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ABSTRACT

Quantized enveloping superalgebra of type P

Saber Murad Ahmed, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professor: Dimitar Grantcharov

We introduce a new quantized enveloping superalgebra Uqpn attached to the

Lie superalgebra pn of type P. The superalgebra Uqpn is a quantization of a Lie

bisuperalgebra structure on pn and we study some of its basic properties. We determine

representations of the superalgebra Uqpn and derive its Drinfeld-Jimbo relations. We

prove the triangular decomposition of Uqpn and introduce some preliminary results

concerning the highest weight representation of Uqpn. We also introduce the periplectic

q-Brauer algebra and prove that it is the centralizer of the Uqpn-module structure on

C(n|n)⊗`. Finally, we propose a definition for a new periplectic q-Schur superalgebra.
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CHAPTER 1

INTRODUCTION

Many of the symbols and notation of the early chapters will be familiar to the

casual mathematics reader of mathematical writing, and will be used consistently

throughout. Any important notations will be mentioned when they are first introduced.

A familiarity with the standard topics of a first-year algebra course and a first-year

linear algebra course is assumed from the interested reader. Topics include vector

spaces, rings, fields, modules, and algebras. A two-semester sequence of graduate

algebra is recommended.

1.1 History of Lie Superalgebras

Lie algebras and superalgebras are important in many fields of mathematics and

physics, such as quantum physics and particle physics. Studies of symmetries arise

when studying particle states and the possibilities of such states, which are understood

through symmetries. When relating particles of different statistics, such as fermions

and bosons, then the concept of “supersymmetries” becomes important, and hence the

rise of Lie superalgebras in the 1970s. This was of great interest to quantum chemists

and quantum physicists, and thus was the original motivation for the study of Lie

superalgebras. Studying the representation theory of Lie superalgebras is equivalent

to studying the representation theory of their universal enveloping algebras, and this

helped to drive the motivation for studying Lie superalgebras as well, among other

related algebraic objects such as quantum groups.
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Motivated by the usefulness in physics and other fields of mathematics, much

research has been done to classify Lie superalgebras, determine various properties

about these structures, and their representations. Kac classified the simple finite

dimensional Lie superalgebras over algebraically closed fields of characteristic zero

in [36] in 1977. Lie superalgebras of classical type are defined in [52]. Irreducible

characters of classical Lie superalgebras for the finite-dimensional modules, and even

for modules in the BGG category O, have been worked out in [47], [7], [32], [11], [12],

[5].

During this time quantum groups have gained much traction, yet Lie superalge-

bras have not been as well investigated and in some sense overlooked. Even more

than thirty years after the work of Kac, the representation theory of Lie superalgebras

is still not well understood. Despite this, there has been significant progress made in

the study of Lie superalgebras.

Lie superalgebras can also be seen as a generalization of Lie algebras. Although

the representation theory of Lie algebras and Lie superalgebras have some similarities,

studying Lie superalgebra sand their representations proves to be much more difficult.

For example, in the study of the category of finite-dimensional modules over a finite-

dimensional simple Lie superalgebra, it is not true that the category is semisimple

in general [37]. These categories are much more difficult to study compared to their

classical counterparts.

One class of Lie superalgebras that have gained much traction in the past 30

years are referred to as the “strange” Lie superalgebras. One reason these are called

“strange” are due to not having a direct analogue to Lie algebras. The representation

theory of these strange Lie superalgebras is one of the more popular subjects of studies

recently and there are many fundamental questions that remain open. There are two

types of strange Lie superalgebras, P and Q, both of which are interesting due to the
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algebraic, geometric, and combinatorial properties of their representations. The study

of the representations of type P Lie superalgebras, which are also called periplectic

Lie superalgebras in the literature, has attracted considerable attention in the last

five years. Interesting results on the category O, the associated (affine) periplectic

Brauer algebras, and related theories have been established in [3], [4], [10], [15], [16],

[17], [18], [20], [27], [28], [39], [48], and more recently [1], [21], [22], among others.

Despite these considerable advances in the understanding of the representation theory

of type P Lie superalgebras, many aspects of it still remain mysterious.

1.2 History of Quantum Supergroups

Quantum groups emerged in the 1980’s, with Drinfeld coining the term in

1985. In 1986 at the International Congress of Mathematicians, Drinfeld’s results

brought quantum groups to the attention of mathematicians internationally and set

the foundation for its theory. The first discovered quantum group was the q-analogue

of SU(2), the special unitary group of rank 2. One of the problems of interest

was understanding exactly solvable models in quantum mechanics, which involved

integrable systems. Quantum groups also appeared in the work of physicists and

mathematicians interested in the quantum inverse scattering method in statistical

mechanics. At first, quantum groups were understood to be associative algebras

whose defining relations are expressed in terms of a matrix of constants known as

a quantum R-matrix. However, Drinfeld and Jimbo independently observed that

these guantum groups are really Hopf algebras, and these particular Hopf algebras

are deformations of universal enveloping algebras of Lie algebras. These deformations

were originally intended to aid in the construction of solutions to the now famous

Yang-Baxter equation. Very recently, quantum groups have been found to have far

reaching connections in pure mathematics, such as category theory, representation
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theory, and topology. The theory of quantum groups has grown significantly, and

continues to gather substantial attention ever since their introduction.

It was later realized that it was also possible to quantize the enveloping super-

algebras of certain Lie superalgebras, with Lie superalgebras being pure algebraic

objects that carried essential information for their corresponding Lie supergroup. The

quantized Lie algebras and the quantized Lie superalgebras have been found to be

useful in low dimensional topology, statistical physics, and noncommutative geometry.

There are results of the quantization of the universal enveloping algebras of the

strange Lie superalgebras. Olshanski constructed the quantized enveloping algebra of

type Q, Uqqn, in [44] through the FRT formalism as described in [29]. Nicolas Guay,

Dimitar Grantcharov, and I constructed the quantized enveloping algebra of type P ,

Uqpn, in [1] through the same formalism.

Quantum supergroups are the supersymmetric generalizations of quantum

groups. Supersymmetric integrable lattice models and conformal field theories have

a natural link with these quantum supergroups. Mathematically, they are one of

the few known examples of noncommutative and noncocommutative graded Hopf

algebras that have been studied [55]. Quantum supergroups and quantized enveloping

superalgebras tend to be used interchangeably in the case of Lie superalgebras. Just

like in the case of Lie superalgebras, the studies of their quantizations have not been

as well investigated. The representation theory of quantized superalgebras is still not

well understood. Therefore, any and all results of studying representation theory of

these objects are significant in this field of study.
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CHAPTER 2

Bialgebras

In this chapter, we will introduce the reader into some preliminary concepts

about algebras that will be prevalent in future chapters. We will first remind the

reader the definition of an algebra, although it may be presented in a way unfamiliar to

those whose backgrounds in algebra are limited to a one or two semester graduate-level

course. However, this presentation will prove to be useful for introducing coalgebras,

and by extension Hopf algebras. All quantum groups or quantized enveloping algebras

of Lie algebras are Hopf algebras, and also all quantum supergroups or quantized

enveloping superalgebras of Lie superalgebras are Hopf superalgebras. As a result, it

is important that the reader is at least aware of what a Hopf algebra is.

2.1 Coalgebras

The reader may be aware of the definition of an algebra given to be a ring

A together with a ring map η : k → A, whose image is contained in the center

of A. This map η equips A with the operation of scalar multiplication given by

(α, a) 7−→ η(α)a. In other words, an algebra A is a ring equipped with a map that

defines scalar multiplication with the field and the ring A, giving the ring a vector

space structure. We will paraphrase this definition below.

Definition 2.1.1. Let A be a vector space. A is an k-algebra when equipped with

the linear maps µ : A⊗ A→ A and η : k→ A that satisfies the following axiomatic

commutative diagrams:
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A⊗ k A⊗ A

A

id⊗ ι

µ∼=

k⊗ A A⊗ A

A

ι⊗ id

µ∼=

Unit

A⊗ A⊗ A A⊗ A

AA⊗ A

µ⊗ id

µid⊗ µ
µ

Associativity

The map µ is called the product or the multiplication while η is called the unit

of the algebra.

We say that A is commutative if, in addition to the above diagrams being

satisfied, the following axiomatic commutative diagram is also satisfied:

A⊗ A A⊗ A

A

τA,A

µµ

Commutatitivty

where τA,A is the map that switches the tensor factors: τA,A(x⊗ x′) = x′ ⊗ x

for all x, x′ ∈ A.

Presenting the definition of an algebra in this way is useful as we can then

systematically write the definition of what is called a coalgebra by changing the

direction of every arrow in the diagrams above.
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Definition 2.1.2. Let C be a vector space. C is an k-coalgebra when equipped with

the linear maps ∆ : C → C ⊗ C and ε : C → k that satisfies the following axiomatic

commutative diagrams:

C ⊗ k C ⊗ C

C

id⊗ ε

∆∼=

k⊗ C C ⊗ C

C

ε⊗ id

∆∼=

Counit

C ⊗ C ⊗ C C ⊗ C

CC ⊗ C

∆⊗ id

∆id⊗∆

∆

Coassociativity

The map ∆ is called the coproduct (or comultiplication) while ε is called the

counit of the coalgebra.

We say that A is cocommutative if, in addition to the above diagrams being

satisfied, the following axiomatic commutative diagram is also satisfied:

A⊗ A A⊗ A

A

τA,A

∆∆

Cocommutatitivty
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where τA,A is the map that switches the tensor factors: τA,A(x⊗ x′) = x′ ⊗ x

for all x, x′ ∈ A.

Example 2.1.1. Let X be a set and let C = k[X] by the k-vector space generated

by the basis X. Define the coproduct ∆ and counit ε on C by

∆(x) = x⊗ x ε(x) = 1.

This gives a coalgebra structure onto C.

Definition 2.1.3. Let C and C ′ be coalgebras with coproducts ∆ and ∆′ and counits

ε and ε′, respectively. A linear map f from C to C ′ is a coalgebra homomorphism

if

(f ⊗ f) ◦∆ = ∆′ ◦ f and ε = ε′ ◦ f.

In other words, if f preserves the coproduct and counit of C and C ′.

2.2 Hopf Algebras

Definition 2.2.1. A bialgebra B over a field k is a vector space over k with the linear

maps µ : B ⊗B → B, the multiplication, ∆ : B → B ⊗B, the comultiplication,

ι : k→ B, the unit, and ε : B → k, the counit satisfying the following conditions:

• B is an algebra over k,

• B is a coalgebra over k,

• multiplication and unit are coalgebra homomorphisms (or equivalently, comulti-

plication and the counit are algebra homomorphisms)

Example 2.2.1. For any Lie algebra g, U(g) equipped with comultiplication ∆(x) =

x⊗ 1 + 1⊗ x and counit ε(x) = 0, for all x ∈ g, is a bialgebra.
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Definition 2.2.2. A Hopf algebra H over a field k is a bialgebra over k with

the linear maps µ : H ⊗ H → H, the multiplication, ∆ : H → H ⊗ H, the

comultiplication, ι : k→ H, the unit, ε : H → k, the counit, and S : H → H, the

antipode that satisfies the following commutative diagrams

H ⊗H H ⊗H

HH

S ⊗ id

µ∆
ι ◦ ε

H ⊗H H ⊗H

HH

id⊗ S

µ∆
ι ◦ ε
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CHAPTER 3

Lie Superalgebras

In this chapter, we briefly discuss concepts and definitions from super linear

algebra and develop a background in Lie superalgebras that will either be relevant to

the main topic of study, or will be helpful in understanding other topics that could be

relevant to the main topic. We first discuss super vector spaces; the most basic object

of discussion. We will mention some parallels that super vector spaces have compared

to vector spaces, like dimension and morphisms between spaces. We then describe

superalgebras and various operations on superalgebras. We end the chapter with a

discussion of Lie superalgebras and universal enveloping algebras of Lie superalgebras.

3.1 Super Vector Spaces

Definition 3.1.1. A super vector space V over a field k , also known as a superspace,

is a vector space over the field k that has a Z2-grading. Namely, there are vector

subspaces V0 and V1 such that V = V0 ⊕ V1.

Definition 3.1.2. Let V = V0 ⊕ V1 be a vector super space over k , and let W be a

proper subset of V . W is a super vector subspace, or subsuperspace, if W is itself a

super vector space over k with the same operations as V .

Definition 3.1.3. Let V = V0 ⊕ V1 be a vector super space over k. The elements of

V0 are said to be even, and the elements of V1 are said to be odd.

Definition 3.1.4. Let V = V0 ⊕ V1 be a super vector space over a field k . Let

dimV0 = n and dimV1 = m. The dimension of V , denoted as dimV , is the tuple
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(n|m). We say that V is finite-dimensional if V0 and V1 are finite dimensional vector

spaces. The superdimension of V , denoted as sdim V , is defined to be n−m.

Example 3.1.1. The superspace kn|m = kn ⊕ km, where kn|m0 = kn and kn|m1 = km,

is the space of points with n + m coordinates, described with the standard basis

{e1, . . . , en, en+1, . . . , en+m}, where the first n vectors of the basis are basis vectors of

kn and the next m vectors are basis vectors of km

Example 3.1.2. Let V be any vector space over k. We can endow V with a trivial

Z2 grading to obtain the vector superspace V = V ⊕ {~0}.

Something to note is that if V and W are vector spaces, then the vector

superspaces V ′ = V ⊕W and V ′′ = W ⊕ V , where V ′0 = V ′′1 = V and V ′1 = V ′′0 = W

are not the same. The definition of super space depends on a representation of the

group Z2.

Definition 3.1.5. An element v ∈ V for a vector superspace V = V0 ⊕ V1 is called

homogeneous if v ∈ V0 or v ∈ V1.

Definition 3.1.6. The parity of a homogeneous element v ∈ Vi is denoted by p(v) = i,

where p is the parity function on the set of homogoeneous elements of V to Z2.

When looking at maps between superspaces, we want the grading to be pre-

served.

Definition 3.1.7. Let V = V0 ⊕ V1 and W = W0 ⊕W1 be superspaces. A morphism,

f from V to W is a linear map f : V → W that preserve the grading. In other words,

f(Vi) ⊂ Wi for all i ∈ Z2. A morphism f of superspaces is called an isomorphism if

it is bijective.

Since, for a super vector space V = V0 ⊕ V1, we can write each element in V as

a sum of elements in V0 and V1, we can restrict our attention to the homogeneous

elements of V and extend the relevant results by linearity. So any formula defining
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a linear object in which the parity function appear to elements in a superspace is

assumed to be homogeneous, and we will adapt this throughout.

