point in time connect to the next point in time. 

For this dissertation, a CRNN model was implemented, having been 

inspired by the work of Lim et al [Lim2017]. Such inspiration comes from the fact 

that said CRNN has been successfully used for gunshot recognition, presenting 

reasonable performance. The CRNN model was tailored by considering the results 

from some initial experimentation, and by the end of the first phase of this doctoral 

research, came to be composed by the following:  

 

• Convolutional layers: one convolutional block, with one convolutional layer. 

This block is made by 128 filters of size 32, ReLU activation and batch 

normalization, pooling layer of size of 40 and a dropout layer of 0.3. 

• LSTM layer: one backwards LSTM layer with 128 units, followed by tanh 

activation and a new dropout of 0.3. 

• Dense layers: two stacked dense layers, the first with 128 units and the second 

with two, each one followed by batch normalization and the first one followed 

by a ReLU activation and the last one by a Softmax activation.  
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The CRNN used sparse categorical cross entropy as loss function and 

Adam as optimizer. 

 

2.4.3 SPECTROGRAMS 

 

The approach adopted by other authors, such as [Zhou2017, Lim2017, 

Alraddadi2019] with regards to relying to spectrograms as the input of choice to be 

fed to deep learning models was adopted as part of phase 1 and subsequent 

phases of this doctoral research. Such common approach, besides facilitating later 

comparisons, has already proven to be general enough, as spectrograms, being 

images, fit well as input to both CNN and CRNN models.  

Spectrograms display in a graph (usually 2D) the spectrum of frequency 

changes over time for a sound signal, by chopping it up and then stacking the 

slices one close to each other [Roelandts2013]. Unlike speech, sound events often 

have shorter duration but with more distinctive time-frequency representations, 

which it has been shown to be a good feature for sound classification [Dennis2011, 

Lim2017, Zhou2017].  

One of this doctoral research major design constraints is related to the 

spectrograms. That constraint resides on the fact that the disturbances must be 

added to the audio portion of the AED system, and as such, all subsequent 

spectrogram generation must be free of interference. In other words, the 

disturbances represented by the proposed white noise attacks are introduced 

directly to the audio files, prior to their conversion to spectrograms.  
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As such, in the first phase threat model, the attacker does not have direct 

access to the spectrogram generation algorithm (black-box IoT/CPS system). This 

is because it is assumed that the attacker does not have any knowledge about the 

system and simply tries to alter the sounds generated by the gun before capture 

by the hypothetical AED system. Samples of spectrograms generated as part of 

this study can be seen in Figure 4. 

 

 

Figure 4: Spectrograms under different noisy conditions 

 

 

2.4.4 WHITE NOISE 

 

As pointed out by [Edmonds2006], white noise happens when “each audible 

frequency is equally loud”, meaning no sound feature, “shape or form can be 

distinguished”. A major reason for choosing white noise was the concrete 

possibility of employing it as part of later practical, on-the-field attacks. Another 

reason was the simplicity of the attack, thus making it largely available for a large 

roster of attackers.  
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In the end, while other types of noise, such as gaussian noise and pink 

noise generally meet the same criteria previously presented, thus also being prone 

to be used by an adversary, white noise was the disturbance of choice for phase 

1 because this noisy variant is widely adopted by different research across different 

domains [Dahlan2018, Vashuki2012, Montillet2013].  

 

2.4.5 DATASETS 

 

DCASE 2017 [DCASE2017] provides datasets for several different acoustic 

classification tasks. For phase 1, the detection of rare sound events dataset was 

the main dataset acquired and employed in the experiments, since besides being 

publicly available, it also contains a relatively high number of good quality sounds. 

To increase the number of data points available to our research, additional gunshot 

samples from [AirborneSound2017, UrbanSound2017] were also acquired, 

bringing the total number of samples to 2000.  

As positive sounds, 1500 of these sounds are dedicated for training and 

500 for testing. Finally, for the negative classes, samples from other sources were 

acquired, namely [MIMII2019, ESC502021, Freesound2021, Zapsplat2021 and 

Fesliyan2021]. The negative classes are made of pump, children playing, fan, 

valve, and music, in other words, sounds that did not carry gunshot sounds. The 

samples were normalized in terms of frequency, channels, and size (length). 
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2.4.6 EXPERIMENTS 

 

The experiments conducted as part of phase 1 involve the use of our two 

neural network classifiers, set as two different representation of an AED system 

that detects gunshot sounds. Digital gunshot samples are used, first in unnoisy 

conditions, and then they are infused with progressively higher levels noise. The 

training and testing sets were crafted within a laboratory, and then employed to 

train and to test the neural networks, also within a laboratory environment.  

The experiments were binary (output could be either gunshot or non-

gunshot). Both the training and test sets always had the two participating classes 

in a balanced fashion. In other words, it was guaranteed that each experiment 

would always have the same number of samples per class in each experiment. A 

summary of these experiments follows next.  

 

• Unnoisy experiments: Both AED classifiers exposed to digital 

gunshot sounds, without any disturbance. 

• White noise experiments: Both AED classifiers exposed to digital 

gunshot sounds. The disturbances, made of white noise, are 

dynamic in nature.  

 

The process for generating the dynamic white noise infused samples can 

be seen in Algorithm 1. In it, white noise is added to the original audio sample, 

while again configuring it with the amount of desired noise (through the adjustment 
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factor or amplitude control), being derived from the highest amplitude already 

present in the sound sample being disturbed.  

Different thresholds for the white noise adjustment factor ranging from 0 (no 

white noise) and 1 (100 percent noise), thus consisting of multiple thresholds along 

this interval were tested prior to this beginning of the actual experiments. The initial 

value (0.0001) was picked based on the criteria of finding a number that was mild 

in terms of perceptibly while still being able to negatively affect the classifiers. 

The choice for the final value (0.4) did not take into consideration the 

perceptibility criteria, but considered instead a value that would absolutely 

guarantee, from a practical result perspective, the maximum disturbance to 

classifier performance possible. The remaining thresholds were chosen in the 

interval between these initial and final values and the final values were 0.0001, 

0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4.  

 

 

 

 

 

 

Algorithm 1: White noise generation. 
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2.5 RESULTS 

 

When executing the baseline unnoisy experiments, both models perform 

reasonably well, with accuracies above 80%. This sets the tone for the 

experiments that come next, where we proceed to attack these same classifiers 

with white noise. When this happens, both models present drops in classification 

performance as soon as such noise is introduced to the test sets.  

 

 CNN CRNN 

Condition Acc. Prec. Rcl. F1 Acc. Prec. Rcl. F1 

Unnoisy 0.88 0.88 0.88 0.88 0.81 0.93 0.66 0.77 

0.0001 0.88 0.88 0.88 0.88 0.81 0.93 0.66 0.78 

0.0005 0.87 0.89 0.84 0.87 0.81 0.92 0.67 0.78 

0.001 0.87 0.89 0.85 0.87 0.81 0.92 0.67 0.78 

0.005 0.88 0.90 0.86 0.88 0.81 0.92 0.68 0.79 

0.01 0.85 0.90 0.78 0.84 0.81 0.88 0.73 0.80 

0.05 0.83 0.90 0.74 0.81 0.84 0.87 0.80 0.83 

0.1 0.64 0.93 0.30 0.45 0.70 0.66 0.83 0.73 

0.2 0.56 0.94 0.13 0.23 0.66 0.64 0.74 0.68 

0.3 0.51 1 0.012 0.02 0.49 0.48 0.35 0.41 

0.4 0.5 0 0 0 0.49 0.34 0.11 0.16 

Table 1: Phase 1 consolidated results 
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The drops are small but cumulative, and a sharper drop is noticed when the 

0.1 threshold is reached, only to become unacceptably worse from there on, to the 

point of rendering both models essentially useless. One can also realize that the 

CRNN is proved to be slightly more robust than the CNN, and one can credit this 

to its memory advantage over the CNN [Fu2017, Gao2018].  

The consolidated results can be seen in Table 1, and the graphical 

visualization of these results can be seen in Figures 5 and 6. 

 

 

 

Figure 5: CNN results 
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Figure 6: CRNN results 

 

2.6 RELATED WORK 

 

This section covers other authors’ work related exclusively to phase 1. 

Several research focusing on audio classification and event detection exist. Some 

of these relevant works are presented, and the focus mostly stays on “suspicious 

audio events” detection. These are represented by worrisome sounds such as 

those of gunshots, glass breaking, crying, etc.  

 

2.6.1 AUDIO EVENT DETECTION 

  

AED systems have been used in environments and applications that have  
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the capability of collecting real-time audio data multimedia data (including video 

and/or audio data) and identifying audio events. For example, some health 

monitoring devices detect sounds, such as coughs to identify symptoms of 

abnormal health conditions [Matos2006, Larson2011, Peng2009]. Also, some 

home devices can classify acoustic events of distinct classes (e.g., a baby cry 

event, music, news, sports, cartoons, and movie) [Matsuoka2020, Vafeiadis2020, 

Petridis2010, Evangelopoulos2009].  

Some commercial initiatives [Shooter2020, Eagle2020, Austin2020, 

Showen1997] have proposed AED systems specifically designed for gunshot 

detection. ShotSpotter [Showen1997] and SECURES [Page1995] can detect 

gunshots by obtaining data from distributed sensors deployed to a large coverage 

area, and by employing next some traditional signal processing techniques.  For 

instance, SECURES relies on acoustic pulse analysis (pulse peak, width, 

frequency, shape) performed by electronic circuitry while ShotSpotter employs a 

specialized software that uses the noise levels in decibels to differentiate gunshots 

from other sounds.  

[Shiekh2017, Busse2019, Rabaoui2008] use Support Vector Machines 

(SVM) for classifying gunshot sounds. [Shiekh2017] and [Busse2019] differ 

between each other on the facts that [Shiekh2017] removes reverberations from 

the audio to make it ''cleaner'' while [Busse2019] makes use of some oversampling 

procedures, generating synthetic gunshot sounds. [Chu2004], besides SVM, also 

uses Gaussian Mixture Models (GMM), a model also employed by [Clavel2005] 

and [Dufaux2000].  [Chu2004] also goes to the extent of comparing SVM against 

GMM, the first model outperforming the second for both audio classes used. 

Finally, [Dufaux2000] besides GMM uses Hidden Markov Models (HMM), which 
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outperformed GMM on all experiments for all sound classes, under silent and noisy 

conditions alike. 

Other works classify emergency related sounds by employing more modern 

approaches based on machine learning [Tangkawanit2018, Hansheng2013, 

Pillos2016, Zhou2017, Khamparia2019], using different variants of Neural 

Networks (NNs) and different sets of features to perform audio classification. For 

instance, authors [Zhou2017] and [Khamparia2019] use Convolutional Neural 

Networks (CNN), while authors [Lim2017] and [Cakir2017] use both CNNs 

Recurrent Neural Networks (RNN), the former using Long Short Term Memory Unit 

(LSTM) and the latter using Gated Recurrent Unit (GRU). 

An ensemble of CNNs is used by [Donmoon2017] to perform urban sound 

classification, where two independent, slightly different models take inputs and 

compute individual predictions, while a final prediction through ensembling both 

models' probabilities. Author [Ghaffarzadegan2017] uses an ensemble of Deep 

CNN, Dilatated CNN (DCNN) and Deep RNN for rare events classification.  

 

2.6.2 IMAGES AS PART OF AUDIO EVENT DETECTION 

 

Most of the neural network-based AED research resort to audio signal 

transformation into spectrograms, using these images as inputs to their classifiers 

[Zhou2017, Khamparia2019, Li2016, Donmoon2017].  [Li2016], rather than the 

spectrograms, uses a combination of partitioned monochrome images derived 

from spectrograms.   
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2.7 CONCLUSION 

 

 This chapter presented the foundation blocks of this doctoral 

dissertation, in which research was set to study how deep learning-enabled audio 

event detection (AED) system work in the first place. Following next, the research 

was set in a deeper course to study how to make it possible to attack such systems 

with audio, rather than images, disturbances. White noise was chosen.  

The first phase results clearly showed that AED systems, more specifically, 

the neural networks that power such systems, are susceptible against white noise 

attacks, as the performance of both the CNN and CRNN classifiers were degraded 

by nearly 100% when tested against the perturbations. These results are both 

revealing and important for the following research phases. 

Such importance comes from the fact that white noise is simple to 

reproduce, thus being at the reach of a large roster of potential attackers, including 

on-the-field capable ones. The same simplicity makes it to also be hard to be 

filtered out without affecting the sound capture capability needed for an AED 

system, especially when higher noisy thresholds are used. 

Devices embedded with EAD capabilities are already a reality, currently 

being in the process of becoming ubiquitous for a broad audience. These are real 

physical devices that employ deep learning models for the detection of suspicious 

events for security purposes, being largely available for purchase and deployment 

to homes around the world.  

Some examples of these devices are ones manufactured by major 

companies, such as the Echo Dot and Echo Show by Amazon [Alexa2019], and 
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Nest Mini and Nest Hub by Google [Nest2021a, Nest2021b]. Despite still being 

limited in terms of detection capabilities, as most of these devices can detect only 

a few varieties of audio events, attempts to create general purpose devices, 

capable of detecting a wide spectrum of audio events, are known to be in the 

making, e.g., See-Sound [SeeSound2021]. 

 Large scale deployments of these devices as well as attacks against them 

are as such, just a matter of time. For instance, white-noise reproduction capable 

gear based on speakers and other specialized equipment are widely available to 

the broad audience for a long time now [Soundmachines2021]. These can become 

physical devices that generate audio disturbances on the field.  

More sophisticated gear, with increased capabilities are also a reality and 

are intensively researched and used by military and law enforcement agencies 

around the world [Mizokami2010, Dormehi2018, Kesslen2019, Chavez2017]. As 

such, attack solutions that could rely on all sorts of gear, from tiny and discrete 

devices to large and complex ones are available today. 

Therefore, it is not a stretch to envision a scenario where an attacker (e.g.: 

burglar) could plan for days, weeks or even months in advance on how to deploy 

attacks against an audio-based AED system. By doing so, such attacker would 

either delay or avoid detection by an AED system, and as such, gain time to 

perform his malicious intents.  

A burglar could well use an "on-the-field" variant of the white noise attack 

to disrupt a home-based AED system, thus being able to invade an empty 

residence without being detected and/or triggering AED-associated alarms and 

notifications (since a potential glass breakage would not be detected by the under-
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attack AED system). After gaining entrance, the burglar could potentially perform 

his activities, such as robbery, without being disturbed.  

Hypothesizing further, as AED systems gain popularity and scale, it is not 

difficult to envision a scenario where an AED system may be protecting a public 

area, and terrorists, aware of such monitoring, employ noisy disturbances, like the 

white noise ones, to disrupt such system. This would make it hard for authorities 

to respond as an attacker could negate the system's ability to detect a sound of 

interest (e.g.: gunshots being fired) and subsequently to relay the location of the 

sound, given such triangulation and notification capabilities are also available. 

