
Efficient Algorithms and Human-in-the-loop Approaches for Attribute Design and

Selection

by

MD ABDUS SALAM

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2022

Copyright © by Md Abdus Salam 2022

All Rights Reserved

To My Parents and Wife

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Dr. Gautam Das

for his continuous guidance, motivation, and support. It has been a great experience

working under his supervision. The regular meetings I had with him were very helpful

for me in developing the research mindset and investigate problems from various

perspectives. Next I would like to thank my collaborator Dr. Senjuti Basu Roy. I

learnt a lot from the discussions with her. Her enthusiasm and drive is contagious

which inspired me during my research.

I would also like to thank my dissertation committee members: Dr. Ramez

Elmasri, Dr. Chengkai Li and Dr. Leonidas Fegaras for their suggestions and com-

ments.

I would like to thank all of my former and current labmates, specially Sara-

vanan, Habibur, Farhadur, Mary, Jees, Sona, Suraj, Shohed for their help in various

situations during my journey.

I started my PhD program as a part time student while working full time as a

Web Software Developer. As a full time employee it was a challenging task to pursue

the journey of PhD. It would not be possible without the amicable atmosphere at

work. I would like to thank all my former and current supervisors at work from the

Division of Enrollment Management, UT Arlington, for their support to pursue and

complete my journey as a part time PhD student.

I am indebted to my father Engr. Mohammad Abdus Sobhan and mother

Late Jahanara Begum who instilled the importance of education in me during my

childhood. They sacrificed their whole life so that their children could achieve best

iv

education. Their unconditional love and support have provided me the motivation

to venture for graduate studies in the USA. I remember my late father-in-law Md.

Abdur Razzaque for his inspiration and encouraging words during my PhD journey.

Lastly, I thank my loving and caring wife Dr. Shamsun Nahar for always standing

beside me and encouraging me to pursue my dreams. It would not be possible to

complete this journey without her inspiration and mental support.

March 31, 2022

v

ABSTRACT

Efficient Algorithms and Human-in-the-loop Approaches for Attribute Design and

Selection

Md Abdus Salam, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professor: Gautam Das

Feature engineering and feature selection are two important aspects of data

science pipeline. Due to the advancement of data collection techniques in recent

years, huge amount of data is becoming available in different industries. Consequently,

the importance of data science is increasing for business analytic purpose. Different

tools and techniques are being developed to assist data scientists to complete their

tasks efficiently. One of the main human involvements in the data science task is for

feature engineering and selection. These pre-processing steps will prepare the data in

the format desired to be fed into various machine learning algorithms to accomplish

predictive tasks. The aim of this dissertation is twofold - first to develop an effective

framework to assist data scientist for feature engineering task, and then to develop a

new measure to select these features efficiently.

The term attribute is used to denote feature in tabular data format. In this

dissertation, a semi-automated, “human-in-the-loop” framework for attribute design

is developed that assists human analysts to transform raw attributes into effective de-

rived attributes for classification problems. The proposed framework is optimization

vi

guided and fully agnostic to the underlying classification model. An algebra with

various operators (arithmetic, relational, and logical) to transform raw attributes

into derived attributes is presented and two technical problems are solved: (a) the

top-k buckets design problem aims at presenting human analysts with k buckets,

each bucket containing promising choices of raw attributes that she can focus on only

without having to look at all raw attributes; and (b) the top-l snippets generation

problem, which iteratively aids human analysts with top-l derived attributes involv-

ing an attribute. For the former problem, an effective exact bottom-up algorithm

empowered by pruning capability is presented, as well as random walk based heuris-

tic algorithms that are intuitive and work well in practice. For the latter, a greedy

heuristic algorithm is presented that is scalable and effective. Rigorous evaluations

are conducted involving 6 different real world datasets to showcase that proposed

framework generates effective derived attributes compared to fully manual or fully

automated methods.

Next, a demonstration of the semi-automated, “human-in-the-loop” attribute

design framework, namely iFE is proposed. iFE is a desktop application that enables

a human analyst to find interpretable derived attributes much quicker than fully

manual method. The system first finds k buckets, each containing promising choices

of raw attributes that the analyst can focus on only without having to look at all raw

attributes. To achieve this, iFE implements a random walk based heuristic algorithm

that is intuitive and works well in practice. In the next step, the system iteratively

aids the analyst to generate top-l derived attributes within a bucket using arithmetic,

relational, and logical operators. The user interface in our system guides the analyst

to the final derived attributes in a few number of iterations which saves time and

effort as well as boost productivity for the analyst.

vii

Finally a new measure is proposed for efficient approximate mutual information

based feature selection. Feature selection is an important step in the data science

pipeline, and it is critical to develop efficient algorithms for this step. Mutual In-

formation (MI) is one of the important measures used for feature selection, where

attributes are sorted according to descending score of MI, and top-k attributes are

retained. The goal of this work is to develop a new measure Attribute Average Con-

flict, Aac to effectively approximate top-k attributes, without actually calculating

MI. The proposed method is based on using the database concept of approximate

functional dependency to quantify MI rank of attributes which to our knowledge has

not been studied before. The effectiveness of the proposed measure is demonstrated

with a Monte-Carlo simulation. Extensive experiments are performed using high di-

mensional synthetic and real datasets with millions of records. Experimental results

show that the proposed method demonstrates perfect accuracy in selecting the top-

k attributes, yet is significantly more efficient than state-of-art baselines, including

exact methods for computing Mutual Information based feature selection, as well as

adaptive random-sampling based approaches. An analysis is provided for the upper

and lower bounds of the proposed new measure and it is shown that tighter bounds

can be derived by using marginal frequency of attributes in specific arrangements.

The bounds on the proposed measure can be used to select top-k attributes without

full scan of the dataset in a single pass. Experimental evaluation on real datasets is

conducted to show the accuracy and effectiveness of this approach.

viii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . vi

LIST OF ILLUSTRATIONS . xii

LIST OF TABLES . xv

Chapter Page

1. Introduction . 1

1.1 A Human-in-the-loop Attribute Design Framework for Classification . 2

1.2 iFE: Interactive Feature Engineering 3

1.3 Efficient Approximate Top-k Mutual Information Based Feature Selection 4

2. A Human-in-the-loop Attribute Design Framework for Classification 8

2.1 Introduction . 8

2.2 Preliminaries and Formalism . 13

2.2.1 Data Model . 15

2.2.2 Proposed Framework . 16

2.2.3 Problem Definitions . 18

2.3 Top-k Buckets Design . 18

2.3.1 Exact Algorithm . 21

2.3.2 Random Walk Based Algorithms 23

2.4 Top-l Interactive Snippets Generation 25

2.5 Experimental Evaluation . 29

2.5.1 Experimental Setup . 29

2.5.2 Summary of Results . 32

ix

2.5.3 Comparison with fully automated methods 33

2.5.4 Analysis of presented algorithms 34

2.5.5 Comparison with fully manual method 36

2.6 Related Work . 37

2.7 Final Remarks . 39

3. iFE: Interactive Feature Engineering . 40

3.1 Introduction . 40

3.2 System Overview . 43

3.2.1 User Interface . 44

3.2.2 Backend . 45

3.2.3 Top-k bucket generation Algorithm 46

3.2.4 Top-l snippets generation Algorithm 46

3.2.5 Technical Challenges . 47

3.3 Demo Plan . 47

3.3.1 Hardware and System Setup 47

3.3.2 Demonstration Scenarios . 48

3.4 Conclusion . 50

4. Efficient Approximate Top-k Mutual Information Based Feature Selection . 51

4.1 Introduction . 52

4.2 Preliminaries and Definitions . 56

4.2.1 Notations and Prior Definitions 57

4.2.2 Problem Statement . 58

4.3 Developing a New Measure . 59

4.3.1 MI calculation Steps . 59

4.3.2 Proposed Measure: Attribute Average Conflict 59

4.3.3 Implications of using proposed measure 61

x

4.3.4 Monte-Carlo Simulation . 62

4.4 Experiments . 66

4.4.1 Experimental Setup . 66

4.4.2 Summary of Results . 71

4.4.3 Synthetic Data Experiments 72

4.4.4 Real Data Experiments . 75

4.5 Upper and Lower Bounds of New Measure 80

4.5.1 Tighter upper and lower bounds 83

4.5.2 Experimental Evaluation . 92

4.6 Related Works . 93

4.7 Conclusion . 95

REFERENCES . 96

xi

LIST OF ILLUSTRATIONS

Figure Page

2.1 A snippet on Obesity . 15

2.2 Attribute Lattice . 19

2.3 Comparing Baselines : AUC . 32

2.4 Comparing Baselines : Running Time 32

2.5 Varying Number of Attributes . 32

2.6 Varying Algebra . 32

2.7 Varying Bucket Size . 32

2.8 Varying Snippet Size . 32

2.9 Varying Algebra . 32

2.10 Varying Bucket Size . 32

2.11 Varying Snippet Size . 32

3.1 Derived Attribute Generation in other Framework 43

3.2 Derived Attribute Generation in iFE . 43

3.3 Architecture of iFE . 44

3.4 User Interface . 44

3.5 Interactive Output . 48

4.1 Precision; m=50, k=10 . 72

4.2 Ndcg-score; m=50, k=10 . 72

4.3 Speedup; m=50, k=10 . 72

4.4 Precision; n=106, k=10 . 72

4.5 Ndcg-score; n=106, k=10 . 72

xii

4.6 Speedup; n=106, k=10 . 72

4.7 Precision; n=106, m=50 . 72

4.8 Ndcg-score; n=106, m=50 . 72

4.9 Speedup; n=106, m=50 . 72

4.10 Precision; n=106, m=50,k=10 . 73

4.11 Ndcg-score; n=106,m=50,k=10 . 73

4.12 Speedup; n=106, m=50,k=10 . 73

4.13 Precision:Madelon . 73

4.14 Ndcg-score:Madelon . 73

4.15 Total-MI:Madelon . 73

4.16 Speedup:Madelon . 73

4.17 Precision:Census Income . 77

4.18 Ndcg-score:Census Income . 77

4.19 Total-MI:Census Income . 77

4.20 Speedup:Census Income . 77

4.21 Precision:Kick Car . 77

4.22 Ndcg-score:Kick Car . 77

4.23 Total-MI: Kick Car . 78

4.24 Speedup:Kick Car . 78

4.25 PrecisionConnect-4 . 78

4.26 Ndcg-score:Connect-4 . 78

4.27 Total-MI: Connect-4 . 78

4.28 Speedup: Connect-4 . 78

4.29 Precision:Penbased . 78

4.30 Ndcg-score:Penbased . 78

4.31 Total-MI:Penbased . 78

xiii

4.32 Speedup:Penbased . 79

4.33 Precision:Penbased-bin-3 . 79

4.34 Ndcg-score:Penbased-bin-3 . 79

4.35 Total-MI:Penbased-bin-3 . 79

4.36 Speedup:Penbased-bin-3 . 79

4.37 Arrangement for Aac(X)max when cmin ≤
fx1
2

. 84

4.38 Arrangement for Aac(X)max when cmin >
fx1
2

. 85

4.39 Arrangement for Aac(X)min > 0 when
∑a

i=1 fxi
− cmax ≤ fxa

2
. 88

4.40 Arrangement for Aac(X)min > 0 when
∑a

i=1 fxi
− cmax > fxa

2
. 89

xiv

LIST OF TABLES

Table Page

2.1 Example 1 toy heart failure datamart 14

2.2 Example where MI(Z,Ai + Aj) < MI(Z,Ar + As) 27

2.3 Reported datasets characteristics . 29

2.4 AUC improvement and runtime comparison with fully automated meth-

ods using SVM . 31

2.5 AUC improvement and runtime comparison with fully automated meth-

ods using RandomForest . 33

2.6 Boston home dataset attributes . 36

4.1 Running Example 2 . 56

4.2 Measures for Example 2 . 56

4.3 Simulation results for binary values . 63

4.4 Simulation results varying domain size; y = 0.3 63

4.5 Synthetic Dataset . 69

4.6 Real Datasets . 69

4.7 Notations used for deriving bounds . 81

4.8 Experimental evaluation of Algorithm 6 93

xv

CHAPTER 1

Introduction

Human involvement is required in various pre-processing steps of a data science

pipeline - from data cleaning to feature engineering and selection. Feature engineer-

ing is either fully automated, or fully manual. Domain experts are needed for manual

feature engineering tasks. But it can take several passes even for a domain expert to

understand important aspects of the data to perform feature engineering task. After

this step feature selection is done using some automated tool. Feature selection can be

categorized into three main categories - Wrapper, Filtering, and Embedded. Filtering

technique uses scoring function based on statistical property of the data and is agnos-

tic of the underlying machine learning (ML) model used in the data science pipeline.

Hence, it is one of the popular methods for feature selection. Among different scoring

functions used for Filtering technique, Mutual Information (MI) is a popular one for

its various favorable statistical properties. Raw dataset is transformed after feature

engineering and selection, and this transformed and concise representation of data is

fed to the ML algorithm for prediction task.

The term attribute is used to denote feature in tabular data. In this dissertation,

we develop a semi automated human-in-the-loop attribute design framework that en-

ables the human domain expert to perform attribute design efficiently and effectively.

Next, we develop a desktop based application that demonstrates the usability of the

framework. Finally, we propose a new measure to effectively approximate Mutual

Information (MI) based feature selection. We derive upper and lower bounds on the

1

proposed new measure and using the bounds, develop efficient algorithm to perform

feature selection without scanning the full dataset in a single pass.

1.1 A Human-in-the-loop Attribute Design Framework for Classification

In this work, we investigate a semi-automated “human-in-the-loop” framework

that is agnostic to any classification model. Our work is inspired by a handful of

recent works [1, 2, 3] which propose a conceptual framework and empirically argue

that attribute design by involving human analysts can effectively substitute for either

of the two extremes (fully manual or fully automated). However, these do not study

how to optimize human involvement in the process or how to guide it.

Our proposed framework is developed around three fundamental aspects. First,

We adopt a principled and quantifiable measure of the effectiveness of a derived

attribute that is agnostic to the specifics of any underlying classification model. We

consider Mutual Information (MI in short) [4] to determine the predictive ability

of an attribute. The second aspect of our framework is an algebra that dictates

how raw attributes are to be combined to produce the derived attributes. We study

arithmetic, logical, and relational operators. The third aspect of our framework is the

investigation of how to optimize the involvement of humans in the attribute design

process and ensure their efforts are successful. This is motivated by a handful of

recent works that argue that humans must not be left unguided in the attribute design

process [1, 2, 3]. Simply presenting the entire set of raw attributes or hundreds and

thousands of raw records to the human analysts might overwhelm them. We propose

to present each analyst with small summarized portions of the raw data and raw

attributes that is likely to be most helpful for the human to analyze and create useful

attributes from. We formulate two technical problems that need to be addressed:

2

(1) Top-k buckets design: We present each analyst with only k (a small num-

ber) buckets, each with at most x attributes, that are most predictive. We show that

generating these buckets is NP-hard. We provide an exact algorithm, ExBKT, and an

even more efficient heuristic algorithm called RandomizedBKT that performs random

walks on the attribute lattice to design the top-k buckets. However, just produc-

ing buckets that are highly predictive (high MI) may not be enough. We propose

RandomizedCovBKT that finds top-k buckets that are not only effective wrt MI, but

also they together cover many “good” raw attributes of the dataset.

(2) Top-l snippets generation: Even after the buckets of raw attributes have

been generated, the human analyst may have to sift through large volumes of data

(i.e., the tuples with those raw attribute values) to design good derived attributes,

and this task may still be overwhelming. Thus, we propose an interactive procedure

by which an analyst may approach this task.

In summary, this work makes the following contributions:

• Proposed Framework: We initiate the study of a model agnostic semi-automated

attribute design framework that judiciously involves human analysts in the loop.

• Technical contributions: We formalize two technical problems around the frame-

work and present several theoretical and algorithmic results.

• Experimental Results: We conduct extensive experiments to demonstrate both

effectiveness and scalability of our proposed solutions .

1.2 iFE: Interactive Feature Engineering

In this work, we develop a demonstration of the proposed techniques of semi-

automated human-in-the-loop attribute design framework. Our system enables a data

scientist to perform feature engineering effectively. User of our system is a domain

expert who is either a data scientist or analyst. Given a set of raw attributes, the

3

task is to predict the target variable. We use the concept of bucket and snippet

to perform this task. A bucket is a small subset of raw attributes from which new

features can be engineered. It is a way of dealing with high dimensional data by

focusing the user’s attention on such small but promising subset. Raw attributes in a

bucket can be combined using different algebraic operators. Each such combination

in a bucket is defined as a snippet. Our framework defines a mechanism to score

each bucket and snippet, rank them according to the scoring function, and derive

top-k buckets and top-l snippets by applying novel algorithms developed in [5]. Our

demonstration shows that our proposed methods help data scientist to craft useful

derived attributes much quicker than a fully manual method. Running time of the

fully automated techniques vary greatly and they have the limitations of producing

large list of derived attributes. Contrarily, the list of derived attributes produced by

our framework is customizable though user interaction. Using parallelization feature

of the programming language, the system can scale up to multi node clusters as well

as scale down to single node multi-core machine. Hence it can be useful for data

scientists to determine meaningful important derived attributes from a dataset in a

quick and effective way.

1.3 Efficient Approximate Top-k Mutual Information Based Feature Selection

In this work, we propose a new measure to efficiently perform feature selection

based on Mutual Information. Feature or attribute selection is considered to be a

time-consuming yet highly essential step inside a data science pipeline, where the

goal is to select a subset of features or attributes that exhibit high correlation with

the class label to be predicted. Indeed, an effective small number of features play

pivotal role in reducing computation time, and facilitates an enhanced understanding

and improved efficacy of the underlying model. One of the important feature selection

4

techniques is the filtering based method, which leverages scoring functions involving

statistical property of the data to select features. Mutual Information (MI) is one

such popular measure and has been extensively studied in recent work [6, 7, 5], due

to its information theoretic interpretation, and ability in quantifying the predictive

power of the attributes in a model agnostic fashion.

Our study unfolds in a classical data exploration setting inside data science

pipeline, where given to us is a large database with millions of records designed over

a hundreds of attributes (or features) and a class label Z. Given an attribute X and

the class label Z, MI between X and Z measures the reduction in uncertainty for Z,

given a known value of X. Our goal is to select top-k attributes with k-highest MI

with the class label Z

This work makes the following important contributions -

• Connecting Functional Dependency with MI Approximation - We connect the

database concept of Functional Dependency (FD) to estimate MI-based feature

ranking. An attribute will not have exact one-to-one mapping with target vari-

able in a real dataset and hence perfect FD merely exists. We investigate how

this imperfection can be effectively quantified and correlated with MI.

• A New measure to approximate MI - We investigate Approximate Functional

Dependency (AFD) from literature [8, 9, 10, 11, 12, 13] and find deficiency of

one popular measure G3− error [8] to approximate MI based feature ranking.

We propose a new measure Attribute Average Conflict, Aac that effectively

approximates MI, while being much faster computationally. The effectiveness

of the proposed measure is demonstrated with a Monte-Carlo simulation

• Experimental Evaluations - We perform extensive evaluations using multiple

synthetic and real world datasets (with millions of records and hundreds of

attributes) and compare our solutions with multiple methods. Our experimental

5

results convincingly corroborate the superiority of our proposed approach as, we

always achieve the exact top-k attributes considering precision and ndcg-score

for synthetic data, while being 2x faster than exact MI calculation. Adaptive

uniform sampling[6] ends up consuming the entire dataset and turns out to be

considerably slower (4 − 7x) than us. We are also 1.3x faster than uniform

random sampling with better precision and ndcg-score. Similar observation

holds for real world data that shows that even though our proposed method

brings some approximation in the top-k order, the produced attributes still

have highly comparable MI with the exact calculation, while being faster than

the exact calculation and other comparable methods.

• Efficient algorithm using bounds on proposed measure - We investigate the the

upper and lower bounds of the proposed measure Aac by first exploring the

maximum and minimum value of Aac for an attribute. First we show that

a loose upper and lower bound can be derived by using only the domain size

information of an attribute. Then we derive tighter bounds by considering

a setting where we have prior information of attribute (X) and target (Z)

value frequency. This setup is possible for relational databases where the data

dictionary, or metadata can be used to get the marginal frequency of attributes

and target variable. Our proposed approach is able to use marginal frequency

of attribute and target variable to find the possible arrangement that yields

the maximum and minimum value of Aac. We show that finding the minimum

value of Aac is NP-Complete and use a greedy approach that works well in

practice. We develop the criteria for minimum number of records needed to

be scanned to compare Aac between two attributes using the established upper

and lower bounds. Then we develop an efficient algorithm that can select the

top-k attributes using the proposed bounds of the new measure Aac in a single

6

pass without scanning the full dataset. We show the accuracy and effectiveness

of this improved algorithm by experimental evaluation on real datasets. Our

experiment illustrates that for a real world dataset with 299K records and 28

attributes, our proposed bound based algorithm scans only 65% of the records

in a single pass to find the top-10 attributes.