For superspaces V and W , we denote the set of morphisms from V to W as

Hom(V,W ). This vector space contains all parity preserving linear maps from V to

W . This suggests existence of parity reversing linear maps from V to W .

Definition 3.1.8. Let V = V0⊕V1 and W = W0⊕W1 be superspaces. A linear map

f from V to W is parity-reversing if f(Vi) ⊂ W1−i, for i ∈ Z2.

An important result is that every linear map between superspaces can be written

as a sum of parity-preserving and parity-reversing maps.

Proposition 3.1.1. Let V = V0⊕V1 and W = W0⊕W1 be superspaces. Every linear

map f from V to W can be written as f = f0 + f1, where f0 is a parity-preserving

map from V to W , and f1 is a parity-reversing map from V to W .

We denote the space of all linear maps from superspaces V to W as Hom(V,W ),

which is referred to as the internal Hom [50]. Due to Proposition 3.1.1, Hom(V,W )

is a superspace, with Hom(V,W )0 being the space of all parity-preserving linear

maps from V to W , and Hom(V,W )1 being the space of all parity-reversing linear

maps from V to W .

Remark 3.1.2. Something to note that since Hom(V,W ) is a superspace if V and

W are superspaces, then End(V ) = Hom(V, V ) is also a superspace. This plays a

significant role in representation theory.

Should V and W be finite-dimensional superspaces, then we can fix a basis

of V and W and represent linear maps from V to W using matrices. If V = W ,

dim(V ) = (n|m), and k = C, then fixing a standard basis of V will give the vector

superspace of all matrices of the form

12



A B

C D


denoted as Mn|m(C). Here, A and D are n×n and m×m matrices, respectively.

3.2 Superalgebras

Now we extend the concept of superspaces to that of superalgebras.

Definition 3.2.1. A superalgebra is a superspace A = A0 ⊕ A1 equipped with a

bilinear multiplication that preserves the grading on A, i.e. AiAj ⊂ Ai+j for i, j ∈ Z2.

An analogue of commutativity in superalgebras is as follows:

Definition 3.2.2. A superalgebra A is supercommutative if, for all a, b ∈ A,

ab = (−1)p(a)p(b)ba

Example 3.2.1. Let V be a finite-dimensional vector superspace. Then we have that

End(V ) is a superalgebra, with multiplication defined as composition of functions.

Remark 3.2.1. If A is a supercommutative superalgebra, then every odd element

a ∈ A is nilpotent as a2 = −a2 =⇒ a2 = 0.

Supercommutativity in superalgebras differs from commutativity in commuta-

tive algebras in that a sign factor appears. This sign factors appears whenever two

(odd) elements are interchanged in a classical relation, otherwise known as the rule

of signs [50].

We want to mention some algebraic constructions for superalgebras that will

come up every now and again.
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Definition 3.2.3. Let V = V0⊕V1 and W = W0⊕W1 be superalgebras. Their direct

sum V ⊕W is a superalgebra who space is the direct sum of the vector spaces V and

W with the induced Z2-grading

(V ⊕W )0 = V0 ⊕W0

(V ⊕W )1 = V1 ⊕W1

Definition 3.2.4. Let V and W be superalgebras. Their tensor product V ⊗W is a

superalgebra who space is the tensor product of the vector spaces V and W with the

induced Z2-grading

(V ⊗W )0 = (V0 ⊗W0)⊕ (V1 ⊗W1)

(V ⊗W )1 = (V0 ⊗W1)⊕ (V1 ⊗W0)

and operation defined by

(v1 ⊗ w1)(v2 ⊗ w2) = (−1)p(a2)p(b1)v1v2 ⊗ w1w2

Definition 3.2.5. Let V be a vector space. The mth tensor product of V , V ⊗m, is

the tensor product of V with itself k times:

V ⊗m = V ⊗ V ⊗ . . .⊗ V

We denote V ⊗0 = k. The tensor algebra of V , T (V ), is constructed as the following:

T (V ) =
∞⊕
m=0

V ⊗m = k⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ . . .

with multiplication on homogeneous and elementary tensors determined by the

isomorphism V ⊗m ⊗ V ⊗n → V ⊗(m+n):

(v1 ⊗ . . .⊗ vm) · (w1 ⊗ . . .⊗ wn) = v1 ⊗ . . .⊗ vm ⊗ w1 ⊗ . . .⊗ wn

14



Proposition 3.2.2. Let V be a vector space. The tensor algebra T (V ) of V satisfies

the following universal property: if A is associative algebra and f : V → A is a linear

map, and ι : V → T (V ) is the inclusion map ι(v) = v, then there exists a unique

algebra homomorphism f : T (V )→ A such that ι ◦ f = f

Remark 3.2.3. If V is a superspace, using definitions 3.2.4 and 3.2.5, we can endow

T (V ) with a Z2-grading to obtain a tensor superalgebra of V .

Two important algebras that can be obtained from the tensor algebra are the

symmetric algebra and the exterior algebra.

Definition 3.2.6. Let V be a vector superspace. The symmetric superalgebra of

a vector superspace V , denoted as S(V ), is the superalgebra obtained by taking

the quotient of the tensor superalgebra T (V ) by the ideal I(V ) generated by all

(homogeneous) elements of the form

u⊗ v − (−1)p(u)p(v)v ⊗ u

for all u, v ∈ V . The kth symmetric power, Sk(V ), of V is equal to V ⊗k modulo the

submodule generated by all elements of the form

v1 ⊗ v2 ⊗ . . .⊗ vk − vσ(1) ⊗ vσ(2) ⊗ . . .⊗ vσ(k)

for all vi ∈ V and for all σ in the symmetric group Sk.

Definition 3.2.7. Let V be a vector superspace. The exterior superalgebra of a vector

superspace V , denoted as
∧

(V ), is the superalgebra obtained by taking the quotient

of the tensor superalgebra T (V ) by the ideal I(V ) generated by all (homogeneous)

elements of the form

v ⊗ v

15



for all v ∈ V . The kth exterior power,
∧k(V ), of V is equal to V ⊗k modulo the

submodule generated by all elements of the form

v1 ⊗ v2 ⊗ . . .⊗ vk

where vi = vj for some i 6= j.

Remark 3.2.4. The definitions for the kth symmetric power and kth exterior power

in the classical case are given as theorems in [26] (see Theorems 34 and 36 in section

11.5 in [26]). If V is a superspace, we can then use these facts and the grading

on V to lift these theorems to the definitions above. Similarly, the symmetric and

exterior superalgebras inherit the universal property from the tensor superalgebra in

proposition 3.2.2.

Remark 3.2.5. We can rewrite the symmetric and exterior superalgebras as direct

sums of their symmetric and exterior powers respectively. In other words, for a vector

superspace V ,

S(V ) =
∞⊕
m=0

Sm(V )

∧
(V ) =

∞⊕
m=0

∧m
(V )

Another important superalgebra that should be adressed is a Hopf superalgebra,

which is the ”super“ version of the Hopf algebra defined in Definition 2.2.2:

Definition 3.2.8. A Hopf superalgebra H over a field k is a bisuperalgebra over

k with the linear maps µ : H ⊗H → H, the multiplication, ∆ : H → H ⊗H, the

comultiplication, ι : k→ H, the unit, ε : H → k, the counit, and S : H → H, the

antipode that satisfies the following commutative diagrams

16



H ⊗H H ⊗H

HH

S ⊗ id

µ∆

ι ◦ ε

H ⊗H H ⊗H

HH

id⊗ S

µ∆

ι ◦ ε

3.3 Lie Superalgebras

Throughout the rest of this chapter, assume that vector super spaces are over a

field k, unless otherwise stated. Now we define the main object of interest:

Definition 3.3.1. A Lie superalgebra is a Z2-graded vector space g = g0⊕g1 together

with a bilinear map [ , ] : g× g→ g, called the superbracket, such that

[gi, gj] ⊆ gi+j for i, j ∈ Z2 (3.1)

[a, b] = −(−1)p(a)p(b)[b, a] (3.2)

(−1)p(a)p(c)[a, [b, c]] + (−1)p(a)p(b)[b, [c, a]] + (−1)p(b)p(c)[c, [a, b]] = 0 (3.3)

In the definition above, note that equation 3.1 implies that the bilinear map [ , ]

preserves the grading, equation 3.2 defines a grading skew symmetry, and equation

3.3 is referred to as the super Jacobi identity.

Example 3.3.1. Given a vector superspace V , we can define a trivial Lie superbracket

where [X, Y ] ≡ 0 for all X, Y ∈ V , to obtain a trivial Lie superalgebra. Also, recall

from Example 3.1.2 that any vector space V can be written trivially as V = V ⊕ {0}

as a superspace. Therefore, we can also define a trivial Lie superalgebra of vector

spaces by using the same superbracket defined on the trivial decomposition of V as a

superspace.
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Example 3.3.2. Let V = V0 ⊕ V1 be a finite-dimensional vector superspace, and

thus End(V ) is a finite-dimensional superalgebra. We can endow End(V ) with the

superbracket [ , ] : End(V )× End(V )→ End(V ) such that

[a, b] = ab− (−1)p(a)p(b)ba

for a, b ∈ End(V ). This Lie superalgebra is called the general Lie superalgebra, gl(V ).

If dimV0 = m and dimV1 = n, then by fixing a basis, we can write all elements gl(V )

as matrices of the form A B

C D

 (3.4)

where A is a m×m matrix and D is a n×n matrix. The Lie superalgebra that

contains all matrices of the form of (3.4) is denoted as gl(m|n), which is isomorphic to

gl(V ). The even elements are those where B = C = 0, and the odd elements are those

where A = D = 0. Note that every element in gl(m|n) can be written as a sum of the

elementary matrices Eij for 1 ≤ i, j ≤ m+n. We have that p(Eij) = p(i)+p(j) mod 2,

where p(i) = 0 for 1 ≤ i ≤ m and p(i) = 1 for m+ 1 ≤ i ≤ m+ n. The superbracket

in terms of these elementary matrices is

[Eij, Ek`] = δjkEi` − (−1)p(Eij)p(Ek`)δi`Ekj

If X ∈ gl(m|n) is in the form of (3.4), we can define some super-analogues of

some properties of matrices in linear algebra. The only important properties for our

purposes are the supertrace and supertranspose.

Definition 3.3.2. Let X ∈ gl(m|n) be of the form in (3.4). The supertrace of X,

denoted Str(X), is defined by

Str(X) = tr(A)− tr(D)
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Remark 3.3.1. Due to the properties of trace, we have that Str(X + Y ) = Str(X) +

Str(Y ) and Str(cX) = c Str(X), for X, Y ∈ gl(m|n) and c ∈ k.

Remark 3.3.2. The supertrace of all odd homogeneous elements of gl(m|n) is 0.

Definition 3.3.3. Let X ∈ gl(m|n) be of the form in (3.4). The supertranspose of

X, denoted Xst, is defined by

Xst =

 AT CT

−BT DT


In terms of elementary matrices Eij, the supertranspose is defined by

(Eij)
st = (−1)p(i)(p(j)+1)Eji

There is an analogue of subspaces for Lie superalgebras.

Definition 3.3.4. Let g be a Lie superalgebra and let h be a subsuperspace of g. h

is a Lie subsuperalgebra of g if [g1, g2]g ∈ h, for all g1, g2 ∈ h.

Example 3.3.3. The commutator subsuperalgebra of gl(m|n) consists of all matrices

of the form (3.4) with supertrace zero. This subsuperalgebra of gl(m|n) is denoted

by sl(m|n).

Just like how there is a notion of isomorphisms with superspaces, we have the

equivalent for Lie superalgebras.

Definition 3.3.5. Let g and a be Lie superalgebras with superbrackets [ , ]g and [ , ]a

respectively. A morphism, f from g to a is a parity-preserving linear map f : g→ a

such that

f [g1, g2]g = [f(g1), f(g2)]a

for all g1, g2 ∈ g. A morphism f of Lie superalgebras is called an isomorphism if f is

also bijective.
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We bring up some other definitions that will be important for understanding

what will be discussed in future chapters.

Definition 3.3.6. Let g be a Lie superalgebra. If V and W are subspaces, then

[V,W ], which is spanned by all [v, w] for all v ∈ V and w ∈ W , is a subspace of g.

Definition 3.3.7. A vector super subspace a of g is called an ideal if [a, g] ⊂ a.

Definition 3.3.8. A Lie superalgebra g is called solvable if the derived series of g

g ≤ [g, g] ≤ [[g, g], [g, g]] ≤ [[[g, g], [g, g]], [[g, g], [g, g]]] ≤ . . .

terminates. If we let

g(0) = g, g(i+1) = [g(i), g(i)] for i ≥ 0

then the derived series of g terminates if g(n) = 0 for some large n.

Definition 3.3.9. A Lie superalgebra g is called nilpotent if the lower central series

of g

g ≤ [g, g] ≤ [g, [g, g]] ≤ [g, [g, [g, g]]] ≤ . . .

terminates. If we let

g[0] = g, g[i+1] = [g, g[i]] for i ≥ 0

then the lower central series of g terminates if g[n] = 0 for some large n.

Definition 3.3.10. A Lie superalgebra g is called simple if the only Z2-graded ideals

of g are 0 and g. A Lie superalgebra g is called semisimple if it contains no solvable

ideals.

3.4 Bilinear Forms

We saw that the definition for Lie superalgebras (and Lie algebras) use a bilinear

form. You may recall from linear algebra that (symmetric) bilinear forms play a
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role in determining orthogonal bases of a vector space. In studying representation

theory of Lie superalgebras, bilinear forms prove to be an essential asset. This section

will provide the more important details and definitions that will be used in future

chapters.

Definition 3.4.1. A bilinear form B on a vector (super)space V , and thus on a Lie

superalgebra, is a bilinear map V × V → k. In other words, for all u, v ∈ V and

α, β ∈ k,

B(αu+ βv, w) = αB(u,w) + βB(v, w), and

B(u, αv + βw) = αB(u, v) + βB(u,w)

Definition 3.4.2. Let g be a Lie superalgebra. A bilinear form B on g is

(i) supersymmetric if B(X, Y ) = (−1)p(X)p(Y )B(Y,X) for all homogeneous X, Y ∈ g,

(ii) skew-supersymmetric if B(X, Y ) = −(−1)p(X)p(Y )B(Y,X) for all homogeneous

X, Y ∈ g,

(iii) (ad)-invariant if B([X, Y ], Z) = B(X, [Y, Z]) for all homogeneous X, Y, Z ∈ g,

(iv) non-degenerate if for X ∈ g, B(X, Y ) = 0 for all homogeneous Y ∈ g, then

X = 0.