The hypothesis of a practical white-noise attack that can successfully be 

applied against exist AED-capable devices, becomes as such, a prime 

experimentation target for subsequent phases of this doctoral research. 
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CHAPTER 3:  ATTACK AND DEFENSE MECHANISMS  

In this third chapter, the second and middle phase of this doctoral research is 

presented. The chapter starts with its introduction found in section 3.1 and 

continues to its motivation in section 3.2. The specific methodology followed for 

this middle part of the research can be seen in section 3.3, including but not limited 

to the adversarial training strategy as well as to important implementation details 

regarding the experimental denoising function. Also of key importance are the 

details brought on the choice of actual AED capable physical devices as well as 

their arrangement for the first on-the-field research experiments conducted as part 

of this doctoral dissertation. The experiments aftermath is covered in section 3.4 

and the chapter conclusions are covered in section 3.5. 

 

3.1 INTRODUCTION 

 

The second phase of this research maintains its focus on audio event 

detection (AED) algorithms through the reimplementation of an AED-tailored 

Convolutional Neural Network (CNN) classifier. Said classifier faces an expanded 

attack envelope, now consisting of white noise and background noise. Like what 

happened during phase 1, such development and attacks are conducted in a 

laboratory level scenario, thus revalidating previously reached results. 

Following these lab-level experiments, mainstream commercially available 

black-box AED-capable devices are set to work as intended, searching for 

suspicious sounds, namely glass break sounds. These devices, while on duty, are 
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tested under ideal conditions regarding their AED capabilities and are next 

exposed to an on-the-field version of the noisy attacks (white and background).  

Defenses are also evaluated, and these consist of adversarial training and 

of an experimental denoising function, applied to the input audio samples, 

immediately after noise addition and prior to the conversion to spectrograms. In 

other words, during the second phase of this doctoral research, besides the 

attacks, defenses are also applied and studied. 

 

3.2 BACKGROUND AND MOTIVATION 

 

Phase 1 of this doctoral research was important because its results clearly 

showed that it is possible to use simple, yet effective white noise to disturb deep 

learning (DL) classifiers employed for audio event detection (AED) tasks. This 

early research, however, brings with it important limitations, such as the use of a 

single type of disturbance, of a single audio class of interest (gunshot), and the 

fact that it was entirely confined to a laboratory. 

Another very important limitation was the lack of experimentation regarding 

possible countermeasures to the white noise attacks, even if held in a laboratory 

scenario. Phase 2, as such, addresses these limitations, since it was devised to 

continue testing the robustness of multiple security critical AED tasks, 

implemented as CNNs classifiers, but also to test existing third-party Nest devices, 

manufactured by Google, which run their own black-box deep learning models.  

The adversarial examples (audio perturbations) were made of white and 

different forms of background noise. Despite the increased attack envelope, the 
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disturbances in the scope of phase 2 remain easy to create, and to reproduce, 

being at the grasp of many potential attackers, hence, this important research 

design constraint conceived back during phase 1 remains valid. 

In addition to the attacks, the improvement of classifier's robustness through 

specific countermeasures are also studied. These consisted of both adversarial 

training and audio denoising, and they are evaluated, both in isolation from each 

other as well as in combined fashion, while being applied to the audio input fed to 

both the in-house built CNN classifier and to the third-party device. 

Given the several critical applications of AED systems and vast collection 

of possible usage scenarios for these AED systems, during phase 2 of this 

research the possible scenarios are narrowed down, thus a home security scenario 

was selected to emulate a physical world AED deployment, where the AED system 

would be constantly monitoring the environment for suspicious events. 

Considering that the Nest devices come from the factory being capable of 

detecting glass break sounds, said sound class plus the original gunshot class 

from phase 1 were chosen to be phase 2 positive classes (the ones containing the 

sounds of interest. In the revised threat model for phase 2, the AED system is 

deployed as part of a home security system, and the adversary, while attempting 

to cause harm, aims to prevent the AED system from correctly detecting and 

classifying the sound events. For this purpose, the adversary generates some 

noise (e.g., background noise or white noise) which can perturb the audio being 

captured by the AED system.  
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3.3 THREAT MODEL 

 

In the evolved threat model for phase 2, the attacker employs not only white 

noise, but also background noise to the sounds used as input to the AED system.  

Besides additional lab-level experiments, now the attacker also performs the 

attacks while being on the field, using commodity equipment to perform the attack. 

The attacker remains bling to the inner implementation details of the AED system, 

regardless of if it made of in-house built AED classifiers or third-party AED capable 

devices. 

 

3.4 MATERIALS AND METHODS 

 

3.4.1 CNN AED CLASSIFIERS 

 

New tests of in-house built (for AED purpose) CNN classifiers are 

conducted to validate and to confirm Phase 1 results. While modern AED systems 

are made up of a pipeline containing multiple components, it is straightforward to 

reason that several of these systems have in their embedded neural network 

models, one of the most, if not the most critical component enabling the delivered 

AED capabilities. This makes these classifiers into a prime component for testing. 

Regardless of which results are to be achieved when testing end-to-end 

AED systems (as explained in section 3.4.2), it is likely that whatever result is to 

be achieved, it will be the result of cumulative (good or bad) performance by each 
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component making up the entire system (quality of the embedded microphones, 

capabilities of the local machine learning chips, compromises needed for the on-

device deep learning models etc.).  

Given this research focus on software rather than hardware, it is only natural 

that the focus on singling out the neural network individual component for testing. 

As such, Convolutional Neural Networks, capable of detecting gunshot and glass 

break sounds are once again tested under ideal conditions (noise-free) and “under-

attack” conditions, when they are fed with digitally disturbed audio samples, thus 

emulating what would be found during actual on-the-field audio attacks.    

 

3.4.2 THIRD-PARTY AED DEVICES 

 

In addition to the CNN classifier in a laboratory environment, a second 

testing arena was added to the roster of experiments being carried out as part of 

phase 2, now including third-party AED capable devices. The devices selected 

were the ones which were readily available for purchase in the open market, in 

other words, were largely at reach of both customers as well as potential attackers. 

The overall research framework can be seen in Figure 7. 

Given the well-known involvement of Google with Deep Learning (e.g., 

creation and release of TensorFlow), and the fact that Google AI-enabled devices, 

including Nest devices are already widely used in day-to-day life 

[Policyadvice2021], the following devices were selected:   

• Nest Mini: from the large variety of Nest devices available, he most 

basic device possible were chosen, namely the Nest mini 
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[Nest2021a]. The Nest mini device, currently in its second generation 

[Analyticsindiamag2019], and already includes a machine learning 

chip capable of implementing advanced techniques such as natural 

language processing and speech recognition. Yet another 

advantage of these devices is the fact that they can work in pairs, in 

theory augmenting their detection capabilities. 

• Nest Hub: this is defined in [Nest2021b] device, and offers all Nest 

mini capabilities, besides a display [Pocketlint2021]. Nest hub can 

be an attractive device to consumers who want to start their own 

smart home implementation with some simplicity but want something 

more refined and capable than the simple Nest mini.   

 

3.4.3 ADVERSARIAL ATTACKS AND THE ADDITION OF BACKGROUND NOISE 

 

Two variants of evasion attacks based on noise were selected and 

implemented for this phase, namely white and background noises. Both can be 

used to generate fast and straightforward perturbations, as in a lab scenario, with 

the aid of commodity computers, up to 2,000 digital noisy samples can be 

generated per minute.  They can also be easily employed as part of on-the-field 

attacks, using, for example, commodity sound speakers.   

With a different profile from the flat, absent of features profile provided by 

the already previously successfully used white noise, background noise, on the 

other hand, is represented by all sorts of common noise occurring during the 

normal course of day-to-day business, and that may overlay to any sound of 
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interest. Examples of such noise would be that of people talking, active vehicle 

traffic, music playing, etc. 

 

 

 

 

 

 

 

 

 

The same way that white noise was added to the audio samples prior to 

their conversion to spectrograms, the same holds true for background noise. Also, 

important to mention is that this is true for both the in-house built classifier testing 

as well as for third party AED capable gear testing, in other words, the disturbances 

are added when these devices are actively listening for glass break sounds. On 

the case of the latter, this is done through loudspeakers.  

Algorithm 2 shows the mechanism for the addition of background noises to 

a given audio sample. In it, two separate files are retrieved, one with the sound of 

interest, and one with the background noise. Such background noise is added to 

the sound of interest without any modification other than the one introduced by 

adjustment factor, which simply controls the amplitude (or loudness) of the noise.   

 

Figure 7: Research execution framework 
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Besides adversarial attacks against AED systems, phase 2 of this doctoral 

research adds investigative efforts on techniques for increasing the robustness of 

these systems against adversarial examples. Three techniques were implemented 

and later evaluated through additional defensive experiments: oversampling, 

adversarial training, and audio denoising. The rationale behind these techniques 

is presented next. 

 

3.4.4 OVERSAMPLING 

 

Overfitting is known to be related to adversarial sensitivity and some works 

have shown that mitigating overfitting improves the accuracy on adversarial 

examples [Kubo2019, Galloway2018]. CNNs classifiers are known to be prone to 

overfitting, when “deep” (having multiple layers) architectures are used, and when 

a class imbalance exists (a class having more samples than the others), affecting 

convergence during the training phase and generalization of a model on the test 

set [Buda2018].  

Oversampling is one of the most popular augmentation techniques 

[Shijie2017, Perez2017] that can mitigate overfitting [Buda2018]. One of its forms 

Algorithm 2: Background noise generation. 
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consists of applying pure sample duplication, without modifications to the 

duplicates [Wei2005]. This is the approach adopted, in other words, oversampling 

by cloning, thus increasing the number of data samples in the training sets. 

It is important to highlight that the reports of the oversampling results are 

omitted from this dissertation report due to too small gains generated by this 

technique. Such small improvements come not from a lack of effectiveness by 

oversampling per se, but from the fact that at phase 2, the classifiers have been 

improved to a point that their performance is good to the point of making it hard to 

have them benefiting from oversampling in a significant way. 

 

3.4.5 ADVERSARIAL TRAINING 

 

This is a popular technique applied by several researchers [Wang2019, 

Song2018]. It consists of introducing some adversarial examples into the training 

set, thus leading to increased resilience against adversarial attacks through 

learning directly from adversarial examples. While adversarial learning has been 

mostly been used for image classification tasks, this research applies it to audio.  

 

3.4.6 AUDIO DENOISING 

 

Audio denoising techniques exist to remove or at least to mitigate the noise 

existing in an audio sample. Several works have used filters to perform audio 

denoising, thus leading to improvement in classifier's performance. Some works 
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[Kiapuchinski2012, Hodgson2010, Audacity2020] used some variation of a 

technique called Spectral Noise Gating [Hodgson2010].  

Such work consists of performing the reduction of a signal found to be below 

a given threshold (the noise), and an important point about it was brought up by 

[Kiapuchinski2012], consisting of its requirement to have a noise profile (extracted 

from the known noise), from which a smoothing factor will be derived and applied 

to the signal that requires denoising (the whole sound). 

Following a similar approach, as part of this dissertation, a custom 

experimental denoising spectral gating function was implemented, being based on 

the noise reduction function employed by [Audacity2021], the open-source digital 

audio editor and recording application software and rewritten in python code by 

[Sainburg2018]. Despite the similarities to the original base version, the in-house 

built version of the denoising function bears important modifications to the original. 

For instance, while in the original function, as explained before, two input 

sounds are required for the denoising to take place (one with noise, one with the 

audio to be denoised), the experimental function uses a same “whole sound” as 

both audio and noise profiles donor, hence not requiring two separate inputs. This 

is because in this research threat model, the defender does not have any 

knowledge about the noise function used by the adversary.  

Besides the previously mentioned difference with regards to audio inputs, 

the experimental implementation also brings additional changes, for instance, 

ones related to frequency channels}, Fourier transform frames, window, and hop 

lengths, and time and frequency smoothing filter setups. The pseudo-code for the 

denoising function can be seen in algorithm 3.  
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These changes, even though they are not final (as they could be further 

improved in the next iterations of this research) are fundamentally in the right 

direction. This is because the modified algorithm can reduce the noise fingerprint 

on each frequency spectrum of the audio, while at the same time representing a 

better tailored approach for the AED domain problem at hand. 

 

3.4.7 DATASETS 

 

Besides the audio sample sources of phase 1, several other public audio 

databases were chosen to be the source of the audio samples used on the several 

experiments from phase 2. These databases were:  

 

• Detection and Classification of Acoustic Scenes and Events or 

DCASE dataset [DCASE2017]: From 2017 and 2018 editions, the 

DCASE datasets include normalized audio samples with a single 

instance of an event of interest happening anywhere inside each 

Algorithm 3: Denoising mechanism. 
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audio sample of 30 seconds in length, hence the “rare'' 

denomination. Each sample is created artificially and has 

background noise made of everyday audio. 

• Urban Sounds Dataset [UrbanSound2017]: A database made of 

everyday sounds found at urban locations. The samples are not 

normalized and vary quite a bit among themselves. 

• MIMII Dataset [MIMII2019]: A dataset conceived to aid the 

investigation and inspection of malfunctioning industrial machines.  

• Airborne Sound [AirborneSound2017]: An open and free database 

with audio samples destined to be employed on different sound 

effects. One such case is that of guns and medieval weapons. The 

gun part has high quality audio on several different types of guns, 

recorded from different positions.  

• Environmental Sounds [ESC502021]: A dataset of 50 different sound 

events and over 2,000 samples. 

• Zapsplat [Zapsplat2021]: Over 85,000 professional-grade audio 

samples as royalties-free music and sound effects. 

• FreeSound [Freesound2021]: A collaborative database of Creative 

Commons Licensed sounds. 

• Fesliyan Studios [Fesliyan2021]: A database of royalty-free sounds.  

 

The samples from these datasets that contain audio events of interest 

(security/ safety related) are called as “positive samples”, and those that do not 

contain sounds of interest as “negative samples”. These samples, before being 

used in the experiments, were cleaned, and preprocessed in the following ways:  
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• Frequency Normalization: where the frequencies of all samples are 

normalized to 22,000 Hertz, to be within the human audible 

frequency. 

• Audio Channel Normalization: where needed, the number of 

channels of all samples were converted from stereo to monaural, as 

it is easier to find new samples bearing a single channel. 

• Audio Length Normalization: where all samples with less than 3 

seconds in length were discarded. 

 

3.4.8 EXPERIMENTS 

 

The several experiments of phase 2 are listed next: 

• Experiment 1: the baseline experiments (the ones executed under unnoisy, 

ideal conditions). 

 

o Experiment 1a - Binary CNN Classifiers: four binary models are 

trained, each with 1000 positive samples and 1000 negative 

samples. The positive samples in each model belong to one of the 

categories of sounds, i.e., dog bark, glass break, gun, and siren. The 

negative portion of the training set was kept unaltered throughout the 

4 experiments and was made of a combination of 200 samples of 

each one of the five different negative classes previously presented. 
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The respective test sets were made of 300 samples, 150 positives, 

and 150 negatives. 

o Experiment 1b - Multiclass CNN Classifier: this experiment involved 

a multiclass version of the CNN algorithm, including now all 4 positive 

classes at once. Its goal is to investigate if multiclass classifiers 

provide different results or show different behavior compared to 

binary classifiers, even though currently readily available AED 

systems are dedicated to detecting one or two audio classes only. In 

this experiment, the training sets were made of the 4,000 positive 

samples used in Exp 1a, with no negative classes. 

 

• Experiment 2: the testing of third-party AED-capable devices, as seen 

in Figure 8. Also included in this batch is the testing of a multiclass 

version of the binary classifiers used extensively up to this point, as there 

was the need to confirm if the base classifier architecture would work 

well under binary and multiclass conditions alike.  