7

CHAPTER 2

A Human-in-the-loop Attribute Design Framework for Classification

In this paper, we present a semi-automated, “human-in-the-loop” framework for

attribute design that assists human analysts to transform raw attributes into effective

derived attributes for classification problems. Our proposed framework is optimiza-

tion guided and fully agnostic to the underlying classification model. We present an

algebra with various operators (arithmetic, relational, and logical) to transform raw

attributes into derived attributes and solve two technical problems: (a) the top-k

buckets design problem aims at presenting human analysts with k buckets, each

bucket containing promising choices of raw attributes that she can focus on only

without having to look at all raw attributes; and (b) the top-l snippets gener-

ation problem, which iteratively aids human analysts with top-l derived attributes

involving an attribute. For the former problem, we present an effective exact bottom-

up algorithm that is empowered by pruning capability, as well as random walk based

heuristic algorithms that are intuitive and work well in practice. For the latter, we

present a greedy heuristic algorithm that is scalable and effective. Rigorous evalu-

ations are conducted involving 6 different real world datasets to showcase that our

framework generates effective derived attributes compared to fully manual or fully

automated methods.

2.1 Introduction

Attribute design (also known as feature engineering) is one of the most challeng-

ing aspects of a data science pipeline, and is considered to be an “arduous process for

8

data scientists”1[14, 15], where the raw attributes often need to be transformed into

derived attributes that can be more effective for building predictive models such as

classifiers. For example, in a healthcare setting involving large, high dimensional and

heterogeneous electronic health records (EHR) datasets, an attribute such as the av-

erage length of prior hospitalization can be very useful to build effective predictive or

classification models on future hospitalization (i.e., readmission) [16]); however, such

attributes are not readily available in the raw dataset. For example, Table 2.1 shows

that the average length of hospitalization needs to be computed per hospitalization

window considering admission and discharge date, and taking the average of these

windows.

The state-of-the-art attribute design techniques fall into one of these two ex-

tremes: (a) fully manual, painstakingly slow and heavily reliant on domain expertise,

often requiring data scientists to go through a repetitive trial-and-error exercise un-

til the set of designed attributes are satisfactorily effective or (b) fully automated

techniques (some notable systems are, Data Science Machine [17]2, ExploreKit [18]3,

One Button Machine [19], or Featuretools4). Such methods are not model agnostic,

require substantial time to identify derived attributes that are opaque to the human

analyst.

In this paper, we investigate a semi-automated “human-in-the-loop” framework

that is agnostic to any classification model. Our work is inspired by a handful of

recent works [1, 2, 3] which propose a conceptual framework and empirically argue

that attribute design by involving human analysts can effectively substitute for either

1https://www.itproportal.com/features/dont-let-feature-engineering-stagnate-your-ml-

projects/
2https://people.csail.mit.edu/kalyan/dsm/
3https://github.com/giladkatz/ExploreKit
4https://docs.featuretools.com/#minute-quick-start

9

of the two extremes (fully manual or fully automated). However, these do not study

how to optimize human involvement in the process or how to guide it.

Proposed Framework: Our proposed framework is developed around three

fundamental aspects.

Model agnostic measure: We adopt a principled and quantifiable measure

of the effectiveness of a derived attribute that is agnostic to the specifics of any

underlying classification model. We consider Mutual Information (MI in short) [4]

to determine the predictive ability of an attribute. Intuitively, MI is a symmetric

measure that captures “correlation” between a pair of attributes and quantifies how

much information is contained in one attribute about the other. We are interested

in producing derived attributes that have high MI with the target variable (or the

class label). MI is known to have several desirable properties: (a) MI is proved to

have certain qualitative guarantees when chosen for attribute selection for multiple

popular classification models, such as Naive Bayes [4], or linear regression [20]; (b)

prior works have also shown that MI optimizes important properties in attribute

selection, such as; relevance, complementarity, and redundancy [4] and (c) finally, as

we shall show later in the paper, MI satisfies upward closure [21] which is useful for

designing effective algorithms.

Attributes algebra: The second aspect of our framework is an algebra that

dictates how raw attributes (numerical or categorical) are to be combined to pro-

duce the derived attributes. We study arithmetic, logical, and relational operators.

Our initial example of average length of prior hospitalization is an example of arith-

metic operator, whereas an example of the logical operation is the following Boolean

attribute: elderly AND diabetic OR covered under medicaid. A patient is more vul-

nerable to future hospitalization if she gets an “yes” on this attribute. A logical

operator on the other hand is obesity that is set to True, when BMI > 30.

10

Guiding human analysts: The third aspect of our framework is the investiga-

tion of how to optimize the involvement of humans in the attribute design process and

ensure their efforts are successful. This is motivated by a handful of recent works that

argue that humans must not be left unguided in the attribute design process [1, 2, 3],

Simply presenting the entire set of raw attributes or hundreds and thousands of raw

records to the human analysts might overwhelm them. We propose to present each

analyst with small summarized portions of the raw data and raw attributes that is

likely to be most helpful for the human to analyze and create useful attributes from.

We formulate two technical problems that need to be addressed:

(1) Top-k buckets design: We present each analyst with only k (a small number)

buckets, each with at most x attributes, that are most predictive. For example, when

x = 3, a useful bucket that is likely to have predictive qualities may contain {elderly,

diabetic, covered-by-medicaid}. We show that generating these buckets is NP-hard.

We provide an exact algorithm, ExBKT, and an even more efficient heuristic algorithm

called RandomizedBKT that performs random walks on the attribute lattice to design

the top-k buckets. However, just producing buckets that are highly predictive (high

MI) may not be enough. We propose RandomizedCovBKT that finds top-k buckets

that are not only effective wrt MI, but also they together cover many “good” raw

attributes of the dataset.

(2) Top-l snippets generation: Even after the buckets of raw attributes have

been generated, the human analyst may have to sift through large volumes of data

(i.e., the tuples with those raw attribute values) to design good derived attributes, and

this task may still be overwhelming. Thus, we propose an interactive procedure by

which an analyst may approach this task. Given a bucket, the analyst starts designing

a derived attribute (i.e., an algebraic expression involving the raw bucket attributes)

interactively (i.e, term by term). At each iteration, our framework recommends l

11

snippets, i.e., it suggests the l best ways to extend the partially created derived

attributes using the algebra. More formally, at a given iteration the snippet generation

process suggests how to augment the partially composed derived attribute by length

j, i.e., combining j new raw attributes with the derived attribute developed thus

far. For instance, if elderly has already been selected by the analyst, and if j = 1,

an example snippet will suggest a visual distribution that shows how elderly AND

diabetic correlates with the prediction target variable hospital readmission.

Evaluations: Rigorous evaluations are conducted considering 6 real world

datasets by comparing our solutions with two fully automated methods (ExploreKit

and Featuretools), and a fully manual domain expert guided attribute design pro-

cess, as well as intuitive baselines. Our experimental results demonstrate that we

scale up to 7x − 20x faster compared to fully automated (ExploreKit) and the fully

manual process, while ensuring similar quality (average improvement 14%). By lever-

aging the domain expert, our framework avoids falling into the pitfall where derived

features could actually be detrimental to the performance (unlike FeatureTools). It

also has other appealing properties, such as being easily parallelizable, and exhibiting

“anytime behavior” whereby it gives meaningful results at any point of execution.

Our scalability results demonstrate that both bucket design and snippet generation

procedures are efficient and can work interactively with the human in the loop.

In summary, the paper makes the following contributions:

• Proposed Framework: We initiate the study of a model agnostic semi-automated

attribute design framework (Section 2.2) that judiciously involves human ana-

lysts in the loop.

• Technical contributions: We formalize two technical problems around the

framework and present several theoretical and algorithmic results (Sections 2.3

and 2.4).

12

• Experimental Results: We conduct extensive experiments to demonstrate both

effectiveness and scalability of our proposed solutions (Section 2.5).

2.2 Preliminaries and Formalism

In this section, we describe our data model, present our framework, and for-

malize the technical problems.

Example 1. We present a toy running example in Table 2.1 that provides longitudinal

data of a heart failure datamart in a hospital. The objective is to build a classifier that

predicts whether a patient getting discharged from the hospital will be readmitted within

6 months of discharge, considering predictors from base attributes (first 10 columns)

and derived attributes (designed using the base attributes). The data is augmented by

adding the last column, representing the class label per patient per admission instance.

13

pa
ti
en

t
−
id

a
d
m
is
si
on

d
a
te

d
is
.

d
a
te

g
en
−

d
er

B
M

I
in
co
m
e

m
ed
i−

ca
id

se
n
io
r

d
ia
−

be
ti
c

pr
im

a
ry
−

d
ia
g
−

n
os
is

re
a
d
−

m
is
si
on

p
1

10
-1
-2
01
3

10
-2
3-
20
13

M
32
.5

lo
w

Y
Y

Y
C
on

g
es
ti
v
e

h
ea
rt

f
a
il
u
re

N

p
1

5-
2-
20
14

5-
10
-2
01
4

M
32
.2

lo
w

Y
Y

Y
H
ea
rt

A
tt
a
ck

Y

p
2

5-
12
-2
01
4

5-
14
-2
01
4

F
26
.7

m
ed
iu
m

N
N

N
A
rr
h
y
th
m
ia

N

p
3

10
-1
-2
01
5

11
-1
-2
01
5

M
29
.9

lo
w

N
N

Y
C
a
rd
io
−

m
y
op
a
th
y

N

p
3

6-
10
-2
01
6

6-
21
-2
01
6

M
29
.8

lo
w

N
N

Y
C
a
rd
io
−

m
y
op
a
th
y

N

p
4

12
-1
2-
20
17

12
-1
4-
20
17

F
23
.4

m
ed
iu
m

N
N

N
A
rr
h
y
th
m
ia

N

p
4

9-
2-
20
18

9-
29
-2
01
8

F
27
.8

m
ed
iu
m

N
N

N
H
ea
rt

A
tt
a
ck

Y

T
ab

le
2.
1:

E
x
am

p
le

1
to
y
h
ea
rt

fa
il
u
re

d
at
am

ar
t

14

Figure 2.1: A snippet on Obesity

2.2.1 Data Model

Base attributes, records, and target variable: A given dataset is comprised of a

set A of n attributes and m records, as well as an additional target attribute (column)

Z. These attributes are referred to as base or raw attributes. In this work, we con-

sider all major types of attributes including numeric, Boolean, and categorical. Our

proposed approach can work for a wide variety of predictive modeling tasks including

classification and regression (we refer to them classification in general). Depending

on the nature of the problem, Z is a continuous variable (regression problem), or has

discrete values (classification problem). Using Example 1, n = 10 and m = 7, Z

corresponds to readmission within 6 months of discharge (discrete).

Algebra, L: A set of operators (arithmetic, relational and logical) which are applied

to one or more base attributes to combine them. When the base attributes are

numeric, we consider arithmetic operators to combine them: addition (+), subtraction

(−), multiplication (x), division (/). For Boolean attributes, we consider logical

operators, AND, OR. We also support all relational operators that compare two

base attributes or a base attribute with a constant (e.g. Ai > Aj or A > 100).

Our framework is flexible enough to support arbitrary operators. We also support

aggregate operators over a set of tuples.

Derived Attribute, d: An attribute that combines two or more base attributes

using the algebra L. Using Example 1, we can create a derived attribute length

15

of stay by subtracting discharge date from the admission date. Another derived

attribute obesity can be obtained through the relational operator > as BMI > 30.

Independent variable, dependent variable: A base attribute or a derived at-

tribute is an independent variable (V) in our problem as that is used to predict the

target variable Z, which is the dependent variable. Our overall intention is to craft a

set of derived attributes as independent variables that are highly “predictive” to the

target (dependent) variable.

Mutual Information (MI): We are interested in calculating “predictiveness” of an

independent variable V to the target variable Z. For that, we use Mutual Information

(MI) that captures information theoretic “correlation” (indeed there exists a relation-

ship between MI and correlation [22] between two random variables that quantifies

the amount of information obtained about one through the other). When V and Z

are discrete 5, MI(Z, V) is defined as follows:

MI(Z, V) =
∑
z∈Z

∑
v∈V

p(z, v) log
p(z, v)

p(z)p(v)
(2.1)

where p(z, v) is the joint probability function of Z and V , and p(z) and p(v) are the

marginal probability distribution functions of Z and V respectively. Of course, V

could be a single base attribute, a small set of base attributes, or a derived attribute.

2.2.2 Proposed Framework

Our proposed framework consists of two technical steps. We first design a set

of k buckets, each with at most x base attributes. Given a bucket and the algebra

L, the analyst then starts composing a small number of derived attributes from the

bucket. This next step is referred to as snippet generation, and works iteratively

with the analyst until she decides to stop. In each step in snippet generation, the

5We consider the numeric variables are appropriately discretized, when needed

16

analyst extends the currently composed derived attributes by a small amount. Our

algorithmic contributions are focused on these two steps. In Section 2.3, we analyze

the Top-k buckets design problem and describe our solutions. In Section 2.4, we

present our solutions for the Top-l snippets generation problem.

Definition 1. Score of a bucket, sc(b) : For a bucket b with A1, A2, . . . Ax base

attributes, the score of b, i.e., sc(b) is the MI between Z and the Cartesian product

of the base attributes that are part of b.

sc(b) = MI(Z, [A1 × A2 × A3....× Ax]) (2.2)

Using Example 1, sc(gender, senior) = MI(readmission, [gender

× senior])

Definition 2. Coverage of a set of buckets: coverage of a set of buckets

Cov(b1, b2, ..bk) is the size of the union of the base attributes that are present in these

buckets.

Cov(b1, b2, ..bk) = |b1 ∪ b2 ∪bk| (2.3)

Using Example 1, if k = 2, x = 2, b1 = [gender, senior], b2 =

[medicaid, gender], then Cov(b1, b2) = 3.

Definition 3. Snippet, s: A snippet s is a visual representation of a joint distribu-

tion between Z and a derived attribute ds in the snippet.

Figure 2.1 shows one such snippet between obesity and hospital readmission.

Definition 4. Score of Snippet, Sc(s): Score of a snippet is the MI between Z and

derived attribute ds in the snippet s, i.e., MI(Z, ds).

Using Figure 2.1, Sc(obesity) = MI(readmission, obesity).

17

2.2.3 Problem Definitions

Problem 1: Top-k-Buckets Design: Given a set of attributes A, number of

required buckets k and maximum number of attributes in each bucket x, our objective

here is to design Top-k buckets based on MI, i.e., finding the k-buckets (each with at

most x attributes) with the highest MI and present those buckets to the the human

analyst to investigate further for creating derived attributes.

We also investigate the top-k coverage aware bucket generation problem, where

the objective is to create “high quality” buckets that together cover all base attributes

that have high MI with the target variable.

Problem 2: Coverage Aware Top-k buckets: The objective is to create Top-k

buckets such that the score of each bucket, sc(b) in Top-k is above a certain threshold

δ and Cov(b1, b2, ..bk) is maximized.

Problem 3: Top-l Interactive Snippets Generation: Each step of the interactive

snippet generation takes as inputs a bucket b, an integer j, the currently composed set

of derived attributes D′, the algebra L; and produces l snippets with highest scores,

where each derived attribute d′′i in snippet si is created by extending d′i, that is, by

adding j additional attributes that are part of b, involving L.

2.3 Top-k Buckets Design

Top-k Buckets Design takes x (the maximum size of each bucket), k (the number

of buckets), the dataset (base attributes A, target variable Z, and the records), and

produces Top-k buckets, each of size at most x that are highest in MI with Z.

Theorem 1. The Top-k Buckets Design Problem is NP-hard, for an arbitrary x and

k.

18

!{G=Gender}!!!!!!!!!!!!!{I=Income}!!!!!!!!!!!!{M=Medicaid}!!!!!!!!!!!{D=diabetes}!!!!!!!!!!!!{S=senior}!

{G,I}!
{D,S}!

{G,I,M}!

{G,I,M,D,S}!

Figure 2.2: Attribute Lattice

Proof. (Sketch): As shown in [23], for an arbitrary maximum bucket size x and

number of buckets k, the problem of identifying the number of distinct buckets of

maximum size x (that have maximal MI in our case) is #P-Hard. Therefore, the

enumeration problem of finding top-k buckets of maximum size x is NP-hard.

Intuitively, the bucket design problem bears similarity with the itemset mining

problems based on association rules (support) or other correlation measures [24],

such as Chi-Square [21]. WRT our problem, a base attribute could be considered

an item, and therefore mining a bucket with at most x-base attributes is akin to

mining an itemset with at most x items that satisfy a certain property. Thereby, the

Top-k buckets generation problem seemingly appears similar to Top-k itemset mining

problems.

Most popular and effective algorithms in this problem space make use of the up-

ward or downward closure property of the itemsets based on the underlying measures

(for example, support is downward closed, while chi-square is upward closed [21]).

These properties enable efficient algorithm design for the itemset mining problems.

Popular algorithms such as Apriori [24] make use of this property extensively

in mining frequent itemsets. They execute in a bottom-up manner by discarding

19

any itemset from consideration whose subsets are not frequent based on the support

threshold [24].

However, designing an Apriori [24] type of algorithm is impractical for our

problem for several reasons: firstly, because MI is not downward closed; secondly,

because our problem does not have a support threshold like Apriori, and finally because

our problem has more constraints (x and k) as inputs.

Lemma 1. Mutual Information is upward closed.

Proof. Without loss of generality, let us assume Z is the target variable and A1, A2, A3

are three base features. We have to prove MI(Z, [A1, A2]) ≤MI(Z, [A1, A2, A3]).

Based on MI definition [25]:

MI(Z, [A1, A2]) = H(Z)−H(Z|[A1, A2]) (2.4)

where H(Z|[A1, A2]) is the conditional entropy of Z given A1, A2.

Using Equation 2.4, we therefore prove H(Z|[A1, A2]) ≥ H(Z|[A1,

A2, A3]).

H(Z|[A1, A2, A3])

= Σa1,a2,a3p(a1, a2, a3)×

Σzp(z|a1, a2, a3) log p(z|a1, a2, a3)

≤ Σa1,a2,a3p(a1, a2)× p(a3)Σzp(z|a1, a2)×

p(z|a3) log p(z|a1, a2) log p(z|a3)

≤ H(Z|[A1, A2])× Σa3p(a3)Σzp(z|a3)logp(z|a3)

≤ H(Z|[A1, A2])

(2.5)

Therefore, H(Z|[A1, A2]) ≥ H(Z|[A1, A2, A3]), proving MI(Z, [A1,

A2]) ≤MI(Z, [A1, A2, A3]).

20

An Apriori-Like Algorithm is Impractical. Since MI is upward closed,

a level-by-level algorithm such as Apriori must be done in a top-down fashion for

our problem, as opposed to the typical bottom-up fashion. Our problem has an

additional constraint on the maximum bucket size that requires the algorithm to

climb to level x first before it can start generating possible buckets. Moreover, our

bucket generation problem does not come with any provided threshold of MI. Instead,

it has the number of buckets constraint k. Therefore, it has to start at level x (which

will have
(
n
x

)
number of buckets of size x) with the highest MI value possible as

the threshold and determine all the size x buckets that satisfy the threshold. If the

number of generated buckets is less than k, it then has to reduce the MI threshold

value systematically until a total of exactly k buckets have been generated. Naturally,

to faithfully reproduce Apriori for our problem, one has to make several runs of the

algorithm, until exactly k buckets have been produced. Clearly, such a process is

computationally impractical for large n, x, and k.

Next, we describe our solutions for this problem - first an exact algorithm

(ExBKT) that produces the top-k buckets of at most size x with the highest MI, and

then random walk based algorithms that are highly efficient and work well in practice.

2.3.1 Exact Algorithm

Algorithm ExBKT extensively exploits a few observations that we make about

MI. In particular, while computing the MI of a set of attributes with the target

variable Z, we observe that one can produce effective lower and upper bounds on

MI. These bounds shall allow us to design a bottom up algorithm that goes level by

level and effectively prunes a set of candidate attributes (buckets) by using upper

bounds. The observation is rather simple - between two subsets of candidate buckets,

if one has higher lower bound of MI than the other bucket’s upper bound of MI, then

21

the former bucket should get promoted as the winner between these two buckets.

Algorithm ExBKT makes use of this observation to prune buckets that are never going

to be part of the top-k results. Before we describe this algorithm in detail, we describe

how to effectively compute lower and upper bound (LB and UB respectively) of MI

of a set of attributes (candidate buckets).

Theorem 2. Upper Bound: Given a set of t base attributes A1, A2,

. . . At and the target variable Z, MI(Z, [A1, A2, . . . At]) ≤ H(Z)+ H(A1, A2, . . . At)

Proof.