(v) even if B(X, Y ) = 0 for all X, Y ∈ g such that p(X) = p(Y ) + 1, and

(vi) odd if B(X, Y ) = 0 for all X, Y ∈ g such that p(X) = p(Y ).

Definition 3.4.3. Let B be a bilinear form on a Lie superalgebra g. A Lie subsuper-

algebra a of g is said to be B-isotropic if B restricted to a vanishes. In other words, a

is a B-isotropic subspace of g if B(X, Y ) = 0 for all X, Y ∈ a.

Definition 3.4.4. Let a1 and a2 be Lie subsuperalgebras of g. We say that a1 and

a2 are transversal if g = a1 + a2.
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One bilinear form on gln|n that we will use extensively is the form given by the

supertrace

B(X, Y ) = Str(XY )

(X, Y ∈ gln|n). An important fact is that this form is ad-invariant, supersymmetric

and non-degenerate, which will prove necessary when discussing the Lie bisuperalgebra

structure on pn.

Proposition 3.4.1 ([36]). The bilinear form B on gl(m|n) given by the super-trace,

B(X, Y ) = Str(XY ), is ad-invariant, supersymmetric and non-degenerate.

3.5 Lie bisuperalgebras

Definition 3.5.1. A Lie superbialgebra is a pair (g, δ), where g is a Lie superalgebra,

δ is a morphism of super vector spaces δ : g→ Λ2(g) which is a cocycle and satisfies

the co-super Jacobi identity.

Definition 3.5.2. A Manin supertriple (a, a1, a2) consists of a Lie superalgebra

a equipped with an ad-invariant supersymmetric non-degenerate bilinear form B,

along with two Lie subsuperalgebras a1 and a2 of a which are B-isotropic transversal

subsuperspaces of a.

A bilinear form B given in the previous definition defines a non-degenerate

pairing between a1 and a2 and a supercobracket δ : a1 → a⊗2
1 by

B⊗2(δ(X), Y ⊗ Z) = B(X, [Y, Z]), (3.5)

for all X ∈ a1 and Y, Z ∈ a2, where B⊗2 is obtained by extending B to a non-

degenerate pairing on gl(m|n)⊗C gl(m|n). This is a result from Definition 3.5.1 and

the following proposition:

Proposition 3.5.1. [Andruskiewitsch, 93] Let (g, δ) be a Lie bisuperalgebra and set

p1 = g, p2 = g∗, p = p1 ⊕ p2. Then (p, p1, p2) is a Manin supertriple. Conversely,
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any Manin supertriple with p finite dimensional gives rise to a Lie superbialgebra

structure on p1.

3.6 Universal Enveloping Superalgebras

Definition 3.6.1. Let g be a Lie superalgebra. A universal enveloping algebra of g

is a pair (U ,σ), where U is an associative k-algebra with 1, and where σ : g→ U is a

linear map satisfying

σ([x, y]) = σ(x)σ(y)− (−1)p(x)p(y)σ(y)σ(x) (3.6)

such that the following universal property is satisfied: if U ′ is another associative

k-algebra with 1 and σ′ : g → U ′ is a linear map satisfying (3.6), then there is a

unique algebra homomorphism φ : U → U ′ such that φ ◦ σ = σ′.

Theorem 3.6.1. Let g be a Lie superalgebra. Then there exists a unique universal

enveloping superalgebra U(g) of g, up to isomorphism.

Proof. We first show such a universal enveloping superalgebra exists. Let T (g) be

the tensor algebra on g, and let I be the two sided ideal of T (g) generated by all

elements of the form

x⊗ y − (−1)p(x)p(y)y ⊗ x− [x, y]

where x and y are homogeneous elements of g. Set U(g) = T (g)/I. Let α : T (g)→

U(g) be the natural map from T (g) to U(g), with kerα = I and let ι : g→ T (g) be

the inclusion map. Let σ = α ◦ ι. Note that for all homogeneous x, y ∈ g:

σ([x, y]) = α ◦ ι([x, y]) = α([x, y]) = [x, y]

= x⊗ y − (−1)p(x)p(y)y ⊗ x

= ι(x)ι(y)− (−1)p(x)p(y)ι(y)ι(x)
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= α(ι(x)ι(y)− (−1)p(x)p(y)ι(y)ι(x))

= σ(x)σ(y)− (−1)p(x)p(y)σ(y)σ(x))

So we have that σ satisfies equation (3.6).

Now let U ′ be another associative k-algebra with 1 and let σ′ : g→ U ′ be a linear

map satisfying equation (3.6). Proposition 3.2.2 yields an algebra homomorphism

φ′ : T (g)→ U ′ such that φ′ ◦ ι = σ′. Since σ satisfies the property in equation (3.6),

we have that I lies in kerφ′. φ′ therefore can be extended to a algebra homomorphism

φ : U(g) → U ′ such that φ ◦ σ′ = φ′. Thus, we have that φ ◦ σ = σ′. Now suppose

that there exists another map ψ : U(g)→ U ′ such that ψ ◦ σ = σ′. Then, for every

x ∈ g, we have that φ ◦ σ(x) = σ′(x) = ψ ◦ σ(x), which implies that φ = ψ as

σ(g) generates U(g) by construction. Therefore, we have that the pair (U(g), σ) is a

universal enveloping algebra of g.

To prove uniqueness, let (U(g), σ) and (U ′, σ′) be universal enveloping algebras

of g. Using the fact that σ satisfies the universal property, there is a unique algebra

homomorphism φ : U(g)→ U ′ such that φ ◦ σ = σ′. Switching roles of the algebras

gives another unique algebra homomorphism ψ : U ′ → U(g) such that ψ ◦ σ′ = σ.

Combining these gives that φ ◦ ψ = 1U ′ and ψ ◦ φ = 1U(g). Therefore, we get that

U(g) ∼= U ′.

Lastly, since g has a Z2 grading, T (g) also has a Z2 grading, and by extension

U(g) has a Z2 grading.

We will use the notation xy as opposed to x ⊗ y to denote multiplication in

U(g). Also, note that for any odd element x in a Lie superalgebra g, we have that

0 = [x, x] = xx+ xx = 2x2 =⇒ x2 = 0
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The following is a very important theorem for describing the generators of U(g)

that is a (super) generalization for Lie algebras:

Theorem 3.6.2 (Poincare-Birkhoff-Witt Theorem). Let g = g0 ⊕ g1 be a Lie super-

algebra. Let {x1, x2, . . . , xm} be a basis for g0 and let {y1, y2, . . . , yn} be a basis for

g1. Then the set

{xr11 x
r2
2 . . . xrmm ys11 y

s2
2 . . . ysmm | r1, r2, . . . , rm ∈ Z ∈ Z≥0, s1, s2, . . . , sn ∈ {0, 1}}

is a basis for U(g).

3.7 Representations of Lie superalgebras

Definition 3.7.1. Let g be a Lie superalgebra. A representation ρ of g is a Lie

superalgebra homomorphism

ρ : g→ End(V )

where V is a vector superspace.

Representations allows us to treat elements of a Lie superalgebra as linear

maps in End(V ). Therefore, we can endow V with a g-module structure using the

multiplication

g · V := ρ(g)(v)

for g ∈ g. We will write gV to indicate the action of an element g ∈ g on V .

Definition 3.7.2. Let g be a Lie superalgebra. A representation ρ of g is faithful if

it is injective (i.e. one-to-one).

Faithful representations allows us to view elements of a Lie superalgebra as

linear maps, whose properties are much more studied. More specifically, if V and g

are finite-dimensional as superspaces, then by fixing a basis, we can view elements of a

Lie superalgebra as matrices. This is because the Lie superalgebra {ρ(g) ∈ End(V ) |

g ∈ g}, where ρ is a faithful representation of g, is isomorphic to g.
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Example 3.7.1. Let g be a Lie superalgebra. The adjoint representation ad : g→

End(g) is a representation that maps g to ad(g) for each g ∈ g, where

ad(g)(x) = [g, x]

for x ∈ g.

3.8 Weights and Roots of Lie superalgebras

Definition 3.8.1. Let g = g0 ⊕ g1 be a Lie superalgebra. A Cartan subalgebra h of

g is a maximal nilpotent subalgebra of g0 such that it is equal to its own normalizer,

i.e.

N(h) = {X ∈ g0 | [X, h] ⊂ h} = h.

Example 3.8.1. Consider the Lie superalgebra gl(m|n). Consider the subalgebra h

of gl(m|n) that consists of all diagonal matrices Eii for 1 ≤ i ≤ m + n. Note that

[Eii, Ejj] = 0 for all 1 ≤ i, j ≤ m + n, and thus h is nilpotent by definition. Also,

N(h) = h is a Cartan subalgebra of gl(m|n).

Definition 3.8.2. Let g be a Lie superalgebra, h be a Cartan subalgebra of g, and

let V be a g-module. For µ ∈ h∗, we define the weight space Vµ of V attached to µ to

be

Vµ = {v ∈ V | hv = µ(h)v, for all h ∈ h}.

We call µ ∈ h∗ a weight of V if Vµ 6= 0.

Definition 3.8.3. Let g be a Lie superalgebra and let V be a g-module. V is called

a weight module if

V =
⊕
µ∈h∗

Vµ

and dimVµ <∞ for every µ ∈ h∗.

Note that in definition 3.8.2, weight space involves looking at the eigenvalues of

the action of g onto a superspace V . If we have a representation of g onto V , then we
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can use the definitions of weight spaces above. The weights of adjoint representations

of a Lie superalgebra g (which are the eigenvalues of the action of g with itself), are

instead called roots.

Definition 3.8.4. Let g be a Lie superalgebra and h be a Cartan subalgebra of g.

For µ ∈ h∗, we define the root space gµ of g attached to µ to be

gµ = {g ∈ g | [h, g] = µ(h)g, for all h ∈ h}.

We call µ ∈ h∗ a root of V if Vµ 6= 0.

Definition 3.8.5. The set of roots ∆ of a Lie superalgebra g = g0⊕g1 with a Cartan

subalgebra h is

∆ = {µ ∈ h∗ | µ 6= 0, gµ 6= 0}.

We call a root α ∈ ∆ even if gα ∩ g0 6= 0 or odd if gα ∩ g1 6= 0. We will denote the set

of even and odd roots of g as ∆0 and δ1 respectively.
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CHAPTER 4

Lie Superalgebra of type P

It is well known that a semisimple Lie algebra is a direct sum of simple Lie

algebras, but this is by no means true in the case of Lie superalgebras. However, Kac

gave a construction in [36] that allows us to describe finite-dimensional semisimple

Lie superalgebras in terms of finite-dimensional simple Lie superalgebras. Kac then

went on to classify all simple Lie superalgebras over an algebraically closed field of

characteristic zero. One class, the Lie superalgebras of type P, otherwise called the

periplectic Lie superalgebras, pn, will be the main focus.

We want to define a quantized enveloping superalgebra associated with pn,

which will first require us to determine a Lie bisuperalgebra structure on pn. In this

chapter, we will first define pn, then show what the Lie bisuperalgebra structure is

on pn. We then finish the discussion with other essentials for when we discuss the

quantized enveloping superalgebra in the next chapter.

From this chapter and on, we will be studying these Lie superalgebras over the

complex numbers C.

4.1 Definition of pn

Let C(n|n) is the vector superspace Cn⊕Cn spanned by the odd standard basis

vectors e−n, . . . , e−1 and the even standard basis vectors e1, . . . , en. Let Mn|n(C)

be the vector superspace consisting of matrices A = (aij) with aij ∈ C, with

rows and columns labeled using the integers −n, . . . ,−1 and 1, . . . , n (which means

i, j ∈ {±1,±2, . . . ,±n}. For each elementary matrix Eij in Mn|n(C), the parity is
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determined by p(Eij) = p(i) + p(j) mod 2, where p(i) = 0 ∈ Z2 if 1 ≤ i ≤ n and

p(i) = 1 ∈ Z2 if −n ≤ i ≤ −1.

We will use gln|n to denote the Lie superalgebra gl(n|n) over C, with underlying

vector superspace Mn|n(C) described above. Recall that gl(n|n) is equipped with the

Lie superbracket

[Eij, Ekl] = δjkEil − (−1)(p(i)+p(j))(p(k)+p(l))δilEkj

Let ι be the involution on gl(n|n) given by ι(X) = −π(Xst), where π : gl(n|n) →

gl(n|n) is the linear map given by π(Eij) = E−i,−j.

Definition 4.1.1. The Lie superalgebra pn of type P, which is also called the

periplectic Lie superalgebra, is the subspace of fixed points of gl(n|n) under the

involution ι, that is

pn = {X ∈ gl(n|n) | ι(X) = X}

Using the definition, we see that if X ∈ pn, then as a matrix X has the formA B

C −At

 (4.1)

where B is symmetric and C is skew-symmetric.

Let

Eij = Eij + ι(Eij) = Eij − (−1)p(i)(p(j)+1)E−j,−i

We can write the superbracket on pn in terms of the Eij’s as follows:

[Eji,Elk] =δilEjk − (−1)(p(i)+p(j))(p(k)+p(l))δjkEli

− δi,−k(−1)p(l)(p(k)+1)Ej,−l − δ−j,l(−1)p(j)(p(i)+1)E−i,k (4.2)
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A basis of pn is provided by all the matrices Eij with 1 ≤ |j| < |i| ≤ n,

1 ≤ i = j ≤ n, and −n ≤ i = −j ≤ −1. Note that Eij = −(−1)p(i)(p(j)+1)E−j,−i for all

i, j ∈ {±1, . . . ,±n}. This implies that Ei,−i = 0 when 1 ≤ i ≤ n.

There is an alternative definition for this Lie superalgebra: Let Vn = V0 ⊕ V1

be a vector superspace of dimension (n|n), and let B be an odd, non-degenerate,

supersymmetric bilinear form given on the basis of Vn by

(vi, vj) = −δi,−j (4.3)

Then we can define the Lie superalgebra p(Vn) to be the Lie subsuperalgebra

of gl(Vn) whose homogeneous maps preserve the bilinear form in (4.3):

p(Vn) = {ϕ ∈ gl(Vn) | (ϕ(v), w) + (−1)p(a)p(ϕ)(v, ϕ(w)) = 0 for all homogeneous v, w ∈ Vn}

Fixing a basis for Vn will identify p(Vn) with a Lie superalgebra isomorphic to pn.