 

o Experiment 2a - Digital Pure Audio Inputs: 3rd-party devices 

exposed to digital glass break sounds, without any disturbance 

being played through the loudspeakers. 

o Experiment 2b - Real Pure Audio Inputs: 3rd-party devices 

exposed to real glass break sounds, without any disturbance 

being played through the loudspeakers. 
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o Experiment 2c - Background Noise Disturbed Inputs: 3rd-party 

devices exposed to real glass break sounds, with background 

noise disturbance being played through a loudspeaker. 

o Experiment 2d - White Noise Disturbed Inputs: 3rd-party devices 

exposed to real glass break sounds, now with white noise 

disturbance being played through a loudspeaker. 

o Experiment 2e - Binary CNN Classifier and Pure Glass Break 

Recordings: The CNN classifiers, now being fed, during test 

phase, with glass break sounds recorded during experiments 2a, 

2b and 2c, by the S10+ and S20 Ultra devices.   

 

 

Figure 8: Early on the field experiments 

 

 

Experiment 3: Adversarial Examples: Test of the same two respective, previously 

trained gunshot and glass break classifiers, against increasing levels of 
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background and white noises. For the background noise, Pydub python library was 

used to digitally add two different background noises, namely car traffic and people 

talking, to the test set samples to be fed to the models.  

To clarify, these background noises are not related to the negative classes 

that used to train and test the classifiers. Therefore, if the models misclassify the 

adversarial samples generated via background noise, it is not due to existence of 

similar samples in the negative class. The positive classes are made of gunshot 

and glass break.  

The signal-to-noise ratio was kept at 10 decibels (measured on site), 

similarly to the on-the-field experiments on third-party devices. The Numpy python 

library was used to digitally generate white noise disturbances, as well as Librosa 

and SoundFile libraries to add the disturbances to the test set samples. Eleven 

different test sets, each having 100% of their samples overlaid with 0.0001, 0.0005, 

0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 white noise levels were created. 

o Experiment 3a - Glass break Classifier and Background Noise Infused 

Audio Inputs: Glass break classifier from experiment 1, tested against three 

different test sets, having 25%, 50% and 100% of their samples infused with 

background noise. 

o Experiment 3b - Gunshot Classifier and Background Noise Infused Audio 

Inputs: Gunshot classifier from experiment 1, tested against three different 

test sets, having 25%, 50% and 100% of their samples infused with 

background noise. 

o Experiment 3c - Glass break Classifier and White Noise Infused Audio 

Inputs: Glass break classifier from experiment 1, tested against the eleven 

different white noise infused test sets. 
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o Experiment 3d - Gunshot Classifier and White Noise Infused Audio Inputs: 

Gunshot classifier from experiment 1, tested against the eleven different 

white noise infused test sets. 

 

Experiment 4: Background Noise for Training 

 

The objective is to test effectiveness of adversarial training as a 

countermeasure against evasion attacks, when background noise-infused 

samples are added to training sets. 

 

Experiment 4a: Glass Break with Background Noise:  

 

o From Experiment 3a, its 100 percent background noise infused glass 

break test set is reused, however its train set is modified, now turning 

100 percent of its samples into adversarial examples by infusing 

them with background noise. 

o Experiment 4b: Gunshot with Background Noise: from Experiment 

3b, its 100 percent background noise infused gunshot test set is 

reused, however its train set is modified, now turning 25, 50 and 100 

percent of its samples into adversarial examples by infusing them 

with background noise. 
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Experiment 5: White Noise Adversarial Training: 

 

The objective is to test the effectiveness of adversarial training as a 

countermeasure to evasion attacks. In other words, white noise infused samples 

are now added to the train sets. 

 

o Experiment 5a - Glass break with White Noise: the eleven glass break test 

sets from Experiment 3c are reused, while the glass break train sets from 

Experiment 1a are modified, having added to it, proportionally, ten out of 

the eleven white noise levels previously used (0.0005 to 0.5). As such, 

every white noise level had 100 samples included in 6a train set. 

o Experiment 5b - Gunshot with White Noise: the eleven gunshot test sets 

from Experiment 3d are reused, while the gunshot train set from Experiment 

1a are modified, having added to it, proportionally, ten out of the eleven 

white noise levels previously used (0.0005 to 0.5). As such, every white 

noise level had 100 samples included in 6b train set. 

 

Experiment 6: Denoising Background Noise: 

 

The objective is to test the effectiveness of the experimental denoising in 

the face of background noise attacks. 

 

o Experiment 6a - Glass break Test sets: the original free-of-noise glass 

break train set from experiment 1a is reused, while the 100% 
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background noise infused test set from experiment 3a is denoised and 

reused. 

o Experiment 6b - Gunshot Test sets: the original free-of-noise gunshot 

train set from experiment 1a is reused, while the 100% background 

noise infused test set and from experiment 3b is denoised and reused. 

 

Experiment 7: Denoising White Noise 

 

The objective is to test the effectiveness of the experimental denoising in 

the face of white noise attacks. 

 

o Experiment 7a - Glass break Test sets: the original free-of-noise glass 

break train set from experiment 1a is reused, while the eleven glass 

break white noise infused test sets from experiment 3c are denoised and 

reused. 

o Experiment 7b - Gunshot Test sets: the original, free-of-noise gunshot 

train set from experiment 1a is reused, while the eleven-gunshot white 

noise infused test sets from experiment 3d are denoised and reused. 

 

Experiment 8: SNR and Other Types of Noise 

 

This additional test was performed after all other experiments have been 

completed, under the intentions of a) to verify the possibility of using other types 

of noise, beyond white and background, due to possible differences in natural 

stealthiness; and b) to verify how to use Signal-To-Noise-Ratio (SNR), as the main 
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measure of power difference between the audio to be disturbed and the 

disturbances themselves. Employing SNR means that future research results 

could be reported using an industry standard, thus replacing the noisy thresholds 

used thus far. 

Since a new implementation followed by some tests would be needed to 

assess how effective the SNR-based disturbances would be, this was also a good 

opportunity to assess new types of noise, beyond the white and background ones. 

This is because every practical application that deals with audio signals also deals 

with the issue of noise.  

As stated by [Prasadh2017], “natural audio signals are never available in 

pure, noiseless form”.' As such, even under ideal conditions, natural noise may be 

present in the audio being in use. Just to cite a few, some common types of noise 

are:  

a) Gaussian noise: arising n amplifiers or detectors, having a probability 

density function that is proximal to real world scenarios 

[Rajaratnam2018].  

b) Gaussian noise: distributed in a normal, bell-shaped like fashion. 

c) Pink noise: also known as flicker noise, is a random process with an 

average power spectral density inversely proportional to the frequency 

of the input signal [Isar2016]. 

d) Cauchy noise: similar to gaussian noise and its bell-shaped curve, the 

Cauchy noise distinguishes itself by presenting a density function with a 

shape that has a higher density at center and also has a longer tail 

[Ito2016].  
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While all these noises can be used by an adversary, the types of noise 

chosen for these final experiments were pink, brown, and blue, as these variants 

are largely available for download as standalone audio samples. This is important, 

as the SNR function created (using librosa and numpy libraries) for these 

experiments was put together in a way to make it as straightforward as possible to 

generate the SNR-based disturbances.      

This has been achieved by providing the function with a sample to be 

disturbed, a disturbance sample, and an SNR threshold to be achieved. The 

energies of both samples are calculated, and the increase or decrease needed to 

reach the specified SNR threshold is applied to the noise signal directly. By using 

standalone disturbance samples, this also means that the original noises (white 

and background) are compatible with this new function and can be reused in future 

SNR-based experiments.  

 

3.5 RESULTS 

 

Table 2 shows that the base classifiers, trained only on noise-free samples, 

present great performance. The four binary classifiers, namely dog barking, glass 

breaking, gunshots and siren, all perform above 94% accuracy, while the 

multiclass classifier that includes all these same classes at once, also performs 

well, having an accuracy of close to 93%. Therefore, the multiclass classifier is on 

par with the binary classifiers. 
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AED 

System 

Experiment 

Id. 

Train 

Samples 

Test 

Samples 
Acc. Prec. Rcl. F1 

Custom 

CNN 

1a – Bark – 

Digital 
2000 300 0.96 0.96 0.96 0.96 

1a - Glass 

break – Digital 
2000 300 0.99 0.99 0.99 0.99 

1a – Gun – 

Digital 
2000 300 0.99 0.99 0.99 0.99 

1a – Siren – 

Digital 
2000 300 0.94 0.94 0.94 0.94 

1b – Multiclass 

- Digital 
4000 600 0.93 0.93 0.93 0.93 

2e – Glass 

break - Real 
2000 150 1 1 1 1 

Table 2: CNN baseline results 

 

As it can be seen from Experiments 2a to 2d in Table 3, even under unnoisy 

conditions, the Nest devices perform poorly, with a detection rate of about 33%, 

which only gets worse when disturbances are introduced to the environment. 

Particularly, the background noise can reduce detection rates by 22% while white 

noise reduces them by 25%. This is concerning as families may trust their security 

and safety to these devices to some extent.  

Absent from the table is information about the configurations of devices 

used (isolated or in combination under separate distances), as experiments were 

conducted under different distance setups, however, even though these 
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differences were considered during experiment design, so much so that different 

setup experiments were conducted, it was not possible to obtain any significant 

distinct performance differences from these setups.   

 

AED 

System 
Experiment Id. Attempts Detected Missed 

Detection 

Success Rate 

3rd-Party 

Nest 

Devices 

2a – Glass 

break – digital 
15 11 15 11% 

2b – Glass 

break (unnoisy) 

– digital  

18 6 12 33% 

2c – Glass 

break & BN - 

real 

18 2 16 11% 

2d – Glass 

break & BN - 

real 

12 1 11 8.3% 

Table 3: Tests with 3rd-Party AED capable devices 

 

 

Finally, as part of experiment 2e, a subset of the real glass break sounds 

recorded by the S10 and S20 devices (75 in total) were used to test the previously 

in-house trained glass break CNN classifier. Under these circumstances, the CNN 

model had an even higher detection accuracy, now of one hundred percent.    
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Experiments 3a and 3b are based on background noise as an attacking 

mechanism. As such, from Experiment 1a, the glass break and gunshot baseline 

classifiers as well the test sets are reused, except that these sets were modified 

by progressively increasing the number of samples within them that are infused 

with background noise. The results of these experiments can be seen in Table 4, 

which shows the effectiveness of the background noise disturbances, as they 

increasingly affect classifier's performance.  

The results produced are not even, since the glass break classifier performs 

worse to the disturbances, presenting an accuracy drop of up to 28% when 100% 

of the test set is infused with background noise. Note that the noise is added to 

only the samples in the positive class, e.g., gun, glass break. In contrast, the 

gunshot classifier has its performance dropping by around 7%.  

Different performance drops for different classes due to background noise 

infusion was expected, as the effectiveness of these disturbances will be affected 

by several factors, for instance, how feature rich the sound of interest is to begin 

with.  For now, this is pointed as the primary reason for the difference on these 

experiments involving gunshot and glass break (the first being much louder and 

distinct than the second). 

The same approach is adopted during previous Experiments 3a and 3b, and 

as such the glass break and gunshot baseline classifiers as well their test sets are 

reused, but now all test samples are infused with progressively higher white noise 

levels, ranging from 0.0001 to 0.5. The whole list of white noise levels as well as 

the experiment results are disclosed in Table 4.  

Based on these results, the gunshot sounds prove to be more susceptible 

to the white noise disturbances than glass break, presenting sharp accuracy drops 
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of over 40%. Still, glass break does not lag much behind, showing drops close to 

40%. It can be observed that white noise-infused adversarial examples 

significantly decrease the performance of both the gunshot and glass break 

classifiers, but not that of glass breaking classifier. 

The effectiveness of the selected countermeasures against evasion attacks 

have been tested next. The defensive techniques employed rely on adversarial 

training, where some adversarial examples are added to the training sets. 

Experiments 4a and 4b examine adversarial training using samples with 

background noise. The baseline glass break and gunshot training sets from 

experiment 1a are reused, however, they are modified by being infused with 

background noise, having 100% of their positive samples modified in this way.  

Two extra experiments were also created, combining the original free of 

noise train sets to a fully disturbed train set. Similarly, experiments 4c and 4d take 

and modify the baseline 1a train sets, however ten out of eleven white noise levels 

(from 0.0005 to 0.5) are added proportionally to the train sets, each level, thus, 

perturbing two hundred samples.  

The retrained models are tested against the same eleven white noise 

infused test sets seen at experiments 3c and 3d. Table 5 shows the results for 

these experiments. For adversarial training using sample with background noise, 

up to 8% and 29% improvement for gunshot and glass break are achieved, 

respectively, which is a significant result.  
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AED System Experiment Acc. Prec. Rcl. F1 

Glass Break Baseline (1a) 0.99 0.99 0.99 0.99 

Gunshot Baseline (1a) 0.99 0.99 0.99 0.99 

Glass break 

- digital 

3a – 25% BN 0.88 0.90 0.88 0.87 

3a – 50% BN 0.76 0.84 0.76 0.75 

3a – 100% BN 0.71 0.82 0.71 0.69 

Gunshot - 

digital 

3b – 25% BN 0.96 0.93 0.96 0.96 

3b – 50% BN 0.94 0.95 0.94 0.94 

3b - 100% BN 0.92 0.93 0.92 0.92 

Glass break 

- digital 

3c – 0.0001 WN 0.99 0.99 0.99 0.98 

3c – 0.0005 WN 0.95 0.96 0.95 0.95 

3c – 0.001 WN 0.95 0.95 0.95 0.94 

3c – 0.005 WN 0.98 0.98 0.98 0.98 

3c – 0.01 WN 0.99 0.99 0.99 0.98 

3c – 0.05 WN 0.93 0.93 0.93 0.93 

3c – 0.1 WN 0.81 0.86 0.81 0.80 

3c – 0.2 WN 0.81 0.86 0.81 0.80 

3c – 0.3 WN 0.66 0.8 0.66 0.62 

3c – 0.4 WN 0.65 0.79 0.65 0.60 

3c – 0.5 WN 0.61 0.78 0.61 0.54 

Gunshot - 

digital 

3d – 0.0001 WN 0.98 0.98 0.98 0.98 

3d – 0.0005 WN 0.85 0.88 0.85 0.84 

3d – 0.001 WN 0.9 0.92 0.9 0.9 

3d – 0.005 WN 0.66 0.8 0.66 0.66 
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3d – 0.01 WN 0.63 0.79 0.79 0.57 

3d – 0.05 WN 0.59 0.77 0.59 0.5 

3d – 0.1 WN 0.58 0.77 0.58 0.49 

3d – 0.2 WN 0.55 0.76 0.55 0.43 

3d – 0.3 WN 0.54 0.76 0.54 0.41 

3d – 0.4 WN 0.52 0.76 0.52 0.38 

3d – 0.5 WN 0.5 0.75 0.5 0.34 

Table 4: CNN adversarial attack tests 

 

 

For adversarial training based using samples with white noise, nearly 50% 

improvement for both gunshot and glass break are achieved. The retrained models 

are tested against test sets explained in experiments 3a and 3b, where 100% of  

their positive samples disturbed by background noise. Finally, as the final defense 

mechanism, denoising the adversarial test sets through the experimental 

denoising function is attempted.  