MI(Z, [A1, A2, . . . At]) = H(Z)−H(Z|[A1, A2, . . . At])

= H(Z)−H(Z, [A1, A2, . . . At])+

H(A1, A2, . . . At) since [H(Y |X) = H(X, Y)−H(X)]

(2.6)

Therefore,

MI(Z, [A1, A2, . . . At]) ≤ H(Z) +H(A1, A2, . . . At) (2.7)

Applying the chain rule of entropy, the right hand side of the inequality could

be expressed further as H(Z) +H(A1) +H(A2|A1)

+H(A3|A1A2) + . . . H(At|A1, A2, . . . At−1)

Theorem 3. Lower Bound: Given a set of t base attributes A1, A2,

. . . At and the target variable Z, MI(Z, [A1, A2, . . . At]) ≥

MI(Z, [A1, A2, . . . At−1])

Proof. This comes directly from lemma 1.

Algorithm Description: Algorithm ExBKT runs in a bottom-up fashion. It

starts at the bottom of attribute lattice with singleton base attributes as buckets, and

gradually walks up the lattice, level by level. For illustration purposes, consider only

5 attributes from Example 1, abbreviated {G, I,M,D, S}. The bottom layer refers

22

to the 5 singleton base attributes and their computed MI wrt the target variable

Z. Once the score of each of size 1 bucket is computed, then in the next level,

the algorithm combines two base attributes and computes 10 buckets of size 2. For

each bucket bi, it maintains two scores: the lower bound score of bi, sc
lb(bi) derived

from Theorem 3 and the upper bound score of bi, sc
ub(bi) derived from Theorem 2.

Between two buckets bi and bj, if the upper bound of bi (i.e., scub(bi)) is smaller

than the lower bound of score of bj (i.e., sclb(bj)), then bi and all of its supersets

get dropped from further consideration. Using Figure 2.2, if sclb{G, I} is larger than

the upper bound score scub{M,D}, then the latter bucket gets dropped from further

consideration. Additionally, all buckets that contain {M,D} as some base attributes

do not need to be considered. If x = 3, then the algorithm continues to climb up the

attribute lattice to the next level, finding buckets with at most size 3 base attributes,

but applies pruning between the buckets using the lower and upper bound as before.

Once it finishes the traversal, it produces the top-k buckets with the k-highest MI

with the target variable. The pseudo-code is described in Algorithm 1.

Lemma 2. Algorithm ExBKT produces the exact top-k buckets.

Proof. (sketch:) The intuitive argument is that ExBKT only drops a bucket and its

super-set if its upper bound score is not larger than the lower bound score of other

buckets, which will produce the exact solution, because of Lemma 1.

Running Time: In the worst case ExBKT may take O(nx), hence it is expo-

nential. However, in practice, the pruning can be very effective and the algorithm

converges much sooner.

2.3.2 Random Walk Based Algorithms

23

Algorithm 1 Algorithm ExBKT

inputs: A, m records, x, k, target variable Z.

output: Top-k buckets, each of size at most x.

compute all buckets of size 1 and their score.

i = 2

while i ≤ x do

Compute scub(b) and sclb(b) of each bucket b;

IF scub(bw) ≤ sclb(by)

Drop bw and any superset of bw

i = i+ 1

end while

While ExBKT works well in practice, it has an exponential running time in the

worst case. Furthermore, ExBKT is not easily extensible when we have to optimize

any other criteria in addition to MI. Specifically, for our proposed problem Coverage

Aware Top-k buckets, ExBKT can not be adapted to generate the best k-buckets with

the highest coverage. Therefore, we propose faster heuristic alternatives that provide

good solutions most of the time.

Our proposed Algorithm RandomizedBKT is motivated by random walk on the

attribute lattice [21] and has a unified solution for both Top-k buckets Design and

Coverage Aware Top-k buckets Design problems. The core idea is to compose a bucket

of size x, by performing a random walk on the attribute lattice (refer to Figure 2.2).

An attribute is added to a bucket by using weighted sampling without replacement.

The weight of an attribute is based on the optimization criteria. A bucket is formed by

performing a random walk on the attribute lattice, until its maximum size x has been

reached. This random walk is repeated, until k-unique buckets have been derived and

24

any additional criteria (e.g., threshold δ for the latter problem) has been satisfied.

With this high level description above, now we describe how to compute the weight of

an attribute in different scenarios. For the Top-k buckets Design problem, the weight

of an item is directly proportional to its MI, i.e., weight(A) = MI(Z,A).

The Coverage Aware Top-k buckets Design problem requires that in addition

to MI threshold δ, the coverage of the Top-k buckets also must be maximized. The

weight of an attribute is a ratio; it is proportional to its MI, but inversely proportional

to the number of times it is present in other buckets that have been computed thus

far. Indeed, this latter criteria is designed to ensure high coverage.This condition

can be extended to include feature cost as well, so that costly features are assigned

lower preference. As before, the algorithm terminates when we obtain top-k unique

buckets. Using Figure 2.2, if k = 5 and x = 2, when the random walk produces the

5th bucket, if M has appeared in all other 4 buckets, the weight of M is dampened by

a factor of 4 even if it is high in MI with readmission. The pseudo-code is described

in Algorithm 2.

Running Time: Each run of RandomizedBKT takes at most O(n) time. The

total running time of the algorithm is dominated by the number of different random

walks that needs to be performed before it returns k buckets.

2.4 Top-l Interactive Snippets Generation

Recall that we propose snippet generation as an interactive process that contin-

ues until the human is done crafting the attributes. Each step of this process takes as

inputs a bucket b, an integer j, the currently composed set of derived attributes D′,

and the algebra L to produce l snippets with highest scores (MI with Z), where each

derived attribute d′′i in snippet si is created by extending d′i by adding j additional

25

Algorithm 2 Algorithm RandomizedBKT

inputs: set of base attributes A, m records, target variable Z, x, k, δ (for the

coverage aware problem)

output: Top-k buckets of size at most x

B = {}

while |B| < k do

while size(bi) < x do

weight(A) = MI(Z,A) ▷ for the top-k variant

weight(A) ∝ MI(Z,A)
#A has been used before

▷ for the Coverage aware variant

Sample A based on weight(A) and add it to bi

end while

IF sc(b) < δ ▷ only for the Coverage aware variant

Drop b

B = B ∪ b

end while

attributes that are part of b, involving L. Each of these l snippets are recommended

to the human as visual distributions to aid her design derived attributes.

Therefore, our computational challenge is to produce l snippets effectively in

each step involving each d′i ∈ D′. A natural choice is to investigate a greedy al-

gorithm that builds the final derived attribute bottom-up by selecting the best base

attributes from the bucket and combining them with the best operators to recommend

a snippet. In order for this greedy algorithm to provide any provable guarantee, this

greedy selection process needs to satisfy certain properties. For example, given four

attributes Ai, Aj, Ar, As, if MI(Z,Ai) > MI(Z,Ar), and MI(Z,Aj) > MI(Z,As),

then it seems intuitive that if we combine the two attributes with higher MI (Ai, Aj)

26

Ai Aj Ar As Z
1 -1 0 0 0
2 -2 1 0 1
3 -3 0 1 0
4 -4 1 1 1

Table 2.2: Example where MI(Z,Ai + Aj) < MI(Z,Ar + As)

with an operator, the resulting derived attribute should have higher MI than the com-

bination of the other two attributes (Ar, As) using the same operator. Unfortunately,

as we prove below with counter examples, such a property fails to hold even for very

simple operators such as arithmetic addition. This makes the snippet generation more

challenging than the previous step of bucket generation.

Lemma 3. Given four attributes Ai, Aj, Ar, As, if MI(Z,Ai) > MI(Z,Ar), and

MI(Z,Aj) > MI(Z,As), MI(Z,Ai+Aj) may or may not be greater than MI(Z,Ar+

As)

Proof. (Sketch): We prove this by counter examples. We present two examples - one

showsMI(Z,Ai+Aj) < MI(Z,Ar+As) and the other shows the inequality other way.

Table 2.2 shows the first scenario. To create the second scenario, if we replace Aj with

5, 6, 7, 8 in the 4 different rows respectively, we haveMI(Z,Ai+Aj) > MI(Z,Ar+As).

Proposed Algorithm: Our proposed algorithm GSnippet is a greedy algo-

rithm - it still generates a snippet bottom up in each step. Given a bucket b, it first

sorts the base attributes in the bucket in descending MI. Then given j (the number

of additional attributes to extend a partially created derived attribute d′i), it finds

the top-j attributes in b that are not in d′i. These are the candidate set of attributes

for the snippets that involve d′i. After that, it attempts to combine these j attributes

27

considering all the operators in L with d′i. It ranks each of these created combinations

and produces the l-combinations as snippets that have the top-l MI score with Z.

Algorithm 3 presents the pseudo-code.

The reason that GSnippet exhaustively considers all the operators in L (and

cannot make any greedy or more efficient look-ups) is because of Lemma 3. In order

to avoid exhaustive search, other alternative metrics to MI need to be explored that

can guarantee upper/lower bound for features combined under algebraic operators.

Nevertheless, as we shall show in our experiment, GSnippet runs at interactive speeds

and produces effective recommendations for the human analyst.

Using Example 1, if b = {admission.date, dis.date}, l = 1, j = 2,

L = {+,−,×, /}, and current d = {} (i.e., empty), then GSnippet will rank

admission.date + dis.date, admission.date − dis.date, admission.date × dis.date,

admission.date/dis.date, and take the one which has the highest MI with readmis-

sion.

Algorithm 3 Algorithm GSnippet

inputs: bucket b, a derived attribute d′i, target variable Z, j, l, L

output: Top-l snippets involving d′i

Sort attributes in b in descending order of MI

Select set S with top-j attributes from b that are not in d′i

C = S
⋃

d′i

Combine ci ⊕ cj ⊕⊕ d′i, ⊕ ∈ L, ci ∈ C

Rank each combination wrt MI

Return top-l

28

Running Time: Each run takes O(|L|jlogl) time, the majority of which is

spent on brute-forcing on the operator set L.

2.5 Experimental Evaluation

We conducted comprehensive experimental analysis to compare our proposed

approach with fully automated methods, as well as fully manual (domain expert

guided) solution. We investigated both quality and running time in this process.

2.5.1 Experimental Setup

Hardware and Platform. All our experiments were conducted on a quad-core

2.2 GHz machine with 16 GB of RAM and 1 TB of hard disk. We used Python to

implement our algorithms and used scikit-learn for building the classification models.

Datasets. We evaluated our algorithms against a wide variety of datasets that

are considered to be popular choice for attribute design problems. Due to lack of

space, we report our results on 5 datasets from UCI repository and one from Kaggle.

They cover a diverse array of domains (agriculture, medicine, and e-commerce) and

contain attributes that are amenable to constructing derived features. Table 2.3 has

more details.

DataSet # Records # raw attributes
pollen 3848 5

delta elevators 9517 6
mammography 11183 6

space 3107 6
diabetes 768 8
home 506 14

Table 2.3: Reported datasets characteristics

29

Compared Methods. (1) Fully Automated Methods. We implemented two fully au-

tomated state-of-the-art approaches for comparison - Featuretools6 and ExploreKit7.

They both have open source repositories that allow us to evaluate them fairly.

(2) Our proposed algorithms. These are the solutions that are presented in

Sections 2.3 and 2.4.

(3) Buckets Design Baseline algorithms. We compared our proposed buckets

design algorithm against an intuitive baseline algorithm (referred to as Greedy) that

groups attributes on mutual information. It started with an empty bucket and x

attributes were added through importance sampling greedily, where the importance

is proportional to the marginal increase in MI. The process was repeated k times.

(4) Fully manual method. In this scenario, a domain expert was involved in

crafting the derived attributes. We present a case study towards that in Section 2.5.5.

Evaluation of our proposed framework. Our proposed framework has two steps:

the first one, top-k buckets design, is fully automated and does not require any human

involvement. We have described three algorithms for that. The second step, top-l

snippets generation, proposes the list of top l snippets for each of the derived attribute

chosen by the human analyst. The human analyst can either accept the choice, select

another snippet or even construct a new one. This process is repeated interactively.

The framework continues to retain the top-l choices, if no human guidance is given

and is fast enough to be done in near real-time. Finally, the designed derived and

the base attributes are passed through existing popular classification models with an

average of 10 runs.

Parameter Settings.

x, k, j, l, random walk: We varied the size of a bucket x between 2 to the maximum

6https://docs.featuretools.com/#minute-quick-start
7https://github.com/giladkatz/ExploreKit

30

number of base attribute with the default value being 5. The snippet extension

parameter j is set to 1. Finally, both k and l were set to 5 by default. We ran the

random walk for 1000 iterations and picked top-k from it.

Classification models. While our process is classifier agnostic, for the purpose of

comparison, we considered two popular classifiers, Support Vector Machines (SVM)

and Random Forests (RF). For the latter, we use 100 trees using a depth of 2. Training

and testing are performed with a 70%− 30% split of the data, akin to ExploreKit.

Algebra. By default, we used only arithmetic operators. We then varied the

grammar to include logical, relational and other aggregate operators. Overall, our

approach can support all the operators described in both ExploreKit and Featuretools.

Performance Measures. Qualitative measures. For measuring the classifier perfor-

mance, we reported the Area Under the Curve (AUC). This has been used in prior

work such as ExploreKit as it provides a holistic view of the classifier and attribute

design. Higher the AUC, better the classifier performance. We reported the percent-

age improvement in AUC with base(raw) attributes and base+derived attributes.

For example, if the classifier had an AUC of 0.7 with base attributes but 0.8 with

base+derived attributes, the improvement is 0.8−0.7
0.7

= 14%.

Scalability measure. We used time in seconds to evaluate the efficiency of our

algorithms.

Data EK-SVM Time (s) FT-SVM Time (s) MI-SVM Time (s)
pollen 1.93% 1063 2.07% 93 2.10% 42

delta elevators 0.23% 3980 -3.20% 465 0.20% 180
mammography 31.61% 2413 41.93% 204 38.00% 191

space 3.83% 986 1.77% 135 3.20% 186
diabetes 4.63% 343 -13.64% 468 3.60% 390

Table 2.4: AUC improvement and runtime comparison with fully automated
methods using SVM

31

Pollen Delta-E Space Diabetes Mamgm
-0.1

0

0.1

0.2

0.3

0.4
Im

p
ro

ve
m

en
t

in
 A

U
C

Greedy
RandomizedBKT
ExBKT

Figure 2.3: Comparing
Baselines : AUC

Pollen Delta-E Mamgm Space Diabetes
0

500

1000

1500

2000

2500

R
u

n
 T

im
e

in
 S

ec
o

n
d

s

Greedy
RandomizedBKT
ExBKT

Figure 2.4: Comparing
Baselines : Running

Time

10 20 30 40 50
Number of Attributes

0

2000

4000

6000

8000

10000

12000

R
u

n
 T

im
e

in
 S

ec
o

n
d

s

ExBKT
RandomizedBKT

Figure 2.5: Varying
Number of Attributes

0 5 10 15 20
Number of Operators

0

0.1

0.2

0.3

0.4

0.5

Im
p

ro
ve

m
en

t
in

 A
U

C

Pollen
Delta-Elevator
Mammogram
Space
Diabetes

Figure 2.6: Varying
Algebra

2 4 6 8 10 12 14 16
Bucket Size

-0.1

0

0.1

0.2

0.3

0.4

Im
p

ro
ve

m
en

t
in

 A
U

C

Figure 2.7: Varying
Bucket Size

2 2.5 3 3.5 4 4.5 5
Snippet Size

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Im
p

ro
ve

m
en

t
in

 A
U

C

Figure 2.8: Varying
Snippet Size

0 5 10 15 20
Number of Operators

0

2000

4000

6000

8000

10000

R
u

n
 T

im
e

in
 S

ec
o

n
d

s

Pollen
Delta-Elevator
Mammogram
Space
Diabetes

Figure 2.9: Varying
Algebra

2 2.5 3 3.5 4 4.5 5
Bucket Size

0

500

1000

1500

2000

R
u

n
 T

im
e

in
 S

ec
o

n
d

s

Figure 2.10: Varying
Bucket Size

2 2.5 3 3.5 4 4.5 5
Snippet Size

0

500

1000

1500

2000

R
u

n
 T

im
e

in
 S

ec
o

n
d

s

Figure 2.11: Varying
Snippet Size

2.5.2 Summary of Results

Our experimental analysis answered the following key questions:

• How did our proposed framework compare against fully automated

or fully manual solutions? We found that we scale significantly better

(10x − 20x faster than ExploreKit, 7x better than fully manual) than both

of these extremes, with comparable AUC improvements (on an average 14%).

32

Data EK-RF Time (s) FT-RF Time (s) MI-RF (s) Time
pollen 10.56% 10233 -3.71% 40 -1.00% 42

delta elevators 0.75% 37611 -1.13% 106 0.70% 180
mammography -0.01% 16502 5.34% 113 4.00% 191

space 4.09% 10676 4.92% 106 4.20% 186
diabetes 4.46% 3474 3.11% 462 3.30% 390

Table 2.5: AUC improvement and runtime comparison with fully automated
methods using RandomForest

Due to human involvement, it also avoided the worst case behavior of the auto-

mated methods (FeatureTools showed decrease in performance at times). Sec-

tions 2.5.3, 2.5.5 present these results.

• How did our proposed algorithms compare? We observed that we

attained higher qualitative performance, while being scalable compared to

other baselines. The exact algorithm ExBKT produced optimal buckets, while

RandomizedBKT was much faster and produced results comparable to ExBKT.

Greedy was inferior in quality. We focused on the coverage variant of

RandomizedBKT so as to provide a diverse set of buckets to the human ana-

lyst. Algorithm GSnippet was interactive to the human analyst and works in

real time. Section 2.5.4 presents these results.

• What kind of attributes did our proposed framework generate? We

observed that the attributes produced by our framework were intuitive and

meaningful to human analyst. Section 2.5.5 presents some of these results.

2.5.3 Comparison with fully automated methods

We compared the performance of our proposed approach against automated

systems in both classifier performance and efficiency. Tables 2.4 and 2.5 show the re-

sults for SVM and RF classifiers respectively. On an average, the AUC improvement

33

of the classifiers were more than 14% through attribute design. Our proposed frame-

work was almost 10x-20x faster than ExploreKit, comparable with FeatureTools (but

FeatureTools caused sudden decline in AUC at times with the derived attributes).

2.5.4 Analysis of presented algorithms

In this section, we present quality and running time study of our algorithms with

the baselines, described in Section 2.5.1. We note that the implemented baselines were

inferior in AUC improvements, hence we only present running time of our solutions.

Comparison with Baselines. We began by comparing our algorithms for bucket

construction : an exact algorithm ExBKT, a random walk based algorithm han-

dling coverage RandomizedBKT and Greedy. Figures 2.3 and 2.4 show the results.

As expected, ExBKT took substantial amount of time but gave the best results.

RandomizedBKT was much faster and provided almost identical results for AUC im-

provement. Greedy was very efficient but qualitatively inferior.

Varying Number of Operators in the Algebra. We began by supporting arith-

metic operators (+,−,×, /,%) and then systematically added more logical, relational

and aggregate operators. As expected, increasing the number of operators causes a

slow down in our approach. Recall that our first stage of bucket generation was ag-

nostic to both classifier and grammar. The resulting buckets often contained only a

handful of attributes and hence our algorithm was quite fast even for a large number

of operators. This can be seen in Figure 2.9 where the improvement is (sub)-linear

in the number of operators. Figure 2.6 shows the corresponding impact on AUC.

This shows that the additional operators often only provides negligible improvement

in AUC. We conjuncture that for most attributes, only a small set of operators are

most relevant.

34

Varying Bucket Size x. Next, we varied the maximum number of attributes x in

each bucket. The impact of k (the number of buckets to return) was minimal. Our

algorithms have a natural anytime property where it can be stopped at any time and

pick the best k buckets. x affected the length of the random walk and had a major

impact on runtime and AUC. Figures 2.7 and 2.10 show the result. As expected,

increasing bucket size improved the AUC but it stagnated quickly. This confirmed

with our hypothesis that most derived attributes often consist of few base attributes.

The bucket size must not be too small - otherwise, we might miss meaningful group

of attributes. It must also not be too large - otherwise, we might expend runtime for

no meaningful improvement of AUC. We found a value of 5 to be good both from

runtime perspective and the required cognitive impact on the human analyst. The

runtime increased almost linearly with larger bucket size.

Varying Snippet Size j. In our final set of experiments, we varied the snippet

size. Here we also noted that the impact of l (the number of snippets to return) was

minimal. Figures 2.8 and 2.11 show the results. As expected, increasing snippet size

had minimal impact on AUC. The improvement more or less topped out at snippet

of size 3. This once again confirmed our hypothesis that derived attributes were often

constructed from a handful of base attributes. The increase in time for larger snippet

size was mostly linear.

Varying Number of Attributes. In order to highlight the scalability of our al-

gorithms, we varied the number of base attributes by duplicating some of the base

attributes randomly. Figure 2.5 shows the impact on running time of our exact and

random walk based algorithm. As expected, the running time increased dramati-

cally for ExBKT while the increase was marginal for RandomizedBKT. Our approach

was scalable to large increase in the number of columns. The impact of increasing

number of rows were rather minimal.

35

2.5.5 Comparison with fully manual method

We present a case study comparing a fully manual approach (a typical trial-and-

error based attribute design exercise a data scientists goes through) and our approach.