Different choices of the bilinear form will give isomorphic periplectic Lie superalgebras.

4.2 Lie bisuperalgebra structure of pn

In order to construct a Lie bisuperalgebra structure on pn, Proposition 3.5.1

allows us to use a Manin supertriple. First we need to determine a bilinear form on

gln|n to use. For the rest of this chapter, we will use the bilinear form B given by the

supertrace

B(X, Y ) = Str(XY ).

Recall that B is ad-invariant, supersymmetric and non-degenrate by Proposition 3.4.1,

which is necessary by definition of a Manin supertriple.

Now we want to find a Lie subsuperalgebra of gln|n that is what we can

consider an ”orthogonal“ to pn with respect to the supertrace. The following Lie

subsuperalgebra of gln|n is what we use:
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Definition 4.2.1. The “butterfly” Lie superalgebra bn is the subspace of gln|n

spanned by Eij with 1 ≤ |i| < |j| ≤ n and by Eii + E−i,−i, Ei,−i for 1 ≤ i ≤ n.

Proposition 4.2.1. (gln|n, pn, bn) is a Manin supertriple.

Proof. Through straightforward computations of the basis elements, we have that

B(X, Y ) = 0 for X, Y ∈ pn or for X, Y ∈ bn. So, pn and bn are B-isotropic. Also,

note that every elementary matrix is obtained by some sum of basis elements in pn

and bn.

Eii = (−1)p(i)Eii + (Eii + E−i,−i) for i ∈ {±1, . . . ,±n}

Ei,−i =
1

2
Ei,−i + δi>0Ei,−i for i ∈ {±1, . . . ,±n}

Eij =


0 + Eij if 1 ≤ |i| < |j| ≤ n

Eij + (−1)p(i)(p(j)+1)E−j,−i if 1 ≤ |j| ≤ |i| ≤ n

So we have that every element in gln|n can be written as a sum of elements in pn

and bn. Therefore gln|n = pn + bn. In fact, gln|n = pn ⊕ bn as pn ∩ bn = {0} due

to the elementary matrices being linear independent in gln|n. Thus, pn and bn are

transversal subspaces of gln|n.

Remark 4.2.2. A similar Manin supertriple is given in [40].

To use equation (3.5) to determine the cobracket on pn explictly, we need to

first extend the bilinear map B. We extend the form B to a non-degenerate pairing

B⊗2 on gln|n ⊗C gln|n by setting

B⊗2(X1 ⊗X2, Y1 ⊗ Y2) = (−1)p(X2)p(Y1)B(X1, Y1)B(X2, Y2) (4.4)

for all homogeneous X1, X2, Y1, Y2 ∈ pn. The sign (−1)p(X2)p(Y1) is necessary for the

form to be ad-invariant.
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Using the identity (3.5) as a result of the Manin supertriple (gln|n, pn.pn) , we

can now compute the supercobracket δ for pn. The formula for δ (assuming, without

loss of generality, that |j| ≤ |i|) is as follows:

δ(Eij) =
n∑

k=−n
|j|<|k|<|i|

(−1)p(k)+1
(
Eik ⊗ Ekj − (−1)(p(i)+p(k))(p(j)+p(k))Ekj ⊗ Eik

)
−1

2
((−1)p(i)Eii − (−1)p(j)Ejj)⊗ Eij +

1

2
Eij ⊗ ((−1)p(i)Eii − (−1)p(j)Ejj)

−δ(i < 0)

2

(
Ei,−i ⊗ E−i,j − (−1)p(j)E−i,j ⊗ Ei,−i

)
(4.5)

+
δ(j > 0)

2

(
(−1)p(i)E−j,j ⊗ Ei,−j + Ei,−j ⊗ E−j,j

)
Now we have a Lie bisuperalgebra structure on pn. Following the ideas in [44],

to obtain a quantized enveloping superalgebra of type P , we will effectively quantized

the Lie bisuperalgebra structure on pn. To accomplish this, we will need a particular

element s that satisfies the classical Yang-Baxter equation:

[s12, s13] + [s12, s23] + [s13, s23] = 0.

We can construct such an element due to the following lemma from [2].

Lemma 4.2.3. Let p be a finite dimensional Lie superalgebra and suppose that

(a, a1, a2) is a Manin triple with respect to a certain supersymmetric, invariant,

bilinear form B(·, ·). Let {Xi}i∈I , {X ′i}i∈I be dual bases of a1 and a2, respectively, in

the sense that B(X ′i, Xj) = δij. Set s =
∑

i∈I Xi ⊗X ′i. Then s is a solution of the

classical Yang-Baxter equation.

Let

s =
∑

1≤|j|<|i|≤n

(−1)p(j)Eij⊗Eji+
1

2

∑
1≤i≤n

Eii⊗(Eii+E−i,−i)+
1

2

∑
1≤i≤n

E−i,i⊗Ei,−i (4.6)

This is obtained from the previous lemma, using the Manin supertriple from

Proposition 4.2.1.
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Remark 4.2.4. The fake Casimir used in [3] is also defined using the sum of tensor

product of basis vectors in pn and their duals in p⊥n , but the fake Casimir differs from

the element s.

Using Lemma 4.2.3, we obtain the following result:

Proposition 4.2.5. s is a solution of the classical Yang-Baxter equation: [s12, s13] +

[s12, s23] + [s13, s23] = 0.

Something to note is that now we can explicitly write the cobracket on pn in a

more compact form, in terms of s.

Lemma 4.2.6. The super cobracket can also be expressed as

δ(X) = [X ⊗ 1 + 1⊗X, s]. (4.7)

Proof. First note that, since s is even, [X ⊗ 1 + 1 ⊗ X, s] = −[s, X ⊗ 1 + 1 ⊗ X].

We have to check that B⊗2(δ(X), Y1 ⊗ Y2) = B⊗2([X ⊗ 1 + 1⊗X, s], Y1 ⊗ Y2) for all

Y1, Y2 ∈ bn and all X ∈ pn.

Since it is not obvious that [X ⊗ 1 + 1 ⊗X, s] ∈ pn ⊗ pn, we first verify that

B⊗2([X ⊗ 1 + 1⊗X, s], Y1 ⊗ Y2) = 0 if (Y1, Y2) ∈ pn ⊕ pn, pn ⊕ bn or bn ⊕ bn. Since

B(bn, bn) = 0 = B(pn, pn), this is clear except perhaps if Y1 ∈ bn and Y2 ∈ pn. Let

us assume that Y1 and Y2 belong to the natural bases of bn and pn given above. Let

Y ∨1 ∈ pn and Y ∨2 ∈ bn be the elements in the same bases (up to a scalar multiple) and

dual to Y1 and Y2 (so the scalar in question is such that B(Y ∨1 , Y1) = 1 = B(Y2, Y
∨

2 ).)

Using that (·, ·) is supersymmetric and invariant, we obtain:

B⊗2([X ⊗ 1 + 1⊗X, s] , Y1 ⊗ Y2)=− B⊗2([s, X ⊗ 1 + 1⊗X], Y1 ⊗ Y2)

= B⊗2(s, [X ⊗ 1 + 1⊗X, Y1 ⊗ Y2])

= −B⊗2(s, [X, Y1]⊗ Y2 + (−1)p(X)p(Y1)Y1 ⊗ [X, Y2])

= −B⊗2(Y2 ⊗ Y ∨2 , [X, Y1]⊗ Y2)− (−1)p(X)p(Y1)B⊗2(Y ∨1 ⊗ Y1, Y1 ⊗ [X, Y2])
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= −(−1)p(Y2)(p(X)+p(Y1))B(Y2, [X, Y1])− (−1)p(X)p(Y1)B(Y1, [X, Y2])

= −B([X, Y1], Y2)− (−1)p(X)p(Y1)B(Y1, [X, Y2])

= 0.

To verify (4.7), we pick Y1, Y2 ∈ bn and X ∈ pn. We have:

B⊗2([X ⊗ 1 + 1⊗X, s], Y1 ⊗ Y2) = −B⊗2([s, X ⊗ 1 + 1⊗X], Y1 ⊗ Y2)

= −(−1)p(X)p(Y1)B⊗2(Y ∨1 ⊗ Y1, Y1 ⊗ [X, Y2])

= −(−1)p(X)p(Y1)B(Y1, [X, Y2])

= −(−1)p(Y1)p(Y2)B([X, Y2], Y1)

= −(−1)p(Y1)p(Y2)B(X, [Y2, Y1])

= B(X, [Y1, Y2])

= B⊗2(δ(X), Y1 ⊗ Y2).

4.3 Root System of pn

Let I := {1, . . . , n−1} and J := {1, . . . , n}. Let h be the Cartan subsuperalgebra

of pn with basis {k1, . . . , kn}, where ki := Eii for 1 ≤ i ≤ n. Let {ε1, . . . , εn} be the

basis of h∗ dual to {k1, . . . , kn}.

The root system ∆ of pn consists of the roots

εi − εj for i 6= j

εi + εj for i < j

−εi − εj for i ≤ j.

Let αi = εi − εi+1, βi = 2εi, and γi = εi + εi+1. Then, for i ∈ I and j ∈ J , let
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ei := E−i−1,−i

fi := Ei+1,i

ei := Ei+1,−i

fi := Ei+1,i

Fj := E−j,j

The following shows what the relations of pn are in terms of the generating

elements defined above.

Proposition 4.3.1 ([21]). The Lie superalgebra pn is generated by the elements ei,

ei, fi, fi (i ∈ I), h and Fj (j ∈ J) subject to following defining relations (for h ∈ h):

[h, h] = 0

[h, ei] = αi(h)ei

[h, fi] = −αi(h)fi

[h, ei] = γi(h)ei

[h, fi] = −γi(h)fi

[h, Fi] = −βi(h)Fi

[ei, ej] = [fi, fj] = 0 for |i− j| 6= 1

[ei, fj] = −δij(ki − ki+1)

[ei, fi] = −(ki − ki+1)

[fi, ej] = 0 if |i− j| > 1

[fi+1, ei] = [ei+1, ei]

[fi, ei+1] = [fi+1, fi]

[ei+1, ei] = [fi+1, ei]

[fi+1, fi] = [ei+1, fi]

[fi, fi] = Fi

[ei, fi] = Fi+1

[ei, ej] = [fi, fj] = 0 for i, j ∈ I

[fi, ej] = 0 if i 6= j + 1

[ei, ej] = 0 if i 6= j + 1

[ei, fj] = 0 if i 6= j, j + 1

[fi, fj] = 0 if i 6= j, j + 1

[Fj, ei] = −βi(kj)fi

[Fj, fi] = βi+1(kj)fi

[ei, [ei, ei±1]] = 0

[fi, [fi, fi±1]] = 0

[ei+1, [ei+1, ei]] = ei
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Note that the relations of pn in Proposition 4.3.1 gives that the elements ei,

fi, ei, fi, and Fi are all root vectors of pn under the adjoint representation. More

specifically, the root spaces of αi, −αi, γ, −γi, and −βi are spanned, respectively, by

ei, fi, ei, fi, and Fi.

Some additional relations of pn are shown in the following lemma:

Lemma 4.3.2. The following relations hold in pn:

(a) [Fj, ei] =


2fi if j = i

2ei if j = i+ 1

0 otherwise

(b) [Fj, fi] = 0

(c) [ei, [ei, ei±1]] = 0

(d) [fi, [fi, fi±1]] = 0

(e) [Fi, Fj] = 0 for i, j ∈ J

Proof. We will prove (a) and (c). The remaining parts can be deduced similarly.

First, we prove (a) for j = n. For every i we have

[Fn, ei] = [[en−1, fn−1], ei] = [ei, [en−1, fn−1]] = [en−1, [fn−1, ei]] + [fn−1, [ei, en−1]] = [en−1, [fn−1, ei]].

If i = n − 2, then we have that [en−1, [fn−1, en−2]] = [en−1, [en−1, en−2]] = 0. If

i = n− 1, then we have that

[en−1, [fn−1, en−1]] = [en−1,−kn−1 + kn] = −[en−1, kn−1] + [en−1, kn] = 2en−1.

Otherwise, we have that [Fn, ei] = 0.

Next we prove (a) for j < n. Using the relations in Proposition ??, we have

that:

[Fj, ei] = [[fj, fj], ei]
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= [ei, [fj, fj]]

= [fj, [fj, ei]]− [fj, [ei, fj]].

Note that [Fj, ei] = 0 from above, unless |i− j| ≤ 2. So, we need to check the three

subcases i− j = 0, 1,−1.

If j = i, then

[Fi, ei] = [fi, [fi, ei]]− [fi, [ei, fi]]

= −[fi,−ki + ki+1]

= 2fi.

If i = j + 1, then

[Fj, ej+1] = [fj, [fj, ej+1]]− [fj, [ej+1, fj]]

= −[fj, [fj+1, fj]]

= [fj, [fj, fj+1]] + [fj, [fj+1, fj]]

= 0.

If j = i+ 1, then

[Fi+1, ei] = [fi+1, [fi+1, ei]]− [fi+1, [ei, fi+1]]

= [fi+1, [ei+1, ei]]− [fi+1, [ei+1, ei]]

= [ei+1, [ei, fi+1]]− [ei, [fi+1, ei+1]] + [ei+1, [ei, fi+1]] + [ei, [fi+1, ei+1]]

= −[ei,−ki+1 + ki+2]− [ei,−ki+1 + ki+2]

= 2ei.

Now, we prove (c). Note that [ei, ei−1] = 0 for all 2 ≤ i ≤ n, so [ei, [ei, ei−1]] = 0.

Also,

[ei, [ei, ei+1]] = [ei, [ei, fi+1]]
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= [ei, [fi+1, ei]] + [fi+1, [ei, ei]]

= 0.

Using the root space decomposition pn = h ⊕

(⊕
µ∈∆

(pn)µ

)
we define the

triangular decomposition

pn = p−n ⊕ h⊕ p+
n ,

where p−n is spanned by {fi, fi, Fj | i ∈ I, j ∈ J} and p+
n is spanned by {ei, ei | i ∈ I}.

Equivalently, ∆ = ∆+ t∆−, where

∆+ = ∆(p+
n ) = {αi, γi | i ∈ I}, ∆− = ∆(p−n ) = {−αi,−γi,−βj | i ∈ I, j ∈ J}.