Experiments 6a and 6b involve denoising the 100% background noise 

infused test sets from experiments 3a and 3b, while experiment 7a and 7b involve 

denoising the ten white noise infused test sets from experiments 3c and 3d. The 

train sets are the baseline ones from Experiment 1a. The denoising consolidated 

results can be seen in Table 6. 
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AED 

System 
Experiment Acc. Prec. Rcl. F1 

Glass 

break 
4a – 100% BN 1 1 1 1 

Gunshot 4b – 100% BN 1 1 1 1 

Glass 

break 

5a – 0.0001 WN 0.99 0.99 0.99 0.99 

5a – 0.0005 WN 0.99 0.99 0.99 0.99 

5a – 0.001 WN 0.99 0.99 0.99 0.99 

5a – 0.005 WN 1 1 1 1 

5a – 0.01 WN 1 1 1 1 

5a – 0.05 WN 1 1 1 1 

5a – 0.1 WN 1 1 1 1 

5a – 0.2 WN 1 1 1 1 

5a – 0.3 WN 1 1 1 1 

5a – 0.4 WN 1 1 1 1 

5a – 0.5 WN 1 1 1 1 

 

5b – 0.0001 WN 0.98 0.98 0.98 0.98 

5b – 0.0005 WN 0.98 0.98 0.98 0.98 

5b – 0.001 WN 0.99 0.99 0.99 0.99 

5b – 0.005 WN 0.99 0.99 0.99 0.99 

5b – 0.01 WN 0.99 0.99 0.99 0.99 

5b – 0.05 WN 0.997 0.997 0.997 0.997 

5b – 0.1 WN 0.997 0.997 0.997 0.997 

5b – 0.2 WN 0.997 0.997 0.997 0.997 
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5b – 0.3 WN 0.997 0.997 0.997 0.997 

5b – 0.4 WN 0.997 0.997 0.997 0.997 

5b – 0.5 WN 0.997 0.997 0.997 0.997 

Table 5: CNN adversarial training defensive tests 

 

Experiment 7a achieves nearly 3% accuracy improvement for both 

background noise denoised gunshot and glass break, while 7b achieves over 7% 

improvement for white noise denoised gunshot. Experiment 10a also achieves up 

to a low 1% improvement for glass break. Despite the modest improvements seen 

during the execution of the denoising experiments and its corresponding results, 

the denoising experiments showcase the benefits of the proposed spectral gating 

denoising technique, especially developed in the scope of this doctoral research. 

 

AED 

System 
Experiment Acc. Prec. Rcl. F1 

Glass 

break 
6a – 100% BN 0.74 0.83 0.74 0.72 

Gunshot 6b – 100% BN 0.94 0.95 0.94 0.94 

Glass 

break 

7a – 0.0001 WN 0.99 0.99 0.99 0.99 

7a – 0.0005 WN 0.97 0.97 0.98 0.98 

7a – 0.001 WN 0.95 0.96 0.95 0.95 

7a – 0.005 WN 0.97 0.97 0.97 0.97 

7a – 0.01 WN 0.97 0.97 0.97 0.97 

7a – 0.05 WN 0.57 0.7 0.57 0.49 



 

 

72 

7a – 0.1 WN 0.96 0.98 0.96 0.96 

7a – 0.2 WN 0.98 0.98 0.98 0.98 

7a – 0.3 WN 0.98 0.98 0.98 0.98 

7a – 0.4 WN 0.98 0.98 0.98 0.98 

7a – 0.5 WN 0.98 0.98 0.98 0.98 

Gunshot 

7b – 0.0001 WN 0.98 0.98 0.98 0.98 

7b – 0.0005 WN 0.85 0.88 0.85 0.84 

7b – 0.001 WN 0.91 0.92 0.91 0.91 

7b – 0.005 WN 0.68 0.82 0.71 0.69 

7b – 0.01 WN 0.66 0.66 0.66 0.66 

7b – 0.05 WN 0.62 0.79 0.63 0.57 

7b – 0.1 WN 0.60 0.60 0.60 0.60 

7b – 0.2 WN 0.58 0.77 0.58 0.58 

7b – 0.3 WN 0.59 0.77 0.59 0.5 

7b – 0.4 WN 0.59 0.77 0.59 0.5 

7b – 0.5 WN 0.57 0.77 0.58 0.48 

Table 6: CNN denoising defensive tests 

 

Finally, the new SNR-based experiments were held. While these were not 

large-scale experiments, they nonetheless show that is possible to use the SNR-

based function to successfully generate disturbed samples that adhere to the SNR 

standard, and subsequently to apply these samples into an ample variety of 

adversarial attacks.  
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Regarding stealthiness, even though one can physically perceive a given 

noise as being less loud (and hence stealthier) than the others, in practice it was 

not possible to pinpoint a given type of sound as being better suited for a practical 

adversarial attack. Although the experiments held were done in lab-level fashion, 

the digitally disturbed samples are enough to establish that even if these 

experiments were to be held on the field through loudspeakers, these different 

types of noise alone would not make the attacks stealthier in any significant way. 

This could be different if directional speakers were being used. 

All the reported SNR experiments were based on the gunshot audio class. 

 

Noise 
SNR 

threshold 

Total # of 

samples 

# Of successful 

detections 

# Of failed 

detections 

Blue 10 50 7 43 

Blue 20 50 29 21 

Blue 30 50 46 4 

Pink 10 50 9 41 

Pink 20 50 33 17 

Pink 30 50 47 3 

Brown 10 50 9 41 

Brown 20 50 34 16 

Brow 30 50 46 4 

Table 7: SNR-based Experiments 
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3.6 RELATED WORK 

 

3.6.1 ADVERSARIAL ATTACKS (ON SPEECH RECOGNITION SYSTEMS) 

 

Personal assistants and speaker identification systems have become part 

of our daily lives. Recently, a large body of research has focused on studying the 

robustness of speech recognition systems against different types of adversarial 

attacks [Schonherr2018, Li2020]. For instance, the work by [Li2020] distinguishes 

itself on this front, as unlike the others, it does not require the attacker to know the 

original voice command in advance before attacking it and modifying it to make it 

malicious. 

 

3.6.2 ADVERSARIAL ATTACKS ON AED SYSTEMS 

 

Much less work exists on this front. Subramanian et al. [Subramanian2020] 

studies attacks done against the audio portion of audio tagging systems, exploring 

its transferability properties across different deep learning models. 

[Subramanian2020] also shows that such transferability of adversarial examples 

can resist normalization techniques as well as knowledge distillation defense. Such 

attacks are not easy to reproduce in a real-world scenario, as they require some 

costly computations plus some technical savviness by the attacker. Besides, it is 

not clear how perceivable such disturbances are.  
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3.6.3 COUNTERMEASURES AGAINST EVASION ATTACKS 

 

Some work has studied countermeasure techniques for improving the 

resilience of these system against adversarial attacks [Roy2018, Carlini2018, 

Mao2020]. Most of these techniques are passive in nature, such as on the case of 

promoting the detection of an adversarial attack occurrence. Active techniques, 

such as adversarial training exist and can also be found in smaller numbers.  

Active techniques, such as adversarial training exist and can also be found 

in smaller numbers. For example, Sallo et al. [Sallo2020], used six different 

attacks, all tampering the spectrograms (images) and not the audio files, 

employing them next against some publicly AED available models. The adversarial 

training on this case consists of using adversarial spectrograms.  

 

3.6.4 NEURAL NETWORK APPROACHES FOR AED 

 

The works by [Zhou2017] and [Jaiswal2018] use a combination of 

Convolutional Neural Networks (CNN) with sequential layers and spectrograms for 

sound detection and classification, the first targeting urban sound (as air 

conditioners, jackhammers, etc.) and the second targeting deforestation sounds. 

Both authors' implementations are done through Keras python library and achieve 

accuracies between 40 and 85 percent for different datasets under use.  

[Khamparia2019] uses two parallel rather than sequential hidden layers for 

sound classification. The spectrograms are generated through Matlab. 10 ambient 

sound classes (rain baby cries, sneezing, etc.) are used, and the experiments 
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show that the proposed model achieves nearly 78 and 50 percent classification 

accuracies for ESC-10 and ESC-50 respectively.  

[Li2016] focuses on surveillance related sounds, and its main contribution 

is to use, rather than the spectrograms themselves, a combination of partitioned 

monochrome images derived from spectrograms. Such derivation is obtained 

through the application of Gabor filters to the original spectrograms, and these 

derivate images are the ones to be fed to a K-Nearest-Neighbor classifier.  Such 

approach is claimed to achieve an average of 96 and 83 percent performance in 

terms of classification accuracy. 

Both [Lim2017] and [Cakir2017] use Recurrent Neural Networks (RNN) and 

seek to classify suspicious events. The model by [Lim2017] uses a CNN first and 

its output is further fed to a RNN (two models in tandem), while [Cakir2017] uses 

recurrent layers and standard CNN layers in an interleaved fashion (one single 

model). Both authors address the vanishing Gradient problem differently, 

[Lim2017] using Long Short Term Memory Unit (LSTM) while [Cakir2017] using 

Gated Recurrent Unit (GRU). The two authors claim their approaches slightly 

outperform works based solely on CNNs.  

An ensemble of CNNs is used by [Lee2017] to perform urban sound 

classification. Two independent models take spectrograms as inputs and compute 

individual predictions, while a final prediction is obtained by assembling both 

models' probabilities. The proposed model achieved 0.536 in the event-based F1-

score and 0.66 in the segment-based error rate in evaluation set of DCASE2017. 

[Ghaffarzadegan2017] uses an ensemble of Deep CNN, Dilatated CNN (DCNN) 

and Deep RNN for rare events classification. LSTM is used and an average F-

Score of 91.2 percent is achieved. 
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3.7 CHAPTER CONCLUSION 

 

The main contributions of this doctoral research at phase 2 are two-fold: 

first, the results more definitively confirm that AED systems are vulnerable to 

evasion attacks by adversarial examples made of audio samples. AED-capable 

CNNs as well as third-party devices were tested, and while their initial baseline 

performance was good under ideal circumstances with regards to audio event 

detection, significant drops in classification performance were witnessed, when 

either background noise or white noise were injected into the audio samples.  

Another important contribution was to shed clear light over the fact that not 

all types of noise are effective in decreasing the performance of classifiers. For 

example, while white noise infused to gunshot samples can significantly decrease 

the performance of gunshot detection classifier, adding white noise to glass break 

samples show much smaller decreases. While the attack approaches were shown 

to be effective, the defense ones used against the adversarial examples were also 

shown to be good.  

Also important was to establish that different noises (white, pink, brown) are 

not stealthier among themselves and by themselves in any significant way. This is 

a limitation if these noises, in pure form, are used as part of a practical on-the-field 

attack. Under this limited scenario, white and background noise seem to be 

stealthiest noise possible due to their nature of being regularly present around 

people, All noises could though be used in stealthy fashion if one considers Signal-

To-Noise-Ratio thresholds. 
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For instance, employing adversarial training leads to significant 

improvements. The potential of spectral gating denoising techniques was also 

verified, which when applied to test sets, led to better classification performance. 

As previously stated, this research is done under the motivation of being one step 

ahead of a future where Audio Event Detection Systems are going to become 

ubiquitous, hence being employed not only at homes, but also public spaces.  

As such, it is important to motivate researchers from the academy and 

professionals from the industry to think of potential security shortfalls before 

executing the design and the implementation of AED solutions, thus paving the 

way for a safer and more effective future. Further tests are conducted during phase 

3 to validate, once and for all, the conclusions reached as part of phase 2. A final 

focus on the stealthiness of the attacks will also be part of phase 3.  
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CHAPTER 4: ROBUST ATTACKS AGAINST AED SYSTEMS 

In this chapter, the final phase of this research, namely phase 3, is presented. 

Chapter 4 structure generally follows the one introduced previously in Chapters 2, 

and 3, hence an introduction is provided in section 4.1; the specific research 

questions being addressed in this phase are brought in section 4.2; the studies 

proposed to answer these questions are described in section 4.3; the final research 

experiments are presented and discussed in section 4.4. Finally, chapter 5 brings 

up this doctoral dissertation final conclusions and contributions. 

  

4.1 INTRODUCTION 

 

The third and last phase of this research continues to work on the previously 

introduced audio-based disturbances, however, expands them further through the 

development and testing of new versions of these attacks, now with a renewed 

focus on stealthiness, thus, on making these attacks even more practical, feasible, 

malicious, and more disruption-capable in a real-world scenario.  

Besides the intent to make the attacks stealthy, the renewed focus on novel 

field experiments is justified after there were several software updates released by 

Google for Nest devices over the course of the 12 months that passed since Phase 

2 experiments were completed. These updates could have improved the AED 

capabilities of these Nest devices. Also, important to note is the availability of other 

AED-capable devices, such as Alexa ones, manufactured by Amazon. These are 

also popular equipment that are constantly being improved by their manufacturer. 
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As such, expanded on-the-field experiments, now employing both the 

baseline (noisy) as well as the new stealthy attack variants developed for phase 3, 

are conducted against an also expanded roster of AED devices, thus allowing for 

current capability evolution assessment, besides enabling comparisons of different 

detection performances provided by different devices of different manufacturers.  

Given the focus on stealthiness, directional speakers are employed to fulfill 

the purpose of less perceptible attacks. These stealthy experiments were expected 

to increase the success rate of the adversarial attacks, while still maintaining 

simplicity through the adoption of only a few tweaks when compared to the 

conventional, loudspeaker-based attack variant. In other words, maximum 

discretion is to be prioritized as an important research design constraint.  

Finally, once back to the lab environment, an end-to-end (E2E) AED system 

is proposed, where we couple our in-house built classifiers to an input capturing 

embedded microphone. The audio input provided was made of digital samples 

used on previous experiments as well as of audio captured directly by the black-

box AED devices (hence that passed through their entire pipeline), thus 

representing, and evaluating an actual AED system to the largest extent possible. 

 

4.2 BACKGROUND AND MOTIVATION 

 

Since Audio Event Detection (AED) Systems have left the realm of theory 

and became a practical reality, the variety of AED designs is constantly increasing. 

From somewhat rudimentary, open designs based on low-cost platforms such as 

raspberry pi computers, to fully black-box, proprietary, and state-of-the-art 
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systems, these devices are generally expected by its users to provide reliable 

detection capabilities. 

With several of these devices being marketed by its manufacturers as being 

intended for use as part of broader safety / security-driven frameworks, it becomes 

imperative to evaluate and to compare the reliability in terms of their detection 

performance, especially when mainstream brands are manufacturing these 

devices. During phase 2 of this research, attention was provided to Nest devices, 

manufactured by one of the top players in the industry, namely Google. 

The results of the tests with the Nest devices were not particularly favorable, 

which inevitably led to questions about if the conducted tests were properly carried 

out and if its results could be trusted. This was a clear limitation from phase 2. Yet 

another limitation was the fact that only audible disturbances were employed as 

part of attacks against these Nest devices. While these noisy disturbances were 

somewhat common, made of day-to-day noises that could deceive nearby 

standers to some extent, they could not be considered sophisticated enough. 

Phase 3 addresses all these shortfalls, first by adding to the field tests some 

Echo devices, manufactured by Amazon, and compatible with Alexa voice 

assistant services. The addition of another widely known mainstream brand to the 

tests allows for a chance to further validate the previously obtained results during 

Phase 2 tests. It also allows for clear and straightforward comparison of detection 

performance between these two major players, namely Google and Amazon. 

