
UNSUPERVISED DOMAIN ADAPTATION WITH DEEP NEURAL NETWORKS

by

JINYU YANG

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2022



Copyright © by Jinyu Yang 2022

All Rights Reserved



To my parents and my brother for their endless trust, support, and love.



ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my supervising professor, Dr.

Junzhou Huang who inspired me to do this dissertation without whom this dissertation

would not have been possible. His irreplaceable encouragement and supervision are

the main reasons for the successful outcomes of my research. Dr. Huang’s incredible

breadth and depth of knowledge, creative research ideas, constructive, insightful,

and encouraging conversations inspire me in both research and life. Over the past

three years, I have learned a lot from Dr. Huang, including but not limited to: how

to effectively and efficiently read a paper, how to come up with new ideas, how to

write an informative and well-written paper, and how to build connections with other

researchers. I believe all of them will also play an important role and guidance in my

future career.

I sincerely express my gratitude to Dr. Dajiang Zhu, Dr. Jia Rao, and Dr.

Yingying Zhu for serving on my committee. I have benefited a lot from their invaluable

suggestions and feedback on my diagnostic evaluation, comprehensive exam, proposal

defense, and dissertation. Furthermore, they have long inspired me through their

contributions to operating systems, medical image analysis, and deep learning.

For three years, it is my pleasure to work with lab members from the Scalable

Modeling & Imaging & Learning Lab (SMILE), including Zheng Xu, Ruoyu Li, Jiawen

Yao, Xinliang Zhu, Sheng Wang, Mohammad Minhazul Haq, Chaochao Yan, Ashwin

Raju, Yuzhi Guo, Hehuan Ma, Zeheng Li, Chunyuan Li, Weizhi An, Xinsheng Li,

Feng Tong, Saiyang Na, and Wenliang Zhong. I want to thank all of them for their

insightful discussion and collaboration.

iv



I deeply appreciate the guidance from Peilin Zhao, Yu Rong, Ying Wei, TingYang

Xu and Wenbing Huang from Tencent AI Lab, Jingjing Liu and Ning Xu from Kuaishou

Technology, and Son Tran, Jiali Duan, Yi Xu, Sampath Chanda and Liqun Chen from

Amazon.

I was extremely fortunate to have received invaluable instructions from Dr.

Bahram Khalili, as well as assistance and help from other CSE staff members, especially

Ginger Dickens, Sha’Londa Towns, and Pamela Mcbride.

Finally, I thank my parents and my brother, for their unconditional love.

April 26, 2022

v



ABSTRACT

UNSUPERVISED DOMAIN ADAPTATION WITH DEEP NEURAL NETWORKS

Jinyu Yang, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professor: Dr. Junzhou Huang

Deep neural networks (DNNs) demonstrate unprecedented achievements on

various machine learning problems and applications. However, such impressive perfor-

mance heavily relies on massive amounts of labeled data which requires considerable

time and labor efforts to collect and annotate. To remedy this limitation, unsupervised

domain adaptation (UDA) has attracted more and more attention in the past decade,

owing to its capability in transferring the knowledge learned from a labeled source

domain to an unlabeled target domain. UDA has proved its wide applicability in

various vision tasks, for example, image classification and semantic segmentation.

Despite its impressive success, the limitations of existing UDA methods lie in that: i)

the consistency of the joint distribution in the target domain cannot be guaranteed

by simply performing global feature alignment as in previous studies; ii) the context-

dependency is essential for semantic segmentation, however, its transferability is still

not well understood; iii) the robustness of UDA methods in semantic segmentation

remains unexplored, which poses a security concern in this field; and iv) previous work

is mainly built upon convolutional neural networks (CNNs) to learn domain-invariant
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representations. However, the transferability of the Vision Transformer (ViT) which

is convolution-free, is still an open problem.

To address these limitations, in this dissertation: i) we use a reconstruction

network to reconstruct both source and target images from their predicted labels.

Therefore, we can encourage cross-domain features with the same category close

to each other; ii) we design two cross-domain attention modules to adapt context

dependencies from both spatial and channel views. Specifically, the spatial attention

module captures local feature dependencies between each position in the source and

target image. The channel attention module models semantic dependencies between

each pair of cross-domain channel maps. In consequence, the contextual information

can be aggregated and adapted across domains; iii) we comprehensively evaluate

the robustness of existing UDA methods and propose a robust UDA approach that

maximizes the agreement between clean images and their adversarial examples by a

contrastive loss in the output space. iv) we perform the first-of-its-kind investigation

of ViT’s generalization ability on commonly used benchmarks and propose a new UDA

method that explicitly considers the intrinsic merits of the transformer architecture.
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CHAPTER 1

Introduction

With the recent exponential increase in large-scale datasets, deep neural networks

(DNNs) [1] demonstrate their impressive power in various tasks and applications, such

as image recognition [2], language understanding [3], and regulatory genomics [4, 5, 6].

For example, massive amounts of videos, images, and texts can be easily accessed on

the Internet, which provides a unique opportunity to train deeper and more powerful

neural networks [7]. Notwithstanding, it is widely recognized that DNNs heavily rely

on massive labeled data which might be infeasible in practice [8]. One typical example

is the medical data, which is hard to collect and requires massive amounts of labor

efforts in label annotation [9, 10, 11]. Therefore, it is desirable to train models that

can leverage rich labeled data from a different but related domain and generalize well

on the domain of interest. Unfortunately, the canonical supervised-learning paradigm

suffers from the domain shift issue that poses a major challenge in adapting models

across domains. To address this limitation, transfer learning [8] attracts considerable

attention in the past few decades. The key idea of transfer learning is to leverage

knowledge from a labeled source domain to effectively learn a model in a target domain

that has limited labeled data. The wide applicability of transfer learning has been

proved in, for example, image classification [12, 13, 13], objection detection [14, 15, 16],

semantic segmentation [17, 18, 19, 20, 21, 22], and NLP [23]. In this dissertation, we

focus on unsupervised domain adaptation (UDA) which is a special case of transfer

learning. Specifically, UDA refers to the scenario where the target domain is totally

unlabeled.
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Algorithm S→M U→M M→U Avg

Source Only

L
eN

et

67.1 69.6 82.2 73.0
RevGrad [24] 73.9 73.0 77.1 74.7
ADDA [25] 76.0 90.1 89.4 85.2
Target Only 99.4 99.4 98.0 98.9

Table 1.1: Merits of transfer learning on MNIST (M), USPS(U), and SVHN(S).

In this chapter, we first introduce the motivation of this study in Section 1.1.

After that, we formally introduce UDA and related works in Section 1.2 and Section 1.3,

respectively. We then point out the research challenges in this field in Section 1.4.

For these challenges, we highlight our contributions in Section 1.5. In the end, we

introduce the structure of this dissertation in Section 1.6.

1.1 Motivation

Although DNNs demonstrate record-breaking performance under the supervised

learning paradigm, they suffer from domain shift issues of cross-domain mismatches in

feature space, distribution, label space, and predictive model. Such domain discrepancy

results in dramatic performance degradation when directly applying models learned

from one domain to another domain. To show the motivation of this study, we report

some preliminary results on the digit recognition task with three datasets, i.e., MNIST

[26], USPS, and Street View House Numbers (SVHN) [27], where each dataset can

be regarded as a domain. Therefore, a total of three source-target domain pairs are

available, e.g., S→M indicates that SVHN is the source domain and MNIST is the

target domain. For the backbone LeNet [26], we report its lower bound performance

(73.0% on average) denoted by Source Only, meaning the model is trained with source

data only. We also show the Target Only results as the upper bound performance

(98.9% on average), which is obtained by both training and testing on the labeled

target data. As shown in Table1.1, there is a large performance gap (25.9% on average)

2



between Source Only and Target Only, revealing the defect of failing to consider the

domain discrepancy. By contrast, two transfer learning methods [24, 25] significantly

reduce the performance gap by leveraging the cross-domain knowledge, indicating the

necessity of this research topic. However, existing transfer learning methods still lag

behind Target Only by a large margin, we, therefore, hope to design new algorithms

from innovative perspectives to further facilitate this area.

1.2 Unsupervised Domain Adaptation

Before diving into UDA, we first introduce two fundamental concepts in transfer

learning, i.e., ”domain” and ”task”. Formally, i) a domain is denoted by D =

{X , P (X)} which contains two components: a feature space X and a marginal

probability distribution P (X). Specifically, X = {x1, ..., xn} ∈ X . ii) given a specific

domain D, a task is defined as T = {Y , P (y|x)} which contains a label space Y and

a conditional probability distribution P (y|x). Based on these two concepts, transfer

learning is defined as follows.

Definition 1.2.1 (Transfer Learning) Given a source domain DS = {XS, PS(X)}

associated with its learning task TS = {YS, PS(y|x)}, and a target domain DT =

{XT , PT (X)} together with its learning task TT = {YT , PT (y|x)}, transfer learning

aims to reduce the generalization error on the target domain where DS 6= DT , or

TS 6= TT .

Based on the difference between the feature space, marginal distribution, label

space, and conditional distribution, transfer learning can be further categorized as

homogeneous transfer learning and heterogeneous transfer learning. Specifically,

homogeneous transfer learning assumes that XS = XT and YS = YT , while PS(X) 6=

PT (X) or PS(y|x) 6= PT (y|x). Heterogeneous transfer learning relaxes the assumption

3



in homogeneous transfer learning to allow that XS 6= XT or YS 6= YT . UDA falls into

the homogeneous transfer learning by further assuming that PS(y|x) = PT (y|x).

The most commonly used UDA algorithms are based on feature representation

learning which attempts to learn new representations φ(x) to minimize the difference

between PS(φ(x)) and PT (φ(x)). The assumption of feature representation learning

is: some features in the feature space are shared by the source and the target domain,

while the others are domain-specific, or there exists a hidden feature space that is

shared by two domains. One common practice in feature representation learning

is probability distribution adaptation, which explicitly maximizes the distribution

similarity. This is achieved by learning a new representation φ(x) through explicitly

minimizing the distance between PS(φ(x)) and PT (φ(x)).

1.3 Existing Methods

In the past few decades, various UDA methods have been proposed for image

classification tasks [12, 13, 28]. For instance, DDC [12] attempts to learn domain-

invariant features by minimizing Maximum Mean Discrepancy (MMD) [29] between

two domains. Long et al. further improve DDC by embedding hidden representations of

all task-specific layers in a reproducing Hilbert space and use a multiple kernel variant

of MMD to measure the domain distance [13]. JAN [28] aligns joint distributions

of multiple domain-specific layers across domains through a joint maximum mean

discrepancy metric. Another line of effort was inspired by the success of adversarial

learning [30]. By introducing a domain discriminator and modeling the domain

adaption as a minimax problem [24, 25, 31], an encoder is trained to generate domain-

invariant features, through deceiving a discriminator which tries to distinguish features

of the source domain from that of the target domain. Therefore, the features learned

4



by the encoder are both transferable across domains and discriminative for downstream

tasks.

Semantic segmentation, or image segmentation, aims to predict pixel-level labels

for the given images. Since it plays a fundamental role in, for example, autonomous

driving, there is surging interest in designing UDA methods for semantic segmentation

tasks. These methods can be summarized as four streams: i) adapt domain-invariant

features by directly minimizing the representation distance between two domains

[17, 32]; ii) align pixel space through translating images from the source domain to

the target domain [18, 33]; iii) align structured output space, which is inspired by the

fact that source output and target output share substantial similarities in terms of

structure layout [19]; iv) generate pseudo labels for target images and then re-training

the segmentation model with these labels [34, 35, 36, 37, 38, 39].