The cone of positive roots will be denoted by Q+ :=
n−1∑
i=1

Z≥0αi +
n−1∑
i=1

Z≥0γi and

Q− := −
n−1∑
i=1

Z≥0αi −
n−1∑
i=1

Z≥0γi −
n∑
i=1

Z≥0βi denotes the cone of negative roots. By

Q = Q+ +Q− we denote the cone of roots.

We will also denote P :=
n⊕
i=1

Zεi to be the weight lattice of pn, and denote

P∨ :=
n⊕
i=1

Zki to be the coweight lattice.
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CHAPTER 5

Quantized Enveloping Superalgebra of Type P

In this chapter, we define the quantized enveloping superalgebra of type P

following the approach used in [29] and [44]. We will also prove that it is indeed

a quantization of a Lie bisuperalgebra structure on pn discussed in the previous

chapter. Some of its basic properties and relations will be discussed, and a PBW-type

basis for the superalgebra will be given. For this and subsequent chapters, we will

denote by Cq the field C(q) of rational functions in the variable q, and we will set

Cq(n|n) = Cq ⊗C C(n|n)

5.1 Quantized enveloping superalgebra

Definition 5.1.1. Let S ∈ EndCq(Cq(n|n)⊗2) be given by the formula:

S =
n∑

i,j=−n

sij ⊗ Eij (5.1)

where

sij = (q − q−1)(−1)p(i)Eji if |i| < |j|

si,−i = (q − q−1)δi>0E−i,i

sii = (q − 1)(Eii − q−1E−i,−i) + 1

Remark 5.1.1. If we define S instead as an element of EndC[[~]](C~(n|n)⊗2) by the same

formula as in definition 5.1.1 but with q, q−1 replaced by e~/2, e−~/2 and Cq(n|n)⊗2

replaced by C~(n|n)⊗2 = C(n|n)⊗2[[~]], then S = 1 + ~s + o(~). This allows us to

think of S as a quantized version of s.
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Theorem 5.1.2. S is a solution of the quantum Yang-Baxter equation:

S12S13S23 = S23S13S12.

Proof. We will give a sketch of the proof here. A more thorough proof is given in

[1]. Set f(q) = S12S13S23 − S23S13S12. Then, consider f(q) as a Laurent polynomial
3∑

i=−3

fiq
i with coefficients fi in EndC

(
C⊗3
n|n

)
. Then one shows the eight relations

f(a) = 0, f ′(b) = 0, f ′′(c) = 0 for a, b, c = ±1 and b = ±
√
−1. We can then deduce

that f(q) is a scalar multiple of (q − q−1)3 and we show that the coefficient of q3 in

f(q) is zero.

Using S, we can now define the main object of interest:

Definition 5.1.2. The quantized enveloping superalgebra of pn is the Z2-graded

Cq−algebra Uqpn generated by elements tij, t
−1
ii with 1 ≤ |i| ≤ |j| ≤ n and i, j ∈

{±1, . . . ,±n} which satisfy the following relations:

tii = t−i,−i, t−i,i = 0 if i > 0, tij = 0 if |i| > |j|; (5.2)

T12T13S23 = S23T13T12 (5.3)

where T =
∑
|i|≤|j| tij⊗CEij and the last equality holds in Uqpn⊗C(q)EndC(q)(Cq(n|n))⊗2.

The Z2-degree of tij is p(i) + p(j).

Uqpn is a Hopf algebra with antipode given by T 7→ T−1 and with coproduct

given by

∆(tij) =
n∑

k=−n

(−1)(p(i)+p(k))(p(k)+p(j))tik ⊗ tkj.

Remark 5.1.3. Since, by Theorem 5.1.2, S is a solution to the quantum Yang-Baxter

equation, relation (5.3) gives that Cq(n|n) is a representation of Uqpn via the mapping

T 7→ S. More specifically, tij 7→ sij, where S =
n∑

i,j=−n
sij ⊗ Eij as in Definition 5.1.1.
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By comparing coefficients of Eij ⊗ Ek` on both sides on relation (5.3), the

defining relation (5.3) in Definition 5.1.2 can be written explicitly as

(−1)(p(i)+p(j))(p(k)+p(l))tijtkl − tkltij + θ(i, j, k)
(
δ|j|<|l| − δ|k|<|i|

)
εtiltkj

+ (−1)(p(i)+p(j))(p(k)+p(l))
(
δj>0(q − 1) + δj<0(q−1 − 1)

)(
δjl + δj,−l

)
tijtkl

−
(
δi>0(q − 1) + δi<0(q−1 − 1)

)(
δik + δi,−k

)
tkltij + θ(i, j, k)δj>0δj,−lεti,−jtk,−l

− (−1)p(j)δi<0δi,−kεt−k,lt−i,j + (−1)p(j)(p(i)+1)ε
∑

−n≤a≤n

(
(−1)p(i)p(a)θ(i, j, k)δj,−lδ|a|<|l|ti,−atka

+ (−1)p(−j)p(a)δi,−kδ|k|<|a|talt−a,j
)

= 0

(5.4)

where

θ(i, j, k) = sgn(sgn(i) + sgn(j) + sgn(k)) and ε = q − q−1.

Remark 5.1.4. If tij is odd, then t2ij = 0. This follows for example after taking i = k

and j = l in (5.4).

We have that a PBW-type theorem holds for Uqpn. Let ≺ be a total order on

the set of generators tij, 1 ≤ |i| ≤ |j| ≤ n, of Uqpn, such that tij ≺ tkl if

(i) |i| > |k|, or

(ii) |i| = |k| and |j| > |l|, or

(iii) i = k and j = −l > 0, or

(iv) i = −k > 0 and |j| = |l|.

Note that this order leads to a total lexicographic order on the set of words formed

by the generators tij . Namely, if A = A1 · · ·Ar and B = B1 · · ·Bs are two such words

in the sense that each Ak for 1 ≤ k ≤ r and each Bl for 1 ≤ l ≤ s is equal to some

generator tij, then A ≺ B if r < s or if r = s and there is a p such that Ak = Bk for

1 ≤ k ≤ p− 1 and Ap ≺ Bp. Note that, in this order, the generators tij with i = j or

i = −j are not grouped together. We call a generator of the from tii diagonal.
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Definition 5.1.3. A word Ak11 ...A
kr
r in the generators tij is called a reduced monomial

if A1 ≺ · · · ≺ Ar, and ki ∈ Z>0 if Ai is not diagonal, ki ∈ Z \ {0} if Ai is diagonal,

and ki = 1 if Ai is odd.

Theorem 5.1.5. The reduced monomials form a basis of Uqpn over Cq.

Proof. This proof is also found in [1]. We first show that the set of reduced monomials

spans Uqpn. Note that it is enough to show that all quadratic monomials are in the

span of this set. Let tijtkl be a quadratic monomial which is not reduced. We have

that either tkl 6= tij, or i = k, j = l and tij is odd. In the latter case, as explained in

Remark 5.1.4, t2ij=0. In the former case, we proceed with a case-by-case reasoning

considering seven mutually exclusive subcases:

(a) |i| < |k| and |j| 6= |l|.

(b) |i| < |k| and j = l.

(c) |i| < |k| and j = −l.

(d) |i| = |k| and |j| < |l|.

(e) i = k and j = −l < 0.

(f) i = −k < 0 and j = l.

(g) i = −k < 0 and j = −l.

Let’s consider in some details subcase (c). The remaining subcases are handled

in a similar manner. In subcase (c), (5.4) simplifies to:

(−1)(p(i)+p(j))(p(k)+p(−j))(δj>0q + δj<0q
−1
)
tijtk,−j − tk,−jtij + θ(i, j, k)δj>0εti,−jtkj

+ (−1)p(j)(p(i)+1)ε
∑

−n≤a≤n

(−1)p(i)p(a)θ(i, j, k)δ|a|<|j|ti,−atka = 0

(5.5)

Let us assume that |l| = |j| = 1. Then the previous equation reduces to

(−1)(p(i)+p(j))(p(k)+p(−j))(δj>0q + δj<0q
−1
)
tijtk,−j + θ(i, j, k)δj>0εti,−jtkj = tk,−jtij
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Replacing j by −j leads to the equation

(−1)(p(i)+p(−j))(p(k)+p(j))
(
δj<0q + δj>0q

−1
)
ti,−jtkj + θ(i,−j, k)δj<0εtijtk,−j = tkjti,−j

The monomials tk,−jtij and tkjti,−j are properly ordered and the previous two equations

can be solved to express tijtk,−j and ti,−jtkj in terms of the former.

We then proceed by descending induction on |j| and show that tijtk,−j can be

expressed as a linear combination of properly ordered monomials. The base case |j| = 1

was completed above. We use again (5.5) and the corresponding equation obtained

after switching j and −j. In these two equations, by induction, the monomials

ti,−atka with |a| < |j| can be expressed as linear combinations of properly ordered

monomials. Moreover, tk,−jtij and tkjti,−j are already correctly ordered. As in the

case |l| = |j| = 1, we can then solve those two equations to express tijtk,−j and ti,−jtkj

in terms of properly ordered monomials.

It remains to show that the reduced monomials form a linearly independent set.

We follow the approach in [44]. LetM1, . . . ,Mr be pairwise distinct reduced monomials

in the generators τij such that a1M1 + . . . + arMr = 0 for some a1, . . . , ar ∈ Cq.

Without loss of generality, we can assume that ai ∈ A. It is sufficient to prove that

a1, ..., ar ∈ A implies a1, ..., ar ∈ (q − 1)A.

Recall that there is a surjective homomorphism θ : UApn → Upn More precisely,

θ is the composite of ψ−1 from Theorem 5.2.1 and the projection UApn → UApn/(q−

1)UApn from Theorem 5.2.1. Let M i = θ(Mi) and denote by āi the image of ai in

A/(q − 1)A. Since M1, . . . ,Mr are pairwise distinct reduced monomials, M1, . . . ,M r

are pairwise distinct monomials in Upn. Then using that

ā1M1 + . . .+ ārM r = θ(a1M1 + . . .+ arMr) = 0

and the (classical) PBW Theorem for Upn, we obtain ā1 = . . . = ār = 0. Hence

a1, . . . , ar ∈ (q − 1)A as needed.
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5.2 Limit when q → 1 and quantization

We want to explain how we can view Upn as the limit when q → 1 of Uqpn.

We also want to explain how the co-Poisson Hopf algebra structure on Upn that is

inherited from the cobracket δ on pn can be recovered from the coproduct on Uqpn.

This will be important to know when relating the representation theory of Uqpn to

that of Upn.

Set τij =
tij

q−q−1 if i 6= j and set τii = tii−1
q−1

. Let A be the localization of C[q, q−1]

at the ideal generated by q − 1. Let UApn be the A-subalgebra of Uqpn generated by

τij when 1 < |i| < |j| < n.

Theorem 5.2.1. The map ψ : Upn −→ UApn/(q − 1)UApn given by ψ(Eji) =

(−1)p(j)τ ij for |i| < |j|, 1 ≤ i = j ≤ n, and ψ(E−i,i) = −2τ i,−i for 1 ≤ i ≤ n, is an

associative C-superalgebra isomorphism.

Proof. In order to check that ψ([Eji,Ekl]) = [ψ(Eji), ψ(Ekl)], we proceed as follows.

We apply ψ on both sides of (4.2). To show that the resulting right hand side coincides

with [ψ(Eji), ψ(Ekl)], we use (5.4) and pass to the quotient UApn/(q− 1)UApn. This is

done via a long case-by-case verification for i, j, k, l in each of the following 26 cases:

1. |i| = |j| < |k| < |l|

2. |k| < |i| = |j| < |l|

3. |k| < |l| < |i| = |j|

4. |k| = |l| < |i| < |j|

5. |i| < |k| = |l| < |j|

6. |i| < |j| < |k| = |l|

7. |i| = |k| < |j| < |l|

8. |i| = |k| < |l| < |j|

9. |i| < |k| < |l| = |j|

10. |k| < |i| < |l| = |j|

11. |k| < |l| = |i| < |j|

12. |i| < |j| = |k| < |l|

13. |i| < |j| < |k| < |l|

14. |i| < |k| < |j| < |l|

15. |i| < |k| < |l| < |j|

16. |k| < |i| < |j| < |l|

17. |k| < |i| < |l| < |j|

18. |k| < |l| < |i| < |j|

19. |k| = |l| < |i| = |j|

20. |i| = |j| < |k| = |l|

21. |i| = |k| < |j| = |l|

22. |i| = |j| = |k| < |l|

23. |k| < |i| = |j| = |l|

24. |i| = |k| = |l| < |j|

25. |i| < |j| = |k| = |l|

26. |i| = |j| = |k| = |l|
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We will show case (10), and all other cases follow similarly. This case splits

into two subcases: when j = l and when j = −l.

When j = l, (5.4) gives us that

0 = (−1)(p(i)+p(j))(p(k)+p(j))(q − q−1)2τijτkj − (q − q−1)2τkjτij

− (−1)(p(i)+p(j))(p(i)+p(k))+p(i)(q − q−1)3τijτkj

+ (−1)(p(i)+p(j))(p(k)+p(j))(qsgn(j) − 1)(q − q−1)2τijτkj − δj>0(−1)p(i)(p(k)+1)(q − q−1)3τi,−jτk,−j

This simplifies to

0 = (−1)(p(i)+p(j))(p(k)+p(j))τijτkj − τkjτij − (−1)(p(i)+p(j))(p(i)+p(k))+p(i)(q − q−1)τijτkj

+ (−1)(p(i)+p(j))(p(k)+p(j))(qsgn(j) − 1)τijτkj − δj>0(−1)p(i)(p(k)+1)(q − q−1)τi,−jτk,−j.

Hence, in UAg/(q − 1)UAg we have that:

0 = (−1)(p(i)+p(j))(p(k)+p(j))τ ijτ kj − τ kjτ ij.

The above together with [Eji,Ejk] = 0 implies that:

[ψ(Eji), ψ(Ejk)] = [(−1)p(j)τ ij, (−1)p(j)τ kj]

= (−1)(p(i)+p(j))(p(k)+p(j))
(
(−1)(p(i)+p(j))(p(k)+p(j))τ ij τ kj − τ kj τ ij

)
= 0 = ψ ([Eji,Ejk]) .