We used the popular Boston dataset from Kaggle 8 that seeks to predict house prices

from from features like its area, number of bedrooms, etc.

Attribute Interpretation
lstat lower status of the popula-

tion (percent).
tax full-value property-tax rate

per $10,000.
ptratio pupil-teacher ratio by town.
dis weighted mean of distances

to five Boston employment
centres.

rad index of accessibility to ra-
dial highways.

black 1000(Bk − 0.63)2 where Bk
is the proportion of blacks
by town.

crim per capita crime rate by
town.

rm average number of rooms
per dwelling.

zn proportion of non-retail
business acres per town.

nox nitrogen oxides concentra-
tion (parts per 10 million).

Table 2.6: Boston home dataset attributes

We involved a data scientist to construct the derived attributes and she came

up with the following 6 additional derived attributes after extensive analysis. lstat

/ tax, ptratio / tax, dis * rad / tax, black * crim, rm * (zn + indus) and (nox *

8https://www.kaggle.com/c/boston-housing/data

36

indus) / tax. The interpretation of these attributes are presented in Table 2.6. The

data scientist took about 10 hours to manually craft these 6 derived attributes, out

of which 3 hours were needed to understand and explore the data. The remaining 7

hours were needed for a trial and error process, where the expert tried many possible

derived attributes, analyzed the correlation, tweaked the attributes, and repeated

the process. While another data scientist with similar expertise was guided by our

framework, she took only 1 hour to craft the same 6 derived attributes. For both cases,

we observed an AUC improvement of 14%. This case study anecdotally showcase that

our proposed framework is capable to drastically reduce the latency (7 hour vs 1 hr,

i.e, 7x improvement) by aiding the domain expert.

2.6 Related Work

Human-in-the-loop Query Answering : A growing number of systems

make use of lay workers (known as crowdsourced workers) using commercial plat-

forms (e.g., AMT and CrowdFlower) or for academic use. Examples of applications

include not only sentence translation, photo tagging and sentiment analysis, but also

query answering (CrowdDB [26], Qurk [27], Deco [28], sCOOP, FusionCOMP, MoDaS,

CyLog/Crowd4U), entity resolution (such as CrowdER [29]), planning queries [30],

perform matching [31], or counting [32]. A series of works [33, 34, 35, 36, 37] have

proposed variations of crowdsourced join to address entity resolution task for query

answering. Authors in [38, 39, 40, 41, 42, 43] have proposed various techniques

of performing crowdsourced version of top-k item selection. Crowdsourcing based

filtering has been extensively introduced in [44, 45]. Crowdsourced find focuses on

selecting one or more qualified items [46, 47]. Unlike these works, we involve humans

for attributes design, which occurs at a later stage of the data science pipeline —

therefore these prior works do not extend to our problem.

37

Human-in-the-loop Supervised Modeling: Machine learning literature has in-

volved humans to obtain labels [48, 49, 50, 51] primarily for the classification prob-

lem. Active learning involving humans (expert as well as lay workers) has also been

discussed in recent works such as [52, 53, 54, 55]. These works utilize humans for

accurately predicting class labels, thus the humans function as an added module to

help the algorithm steer toward the correct assignment of class labels. The main

distinction between these works and ours is that, these works leverage human mainly

for data labeling and not for attribute design.

Attribute Design: How to develop automated methods for designing/engineering

attributes (commonly referred to as as feature engineering) has been discussed in

recent works [18, 17, 19, 56, 57, 58], primarily in machine learning literature. Attribute

engineering tools, such as, ExploreKit, Featuretools, Data Science Machine, One

Button Machine [18, 17, 59, 60, 61, 19] rely on fully automated approaches. Typically

they take longer to run and do not offer adequate explainability or intuition, as the

discovered attributes remain opaque to the human analyst interested in broader ad-

hoc data exploration. They also ignore the availability of humans to guide their

exploration. Finally, the effectiveness of most of these tools depend on the underlying

classification model, whereas, we present a model agnostic approach. Nevertheless,

we use some of these tools in our experimental analysis for comparison purposes. A

very few recent works [1, 2, 3] propose a conceptual framework and describe how to

involve humans for designing attributes to improve the accuracy of predictive machine

learning models, such as classifiers. While we borrow inspiration from these recent

works [1, 2, 3], we present the framework with mathematical rigor and investigate

optimization opportunities.

38

2.7 Final Remarks

We present an optimization guided semi-automated model-agnostic “human-in-

the-loop” framework for designing derived attributes by leveraging humans. The main

contribution of our work is to provide an optimization guided framework for data sci-

entists that will help them to craft meaningful derived attributes much quicker than

a fully manual method. On the other hand, running time of the fully automated

techniques vary greatly; for example, FeatureTools is significantly faster compared

to ExploreKit, but they all have the limitations of producing derived attributes that

are opaque. Contrarily, the derived attributes produced by our framework are inter-

pretable.

We present two computational problems inside our proposed framework - top-k

buckets design and top-l snippet generation problems. We present effective solutions

for solving both problems. We compare our proposed approach with two fully auto-

mated state-of-the-art tools, as well as fully manual domain expert designed derived

attributes. Our rigorous quality evaluations using 6 real world datasets demonstrate

that we are as effective as fully automated methods and we scale up significantly better

compared to a fully manual solution involving two domain experts. Our scalability

results demonstrate that both bucket design and snippet generation are interactive

and ensure real time response with the analysts. As an ongoing problem, we are inves-

tigating how to revisit these problems when the datasets contain significant missing

values. We are also investigating how to involve multiple domain experts in buckets

design and snippets generation problems.

39

CHAPTER 3

iFE: Interactive Feature Engineering

Feature engineering is an important step in the data science pipeline. Derived

attributes can play crucial role in the accuracy of machine learning tasks. Hence a

human analyst usually makes several passes through the dataset to come up with most

effective derived attributes which is a fully manual procedure. On the other hand,

fully automated procedures can provide a set of derived attributes to the analyst

quicker than the manual method, but this set may contain many opaque derived

attributes that are not good for interpretability.

We demonstrate iFE, a desktop application that enables a human analyst to

find interpretable derived attributes much quicker than fully manual method. The

system first finds k buckets, each containing promising choices of raw attributes that

the analyst can focus on only without having to look at all raw attributes. To achieve

this, iFE implements a random walk based heuristic algorithm that is intuitive and

works well in practice. In the next step, the system iteratively aids the analyst to

generate top-l derived attributes within a bucket using arithmetic, relational, and

logical operators. The user interface in our system guides the analyst to the final

derived attributes in a few number of iterations which saves time and effort as well

as boost productivity for the analyst.

3.1 Introduction

Attribute design (also known as feature engineering) is one of the most challenging as-

pects of a data science pipeline. The raw attributes often need to be transformed into

40

derived attributes, are more effective for building predictive models such as classifiers.

For example, Diabetes Pedigree Function is an indicator of the likelihood of diabetes

based on family history. A young person having larger score for this function is more

likely to be diabetic than an older one with smaller score. A derived attribute“Age

× DiabetesPedigreeFunction” can indicate this relationship which is not present in

the raw diabetes dataset. Current attribute design techniques fall into one of these

two extremes: (a) fully manual - slow and heavily reliant on domain expertise, of-

ten requiring data scientists to go through a repetitive trial-and-error exercise until

the set of designed attributes are satisfactorily effective or (b) fully automated tech-

niques (some notable systems are, Data Science Machine [17]1, ExploreKit [18]2, One

Button Machine [19], or Featuretools3). Such methods are not model agnostic, and

require substantial time to identify derived attributes, often opaque to the human

analyst. Figure 3.1 shows the steps of generating derived attributes using fully auto-

mated methods. If data analyst does not specify specific attributes and use all the

attributes in a dataset, there will be hundreds of derived attributes by combining the

raw attributes using only basic arithmatic operators. Selecting a small set of derived

attributes from this large list is a challenging task for the analyst.

In this paper, we present a demo that implements the techniques proposed in

[5]. Our system enables an analyst to perform feature engineering effectively. Given

a set of raw attributes, the analyst tries to predict the target variable. We introduce

the concept of bucket and snippet to perform this task. A bucket is a small subset

of raw attributes from which new features can be engineered. It is a way of dealing

with very high dimensional data by focusing the analyst’s attention on such small

1https://people.csail.mit.edu/kalyan/dsm/
2https://github.com/giladkatz/ExploreKit
3https://docs.featuretools.com/#minute-quick-start

41

but promising subset. Raw attributes in a bucket can be combined using different

algebraic operators. Each such combination in a bucket is defined as a snippet. Our

framework defines a mechanism to score each bucket and snippet, rank them according

to the scoring function, and derive top-k buckets and top-l snippets by applying novel

algorithms. Mutual Information (MI) is used as the scoring function in this regard.

In some sense, buckets and snippets are a way of “horizontally compressing” big

and wide datasets. After the analyst loads the dataset, the system operates in two

stages to suggest the derived attributes to her. In the first stage, system runs the

top-k bucket generation algorithm to provide top-k buckets of raw attributes to the

analyst. The analyst can focus on creating derived attributes using attributes from

a given bucket. The system is generic and allows creation of derived attributes using

arithmetic, relational, and logical operators. Furthermore, it can even suggest top-l

snippets of derived attributes to her. The analyst can choose snippets from each

bucket to come up with the final set of derived attributes. The system provides a

final result that lists classification accuracy for raw and derived attributes, and the

accuracy improvement measure from using the derived attributes. Figure 3.2 depicts

the steps of derived attribute generation using buckets and snippets.

iFE implements a semi-automated “human-in-the-loop” framework proposed

in [5]. MI is used as the model agnostic measure; the framework proposes to produce

derived attributes that have high MI with the target variable (or the class label).

MI is known to have several desirable properties that make it an ideal candidate for

adopting as a model agnostic measure in the system framework [5]. The important

aspect of the framework is the investigation of how to optimize the involvement of

humans in the attribute design process and ensure their efforts are successful. iFE

implements the algorithms proposed by the framework and provides an intuitive user

42

Figure 3.1: Derived Attribute Generation in other Framework

Figure 3.2: Derived Attribute Generation in iFE

interface through which a data scientist/analyst can easily perform the task of derived

attribute generation in few steps.

3.2 System Overview

Figure 3.3 demonstrates the architecture of iFE. iFE is implemented as a desk-

top application. The system consists of two main components - User Interface and

Backend. Design and functionality of each component is described in the following

subsections.

43

Figure 3.3: Architecture of iFE

(a) Demo Scenario 1 (b) Demo Scenario 2

Figure 3.4: User Interface

3.2.1 User Interface

iFE has an interactive user interface to input datafile and generate desired de-

rived attributes in a few steps. User interface is demonstrated in Figure 3.4. First

the user selects the datafile from computer by clicking Browse button and system

provides an overview of the number of records and columns in the dataset. After that

user inputs various parameters to generate buckets and snippets. System provides de-

fault values of the parameters which the user can change according to her preference.

User can select number of buckets, maximum size of a bucket, number of snippets

44

and maximum snippet size. The number of buckets refer to the value k for generating

top-k buckets, max bucket size is the value of x which is the maximum number of

raw attributes in a bucket, number of snippets is the value of l for generating top-l

snippets for each bucket, and the max snippet size refers to maximum expression size

for a snippet. System first generates top-k buckets, and then top-l snippets for each

bucket. After user clicks on Run button, system first generates top-k buckets and

displays in the Buckets list. Then user clicks on any bucket and system generates

top-l snippets for that specific bucket and renders the Snippets list. User can click

on any snippet and system adds that to Selected Snippets list. Clicking on a selected

snippet in the Selected Snippets list will remove that entry from the list, which user

can add again by clicking on that snippet from the Snippets list. User can also remove

all the selected snippets by clicking Clear All button on top of the Selected Snippets

list. User can select snippets from different buckets and evaluate the effectiveness

of the selected snippets by clicking Evaluate button. The result window is rendered

below the Evaluate button displaying the accuracy using default raw attributes in the

dataset and the accuracy using only selected snippets. Besides, increase or decrease

of accuracy percentage is shown in the result which helps the user to understand the

efficacy of her choice. Reset button provides option to clear the Buckets, Snippets and

Selected Snippets lists and run the process using updated parameter settings. The

interactive feature to add or delete any number of snippets and evaluate the selected

snippets on the fly provides a useful tool for the user for feature engineering.

3.2.2 Backend

The backend runs the algorithms to generate top-k buckets and top-l snippets.

We implement a random walk based algorithm for bucket generation that is highly

45

efficient and works well in practice. For snippet generation, a greedy algorithm is

implemented that generates a snippet bottom up in each step [5].

3.2.3 Top-k bucket generation Algorithm

Two algorithms have been developed in [5] to generate Top-k bucket - exact

and random-walk. The exact algorithm runs in a bottom-up fashion starting with

singleton base attributes as buckets and gradually walking up the lattice level by

level [5]. The random-walk based algorithm works well in practice which has been

implemented in this demonstration. The core idea of the random walk algorithm

is to compose a bucket of size x, by performing a random walk on the attribute

lattice [5]. Here, attribute lattice is the power set of attributes. An attribute is

added to a bucket by using weighted sampling without replacement. The weight of

an attribute is based on the optimization criteria. A bucket is formed by performing

a random walk on the attribute lattice, until its maximum size x has been reached.

This random walk is repeated, until k-unique buckets have been derived. For the

Top-k buckets Design problem, the weight of an item is directly proportional to its

MI, i.e., weight(A) = MI(Z,A) where Z is the target variable. The weight of an

attribute is a ratio; it is proportional to its MI, but inversely proportional to the

number of times it is present in other buckets that have been computed thus far. The

algorithm terminates when we obtain top-k unique buckets.

3.2.4 Top-l snippets generation Algorithm

A greedy algorithm is implemented to generate top-l snippets. It generates a

snippet bottom up in each step. Given a bucket b, it first sorts the base attributes

in the bucket in descending MI. Then given j (the number of additional attributes to

46

extend a partially created derived attribute d′i), it finds the top-j attributes in b that

are not in d′i. These are the candidate set of attributes for the snippets that involve

d′i. After that, it attempts to combine these j attributes considering all the operators

in L (let, L = {+,−,×, /}) with d′i. It ranks each of these created combinations and

produces the l-combinations as snippets that have the top-l MI score with Z.

3.2.5 Technical Challenges

Parallel Processing A real time implementation of iFE dealing with large

number of dataset requires large execution time. This issue is addressed by adopting

parallel processing. The option of parallel processing greatly reduces the execution

time and provides near real time response for moderately large set of data.

Caching When number of raw attributes increases, the attribute lattice to

explore also increases exponentially. Using caching helps to avoid recalculating al-

ready existing MI score for a bucket of features. Hence caching is incorporated in the

implementation for iFE.

3.3 Demo Plan

In this section we describe the system setup and demonstration scenario for

iFE. First we briefly describe the hardware and system setup. We then provide two

case studies for user demonstration.

3.3.1 Hardware and System Setup

Python 3 and PyQt5 has been used to develop iFE desktop application. It can

run on Windows/Mac/Linux. To address the technical challenge of parallel process-

47

(a) Evaluation for single snippet (b) Evaluation for multiple snippets

Figure 3.5: Interactive Output

ing, iFE can be configured to use Dask 4 library. By using Dask we can enable efficient

parallel computations on single machines by leveraging their multi-core CPUs as well

as run our code on a distributed cluster if needed. In this demonstration, numpy 5

library functions have been used in the code to utilize all the available cores of the

single machine processor to mimic the parallel processing scenario.

3.3.2 Demonstration Scenarios

We provide two demonstration scenarios for generating derived attributes. User

of this system is data analyst/ data scientist. The scope of the demo is restricted to

dataset with numeric attributes where the target attribute indicates the class of the

instance.

3.3.2.1 Demo Scenario 1

Figure 3.4(a) demonstrates this scenario. User first loads the Pima Indian

Diabetes dataset 6 from the computer using Browse button. User then proceeds

4http://docs.dask.org/en/latest/why.html
5https://numpy.org/
6https://www.kaggle.com/uciml/pima-indians-diabetes-database

48

to select parameter values for bucket and snippet generation. User selects 3 and

5 as the value for Number of Buckets(k) and Number of Snippets(l) respectively,

and 3 as the value of Max bucket size and snippet size. User then clicks on Run

button. System generates top-3 buckets of attributes each having at most 3 attributes

and displays in Buckets list. Here the first bucket has the largest MI score and

buckets are sorted in descending order ofMI. Figure 3.5(a) demonstrates the scenario

where user clicks on the first bucket and system generates top-5 snippets according

to MI score and renders Snippets list. In this demonstration, we use 4 operators

{+,−,×, /} ; system combines bucket members using these operators to generate

snippets for the selected bucket. Next, user clicks on the first snippet and system

adds it in the Selected Snippets list. User clicks on Evaluate button and system

displays the result. Here user finds that the accuracy decreases 5.25% for using

selected single snippet instead of 8 raw attributes. A logistic regression model is

evaluated using 10-fold cross validation of the input data. User proceeds to select

different buckets and snippets from these buckets and evaluate the result on the fly.

Figure 3.5(b) demonstrates the interactive scenario where user selects third snippet

‘Age × DiabetesPedigreeFunction’ and evaluates the result. Using the three snippets

the accuracy is increased by 0.86%. User observes that she gets a slightly better

accuracy using 3 snippets instead of 8 raw attributes and might decide to use these

snippets for further model building activities in the data science pipeline. In this way,

iFE enriches user experience through interactive interface to generate useful derived

attributes in few steps.

49

3.3.2.2 Demo Scenario 2

Figure 3.4(b) demonstrates this scenario. User loads the space dataset 7 and

proceeds to select number of buckets and snippets different from Demo Scenario 1.

User selects the first bucket and then selects 2 snippets from the first bucket. User

then clicks on Evaluate button and observes that accuracy increase is 5.10% for using

these 2 snippets instead of 6 raw attributes. User decides to use these 2 snippets and

does not proceed further.

3.4 Conclusion

We propose to demonstrate iFE, a semi-automated desktop application that

can help a data scientist/analyst quickly determine important derived attributes.

The main contribution of our work is to implement an optimization guided frame-

work for data scientists that will help them to craft useful derived attributes much

quicker than a fully manual method. On the other hand, running time of the fully

automated techniques vary greatly [5], and they have the limitations of producing

large list of derived attributes. Contrarily, the list of derived attributes produced by

our framework is customizable though user interaction. Using Dask parallelization

feature, the system can scale up to multi node clusters as well as scale down to sin-

gle node multi-core machine. Hence it can be useful for data scientists to determine

meaningful important derived attributes from a dataset in a quick and effective way.

7https://www.openml.org/d/737

50

CHAPTER 4

Efficient Approximate Top-k Mutual Information Based Feature Selection

Feature selection is an important step in the data science pipeline, and it is criti-

cal to develop efficient algorithms for this step. Mutual Information (MI) is one of the

important measures used for feature selection, where attributes are sorted according

to descending score of MI, and top-k attributes are retained. The goal of this work is

to develop a new measure Attribute Average Conflict to effectively approximate top-k

attributes, without actually calculating MI. Our proposed method is based on using

the database concept of approximate functional dependency to quantify MI rank of

attributes which to our knowledge has not been studied before.

We demonstrate the effectiveness of our proposed measure with a Monte-Carlo

simulation. We also perform extensive experiments using high dimensional synthetic

and real datasets with millions of records. Our results show that our proposed method

demonstrates perfect accuracy in selecting the top-k attributes, yet is significantly

more efficient than state-of-art baselines, including exact methods for computing Mu-

tual Information based feature selection, as well as adaptive random- sampling based

approaches.

We also investigate the upper and lower bounds of the proposed new measure

and show that tighter bounds can be derived by using marginal frequency of attributes

in specific arrangements. The bounds on the proposed measure can be used to select

top-k attributes without full scan of the dataset in a single pass. We perform ex-

perimental evaluation on real datasets to show the accuracy and effectiveness of this

approach.

51

4.1 Introduction

Feature or attribute selection is considered to be a time-consuming yet highly

essential step inside a data science pipeline, where the goal is to select a subset of

features or attributes that exhibit high correlation with the class label to be pre-

dicted. Indeed, an effective small number of features play pivotal role in reducing

computation time, and facilitates an enhanced understanding and improved efficacy

of the underlying model. One of the important feature selection technique is the fil-

tering based methods [62, 63], which leverages scoring functions involving statistical

property of the data to select features. Mutual Information (MI) [4, 64] is one such

popular measure [4] and has been extensively studied in recent work [6, 7, 5], due

to its information theoretic interpretation, and ability in quantifying the predictive

power of the attributes in a model agnostic fashion.