Another contribution to be derived from Phase 3 resides on expanding the 

noisy attack envelope, now by adding to it some stealthy disturbances. While 

Phase 3 audio disturbances will still rely on the same backbones from Phases 1 

and 2, namely white and background noises, and continue to be injected to the 
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environment through conventional loudspeakers (hence through audible, non-

stealthy means), they will now also be introduced by directional speakers.  

The use of directional speakers for the injection of audio adversarial 

examples is a major leap forward in terms of this research. This is because the 

proposed attacks remain practical to be reproduced on the field, especially by not 

so much savvy attackers (thus not breaking one of the research design 

constraints), but now also leads to greatly reduced chances of having the attack 

detected and perceived by nearby standers. In other words, the noisy attacks 

become stealthy, thus greatly increasing attack effectiveness and its chances of 

causing harm and of being disruptive to AED capable devices. 

Given that both Nest and Alexa devices come from the factory being 

capable of detecting glass break sounds, said sound class will be phase 3 positive 

class (the one containing the sounds of interest). In the revised threat model for 

phase 2 and evolved for phase 3, the AED system will remain as a simulation of a 

deployed home security system, and the adversary will keep aiming at preventing 

the AED system from correctly detecting and classifying the sound events.  

For said AED defeating purpose, the adversary will still generate noise 

(background or white) through audible means, but now will also add to his arsenal 

stealthy noise. thanks to the adoption of directional speakers.  

 

4.3 THREAT MODEL 

Phase 3 threat model is a direct evolution from the one proposed for phase 

2. As such, in it loudspeakers and directional speakers alike will be employed, 

having both to reproduce disturbances comprised of white and background noise. 
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These two types of noise were carefully selected to maximize imperceptibility in all 

scenarios, as even when audible and if heard, these two sounds can easily be 

mistaken for ordinary noise, possibly found within almost any environment.  

In other words, for the case of loudspeakers, while even though both noises 

would be able to be perceived by local bystanders due to how loudspeakers work, 

it is unlikely these sounds would draw too much attention or concerns, as they 

could be mistaken by mere environmental noise. Even pure white noise would be 

much less conspicuous than, for instance, audible and clearly stated voice 

commands as it would be the case of AEs employed against SR systems.  

On the other hand, when employing directional speakers, the perceptibility 

of the disturbances is strongly reduced, once again, due to the very way directional 

speakers work. Unlike conventional speakers, which spread their sound waves 

through a wide area, directional speakers work as a flashlight instead 

[ExplainThatStuff2020], except that they use audio rather than light.  

 

 

 

 

 

 

 

 

 

 

Figure 9: Updated threat model with stealthy disturbances 
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This peculiar way to work allows for an attacker to use directional speakers 

to single out a particular targeted AED device, directly focusing against it an audio 

attacking beam, thus not affecting (or at least affecting very little) whoever may be 

standing nearby the spot of attack. As part of phase 3 tests, both directional 

speakers (used for novel, and stealthy attacks), and loudspeakers (for re-executing 

and validating results from conventional attacks) are employed. 

Figure 9 brings a representation of the previously described threat model, 

where it is assumed that the adversary actively attempts to evade an AED system 

that aims on detecting suspicious sound events. A black-box scenario also remains 

as an assumption, so once again the adversary will not have any knowledge about 

the datasets, algorithms, and their parameters.  

 

4.4 MATERIALS AND METHODS 

4.4.1 THIRD-PARTY AED DEVICES 

The same as it happened during phase 2, the focus of testing AED 

capability effectiveness (or lack thereof) remains directed against mainstream, 

widely known AED devices that are also available for purchase by the public. Since 

there was the need to re-evaluate and to confirm the results from phase 2 field 

experiments, it is just natural that Nest devices would be included for testing under 

phase 3. Both Nest display and minis are reincluded, as such.  

As previously explained, there was the need to include into testing new 

devices belonging to different brands. Echo devices, manufactured by Amazon, 

powered by Alexa assistant services, were chosen for this purpose. Being 

equivalent in capability to the selected Nest devices, the Echo display and the 
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Echo dots offer a good alternative for Nest devices and having both brands 

included into Phase 3 field tests is a good way to employ state-of-the-art devices. 

 

4.4.2 END-TO-END AED SYSTEM 

Considering all the components that are needed to put together a modern 

AED system / device, similarly to what is found on Nest and Alexa devices, it made 

sense to reproduce, at least partially, a full E2E AED system for testing purposes. 

For that, the glass break classifier, trained on unnoisy samples and that has been 

extensively experimented during Chapter 3, was coupled with a microphone for 

audio capture / feeding / classification purposes.  

To simulate the embedded microphones found on actual AED devices, the 

embedded microphones from a MacBook Pro 2021 computer have been used, as 

they are similar in size and capabilities. Despite the similarities, this simulated AED 

system cannot possibly fully reproduce the entire data pipeline used in actual AED 

black-box devices, as it misses important components (such as embedded 

machine learning chips as well as cloud-based services), many of these 

components being unknown (hence black-box). 

To partially address this concern, in a second moment, audio captured by 

Alexa devices over the course of the field experiments (and that as such, are 

guaranteed to have passed through the entire pipeline before being stored) has 

been retrieved and will be used as part of the experiments. This is because Alexa 

devices only store and make available for download audio that has been 

successfully detected as being an occurrence of the audio event of interest, on this 

case, glass break. If undetected, the audio is not stored, hence is not available. 
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4.4.3 EXPERIMENTS 

As previously stated, the main objective by Phase 3 was to confirm the 

results reached as part of phase 2 while also giving focus on the stealthiness 

aspect of the noisy attacks being employed. For that purpose, a large field 

experiment consisting of several smaller experiments was devised. These were 

experiments 8a to 8y, where different combinations of Nest and Echo devices were 

tested.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By employing each device in isolation from each other or working in some 

sort of combination (for instance, two nest minis working together) the idea was to 

Figure 10: Late field experiments 
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assess if more devices made any difference in how good the actual AED 

capabilities by each brand was. It was also sought to identify how distance from 

the glass break audio source to the AED devices would affect the results. Impacts 

from (bad) internet connection on the experiments were ruled out by having all 

devices connected to a high-speed 5G network. 

For real glass break sounds, previously purchased beer bottles were 

broken. To record the whole procedure, but also to generate some glass break 

sounds for possible later reuse, two Android devices were employed, namely S20 

Ultra and S21 Ultra, both working as audio recorders, positioned at negligible 

distance from the AED devices.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Loudspeakers (table) and directional speaker (tripod) 
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To establish signal-to-noise ratio readings, the room where the experiments 

were conducted had its environmental noise measured when being free of any 

experiment-related sound, baselining at 40 decibels by then. Two loudspeakers 

were deployed, namely Charge 4 and Flip 4, both manufactured by JBL, the former 

as a non-stealthy attacking device and the latter to reproduce digital glass break 

sounds. An FS-mini-B directional speaker manufactured by VidBeam, playing the 

role of stealthy attacking device was also employed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All speakers were wireless connected, via Bluetooth, to one commodity 

laptop computer, where the audio disturbances as well as the digital glass break 

sounds were stored. Both loudspeakers had native Bluetooth connection, however 

Figure 12: AED devices and decibel reader 
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the directional speaker did not offer that capability. This roadblock was bypassed 

by coupling it to an A3352 Bluetooth Receiver by Anker, which effectively made 

the directional speaker wireless. The computer sound volume was set to 100 

percent, while the loudspeakers had their volume set at 90 percent to ensure a 

Signal-to-Noise (SNR) ratio of 30 decibels. The directional speaker had its volume 

set to 100, regardless of SNR achieved by doing so. 

 

4.5 RESULTS 

 

In total 254 real glass breakages were performed to test the standard 

detection capabilities from the AED devices (when detecting sounds under normal 

conditions of operation) as well as when these capabilities were supposed to be 

impaired by adversarial noisy attacks. As such, out of these breakages, 54 

happened when all devices were detecting sounds under no attack. 

Another 120 happened under non-stealthy attacks (white and background 

noises injected into the environment by a loudspeaker), and finally the remaining 

40 were done under stealthy attacks (noise beam from the directional speaker 

targeting a single active detecting device at a time). Another 150 digital glass 

breaks (playing glass break sounds through a loudspeaker) were performed, out 

of which 70 happened under no attack, 40 happened under noisy attacks, and 

finally the remaining 40 happened under stealthy attacks.  

As it can be seen from Figure 14, only 23 of the real glass break 

occurrences (5 by both Nest and Alexa devices at the same time, 8 by Nest devices 

alone and 10 by Alexa devices alone) and 38 of the digital ones (18 by both Nest 
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and Alexa devices at the same time, 11 by Nest devices alone and 9 by Alexa 

devices alone) have been detected.  

From these extremely low number of successful glass break detections, one 

can deduct that the detection capabilities of both Nest and Alexa devices are not 

good to start with, even when they are operating under normal condition of use, 

meaning facing no attacks and when signal to noise ratio favors detection by being 

above 30 decibels. Keeping SNR above 30 is, by the way, the reason why some 

of the real glass experiments were done by breaking two pieces of glass at the 

same time.  

The noisy attacks, audible and stealthy alike, only make the poor 

performance presented by these AED devices even worse, reason why an attacker 

could make use of them to almost guarantee one hundred percent success rate 

while attacking AED devices. The tests prior to the disturbances already proved 

that an adversary is very likely to be successful in breaking glass (like a glass 

window) and still avoid detection while doing so.  

In fact, the performance by the AED devices, Nest and Alexa alike, is so 

poor that reporting the distance factor (between detecting devices and breaking 

spot) becomes irrelevant: while the intention was to break glass at 2 and 4 meters 

away from the detecting devices, it was quickly realized that all devices performed 

very poorly, even when only 2 meters away from the breakage spot.  
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Test 
Experiment 

Id. 

# Of 

samples 

# Of 

detections 

Detecting 

devices 
Observations 

Initial 

Setup 

8a – Real 

Glass – 

Displays 

3 0 N/A  

8b – Real 

Glass – 

Minis + Dots 

3 0 N/A  

8c – Real 

Glass – All 
2 0 N/A  

8d – Digital – 

Displays 
10 0 

2 by both 

+ 2 by 

Nest 

 

8e – Digital – 

Minis + Dots 
10 0 

1 by both 

+ 1 by 

Alexa 

 

Baseline 

8f – Real 

Glass – All 
10 0 N/A  

8g – Real 

Glass – 

Displays 

20 7 

3 by Nest, 

3 by Alexa, 

1 by both 

Two glasses 

for each 

breakage 

8h – Real 

Glass – 

Minis + Dots 

20 5 

1 by Nest, 

3 by Alexa, 

1 by both 

Two glasses 

for each 

breakage 
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8i – Real – 

All 
20 4 

1 by Nest, 

3 by both 

Two glasses 

for each 

breakage 

8j – Digital – 

Displays 
20 8 

3 by Nest, 

5 by both 
 

Noisy 

 

8k – Digital 0 

Minis + Dots 
20 11 

2 by Nest, 

3 by 

Alexa, 6 

by both 

 

8l – Digital – 

All 
20 9 

1 by Nest, 

4 by 

Alexa, 4 

by both 

 

8m – Real 

Glass – N-

WN- All 

10 1 1 by Nest 

Two glasses 

for each 

breakage 

8n – Real 

Glass – N-

BN- All 

10 1 1 by Nest 

Two glasses 

for each 

breakage 

8o – Real 

Glass – N-

WN - All 

10 0 N/A 

Two glasses 

for each 

breakage 

8p - Real 

Glass – N-

BN - All 

10 2 
2 by 

Alexa 

Two glasses 

for each 

breakage 
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8q - Digital – 

N-WN - All 
10 1 1 by Nest  

8r - Digital – 

N-WN - All 
10 2 

1 by Nest, 

1 by 

Alexa 

 

8s - Digital – 

N-WN - All 
10 1 1 by Nest  

8t - Digital – 

N-BN - All 
10 0 N/A  

Stealthy 

8u - Real 

Glass – S-

WN – Nest 

Display 

20 1 1 by Nest 

Two glasses 

for each 

breakage 

8v - Real 

Glass - S-

WN – Echo 

Display 

20 3 
3 by 

Alexa 

Two glasses 

for each 

breakage 

8w - Digital – 

S-WN – Nest 

Display 

20 0 0  

8y - Digital – 

S-WN – 

Echo Display 

20 0 0  

Table 8: Compilation of late field tests (Nest and Echo) 
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Non-

Stealthy 
Stealthy* 

Total Digital Samples Available 140 10** 

Total Real Samples Available 174 80** 

# of Digital Detections 
E 9 0 

N 11 0 

# of Digital Misdetections 
E 113 5 

N 111 5 

# of Real Detections 
E 10 3 

N 8 1 

# of Real Misdetections 
E 159 37 

N 161 39 

# of Digital Detections B 18 NA 

# of Real Detections B 5 NA 

Total Real Digital Detected out of 254 
(total when under attack, WN Attack, BN 

Attack) 

27 (8, 5 WN, 3 BN) 
Echo 15, Nest 13 

Total Digital Real Detected out of 150 
(total when under attack, WN Attack, BN 

Attack) 

38 (4, 2 WN, 2 BN) 
Echo 27, Nest 29 

*: Only displays participated on stealthy experiments 

**: reported samples were split among displays 

Table 9: Summary of late field tests. Results reported by Echo(E), Nest(N) and 
both Echo and Nest (B) devices together. 

 

As such, since no clearly distinguishable practical performance difference 

in terms of AED detection done between 2 and 4 meters could be found, all tests 

were conducted and reported with 2 meters between glass break spot and 

detecting devices. This is restriction of use that also makes the AED devices under 

testing not to be very practical for day-to-day use, as in a real situation they are 

supposed to be deployed into different environments under all sorts of different 

conditions, including distance and varying levels of environmental noise. 

About the E2E AED system tests, the baseline 1a glass break classifier from 

chapter 3 (trained on 2000 samples, half being glass breaks) has been reused. 

The corresponding 1a test set, made of 300 test samples (150 of which were actual 
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glass break sounds) has also been reused, except that now, all these samples are 

played over the air by a Samsung S21 Ultra device, and captured by the MacBook 

Pro embedded microphones before being fed directly to the glass break classifier. 

 

Test 

Total 

Positive 

Samples 

Total 

Negative 

Samples 

Positive 

Classifif. 

(Correct) 

Negative 

Classific. 

(Correct) 

Positive 

Misclassif. 

(Incorrect) 

Negative 

Misclassific. 

(Incorrect) 

A 

C 

C 

Digital 

Glass 

Break 

150 150 74 144 76 6 0.726 

Alexa 

Glass 

Break 

35 NA 26 NA 9 NA 0.742 

Table 10: E2E AED System Tests 

 

The results of these tests can be seen on table 9. As it is clear, the addition 

of a microphone does adversely affect the classifier performance, as it drops from 

99% accuracy (as reported during chapter 3) to a little less than 50%, as it misses 

76 samples out of the 150 total. Still, this reduced performance is nowhere near 

the subpar results obtained from the black-box AED devices, being, as such, much 

better. The echo captured glass breaks samples were tested next. 

From table 9 it is possible to see that a test set made of 35 samples were 

available, and out of these, only 3 misclassifications happened. From previous 

observation along the research, it was already clear that signal-to-noise ratio was 

a very important factor for any glass break to be detected by black-box AED 
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devices. The good performance of the in-house built classifiers on top of these 

Alexa captured samples is further evidence of SNR importance across the board.  