Now, in the case that j = −l, (5.4) gives us that

Eij,kl(q) = (−1)(p(i)+p(j))(p(k)+p(j)+1)(q − q−1)2τijτk,−j − (q − q−1)2τk,−jτij

− (−1)(p(i)+p(j))(p(i)+p(k))+p(i)(q − q−1)3τi,−jτkj

+ (−1)(p(i)+p(j))(p(k)+p(j)+1)(qsgn(j) − 1)(q − q−1)2τijτk,−j

− δj>0(−1)(p(i)+p(j))(p(i)+p(k))(q − q−1)3τi,−jτkj

+ (−1)p(j)(p(k)+1)(q − q−1)2((q − 1)τi,−kτkk + τi,−k + (−1)p(i)(q − q−1)τikτk,−k)
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+ (−1)p(j)(p(k)+1)+p(k)p(i)(q − q−1)3
∑

|k|<|a|<|j|

(−1)p(i)p(a)δ|a|<|j|τi,−aτka

This simplifies to

0 = (−1)(p(i)+p(j))(p(k)+p(j)+1)τijτk,−j − τk,−jτij

− (−1)(p(i)+p(j))(p(i)+p(k))+p(i)(q − q−1)τi,−jτkj + (−1)(p(i)+p(j))(p(k)+p(j)+1)(qsgn(j) − 1)τijτk,−j

− δj>0(−1)(p(i)+p(j))(p(i)+p(k))(q − q−1)τi,−jτkj

+ (−1)p(j)(p(k)+1)((q − 1)τi,−kτkk + τi,−k + (−1)p(i)(q − q−1)τi,kτk,−k)

+ (−1)p(j)(p(k)+1)+p(k)p(i)(q − q−1)
∑

|k|<|a|<|j|

(−1)p(i)p(a)δ|a|<|j|τi,−aτka.

Hence, in UAg/(q − 1)UAg, we have:

0 = (−1)(p(i)+p(j))(p(k)+p(j)+1)τ ijτ k,−j − τ k,−jτ ij + (−1)p(j)(p(k)+1)τ i,−k

By combining the above with [Eji,E−j,k] = (−1)p(i)(p(j)+1)+1E−i,k, we obtain:

[ψ(Eji), ψ(E−j,k)] = [(−1)p(j)τ ij, (−1)p(j)+1τ k,−j]

= (−1)(p(i)+p(j))(p(k)+p(j)+1)+1
(
(−1)(p(i)+p(j))(p(k)+p(j)+1)τ ij τ k,−j − τ k,−j τ ij

)
= (−1)(p(i)+p(j))(p(k)+p(j)+1)+1

(
(−1)p(j)(p(k)+1)+1τ i,−k

)
= (−1)p(j)p(i)+p(i)p(k)+p(i)ψ (E−k,i)

= (−1)p(j)(p(i)+1)+1ψ (E−i,k)

= ψ ([Eji,E−j,k]) .

Note that ψ is surjective due to how UApn is defined. So, it remains to prove

that it is injective. (The rest of this proof can be found in [1].) Recall by Remark 5.1.3

that the space Cq(n|n) is a representation of Uqpn via the assignment tij 7→ sij (where

S =
∑n

i,j=−n sij ⊗ Eij). Therefore, by restriction, Cq(n|n) is also a representation of

UApn by restriction. More explicitly,

τij 7→ (−1)p(i)Eji if |i| < |j|,
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τi,−i 7→ E−i,i,

τii 7→ (Eii − q−1E−i,−i) if 1 ≤ i ≤ n.

Set CA(n|n) = A ⊗C C(n|n). The space CA(n|n) is a UApn-submodule and so are

all the tensor powers CA(n|n)⊗`. We thus have a superalgebra homomorphism

φ` : UApn −→ EndA(CA(n|n)⊗`) for each ` ≥ 1.

Let π` be the quotient homomorphism

EndA(CA(n|n)⊗`) −→ EndA(CA(n|n)⊗`)/(q−1)EndA(CA(n|n)⊗`) ∼= EndC(C(n|n)⊗`).

The composite π` ◦ φ` descends to a homomorphism π` ◦ φ` from UApn/(q − 1)UApn

to EndC(C(n|n)⊗`). The composite π` ◦ φ` ◦ ψ is the superalgebra homomorphism

Upn −→ EndC(C(n|n)⊗`) induced by the natural pn-module structure on C(n|n)⊗`

twisted by the automorphism of pn given by Eij 7→ (−1)p(i)+p(j)Eij.

We can combine the homomorphisms π` ◦ φ` ◦ ψ for all ` ≥ 1 to obtain a

homomorphism

Upn −→
∞∏
`=1

EndC(C(n|n)⊗`).

This map is injective since C(n|n) is a faithful representation of pn. It follows that ψ

is injective as well.

Remark 5.2.2. If we replace C(q) by C((~)), q by e~/2, and A by C[[~]], similar to

remark 5.1.3, then we obtain an analogue to Theorem 5.2.1 which would also hold

true.

Recall that the Lie bisuperalgebra structure of pn is induced by the cobracket

δ, with an explicit formula from equation (4.5). This cobracket δ then extends to

a Poisson co-bracket on Upn, which we will also denote as δ. A very important

result that we want to show is that UC[[~]]pn is a quantization of the co-Poisson Hopf

superalgebra structure on Upn, which is Theorem 5.2.3.
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For convenience, for A ∈ UC[[~]]pn, we denote by A both the image of A in

UC[[~]]pn/hUC[[~]]pn and the corresponding element in Upn via the isomorphism of the

~-analogue of Theorem 5.2.1. We similarly identify the corresponding elements in(
UC[[~]]pn/hUC[[~]]pn

)
⊗
(
UC[[~]]pn/hUC[[~]]pn

)
and Upn ⊗ Upn.

Theorem 5.2.3. If A ∈ UC[[~]]pn, we have ~−1(∆(A)−∆(A)◦) = δ(A). Hence,

UC[[~]]pn is a quantization of the co-Poisson Hopf superalgebra structure on Upn.

Proof. It is enough to show that the identity above holds for the generators τij of

UC[[~]]g. Let A = τij. First note that the identity is trivially satisfied for i = j, as

both sides are zero. Assume now that i 6= j. Then:

~−1 (∆(τij)−∆(τij)
◦) =

(
e~/2 − e−~/2

~

) n∑
k=−n
|i|<|k|<|j|

(
(−1)(p(i)+p(k))(p(j)+p(k))τik ⊗ τkj − τkj ⊗ τik

)

+

(
e~/2 − 1

~

)
(τii ⊗ τij − τij ⊗ τii + τij ⊗ τjj − τjj ⊗ τij)

−
(
e~/2 − e−~/2

~

)
δi>0

(
(−1)p(j)τi,−i ⊗ τ−i,j + τ−i,j ⊗ τi,−i

)
+

(
e~/2 − e−~/2

~

)
δj<0

(
(−1)p(i)τi,−j ⊗ τ−j,j − τ−j,j ⊗ τi,−j

)
Thus, in UC[[~]]g/~UC[[~]]g, we have:

~−1 (∆(τij)−∆(τij)◦) =
n∑

k=−n
|i|<|k|<|j|

(
(−1)(p(i)+p(k))(p(j)+p(k))τ ik ⊗ τ kj − τ kj ⊗ τ ik

)
+

1

2
(τ ii ⊗ τ ij − τ ij ⊗ τ ii + τ ij ⊗ τ jj − τ jj ⊗ τ ij)

− δi>0

(
τ−i,j ⊗ τ i,−i + (−1)p(j)τ i,−i ⊗ τ−i,j

)
+ δj<0

(
(−1)p(i)τ i,−j ⊗ τ−j,j − τ−j,j ⊗ τ i,−j

)
We next compute δ(τ ij) using the isomorphism of Theorem 5.2.1 and equation (4.5).

δ(τ ij) = (−1)p(j)δ(Eji)
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=
n∑

k=−n
|i|<|k|<|j|

(−1)p(j)+p(k)
(
(−1)(p(i)+p(k))(p(j)+p(k))Eki ⊗ Ejk − Ejk ⊗ Eki

)
− 1

2
(−1)p(j)

(
(−1)p(j)Ejj − (−1)p(i)Eii

)
⊗ Eji +

1

2
(−1)p(j)Eji ⊗

(
(−1)p(j)Ejj − (−1)p(i)Eii

)
− δj<0

2
(−1)p(j)Ej,−j ⊗ E−j,i +

δi>0

2
E−i,i ⊗ Ej,−i

+
δj<0

2
(−1)p(i)+p(j)E−j,i ⊗ Ej,−j +

δi>0

2
(−1)p(j)Ej,−i ⊗ E−i,i

= ~−1 (∆(τij)−∆(τij)◦)

as needed.

5.3 Drinfeld-Jimbo Relations of Uqpn

Let

qki := tii, ei := −τ−i,−i−1 =
−1

q − q−1
t−i,−i−1, fi := −τi,−i−1 =

−1

q − q−1
ti,−i−1,

fi := τi,i+1 =
1

q − q−1
ti,i+1 ei := τ−i,i+1 =

1

q − q−1
t−i,i+1 Fi := −2τi,−i =

−2

q − q−1
ti,−i

(5.6)

From relation (5.6), we can write the generators of Uqpn in terms of the generators

above:

t−i,−i−j = −(q − q−1)q−
∑j−1
h=1 ki+h

j−1∏
h=1

ad ei+h(ei)

t−i,i+j = (q − q−1)q−
∑j−1
h=1 ki+h

j−1∏
h=1

ad fi+h(ei)

ti,−i−j = −(q − q−1)q−
∑j−1
h=1 ki+h

j−1∏
h=1

ad ei+h(fi)

ti,i+j = (q − q−1)q−
∑j−1
h=1 ki+h

j−1∏
h=1

ad fi+h(fi)

(5.7)

where ad ai(aj) := [ai, aj],

j∏
h=1

ad ai+h(ai) := ad ai+jad ai+j−1 . . . ad ai+1(ai), and
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0∏
h=1

ad ai+h(ai) := ai, for ai = ei, ei, fi, fi. From these we obtain the following

relations

ti,i+j = q−ki+j−1(fi+j−1ti,i+j−1 − ti,i+j−1fi+j−1)

t−i,i+j = q−ki+j−1(fi+j−1t−i,i+j−1 − t−i,i+j−1fi+j−1)

ti,−i−j = q−ki+j−1(ei+j−1ti,−i−j+1 − ti,−i−j+1ei+j−1)

t−i,−i−j = q−ki+j−1(ei+j−1t−i,−i−j+1 − t−i,−i−j+1ei+j−1)

Alternatively, for i > 0, we can write the generators of Uqpn inductively as

follows

tij = −q−ki+1(fiti+1,j − ti+1,jfi)

t−i,j = q−ki+1(eiti+1,j − ti+1,jei)

Our first main result is the following presentation of Uqpn.

Proposition 5.3.1. The quantum superalgebra Uqpn is isomorphic to the unital

associative algebra over C(q) generated by the elements ei, fi, ei, fi for i ∈ I, Fi for

i ∈ J , and qh for h ∈ P∨, satisfying the following relations

q0 = 1, qh1+h2 = qh1qh2 for h1, h2 ∈ P∨

qhei = qαi(h)eiq
h, qhfi = q−αi(h)fiq

h for h ∈ P∨

qhei = qγi(h)eiq
h, qhfi = q−γi(h)fiq

h, qhFi = q−βi(h)Fiq
h for h ∈ P∨

eiej − ejei = 0, fifj − fjfi = 0, fifj + fjfi = 0 if |i− j| > 1

eiej + ejei = 0, FiFj + FjFi = 0 if |i− j| > 0

eifj − fjei = 0 if j 6= i, i+ 1

eifj − fjei = 0, fifj − fjfi = 0, eifj + fjei = 0 if |i− j| > 1

eiej − ejei = 0, fjei − eifj = 0 if j 6= i+ 1

Fiej − ejFi = 0, Fifj − fjFi = 0 if i 6= j, j + 1
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Fiej − ejFi = 0, Fifj − fjFi = 0 if i 6= j, j + 1

e2
i

= 0, f 2
i

= 0, F 2
i

= 0

ei+1ei − eiei+1 = eifi+1 + fi+1ei, fi+1fi − fifi+1 = fiei+1 + ei+1fi

ei+1ei − eiei+1 = fi+1ei − eifi+1, fi+1fi − fifi+1 = ei+1fi − fiei+1

eifi − fiei = −q
2ki − q2ki+1

q2 − 1
+
q2 − 1

q2
fiei

fiei + q2eifi = − q2

q2 − 1
(q2ki − q2ki+1)

qeifi − q−1fiei =
(1 + q2)

2
qki+1Fi+1 = q−1fi+1fi+1 − qfi+1fi+1

qFi+1ei − eiFi+1 = 0, qFifi − fiFi = 0

Fiei − qeiFi = −2fiq
ki , q−1Fi+1fi − fiFi+1 = 2qki+1fi

Fiei + qeiFi = 2fiq
ki , Fifi + q−1fiFi = 0

Fi+1ei + qeiFi+1 = 2eiq
ki+1 , Fi+1fi + q−1fiFi+1 = 0

q−1e2
i ei+1 − (q + q−1)eiei+1ei + qei+1e

2
i = 0

qe2
i+2ei − (q + q−1)ei+1eiei+1 + q−1eie

2
i+1 = 0

qf 2
i fi+1 − (q + q−1)fifi+1fi + q−1fi+1f

2
i = 0

q−1f 2
i+1fi − (q + q−1)fi+1fifi+1 + qfif

2
i+1 = 0

q−1e2
i ei+1 − (q + q−1)eiei+1ei + qei+1e

2
i = 0

qf 2
i fi+1 − (q + q−1)fifi+1fi + q−1fi+1f

2
i = 0

ei+1eiei+1 − eiei+1ei+1 − q2ei+1ei+1ei + q2ei+1eiei+1 = q2ki+1ei

2qqki+1(fi+1fi − fifi+1) = (1− q−2)Fi+1(fi+1fi − fifi+1)

−2qqki+1(fi+1ei − eifi+1) = (1− q−2)Fi+1(ei+1ei − eiei+1)

−2qqki+1(fi+1fi + fifi+1) = (1− q−2)Fi+1(fi+1fi − fifi+1)

2qqki+1(fi+1ei − eifi+1) = (1− q−2)Fi+1(ei+1ei − eiei+1)

51



Proof. Let U be the unital associative algebra over C(q) generated by the elements

ei, fi, ei, fi for i ∈ I, Fi for i ∈ J , and qh for h ∈ P∨ with defining relations given in

the proposition. We can obtain these relations using (5.6) and (5.4). This gives a

well-defined algebra isomorphism ψ : U → Uqpn. The relations in (5.7) immediately

shows that ψ is surjective.