1.4 Research Challenges

Although existing UDA methods have proved their effectiveness in various

domain adaptation tasks, they still suffer from the following challenges. Challenge

1: simply maximizing the marginal distribution similarity through Maximum Mean

Discrepancy (MMD) ignores the joint distribution shift. This limitation gives rise to

severe false positive and false negative issues in the target prediction. This problem

can get even worse when there is a significant discrepancy in layout or structure

between the source and target domains, such as adapting from synthetic to real

urban traffic scenes. Challenge 2: existing methods fail to explicitly consider the

contextual dependencies across the source and target domains which is essential for

scene understanding. Challenge 3: like other machine learning methods, UDA

methods are also possibly vulnerable to adversarial attacks. However, the robustness

of UDA methods remains largely unexplored in the literature. With the increasing
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applications of UDA methods in security-related areas, the lack of robustness of these

methods leads to massive safety concerns. Challenge 4: despite that ViT [40] is

becoming increasingly popular, two important questions related to domain adaption

remain unanswered. First, how does the generalization ability of ViT across different

domains? There are several contemporary work [41, 42, 43] that apply DeiT [44] and

Swin [45] to UDA, yet the ViT has not been investigated. The second question is, how

can we properly improve ViT in adapting different domains? One intuitive approach is

to directly apply adversarial discriminator onto the class tokens to perform adversarial

alignment, where the state of a class token represents the entire image. However,

cross-domain alignment of such global features assumes all regions or aspects of the

image have the equal transferability and discriminative potential, which is not always

tenable.

1.5 Contributions

In this dissertation, we pursue to address the aforementioned research challenges

via innovative research. For Challenge 1, we propose a label-driven reconstruction

network [46] which reconstructs both source and target images from their predicted

semantic labels. This is essential to guide the segmentation network by penalizing the

reconstructed image that semantically deviates from the corresponding input image.

Most importantly, this strategy enforces cross-domain features with the same category

close to each other. For Challenge 2, we design a cross-attention mechanism that

contains two cross-domain attention modules to capture mutual context dependencies

between source and target domains [20]. Given that same objects with different

appearances and scales often share similar features, we introduce a cross-domain

spatial attention module (CD-SAM) to capture local feature dependencies between

any two positions in a source image and a target image. To model the associations
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between different semantic responses across two domains, we introduce a cross-domain

channel attention module (CD-CAM) which has the same bidirectional structure as

CD-SAM. For Challenge 3, we first perform a comprehensive study to evaluate the

robustness of existing UDA methods in semantic segmentation[21]. We then introduce

a new UDA method to robustly adapt domain knowledge in urban-scene semantic

segmentation. The key insight is to leverage the regularization power of adversarial

examples. For Challenge 4, we first comprehensively investigates the performance of

ViT on a variety of domain adaptation tasks. To further improve the power of ViT in

transferring domain knowledge, we propose TVT by explicitly considering the intrinsic

merits of transformer architecture. Specifically, TVT captures both transferable and

discriminative features in the given image, and retains discriminative information of

the learnt domain-invariant representations.

1.6 Dissertation Structure

This dissertation is organized as follows. In Chapter 2, we learn how to use

semantic label information to facilitate UDA in segmentation tasks. This chapter

is primarily based on [46]. In Chapter 3, we propose an innovative cross-attention

mechanism for domain adaptation by adapting the semantic context. This chapter

is primarily based on [20]. In Chapter 4, we empirically reveal that existing UDA

methods can be easily deceived by unnoticeable perturbations and propose a new

model to improve the model’s robustness. This chapter is primarily based on [21].

In Chapter 5, we first comprehensively investigates the generalization ability of ViT

on a variety of domain adaptation tasks. Then we propose an unified framework,

namely Transferable Vision Transformer (TVT), to fully exploit the transferability

of ViT for domain adaptation. Specifically, we delicately devise a novel and effective

unit, which we term Transferability Adaption Module (TAM). By injecting learned

7



transferabilities into attention blocks, TAM compels ViT focus on both transferable

and discriminative features. Besides, we leverage discriminative clustering to enhance

feature diversity and separation which are undermined during adversarial domain

alignment. This chapter is primarily based on [22]. We conclude and discuss future

directions in Chapter 6.
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CHAPTER 2

Label-Driven Reconstruction for Domain Adaptation in Semantic

Segmentation

In this chapter, we study how to address two common limitations of existing

UDA methods in semantic segmentation. The first limitation is introduced by the

image-to-image translation strategy which translates images from the source domain

to the target domain. Although this strategy reduces the appearance discrepancy

between two domains, source-to-target translation enlarges the bias in translated

images and introduces extra computations, owing to the dominant data size of the

source domain. The second limitation is that the consistency of joint distributions in

source and target domains cannot be guaranteed through global feature alignment.

Here, we present an innovative framework, designed to mitigate the image translation

bias and align cross-domain features with the same category. This is achieved by 1)

performing the target-to-source translation and 2) reconstructing both source and

target images from their predicted labels. Extensive experiments on adapting from

synthetic to real urban scene understanding demonstrate that our framework competes

favorably against existing state-of-the-art methods.

2.1 Introduction

Deep Convolutional Neural Networks (DCNNs) have demonstrated impressive

achievements in computer vision tasks, such as image recognition [7], object detection

[47], and semantic segmentation [48]. As one of the most fundamental tasks, semantic
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segmentation predicts pixel-level semantic labels for given images. It plays an extremely

important role in autonomous agent applications such as self-driving techniques.

Existing supervised semantic segmentation methods, however, largely rely on

pixel-wise annotations which require tremendous time and labor efforts. To overcome

this limitation, publicly available synthetic datasets (e.g., GTA [49] and SYNTHIA

[50]) which are densely-annotated, have been considered recently. Nevertheless, the

most obvious drawback of such a strategy is the poor knowledge generalization caused

by domain shift issues (e.g., appearance and spatial layout differences), giving rise

to dramatic performance degradation when directly applying models learned from

synthetic data to real-world data of interest. In consequence, domain adaptation has

been exploited in recent studies for cross-domain semantic segmentation, where the

most common strategy is to learn domain-invariant representations by minimizing

distribution discrepancy between source and target domains [51, 52], designing a new

loss function [32], considering depth information [53, 54], or alternatively generating

highly confident pseudo labels and re-training models with these labels through a

self-training manner [55, 34, 35, 36, 37, 38, 39]. Following the advances of Generative

Adversarial Nets (GAN) [30], adversarial learning has been used to match cross-

domain representations by minimizing an adversarial loss on the source and target

representations [17, 56, 57, 58], or adapting structured output space across two domains

[19, 34]. Recent studies further consider the pixel-level (e.g., texture and lighting)

domain shift to enforce source and target images to be domain-invariant in terms of

visual appearance [59, 18, 60, 61, 62, 20]. This is achieved by translating images from

the source domain to the target domain by using image-to-image translation models

such as CycleGAN [63] and UNIT [64].

Despite these painstaking efforts, we are still far from being able to fully adapt

cross-domain knowledge mainly stemming from two limitations. First, adversarial-
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based image-to-image translation introduces inevitable bias to the translated images,

as we cannot fully guarantee that the translated source domain F(Xs) is identical to

the target domain Xt (Xs and Xt denote two domains, and F indicates an image-to-

image translation model). This limitation is especially harmful to the source-to-target

translation [59, 18, 60, 61, 34], since the data size of the source domain is much

larger than the target domain in most of domain adaptation problems. Moreover,

source-to-target translation is more computationally expensive than target-to-source

translation. Second, simply aligning cross-domain representations in the feature space

[17, 18, 19] ignores the joint distribution shift (i.e., P(G(Xs), Ys) 6= P(G(Xt), Yt),

where G is used for feature extraction, while Ys and Yt indicate ground truth labels).

These limitations give rise to severe false positive and false negative issues in the target

prediction. This problem can get even worse when there is a significant discrepancy

in layout or structure between the source and target domains, such as adapting from

synthetic to real urban traffic scenes.

In this chapter, we propose an innovative domain adaptation framework for

semantic segmentation. The key idea is to reduce the image translation bias and align

cross-domain feature representations through image reconstruction. As opposed to

performing source-to-target translation [18, 60, 34], for the first time, we conduct

the target-to-source translation to make target images indistinguishable from source

images. This enables us to substantially reduce the bias in translated images and

allows us to use original source images and their corresponding ground truth to train

a segmentation network. Compared to the source-to-target translation, our method is

also much more efficient. Besides, a reconstruction network is designed to reconstruct

both source and target images from their predicted labels. It is noteworthy that we

reconstruct images directly from the label space, rather than the feature space as

reported in previous studies. This is essential to guide the segmentation network by
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Figure 2.1: An example of our method on synthetic-to-real urban scene adaptation.
Given a target-domain (or real) image (a), we first make target-to-source translation
to obtain source-like (or synthetic) image (b), and then perform segmentation on these
translated images. Our method improves the segmentation accuracy in the target
domain by reconstructing both source and target images from their predicted labels
(c). (d) illustrates the image reconstructed from (c), while (e) indicates the ground
truth label.

penalizing the reconstructed image that semantically deviates from the corresponding

input image. Most importantly, this strategy enforces cross-domain features with the

same category close to each other.

The performance of our method is evaluated on synthetic-to-real scenarios of

urban scene understanding, i.e., GTA5 to Cityscapes and SYNTHIA to Cityscapes.

Our results demonstrate that the proposed method achieves significant improvements

compared with existing methods. Figure 2.1 demonstrates an example of our model in

adapting cross-domain knowledge in semantic segmentation tasks and reconstructing

the input image from its output label. We also carry out comprehensive ablation

studies to analyze the effectiveness of each component in our framework.

The contribution of this chapter is threefold.

• For the first time, we propose and investigate the target-to-source translation in

domain adaptation. It reduces the image translation bias and is more computa-

tionally efficient compared to the widely-used source-to-target translation.

• To enforce semantic consistency, we introduce a label-driven reconstruction

module that reconstructs both source and target images from their predicted

labels.
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• Extensive experiments show that our method achieves the new state-of-the-art

performance on adapting synthetic-to-real semantic segmentation.

2.2 Related Work

2.2.1 Semantic Segmentation

Recent achievements in semantic segmentation mainly benefit from the technical

advances of DCNNs, especially the emergence of Fully Convolutional Network (FCN)

[48]. By adapting and extending contemporary deep classification architectures fully

convolutionally, FCN enables pixel-wise semantic prediction for any arbitrary-sized

inputs and has been widely recognized as one of the benchmark methods in this

field. Numerous methods inspired by FCN were then proposed to further enhance

segmentation accuracy, which have exhibited distinct performance improvement on

the well-known datasets (e.g., PASCAL VOC 2012 [65] and Cityscapes [66]) [67, 68,

69, 70, 71].