Problem Settings and Challenges. Our study unfolds in a classical data

exploration setting inside data science pipeline, where given to us is a large database

with millions of records designed over a hundreds of attributes (or features) and a class

label Z. Given an attribute X and the class label Z, MI between X and Z measures

the reduction in uncertainty for Z, given a known value of X. Our goal is to select

top-k attributes with k-highest MI with the class label Z (Section 4.2) . Our setting

expects the attributes to exhibit high skew, that is, there exits a handful of x values

that perfectly identify the corresponding z values, thereby finding those x values can

reduce uncertainty in Z substantially. This is indeed common in real world, as there

exists only a handful of fraudulent transactions in the mix of a large number of valid

ones, and these fraudulent ones exhibit some property (feature values) that are not

present otherwise, or the presence of a very small number of Native Americans in a

dataset that are afflicted disproportionately with a number of chronic illnesses, such

as, Type 2 Diabetes, alcohol abuse, and suicide. Finally, such process of filtering based

52

feature selection is to be repeatedly performed during data exploration, hence our

focus is to select top-k features with high accuracy by enabling interactive response

time.

Contribution (1) - Connecting Functional Dependency with MI Ap-

proximation. A functional dependency (FD) (Section 4.2) in a relation R is an

expression X → Z, where {X,Z} ⊆ R, which holds, if all pairs of tuples that agree

on X, agree also on Z. While FD is studied from the perspective of checking integrity

constraints in a database, we realize there does exist a subtle connection between FD

and MI, as in if {X,Z} exhibits full functional dependency, then they also have the

“perfect” MI. However, full functional dependency (FFD) is unlikely to to be present

in real data, thus our effort is to quantify a “non-perfect” or approximate functional

dependency (AFD) between the predictive attributes (or features) and the class label.

We are aware of of a variety of works that compute approximate functional depen-

dency [8, 9, 10, 11, 12, 13]. These works focus on application of AFD in schema design

and finding interesting relationship from data, but not for feature selection. We take

inspiration from these works to design our proposed measure, as none of these works

study FD in the context of MI estimation, which solely is our focus here. Section 4.6

contains further details.

Contribution (2)- A New measure to approximate MI. We propose a

new measure Attribute Average Conflict (Section 4.3) that effectively approximates

MI, while being much faster computationally. One can notice that the actual MI

formula (Equation 4.1) captures co-occurrence of (X,Z) by computing the joint dis-

tribution of (X,Z) in the numerator and has the marginal of X and Z in the denom-

inator. Attribute Average Conflict (Aac) captures the minimum number of violations

of each value of x ∈ X, eliminating which a perfect “one-to-one correlation” could be

established between X and Z, and weigh that by considering the “relative frequency”

53

of the corresponding x value. This way, the attribute X with the smallest Aac is

likely to have the highest MI(X,Z). Hence ordering attributes with respect to as-

cending Aac should provide us with the similar (if not identical) list of attributes with

respect to descending MI. Interestingly, this approximation significantly improves the

underlying computational process, as MI between X,Z could be estimated just by

counting the co-occurrence frequencies of different (x, z) values, leading to significant

speed up. Thus, some of the expensive operations (such as logarithm and division)

that are present in standard MI calculation is completely avoided in this way.

Aac bears some similarity with G3 − error(X,Z) [8], that is a known error

measures to quantify approximate functional dependency(AFD) between X and Z.

It captures the minimum number of records that violates the functional dependency

criteria and must be deleted to satisfy functional dependency between X → Z. How-

ever, unlike G3 − error, Aac also captures the relative frequency of each x value as

its weight, leading to a different expression and outperforms G3− error empirically.

Effectiveness of our proposed measure is demonstrated through monte-carlo [65] sim-

ulation (Section 4.3.4).

Comparison with sampling. An obvious approach to enable efficiency is

through data sampling, and there exist notable recent works [6, 7] that perform

uniform random sampling adaptively on the data to efficiently compute MI to satisfy

an error bound. Naturally, the effectiveness of such sampling based approaches are

heavily reliant on the underlying data distribution. In fact, when the data distribution

is skewed, uniform random sampling is known to perform poorly [66], as it misses out

capturing the “rare” instances from the data, which is purely our focus here. In a

nutshell, what we argue and empirically demonstrate is that our proposed technique

for MI estimation gives rise to faster and more accurate feature selection methods,

compared to the uniform random sampling based methods [6, 7]. Nevertheless, one

54

can potentially apply our proposed approach on the sampled data. In that sense, our

work complements any sampling based MI estimation approach.

Contribution (3)- Experimental Evaluations We perform extensive evalu-

ations (Section 4.4) using multiple synthetic and real world datasets (with millions of

records and hundreds of attributes) and compare our solutions with multiple methods,

including state-of-the-art solution[6]. Our experimental results convincingly corrobo-

rate the superiority of our proposed approach as, we always achieve the exact top-k

attributes considering precision and ndcg-score, while being 2x faster than exact MI

calculation. Adaptive uniform sampling[6] ends up consuming the entire dataset and

turns out to be considerably slower (4 − 7x) than us. We are also 1.3x faster than

uniform random sampling with better precision and ndcg-score. Similar observation

holds for real world data that shows that even though our proposed method brings

some approximation in the top-k order, the produced attributes still have highly com-

parable MI with the exact calculation, while being faster than the exact calculation

and other comparable methods.

Contribution (4)- Efficient algorithm using bounds on proposed mea-

sure We investigate the the upper and lower bounds of the proposed measure Aac

(Section 4.5) by first exploring the maximum and minimum value of Aac for an

attribute. First we show that a loose upper and lower bound can be derived by using

only the domain size information of attributes. Then we derive tighter bounds by

considering a setting where we have prior information of attribute (X) and target (Z)

value frequency. This setup is possible for relational databases where the data dictio-

nary, or metadata can be used to get the marginal frequency of attributes and target

variable. Our proposed approach is able to use marginal frequency of attribute and

target variable to find the possible arrangement that yields the maximum and mini-

mum value of Aac. We show that finding the minimum value of Aac is NP-Complete

55

and use a greedy approach that works well in practice. We develop the criteria for

minimum number of records needed to be scanned to compare Aac between two at-

tributes using the established upper and lower bounds. Then we develop an efficient

algorithm that can select the top-k attributes using the proposed bounds of the new

measure in a single pass without scanning the full dataset. We show the accuracy and

effectiveness of this improved algorithm by experimental evaluation on real datasets.

Our experiment illustrates that for a real world dataset with 299K records and 28

attributes, our proposed bound based algorithm scans only 65% of the records in a

single pass to find the top-10 attributes with perfect accuracy.

4.2 Preliminaries and Definitions

Example 2. We describe a toy example in Table 4.1 with 10 records and 2 attributes

(predictors) - Ethnicity and Age < 30 and one Boolean class label PlaysBasketball.

The recordId column contains the unique identifier for the record. For the simplicity

of exposition, we consider binary predictors and class labels.

record
Id

Ethni
city

Age
< 30

Plays
BasketBall

r1 Black Yes Yes
r2 Black Yes Yes
r3 Black Yes Yes
r4 Black Yes No
r5 Black Yes No
r6 Black Yes No
r7 Black No No
r8 Black No No
r9 Asian No No
r10 Asian No No

Table 4.1: Running Example 2

Ethni
city

Age
< 30

G3-error 3 3
Aac 2.4 1.8
MI 0.1916 0.2812

Table 4.2: Measures for Example 2

56

4.2.1 Notations and Prior Definitions

Attributes, records, and target variable/class label: A given dataset D

is comprised of a set A of m categorical attributes {X1, X2, ..., Xm} or features and n

records, as well as an additional class label/target variable (column) Z. The target

variable Z contains the class label of an instance. Using Example 2, n = 10,m = 2,

A = {Ethnicity, Age < 30}, X1 = Ethnicity,X2 = Age < 30, Z = PlaysBasketball.

Mutual Information (MI) [67]: Mutual Information (MI) captures infor-

mation theoretic “correlation” [22] between two random variables that quantifies the

amount of information obtained about one through the other. When X and Z are

discrete 1,

MI(X,Z) is defined as follows:

MI(X,Z) =
∑
x∈X

∑
z∈Z

p(x, z) log
p(x, z)

p(x)p(z)
(4.1)

where p(x, z) is the joint probability distribution function of X and Z, and p(x)

and p(z) are the marginal probability distribution functions of X and Z respectively.

We use MI(X) for brevity instead of MI(X,Z). Using entropy [67] of Z denoted as

H(Z) and conditional entropy [67] between Z and X denoted as H(Z|X), MI(Z,X)

is defined as

MI(X,Z) = MI(Z,X) = H(Z)−H(Z|X) (4.2)

MI is symmetric [67], that is MI(X,Z) = MI(Z,X) which is stated in equation

(4.2). In Example 2, MI(Ethnicity, P laysBasketball) = 0.1916, and MI(Age < 30,

P laysBasketball) = 0.2812. Next, we define 3 key terms from Database literature.

Functional Dependency (FD) [68]: A functional dependency between X

and Z, denoted by X → Z, is a constraint on the possible tuples that can form a

1We consider the numeric variables are appropriately discretized, when needed

57

relation state r over A. The constraint is that for any two tuples t1 and t2 in r that

have t1[X] = t2[X], they must also have t1[Z] = t2[Z]. In Example 2, Ethnicity =

Black is associated with PlaysBasketBall = Y es in r1,r2,3, but the same value for

Ethnicity is associated with PlaysBasketBall = No in r4. Similarly, Age < 30 =

Y es is associated with different values of PlaysBasketBall in different tuples. Hence,

there is no FD from either Ethnicity or Age < 30 to PlaysBasketball.

Approximate Functional Dependency (AFD) [69]: Given an error thresh-

old ϵ, 0 ≤ ϵ ≤ 1, X → Z is an Approximate Function Dependency (AFD) if and only

if e(X → Z) is at most ϵ. Here e(X → Z) = min{|s||s ⊆ r and X → Z holds in r\s }

/|r| [69]. In Example 2, Ethnicity and Age < 30 determine values of PlaysBasketball

for records r4 through r10, but records r1,r2, and r3 violates FD. We say that AFD

holds from Ethnicity and Age < 30 to PlaysBasketball respectively.

G3-error [8]: The number of tuples need to be deleted from relation r to

achieve FD is defined as G3-error [8].

G3− error(X → Z, r) = |r| −max{|s||s ⊆ r, s |= X → Z}

In Example 2, G3 − error(Ethnicity → PlaysBasketball, r) = 3, G3 −

error(Age < 30→ PlaysBasketball, r) = 3.

4.2.2 Problem Statement

Given a dataset D containing a set A of m attributes {X1, .., Xm} and a tar-

get variable Z ∈ {0, 1}, select top-k attributes {X1, .., Xk} such that MI(Xi, Z) ≥

MI(Xi+1, Z)∀i ∈ {1, k − 1} and MI(Xk, Z) ≥MI(Xj, Z)∀j ∈ {k + 1,m}.

58

4.3 Developing a New Measure

In this section we discuss various steps in MI exact calculation, connecting

the AFD measure for MI approximation, and finally propose our new measure to

efficiently and effectively approximate MI.

4.3.1 MI calculation Steps

Taking a close look at equation (4.1), we observe that there are three compo-

nents to calculate MI(X,Z) - joint probability distribution p(x, z), marginal prob-

ability distribution of distinct values of X and Z - p(x) and p(z) where x ∈ X and

z ∈ Z. We note that p(z) can be computed once and reused later. We need to com-

pute the co-occurrence count of distinct (x, z) values along with the count of x values

for each distinct x. In each of these steps one logarithm function is applied along

with one division and two multiplication. We investigated the opportunity to reduce

the number of operations in each step (i.e. for each (x, z) value combination). Our

motivation is that, if we can avoid applying the logarithm function and approximate

it with some other basic arithmetic operation, we may be able to speedup the process

of MI calculation. During our investigation we observed that for two attributes X1

and X2, if most of the values of X1 can determine a unique Z value, but most of the

values of X2 cannot do so, then MI(X1, Z) tends to be larger than MI(X2, Z). This

intuitively aligns with the database concept of Functional Dependency (FD), and we

proceed with investigating this connection.

4.3.2 Proposed Measure: Attribute Average Conflict

There has been previous works in database and data mining community regard-

ing various measures for Approximate Function Dependency (AFD) [8, 9, 10]. We

define a new measure Attribute Average Conflict in such a way that it captures the

59

degree of AFD as well as the weight of attribute value frequency that influences MI

score of that attribute. As the MI formula (Equation 4) captures co-occurrence of

(X,Z) by computing the joint distribution of (X,Z) in the numerator and has the

marginal of X and Z in the denominator, by considering attribute value frequency

in defining our new measure, we incorporate the effect of the frequency distribution

present in MI calculation. In prior works on AFD, the term G3 − error has been

defined (see Section 4.2), which quantifies the number of changes required to attain

FD, so smaller value of G3 − error should indicate larger MI. But G3 − error does

not consider the weight of attribute value frequency and hence cannot approximate

the MI based ranking of attributes correctly in many cases. We will explain one such

scenario later in this section. Next we define some key terms which will be important

ingredients of our final proposed measure Attribute Average Conflict.

Attribute Value Conflict (AV-conflict): For a specific attribute value xv ∈

X, the minimum number of tuples where Z value need to be changed to establish one-

to-one relationship with corresponding xv is defined as AV − conflict. In Example 2,

AV − conflict(Ethnicity = Black) = 3.

Attribute Value Average Conflict (AV-average-conflict) : Multiplying

AV − conflict by the probability of that specific attribute value in the dataset yields

AV − average− conflict for that attribute.

AV − average− conflict(xv) = AV − conflict(xv)×
nxv

n
(4.3)

Here nxv denotes the number of records where X has value v. In Example 2,

AV − average− conflict(Ethnicity = Black) = 3× 0.8 = 2.4;

Attribute Average Conflict (Aac) : The sum of AV − average− conflict

for all values of an attribute is the Attribute Average Conflict (Aac) for that attribute.

60

Aac(X) =
∑
xv∈X

AV − average− conflict(xv) (4.4)

In Example 2, Aac(Ethnicity) = 2.4+0 = 2.4; Aac(Age < 30) = 1.8+0 = 1.8. G3−

error is not able to capture the weight of co-occurrence of attribute and target value in

the dataset, and hence the score remains same for Ethnicity and Age < 30 although

the MI is different. On the other hand, Aac decreases when MI increases. Aac

enables us to overcome the deficit of G3−error in capturing MI relationship between

attributes. We investigated this case for different highly skewed data distributions,

and found that Aac holds inverse relationship with MI, that is, for {X1, X2} ∈ A,

MI(X1) > MI(X2) =⇒ Aac(X1) < Aac(X2) and vice versa.

4.3.3 Implications of using proposed measure

Using proposed measure Aac, we can skip computing the logarithm function

and reduce the number of arithmetic operations as discussed in subsection 4.3.1. Aac

provides us with the answer to the Top-K() query faster than the exact MI based

method.

Algorithm 4 Algorithm topK-Aac

inputs: set of attributes A, target variable Z, k

output: Top-k attributes

S = Compute Aac(Xi) for Xi ∈ A

Sort S according to ascending score of Aac(Xi)

top-k ← first k attributes from S

Return top-k

61

As illustrated in Algorithm 4, Aac for each attribute Xi ∈ A is calculated, and

attributes are sorted in ascending order of Aac . The first k attributes in this sorted

list will be the top-k attributes based on highest MI. Asymptotically, both our method

and MI-based feature selection method runs in O(mn) times, but empirically, our

proposed method is faster than MI-based method as we avoid the step of computing

logarithm and division. We perform extensive experiments and present our finding

in Section 4.4.

4.3.4 Monte-Carlo Simulation

We conduct a Monte-Carlo simulation [65] that demonstrates for any two at-

tributes X1 and X2 and a target variable Z, how Aac(X1) and Aac(X2) relate

to MI(X1) and MI(X2) considering all probable attribute value combinations of

X1, X2, Z.

4.3.4.1 Model setup

Let L denote the number of combinations satisfying all possible combinations

of X1, X2, and Z. Given two binary attributes X1,X2 and a binary target variable

Z, L = 8, as there are 8 possible attribute value combinations involving these three.

Let ni denote the fraction of the respective attribute value combinations in n records,

where n1 corresponds to X1 = 0, X2 = 0, Z = 0, n2 corresponds to X1 = 0, X2 =

0, Z = 1, to n8 corresponding to X1 = 1, X2 = 1, Z = 1. Let, t1, t2 denote the fraction

of records that map a specific value of an attribute to Z = 0, Z = 1 respectively. If

t1 = 0, or t2 = 0, then AV − average − conflict(X1 = 0) = 0. If t1 ≤ t2, then

AV −average− conflict(X1 = 0) = t1× t1+t2
n

= t1× (t1+ t2) (here, n = 1), otherwise

AV −average−conflict(X1 = 0) = t2×(t1+t2). Aac(X1) can be derived by summing

these values. Similarly, G3− error could also be calculated.

62

y

G3−
error
support

%

G3−
error
contra
diction

%

Aac
support

%

Aac
contra
diction

%

0.1 66.568 33.432 85.493 14.507
0.2 64.1 35.9 85.069 14.931
0.3 62.427 37.573 86.755 13.245
0.4 66.652 33.348 93.836 6.164
0.5 66.56 33.44 93.88 6.12
0.6 81.01 18.99 100 0
0.7 100 0 100 0
0.8 100 0 100 0
0.9 100 0 100 0

Table 4.3: Simulation results for binary values

Do
main
size

G3−
error
support

%

G3−
error
contra
diction

%

Aac
support

%

Aac
contra
diction

%

2 62.427 37.573 86.755 13.245
3 81.892 18.108 90.397 9.603
4 88.172 11.828 92.054 7.946
5 90.231 9.769 92.694 7.306
6 91.495 8.505 93.187 6.813
7 92.261 7.739 93.338 6.662
8 92.769 7.231 93.373 6.627
9 93.224 6.776 93.359 6.641
10 93.535 6.465 93.44 6.56
15 94.414 5.586 93.429 6.571
20 94.88 5.12 93.212 6.788
25 95.052 4.948 93.171 6.829

Table 4.4: Simulation results varying domain size; y = 0.3

4.3.4.2 Generating all possible probability distributions

We assign probability values to each ni such that
∑

ni = 1. We deliberately

assign zero values for some fractions of n to mimic the scenario that not all at-

63

Algorithm 5 Algorithm calcProbDist

input: list L of possible attribute-value combination X1,X2,Z , y

output: Probability of each item in L

probList← {}

counter ← 0

upper ← 1

totalProb← 0

lenL← number of elements in L

numZeroN ← y × lenL

while L is nonempty do

item← randomly choose an element from L

if counter < ⌈ numZeroN ⌉ then

varProb← 0

counter ← counter + 1

else

varProb← choose a value uniformly at random between 0 to upper

end if

probList[item]← varProb

totalProb← totalProb+ varProb

upper ← 1− totalProb

remove item from L

end while

Return probList

tribute value combinations appear in real datasets. This process runs in a loop,

where we systematically vary fraction of zero values (from 10% to 90% to demon-

64

strate sparsity/skewness). For each run, with a specific zero fraction value y%, we

consider ⌈L × y%⌉ of attribute value combinations to be 0 that are uniform ran-

domly chosen. For the remaining combinations, we uniform randomly assign real

numbers between [0, 1] such that the non-zero combinations add up to 1. For each

run, MI(X1) > MI(X2) =⇒ Aac(X1) < Aac(X2), or vice versa. If that happens,

then we count it as support, otherwise count it as contradiction. We repeat each run

100, 000 times and calculate the percentage of support and contradiction of Aac and

other competing methods.

Algorithm 5 illustrates the steps for each such assignment. The input is the

list L of possible attribute value combinations ((0,0,0),(0,0,1),(0,1,0),... (1,1,1) for

binary case) and y which is the fraction of total records that we want to assign 0

probability deliberately. We initialize totalProb and upper to 0 and 1 respectively.

We choose an item uniformly at random from L, choose a value varProb uniformly at

random between 0 and upper and assign that to the item. We add probability of the

selected item varProb to totalProb, and update upper by subtracting totalProb from

1. We use a counter variable to track item from list that is assigned 0 probability.

After the while loop ends, probList will contain all items from L along with respective

probability, which is returned as output. The algorithm ensures the total probability

of all items in L adds up to 1 and some fraction of records will get 0 probability.

4.3.4.3 Simulation results

Table 4.3 illustrates the simulation results for binary attributes. Here, y = 0.6

means that 60% of the possible attribute value combination are assigned 0 probability

and the probability assignment for rest of the 40% combination add up to 1. We

observe that Aac performs better than G3 − error for y from 0.1 to 0.6, and shows

similar performance for 0.7 to 0.9 ; For smaller y, Aac performs significantly better

65

than G3− error. For binary attributes the lowest support for Aac is 85.4% whereas

the highest support is 100%. Table 4.4 illustrates the simulation results for various

domain sizes where y is fixed at 0.3. Consistently, Aac outperforms G3 − Error for

domain size < 10, whereas G3 − Error is slightly better than Aac for domain size

≥ 10. This exercise is another evidence that demonstrates the effectiveness of our

proposed measure. We conduct experimental evaluation on real world datasets that

support this observation as well.

4.4 Experiments

All the experiments are conducted on a 8-core 3.06GHZ machine with 16 GB

RAM. We use Python 3 to implement the algorithms in the this experiment and

the numbers are presented as the average of 5 runs. The goal of our experimental

evaluation is to effectively answer the following questions.