No negative samples are available in the test set, as it is only possible to 

access and download sounds that were successfully detected, processed, and 

stored by the Alexa devices, which obviously does not apply to random sounds 

that do not contain glass break. This also late evidence that the overwhelming 

majority of the glass breaks from chapter 3 field experiments were really never 

neither detected, nor stored, at least by the Alexa devices.  

 

4.6 RELATED WORK 

 

This section covers other authors’ work related exclusively to phase 3. Its 

focus is on the several components making up physical speech recognition and / 

or audio event detection systems.  

4.6.1 COMPONENTS MAKING UP PHYSICAL SYSTEMS 

 

 For practical SR and AED systems to work properly (for either voice to be 

recognized or for acoustic events to be detected), it is known that several 

components working together are needed. For instance, while working on voice 

recognition, [Oh2019] implements a system made of a microphone for signal 

capture, followed by custom processing chips, one for local feature extraction, 

followed by another chip responsible for applying a locally deployed classifier to 

receive such features as input.  



 

 

97 

Several other components exist, such as post-processing chips, mixers, 

amplifiers, and others. Author [Li2021], while also working on voice/speech 

related-applications, proposes a real-time on-chip speech audio super resolution 

system, made of dual microphones (bone conduction as well as air conduction) at 

the edge of the system, followed by system on chip for input intake, GPUs for 

training the ATS-UNet deep learning model, which is to be deployed to off-the-

shelf ARM-Cortex micro-controllers for on-device local processing.  

Author [Alsina2017] implements a system for real-time AED for the support 

of Ambient Assisted Living. For that purpose, a wireless acoustic sensor network 

with several low-cost microphone nodes captures environmental sound and sends 

it to a GPU-based concentrator, that acts as an MFCC feature extractor that is 

passed along to a NVIDIA GPU for locally detecting the acoustic events of interest.  

Recently, AI chip startup Aspinity [EETimes2021] made news when it 

released a specialized acoustic event detection chip that will most likely become 

an off-the-shelf component, able to be integrated into diverse battery-powered 

devices deployed as part of AED capable solutions.    

 

4.7 CHAPTER CONCLUSION 

 

During phase 4, an expanded roster of AED capable black-box devices was 

evaluated regarding both their AED performance as well as their vulnerabilities 

when facing evasion attacks based on noisy disturbances. The results obtained 

from these tests were clear to show that even modern devices, considered to be 

state-of-the-art, present a far than ideal performance when detecting sounds of 
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interest. This is especially troublesome given the safety / security scenarios where 

these devices tend to be employed as part of. 

Several reasons may be behind this less than optimum performance, and it 

is likely that each component within the required data pipelines may is to blame, 

at least partially. Experiments held to simulate an end-to-end AED system and that 

coupled an audio input device to the in-house built classifiers, despite being 

simple, is already enough to bring a dramatic reduction in detection performance, 

generating a drop in accuracy from 99% to less than 50%. Despite such reduction, 

the proposed AED system significantly outperforms the state-of-the-art. 

These results seem to demonstrate that the current limitations of these AED 

devices are most likely not tied to the deep learning models / data in use, but to 

too many components being part of the pipelines, which may be there to support 

other capabilities / objectives rather than sound event detection in itself. These 

other objectives may be tied to things as security, personalization, localization 

services, besides others, and may be a good example of secondary capabilities 

adversely impacting the primary ones.  
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CHAPTER 5: CONCLUSIONS 

 

It is undeniable that Audio Event Detection is a capability that has gained 

tremendous improvements in performance over the last decade. Such 

improvements are one of the reasons that industry juggernauts, such as Google 

and Amazon (just to cite a few) to quickly embrace such capabilities and to adopt 

them as part of their industry-leading devices. Unfortunately, the adoption of AED 

capabilities by industry heavy weights may be deceiving. 

This is because consumers may be led to wrongly believe that these are 

well-established devices with well-established capabilities, both of which are 

failure-proof, an especially dangerous assumption given their use for safety 

purposes. Also, the wide AED capability adoption by manufacturers, tied to the 

today’s ubiquitousness of AED-capable devices may attract attackers who seek to 

find vulnerabilities within these systems and to exploit them for malicious purposes. 

The main contributions of this dissertation are four-fold: first, this research 

tested and unequivocally proved that black-box devices that are AED capable, 

even when manufactured by major brands such as Google and Amazon, are not 

to be trusted in terms of their detection capabilities. These devices fail to detect 

most audio events of interest, even when the conditions favor the precise detection 

(no attack being carried out, signal-to-noise ratio above 30 decibels).  

Second, it was shown that if the AED performance by these devices was 

neither good nor reliable, it only gets worse when these AED physical devices are 

under attack. In the process of attacking the AED devices, this research employed 

both non-stealthy as well as stealthy disturbances made of noise, both which 
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further degraded the tested AED capabilities, to the point of rendering any device 

useless.  

Third, special focus was given on tests that targeted solely CNN AED 

classifiers, as they are representative of neural networks commonly embedded 

into these AED black-box devices, hence are considered to be the main 

component in the AED pipeline. It was confirmed that it is possible to build AED 

classifiers that are very good to detect a given sound of interest (e.g.: glass break). 

While these were good news, the same tests also have shown that these 

same classifiers are clearly vulnerable to evasion attacks by adversarial examples 

made of noise, vulnerability that is similar to the one found for the black-box AED 

devices previously tested.  Significant drops in classification performance were 

witnessed, when either background noise or white noise were injected into the 

audio samples.  

However, an important observation stemming from the experiments was 

that not all types of noise were effective in decreasing the performance of 

classifiers in the exact same way or proportion. For example, while white noise 

infused to gunshot samples can significantly decrease the performance of gunshot 

detection classifier, background noise is not that effective against this class.   

It was also shown that defenses against these noisy adversarial examples 

perform well when shoring up the affected classifiers. For instance, employing 

adversarial training leads to significant improvements. A denoising technique 

based on spectral gating has also shown to be effective, as it led to better 

classification performance.  

Finally, an end-to-end AED system was proposed to showcase, at least 

partially, how these AED systems are impacted when new components are added 
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to their data pipelines. The addition of a single component was already able to 

cause a reduction in performance of nearly 50%.  

 

5.1 SUMMARY OF CONTRIBUTIONS 

 

• Evaluation of the baseline performance of actual, state-of-the-art, black-

box, physical AED-capable devices. Such baseline performance has 

been decisively shown to be poor to say the least, being unacceptable 

when considering deploying such devices as part of any serious safety-

driven framework. 

• Evaluation of these same physical AED-capable devices against both 

audible and stealthy real disturbances, crafted and employed on-the-

field. These disturbances have been shown to be able to render the 

state-of-the-art AED devices effectively useless.  

• Focus on the implementation and evaluation of the single and most 

critical component making up modern AED capable devices, namely 

AED specialized neural networks. A reasonable baseline performance 

for these neural networks, much superior to the one found when testing 

the whole black-box AED devices, was established. 

• Evaluation of AED neural networks against attacks made of adversarial 

example inputs made of noise. These adversarial examples were 

crafted to reproduce the physical attacks conducted against the AED 
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devices. It was shown that these neural networks are fundamentally 

vulnerable to these adversarial examples.   

• Adversarial training and denoising were shown to be able to be used as 

countermeasures to the audio adversarial examples employed against 

the neural network AED component. While it is not a full solution 

regarding the performance of the entire AED system, this strategy can 

be used to improve the performance and robustness of at least the 

neural networks that make up the core of modern AED devices.  

• Proposed an end-to-end AED system, made of in-house built classifiers, 

coupled with embedded microphone component. The proposed AED 

system performs better then mainstream AED-capable devices, such as 

Nest and Echo ones. The same system is an important contribution to 

demonstrate how the addition of components into the data pipeline 

currently tends to generate worst classification results, as a single 

component led to over 50% drops in accuracy. This may provide a useful 

insight for AED system designers.  

 

5.2 FUTURE WORK 

 

Future research spawning from this work may include: 

• New stealthy noisy attacks derived from algorithmic means, more 

specifically on a modified, gradient-based version of the attack 

successfully used so far. While several approaches for gradient-based 

attacks exist, the Projected Gradient Descent (PGD) method seems to 
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be ideal, as it was already conceived to be somewhat robust and hard 

to be detected, as it uses small step sizes and generates small but 

progressive perturbations that are effective and fast to generate. 

Gradient based attacks denote white box access to the model under 

attack so that the gradients are known, something never considered 

within this doctoral research threat models. As such, it is important to 

clarify that the approach to be followed will be to use a surrogate model, 

simple in nature, from which the perturbations will be derived, and then, 

by exploring the well-known adversarial example transferability property, 

will be applied to the final AED model. 

• Stealthy noise attacks carried by a mobile vector, such as drones, could 

also be researched. Considering that attacks based on directional 

speakers were tried successfully during the last phase of this research, 

it may be a good direction to turn these attacks into an even stealthier 

through drones, as they not would not only be hard to hear, but also hard 

to see. 

• To research novel and effective defenses against the noisy 

disturbances. These defenses could maintain their reliance on the 

combination of oversampling, adversarial training and denoising 

techniques. For adversarial training, a logical evolution would be to 

include PGD on it. For denoising, further improvements to the spectral 

gating denoising technique might be pursued together with other forms 

of denoising. Another possibility under consideration is the employment 

of compressed deep learning models, an approach shown to be more 

robust to attacks on the speech recognition domain.  

• Another advance that may be pursued is the research of defenses that 

could immediately and straightforwardly be employed on the field. Given 

the black-box nature of the AED capable devices that are part of this 

study, hence, the lack of access to their internal structure, such defenses 

may not necessarily be algorithmic, but may rely on hardware 

approaches instead. One possibility is the addition of proportional 

additive gaussian noise to the environment, hence attenuating 

maliciously injected noise. 



 

 

104 

REFERENCES 

 

[Abdullah2019] Abdullah, H. and Garcia, W. and Peters, C. and Traynor, P. and Butler, 

K. and Wilson, J. Practical hidden voice attacks against speech and speaker recognition 

systems. IEEE Symposium on Security and Privacy, 2019. 

 

[Ahsan2016] Ahsan, U. and Bais, A. “A Review on Big Data Analysis and Internet of 

Things”. 13th International Conference on Mobile Ad Hoc and Sensor Systems, 2016. 

 

[AirborneSound2017] AirborneSound. The Free Firearm Library - Expanded Edition. 

Available at https://www.airbornesound.com. Last accessed in May 2020. 

 

[Akhtar2018] Akhtar, N. and Mian, A. Threat of adversarial attacks on deep learning in 

computer vision: A survey. IEEE Access, pp. 14410-14430, 2018. 

 

[Alexa2019] CNBC. How to Set up Alexa Guard on an Amazon Echo. Available at 

www.cnbc.com/2019/05/14/how-to-set-up-alexa-guard-on-an-amazon-echo.html. Last 

accessed in January 2021. 

 

[Alraddadi2019] Alraddadi, S. and Alqurashi, F. and Tsaramirsis, G. and Luhaybi, A. and 

Buhari, S. Aroma Release of Olfactory Displays Based on Audio-Visual Content. Appl. 

Sci., pp. 1919-1958, 2019. 

 

 

https://www.airbornesound.com/
http://www.cnbc.com/2019/05/14/how-to-set-up-alexa-guard-on-an-amazon-echo.html


 

 

105 

[Alsina2017] Alsina-Pagès, R.M. and Navarro, J. and Alías, F. and Hervás, M. 

homeSound: Real-Time Audio Event Detection Based on High Performance Computing 

for Behaviour and Surveillance Remote Monitoring. Sensors 2017, 17, 854.  

 

[Al-Fuqaha15] Al-Fuqaha, A. and Guizani, M. and Mohammadi, M. and Aledhari, M. 

“Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications”. 

IEEE Communication Surveys & Tutorials, pp. 2347-2376, 2015. 

 

[Athalyde2017] Athalye, A. and Engstrom, L. and Ilyas, A. and Kwok, K. Synthesizing 

robust adversarial examples. arXiv preprint arXiv:1707.07397, 2017. 

 

[Analyticsindiamag2019] Analystics India Magazine. How Machine Learning Rocked 

Google's Hardware Event This Year. Available at 

https://policyadvice.net/insurance/insights/google-home-statistics. Last accessed on 

December 2020. 

 

[Audacity2021] Audacity. How Audacity Noise Reduction Works. Available at 

www.wiki.audacityteam.org/wiki/How_Audacity_Noise_Reduction_Works. Last 

accessed on May 2021. 

 

[Austin2020] ServiceASAP. Comprehensive Gunshot Detection  Systems. Available at: 

https://www.serviceasap.com/solutions/commercial-solutions/gun-shot-detection. Last 

accessed in May 2020. 

 

https://policyadvice.net/insurance/insights/google-home-statistics
http://www.wiki.audacityteam.org/wiki/How_Audacity_Noise_Reduction_Works
https://www.serviceasap.com/solutions/commercial-solutions/gun-shot-detection


 

 

106 

[Bhattacharya2020] Battacharya, S. and Manousakas, D. and Ramos, A. and Venieis, S. 

“Countering Acoustic Adversarial Attacks in Microphone-equipped Smart Home Devices”, 

Interactive, Mobile, Wearable and Ubiquitous Technologies, Volume 4, Issue 2, 2020. 

 

[Bilen2020] Bilen, Ç.; Ferroni, G.; Tuveri, F.; Azcarreta, J. A Framework for the Robust 

Evaluation of Sound Event Detection. Proceedings of the IEEE International Conference 

on Acoustics, Speech and Signal Processing, pp. 4-8, 2020. 

 

[Boyat2015] Boyat, A. and Kumar and Joshi, B. A review paper: noise models in digital 

image processing. ArXiv preprint 1505.03489, 2015. 

 

[Buda2018] Buda, M. and Maki, A. and Mazurowski, M. A systematic study of the class 

imbalance problem in convolutional neural networks. Neural Networksh, pp. 249-259, 

2018. 

 

[Busse2019] Busse, C.and Krause, T. and Ostermann, J. and Bitzer, J. “Improved 

Gunshot Classification by Using Artificial Data”, AES International Conference on Audio 

Forensics, 2019. 

 

[Cakir2017] Çakır, E. and Parascandolo, G. and Heittola, T. and Huttunen, H. and  

Virtanen, T. “Convolutional Recurrent Neural Networks for Polyphonic Sound Event 

Detection”, IEEE/ACM Transactions on Audio, Speech, and Language Processing, pp. 

1291-1303, 2017.   

 



 

 

107 

[Carlini2017] Carlini, N., Wagner, D. Towards evaluating the robustness of neural 

networks.  IEEE symposium on security and privacy, pp. 39-57, 2017. 

 

[Carlini2018] Carlini, N. and Wagner, D. Audio adversarial examples: Targeted attacks 

on speech-to-text. IEEE Security and Privacy Workshops, pp. 1-7, 2018. 

 

[Chavez2017] CNN. Using Sound to Attack: The Diverse World of Acoustic Devices. 

Available at www.cnn.com/2017/08/10/health/acoustic-weapons-explainer/index.html. 

Last accessed on January 1st  2021. 