However, such methods heavily rely on human-annotated, pixel-level segmenta-

tion masks, which require extremely expensive labeling efforts [66]. In consequence,

weakly-supervised methods, which are based on easily obtained annotations (e.g.,

bounding boxes and image-level tags), were proposed to alleviate the need for effort-

consuming labeling [72, 73]. Another alternative is to resort to freely-available synthetic

datasets (e.g., GTA5 [49] and SYNTHIA [50]) with pixel-level semantic annotations.

However, models learned on synthetic datasets suffer from significant performance

degradation when directly applied to the real datasets of interest, mainly owing to

the domain shift issue.
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2.2.2 Domain Adaptation

Domain adaptation aims to mitigate the domain discrepancy between a source

and a target domain, which can be further divided into supervised adaptation, semi-

supervised adaptation, and unsupervised adaptation, depending on the availability

of labels in the target domain. The term unsupervised domain adaptation refers to

the scenario where target labels are unavailable and have been extensively studied

[13, 12, 74, 75, 25, 76, 77].

Recent publications have highlighted the complementary role of pixel-level and

representation-level adaptation in semantic segmentation [18, 33, 59, 60, 53], where

the pixel-level adaptation is mainly achieved by translating images from the source

domain to the target domain (source-to-target translation). Specifically, unpaired

image-to-image translation is used in CyCADA [18] to achieve pixel-level adaptation

by restricting cycle-consistency. Similarly, FCAN achieves the image translation by

combining the image content in the source domain and the ”style” from the target

domain [59]. I2IAdapt [33] further considers to align source and target representations

based on an image-to-image translation strategy, attempting to adapt domain shift.

Instead of using the adversarial learning for image translation, DCAN performs source-

to-target translation by leveraging target images for channel-wise alignment [60].

Driven by the fact that geometry and semantics are coordinated with each other,

GIO-Ada augments the standard image translation network by integrating geometric

information [53]. However, source-to-target translation introduces substantial bias to

the translated images, given that the size of the source domain is usually much larger

than the target domain. To address this problem, we propose the first-of-its-kind

target-to-source image translation to reduce pixel-level domain discrepancy. Compared

to the source-to-target translation, it is more computationally efficient and enables us
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to remove the uncertainty by training the segmentation network with original source

images and their corresponding labels.

Motivated by the observation that cross-domain images (e.g., GTA5 and Cityscapes)

often share tremendous structural similarities, ASN [19] adapts structured output

based on the adversarial learning. The strength of this method is its ability to provide

weak supervision to target images by enforcing target outs to be indistinguishable

from source outputs. However, it is limited to the scenario where two domains have a

huge layout discrepancy, resulting in meaningless predictions for target images. To

address this limitation, we further enforce the semantic consistency between target

images and their predicted labels through a reconstruction network.

Inspired by the self-training, [34, 35, 36, 37, 38, 39] generate pseudo labels

for target images and then re-training the segmentation model with these labels.

It outperforms the existing methods by a large margin. However, such a strategy

underestimates the side effect of pseudo labels that are incorrectly predicted. As a

consequence, the segmentation model fails to increasingly improve itself using these

wrong ground truth. Instead, our method reconstructs source and target input images

from the label space to ensure these outputs are semantically correct. The image-to-

image translation network in [34] uses a reconstruction loss and a perceptual loss to

maintain the semantic consistency between the input image and the reconstruction

from the translated image. Different from [34], we design a cycle-reconstruction loss

in our reconstruction network to enforce the semantic consistency between the input

image and the reconstruction from the predicted label.

Reconstruction-based strategy for unsupervised domain adaptation has received

considerable attention recently [78, 79]. The key idea is to reconstruct input images

from their feature representations to ensure that the segmentation model can learn

useful information. Chang et al. [80] follow a similar idea to first disentangle images
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Figure 2.2: An overview of our framework.

into the domain-invariant structure and domain-specific texture representations, and

then reconstruct input images. LSD-seg [81] first reconstructs images from the feature

space, and then apply a discriminator to the reconstructed images. Rather than

performing reconstruction from feature representations, we reconstruct both source

and target images from their predicted labels.

2.3 Algorithm

2.3.1 Overview

The overall design of our framework is illustrated in Figure 2.2, mainly containing

three complementary modules: a translation network F , a segmentation network G,

and a reconstruction network M. Given a set of source domain images Xs with labels

Ys and a set of target domain images Xt without any annotations. Our goal is to

train G to predict accurate pixel-level labels for Xt. To achieve this, we first use F to

adapt pixel-level knowledge between Xt and Xs by translating Xt to source-like images
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Xt→s. This is different from existing prevalent methods that translate images from the

source domain to the target domain. Xs and Xt→s are then fed into G to predict their

segmentation outputs G(Xs) and G(Xt→s), respectively. To further enforce semantic

consistency of both source and target domains, M is then applied to reconstruct

Xs and Xt→s from their predicted labels. Specifically, a cycle-reconstruction loss is

proposed to measure the reconstruction error, which enforces the semantic consistency

and further guides segmentation network to predict more accurate segmentation

outputs.

2.3.2 Target-to-source Translation

We first perform the image-to-image translation to reduce the pixel-level dis-

crepancy between source and target domains. As opposed to the source-to-target

translation reported in previous domain adaptation methods, we conduct the target-

to-source translation through an unsupervised image translation network (Figure 2.3).

Our goal is to learn a mapping F : Xt→Xs such that the distribution of images from

F(Xt) is indistinguishable from the distribution of Xs. As a counterpart, the inverse

mapping F−1 : Xs→Xt, which maps images from Xs to Xt, is introduced to prevent

the mode collapse issue [82]. Two adversarial discriminators Dt and Ds are employed

for distribution match, where Dt enforces indistinguishable distribution between F(Xt)

and Xs, and Ds encourages indistinguishable distribution between F−1(Xs) and Xt.

Based on the trained model F , we first translate images from Xt to source-like

images Xt→s = F(Xt). Specifically, each image in Xt→s preserves the same content as

the corresponding image in Xt while demonstrating the common style (e.g., texture

and lighting) as Xs. Xs and Xt→s are then fed into a segmentation network for semantic

label prediction.
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Target image

Source-like image

Source image

Target prediction

Source prediction

Reconstruction Network

Figure 2.3: Schematic overview of our framework which has three modules: (i) a
translation network for pixel-level discrepancy reduction by translating target images
to source-like images, where source-like images are indistinguishable from source
images, (ii) a segmentation network that predicts segmentation outputs for source
images and source-like images, and (iii) a reconstruction network for reconstructing
source and source-like images from their corresponding label space.

Compared to translating images from the source domain to the target domain,

the target-to-source translation has three benefits. First, it allows full supervision on

the source domain by training the segmentation network with original source images

and their corresponding labels. Second, it enables to reduce the bias in translated

images. Third, it is computationally efficient lying in the fact that |Xt| � |Xs|.
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Figure 2.4: A comparison between the image reconstruction from feature space and
label space (ours). For each input image (first column), the first and second row
indicate the images reconstructed from the feature and label space, respectively.

2.3.3 Semantic Segmentation

Given that source-like images Xt→s preserves all semantic information from

Xt, we apply a shared segmentation network G to Xs and Xt→s to predict their

segmentation outputs with the loss function given by,

LG = Lseg(G(Xs), Ys) + Lseg(G(Xt→s), Y ssl
t )+

λLadv(G(Xs), G(Xt→s)),
(2.1)

where Lseg indicates the typical segmentation objective, Y ssl
t is pseudo labels of Xt→s

which is derived from [34], Ladv(G(Xs), G(Xt→s)) is an adversarial loss, and λ leverages

the importance of these losses. Specifically, Ladv(G(Xs), G(Xt→s)) is defined as,

Ladv(G(Xs), G(Xt→s)) = E[logD(G(Xs))]+

E[log(1−D(G(Xt→s)))],
(2.2)

which enforces G to learn domain-invariant features by confusing the discriminator

D. It is noteworthy that we regard the segmentation outputs G(Xs) and G(Xt→s)

as features in our study. This is based on the observation that Xs and Xt→s share

significant similarities in terms of spatial layouts and structures [19].
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2.3.4 Image Reconstruction from the Label Space

To encourage G to generate segmentation outputs that are semantic consistent,

we introduce a reconstruction networkM to reconstruct Xφ from G(Xφ) ∈ RHφ×Wφ×C ,

where (Hφ,Wφ) indicates image size, C represents the number of label classes, and

the subscript φ can be either s or t→s to denote the source or the target domain.

However, directly reconstructing images from the feature space fails to provide semantic

consistency constraint to G. On the one hand, G(Xφ) encodes rich information which

makes the image reconstruction quite straightforward. As illustrated in Figure 2.4, in

just a few epochs, the reconstructed images derived from M are almost identical to

the input images. On the other hand, to enforce cross-domain features with the same

category close to each other, it is essential to perform the reconstruction based on

the label space. Unfortunately, G(Xφ) lies in the feature space instead. To overcome

these limitations, the most clear-cut way is to convert G(Xφ) to have zeros everywhere

except where the index of each maximum value in the last dimension. Doing so

formulates the categorical representation of the predicted label that corresponds to

G(Xφ). Nevertheless, such conversion is non-differentiable and cannot be trained using

standard backpropagation.

Driven by the softmax action selection which is commonly used in the rein-

forcement learning, we apply Boltzmann distributed probabilities to approximate the

semantic label map of G(Xφ), which is defined as,

Ωφ
(h,w,i) =

exp(G(Xφ)(h,w,i)/τ)∑c
j=1 exp(G(Xφ)(h,w,j)/τ)

, (2.3)

where τ is a temperature parameter. This conversion is continuous and differentiable,

therefore, we use M to reconstruct input images Xφ from Ωφ (Figure 2.4).

To synthesize high-resolution images from the semantic label map, we use

conditional GANs [83] to model the conditional distribution of Xφ given Ωφ. To
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this end, we introduce M and multi-scale domain discriminators Dk for k = 1, 2, 3.

M is designed to reconstruct Xφ from Ωφ, and Dk aims to distinguish Xφ from

M(Ωφ). Specifically, M follows the architecture proposed in [84], while Dk is based

on PatchGAN [83] that penalizes structure at the scale of image patches. All Dk

follow the same network architecture. Besides Xφ and M(Ωφ) themselves, they are

downsampled by a factor of 2 and 4 to obtain pyramid of 3 scales for D1, D2, and

D3, respectively. It is worth mentioning that Dk is essential to differentiate real and

reconstructed images with high resolution [85], owing to its ability in providing large

receptive field. The objective function is given by,

Lφadv =
∑3

k=1
[E[logDk(Ωφ,Xφ)]+

E[log(1−Dk(Ωφ,M(Ωφ)))]]

(2.4)

To further enforce semantic consistency between Xφ and M(Ωφ), we introduce

a cycle-reconstruction loss Lφrec to match their feature representations. Lφrec contains a

VGG perceptual loss and a discriminator feature matching loss, which is defined as,

Lφrec = E
M∑
m=1

[||V (m)(M(Ωφ))− V (m)(Xφ)||1]+

E
3∑

k=1

N∑
n=1

[||D(n)
k (Ωφ,Xφ))−D(n)

k (Ωφ,M(Ωφ))||1]
(2.5)

where V is a VGG19-based model for extracting high-level perceptual information [84],

M and N represent the total number of layers in V and Dk for matching intermediate

representations. Note that Lφrec penalizes Ωφ when it deviates from the corresponding

image Xφ in terms of semantic consistency. In this way, M enables to map features

from Xt→s closer to the features from Xs with the same label.