• How does our proposed method compare with the baselines both qualitatively

and efficiency wise by varying n,m, k, and skew λ in data distribution.

• How does our proposed method compare with the baselines both qualitatively

and efficiency wise considering real datasets.

4.4.1 Experimental Setup

Datasets

• Synthetic data: Two types of synthetic data is used in the experiment. First,

we generate highly skewed binary dataset for experimental evaluation. Here

a dataset is considered highly skewed if a small number of attribute values

perfectly correlate with target value and all the attributes show some degree of

this skewness. For example, in a dataset of 1 Million records, if X1 = 1 appers

66

in 1 record, X2 = 1 appears in 2 records,..., X50 = 1 appears in 50 records

and all of these records correlate with Z = 1 , then we consider this as a case

of highly skewed dataset. We use a fixed probability distribution for target

Z (p(Z = 0) = 0.000005, p(Z = 1) = 0.999995) and vary the distribution of

attributes Xi to generate highly skewed dataset. We use λ to denote the skew.

λ = 0.999999 indicates that p(X1 = 0) = 0.999999, p(X2 = 0) = 0.999998 and

so on. We decrease the probability of 0-value of an attribute by 0.000001 from

the previous attribute and continue in this fashion for all the attributes. An

example distribution for λ = 0.999999 is provided in Table 4.5. Here the column

p(X = 0) and p(X = 1) indicate the probability of 0 and 1 for the attribute

respectively.

Next, we use artificially generated Madelon dataset from OpenML 2 repository.

This dataset has 2600 records and 500 attributes, the target attribute is binary

i.e., Z = {1, 2}. The dataset is not highly skewed, rather half of the records are

assigned to Z = 1 and the other half are assigned to Z = 2 . Madelon dataset

was part of the NIPS 2003 feature selection challenge.

• Real world data: We report our findings on five real world datasets from UCI 3

, Keel 4 and OpenML5 repository. The Datasets are summarized in Table 4.6.

– Census Income [70]: This dataset contains census data extracted from the

1994 and 1995 population surveys conducted by the U.S. Census Bureau.

Original dataset contains 40 attributes including integer and categorical

types. For this experiment 28 categorical attributes are used and miss-

ing values are imputed using most-frequent values in the attribute. The

2https://www.openml.org/d/1485

3https://archive.ics.uci.edu/ml/datasets.php

4https://sci2s.ugr.es/keel/datasets.php

5https://www.openml.org/home

67

target has binary class label indicating whether a person has income >

50K or not. Data source - http://archive.ics.uci.edu/ml/datasets/Census-

Income+%28KDD%29

– Kick Car: There is a risk in purchasing a used car at an auto auction

that the vehicle might have serious issues that prevent it from being sold

to customers. This unfortunate incident is termed as “kicks” by auto

community. This dataset contains attributes for various cars from auction

and the target class is either kick (bad buy) or not. There are 33 attributes

in the original dataset out of which 17 categorical attributes are used in

this experiment. Missing values are imputed using most-frequent values in

the attribute. Data source - https://www.openml.org/d/41162

– Connect-4: This dataset contains all legal positions in the game of connect-

4 for a 6x7 grid, in which neither player has won yet, and in which the

next move is not forced. Thus, every attribute contains a nominal value

which describes if a given position is void or if it has been occupied by

one player. The task is to predict which player is likely to win the match.

Origianl dataset has 42 categorical attributes all of which are used in the

experiment. The target has 3 labels in original data - win, loss and draw,

which is converted to 2 labels - won (1), not won (0), in this experiment.

Data source - https://sci2s.ugr.es/keel/dataset.php?cod=193

– Penbased: This dataset contains attributes for Penbased recognition of

handwritten digits. Original dataset has 16 integer attributes all of

which are used in this experiment. Each attribute has domain [0,100],

so the domain size is 101. The target class in original dataset has 10

labels for recognizing digits 0-9. In this experiment, the target is con-

verted to have binary labels to recognize digit 4. If an instance rec-

68

http://archive.ics.uci.edu/ml/datasets/Census-Income+%28KDD%29
http://archive.ics.uci.edu/ml/datasets/Census-Income+%28KDD%29
https://www.openml.org/d/41162
https://sci2s.ugr.es/keel/dataset.php?cod=193

ognized digit 4, the target is set to 1, otherwise to 0. Data source -

https://sci2s.ugr.es/keel/dataset.php?cod=70

– Penbased-bin-3: This is the same Penbased dataset above, but each at-

tribute is discretized to have domain [0-2], so the domain size of each

attribute is 3. Rest of the configuration for the experiment remains same

as the Penbased dataset.

p(X = 0) p(X = 1)
X1 0.999999 0.000001
X2 0.999998 0.000002
X3 0.999997 0.000003
...
X50 0.99995 0.00005

Table 4.5: Synthetic Dataset

Dataset n m
Census Income 299,285 28

Kick Car 72,983 17
Connect-4 67,557 42
Penbased 10,992 16

Penbased-bin-3 10,992 16

Table 4.6: Real Datasets

Implemented Baselines. Our proposed measure in Section 4.3 Attribute

Average Conflict, Aac is compared against the baseline, and 3 other implemented

algorithms as follows.

• MI-based method, MI. We implement MI-based method for feature selection

that computes exact MI score for each attribute in the dataset and provides

69

https://sci2s.ugr.es/keel/dataset.php?cod=70

top-k attributes based on the highest MI score. This is used as the baseline

method to compare against for both performance and runtime improvement.

• Uniform random sampling, Urs. We implement a uniform random sampling

based method that computes MI of attributes on sampled data after taking

uniform random sample, and returns top-k attributes based on this MI. We

use 65% of the data as the sample size to achieve high precision for the highly

skewed synthetic data.

• Adaptive sampling based method, Swope. [6] We implement the Swope method

proposed in [6] to find top-k attributes using MI. The Swope algorithm uses

random sampling at its core and adaptively expands the sample size until certain

bounds are met.

• G3-error based method, G3. The G3− error based method is implemented by

using G3− error score instead of Aac in Algorithm 4.

Performance Measures For computing the accuracy of the proposed ap-

proach, we present precision [71], ndcg-score [72], and the total MI (
∑k

i=1 MI(Xi)).

Efficiency is presented as speedup. Given two algorithms A and B (where B is the

baseline), Speedup(A) wrt B is computed as, RunningT ime(B)
RunningT ime(A)

. For example, if running

time ofMI and Aac is 5s, and 2s respectively, then speedup of Aac wrtMI is 5
2
= 2.5.

Default Parameters. Unless otherwise stated, n, m, k, skew parameter λ

is set to n = 106, m = 50, k = 10, λ = 0.999999. For Swope algorithm, we set

ϵ = 0.5 [6] , and for Urs sample size = 0.65n. Unless otherwise stated, speed up is

presented wrt baseline MI.

70

4.4.2 Summary of Results

Our first and foremost observation is, our proposed method Aac and Swope

achieve perfect precision and ndcg-score considering all settings for the highly skewed

synthetic data. However, Aac is 4x− 6x faster than Swope. Urs has lower precision

for some k, and ndcg-score is not perfect. G3 displays worst precision and ndcg-score.

Considering speedup, Aac is 2x faster than MI, 1.3x faster than Urs, and has similar

speedup compared to G3. These observations conclusively corroborate the superiority

of Aac compared to all the baselines. For the second type of synthetic data without

high skew (i.e. Madelon), Aac does not achieve perfect precision and ndcg-score, but

the total-mi for the selected attributes is very close to the exact baseline MI. For

speedup comparison, Aac is 1.65x faster than MI, 11x faster than Swope, and 1.18x

faster than Urs, which demonstrates the superiority of Aac for Madelon dataset.

Similar observation holds in the real data experiments. Aac does not achieve

perfect precision and ndcg-score, but achieves highly comparable total-mi score com-

pared to exact baseline MI. Swope shows perfect precision, ndcg-score and total-mi

for all the datasets in the experiment, but is much slower compared to Aac. Urs has

better precision and ndcg-score, but slower than Aac. Total MI of Aac stays close

to baseline MI. G3 shows inferior precision, ndcg-score and Total MI compared to

Aac for datasets Census Income, Connect-4 and Pen-Based-bin-3, where most of the

attributes (> 50%) have small domain size (< 10). But for datasets where most

of the attributes (> 50%) have larger domain size (≥ 10), G3 achieves slightly bet-

ter precision and ndcg-score than Aac which is observed for Kick car and Penbased

datasets. For speedup comparison, on average Aac is 2x faster than MI, 1.3x faster

than Urs and 6.7x faster than Swope across all 5 datasets. Thus, Aac turns out to

be the unanimous choice considering both accuracy and efficiency.

71

106 1.5x106 2x106 2.5x106 3x106
0

0.2

0.4

0.6

0.8

1

Varying n

p
re
ci
si
on

Aac
G3
Urs
Swope

Figure 4.1: Precision;
m=50, k=10

106 1.5x106 2x106 2.5x106 3x106

0.2

0.4

0.6

0.8

1

Varying n

n
d
cg
-s
co
re Aac

G3
Urs
Swope

Figure 4.2: Ndcg-score;
m=50, k=10

106 1.5x106 2x106 2.5x106 3x106

0.5

1

1.5

2

Varying n

R
u
n
ti
m
e
S
p
ee
d
u
p
co
m
p
ar
ed

to
M
I

Aac
G3
Urs
Swope

Figure 4.3: Speedup;
m=50, k=10

50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

Varying m

p
re
ci
si
on

Aac
G3
Urs
Swope

Figure 4.4: Precision;
n=106, k=10

50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Varying m

n
d
cg
-s
co
re Aac

G3
Urs
Swope

Figure 4.5: Ndcg-score;
n=106, k=10

50 60 70 80 90 100

0.5

1

1.5

2

Varying m

R
u
n
ti
m
e
S
p
ee
d
u
p
co
m
p
ar
ed

to
M
I

Aac
G3
Urs
Swope

Figure 4.6: Speedup;
n=106, k=10

10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Varying k

p
re
ci
si
on

Aac
G3
Urs
Swope

Figure 4.7: Precision;
n=106, m=50

10 20 30 40 50

0.2

0.4

0.6

0.8

1

Varying k

n
d
cg
-s
co
re

Aac
G3
Urs
Swope

Figure 4.8: Ndcg-score;
n=106, m=50

10 20 30 40 50

0.5

1

1.5

2

Varying k

R
u
n
ti
m
e
S
p
ee
d
u
p
co
m
p
ar
ed

to
M
I

Aac
G3
Urs
Swope

Figure 4.9: Speedup;
n=106, m=50

4.4.3 Synthetic Data Experiments

4.4.3.1 Vary n

Figure 4.1 - 4.3 illustrate the results. Quality. Only G3 shows poor precision

and ndcg-score. Aac, Swope and Urs achieve perfect precision and ndcg-score. Effi-

72

0.5999990.6999990.7999990.8999990.999999

0

0.2

0.4

0.6

0.8

1

Varying λ

p
re
ci
si
on

Aac
G3
Urs
Swope

Figure 4.10: Precision;
n=106, m=50,k=10

0.5999990.6999990.7999990.8999990.999999

0.2

0.4

0.6

0.8

1

Varying λ

n
d
cg
-s
co
re

Aac
G3
Urs
Swope

Figure 4.11: Ndcg-score;
n=106,m=50,k=10

0.5999990.6999990.7999990.8999990.999999

0.5

1

1.5

2

Varying λ

R
u
n
ti
m
e
S
p
ee
d
u
p
co
m
p
ar
ed

to
M
I

Aac
G3
Urs
Swope

Figure 4.12: Speedup;
n=106, m=50,k=10

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

k

p
re
ci
si
on

Aac
G3
Urs
Swope

Figure 4.13:
Precision:Madelon

2 4 6 8 10

0.96

0.97

0.98

0.99

1

k

n
d
cg
-s
co
re

Aac
G3
Urs
Swope

Figure 4.14:
Ndcg-score:Madelon

ciency. Aac is 4x−6x times faster than Swope, 1.3x faster than Urs and has similar

speedup compared to G3.

2 4 6 8 10

0.5

1

1.5

k

to
ta
l-
m
i

Aac
G3
Urs
Swope
MI

Figure 4.15:
Total-MI:Madelon

0 100 200 300 400 500

0.5

1

1.5

k

R
u
n
ti
m
e
S
p
ee
d
u
p
co
m
p
ar
ed

to
M
I

Aac
G3
Urs
Swope

Figure 4.16:
Speedup:Madelon

73

4.4.3.2 Vary m

Figure 4.4 - 4.6 illustrate the results. We observe similar result as of varying

n for both quality and efficiency measures. Quality. Aac, Swope and Urs achieve

perfect precision and ndcg-score whereas G3 shows poor precision and ndcg-score.

Efficiency. Aac is 4x − 6x times faster than Swope, 1.3x faster than Urs and has

similar speedup compared to G3.

4.4.3.3 Vary k

Figure 4.7 - 4.9 illustrate the results. Quality. Aac and Swope show perfect

precision and ndcg-score. Urs has lower precision and ndcg-score for K = 20, which

supports the fact uniform random sampling cannot proivde stable top-k attributes

for highly skewed data. G3 has precision zero for k < 25 and precision increases

with k and achieves perfect precision for k = m. Urs also shows lowest ndcg-score.

Efficiency. Aac is 2x faster than MI, 4x− 6x times faster than Swope, 1.3x faster

than Urs, and shows similar speedup compared to G3.

4.4.3.4 Vary skew λ

Figure 4.10 - 4.12 illustrate the results. Quality. Urs shows lower precision for

λ = 0.599999 and 0.699999, and G3 has a precision of zero for various λ used in this

setting. Both Aac and Swope show perfect precision and ndcg-score. Efficiency.

Aac is 2x faster than MI, 4x − 6x times faster than Swope, 1.3x faster than Urs,

and shows similar speedup compared to G3.

74

4.4.3.5 Madelon Dataset

Quality Precision, ndcg-score and total-mi is observed for Madelon dataset by

varying k from 1 to 10 as shown in Figure 4.13 - 4.15. Precision and ndcg-score of

our proposed method Aac is not perfect as the Madelon dataset does not have highly

skewed distribution, but the total-mi for Aac is very close to basline which indicates

that the selected top-k attributes have MI close to the attributes in the list returned by

baseline MI method. Swope iteratively expands the sample size and scans all records

in the final iteration, hence achieving perfect precision and ndcg-score. Efficiency

Figure 4.16 shows the speedup for Madelon dataset. Aac is 1.65x faster than MI,

11x faster than Swope , 1.18x faster than Urs. It has similar runtime and speedup

compared to G3 for this dataset. The large speedup using Aac compared to Swope is

due to the fact that Swope iteratively expands the sample size until it reads most of

the data and in each iteration MI is calculated to meet some upper and lower bound

criteria.

4.4.4 Real Data Experiments

4.4.4.1 Quality

We vary k from 1 to 10 and observe precision, ndcg-score and total-mi as for

Census Income (Figure 4.17 - 4.19), Kick Car (Figure 4.21 - 4.23), Connect-4 (Fig-

ure 4.25 - 4.27), Penbased (Figure 4.29 - 4.31), and Penbased-bin-3 (Figure 4.33 -

4.35) . As these real world datasets do not have highly skewed distribution, precision

and ndcg-score for Aac is not perfect. But the total-mi for Aac is close to baseline

indicating that the selected top-k attributes have MI close to the attributes in the

list returned by baseline MI method.

75

• Census Income Figure 4.17 - 4.19 show the qualitative evaluation for this

dataset. There are 28 attributes out of which 11 attributes have domain size

≥ 10, that is, 39.2% attributes have domain size ≥ 10. Hence most of the

attributes have domain size < 10. The largest domain size is 51, and the

average domain size across all attributes is 14.4. Both Aac and G3 cannot

achieve perfect precision and ndcg-score for this dataset, but Aac performs

better than G3. Besides, Aac has better total-mi than G3 for this dataset. Urs

and Swope achieve perfect precision and ndcg-score for this dataset.

• Kick Car Figure 4.21 - 4.23 show the qualitative evaluation for this dataset.

There are 17 attributes out of which 11 attributes have domain size ≥ 10, so

64.7% attributes have domain size ≥ 10. Most of the attributes have domain

size ≥ 10. The largest domain size is 1063 and avearge domain size across all

attributes is 142.58. G3 has better precision, ndcg-score, and total-mi than

Aac for most of the k values. Both Urs and Swope show perfect precision and

ndcg-score for this dataset.

• Connect-4 Figure 4.25 - 4.27 show the qualitative evaluation for this dataset.

There are 42 attributes each having domain size of 3. So, all the attributes have

domain size < 10. Aac shows has better precision, ndcg-score and total-mi that

G3 for this dataset. Precision and ndcg-score for Urs is not perfect. Swope

shows perfect precision and ndcg-score.

• Penbased Figure 4.29 - 4.31 show the qualitative evaluation for this dataset.

There are 16 attributes each having domain size of 101. So all the attributes

have domain size ≥ 10. Here G3 shows better overall precision and ndcg-score

than Aac, and total-mi is slightly better for G3 compared to Aac. Urs does

not have perfect precision and ndcg-score for this dataset, whereas Swope has

perfect precision and ndcg-score.

76

• Penbased-bin-3 Figure 4.33 - 4.35 show the qualitative evaluation for this

dataset. Here each of the 16 attributes are discretized to have bin size of 3,

so all the attributes have domain size < 10. Aac is better than G3 in terms of

precision, ndcg-score and total-mi for this dataset. Urs cannot achieve perfect

precision and ndcg-score. Swope shows perfect precision and ndcg-score for this

dataset as well.

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

k

p
re
ci
si
on

Aac
G3
Urs
Swope

Figure 4.17:
Precision:Census Income

2 4 6 8 10

0.7

0.8

0.9

1

k

n
d
cg
-s
co
re Aac

G3
Urs
Swope

Figure 4.18:
Ndcg-score:Census

Income

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

k

to
ta
l-
m
i

Aac
G3
Urs
Swope
MI

Figure 4.19:
Total-MI:Census Income

0 5 10 15 20 25

0.5

1

1.5

2

k

R
u
n
ti
m
e
S
p
ee
d
u
p
co
m
p
ar
ed

to
M
I

Aac
G3
Urs
Swope

Figure 4.20:
Speedup:Census Income

2 4 6 8 10

0.4

0.6

0.8

1

k

p
re
ci
si
on

Aac
G3
Urs
Swope

Figure 4.21:
Precision:Kick Car

2 4 6 8 10

0.8

0.85

0.9

0.95

1

k

n
d
cg
-s
co
re

Aac
G3
Urs
Swope

Figure 4.22:
Ndcg-score:Kick Car

77

2 4 6 8 10

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

k

to
ta
l-
m
i

Aac
G3
Urs
Swope
MI

Figure 4.23: Total-MI:
Kick Car

5 10 15

0.5

1

1.5

2

k

R
u
n
ti
m
e
S
p
ee
d
u
p
co
m
p
ar
ed

to
M
I

Aac
G3
Urs
Swope

Figure 4.24:
Speedup:Kick Car

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

k

p
re
ci
si
on

Aac
G3
Urs
Swope

Figure 4.25:
PrecisionConnect-4

2 4 6 8 10

0.4

0.6

0.8

1

k

n
d
cg
-s
co
re

Aac
G3
Urs
Swope

Figure 4.26:
Ndcg-score:Connect-4

2 4 6 8 10

5 · 10−2

0.1

0.15

k

to
ta
l-
m
i

Aac
G3
Urs
Swope
MI

Figure 4.27: Total-MI:
Connect-4

0 10 20 30 40

0.5

1

1.5

2

k

R
u
n
ti
m
e
S
p
ee
d
u
p
co
m
p
ar
ed

to
M
I

Aac
G3
Urs
Swope

Figure 4.28: Speedup:
Connect-4

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

k

p
re
ci
si
on

Aac
G3
Urs
Swope

Figure 4.29:
Precision:Penbased

2 4 6 8 10

0.7

0.8

0.9

1

k

n
d
cg
-s
co
re Aac

G3
Urs
Swope

Figure 4.30:
Ndcg-score:Penbased

2 4 6 8 10

0.5

1

k

to
ta
l-
m
i

Aac
G3
Urs
Swope
MI

Figure 4.31:
Total-MI:Penbased

4.4.4.2 Efficiency

We vary k from 1 to m with different interval for the 5 real datasets and com-

pare speedup against baseline MI as shown in Figure 4.20, Figure 4.24, Figure 4.28,

Figure 4.32, and Figure 4.36. Aac shows better speedup than MI,Urs and Swope for

all the datasets, and has similar speedup compared to G3. The large speedup using

78

2 4 6 8 10 12 14 16

0.5

1

1.5

2

k

R
u
n
ti
m
e
S
p
ee
d
u
p
co
m
p
ar
ed

to
M
I

Aac
G3
Urs
Swope

Figure 4.32:
Speedup:Penbased

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

k

p
re
ci
si
on

Aac
G3
Urs
Swope

Figure 4.33:
Precision:Penbased-bin-3

2 4 6 8 10

0.2

0.4

0.6

0.8

1

k

n
d
cg
-s
co
re

Aac
G3
Urs
Swope

Figure 4.34: Ndcg-
score:Penbased-bin-3

2 4 6 8 10
0

0.2

0.4

0.6

k

to
ta
l-
m
i

Aac
G3
Urs
Swope
MI

Figure 4.35:
Total-MI:Penbased-bin-3

2 4 6 8 10 12 14 16

0.5

1

1.5

2

k
R
u
n
ti
m
e
S
p
ee
d
u
p
co
m
p
ar
ed

to
M
I

Aac
G3
Urs
Swope

Figure 4.36:
Speedup:Penbased-bin-3

Aac compared to Swope is due to the fact that Swope iteratively expands the sample

size until it reads large number of records and in each iteration MI is calculated to

meet some upper and lower bound criteria.