 

[Clavel2005] Clavel, C. and Ehrette, T. and Richard, G. “Events Detection for an Audio-

Based Surveillance System”, IEEE International Conference on Multimedia and Expo, pp. 

1306-1309, 2005. 

 

[Chiang2020] Chiang, P. and Geiping, J. and Goldblum, M. and Goldstein, T. and Nj, R. 

and Reich, S. “Witchcraft: Efficient PGD Attacks with Random Step Size”, IEEE 

International Conference on Acoustics, Speech and Signal Processing, 2020. 

 

[Choi2005] Choi, Y. and Kim, K. and Jung, J. and Chun, S. and Park, K. Acoustic intruder 

detection system for home security. IEEE Transactions on Consumer Electronics, pp. 

130-138, 2005. 

 

[Chu2004] Chu, W. and Cheng, W. and Wu, J. and Hsu, J. “A study of semantic context 

detection by using SVM and GMM approaches”, IEEE International Conference on 

Multimedia and Expo., pp.1591-1594, 2004.  

http://www.cnn.com/2017/08/10/health/acoustic-weapons-explainer/index.html


 

 

108 

 

[Cowling2003] Cowling, M. Comparison of techniques for environmental sound 

recognition. Pattern Recognition Letters, 2895-2907, 2003. 

 

[Crocco2016] Crocco, M. and Cristani, M. and Trucco, A. and Murino, V. Audio 

Surveillance: A Systematic Review. ACM Computing Surveys, 2016. 

 

[Dahlan2018] Dahlan, R. AdaBoost Noise Estimator for Subspace based Speech 

Enhancement. International Conference on Computer, Control, Informatics and its 

Applications (IC3INA), pp. 1-2, 2018. 

 

[DCASE2017] DCASE. Detection of rare sound events. Available at 

www.cs.tut.fi/sgn/arg/dcase2017. Last Accessed in May 2020. 

 

[Dennis2011] Dennis, J. And Tran, H. and Li, H. Spectrogram Image Feature for 

Sound Event Classification in Mismatched Conditions. IEEE Signal Processing 

Letters, pp. 130-133, 2011. 

 

[Donmoon2017] Donmoon, L., and Lee, S. and Han, Y. and Lee, K. “Ensemble of 

Convolutional Neural Networks for Weakly-Supervised Sound Event Detection 

using Multiple Scale Input”, 2017.  

[Dormehi2018] Digital Trends. U.S. Military Is Developing a Sound Weapon that 

Sounds Like a Retro Modem. Available at digitaltrends.com/cool-tech/military-

sound-weapon-old-modem/. Last accessed on January 1st 2021.  

 

http://www.cs.tut.fi/sgn/arg/dcase2017


 

 

109 

[Dufaux2000] Dufaux, A. and Besacier, L. and Ansorge, M. and Pellandini, F. 

“Automatic sound detection and recognition for noisy environment”, 10th European 

Signal Processing Conference, pp. 1-4, 2000. 

 

[Eagle2020] EagleTechnology. Comprehensive Gunshot Detection  Systems. 

Available at https://www.serviceasap.com/solutions/commercial-solutions/gun-

shot-detection. Last accessed in May 2020. 

 

[Edmonds2006] Edmonds, E. Abstraction and interaction An art system for white 

noise. International Conference on Computer Graphics, Imaging and Visualisation 

(CGIV), pp. 26-28, 2006.  

[ESC502021] Piczak, Carol. ESC-50: Dataset for Environmental Sound 

Classification. Available at https://github.com/karolpiczak/ESC-50. Last accessed 

on May 2021.  

 

[EETIMES2021] EETimes. Aspinity Expands into Audio Event Detection. Available 

at https://www.eetimes.com/aspinity-expands-into-audio-event-detection/#. Last 

Accessed in March 2022. 

 

 

[Evangelopoulos2009] Evangelopoulos, G. and Zlatintsi, A. and Skoumas, G. and 

Rapantzikos, K. and Potamianos, A. and Maragos, P. and Avrithis, Y. “Video event 

detection and summarization using audio, visual and text saliency”. IEEE International 

Conference on Acoustics, Speech and Signal Processing, pp. 3553-3556, 2009. 

 

https://www.serviceasap.com/solutions/commercial-solutions/gun-shot-detection
https://www.serviceasap.com/solutions/commercial-solutions/gun-shot-detection
https://github.com/karolpiczak/ESC-50
https://www.eetimes.com/aspinity-expands-into-audio-event-detection/


 

 

110 

[ExplainThatStuff2020] Explain that Stuff!. Directional loudspeakers. Available at 

https://www.explainthatstuff.com/directional-loudspeakers.html. Last Accessed in 

March 2022. 

 

 

[Fesliyan2021] Fesliyan Studios. Fesliyan Studios Royalty Free Music. Available 

at https://www.fesliyanstudios.com/contact. Last accessed on May 2021. 

 

[Freesound2021] Freesound. Freesound. Available at 

https://freesound.org/help/faq/. Last accessed on May 2021.  

 

[Fu2017] Fu, X. and Ch'ng, E. and Aickelin, U. CRNN a joint neural network for 

redundancy detection. Proceedings of the IEEE International Conference on Smart 

Computing (SMARTCOMP), pp. 29-31, 2017. 

 

[Galloway2018] Galloway, A. and Taylor, G. and Moussa, M. Predicting adversarial 

examples with high confidence. arXiv preprint arXiv:1802.04457, 2018. 

 

[Gao2018] Gao, S. and Lin, B. and Wang, C. Share price trend prediction using 

CRNN with LSTM structure. Proceedings of the  International Symposium on 

Computer, Consumer and Control (IS3C), pp. 6-8, 2018. 

 

[Ghaffarzadegan2017] Ghaffarzadegan, S. and Salekin, A. and Ravichandran, A. 

and Das, S. and Feng, Z. Bosch Rare Sound Events Detection Systems for 

DCASE 2017, 2017. 

https://www.fesliyanstudios.com/contact
https://freesound.org/help/faq/


 

 

111 

 

[Goodfellow2014] Goodfellow, I. and Shlens, J. and Szegedy, C. Explaining and 

harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014. 

 

[Hansheng2013] Hansheng, L. and Valdez, O. “Special Sound Detection for 

emergency phones”, 10th International Conference on Fuzzy Systems and 

Knowledge Discovery (FSKD), pp. 816-820, 2013. 

 

[Hendrik2017] Hendrik, J. and Chaithanya, M. and Brox, T. and Fischer, V. 

Universal adversarial perturbations against semantic image segmentation. 

Proceedings of the IEEE International Conference on Computer Vision, pp. 2755-

2764, 2017. 

 

[HHS2014] U.S. Department of Health and Human Services. Incorporating Active Shooter 

Incident Planning into Health Care Facility Emergency Operations Plans. Available at 

https://www.phe.gov/Preparedness/planning/Documents/active-shooter-planning-

eop2014.pdf. Last accessed in April 30, 2019. 

[Hodgson2010] Hodgson. Understanding Records: A Field Guide to Recording Practice. 

Continuum International Publishing Group, 2010. 

 

[Hognelig2015] Hognelid, P. and Kalling, T. “Internet of Things and Business Models”. 

IEEE 9th International Conference on Standardization and Innovation in Information 

Technology, 2015. 

 

https://www.phe.gov/Preparedness/planning/Documents/active-shooter-planning-eop2014.pdf
https://www.phe.gov/Preparedness/planning/Documents/active-shooter-planning-eop2014.pdf


 

 

112 

[Huq2020] Huq, A. and Pervin, T. “Analysis of Adversarial Attacks on Skin Cancer 

Recognition”. International Conference on Data Science and its Applications, 2020. 

 

[Husamuddin2017] Husamuddin, M. and Qayyum, M. “Internet of Things: A study on 

security and privacy threats”. 2nd International Conference on Anti-Cyber Crimes, 2017. 

 

[Isar2016] Isar, D. and Gajitzki, P. “Pink noise generation using wavelets”, 12th IEEE 

International Symposium on Electronics and Telecommunications (ISETC), pp. 261-264, 

2016. 

 

[Ito2016] Ito, A. “Recognition of sounds using square cauchy mixture distribution”. IEEE 

International Conference on Signal and Image Processing, pp. 726-730, 2016.  

 

[Jaiswal2018] Jaiswal, K. and Patel, D. “Sound Classification Using Convolutional Neural 

Networks”, International Conference on Cloud Computing in Emerging Markets, 2018. 

 

[Jose2020] Jose, C. and Mishchenko, Y. and Senechal, C. and Shah, A. and Escott, A. 

and Vitaladevuni, S. Accurate Detection of Wake Word Start and End Using a CNN. ArXiv 

abs/2008.03790, 2020. 

 

[Kesslen2019] NBC News. Plug your Ears and Run': NYPD's Use of Sound Cannons Is 

Challenged in Federal Court. Available at www.nbcnews.com/news/us-news/plug-your-

ears-run-nypd-s-use-sound-cannons-challenged-n1008916. Last accessed on January 

1st 2021. 

 

http://www.nbcnews.com/news/us-news/plug-your-ears-run-nypd-s-use-sound-cannons-challenged-n1008916
http://www.nbcnews.com/news/us-news/plug-your-ears-run-nypd-s-use-sound-cannons-challenged-n1008916


 

 

113 

[Khamparia2019] Khamparia, A., and Gupta, D. and Nguyen, N.G. and Khanna, A. and 

Pandey, B. and Tiwari, P. “Sound Classification Using Convolutional Neural Network and 

Tensor Deep Stacking Network”, IEEE International Conference on Network 

Infrastructure and Digital Content (IC-NIDC), pp. 7717-7727, 2019. 

 

[Khan2019] Khan, A. and Sohail, A. and Zahoora, U. and Qureshi, A. A survey of the 

recent architectures of deep convolutional neural networks. arXiv preprint 

arXiv:1901.06032, 2019. 

 

[Kiapuchinski2012] Kiapuchinski, L. and Kaestner. Spectral Noise Gate Technique 

Applied to Birdsong Preprocessing on Embedded Unit. IEEE International Symposium on 

Multimedia, pp. 24-27, 2012. 

 

[Kim2020] Kim, Y. and Han, D. and Kim, C. and Yoo, H. “”A 0.22-0.89 mW Low-Power 

and Highly-Secure Always-On Face Recognition Processor with Adversarial Attack 

Prevention”, IEEE Transactions on Circuits and Systems II, Volume 67, Issue 5, 2020. 

[Koerich2019] Koerich, K. and Esmailpour, M. and Abdoli, S. and Britto Jr., A. “Cross-

Representation Transferability of Adversarial Attacks: From Spectrograms to Audio 

Waveforms”, IEEE International Joint Conference on Neural Networks, 2020. 

 

[Kwon2019] Kwon, H. and Kim, Y. and Yoon, H. and Choi, D. Selective audio adversarial 

example in evasion attack on speech recognition system. IEEE Transactions on 

Information Forensics and Security, pp. 526-538, 2019. 

 



 

 

114 

[Kubo2019] Kubo, Y. and Trappenberg, T. Mitigating overfitting using regularization to 

defend networks against adversarial examples. Canadian Conference on Artificial 

Intelligence, pp. 400-405, 2019. 

 

[Kumar2020] Kumar, K. and Vishnu, C. and Mitra, R. and Mohan, C. “Black-box 

Adversarial Attacks in Autonomous Vehicle Technology”, IEEE Applied Imagery Pattern 

Recognition Workshop, 2020. 

 

[Kurakin2016] Kurakin, A. and Goodfellow, I. and Bengio, S. Adversarial examples in the 

physical world. arXiv preprint arXiv:1607.02533, 2016. 

 

[Kurakin2017] Kurakin, A. and Goodfellow, I. and Bengio, S, “Adversarial Machine 

Learning at Scale”, ICLR, 2017. 

 

[Larrucea2017] Larrucea, X., and Combelles, A., and Favaro, J., and Taneja, K. “Software 

Engineering for the Internet of Things”. IEEE Software, pp. 24-28, 2017. 

 

[Larson2011] Larson, E. and Lee, T. and Liu, S. and Rosenfeld, M. and Patel, S. “Accurate 

and privacy preserving cough sensing using a low-cost microphone”. Proceedings of the 

13th international conference on Ubiquitous computing, pp. 375-384, 2011. 

 

[Li2016] Li, Y. and Liu, G. “Sound classification based on spectrogram for surveillance 

applications”, IEEE International Conference on Network Infrastructure and Digital 

Content (IC-NIDC), pp. 293-297.  

 



 

 

115 

[Li2020] Li, Z. and Wu, Y. and Liu, J. and Chen, Y. and Yuan, B. “AdvPulse: Universal, 

Synchronization-Free, and Targeted Audio Adversarial Attacks via Subsecond 

Perturbations”, ACM SIGSAC Conference on Computer and Communications Security, 

pp. 1121-1134.  

 

[Li2021] Li, Y. and Wang, Y. and Liu, X. and Shi, Y. and Shih, S. Enabling Real-time On-

chip Audio Super Resolution for Bone Conduction Microphones. arXiv preprint 

arXiv:2112.13156, 2021. 

 

[Lijima2019] Lijima, R. and Minami, S. and Zhou, Y. and Takehisa, T. “Audio Hotspot 

Attack: An Attack on Voice Assistance Systems Using Directional Sound Beams and Its 

Feasibility”, IEEE Transactions on Emerging Topics in Computing, 2019. 

 

[Lim2017] Lim, H. and Park, J. and Han, Y. Rare sound event detection using 1D 

convolutional recurrent neural networks. Proceedings of the Detection and Classification 

of Acoustic Scenes and Events 2017 Workshop, pp. 80-84, 2017. 

[Liu2019] Liu, S. and Wu, H. and Lee, H. and Meng, H. “Adversarial Attacks on Spoofing 

Countermeasures of Automatic Speaker Verification”, IEEE Automatic Speech 

Recognition and Understanding Workshop, 2019. 

 

[Madry2018] Madry, A. and Makelov, A. and Schmidt, L. and Tsipras, D. “Towards Deep 

Learning Models Resistant to Adversarial Attacks”, ICLR, 2018. 

 



 

 

116 

[Mao2020] Mao, J. and Zhu, S. and Xuan, D. and Lin, Q. and Liu, J. Watchdog: Detecting 

Ultrasonic-based Inaudible Voice Attacks to Smart Home Systems. IEEE Internet of 

Things Journal, 2020. 

 

[Matos2006] Matos, S. and Birring, S. and Pavord, I. and Evans, H. Detection of cough 

signals in continuous audio recordings using hidden Markov models, IEEE Transactions 

on Biomedical Engineering, pp. 1078-1083, 2006. 

 

[Matsuoka2020] Matsuoka, Y. and Nongpiur, R. and Dixon, M. “Method and system for 

detecting an audio event for smart home devices”, Google Patents, 2020. 

 

[Mendes2020] Mendes, E. and Hogan, K. “Defending Against Imperceptible Audio 

Adversarial Examples Using Proportional Additive Gaussian Noise”, 2020. 

 

[MIMII2019] Purohit, H. and Tanabe, R. and Ichige, K. and Endo, T. and N, Y. and  

Suefusa, K. and  Kawaguchi, Y. Sound Dataset for Malfunctioning Industrial Machine 

Investigation and Inspection. Available at 

https://zenodo.org/record/3384388#.YCf3XmhKhjE. Last accessed on May 2021. 