Taken together, the training objective of our framework is formulated as,

min
G,M

max
D,D1,D2,D3

LG + α(Lsadv + Lt→sadv ) + β(Lsrec + Lt→srec ) (2.6)
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where α and β leverage the importance of losses above. Notably, our method is able

to implicitly encourage G to generate semantic-consistent segmentation labels for the

target domain.

2.4 Experiments

In this section, a comprehensive evaluation is performed on two domain adaption

tasks to assess our framework for semantic segmentation. Specifically, we consider the

large distribution shift of adapting from synthetic (i.e., GTA5 [49] and SYNTHIA [50])

to the real images in Cityscapes [66]. A thorough comparison with the state-of-the-art

methods and extensive ablation studies are also carried out to verify the effectiveness

of each component in our framework.

2.4.1 Datasets

Cityscapes is one of the benchmarks for urban scene understanding, which is

collected from 50 cities with varying scene layouts and weather conditions. The 5,000

finely-annotated images from this dataset are used in our study, which contains 2,975

training images, 500 validation images, and 1,525 test images. Each image with a

resolution of 2048 × 1024. The GTA5 dataset is synthesized from the game Grand

Theft Auto V (GTA5), including a total of 24,966 labeled images whose annotations

are compatible with Cityscapes. The resolution of each image is 1914 × 1052. The

SYNTHIA-RAND-CITYSCAPES (or SYNTHIA for short) contains 9,400 pixel-level

annotated images (1280 × 760), which are synthesized from a virtual city. Following

the same setting reported in the previous studies, we use the labeled SYNTHIA or

GTA5 dataset as the source domain, while using the unlabeled training dataset in the

CITYSCAPES as the target domain. Only the 500 labeled validation images from

CITYSCAPES are used as test data in all of our experiments.
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2.4.2 Network Architecture

We use two segmentation baseline models, i.e., FCN-VGG16 and DeepLab-

ResNet101 to investigate the effectiveness and generalizability of our framework.

Specifically, FCN-VGG16 is the combination of FCN-8s [48] and VGG16 [86], while

DeepLab-ResNet101 is obtained by integrating DeepLab-V2 [70] into ResNet101 [7].

These two segmentation models share the same discriminator which has 5 convolution

layers with channel number {64, 128, 256, 512, 1}. For each layer, a leaky ReLU

parameterized by 0.2 is followed, except the last one. The kernel size and stride are set

to 4×4 and 2, respectively. The reconstruction model follows the architecture in [84],

containing 3 convolution layers (kernel 3×3 and stride 1), 9 ResNet blocks (kernel

3×3 and stride 2), and another 3 transposed convolution layers (kernel 3×3 and stride

2) for upsampling. The 3 multi-scale discriminators share the identical network, each

of which follows the architecture of PatchGAN [83].

2.4.3 Implementation Details

Our framework is implemented with PyTorch [87] on two TITAN Xp GPUs,

each of which with 12GB memory. The batch size is set to one for training all the

models discussed above. Limited by the GPU memory space, the translation network

is first trained to perform target-to-source image translation by using Adam optimizer

[88]. The initial learning rate is set to 0.0001, which is reduced by half after every

100,000 iterations. We use momentum {0.5, 0.999} with weight decay 0.0001. The

maximum training iteration is 1000k.

DeepLab-ResNet101 is trained using Stochastic Gradient Descent optimizer with

initial learning rate 2.5× 10−4. The polynomial decay with power 0.9 is applied to

the learning rate. The momentum and weight decay are set to 0.9 and 5 × 10−4,

respectively. For FCN-VGG16, the Adam optimizer with momentum {0.9, 0.99} and
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Table 2.1: A performance comparison of our method with other state-of-the-art models
on ”GTA5 to Cityscapes”. The performance is measured by the intersection-over-union
(IoU) for each class and mean IoU (mIoU). Two base architectures, i.e., VGG16 (V)
and ResNet101 (R) are used in our study.
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Source only R 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
SIBAN [56] R 88.5 35.4 79.5 26.3 24.3 28.5 32.5 18.3 81.2 40.0 76.5 58.1 25.8 82.6 30.3 34.4 3.4 21.6 21.5 42.6
CLAN [57] R 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2
DISE [80] R 91.5 47.5 82.5 31.3 25.6 33.0 33.7 25.8 82.7 28.8 82.7 62.4 30.8 85.2 27.7 34.5 6.4 25.2 24.4 45.4
IntraDA [36] R 90.6 37.1 82.6 30.1 19.1 29.5 32.4 20.6 85.7 40.5 79.7 58.7 31.1 86.3 31.5 48.3 0.0 30.2 35.8 46.3
BDL [34] R 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
CrCDA [35] R 92.4 55.3 82.3 31.2 29.1 32.5 33.2 35.6 83.5 34.8 84.2 58.9 32.2 84.7 40.6 46.1 2.1 31.1 32.7 48.6
SIM [37] R 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 85.3 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2
Kim et al. [38] R 92.9 55.0 85.3 34.2 31.1 34.9 40.7 34.0 85.2 40.1 87.1 61.0 31.1 82.5 32.3 42.9 0.3 36.4 46.1 50.2
FDA-MBT [39] R 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.45

Ours R 90.8 41.4 84.7 35.1 27.5 31.2 38.0 32.8 85.6 42.1 84.9 59.6 34.4 85.0 42.8 52.7 3.4 30.9 38.1 49.5

Source only V 26.0 14.9 65.1 5.5 12.9 8.9 6.0 2.5 70.0 2.9 47.0 24.5 0.0 40.0 12.1 1.5 0.0 0.0 0.0 17.9
SIBAN [56] V 83.4 13.0 77.8 20.4 17.5 24.6 22.8 9.6 81.3 29.6 77.3 42.7 10.9 76.0 22.8 17.9 5.7 14.2 2.0 34.2
ASN [19] V 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0
CyCADA [18] V 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4
CLAN [57] V 88.0 30.6 79.2 23.4 20.5 26.1 23.0 14.8 81.6 34.5 72.0 45.8 7.9 80.5 26.6 29.9 0.0 10.7 0.0 36.6
CrDoCo [62] V 89.1 33.2 80.1 26.9 25.0 18.3 23.4 12.8 77.0 29.1 72.4 55.1 20.2 79.9 22.3 19.5 1.0 20.1 18.7 38.1
CrCDA [35] V 86.8 37.5 80.4 30.7 18.1 26.8 25.3 15.1 81.5 30.9 72.1 52.8 19.0 82.1 25.4 29.2 10.1 15.8 3.7 39.1
BDL [34] V 89.2 40.9 81.2 29.1 19.2 14.2 29.0 19.6 83.7 35.9 80.7 54.7 23.3 82.7 25.8 28.0 2.3 25.7 19.9 41.3
FDA-MBT [39] V 86.1 35.1 80.6 30.8 20.4 27.5 30.0 26.0 82.1 30.3 73.6 52.5 21.7 81.7 24.0 30.5 29.9 14.6 24.0 42.2
Kim et al. [38] V 92.5 54.5 83.9 34.5 25.5 31.0 30.4 18.0 84.1 39.6 83.9 53.6 19.3 81.7 21.1 13.6 17.7 12.3 6.5 42.3
SIM [37] V 88.1 35.8 83.1 25.8 23.9 29.2 28.8 28.6 83.0 36.7 82.3 53.7 22.8 82.3 26.4 38.6 0.0 19.6 17.1 42.4

Ours V 90.1 41.2 82.2 30.3 21.3 18.3 33.5 23.0 84.1 37.5 81.4 54.2 24.3 83.0 27.6 32.0 8.1 29.7 26.9 43.6

initial learning rate 1× 10−5 is used for training. The learning rate is decreased using

step decay with step size 50000 and drop factor 0.1. In equation 2.1, λ is set to

1× 10−3 for DeepLab-ResNet101 and 1× 10−4 for FCN-VGG16.

The reconstruction network is first pre-trained by reconstructing source images

Xs from the corresponding labels Ys. We use the Adam optimizer with initial learning

rate 2×10−4 and momentum {0.5, 0.999}, where the learning rate is linearly decreased

to zero. In equation 2.6, we set β = 10. α is set to 0.01 and 0.001 for FCN-VGG16

and DeepLab-ResNet101 respectively.
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Table 2.2: A performance comparison of our method with other state-of-the-art models
on ”SYNTHIA to Cityscapes”. The performance is measured by the IoU for each
class and mIoU. Two base architectures, i.e., VGG16 (V) and ResNet101 (R) are used
in our study.
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Source only R 55.6 23.8 74.6 — — — 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 38.6
ASN [19] R 84.3 42.7 77.5 — — — 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 46.7
DISE [80] R 91.7 53.5 77.1 — — — 6.2 7.6 78.4 81.2 55.8 19.2 82.3 30.3 17.1 34.3 48.8
IntraDA [36] R 84.3 37.7 79.5 — — — 9.2 8.4 80.0 84.1 57.2 23.0 78.0 38.1 20.3 36.5 48.9
Kim et al. [38] R 92.6 53.2 79.2 — — — 1.6 7.5 78.6 84.4 52.6 20.0 82.1 34.8 14.6 39.4 49.3
DADA [54] R 89.2 44.8 81.4 — — — 8.6 11.1 81.8 84.0 54.7 19.3 79.7 40.7 14.0 38.8 49.8
CrCDA [35] R 86.2 44.9 79.5 — — — 9.4 11.8 78.6 86.5 57.2 26.1 76.8 39.9 21.5 32.1 50.0
BDL [34] R 86.0 46.7 80.3 — — — 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 51.4
SIM [37] R 83.0 44.0 80.3 — — — 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 52.1
FDA-MBT [39] R 79.3 35.0 73.2 — — — 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 52.5

Ours R 85.1 44.5 81.0 — — — 16.4 15.2 80.1 84.8 59.4 31.9 73.2 41.0 32.6 44.7 53.1

CrCDA [35] V 74.5 30.5 78.6 6.6 0.7 21.2 2.3 8.4 77.4 79.1 45.9 16.5 73.1 24.1 9.6 14.2 35.2
ROAD-Net [89] V 77.7 30.0 77.5 9.6 0.3 25.8 10.3 15.6 77.6 79.8 44.5 16.6 67.8 14.5 7.0 23.8 36.2
SPIGAN [90] V 71.1 29.8 71.4 3.7 0.3 33.2 6.4 15.6 81.2 78.9 52.7 13.1 75.9 25.5 10.0 20.5 36.8
GIO-Ada [53] V 78.3 29.2 76.9 11.4 0.3 26.5 10.8 17.2 81.7 81.9 45.8 15.4 68.0 15.9 7.5 30.4 37.3
TGCF-DA [91] V 90.1 48.6 80.7 2.2 0.2 27.2 3.2 14.3 82.1 78.4 54.4 16.4 82.5 12.3 1.7 21.8 38.5
BDL [34] V 72.0 30.3 74.5 0.1 0.3 24.6 10.2 25.2 80.5 80.0 54.7 23.2 72.7 24.0 7.5 44.9 39.0
FDA-MBT [39] V 84.2 35.1 78.0 6.1 0.44 27.0 8.5 22.1 77.2 79.6 55.5 19.9 74.8 24.9 14.3 40.7 40.5

Ours V 73.7 29.6 77.6 1.0 0.4 26.0 14.7 26.6 80.6 81.8 57.2 24.5 76.1 27.6 13.6 46.6 41.1

2.4.4 GTA5→Cityscapes

We carry out the adaptation from GTA5 to Cityscapes by following the same

evaluation protocol as previously reported in [19, 34]. The overall quantitative

performance is assessed on 19 common classes (e.g., road, wall, and car) between

these two domains. As shown in Table 2.1, we demonstrate competitive performance

against ResNet101-based methods, but are inferior to two newly published models

[38, 39]. For the VGG16-based backbone, however, we are able to achieve the best

results compared to existing state-of-the-art methods including [38, 39]. Specifically,

our method surpasses the source-only model (without adaptation) by 12.9% and 25.7%

on ResNet101 and VGG16, respectively. Compared with CyCADA [18] and BDL [34]

that rely on source-to-target translation, we demonstrate significant improvements

(i.e., 8.2% and 2.3% on VGG16) by reducing image translation bias. CLAN [57] aims

to enforce local semantic consistency by a category-level adversarial network. However,
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Table 2.3: Ablation study of the target-to-source translation and the reconstruction
network. S→T and T→ S indicate source-to-target and target-to-source translation.