• Census Income Figure 4.20 shows the speedup evaluation. Aac is 2x faster than

MI, 1.3x faster than Urs, 5.68x faster than Swope and has similar runtime

compared to G3.

• Kick Car Figure 4.24 shows the speedup evaluation. Aac is 2x faster than

MI, 1.15x faster than Urs, 5.87x faster than Swope and has similar runtime

compared to G3.

• Connect-4 Figure 4.28 shows the speedup evaluation. Aac is 2x faster than

MI, 1.31x faster than Urs, 6.4x faster than Swope and has similar runtime

compared to G3.

79

• Penbased Figure 4.32 shows the speedup evaluation. Aac is 1.9x faster thanMI,

1.29x faster than Urs, 8x faster than Swope and has similar runtime compared

to G3.

• Penbased-bin-3 Figure 4.36 shows the speedup evaluation. Aac is 2x faster than

MI, 1.35x faster than Urs, 7.5x faster than Swope and has similar runtime

compared to G3.

4.5 Upper and Lower Bounds of New Measure

We investigate the the upper and lower bounds of the proposed new measure

Aac by first exploring the maximum and minimum value of Aac for an attribute. A

loose upper and lower bound can be derived by using only the domain size information

of attributes. Tighter bounds can be achieved by considering a setting where we have

prior information of attribute and target value frequency. This setup is possible for

relational databases where the data dictionary, or metadata can be used to get the

marginal frequencies of attributes and target variable.

Table 4.7 summarizes the notations used to derive the bounds. We first investi-

gate when maximum and minimum value of Aac can be achieved for an attribute X.

At the beginning when no records have been read, Aac(X, 0, 1, n) denotes the Aac

of attribute X for n unseen records. Theorem 4 and 5 provide the minimum and

maximum values for Aac(X, 0, 1, n).

Theorem 4. Aac(X, 0, 1, n)min = 0

Proof. if X → Z, then there is a one-to-one mapping between distinct values of X

with Z. Hence AV − conflict(xi) = 0 ∀xi ∈ X, putting this value in equation (4.3),

AV − average− conflict(xi) = 0, and using this in equation (4.4), Aac(X) = 0.

80

Symbol Explanation
n Total number of records
l Number of records already processed
n− l Number of unseen records
|Dom(X)| Number of distinct values for attribute X
fxi

Frequency of X = i
fxiz0 Joint frequency of (X = i,Z = 0)

SFX

Set of distinct value frequency of attribute X. For example,
SFX

= {fx1 , fx2 , ..., fxs} where |Dom(X)| = s
Z Target binary variable with values {0,1}

SFZ

Set of distinct value frequency of target Z. Here,
SFZ

= {fz0 , fz1} as Z ∈ {0, 1}
cmax max(fz0 , fz1)
cmin min(fz0 , fz1)
Aac(X)max Maximum value of Aac for attribute X
Aac(X)min Minimum value of Aac for attribute X

Aac(X, l, s, e)
Aac(X) after processing l records starting from
s-th and ending in e-th position

Aac(X, l, l + 1, n)max Maximum attainable value of Aac(X) for n− l records
Aac(X, l, l + 1, n)min Minimum attainable value of Aac(X) for n− l records
UB − Aac(X, l, 1, n) Upper Bound of Aac(X) after processing l records
LB − Aac(X, l, 1, n) Lower Bound of Aac(X) after processing l records

Table 4.7: Notations used for deriving bounds

Lemma 4. For |Dom(X)| = 1, Aac(X, 0, 1, n)max is achieved if fxiz0 =
n
2

Proof. In this case, we consider only one value for attribute X (X = i), denoted as

xi. So, fxi
= n. If fxi

has equal splits with Z = 0 and Z = 1, then fxiz0 = n
2
. So,

Aac(X, 0, 1, n) = AV − average− conflict(xi) =
1
2
fxi
× n

n
= 1

2
fxi

. For any 0 < ϵ < 1
2
,

other possible splits of fxi
with Z are (1

2
+ ϵ)fxi

and (1
2
− ϵ)fxi

. For any such split,

Aac(X, 0, 1, n) = (1
2
− ϵ)fxi

× n
n
= (1

2
− ϵ)fxi

< 1
2
fxi

. Hence, Aac(X, 0, 1, n)max is

acheived if fxiz0 =
n
2
.

Theorem 5. Aac(X, 0, 1, n)max = n
2

81

Proof. For |Dom(X)| = 1, Aac(X, 0, 1, n)max = 1
2
fxi

= n
2
. For |Dom(X)| = 2 (let,

X = {0, 1}) , Aac(X, 0, 1, n)max is achieved if AV −average−conflict(xi) is maximum

for each xi ∈ X. Let, AV −average−conflict(xi)max denote this maximum value for

xi. Let, fx0 = n1 , fx1 = n2. From Lemma 4, AV −average− conflict(x0)max = n1

2
×

n1

n
=

n2
1

2n
,and AV −average−conflict(x1)max = n2

2
× n2

n
=

n2
2

2n
. So, Aac(X, 0, 1, n)max =

n2
1+n2

2

2n
. Let,

n2
1+n2

2

2n
> n

2
. There can be 2 cases. Case-(a) n1 = n2 = n

2
. Then

n2
1+n2

2

2n
= n2/4+n2/4

2n
= n

4
< n

2
which is a contradiction. Case-(b) n1 =

n
2
+ ϵ, n2 =

n
2
− ϵ ,

where 1 < ϵ < n
2
. Then

n2
1+n2

2

2n
=

(n
2
+ϵ)2

2n
+

(n
2
−ϵ)2

2n
=

n2−2(n
2

4
−ϵ2)

2n
= n

2
−

n2

4
−ϵ2

n
< n

2
which

is a contradiction.

Similarly, it can be shown for any |Dom(X)| > 1, Aac(X, 0, 1, n)max will be less

than Aac(X, 0, 1, n)max for |Dom(X)| = 1. Hence Aac(X, 0, 1, n)max = n
2
.

Using the maximum and minimum values of Aac, we can define upper and lower

bounds of Aac for an attribute X.

UB − Aac(X, l, 1, n) = Aac(X, l, 1, l) + Aac(X, l, l + 1, n)max

= Aac(X, l, 1, l) +
n− l

2

(4.5)

LB − Aac(X, l, 1, n) = Aac(X, l, 1, l) + Aac(X, l, l + 1, n)min

= Aac(X, l, 1, l)

(4.6)

For two attributes X and Y , we can find whether Aac(X) > Aac(Y) by reading

l records, if the following relationship holds

82

LB − Aac(X, l, 1, n) > UB − Aac(Y, l, 1, n)

⇒ Aac(X, l, 1, l) > Aac(Y, l, 1, l) +
n− l

2

⇒ n− l

2
< Aac(X, l, 1, l)− Aac(Y, l, 1, l)

Hence, the minimum number of records l that need to be processed to determine

the relationship between Aac(X) and Aac(Y) can be specified by equation (4.7)

l > n− 2[Aac(X, l, 1, l)− Aac(Y, l, 1, l)] (4.7)

The upper and lower bounds in equation (4.5) and (4.6) are loose as they only

consider the extreme cases for maximum and minimum values of Aac for unseen

records. In realistic scenario, when dealing with a dataset with thousands of records,

after reading a few hundred records, it is quite unlikely that there will be only one

value for all the unseen records of an attribute X if |Dom(X)| > 2. Similarly, one-

to-one mapping from X to Z for large number of unseen records will also be rare.

Hence, the upper and lower bounds derived in (4.5) and (4.6) might not work well in

practice, resulting in a large value for l close to n in equation (4.7). Next, we derive

tighter upper and lower bounds.

4.5.1 Tighter upper and lower bounds

In a relational database, the data dictionary contains metadata about the

marginal frequency of attributes. We can use this information to devise possible

arrangements of attribute-target pairs that can yield maximum and minimum value

of Aac for an attribute. Our investigation finds that we do not need to have the joint

distribution of attribute-target value pair for such arrangements, rather the marginal

frequencies are sufficient for predicting the relevant joint distribution to find maxi-

mum and minimum value of Aac. This suits well with the relational database model

83

fx1

cmin Z = 0

fx1

fx1 − cmin Z = 1

fx2 fx2 Z = 1

fxs fxs Z = 1

Figure 4.37: Arrangement for Aac(X)max when cmin ≤
fx1
2

as joint distribution of attribute value pairs are not stored in the metadata by default.

Our proposed arrangement helps to derive tighter upper and lower bounds as we are

not limited to using only the domain size information for n− l unread records.

Let us consider attributes X, Y and target Z where |Dom(X)| = s ,

|Dom(Y)| = t, |Dom(Z)| = 2; that is , X (i.e. Y) can take s (i.e. t) distinct

values where s(i.e. t) ≥ 2, and Z ∈ {0, 1} . Let fxi
, fyj denote frequency of X = i,

Y = j respectively, so
∑s

i=1 fxi
= n,

∑t
i=1 fyj = n. Let, fz0 , fz1 denote the frequency

of Z = 0 and Z = 1 respectively; cmax = max(fz0 , fz1), cmin = max(fz0 , fz1).

Lemma 5. if fx1 > fx2, then AV − avearge − conflict(x1)max > AV − avearge −

conflict(x2)max

Proof. From Lemma 4, AV − avearge − conflict(x1)max =
fx1
2
× fx1

n
, and AV −

avearge − conflict(x2)max =
fx2
2
× fx2

n
. As fx1 > fx2 , hence AV − avearge −

conflict(x1)max > AV − avearge− conflict(x2)max.

Using Lemma 4 and 5 we can derive the following equation for Aac(X, l, l +

1, n)max

84

fx1

fx1
2

Z = 0

fx1

fx1
2

Z = 1

fx2

fx2
2

Z = 0

fx2

fx2
2

Z = 1

fxb−1

fxb−1

2
Z = 0

fxb−1

fxb−1

2
Z = 1

fxb

cmin −
∑b−1

i=1

fxi
2

Z = 0

fxb

fxb
− cmin +

∑b−1
i=1

fxi
2

Z = 1

fxb+1
fxb+1 Z = 1

fxs fxs Z = 1

Figure 4.38: Arrangement for Aac(X)max when cmin >
fx1
2

85

Aac(X, l, l + 1, n)max =


cmin ×

fx1
n−l

if cmin ≤
fx1
2∑b−1

i=1 f2
xi

2(n−l)
+ (cmin −

∑b−1
i=1 fxi
2

)× fxb
n−l

otherwise

(4.8)

where, fx1 ≥ fx1 ≥ ... ≥ fxb
, and

∑b
i=1 fxi

≥ 2cmin .

Proof. From Lemma 5, we can see that larger attribute value frequencies will con-

tribute more to the Aac of an attribute. Hence, we arrange fxi
’s in descending order

and try to split each frequencies evenly with two Z values until we cover all the cmin

values. Let, cmin = fz0 . If cmin ≤
fx1
2
, then all other fxi

(2 ≤ i ≤ s), will have one-

to-one mapping with Z = 1. The AV − average− conflict(x1) will be the maximum

Aac for the attribute X. Figure 4.37 illustrates this case.

Otherwise, we can find one fxb
such that

∑b
i=1

fxi
2
≥ cmin ⇒

∑b
i=1 fxi

≥ 2cmin. Then

fx1 , fx2 , ..., fxb−1
will have equal split with Z values for maximum AV − average −

conflict, and cmin −
∑b−1

i=1 fxi
2

will be the minimum split value with Z for fxb
. Fig-

ure 4.38 illustrates this scenario. Hence, Aac(X, l, l + 1, n)max =
∑b−1

i=1 f2
xi

2(n−l)
+ (cmin −∑b−1

i=1 fxi
2

)× fxb
n−l

.

Example 3 and 4 illustrates the two cases for equation (4.8) for n = 100,

Aac(X, 0, 1, n)max = Aac(X)max..

Example 3. Let, SFX
= {40, 30, 20, 10}, SFZ

= {15, 85}. Here, cmin = 15 ,fx1 =

40,fx2 = 30, fx3 = 20,fx4 = 10. cmin <
fx1
2
. So, Aacmax = cmin ×

fx1
n

= 15× 40
100

= 6.

Example 4. Let, SFX
= {40, 30, 20, 10}, SFZ

= {30, 70}. Here, cmin = 30 ,fx1 =

40,fx2 = 30, fx3 = 20,fx4 = 10. cmin >
fx1
2

, and fxb
= 30. Hence, Aacmax =∑b−1

i=1 f2
xi

2n
+ (cmin −

∑b−1
i=1 fxi
2

)× fxb
n

= 402

2×100
+ (30− 40

2
)× 30

100
= 11

From Theorem 4 as Aac(X)min = 0, we need to find an assignment of fxi
’s

with cmin and cmax such that there is a one-to-one mapping from each xi to Z value.

This is equivalent to finding an arrangement that requires checking all the fxi
to see

86

if there exists an a st
∑a

i=1 fxi
= cmax. But the marginal frequency of attribute and

target values may have such a distribution that a one-to-one mapping from X to Z is

not possible. In that case, we want to find an arrangement that will ensure minimum

Aac(X) > 0. To satisfy this criteria, we need to find an a such that
∑a

i=1 fxi
> cmax,

and the AV − average− conflict(xa) will be the Aac(X)min.

Theorem 6. Finding the arrangement for Aac(X)min = 0 using marginal frequency

of attribute and target variable is NP-Complete

Proof. Given an integer a ∈ {1, 2, ..s} , an instance of fxi
and cmax, it can be checked

in polynomial time if
∑a

i=1 fxi
= cmax. We can reduce the subset sum problem to

finding such an a to satisfy
∑a

i=1 fxi
= cmax. Subset-sum is NP-Complete [73] which

completes the proof.

A simple 1/2 -approximation algorithm [74] for Subset-sum problem can be

obtained by ordering the inputs in descending order, and then putting the next-

largest input into the subset as long as it fits there. Following this approach, we can

derive equation(4.9) for finding Aac(X, l, l + 1, n)min

Aac(X, l, l+1, n)min =


(
∑a

i=1 fxi
− cmax)× fxa

n−l
if
∑a

i=1 fxi
− cmax ≤ fxa

2

(cmax −
∑a−1

i=1 fxi
)× fxa

n−l
otherwise

(4.9)

where, fx1 ≥ fx1 ≥ ... ≥ fxa , and
∑a

i=1 fxi
≥ cmax .

Proof. Let, cmax = fz1 . For Aac(X, l, l + 1, n)min > 0 to hold,
∑a

i=1 fxi
> cmax. In

this scenario, fx1 , fx2 , ...fxa−1 will have one-to-one mapping with Z = 1, hence the

AV −average−conflict for each of these fxi
where i ∈ {1, 2, .., a−1} will be 0. Only

fxa will have mapping with Z = 1 and Z = 0 values. All fxi
where i ∈ {a + 1, ..s}

will have one-to-one mapping with Z = 0 and hence the AV − average − conflict

87

fx1 fx1 Z = 1

fx2 fx2 Z = 1

fxa−1 fxa−1 Z = 1

fxa

fxa − (
∑a

i=1 fxi
− cmax) Z = 1

fxa ∑a
i=1 fxi

− cmax Z = 0

fxa+1 fxa+1 Z = 0

fxs fxs Z = 0

Figure 4.39: Arrangement for Aac(X)min > 0 when
∑a

i=1 fxi
− cmax ≤ fxa

2

will be 0 for all such fxi
. Figure 4.39 and 4.40 illustrates the scenario for such

arrangements when
∑a

i=1 fxi
− cmax ≤ fxa

2
and

∑a
i=1 fxi

− cmax > fxa
2

respectively.

Hence, AV − average− conflict(xa) will be equal to Aac(X, l, l + 1, n).

Example 5 and 6 illustrates the two cases of equation (4.9) for n = 100,

Aac(X, 0, 1, n)min = Aac(X)min.

88

fx1 fx1 Z = 1

fx2 fx2 Z = 1

fxa−1 fxa−1 Z = 1

fxa

cmax −
∑a−1

i=1 fxi Z = 1

fxa

fxa − (cmax −
∑a−1

i=1 fxi
) Z = 0

fxa+1 fxa+1 Z = 0

fxs fxs Z = 0

Figure 4.40: Arrangement for Aac(X)min > 0 when
∑a

i=1 fxi
− cmax > fxa

2

Example 5. Let, SFX
= {40, 30, 20, 10}, SFZ

= {85, 15}. Here, cmax = 85 ,fx1 =

40,fx2 = 30, fx3 = 20,fx4 = 10. fx1 + fx2 + fx3 = 90 > cmax , so, fxa = 20.Now,∑a
i=1 fxi

− cmax = 5 < fxa
2
. Hence,

Aac(X)min = (
∑a

i=1 fxi
− cmax)× fxa

n
= 5× 20

100
= 1

Example 6. Let, SFX
= {40, 30, 20, 10}, SFZ

= {75, 25}. Here, cmax = 75 ,fx1 =

40,fx2 = 30, fx3 = 20,fx4 = 10. fx1 + fx2 + fx3 = 90 > cmax , so, fxa = 20.Now,∑a
i=1 fxi

− cmax = 15 > fxa
2
. Hence,

Aac(X)min = (cmax −
∑a−1

i=1 fxi
)× fxa

n
= (75− 70)× 20

100
= 1

89

Using maximum and minimum values of Aac from (4.8) and (4.9), we can

update upper and lower bounds of Aac in (4.5) and (4.6) and yield tighter bounds.

For two attributes X and Y , there can be four cases when LB − Aac(X, l, 1, n) >

UB − Aac(Y, l, 1, n) .

Case a:
∑a

i=1 fxi
− cmax ≤ fxa

2
, cmin ≤

fy1
2

Aac(X, l, 1, l) + (
a∑

i=1

fxi
− cmax)×

fxa

n− l
> Aac(Y, l, 1, l) + cmin ×

fy1
n− l

⇒ fy1cmin

(n− l)
− fxa(

∑a
i=1 fxi

− cmax)

n− l
< Aac(X, l, 1, l)− Aac(Y, l, 1, l)

⇒ n− l >
fy1cmin − fxa(

∑a
i=1 fxi

− cmax)

Aac(X, l, 1, l)− Aac(Y, l, 1, l)
(4.10)

Case b :
∑a

i=1 fxi
− cmax ≤ fxa

2
, cmin >

fy1
2

Aac(X, l, 1, l) + (
a∑

i=1

fxi
− cmax)×

fxa

n− l
> Aac(Y, l, 1, l) +

∑e−1
j=1 f

2
yj

2(n− l)
+

(cmin −
∑e−1

j=1 fyj
2

)× fye
n− l

⇒ Aac(X, l, 1, l)− Aac(Y, l, 1, l) >∑e−1
j=1 f

2
yj
+ (2cmin −

∑e−1
j=1 fyj)fye − 2fxa(

∑a
i=1 fxi

− cmax)

2(n− l)

⇒ n− l >

∑e−1
j=1 f

2
yj
+ (2cmin −

∑e−1
j=1 fyj)fye − 2fxa(

∑a
i=1 fxi

− cmax)

2[Aac(X, l, 1, l)− Aac(Y, l, 1, l)]
(4.11)

Case c :
∑a

i=1 fxi
− cmax > fxa

2
, cmin ≤

fy1
2

90

Aac(X, l, 1, l) +
(cmax −

∑a−1
i=1 fxi

)fxa

n− l
> Aac(Y, l, 1, l) +

cminfy1
n− l

⇒ Aac(X, l, 1, l)− Aac(Y, l, 1, l) >
cminfy1
n− l

− (cmax −
∑a−1

i=1 fxi
)fxa

n− l

⇒ n− l >
cminfy1 − (cmax −

∑a−1
i=1 fxi

)pa
Aac(X, l, 1, l)− Aac(Y, l, 1, l)

(4.12)

Case d :
∑a

i=1 fxi
− cmax > fxa

2
, cmin >

fy1
2

Aac(X, l, 1, l) + (cmax −
a−1∑
i=1

fxi
)× fxa

n− l
> Aac(Y, l, 1, l) +

∑e−1
j=1 f

2
yj

2(n− l)
+

(cmin −
∑e−1

j=1 fyj
2

)
fye
n− l

⇒ Aac(X, l, 1, l)− Aac(Y, l, 1, l) >

∑e−1
j=1 f

2
yj

2(n− l)
+

(2cmin −
∑e−1

j=1 fyj)fye

2(n− l)
−

(cmax −
∑a−1

i=1 fxi
)fxa

n− l

⇒ n− l >

∑e−1
j=1 f

2
yj
+ (2cmin −

∑e−1
j=1 fyj)fye − 2fxa(cmax −

∑a−1
i=1 fxi

)

2[Aac(X, l, 1, l)− Aac(Y, l, 1, l)]
(4.13)

Using the upper and lower bounds, top-k attributes of a dataset can be derived

by reading l < n records. Algorithm 6 illustrates the steps to find the top-k attributes

using the bounds. As we are adopting a greedy approach for finding Aac(X, l, l +

1, n)min using equation (4.9), the returned list of top-k attributes using l records

might not always achieve perfect precision compared to that derived using all the n

records of database. The algorithm processes l records instead of all the n records

to find the top-k attributes, where l can be found using one of the equations in

(4.10)-(4.13) .