 

[Miraz2015] Miraz, M. and Ali, M. and Excell, P. and Picking, R. “A review on Internet of 

Things, Internet of Everything and Internet of Nano Things”. Internet Technologies and 

Applications, 2015. 

 

https://zenodo.org/record/3384388#.YCf3XmhKhjE


 

 

117 

[Mizokami2010] Popular Mechanics. So What Is This Secretive Chinese Sonic Weapon 

Exactly?. Available at www.popularmechanics.com/military/. Last Accessed in January 

1st 2021. 

 

[Montillet2013] Montillet, J. and Tregoning, P. and McClusky, S. and Yu, K.  

Extracting White Noise Statistics in GPS Coordinate Time Series.  

IEEE Geosci. Remote. Sens. Letters, pp. 563-567, 2013.  

 

[Moosavi2016] Moosavi-Dezfooli, S. and Fawzi, A. and Frossard, P. “Deep-Fool a 

Simple and Accurate Method to Fool Deep Neural Networks”, Conference on 

Visual Processing, 2016. 

 

[Nest2021a] Nest. Nest Hub. Available at 

www.store.google.com/us/product/google\_nest\_hubl. Last accessed on January 

1st 2021. 

 

[Nest2021b] Nest. Nest Mini. Available at 

www.store.google.com/product/google\_nest\_mini. Last accessed on January 1st  

2021. 

 

[Nwankpa2015] Nwankpa, C. and Ijomah, W. and Gachagan, A. and Marshall, S. 

Activation Functions: Comparison of Trends in Practice and Research for Deep Learning.  

Proceedings of the Machine Learning: Computer Vision and Pattern Recognition,  7-12, 

2015. 

 

http://www.popularmechanics.com/military/
http://www.store.google.com/us/product/google/_nest/_hubl
http://www.store.google.com/product/google/_nest/_mini


 

 

118 

[Nytimes2018] Mervosh, S. Nearly 40,000 People Died From Guns in U.S. Last Year, 

Highest in 50 Years. Available at https://www.nytimes.com/2018/12/18/us/gun-

deaths.html. Last accessed on August 2020. 

 

[Oh2019] Oh, S. et al. “An Acoustic Signal Processing Chip With 142-nW Voice 

Activity Detection Using Mixer-Based Sequential Frequency Scanning and 

Neural Network Classification”, IEEE Journal of Solid-State Circuits, vol. 54, 

no.11, pp. 3005-3016, 2019. 

 

[Olivier2021] Olivier, R. and Raj, B. and Shah, M. “High-Frequency Adversarial 

Defense for Speech and Audio, IEEE International Conference on Acoustics, 

Speech and Signal Processing (ICASSP), 2021. 

 

[Page1995] Page, E. and Sharkey, B. “SECURES: System for Reporting Gunshots in 

Urban Environments”, Symposium on OE Aerospace Sensing and Dual Use Photonics, 

1995. 

[Pal2021] Pal, M. and Jati, A. and Peri, R. “Adversarial Defense for Deep Speaker 

Recognition using Hybrid Adversarial Training”, IEEE International Conference on 

Acoustics, Speech and Signal Processing, 2021. 

 

[Peng2009] Peng, Y. and Lin, C. and Sun, M. and Tsai, K. “Healthcare audio event 

classification using hidden Markov models and hierarchical hidden Markov models”. IEEE 

International conference on multimedia and expo, pp. 1218-1221, 2009. 

 

https://www.nytimes.com/2018/12/18/us/gun-deaths.html
https://www.nytimes.com/2018/12/18/us/gun-deaths.html


 

 

119 

[Perez2017] Perez, L. and Wang, J. The Effectiveness of Data Augmentation in Image 

Classification using Deep Learning. arXiv:1712.04621v1, 2017. 

 

[Petridis2010] Petridis, S. and Giannakopoulos, T. and Perantonis, S. “A multi-class 

method for detecting audio events in news broadcasts”. Hellenic Conference on Artificial 

Intelligence, pp. 399-404, 2010. 

 

[Pillos2016] Pillos, A. and Alghamidi, K. and Alzamel, N. and Pavlov, V. and 

Machanavajhala, S. “A real-time environmental sound recognition system for the Android 

OS”, Proceedings of Detection and Classification of Acoustic Scenes and Events, 2016. 

 

[Pocketlint2021] Pocket Lint. What is Google Home, what can it to and how does it work. 

Available at www.pocket-lint.com/smart-home/news/google/137665-what-is-google-

home-what-can-it-do-and-how-does-it-work. Last accessed on January 1st 2021. 

 

[Policyadvice2021] Policy Advice. 20+ Exciting Google Home Statistics to Prepare You 

for 2021. Available at https://analyticsindiamag.com/how-machine-learning-rocked-

googles-hardware-event-this-year. Last accessed on December 2019. 

 

[Prasadh2017] Prasadh, K. and Natrajan, S. and Kalaivani, S. “Efficiency analysis of 

noise reduction algorithms: Analysis of the best algorithm of noise reduction from a set of 

algorithms”. International Conference on Inventive Computing and Informatics, pp. 1137-

1140, 2017. 

 

https://arxiv.org/abs/1712.04621v1
http://www.pocket-lint.com/smart-home/news/google/137665-what-is-google-home-what-can-it-do-and-how-does-it-work
http://www.pocket-lint.com/smart-home/news/google/137665-what-is-google-home-what-can-it-do-and-how-does-it-work
https://analyticsindiamag.com/how-machine-learning-rocked-googles-hardware-event-this-year
https://analyticsindiamag.com/how-machine-learning-rocked-googles-hardware-event-this-year


 

 

120 

[Rabaoui2008] Rabaoui, A. and Kadri, H. and Ellouze, N. “New approaches based on 

One-Class SVMS for impulsive sounds recognition tasks”, IEEE Workshop on Machine 

Learning for Signal Processing, pp. 285-290, 2008. 

 

[Rajaratnam2018] Rajaratnam, K. and Kalita, J. “Noise flooding for detecting audio 

adversarial examples against automatic speech recognition”, IEEE International 

Symposium on Signal Processing and Information Technology (ISSPIT), pp. 197-201, 

2018. 

 

[Reddy2018] Reddy, R. and Mamatha, Ch. and Reddy, R.G. A Review on Machine 

Learning Trends, Application and Challenges in Internet of Things. International 

Conference on Advances in Computing, Communication and Informatics, 2018. 

 

[Ring2021] Ring. “Always Home Cam A New Kind of Camera that Flies”. Available at 

https://ring.com/always-home-cam-flying-camera. Last accessed on October 2021. 

[Robinson2018] Robinson, M. and Gould, S. and Lee, S. There have been 307 mass 

shootings in the US so far in 2018 — here's the full list. Available at 

https://www.businessinsider.com/how-many-mass-shootings-in-america-this-year-2018-

2. Last accessed in April 30, 2019. 

 

[Roelandts2013] Roelandts, Tom. What Is a Spectrogram. Available at 

www.tomroelandts.com/articles/what-is-a-spectrogram. Last accessed in January 1st 

2021. 

 

https://ring.com/always-home-cam-flying-camera
https://www.businessinsider.com/how-many-mass-shootings-in-america-this-year-2018-2
https://www.businessinsider.com/how-many-mass-shootings-in-america-this-year-2018-2
http://www.tomroelandts.com/articles/what-is-a-spectrogram


 

 

121 

[Roy2018] Roy, N. and Shen, S. and Hassanieh, H. and Choudhury, R. Inaudible voice 

commands: The long-range attack and defense. Symposium on Networked Systems 

Design and Implementation, pp. 301-305, 2020. 

 

[Sainburg2018] Sainburg, T. Noise reduction using spectral gating in python.  

Available at https://timsainburg.com/noise-reduction-python.html. Last accessed 

on May 2021. 

 

[Sallo2020] Sallo, R. and Esmaeilpour, M. and Cardinal, P. “Adversarially Training 

for Audio Classifiers”, International Conference on Pattern Recognition, 2020. 

[Schonher2018] Schnherr, L. and Kohls, K. and Zeiler, S. and Holz, T. and 

Kolossa, D. “Adversarial attacks against automatic speech recognition systems via 

psychoacoustic hiding”, arXiv preprint arXiv:1808.0566, 2018.  

 

[SeeSound2021] Wavio. See Sound. Available at: www.see-sound.com/devices/. 

Last accessed on January 1st,  2021). 

[Shailaja2018] Shailaja, K. and Seetharamulu, B. and Jabbar, M. Machine Learning in 

Healthcare: A Review. Second International Conference on Electronics, Communication 

and Aerospace Technology, 2018. 

 

[Shrestha2014] Shrestha, N. and Kubler, S. and Framling, K. “Standardized Framework 

for Integrating Domain-Specific Applications into the IoT”. International Conference on 

Future Internet of Things and Cloud, 2014. 

 

https://timsainburg.com/noise-reduction-python.html
http://www.see-sound.com/devices/


 

 

122 

[Shiekh2017] Shiekh, A. and Tahir, M. and Uppal, M. “Accurate gunshot detection in 

urban environments using blind deconvolution”, International Multi-topic Conference 

(INMIC), 2017. 

 

[Shijie2017] Shijie, J. and Ping, W. and Peiyi, J. and Siping, H. Research on data 

augmentation for image classification based on convolution neural networks. Chinese 

Automation Congress (CAC), 2018. 

[Shooter2020] Shooter. “Shooter Detection Systems”.  

Available at https://shooterdetectionsystems.com. Last accessed on May 2021. 

 

[Showen1997] Showen, R. “Surveillance and Assessment Technologies for Law 

Enforcement}”. International Society for Optics and Photonics, pp. 130-139, 1997. 

 

 

[Singh2014] Singh, D. and Tripathi, G. and Jara, A. A survey of Internet-of-Things: Future 

vision, architecture, challenges and services. IEEE World Forum on Internet of Things, 

2014. 

 

[Somvanshi2016] Somvanshi, M. and Chavan, P. “A review of machine learning 

techniques using decision tree and support vector machine”. International Conference on 

Computing Communication Control and Automation, 2016. 

 

[Song2018] Song, C. And Cheng, H. And Li, S. And Wu, C. And Wu, Q., Chen, Y., Li, H. 

MAT: A Multi-strength Adversarial Training Method to Mitigate Adversarial Attacks. IEEE 

Computer Society Annual Symposium on VLSI (ISVLSI), pp. 476-481, 2018. 

https://shooterdetectionsystems.com/


 

 

123 

 

[Soundmachines2021] The Strategist. The Best Sound Machines on Amazon, According 

to Hyperenthusiastic Reviewers. Available at www.nymag.com/strategist/article/best-

sound-machines-noise-machines.html. Last accessed in January 1st 2021. 

 

[Srivastava2014] Srivastava, N. and Hinton, G. and Krizhevsky, A. and Sutskever, I. and 

Salakhutdinov, R. Dropout A Simple Way to Prevent Neural Networks from Overfitting. 

Journal of Mach. Learn. Res., pp. 1919-1958, 2014. 

 

[Su2019] Su, J. and Vargas, D. and Sakurai, K. One pixel attack for fooling deep neural 

networks. IEEE Transactions on Evolutionary Computation, pp. 828-841, 2019. 

 

[Subramanian2020] Subramanian, V. and Pankajakshan, A. and Benetos, E. and Xu, N. 

and McDonald, S. and Sandler, M. A study on the transferability of adversarial attacks in 

sound event classification. IEEE International Conference on Acoustics, Speech and 

Signal Processing, pp. 301-305, 2020. 

 

[Szegedy2013] Szegedy, C. and Zaremba, W. and Sutskever, I. “Intriguing Properties of 

Neural Networks”, arXiv preprint, 2013. 

 

[Tangkawanit2018] Tangkawanit, S. and Pinthong, C. and Kanprachar, S. 

“Development of gunfire sound classification system with a smartphone using ANN”, 

International Conference on Digital Arts, Media and Technology (ICDAMT), pp. 168-

172, 2018. 

 

http://www.nymag.com/strategist/article/best-sound-machines-noise-machines.html
http://www.nymag.com/strategist/article/best-sound-machines-noise-machines.html


 

 

124 

[Thakkar2018] Thakkar, V. and Tewary, S. and Chakraborty, C. Batch Normalization in 

Convolutional Neural Networks—A comparative study with CIFAR-10 data. Proceedings 

of the  Fifth International Conference on Emerging Applications of Information 

Technology, pp. 12-13, 2018. 

 

[UrbanSound2014] Salamon, J. and Jacoby, C. A Dataset and Taxonomy for Urban 

Sound Research. Available at www.justinsalamon.com. Last accessed in May 2020. 

 

[Yamashita2018] Yamashita, R. and Nishio, M. and Do, R. and Togashi, K. “Convolutional 

neural networks: An overview and application in radiology”. Insights Imaging, pp. 611-

629, 2018. 

 

[Yan2020] Yan, Q. and Liu, K. and Zhou, Q. and Guo, H. and Zhang, N. “Surfing Attack: 

Interactive Hidden Attack on Voice Assistants Using Ultrasonic Guided Waves”, Network 

and Distributed Systems Security, 2020. 

 

[Vafeiadis2020] Vafeiadis, A. and Votis, K. and Giakoumis, D. and Tzovaras, D. and 

Chen, L. and Hamzaoui, R. “Audio content analysis for unobtrusive event detection in 

smart homes”, Engineering Application of Artificial Intelligence, pp. 103226, 2020. 

 

[Vashuki2012] Vasuki, P. and Bhavana, C. and Mohamed, S. and Lakshmi, E.  

 Automatic noise identification in images using moments and neural network.  

International Conference on Machine Vision and Image Processing (MVIP),  

pp. 14-15, 2012. 

 

http://www.justinsalamon.com/


 

 

125 

[Venkatesh2017] Venkatesh, J. and Aksanli, B. and Chan, C. and Akyurek, A. and 

Rosing, T. Scalable-Application Design for the IoT. IEEE Software, pp 62-70, 2017. 

 

[Wang2019] Wang, J. And Zhang, H. Bilateral Adversarial Training: Towards Fast 

Training of More Robust Models Against Adversarial Attacks. 

IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6628-6637, 

2019. 

 

[Wei2005] Wei, L. and Yang, Y. and Nishikawa, R.M. and Jiang, Y. A study on 

several Machine-learning methods for classification of Malignant and benign 

clustered microcalcifications. IEEE Transactions on Medical Imaging, 2005. 

 

[Zapsplat2021] McKinney, A. and Harris, G. Free sound effects & royalty free music. 

Available at http://https://www.zapsplat.com. Last accessed on May 2021. 

 

[Zhang2017] Zhang, G. and Yan, C. and Ji, X. and Zhang, T. and Zhang, T. and Xu, W. 

Dolphinattack: Inaudible voice commands. Proceedings of the 2017 ACM SIGSAC 

Conference on Computer and Communications Security, pp. 103-117, 2017. 

 

[Zhang2021] Zhang, W. and Zhao, S. and Li, J. and Cheng, X. “Attack on Practical 

Speaker Verification System using Universal Adversarial Perturbations”, IEEE 

International Conference on Acoustics, Speech and Signal Processing, 2021. 

 

[Zhou2017] Zhou, H. and Song, Y. and Shu, H. Using deep convolutional neural 

network to classify urban sounds. 

http://https/www.zapsplat.com


 

 

126 

TENCON 2017 - 2017 IEEE Region 10 Conference, pp. 3089-3092, 2017. 

 

 

 

 