Base S→T T→ S Reconstruction GTA5 SYNTHIA

R 3 48.5 51.4
R 3 49.1 52.0
R 3 3 49.5 53.1

V 3 41.3 39.0
V 3 42.3 40.1
V 3 3 43.6 41.1

such a strategy fails to account for the global semantic consistency. Our reconstruction

network shares a similar spirit with CLAN in terms of joint distribution alignment

but enables us to enforce semantic consistency from a global view. As a consequence,

we get 6.3% and 7.0% improvement on ResNet101 and VGG16, respectively.

2.4.5 SYNTHIA→Cityscapes

We then evaluate our framework on the adaptation from SYNTHIA to Cityscapes

based on 13 classes on ResNet101 and 16 classes on VGG16. The results exhibit that our

method outperforms other competing methods on average as shown in Table 2.2. Both

ASN [19] and BDL [34] adapt output space in their models. However, simply aligning

segmentation outputs may lead to negative transfer issue, owing to the dramatic

differences of the layout and structure between SYNTHIA and Cityscapes. We achieve

6.4% and 1.7% improvement than ASN and BDL on ResNet101, respectively. It

is noteworthy that we also outperform [39] on both ResNet101 and VGG16-based

backbone.
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Image Ground Truth Source-to-Target +Target-to-Source +Reconstruction Reconstructed Image 

Figure 2.5: Qualitative examples of semantic segmentation results in Cityscapes. For
each target-domain image (first column), its ground truth and the corresponding
segmentation prediction from the baseline model (source-to-target translation) are
given. The following are predictions of our method by incorporating target-to-source
translation and reconstruction, together with the reconstructed image.

2.4.6 Ablation Study

2.4.6.1 Target-to-source Translation and Reconstruction

For GTA5 to Cityscapes, 0.6% improvement is achieved by considering target-to-

source translation on ResNet101 compared to the source-to-target translation model

(Table 2.3). By further enforce semantic consistency through a reconstruction network,

our method achieves 49.5 mIoU. Similar improvements are also observed on VGG16,

with 1.0% improvement by performing target-to-source translation. The prediction

power of our method is further boosted by combining translation and reconstruction,

giving rise to another 1.3% mIoU improvement. The qualitative study of each module

in our method is showcased in Figure 2.5.

For SYNTHIA to Cityscapes, we achieve a performance boost of 0.6% and 1.1%

by considering target-to-source translation on ResNet101 and VGG16, respectively
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Table 2.4: Ablation study of the temperature τ on GTA5→Cityscapes.

τ 0.0001 0.001 0.01 0.1 1

mIoU 42.7 43.6 42.8 42.9 41.5

Table 2.5: Ablation study of the feature space vs. label space reconstruction.

Feature space Label space

GTA5→Cityscapes 41.48 43.6

SYNTHIA→Cityscapes 40.13 41.1

(Table 2.3). The performance gain is 1.1% and 1.0% by incorporating the reconstruction

network. Our results prove the effectiveness of target-to-source translation and

reconstruction in adapting domain knowledge for semantic segmentation.

2.4.6.2 Parameter Analysis

We investigate the sensitivity of temperature parameter τ in this section and

find that τ = 0.001 achieves the best performance (Table 2.4). Therefore, τ is set to

0.001 in all of our experiments to approximate semantic label maps.

2.4.6.3 Feature Space VS. Label Space Reconstruction

We also evaluate the feature space reconstruction based on the VGG16-based

backbone. Table 2.5 highlights the benefits of our label-driven reconstruction that

enforces semantic consistency of target images and their predicted labels.

2.4.6.4 Reconstruction loss

Table 2.6 shows the complementary role of VGG perceptual loss and discriminator

feature matching loss (equation 2.5) in maintaining semantic consistency.
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Table 2.6: Ablation study of the reconstruction loss on GTA5→Cityscapes with
VGG16 backbone.

VGG Discriminator mIoU

41.53
3 42.82

3 41.95
3 3 43.6

2.5 Summary and Discussion

In this chapter, we propose a novel framework that exploits cross-domain

adaptation in the context of semantic segmentation. Specifically, we translate images

from the target domain to the source domain to reduce image translation bias and the

computational cost. To enforce cross-domain features with the same category close

to each other, we reconstruct both source and target images directly from the label

space. Experiments demonstrate that our method achieves significant improvement in

adapting from GTA5 and SYNTHIA to Cityscapes.

As discussed in Chapter 1, there are two primary issues in transfer learning,

i.e., what and how to transfer domain knowledge across two domains. Existing

methods mainly focus on adapting domain-invariant features (what to transfer) through

adversarial learning (how to transfer). Context dependency is essential for semantic

segmentation, however, its transferability is still not well understood. Furthermore, how

to transfer contextual information across two domains remains unexplored. Therefore,

a promising research topic would be to incorporating contextual information into

UDA. This will be our main focus in the next chapter.
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CHAPTER 3

Context-Aware Domain Adaptation in Semantic Segmentation

In this chapter, we propose a cross-attention mechanism based on self-attention

to capture context dependencies between two domains and adapt transferable context.

To achieve this goal, we design two cross-domain attention modules to adapt context

dependencies from both spatial and channel views. Specifically, the spatial attention

module captures local feature dependencies between each position in the source and

target image. The channel attention module models semantic dependencies between

each pair of cross-domain channel maps. To adapt context dependencies, we further

selectively aggregate the context information from two domains. The superiority of

our method over existing state-of-the-art methods is empirically proved on ”GTA5 to

Cityscapes” and ”SYNTHIA to Cityscapes”.

3.1 Introduction

Semantic segmentation aims to predict pixel-level labels for the given images

[48, 70], which has been widely recognized as one of the fundamental tasks in computer

vision. Unfortunately, the manual pixel-wise annotation for large-scale segmentation

datasets is extremely time-consuming and requires massive amounts of labor efforts.

As a tradeoff, synthetic datasets [49, 50] with freely-available labels offer a promising

alternative by providing considerable data for model training. However, the domain

discrepancy between synthetic (source) and real (target) images is still the central

challenge to effectively transfer knowledge across domains. To overcome this limitation,

the key idea of existing methods is to leverage knowledge from a source domain to
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Source image Target image

Figure 3.1: An example of cross-domain context. The source and target images share
similar context information at the spatial and semantic level. The red line, orange line,
and blue line denote vegetation, car, and sidewalk across two domains, respectively.

enhance the learning performance of a target domain. Such a strategy is mainly inspired

by the recent advances in unsupervised domain adaptation for image classification [8].

Conventional domain adaptation methods in image classification attempt to learn

domain-invariant feature representations by directly minimizing the representation

distance between two domains [12, 13, 28], encouraging a common feature space through

an adversarial objective [74, 25], or automatically determining what and where to

transfer via meta-learning [76, 92]. Motivated by this, various domain adaptation

methods for semantic segmentation are proposed recently. Among them, the most

common practices are based on feature alignment [17, 32], structure adaptation

[19, 89], adversarial learning [93, 90, 94, 95], curriculum adaptation [51, 52], self

training [55, 34, 46, 36], and image-to-image translation [18, 59, 34, 62, 53, 46].

Despite remarkable performance improvement achieved by these methods, they fail to

explicitly consider the contextual dependencies across the source and target domains

which is essential for scene understanding [96, 97]. As illustrated in Figure 3.1, the

source and target images share a much similar semantic context such as vegetation,

car, and sidewalk, although their appearances (e.g., scale, texture, and illumination)

are quite different. However, how to adapt context information across two domains

remains unexplored.
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Inspired by this, we propose a novel domain adaptation framework named cross-

domain attention network (CDANet), designed for urban-scene semantic segmentation.

The key idea of CDANet is to leverage cross-domain context dependencies from

both a local and global perspective. To achieve this goal, we innovatively design a

cross-attention mechanism which contains two cross-domain attention modules to

capture mutual context dependencies between source and target domains. Given that

same objects with different appearances and scales often share similar features, we

introduce a cross-domain spatial attention module (CD-SAM) to capture local feature

dependencies between any two positions in a source image and a target image. The

CD-SAM involves two directions (i.e., ”source-to-target” and ”target-to-source”) to

adaptively aggregate cross-domain features to learn common context information. On

the forward direction (or ”source-to-target”), CD-SAM updates the feature at each

position in the source image as the weighted sum of features at all positions in the

target image. The weights are computed based on the similarity of source and target

features at each position. Similarly, the backward direction (or ”target-to-source”)

updates the target feature at each position based on the attention to features at

all positions in the source image. In consequence, spatial contexts from the source

domain are encoded in the target domain, and vice versa. To model the associations

between different semantic responses across two domains, we introduce a cross-domain

channel attention module (CD-CAM) which has the same bidirectional structure as

CD-SAM. The CD-CAM is designed for contextual information aggregation through

capturing the channel feature dependencies between any two channel maps in the

source and target image. In such a way, common semantic contexts are shared by both

domains. CD-SAM and CD-CAM play a complementary role for context adaptation

and their outputs are further merged to provide better feature representations for

scene understanding.
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Our main contributions are summarized as follows: (i) We propose a novel

cross-attention mechanism that enables to transfer of context dependencies across

two domains. This is the first-of-its-kind study that investigates the transferability

of context information in the domain adaptation; (ii) Two cross-domain attention

modules are proposed to capture and adapt context dependencies at both spatial

and channel levels. This allows us to learn the common semantic context shared by

source and target domains; and (iii) Comprehensive empirical studies demonstrate

the superiority of our method over the existing state of the art on two benchmark

settings, i.e., ”GTA5 to Cityscapes” and ”SYNTHIA to Cityscapes”.

3.2 Related Work

3.2.1 Domain Adaptation for Semantic Segmentation

Inspired by the Generative Adversarial Network [30], Hoffman et al.[17] propose

the first domain adaptation model for semantic segmentation by learning domain-

invariant features through adversarial training. To rule out task-independent factors

during feature alignment, SIBAN [56] purifies significance-aware features before the

adversarial adaptation to facilitate feature adaptation and stabilize the adversarial

training. However, these global adversarial methods ignore to align the category-

level joint distribution, which may disturb well-aligned features. To alleviate this

problem, Luo et al.propose a category-level adversarial network to encourage local

semantic consistency through reweighting the adversarial loss for each feature [57].