It remains to show that ψ is injective, which is enough to show that the relation

in (5.4) is obtained by the relations in the statement of the proposition above. This

is done on a case-by-case basis. We simplify the expression in (5.4) in each of the

same 26 cases as in Proposition 5.2.1:

1. |i| = |j| < |k| < |l|

2. |k| < |i| = |j| < |l|

3. |k| < |l| < |i| = |j|

4. |k| = |l| < |i| < |j|

5. |i| < |k| = |l| < |j|

6. |i| < |j| < |k| = |l|

7. |i| = |k| < |j| < |l|

8. |i| = |k| < |l| < |j|

9. |i| < |k| < |l| = |j|

10. |k| < |i| < |l| = |j|

11. |k| < |l| = |i| < |j|

12. |i| < |j| = |k| < |l|

13. |i| < |j| < |k| < |l|

14. |i| < |k| < |j| < |l|

15. |i| < |k| < |l| < |j|

16. |k| < |i| < |j| < |l|

17. |k| < |i| < |l| < |j|

18. |k| < |l| < |i| < |j|

19. |k| = |l| < |i| = |j|

20. |i| = |j| < |k| = |l|

21. |i| = |k| < |j| = |l|

22. |i| = |j| = |k| < |l|

23. |k| < |i| = |j| = |l|

24. |i| = |k| = |l| < |j|

25. |i| < |j| = |k| = |l|

26. |i| = |j| = |k| = |l|

We will prove cases 2 and 25 here, as the rest will follow using similar ideas

with varying levels of complexity.

Suppose that |k| < |i| = |j| < |l| in (5.4). We want to prove that the relation

0 = (−1)p(i)+p(j))(p(k)+p(`))tijtk` − tk`tij

are obtained from the relations in the proposition. We do this through induction on

|i| − |k| first, then on |`| − |i|. We will first consider the case of when i = −j (i > 0)
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and k, ` > 0. The other cases will follow similarly. Suppose that ` = i+ 1. For the

base case i = k + 1, we have the following:

tk+1,−k−1tk,k+2 − tk,k+2tk+1,−k−1

= −q − q
−1

2
[Fk+1tk,k+2 − tk,k+2Fk+1]

= −(q − q−1)2

2
[Fk+1q

−kk+1(fk+1fk − fkfk+1)− q−kk+1(fk+1fk − fkfk+1)Fk+1]

= −(q − q−1)2

2
[q−2q−kk+1Fk+1(fk+1fk − fkfk+1)− q−kk+1(fk+1fk − fkfk+1)Fk+1]

= −(q − q−1)2

2
q−kk+1 [q−2Fk+1(fk+1fk − fkfk+1)− (fk+1fk − fkfk+1)Fk+1]

= −(q − q−1)2

2
q−kk+1 [Fk+1(fk+1fk − fkfk+1)− (fk+1fk − fkfk+1)Fk+1

+ (q−2 − 1)Fk+1(fk+1fk − fkfk+1)]

= −(q − q−1)2

2
q−kk+1 [Fk+1fk+1fk − Fk+1fkfk+1 − fk+1fkFk+1 + fkfk+1Fk+1

+ (q−2 − 1)Fk+1(fk+1fk − fkfk+1)]

= −(q − q−1)2

2
q−kk+1 [q−1fk+1Fk+1fk − Fk+1fkfk+1 − fk+1fkFk+1 + qfkFk+1fk+1

+ (q−2 − 1)Fk+1(fk+1fk − fkfk+1)]

= −(q − q−1)2

2
q−kk+1 [fk+1(q−1Fk+1fk − fkFk+1)− q(q−1Fk+1fk − fkFk+1)fk+1

+ (q−2 − 1)Fk+1(fk+1fk − fkfk+1)]

= −(q − q−1)2

2
q−kk+1 [2fk+1q

kk+1fi − 2qqkk+1fifk+1 + (q−2 − 1)Fk+1(fk+1fk − fkfk+1)]

= −(q − q−1)2

2
q−kk+1 [2qqkk+1(fk+1fi − fifk+1) + (q−2 − 1)Fk+1(fk+1fk − fkfk+1)]

= −(q − q−1)2

2
q−kk+1 [(1− q−2)Fk+1(fk+1fk − fkfk+1) + (q−2 − 1)Fk+1(fk+1fk − fkfk+1)]

= 0

The induction step for i− k ≥ 2 is as follows:

ti,−itk,i+1 − tk,i+1ti,−i = −q − q
−1

2
[Fitk,i+1 − tk,i+1Fi]
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= −q − q
−1

2
[Fiq

−kk+1(fktk+1,i+1 − tk+1,i+1fk)− tk,i+1Fi]

= −q − q
−1

2
[q−kk+1Fi(fktk+1,i+1 − tk+1,i+1fk)− tk,i+1Fi]

= −q − q
−1

2
[q−kk+1(fktk+1,i+1 − tk+1,i+1fk)Fi − tk,i+1Fi]

= −q − q
−1

2
[tk,i+1Fi − tk,i+1Fi]

= 0

Now we let ` vary, and we will prove this relation through induction on `− i.

The base case ` = i + 1 was treated above. The induction step for ` − i ≥ 2 is as

follows:

ti,−itk` − tk`ti,−i = −q − q
−1

2
[Fiq

−k`−1(f`−1tk,`−1 − tk,`−1f`−1)− q−k`−1(f`−1tk,`−1 − tk,`−1f`−1)Fi]

= −q − q
−1

2
[q−k`−1Fi(f`−1tk,`−1 − tk,`−1f`−1)− q−k`−1(f`−1tk,`−1 − tk,`−1f`−1)Fi]

= −q − q
−1

2
[q−k`−1(f`−1tk,`−1 − tk,`−1f`−1)Fi − q−k`−1(f`−1tk,`−1 − tk,`−1f`−1)Fi]

= 0

Now, suppose that |i| < |j| = |k| = |l| in (5.4). We want to show that the

relation

0 = (−1)(p(i)+p(j))(p(j)+p(k))qsgn(j)tijtkj − tkjtij

when j = `, and

0 = (−1)(p(i)+p(j))(p(j)+p(k))qsgn(j)tijtk,−j − tk,−jtij + (−1)p(i)δj>0(q − q−1)ti,−jtkj

when j = −`, are obtained from the relations in the proposition. We prove this

through induction on |j| − |i|. We will consider the case of when i > 0 and j = k > 0.

The other cases all follow similarly. For the base case j = i+ 1, the relations

qti,i+1ti+1,i+1 = ti+1,i+1ti,i+1
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when j = `, and

qti,i+1ti+1,−i−1 − ti+1,−i−1ti,i+1 = −(q − q−1)ti,−i−1ti+1,i+1

when j = −`, are obtained from the proposition as qki+1fi = qfiq
ki+1 and fiFi+1 −

q−1Fi+1fi = −2qki+1fi. The induction step for j − i ≥ 2 is as follows:

qtijtjj = qtijq
kj

= qq−ki+1(fiti+1,j − ti+1,jfi)q
kj

= qkjq−ki+1(fiti+1,j − ti+1,jfi)

= qkj tij

= tjjtij

for j = `, and

qtijtj,−j = −q q − q
−1

2
q−ki+1(fiti+1,j − ti+1,jfi)Fj

= −q q − q
−1

2
q−ki+1fiti+1,jFj + q

q − q−1

2
q−ki+1ti+1,jfiFj

= −q q − q
−1

2
q−ki+1fiti+1,jFj + q

q − q−1

2
q−ki+1ti+1,jfiFj

= −q − q
−1

2
q−ki+1fi(Fjti+1,j + 2ti+1,−jq

kj) +
q − q−1

2
q−ki+1(Fjti+1,j + 2ti+1,−jq

kj)fi

= −q − q
−1

2
q−ki+1Fjfiti+1,j − (q − q−1)q−ki+1fiti+1,−jq

kj

+
q − q−1

2
q−ki+1Fjti+1,jfi + (q − q−1)q−ki+1ti+1,−jq

kjfi

=
q − q−1

2
q−ki+1Fj(fiti+1,j − ti+1,jfi)− (q − q−1)q−ki+1(fiti+1,−j − ti+1,−jfi)q

kj

=
q − q−1

2
Fjq

−ki+1(fiti+1,j − ti+1,jfi)− (q − q−1)q−ki+1(fiti+1,−j − ti+1,−jfi)q
kj

=
q − q−1

2
Fjtij − (q − q−1)ti,−jq

kj

= tj,−jtij − (q − q−1)ti,−jtjj

for j = −`.
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The following are some relations of Uqpn that resulted from the relations in

Proposition 5.3.1:

Lemma 5.3.2. The following relations holds in Uqpn:

a) eifi − fiei = eifi + fiei

b)
2

1 + q2
fi+1fi+1fi−fi+1fifi+1−fi+1fifi+1+q2fifi+1fi+1 = q2q2ki+1fi−

1− q2

1 + q2
fi+1fi+1fi

c) fiei = eifi + q2 q
2ki − qki+1

q2 − 1
+ (q2 − 1)eifi

Set deg ei = αi, deg fi = −αi, deg qh = 0, deg ei = γi, deg fi = −γi, and

degFi = −βi. Noting that all the defining relations of the quantum superalgebra

Uqpn are homogeneous, we see immediately that Upn has a root-space decomposition,

Uqpn =
⊕
α∈Q

(Uq)α

where (Uq)α =
{
v ∈ Uqpn | qhvq−h = qα(h)v for all h ∈ P∨

}
.

Through direct computations, we can express the coproduct ∆ in terms of the

new generators in Proposition 5.3.1:

Lemma 5.3.3. In terms of the generators ei, fi, ei, fi for i ∈ I, Fi for i ∈ J , and qh

for h ∈ P∨ in Uqpn,

∆(qh) = qh ⊗ qh

∆(ei) = qki ⊗ ei + ei ⊗ qki+1 − q − q−1

2
ei ⊗ Fi+1

∆(fi) = qki ⊗ fi + fi ⊗ qki+1 +
q − q−1

2
Fi ⊗ ei+1

∆(ei) = qki ⊗ ei + ei ⊗ qki+1

∆(fi) = qki ⊗ fi + fi ⊗ qki+1 − q − q−1

2
Fi ⊗ ei +

q − q−1

2
fi ⊗ Fi+1

∆(Fi) = qki ⊗ Fi + Fi ⊗ qki
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Remark 5.3.4. This Lemma is crucial as the tensor representations of Uqpn onto

Cq(n|n) uses the coproduct in terms of the new generators.

5.4 Triangular decomposition of Uqpn

Let U+
q (respectively U−q ) be the sub-superalgebra of Uqpn generated by the

elements ei and ei (respectively fi, fi, and Fj) for i = 1, . . . , n− 1 (and j = 1, . . . , n).

Also, let U0
q be generated by qh for h ∈ P∨. We want to show that Uqpn has a

triangular decomposition, which will require the following lemma:

Lemma 5.4.1. Let U≥0
q (respectively U≤0

q ) be generated by generated by U0
q and U+

q

(U0
q and U+

q respectively). Then the following isomorphisms holds:

U≥0
q
∼= U0

q ⊗ U+
q U≤0

q
∼= U−q ⊗ U0

q

Proof. We will prove the second part. Let {fζ | ζ ∈ Ω} be a basis of U−q consisting

of monomials in fi’s, fi’s, and Fj’s (1 ≤ i ≤ n − 1, 1 ≤ j ≤ n), with Ω being an

index set. Consider the map ϕ : U−q ⊗ U0
q → U≤0

q by ϕ(fζ ⊗ qh) = fζq
h. The defining

relations of Uqpn implies that fζq
h span U≤0

q , so ϕ is surjective. Thus it is enough to

show that the set {fζqh | ζ ∈ Ω, h ∈ P∨} is linearly independent over C(q).

Suppose

∑
ζ∈Ω
h∈P∨

Cζ,hfζq
h = 0

where Cζ,h is some constant in C(q). We may write

∑
α∈Q−

 ∑
deg fζ=α
h∈P∨

Cζ,hfζq
h

 = 0
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Write α = −
n−1∑
i=1

(miαi + niγi)−
n∑
i=1

riβi, for mi, ni, ri ∈ Z≥0, and let hα =
n−1∑
i=1

(mi +

ni)ki+1 +
n∑
i=1

riki and h′α =
n−1∑
i=1

(mi + ni)ki + riki. Since Uqpn =
⊕
α∈Q

(Uq)α, we have,

for each α ∈ Q−:

∑
deg fζ=α
h∈P∨

Cζ,hfζq
h = 0 (5.8)

Since fζ is a monomial in fi’s, fi’s, and Fi’s, we have

∆(fζ) = fζ ⊗ qhα + ( intermediate terms ) + qh
′
α ⊗ fζ

which shows the terms of degree (α, 0) in ∆(fζ). Applying the comultiplication

to (5.8) gives

∑
deg fζ=α
h∈P∨

Cζ,h(fζq
h ⊗ qh+hα + . . .+ qh+h′α ⊗ fζqh) = 0

Collecting the terms of degree (α, 0) gives that

∑
deg fζ=α
h∈P∨

Cζ,h(fζq
h ⊗ qh+hα) = 0

Since the set {qh | h ∈ P∨} is a linearly independent set, we have that, for all

h ∈ P∨:

∑
deg fζ=α

Cζ,hfζq
h = 0

=⇒
∑

deg fζ=α

Cζ,hfζ = 0

Due to the linear independence of fζ , we conclude that all Cζ,h = 0, as desired.
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Theorem 5.4.2. There is a C(q)-linear isomorphism

Uq(pn) ∼= U−q ⊗ U0
q ⊗ U+

q

Proof. Let {fζ | ζ ∈ Ω}, {qh | h ∈ P∨}, and {eτ | τ ∈ Ω′}, be monomial bases of U−q ,

U0
q, and U+

q respectively, where Ω is the index set as in the proof of Lemma 5.4.1,

and Ω′ is a different indexing set. From the defining relations of Uqpn in proposition

5.3.1, we can always move ei and ei (1 ≤ i ≤ n− 1) to the far right in each monomial.

Thus, we have that fζq
heτ spans Uqpn, and so it suffices to show that the elements

fζq
heτ are linearly independent over C(q).