91

Algorithm 6 Algorithm top-k-Aac-UB-LB

inputs: A, n records, k, target variable Z

output: Top-k attributes

l← 1

R← {}

while l ≤ n do

Compute UB − Aac(Xi, l, 1, n) and LB − Aac(Xi, l, 1, n) for Xi ∈ A

kthSmallestUB ← k-th smallest upper bound value of Xi’s

for each Xi ∈ A do

if LB − Aac(Xi, l, 1, n) > kthSmallestUB then A ← A/Xi

end if

end for

if |A| = k then

break

end if

l← l + 1

end while

R← A

Sort R wrt ascending order of UB − Aac(Xj, l, 1, n)∀Xj ∈ R

Return R

4.5.2 Experimental Evaluation

Algorithm 6 has been implemented in Python 3 and ran on real datasets from

Table 4.6. The result is summarized in Table 4.8. It is observed that although using

a greedy approximation approach to find Aac(X, l, l+1, n)min, our proposed solution

derives top-k attributes with perfect precision for all the 5 different datasets. Here

92

Dataset n l
(%)

records
processed

precision

Census Income 299,285 193,109 64.52 1
Penbased-bin-3 10,992 10,360 94.25 1

Penbased 10,992 10,989 99.97 1
Connect-4 67,557 67,396 99.76 1
Kick Car 72,983 72,925 99.92 1

Table 4.8: Experimental evaluation of Algorithm 6

precision in computed with respect to the top-k attributes found using Algorithm 4.

This shows the empirical evidence for the efficacy of proposed algorithm. Depending

on the data distribution and attribute value domain size, the number of records need

to be processed varies. The best result is observed for Census Income dataset with

299, 285 records. Our proposed method needs to read only 65% of the total records to

derive the top-k attributes. Census Income dataset has various domain sizes across

different attributes, and most of the attribute domain size < 10. For the datasets

Penbased-bin-3, Penbased, and Connect-4, the domain size is same for all attributes.

Kick Car dataset has various domain sizes for different attributes, but most of the

attributes have domain size ≥ 10. It is observed that larger number of records are

processed for dataset with attributes having same domain size.

4.6 Related Works

Feature Selection Feature selection is an important topic for machine learning

and data mining discipline. A plethora of work exists for various feature selection

techniques. A review of feature selection methods with application can be found

in [62, 63]. Various feature selection methods can be broadly categorized under -

Filtering , Wrapper and Embedded & Hybrid methods. MI based feature selection

is a filtering method where features are ranked according to MI score wrt the class

93

variable. [4] presents a review of feature selection methods based on MI. Main focus

of these works are on effectively using MI to get more accurate top-k features, but

our aim is to devise a faster method without actually calculating MI . MI has been

used for feature engineering tasks as well [5]. Recent works have proposed sampling

based techniques for selecting top-k features using empirical MI [7, 6]. [6] focuses

on improving speed of the calculation compared to [7],but they still compute MI

on samples. We develop a new measure for faster computation of the top-k features

without calculating MI which differentiates our work from these works.

Approximate Functional Dependency (AFD) AFD concept is related to

FD which has been widely used by researchers and practitioners in database com-

munity for schema design. An initial work on approximately inferring functional

dependencies using sampling is provided in [8], where some important definitions on

error measurement for AFD is introduced that stand as a reference for later works.

Some alternative techniques on inferring full and approximate functional dependency

have been proposed in later works [75, 76, 69]. A notion of information dependency

has been introduced in [9] which is used to explore AFD. [9] provides new definition

for measuring AFD and shows how their measure compares with the one provided by

the earlier work of [8]. Methods for quantifying approximation degree of AFD have

been proposed in [10] based on prior work of [9]. A recent work proposed method

for discovering dependencies using reliable MI [11]. Main focus of these line of works

are on devising fast and comprehensive methods for finding AFD in the dataset. The

main difference between these works and ours is that we take the idea of AFD and

devise a new measure to compute MI based top-k features.

94

4.7 Conclusion

The goal of this work is to develop a new measure Attribute Average Conflict ,

Aac to effectively approximate top-k attributes for MI based feature selection, with-

out actually calculating MI. This approximation avoids some of repetitive expensive

operations involved in the original MI calculation, such as, logarithms and divisions.

Our proposed method is based on using the database concept of approximate func-

tional dependencies to quantify MI rank of attributes which to our knowledge has

not been studied before. We perform extensive experiments using multiple high di-

mensional synthetic and real datasets with millions of records and implement several

baseline algorithms. Our experimental results demonstrate an average of 2x speed

up compared to the exact method for Mutual Information based feature selection

process, while demonstrating highly accurate precision and ndcg. We also demon-

strate, on an average, our proposed measure is 4− 7x faster than the state-of-the art

method based on adaptive random sampling while exhibiting identical precision and

accuracy. We turn out to be superior to uniform random sampling based baseline in

both running time and precision as well.

We investigate and establish the upper bound and lower bound of Aac to de-

velop an efficient algorithm that finds top-k attributes without scanning the full

dataset in a single pass. Our proposed approach is able to use only marginal fre-

quency of attribute and target variable to find the possible arrangement that yields

the maximum and minimum value of Aac. We show that finding the minimum value

of Aac is NP-Complete and use a greedy approach that works well in practice. Our

experimental evaluation illustrates the applicability of this efficient algorithm for real

world datasets.

95

REFERENCES

[1] M. J. Smith, R. Wedge, and K. Veeramachaneni, “Featurehub: Towards collab-

orative data science,” in IEEE International Conference on Data Science and

Advanced Analytics. IEEE, 2017, pp. 590–600.

[2] J. Y. Zou, K. Chaudhuri, and A. T. Kalai, “Crowdsourcing feature discovery via

adaptively chosen comparisons,” arXiv preprint arXiv:1504.00064, 2015.

[3] J. Cheng and M. S. Bernstein, “Flock: Hybrid crowd-machine learning classi-

fiers,” in ACM Conference on Computer Supported Cooperative Work & Social

Computing. ACM, 2015, pp. 600–611.

[4] J. R. Vergara and P. A. Estévez, “A review of feature selection methods based

on mutual information,” Neural computing and applications, vol. 24, no. 1, pp.

175–186, 2014.

[5] M. A. Salam, M. E. Koone, S. Thirumuruganathan, G. Das, and S. Basu Roy, “A

human-in-the-loop attribute design framework for classification,” in The World

Wide Web Conference. ACM, 2019, pp. 1612–1622.

[6] X. Chen and S. Wang, “Efficient approximate algorithms for empirical entropy

and mutual information,” in Proceedings of the 2021 International Conference

on Management of Data, 2021, pp. 274–286.

[7] C. Wang and B. Ding, “Fast approximation of empirical entropy via subsam-

pling,” in Proceedings of the 25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, 2019, pp. 658–667.

[8] J. Kivinen and H. Mannila, “Approximate inference of functional dependencies

from relations,” Theoretical Computer Science, vol. 149, no. 1, pp. 129–149, 1995.

96

[9] M. M. Dalkilic and E. L. Roberston, “Information dependencies,” in Proceedings

of the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems, 2000, pp. 245–253.

[10] C. Giannella and E. Robertson, “On approximation measures for functional de-

pendencies,” Information Systems, vol. 29, no. 6, pp. 483–507, 2004.

[11] P. Mandros, M. Boley, and J. Vreeken, “Discovering dependencies with reliable

mutual information,” Knowledge and Information Systems, vol. 62, no. 11, pp.

4223–4253, 2020.

[12] J. Liu, J. Li, C. Liu, and Y. Chen, “Discover dependencies from data—a review,”

IEEE Transactions on Knowledge and Data Engineering, vol. 24, no. 2, pp. 251–

264, 2010.

[13] T. T. Lee, “An infornation-theoretic analysis of relational databases—part i:

Data dependencies and information metric,” IEEE Transactions on Software

Engineering, no. 10, pp. 1049–1061, 1987.

[14] J. Heaton, “An empirical analysis of feature engineering for predictive modeling,”

in SoutheastCon, 2016. IEEE, 2016, pp. 1–6.

[15] M. R. Anderson and M. Cafarella, “Input selection for fast feature engineer-

ing,” in Data Engineering (ICDE), 2016 IEEE 32nd International Conference

on. IEEE, 2016, pp. 577–588.

[16] S. Basu Roy, A. Teredesai, K. Zolfaghar, R. Liu, D. Hazel, S. Newman, and

A. Marinez, “Dynamic hierarchical classification for patient risk-of-readmission,”

in ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. ACM, 2015, pp. 1691–1700.

[17] J. M. Kanter and K. Veeramachaneni, “Deep feature synthesis: Towards au-

tomating data science endeavors,” in IEEE International Conference on Data

Science and Advanced Analytics. IEEE, 2015, pp. 1–10.

97

[18] G. Katz, E. C. R. Shin, and D. Song, “Explorekit: Automatic feature gener-

ation and selection,” in Data Mining (ICDM), 2016 IEEE 16th International

Conference on. IEEE, 2016, pp. 979–984.

[19] H. T. Lam, J.-M. Thiebaut, M. Sinn, B. Chen, T. Mai, and O. Alkan, “One but-

ton machine for automating feature engineering in relational databases,” arXiv

preprint arXiv:1706.00327, 2017.

[20] B. Frénay, G. Doquire, and M. Verleysen, “Is mutual information adequate for

feature selection in regression?” Neural Networks, vol. 48, pp. 1–7, 2013.

[21] S. Brin, R. Motwani, and C. Silverstein, “Beyond market baskets: Generalizing

association rules to correlations,” in Acm Sigmod Record, vol. 26, no. 2. ACM,

1997, pp. 265–276.

[22] W. Li, “Mutual information functions versus correlation functions,” Journal of

statistical physics, vol. 60, no. 5-6, pp. 823–837, 1990.

[23] G. Yang, “The complexity of mining maximal frequent itemsets and maximal

frequent patterns,” in Proceedings of the tenth ACM SIGKDD international con-

ference on Knowledge discovery and data mining. ACM, 2004, pp. 344–353.

[24] R. Agarwal, R. Srikant et al., “Fast algorithms for mining association rules,” in

Proc. of the 20th VLDB Conference, 1994, pp. 487–499.

[25] M. Madiman, “On the entropy of sums,” in Information Theory Workshop, 2008.

ITW’08. IEEE. IEEE, 2008, pp. 303–307.

[26] A. Feng, M. J. Franklin, D. Kossmann, T. Kraska, S. Madden, S. Ramesh,

A. Wang, and R. Xin, “CrowdDB: Query processing with the VLDB crowd,”

PVLDB, vol. 4, no. 12.

[27] A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller, “Human-powered sorts

and joins,” PVLDB., 2011.

98

[28] H. Park and J. Widom, “Query optimization over crowdsourced data,” in VLDB,

2013.

[29] J. Wang, T. Kraska, M. J. Franklin, and J. Feng, “Crowder: Crowdsourcing

entity resolution,” Proc. VLDB Endow., vol. 5, no. 11, pp. 1483–1494, 2012.

[Online]. Available: http://vldb.org/pvldb/vol5/p1483 jiannanwang vldb2012.

pdf

[30] H. Kaplan, I. Lotosh, T. Milo, and S. Novgorodov, “Answering planning queries

with the crowd,” in PVDLB, 2013.

[31] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng, “Leveraging

transitive relations for crowdsourced joins,” in Proceedings of the ACM

SIGMOD International Conference on Management of Data, SIGMOD 2013,

New York, NY, USA, June 22-27, 2013, K. A. Ross, D. Srivastava,

and D. Papadias, Eds. ACM, 2013, pp. 229–240. [Online]. Available:

https://doi.org/10.1145/2463676.2465280

[32] A. Marcus, D. Karger, S. Madden, R. Miller, and S. Oh, “Counting with the

crowd,” in PVLDB, 2013.

[33] J. Wang, T. Kraska, M. J. Franklin, and J. Feng, “Crowder: Crowdsourcing

entity resolution,” Proceedings of the VLDB Endowment, vol. 5, no. 11, pp.

1483–1494, 2012.

[34] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng, “Leveraging transitive

relations for crowdsourced joins,” in ACM SIGMOD International Conference

on Management of Data. ACM, 2013, pp. 229–240.

[35] S. E. Whang, P. Lofgren, and H. Garcia-Molina, “Question selection for crowd

entity resolution,” Proceedings of the VLDB Endowment, vol. 6, no. 6, pp. 349–

360, 2013.

99

http://vldb.org/pvldb/vol5/p1483_jiannanwang_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1483_jiannanwang_vldb2012.pdf
https://doi.org/10.1145/2463676.2465280

[36] N. Vesdapunt, K. Bellare, and N. Dalvi, “Crowdsourcing algorithms for entity

resolution,” Proceedings of the VLDB Endowment, vol. 7, no. 12, pp. 1071–1082,

2014.

[37] S. Wang, X. Xiao, and C.-H. Lee, “Crowd-based deduplication: An adaptive

approach,” in ACM SIGMOD International Conference on Management of Data.

ACM, 2015, pp. 1263–1277.

[38] X. Chen, P. N. Bennett, K. Collins-Thompson, and E. Horvitz, “Pairwise ranking

aggregation in a crowdsourced setting,” in ACM International Conference on

Web Search and Data Mining. ACM, 2013, pp. 193–202.

[39] B. Eriksson, “Learning to top-k search using pairwise comparisons,” in Artificial

Intelligence and Statistics, 2013, pp. 265–273.

[40] S. Guo, A. Parameswaran, and H. Garcia-Molina, “So who won?: dynamic max

discovery with the crowd,” in Proceedings of the 2012 ACM SIGMOD Interna-

tional Conference on Management of Data. ACM, 2012, pp. 385–396.

[41] A. R. Khan and H. Garcia-Molina, “Hybrid strategies for finding the max with

the crowd: technical report,” Stanford InfoLab, Tech. Rep., 2014.

[42] T. Pfeiffer, X. A. Gao, Y. Chen, A. Mao, and D. G. Rand, “Adaptive polling for

information aggregation.” in AAAI, 2012.

[43] P. Ye and D. Doermann, “Combining preference and absolute judgements in a

crowd-sourced setting,” in International Conference on Machine Learning, 2013,

pp. 1–7.

[44] A. G. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis, A. Ramesh, and

J. Widom, “Crowdscreen: Algorithms for filtering data with humans,” in ACM

SIGMOD International Conference on Management of Data. ACM, 2012, pp.

361–372.

100

[45] A. Parameswaran, S. Boyd, H. Garcia-Molina, A. Gupta, N. Polyzotis, and

J. Widom, “Optimal crowd-powered rating and filtering algorithms,” Proceedings

of the VLDB Endowment, vol. 7, no. 9, pp. 685–696, 2014.

[46] A. D. Sarma, A. Parameswaran, H. Garcia-Molina, and A. Halevy, “Crowd-

powered find algorithms,” in IEEE International Conference on Data Engineer-

ing. IEEE, 2014, pp. 964–975.

[47] T. Yan, V. Kumar, and D. Ganesan, “Crowdsearch: exploiting crowds for accu-

rate real-time image search on mobile phones,” in International Conference on

Mobile Systems, Applications and Services. ACM, 2010, pp. 77–90.

[48] C.-J. Ho, S. Jabbari, and J. W. Vaughan, “Adaptive task assignment for crowd-

sourced classification,” in International Conference on Machine Learning, 2013,

pp. 534–542.

[49] J. Bragg, D. S. Weld et al., “Crowdsourcing multi-label classification for taxon-

omy creation,” in AAAI Conference on Human Computation and Crowdsourcing,

2013.

[50] M. Imran, C. Castillo, J. Lucas, P. Meier, and S. Vieweg, “Aidr: Artificial

intelligence for disaster response,” in International Conference on World Wide

Web. ACM, 2014, pp. 159–162.

[51] C. Sun, N. Rampalli, F. Yang, and A. Doan, “Chimera: Large-scale classification

using machine learning, rules, and crowdsourcing,” Proceedings of the VLDB

Endowment, vol. 7, no. 13, pp. 1529–1540, 2014.

[52] Y. Yan, R. Rosales, G. Fung, and J. G. Dy, “Active learning from crowds.” in

International Conference on Machine Learning, vol. 11, 2011, pp. 1161–1168.

[53] B. Mozafari, P. Sarkar, M. Franklin, M. Jordan, and S. Madden, “Scaling up

crowd-sourcing to very large datasets: a case for active learning,” Proceedings of

the VLDB Endowment, vol. 8, no. 2, pp. 125–136, 2014.

101

[54] M. Fang, J. Yin, and D. Tao, “Active learning for crowdsourcing using knowledge

transfer.” in AAAI, 2014, pp. 1809–1815.

[55] J. Zhong, K. Tang, and Z.-H. Zhou, “Active learning from crowds with unsure

option.” in IJCAI, 2015, pp. 1061–1068.

[56] M. R. Anderson, D. Antenucci, V. Bittorf, M. Burgess, M. J. Cafarella, A. Ku-

mar, F. Niu, Y. Park, C. Ré, and C. Zhang, “Brainwash: A data system for

feature engineering.” in CIDR, 2013.

[57] U. Khurana, D. Turaga, H. Samulowitz, and S. Parthasrathy, “Cognito: Auto-

mated feature engineering for supervised learning,” in IEEE International Con-

ference on Data Mining Workshops. IEEE, 2016, pp. 1304–1307.

[58] C. Zhang, A. Kumar, and C. Ré, “Materialization optimizations for feature se-

lection workloads,” ACM Transactions on Database Systems, vol. 41, no. 1, p. 2,

2016.

[59] F. Seide, G. Li, X. Chen, and D. Yu, “Feature engineering in context-dependent

deep neural networks for conversational speech transcription,” in IEEE Work-

shop on Automatic Speech Recognition and Understanding. IEEE, 2011, pp.

24–29.

[60] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.

7553, p. 436, 2015.

[61] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-

rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature em-

bedding,” in ACM International Conference on Multimedia. ACM, 2014, pp.

675–678.

[62] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,”

Journal of machine learning research, vol. 3, pp. 1157–1182, 2003.

102

[63] A. Jović, K. Brkić, and N. Bogunović, “A review of feature selection methods

with applications,” in 2015 38th international convention on information and

communication technology, electronics and microelectronics (MIPRO). Ieee,

2015, pp. 1200–1205.

[64] N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, “Mifs-nd: A mutual

information-based feature selection method,” Expert Systems with Applications,

vol. 41, no. 14, pp. 6371–6385, 2014.

[65] C. Z. Mooney, Monte carlo simulation. Sage, 1997, no. 116.

[66] J. Neyman, “On the two different aspects of the representative method: the

method of stratified sampling and the method of purposive selection,” in Break-

throughs in statistics. Springer, 1992, pp. 123–150.

[67] T. M. Cover, Elements of information theory. John Wiley & Sons, 1999.

[68] R. Elmasri, Fundamentals of database systems. Pearson Education India, 2008.

[69] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen, “Tane: An efficient algo-

rithm for discovering functional and approximate dependencies,” The computer

journal, vol. 42, no. 2, pp. 100–111, 1999.

[70] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online].

Available: http://archive.ics.uci.edu/ml

[71] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Elsevier,

2011.

[72] R. Baeza-Yates, B. Ribeiro-Neto et al., Modern information retrieval. ACM

press New York, 1999, vol. 463.

[73] M. R. Garey and D. S. Johnson, “Computers and intractability: a guide to

np-completeness,” 1979.

[74] A. Caprara, H. Kellerer, and U. Pferschy, “The multiple subset sum problem,”

SIAM Journal on Optimization, vol. 11, no. 2, pp. 308–319, 2000.

103

http://archive.ics.uci.edu/ml

[75] N. Novelli and R. Cicchetti, “Functional and embedded dependency inference:

a data mining point of view,” Information Systems, vol. 26, no. 7, pp. 477–506,

2001.

[76] S. Lopes, J.-M. Petit, and L. Lakhal, “Efficient discovery of functional de-

pendencies and armstrong relations,” in International Conference on Extending

Database Technology. Springer, 2000, pp. 350–364.

104