Similarly, [98] proposes a fine-grained adversarial learning strategy for class-level

feature alignment. Based on the hypothesis that structure information plays an

essential role in semantic segmentation, Chang et al.adapt structure information by

learning domain-invariant structure [80]. This is achieved by disentangling the domain-
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invariant structure of a given image from its domain-specific texture information.

AdaptSetNet moves forward by further considering structured output adaptation

which is based on the observation that segmentation outputs of the source and target

domains share substantial similarities [19]. Different from AdaptSetNet, we apply three

domain discriminators to perform output adaptation on the segmentation outputs

from CD-SAM, CD-CAM, and the aggregation of these two modules.

Most recently, image-to-image translation [63] has proved its effectiveness in

domain adaptation [18, 60, 62]. The key idea is to translate images from the source

domain to the target domain by using an image translation model and use the translated

images for adapting cross-domain knowledge through a segmentation adaptation model.

Rather than keeping the image translation model unchanged after obtaining translated

images, BDL [34] applies a bidirectional learning framework to alternatively optimize

the image translation model and the segmentation model. Similar to [55, 36], a

self-supervised learning strategy is also used in BDL to generate pseudo labels for

target images and re-training the segmentation model with these labels. Although

BDL achieves the new state of the art, it is limited in its ability to consider the

cross-domain context dependencies. To overcome this limitation, we introduce two

cross-domain attention modules to adapt context information between source and

target domains.

3.2.2 Context-Aware Embedding

It has been long known that context information plays an important role in

perceptual tasks such as semantic segmentation [99]. Zhang et al.[96] propose a

context encoding module to capture the semantic context of scenes and selectively

emphasize or de-emphasize class-dependent feature maps. To aggregate image-adapted

context, MSCI [100] further considers multi-scale context embedding and spatial
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relationships among super-pixels in a given image. Following the success of attention

mechanism [101] in image generation [102] and sentence embedding [103], recent studies

have highlighted the potential of self-attention in capturing context dependencies

[104, 97]. Specifically, Zhao et al.[97] introduce a point-wise spatial attention network

to aggregate long-range contextual information. Their model mainly draws its strength

from the self-adaptively predicted attention maps which can take full advantage of

both nearby and distant information of each pixel. DANet [104] adaptively integrates

local features with their global dependencies through a position attention module and

a channel attention module. These two modules are considered to be able to capture

spatial and semantic interdependencies, and in turn, facilitate scene understanding.

Similarly, CBAM [105] sequentially infers attention maps along the channel and

spatial dimensions in order to adaptively refine the intermediate features. As opposed

to capturing contextual information within a single domain as previously reported,

we design an innovative cross-attention mechanism to model context dependencies

between two different domains, which is essential for context adaptation.

3.3 Methodology

In this section, we begin by briefing the key idea of our framework. We then detail

the proposed cross-attention mechanism which contains two cross-domain attention

modules for adapting context dependencies between a source and a target domain.

3.3.1 Overview

Given a set of source-domain images Xs with pixel-wise labels Ys and a set of

target-domain images Xt without any annotation. Our goal is to train a segmentation

model that can provide accurate prediction to Xt. To achieve this, Xs is first translated

from the source domain to the target domain using CycleGAN [63]. The translated
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Figure 3.2: An overview of the proposed framework. It applies a feature extractor
(i.e., ResNet101 or VGG16) to learn source and target features. Two cross-domain
attention modules (i.e., CD-SAM and CD-CAM) are designed to adapt spatial and
semantic context information across source and target domains. A classifier G is
used to predict segmentation output based on the features from CD-SAM and CD-
CAM. Our framework contains three discriminators (i.e., D1, D2, and D3) for output
adaptation by enforcing the source output be indistinguishable from the target output.

images X ′
s = F(Xs) (where F denotes the image translation model) share the same

semantic labels with Xs but with common visual appearance as Xt. Motivated by the

self-training strategy, we follow the same idea in [34, 36] to generate pseudo labels Y st
t

for Xt with high prediction confidence. Coordinated with these translated images and

pseudo labels, we introduce a cross-attention mechanism for domain adaptation of

semantic segmentation by leveraging cross-domain contextual information (Figure 3.2).

First, a feature extractor E is applied to get source feature E(X ′
s) and target feature

E(Xt) which are 1/8 of the corresponding input image size. Then a linear interpolation

is applied to E(X ′
s) and E(Xt) to match their spatial size. After that, two parallel

convolution layers are applied to E(X ′
s) and E(Xs) to generate feature pairs {As,At}

and {Bs,Bt}, respectively. {As,At} is then fed into CD-SAM to adapt spatial-level

context, while CD-CAM adapts channel-level context based on {Bs,Bt}.

For each module, two directions, i.e., forward direction (”source-to-target”)

and backward direction (”target-to-source”) are involved. Take the CD-SAM as an
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Figure 3.3: Cross-domain spatial attention module.

example, an energy map is first obtained based on {As,At}. This energy map is

further divided into two attention matrices denoted by Γs→t and Γt→s. During the

forward direction, we perform a matrix multiplication between target features and

Γs→t. The result is then summed with the original source features in an element-wise

manner. For the backward direction, a matrix multiplication is conducted between

source features and Γt→s. After that, an element-wise summation between the obtained

results and original target features is carried out. The CD-CAM follows the same

setting above except that the energy map is calculated in the channel dimension.

The final source feature and target feature are obtained by aggregating the outputs

from these two attention modules, which are then fed into a classifier G for semantic

segmentation.

3.3.2 Cross-Domain Spatial Attention Module

The goal of CD-SAM is to adapt spatial contextual information across two

domains. To achieve this, we introduce the forward direction (”source-to-target”)

to augment source features by selectively aggregating target features based on their

similarities. We further introduce the backward direction (”target-to-source”) to

update target features by aggregating source features in the same way.
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The architecture of CD-SAM is illustrated in Figure 3.3. Given As ∈ RC×H×W

and At ∈ RC×H×W (C denotes the channel number and H ×W indicates the spatial

size), two parallel convolution layers are applied to generate Q ∈ RC×H×W and

K ∈ RC×H×W , respectively. As and At are also fed into another convolution layer to

obtain Vs ∈ RC×H×W and Vt ∈ RC×H×W . We reshape Q, Vs, K, and Vt to C ×N ,

where N = H ×W . To determine spatial context relationships between each position

in As and At, an energy map Φ ∈ RN×N is formulated as Φ = QTK, where Φ(i,j)

measure the similarity between ith position in As and jth position in At. To augment

As with spatial context information from At and vice versa, a bidirectional feature

adaptation is defined as follows.

During the forward direction, we first define the ”source-to-target” spatial

attention map as,

Γ
(i,j)
s→t =

exp(Φ(i,j))∑Nt
j=1 exp(Φ

(i,j))
, (3.1)

where Γ
(i,j)
s→t indicates the impact of ith position in As to jth position in At. To capture

spatial context in the target domain, we update As as,

A
′

s = As + λsVtΓ
T
s→t, (3.2)

where λs leverages the importance of target-domain context and original source features.

In this regime, each position in A
′

s has a global context view of target features.

For the backward direction, the ”target-to-source” spatial attention map is

formulated as,

Γ
(i,j)
t→s =

exp(Φ(i,j))∑Ns
i=1 exp(Φ

(i,j))
, (3.3)

where Γ
(i,j)
t→s indicates to what extent the jth position in At attends to the ith position

in As. Similarly, At is updated by,

A
′

t = At + λtVsΓt→s, (3.4)
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Figure 3.4: Cross-domain channel attention module.

where λt leverages the importance of source-domain context and original target features.

As a consequence, each position in A
′

s and A
′

t is a combination of their original feature

and the weighed sum of features from the opposite domain. Therefore, A
′

s and A
′

t

allow us to encode the spatial context of both source and target domains.

3.3.3 Cross-Domain Channel Attention Module

Given Bs ∈ RC×H×W and Bt ∈ RC×H×W , the CD-CAM is designed to adapt

semantic context between source and target domains (Figure 3.4) by following the same

bidirectional structure as CD-SAM. Different from CD-SAM that applies convolution

layers to obtain Q, K, Vs, and Vt before measuring spatial relationships. Here, Bs

and Bt are directly used to capture their semantical context relationships, which

allows us to maintain interdependencies between channel maps [104]. Specifically, we

reshape both Bs and Bt to C ×N , where N = H ×W . The energy map is defined as

Θ = BtB
T
s ∈ RC×C , where Θ(i,j) denotes the similarity between ith channel in Bs and

jth channel in Bt.

For the forward direction, the ”source-to-target” attention map is given by,

Ψ
(i,j)
s→t =

exp(Θ(i,j))∑C
j=1 exp(Θ

(i,j))
, (3.5)
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where Ψ
(i,j)
s→t measures the impact of ith channel in Bs to jth channel in Bt. To model

the cross-domain semantic context dependencies, Bs is updated by,

B
′

s = Bs + ξsΨs→tBt, (3.6)

where ξs leverages the associations between target-domain semantic information and

original source features. As a consequence, each channel in B
′

s is augmented by

selectively aggregating semantic information from Bt.

During the backward direction, the ”target-to-source” attention map is,

Ψ
(i,j)
t→s =

exp(Θ(i,j))∑C
i=1 exp(Θ

(i,j))
(3.7)

To take semantic context in Bs into consideration, we have

B
′

t = Bt + ξtΨ
T
t→sBs, (3.8)

where ξt leverages the associations between original target features and semantic

contexts from the source domain. It is noteworthy that by considering cross-domain

semantic context, our framework is able to further reduce domain discrepancy from

the context perspective.

3.3.4 Aggregation of Spatial and Channel Context

To take full advantage of spatial and channel context information, we aggregate

the outputs from these two cross-domain attention modules. Specifically, A
′

s and

B
′

s are concatenated and then fed into a convolution layer to generate the enhanced

source feature Zs ∈ RC×H×W . Obviously, Zs is enriched by spatial and semantic

context dependencies from both source and target domains. The same operation is

also performed on A
′

t and B
′

t to obtain Zt ∈ RC×H×W .
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3.3.5 Training Objective

Our framework contains a segmentation loss Lseg and an adversarial loss Ladv.

We first feed Zs and Zt into the classifier G to predict their segmentation outputs

G(Zs) and G(Zt). The segmentation loss of G(Zs) is defined as:

Lseg(G(Zs), Ys) = −
H×W∑
i=1

L∑
j=1

Y (i,j)
s G(Zs)

(i,j), (3.9)

where L is the number of label classes. Lseg(G(Zt), Y
st
s ) is defined in a similar way. To

adapt structured output space [19], a discriminator D1 is applied to G(Zs) and G(Zt)

to make them be indistinguishable from each other. To achieve this, an adversarial

loss Ladv(G(Zs), G(Zt)) is formulated as,

Ladv(G(Zs), G(Zt), D1) = E[logD1(G(Zs))]+

E[log(1−D1(G(Zt)))]

(3.10)

To encourage A
′

s, A
′

t, B
′

s and B
′

t to encode useful information for semantic segmenta-

tion, they are also fed into the classifier G to predict their segmentation outputs. The

overall segmentation loss is given by,

Lseg = Lseg(G(Zs), Ys) + Lseg(G(Zt), Y
st
t )+

Lseg(G(A
′

s), Ys) + Lseg(G(A
′

t), Y
st
t )+

Lseg(G(B
′

s), Ys) + Lseg(G(B
′

t), Y
st
t )

(3.11)

We also encourage G(A
′

s) and G(A
′

t) to have similar structured layout, and enforce

G(B
′

s) to be indistinguishable from G(B
′

t). Therefore, the overall adversarial loss can

be written as,

Ladv = Ladv(G(Zs), G(Zt), D1)+

Ladv(G(A
′

s), G(A
′

t), D2)+

Ladv(G(B
′

s), G(B
′

t), D3),

(3.12)
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where D2 and D3 are two discriminators. Specifically, D2 aims to discriminate between

G(A
′

s) and G(A
′

t), while D3 attempts to distinguish between G(B
′

s) and G(B
′

t).