Suppose

∑
ζ∈Ω,τ∈Ω′

h∈P∨

Cζ,h,τfζq
heτ = 0

where Cζ,h,τ is some constant in C(q). Due to the root space decomposition of

Uqpn, we have that, for all α ∈ Q:

∑
degfζ+deg eτ=α

h∈P∨

Cζ,h,τfζq
heτ = 0 (5.9)

Using the partial ordering on h∗, where λ ≤ µ if and only if λ − µ ∈ Q+ for

λ, µ ∈ h∗, we can choose γ = deg fζ and β = deg eτ , which are minimal and maximal

respectively, among those for which γ + β = α and Cζ,h,τ 6= 0. If γ = −
n−1∑
i=1

(miαi +

niγi)−
n∑
i=1

riβi, set hγ =
n−1∑
i=1

(mi + ni)ki+1 +
n∑
i=1

riki, and if β =
n−1∑
i=1

(m′iαi + n′iγi), set

hβ =
n−1∑
i=1

(m′iki + n′iki), for mi,m
′
i, ni, n

′
i, ri ∈ Z≥0.
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The term of degree (0, β) in ∆(eτ ) is qhβ ⊗ eτ and the term of degree (γ, 0) in

∆(fζ) is fζ ⊗ qhγ . Applying the comultiplication to the sum in (5.9), since the terms

of degree (γ, β) in (5.9) must sum to zero, we have that

∑
deg fζ=γ
deg eτ=β
h∈P∨

Cζ,h,τ (fζq
h+hβ ⊗ qh+hγeτ ) = 0

By lemma 5.4.1, the elements fζq
h are linearly independent for ζ ∈ Ω, h ∈ P∨.

Thus, for all h ∈ P∨, we have that

∑
deg eτ=β

Cζ,h,τq
h+hγeτ = 0

=⇒
∑

deg eτ=β

Cζ,h,τeτ = 0

Due to the linear independence of eτ , we conclude that all Cζ,h,τ = 0, as desired.
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CHAPTER 6

Periplectic q-Brauer algebra

In [45] and [46], Schur proved that the action of the symmetric group Sk on

V ⊗k generates the centralizer algebra of gln. We know of this result today as the

Schur-Weyl duality.

In [42], D. Moon identified the centralizer of the action of pn on the tensor

space C⊗kn|n. This centralizer is called the periplectic Brauer algebra in the literature:

see [15, 10, 17, 18].

Recall that we have a representation of Uqpn on Cq(n|n) via the assignment

tij 7→ sij as per Remark 5.1.3. We can then extend this to a representation of Uqpn

on Cq(n|n)⊗k, for each k ≥ 1, through the coproduct on Uqpn. More explicitly, the

action on Cq(n|n)⊗k by Uqpn is given by

tij(ea ⊗ eb) =
n∑

k=−n

(−1)(p(i)+p(k))(p(k)+p(j))+(p(k)+p(j))p(a)tik(ea)⊗ tkj(eb) (6.1)

where

tii(ea) =
n∑

b=−n

qδbi(1−2p(i))+δb,−i(2p(i)−1)Ebb(ea);

ti,−i(ea) = (q − q−1)δi>0E−i,i(ea);

tij(ea) = (q − q−1)(−1)p(i)Eji(ea), if |i| 6= |j|.

In this chapter, we determine the centralizer of the action of Uqpn on Cq(n|n)⊗k.

This centralizer is referred to as the periplectic q-Brauer algebra. Quantum analogs of

the Brauer algebra were studied in [41] where they appear as centralizers of the action

of twisted quantized enveloping algebras Utwq on and Utwq spn on tensor representations

(here, spn is the symplectic Lie algebra).
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6.1 Definition

We start with the definition of the algebra of interest:

Definition 6.1.1. The periplectic q-Brauer algebra Bq,k is the associative C(q)-

algebra generated by elements ti and ci for 1 ≤ i ≤ k − 1 satisfying the following

relations:

(ti − q)(ti + q−1) = 0, c2
i = 0, citi = −q−1ci, tici = qci for 1 ≤ i ≤ k − 1; (6.2)

titj = tjti, ticj = cjti, cicj = cjci if |i− j| ≥ 2; (6.3)

titjti = tjtitj, ci+1cici+1 = −ci+1, cici+1ci = −ci for 1 ≤ i ≤ k − 2; (6.4)

tici+1ci = −ti+1ci + (q − q−1)ci+1ci, ci+1citi+1 = −ci+1ti + (q − q−1)ci+1ci (6.5)

Remark 6.1.1. Setting q = 1 in this definition yields the algebra Ak from Definition

2.2 in [42].

Remark 6.1.2. Let Sk denote the symmetric group on k elements. The Hecke algebra

Hk, generated by {h(si) = ti}, is a subalgebra of Bq,k. The generators of Hk satisfies

the relations:

h(σ)h(σ′) = h(σσ′) if `(σσ′) = `(σ) + `(σ′) (6.6)

(h(si)− q)(h(si) + q−1) = 0 (6.7)

h(si)h(si+1)h(si) = h(si+1)h(si)h(si+1) (6.8)

where σ, σ′ ∈ Sk and `(σ) is the length of the permutation σ, which are the same

relations as that in Definition 6.1.1.

Lemma 6.1.3. Consider C(q) as purely odd Uqpn-module. We have Uqpn-module

homomorphisms ϑ : Cq(n|n) ⊗ Cq(n|n) → C(q) and ε : C(q) → Cq(n|n) ⊗ Cq(n|n)

given by ϑ(ea ⊗ eb) = δa,−b(−1)p(a) and ε(1) =
n∑

a=−n

ea ⊗ e−a.
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Proof. It is enough to check that, for all the generators tij of Uqpn and any tensor

v ∈ Cq(n|n)⊗ Cq(n|n),

ϑ(tij(v)) = tij(ϑ(v)) and ε(tij(1)) = tij(ε(1)). (6.9)

Using the formula for the coproduct, we have:

tij(ea ⊗ e−a) =
n∑

k=−n

(−1)(p(i)+p(k))(p(k)+p(j))+(p(k)+p(j))p(a)tik(ea)⊗ tkj(e−a) (6.10)

This can be made more explicit using

tii(ea) =
n∑

b=−n

qδbi(1−2p(i))+δb,−i(2p(i)−1)Ebb(ea);

ti,−i(ea) = (q − q−1)δi>0E−i,i(ea); (6.11)

tij(ea) = (q − q−1)(−1)p(i)Eji(ea), if |i| 6= |j|.

We directly prove that (6.9) is satisfied through computations of tij(ea1 ⊗ ea2).

We split this proof into three cases depending on the value of i and j. We will only

show the case for j = −i.

Using (6.11) with (6.10) gives the following:

ti,−i(ea1 ⊗ ea2) = (−1)p(a1)δi>0tii(ea1)⊗ ti,−i(ea2) + δi>0ti,−i(ea1)⊗ t−i,−i(ea2)

= (−1)p(a1)δi>0q
δa1i(1−2p(i))+δa1,−i(2p(i)−1)(q − q−1)(ea1 ⊗ E−i,i(ea2))

+ δi>0q
δa2i(1−2p(i))+δa2,−i(2p(i)−1)(q − q−1)(E−i,i(ea1)⊗ ea2)

= (−1)p(a1)δi>0δa2,iq
−δa1i+δa1,−i(q − q−1)(ea1 ⊗ e−i)

+ δi>0δa1,iq
−δa2i+δa2,−i(q − q−1)(e−i ⊗ ea2)

If a1 = −a2 = i, we obtain

ti,−i(ea1 ⊗ ea2) = q−1(q − q−1)(e−i ⊗ e−i).
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If a1 = −a2 = −i, we get

ti,−i(ea1 ⊗ ea2) = −q−1(q − q−1)(e−i ⊗ e−i).

It follows that ti,−i

(
n∑

a=−n

ea ⊗ e−a

)
= 0, and thus (6.9) holds for ε.

Now observe the following:

ϑ(ti,−i(ea1 ⊗ ea2)) = δi>0δa2,iδa1,iq
−δa1i+δa1,−i(q − q−1)− δi>0δa1,iδa2,iq

−δa2i+δa2,−i(q − q−1)

= δi>0δa2,iδa1,iq
−1(q − q−1)− δi>0δa1,iδa2,iq

−1(q − q−1) = 0

This shows that (6.9) holds for ϑ.

The case for when i = j is similar, and the case of when |i| 6= |j| is split further

into several cases, depending on the relationship of i and j with a1 and a2, each

approached in a similar manner.

By composing ϑ and ε, we obtain a Uqpn-module homomorphism ε ◦ ϑ :

Cq(n|n)⊗2 → Cq(n|n)⊗2. In terms of elementary matrices, this linear map, which we

abbreviate by c, is given by

n∑
a,b=−n

(−1)p(a)p(b)Eab ⊗ E−a,−b.

The super-permutation operator P on Cq(n|n)2 is given by

P =
n∑

a,b=−n

(−1)p(b)Eab ⊗ Eba.

Note that this means that c = P (π◦st)2 where (π ◦ st)2 stands for the map π ◦ st applied

to the second tensor in the previous formula for P .

We can extend c to a Uqpn-module homomorphism ci : Cq(n|n)⊗l → Cq(n|n)⊗l

for 1 ≤ i ≤ l − 1 by applying c to the ith and (i+ 1)th tensors.

The linear map Cq(n|n)⊗l → Cq(n|n)⊗l given by PiSi,i+1 where Pi is the super-

permutation operator acting on the ith and (i + 1)th tensors is also a Uqpn-module
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homomorphism: this is a consequence of the fact that S is a solution of the quantum

Yang-Baxter relation.

Proposition 6.1.4. The tensor superspace Cq(n|n)⊗l is a module over Bq,l if we let

ti act as PiSi,i+1 and ci act as ci.

Proof. The linear operators PiSi,i+1 satisfy the braid relation (the first relation in

(6.4)), which is a consequence of the fact that S is a solution of the quantum Yang-

Baxter relation. The relations (6.3) for the operators PiSi,i+1 and ci can be easily

verified. The other relations can be checked via direct computations. Therefore, it is

enough to check the relations (6.2) on Cq(n|n)⊗2 and the relations (6.5) on Cq(n|n)⊗3.

We briefly sketch some of those computations below.

First, note that cP = −c and P c = c. Also, we easily obtain the following:

c

(
(q − 1)

n∑
i=1

Eii ⊗ Eii

)
= c

(
(q−1 − 1)

n∑
i=1

E−i,−i ⊗ E−i,−i

)
= 0,

c

(
(q − 1)

n∑
i=1

Eii ⊗ E−i,−i

)
= (q − 1)

n∑
a=−n

n∑
b=1

Eab ⊗ E−a,−b,

c

(
(q−1 − 1)

n∑
i=1

E−i,−i ⊗ Eii

)
= (q−1 − 1)

n∑
a=−n

−1∑
b=−n

(−1)p(a)Eab ⊗ E−a,−b,

c

(
−1∑
i=−n

Ei,−i ⊗ E−i,i

)
= −

n∑
a=−n

n∑
b=1

Eab ⊗ E−a,−b,

c

 ∑
1≤|j|<|i|≤n

(−1)p(j)Eij ⊗ Eji

 =
n∑

a=−n

∑
1≤|j|<|i|≤n

(−1)p(a)(p(i)+1)+p(j)Ea,−i ⊗ E−a,i = 0.

Therefore, we have that c(S−1) = (q−1−1)c, hence cS = q−1c. Now using that

c = −cP , we obtain the third relation in (6.2). Similarly, we prove (S−1)c = (q−1)c,

and then using P c = c, we obtain the fourth relation in (6.2).

For the remaining relations we use the following formula:

PS =
n∑

i,j=−n

(−1)p(j)Eij ⊗ Eji + (q − 1)
n∑
i=1

(E−i,i ⊗ Ei,−i)
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+ (q − 1)
n∑
i=1

(Eii ⊗ Eii)− (q−1 − 1)
n∑
i=1

(Ei,−i ⊗ E−i,i)

− (q−1 − 1)
n∑
i=1

(E−i,−i ⊗ E−i,−i) + (q − q−1)
−1∑
i=−n

(E−i,−i ⊗ Eii)

+ (q − q−1)
∑
|j|<|i|

(Ejj ⊗ Eii) + (q − q−1)
∑
|j|<|i|

(
(−1)p(i)p(j)Eji ⊗ E−j,−i

)

6.2 Centralizer of Uq(p)n-action on Cq(n|n)⊗k

As mentioned after the definition of Bq,l, the module structure given in Propo-

sition 6.1.4 commutes with the action of Uq(pn) on Cq(n|n)⊗l. This, as a result, gives

us the algebra homomorphisms

Bq,l −→ EndUq(pn)(Cq(n|n)⊗l) and Uq(pn) −→ EndBq,l(Cq(n|n)⊗l). (6.12)

The following main theorem states that Bq,l is the full centralizer of the action of

Uq(pn) on Cq(n|n)⊗l when n ≥ l.

Theorem 6.2.1. The map Bq,l −→ EndUq(pn)(Cq(n|n)⊗l) is surjective and it is

injective when n ≥ l.

Proof. This is a q-analogue of Theorem 4.5 in [42]. The proof follows the lines of the

proof of Theorem 3.28 in [6], using Proposition 6.2.2 and Theorem 4.5 in [42] along

with Lemma 3.27 in [6], which can be applied in this instance.

Proposition 6.2.2. The quotient algebra Bq,l(A)/(q − 1)Bq,l(A) is isomorphic to

the algebra Al given in Definition 2.2 in [42].

Proof. It follows immediately from the definitions of both Al and Bq,l(A) that we

have a surjective algebra homomorphism Al � Bq,l(A)/(q− 1)Bq,l(A). The fact that
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this homomorphism is injective can be proved as in the proof of Proposition 3.21 in

[6] using Theorem 4.1 in [42].

The q-Schur superalgebras of type Q were introduced in [6] and [24, 25]. Con-

sidering loc. cit. and the earlier work on q-Schur algebras for gln (see for instance

[23]), the following definition is natural.

Definition 6.2.1. The q-Schur superalgebra Sq(pn, l) of type P is the centralizer of

the action of Bq,l on Cq(n|n)⊗l, that is, Sq(pn, l) = EndBq,l(Cq(n|n)⊗l).

By definition, (6.12) gives an algebra homomorphism Uq(pn) −→ Sq(pn, l). It

is an open question whether or not this map is surjective. We also have an algebra

homomorphism Bq,l −→ EndSq(pn,l)(Cq(n|n)⊗l) from (6.12). It is natural to expect

that it should be an isomorphism, perhaps under certain conditions on n and l, which

is also open.
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