Taken them together, the training objective of our framework is:

min
E,G

max
D1,D2,D3

Lseg + λLadv (3.13)

where λ controls the importance of Lseg and Ladv.

3.4 Experiments

In this section, we evaluate our method on synthetic-to-real domain adaptation

for urban scene understanding problem. Extensive empirical experiments and ablation

studies are performed to demonstrate out method’s superiority over existing state-of-

the-art models. We also visualize the cross-domain attention maps to reveal context

dependencies between source and target domains.

3.4.1 Datasets

Two synthetic datasets, i.e., GTA5 [49] and SYNTHIA-RAND-CITYSCAPES

[50] are used as the source domain in our study, while the Cityscapes [66] is served as

the target domain. Specifically, the GTA5 is collected from a photorealistic open-world

game known as Grand Theft Auto V, which contains 24,966 images with pixel-accurate

semantic labels. The resolution of each image is 1914 × 1052. SYNTHIA-RAND-

CITYSCAPES contains 9,400 images (1280 × 760) with precise pixel-level semantic

annotations, which are generated from a virtual city. Cityscapes is a large-scale

street scene datasets collected from 50 cities, including 5,000 images with high-quality

pixel-level annotations. These images are split into training (2,975 images), validation

(500 images), and test (1,525 images) set, each of which with the resolution of 2048

× 1024. Following the same setting as previous studies, only the training set from
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Cityscapes is used as the target domain, and the validation set is used for performance

evaluation.

3.4.2 Implementation Details

3.4.2.1 Network Architecture

The same CycleGAN architecture [63] as reported in BDL [34] is used to translate

images from the source domain to the target domain. DeepLab-VGG16 and DeepLab-

ResNet101, which are pre-trained on ImageNet [106], are used as our segmentation

network by following the same setting in [19]. Both of them use DeepLab-v2 [70]

as classifier, while DeepLab-VGG16 uses VGG16 [86] and DeepLab-ResNet101 uses

ResNet101 [7] as the feature extractor. The three discriminators used for structured

output adaptation have the identical architecture, each of which has 5 convolution

layers with kernel 4×4 and stride of 2. The channel number of each layer is {64,

128, 256, 512, 1}. Each layer is followed by a leaky ReLU [107] parameterized by 0.2

except the last one. The CD-SAM contains 3 convolution layers with kernel 1×1 and

stride of 1 to obtain the query and key-value pairs. The channel number of these

convolution layers are {128, 128, 1024} and {256, 256, 2048} for DeepLab-VGG16

and DeepLab-ResNet101, respectively.

3.4.2.2 Network Training

To train the CycleGAN network, we follow the same setting in BDL [34].

DeepLab-VGG16 is trained using Adam optimizer with initial learning rate 1e-5 and

momentum (0.9, 0.99). We apply step decay to the learning rate with step size 50000

and drop factor 0.1. Both DeepLab-ResNet101 and CD-SAM use Stochastic Gradient

Descent (SGD) optimizer with momentum 0.9 and weight decay 5e-4. The initial
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Table 3.1: The performance comparison by adapting from GTA5 to Cityscapes. Two
base architectures (i.e., VGG16 and ResNet101) are used in our study. The comparison
is performed on 19 common classes between source and target domains. We use per-
class IoU and mean IoU (mIoU) for the performance measurement. The best result in
each column is highlighted in bold.
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FCNs wild [17]

V
G

G
1
6

70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1
CDA [51] 74.9 22.0 71.4 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 14.6 28.9
AdaptSegNet [19] 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0
CyCADA [18] 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4
LSD [81] 88.0 30.5 78.6 25.2 23.5 16.7 23.5 11.6 78.7 27.2 71.9 51.3 19.5 80.4 19.8 18.3 0.9 20.8 18.4 37.1
PyCDA [52] 86.7 24.8 80.9 21.4 27.3 30.2 26.6 21.1 86.6 28.9 58.8 53.2 17.9 80.4 18.8 22.4 4.1 9.7 6.2 37.2
CrDoCo [62] 89.1 33.2 80.1 26.9 25.0 18.3 23.4 12.8 77.0 29.1 72.4 55.1 20.2 79.9 22.3 19.5 1.0 20.1 18.7 38.1
BDL [34] 89.2 40.9 81.2 29.1 19.2 14.2 29.0 19.6 83.7 35.9 80.7 54.7 23.3 82.7 25.8 28.0 2.3 25.7 19.9 41.3
FDA [39] 86.1 35.1 80.6 30.8 20.4 27.5 30.0 26.0 82.1 30.3 73.6 52.5 21.7 81.7 24.0 30.5 29.9 14.6 24.0 42.2
FADA [98] 92.3 51.1 83.7 33.1 29.1 28.5 28.0 21.0 82.6 32.6 85.3 55.2 28.8 83.5 24.4 37.4 0.0 21.1 15.2 43.8
Ours 90.1 46.7 82.7 34.2 25.3 21.3 33.0 22.0 84.4 41.4 78.9 55.5 25.8 83.1 24.9 31.4 20.6 25.2 27.8 44.9

AdaptSegNet [19]

R
e
sN

e
t1

0
1

86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
CLAN [57] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2
IntraDA [36] 90.6 37.1 82.6 30.1 19.1 29.5 32.4 20.6 85.7 40.5 79.7 58.7 31.1 86.3 31.5 48.3 0.0 30.2 35.8 46.3
MaxSquare [108] 89.4 43.0 82.1 30.5 21.3 30.3 34.7 24.0 85.3 39.4 78.2 63.0 22.9 84.6 36.4 43.0 5.5 34.7 33.5 46.4
BDL [34] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
FADA [98] 92.5 47.5 85.1 37.6 32.8 33.4 33.8 18.4 85.3 37.7 83.5 63.2 39.7 87.5 32.9 47.8 1.6 34.9 39.5 49.2
FDA [39] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.4
Ours 91.3 46.0 84.5 34.4 29.7 32.6 35.8 36.4 84.5 43.2 83.0 60.0 32.2 83.2 35.0 46.7 0.0 33.7 42.2 49.2

learning rate for DeepLab-ResNet101 and CD-SAM are 2.5e-4 and 1e-4, respectively,

and are decreased by the same polynomial policy with power 0.9. For the discriminator,

we use an Adam optimizer with momentum (0.9, 0.99). Its initial learning rate is set

to 1e-6 for DeepLab-VGG16 and 1e-4 for DeepLab-ResNet101, respectively. We set λ

to 0.0001 and 0.001 for DeepLab-VGG16 and DeepLab-ResNet101, respectively.

3.4.3 Performance Comparison

3.4.3.1 GTA5 to Cityscapes

Our method is first evaluated by using GTA5 as the source domain and Cityscapes

as the target domain. The performance is assessed on 19 common classes between these

two datasets by following the same evaluation criterion in previous studies [34, 62].

Our method is compared with existing state-of-the-art models by using VGG16 and
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ResNet101 as the base architectures. As shown in Table 3.1, our method competes

favorably against other models. Specifically, we surpass the mean intersection-over-

union (mIoU) of feature alignment-based [17, 81, 57] and curriculum-based methods

[51] by a large margin. This observation indicates that simply aligning feature space

and label distribution cannot fully transfer domain knowledge in semantic segmentation.

Compared to the models [18, 62, 34] that are based on image-to-image translation,

our method gains up to 9.5% improvement by using VGG16, revealing that domain

discrepancy can be further reduced by considering context adaptation. Similar to

[19, 34], we also adapt structured output space in our model, but our method achieves

significant performance improvement. This observation reveals the important role

of context adaptation in knowledge transfer. It is noteworthy that the prediction

of the ”train” class is extremely challenging, owing to the limited ”train” samples

in the source domain. Our method enables to alleviate this limitation by adapting

cross-domain context information. Compared to the CyCADA [18], we achieve 16.1%

improvement on the ”train” class.

3.4.3.2 SYNTHIA to Cityscapes

The superiority of our method is further proved on ”SYNTHIA to Cityscapes”.

It is noteworthy that domain adaptation on ”SYNTHIA to Cityscapes” is more

challenging than ”GTA5 to Cityscapes”, owing to the large domain gap between

these two domains. Following [34], we consider the 16 and 13 common classes for

VGG16 and ResNet101-based models, respectively. As summarized in Table 3.2, we

achieve a performance improvement of 1.8% and 1.0% over BDL [34] with VGG16 and

ResNet101 base architectures. One of the most significant difference between these two

domains is that SYNTHIA has much more ’person’ instances than Cityscapes, which

makes it hard to transfer common knowledge of the class ’person’ by simply aligning
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Table 3.2: The performance comparison by adapting from SYNTHIA to Cityscapes.
Two base architectures (i.e., VGG16 and ResNet101) are used in our study. The
comparison is performed on 16 common classes for VGG16 and 13 common classes for
ResNet101.
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DCAN [60]

V
G

G
1
6

79.9 30.4 70.8 1.6 0.6 22.3 6.7 23.0 76.9 73.9 41.9 16.7 61.7 11.5 10.3 38.6 35.4
PyCDA [52] 80.6 26.6 74.5 2.0 0.1 18.1 13.7 14.2 80.8 71.0 48.0 19.0 72.3 22.5 12.1 18.1 35.9
DADA [54] 71.1 29.8 71.4 3.7 0.3 33.2 6.4 15.6 81.2 78.9 52.7 13.1 75.9 25.5 10.0 20.5 36.8
GIO-Ada [53] 78.3 29.2 76.9 11.4 0.3 26.5 10.8 17.2 81.7 81.9 45.8 15.4 68.0 15.9 7.5 30.4 37.3
TGCF-DA [91] 90.1 48.6 80.7 2.2 0.2 27.2 3.2 14.3 82.1 78.4 54.4 16.4 82.5 12.3 1.7 21.8 38.5
BDL [34] 72.0 30.3 74.5 0.1 0.3 24.6 10.2 25.2 80.5 80.0 54.7 23.2 72.7 24.0 7.5 44.9 39.0
FADA [98] 80.4 35.9 80.9 2.5 0.3 30.4 7.9 22.3 81.8 83.6 48.9 16.8 77.7 31.1 13.5 17.9 39.5
FDA [39] 84.2 35.1 78.0 6.1 0.4 27.0 8.5 22.1 77.2 79.6 55.5 19.9 74.8 24.9 14.3 40.7 40.5
Ours 73.0 31.1 77.1 0.2 0.5 27.0 11.3 27.4 81.2 81.0 59.0 25.6 75.0 26.3 10.1 47.4 40.8

SIBAN [56]

R
e
sN

e
t1

0
1

82.5 24.0 79.4 7 7 7 16.5 12.7 79.2 82.8 58.3 18.0 79.3 25.3 17.6 25.9 46.3
CLAN [57] 81.3 37.0 80.1 7 7 7 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 47.8
MaxSquare [108] 82.9 40.7 80.3 7 7 7 12.8 18.2 82.5 82.2 53.1 18.0 79.0 31.4 10.4 35.6 48.2
IntraDA [36] 84.3 37.7 79.5 7 7 7 9.2 8.4 80.0 84.1 57.2 23.0 78.0 38.1 20.3 36.5 48.9
DADA [54] 89.2 44.8 81.4 7 7 7 8.6 11.1 81.8 84.0 54.7 19.3 79.7 40.7 14.0 38.8 49.8
BDL [34] 86.0 46.7 80.3 7 7 7 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 51.4
FDA [39] 79.3 35.0 73.2 7 7 7 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 52.5
FADA [98] 84.5 40.1 83.1 7 7 7 20.1 27.2 84.8 84.0 53.5 22.6 85.4 43.7 26.8 27.8 52.5
Ours 82.5 42.2 81.3 7 7 7 18.3 15.9 80.6 83.5 61.4 33.2 72.9 39.3 26.6 43.9 52.4

marginal distribution or structured output space [34]. In contrast, by considering

context information explicitly, we bring 7.3% improvement compared to BDL on this

class with ResNet101-based model. This result demonstrates the benefit of explicitly

adapting cross-domain context dependencies in semantic segmentation, especially for

two domains with significant differences.

3.4.4 Ablation Study

3.4.4.1 GTA5 to Cityscapes

By incorporating CD-SAM and CD-CAM individually, we get 2.4% and 2.3%

performance boost over the VGG16-based baseline (Table 3.3). Taken them together,

the mIoU is further improved to 44.9 mIoU. Similarly, 0.5% and 0.3% improvement is

also observed in the ResNet101-based model by considering CD-SAM and CD-CAM.

We achieve 49.2 mIoU by integrating both attention modules. To qualitatively demon-
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Table 3.3: Ablation study on ”GTA5 to Cityscapes”.

GTA5 to Cityscapes

Base CD-SAM CD-CAM mIoU

VGG16

41.3
3 43.7

3 43.6
3 3 44.9

ResNet101

48.5
3 49.0

3 48.8
3 3 49.2

(A) (B) (C) (D) (E) (F)

Figure 3.5: Qualitative comparison between our method and the baseline model BDL
[34]. For each given image (A), we present its segmentation output from (B) BDL,
(C) our method incorporating CD-SAM only, (D) our method incorporating CD-CAM
only, (E) our method considering both CD-SAM and CD-CAM, and the ground truth
(F).

strate the superiority of our method, we showcase the examples of its segmentation

outputs at different stages in Figure 3.5. As shown in the figure, our method enables

to predict more consistent segmentation outputs than the baseline model and becomes

increasingly accurate by incorporating two cross-domain attention modules.

3.4.4.2 SYNTHIA to Cityscapes

For VGG16-based model, CD-SAM and CD-CAM contribute to 1.2% and

1.0% improvement compared to the baseline (Table 3.4). Our method gains 1.8%

improvement by combining them. By applying CD-SAM and CD-CAM to ResNet101,
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Table 3.4: Ablation study on ”SYNTHIA to Cityscapes”.

SYNTHIA to Cityscapes

Base CD-SAM CD-CAM mIoU

VGG16

39.0
3 40.2

3 40.0
3 3 40.8

ResNet101

51.4
3 51.8

3 52.0
3 3 52.4

A B C

D E F

Figure 3.6: An example of the spatial attention map. Given a source image (A) and
a target image (D), we present the source-to-target attention maps (B) and (C) for
the blue and red point in (A), respectively. Similarly, we present the target-to-source
attention maps (E) and (F) of the blue and red point in (D), respectively.

we achieve 51.8 and 52.0 mIoU with 0.4% and 0.6% improvement over the baseline,

respectively. It is further boosted to 52.4 mIoU when both of them are considered. Our

results reveal that the proposed cross-attention mechanism significantly contributes

to domain adaptation in semantic segmentation by adapting context dependencies.

Furthermore, the two cross-domain attention modules play a complementary role in

capturing context information.
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Table 3.5: Ablation study of λs, λt, ξs, and ξt.

λs/λt/ξs/ξt 0.1 1 10

mIoU 43.7 44.9 40.6

3.4.4.3 Visualization of the Cross Attention

To fully understand the cross-attention mechanism in our model, we visualize

the spatial attention maps in this section. As shown in Figure 3.6, two images are

randomly selected from the source and target domain. Recall that each position

in the source feature has a spatial attention map corresponding to all positions in

the target feature, and vice versa. We, therefore, select two positions in the source

image and visualize their ”source-to-target” attention map. For the blue point that is

marked on a building in the source image (Figure 3.6 A), its spatial attention map

(Figure 3.6 B) mainly corresponds to the building in the target image (Figure 3.6 D).

For the red point that is marked on a truck in Figure 3.6 A, its spatial attention map

(Figure 3.6 C) highlights the cars in Figure 3.6 D. Similarly, we select another two

positions in the target image and conduct the visualization of the ”target-to-source”

attention map. For the blue point in the target image (Figure 3.6 D), its attention

map (Figure 3.6 E) focuses on the vegetation in the source image (Figure 3.6 A).

These visualizations demonstrate the power of our method in capturing cross-domain

spatial context information.

3.4.4.4 Parameter Sensitivity Analysis

In this section, we perform a sensitivity analysis of λs, λt, ξs, and ξt as shown

in Table 3.5. We investigate three different choices, i.e., 0.1, 1, and 10, indicating

how much attention should pay for the context information from the opposite domain.

Our results reveal that λs = λt = ξs = ξt = 1 performs best. The reason is that a
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small value fails to capture cross-domain context dependencies, while a large value

may disturb the original feature. In addition, by setting λs = λt = 0.1, ξs = ξt = 1, we

have mIoU 43.2. We also evaluate the scenario where λs, λt, ξs, and ξt are learnable

hyperparameters, which gives rise to mIoU 44.0.

3.5 Summary and Discussion

In this chapter, we propose an innovative cross-attention mechanism for domain

adaptation by adapting the semantic context. Specifically, we introduce two cross-

domain attention modules to capture spatial and channel context between source

and target domains. The obtained contextual dependencies, which are shared across

two domains, are further adapted to decrease the domain discrepancy. Empirical

studies demonstrate that our method achieves the new state-of-the-art performance

on ”GTA5-to-Cityscapes” and ”SYNTHIA-to-Cityscapes”.

Despite the impressive performance achieved by various UDA methods, recent

studies imply that deep neural networks are vulnerable to adversarial attacks, i.e.,

inputs with a slight but intentional perturbation are incorrectly classified by the

network. Such vulnerability makes it risky for some security-related applications (e.g.,

semantic segmentation in autonomous cars) and triggers tremendous concerns about

the model reliability. Unfortunately, the robustness of existing UDA methods remains

unexplored. We address this limitation in the next chapter.
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CHAPTER 4

Exploring Robustness of Unsupervised Domain Adaptation in Semantic

Segmentation

In this chapter, we comprehensively evaluate the robustness of existing UDA

methods and propose a robust UDA approach. It is rooted in two observations: i)

the robustness of UDA methods in semantic segmentation remains unexplored, which

poses a security concern in this field; and ii) although commonly used self-supervision

(e.g., rotation and jigsaw) benefits model robustness in classification and recognition

tasks, they fail to provide the critical supervision signals that are essential in semantic

segmentation. These observations motivate us to propose adversarial self-supervision

UDA (or ASSUDA) that maximizes the agreement between clean images and their

adversarial examples by a contrastive loss in the output space. Extensive empirical

studies on commonly used benchmarks demonstrate that ASSUDA is resistant to

adversarial attacks.

4.1 Introduction

Semantic segmentation aims to predict semantic labels of each pixel in the

given images, which plays an important role in autonomous driving [109] and medical

diagnosis [110]. However, pixel-wise labeling is extremely time-consuming and labor-

intensive. For instance, 90 minutes are required to annotate a single image for the

Cityscapes dataset [66]. Although synthetic datasets [49, 50] with freely available

labels provide an opportunity for model training, the model trained on synthetic data

suffers from dramatic performance degradation when applying it directly to the real

data of interest.
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Motivated by the success of unsupervised domain adaptation (UDA) in image

classification, various UDA methods for semantic segmentation are recently proposed.

The key idea of these methods is to learn domain-invariant representations by min-

imizing marginal distribution distance between the source and target domains [17],

adapting structured output space [19, 89], or reducing appearance discrepancy through

image-to-image translation [18, 59, 34]. Another alternative is to explicitly explore

the supervision signals from the target domain through self-training. The key idea is

to alternatively generate pseudo labels on target data and re-train the model with

these labels. Most of the existing state-of-the-art UDA methods in semantic segmen-

tation rely on this strategy and demonstrate significant performance improvement.

[55, 34, 39, 46, 111].

However, one of the critical issues of the aforementioned UDA methods is that

they are possibly vulnerable to adversarial attacks. In other words, the performance

of a UDA model may dramatically degrade under an unnoticeable perturbation.

Unfortunately, the robustness of UDA methods remains largely unexplored in the

literature. With the increasing applications of UDA methods in security-related areas,

the lack of robustness of these methods leads to massive safety concerns. For instance,

even small-magnitude perturbations on traffic signs can potentially cause disastrous

consequences to autonomous cars [112, 113], such as life-threatening accidents.

Self-supervised learning (SSL) aims to learn more transferable and generalizable

features for vision tasks (e.g., classification and recognition) [114, 115, 116, 117]. Key

to SSL is the design of pretext tasks, such as rotation prediction, selfie, and jigsaw,

to obtain self-derived supervisory signals on unlabeled data. Recent studies reveal

that SSL is effective in improving model robustness and uncertainty [118]. However,

commonly used pretext tasks are designed to capture the global representation of a

given image or an image patch. Such pretext tasks fail to provide critical supervision

52



signals for segmentation tasks where fine-grained or pixel-level representations are

required [119].

In this chapter, we first perform a comprehensive study to evaluate the robustness

of existing UDA methods in semantic segmentation. Our results reveal that these

methods can be easily fooled by small perturbations and show dramatic performance

degradation. To remedy this problem, we introduce a new UDA method known as

ASSUDA to robustly adapt domain knowledge in urban-scene semantic segmentation.

The key insight of our method is to leverage the regularization power of adversarial

examples. Specifically, we propose the adversarial self-supervision that maximizes the

agreement between clean images and their adversarial examples by a contrastive loss in

the output space. The adversarial examples aim to i) provide fine-grained supervision

signals for unlabeled target data, so that more transferable and generalizable features

can be learned and ii) improve the robustness of our model against adversarial attacks

by taking advantage of both adversarial training and self-supervision.

Our main contributions can be summarized as i) To the best of our knowledge,

this chapter presents the first systematic study on how existing UDA methods in

semantic segmentation are vulnerable to adversarial attacks. We believe this investiga-

tion provides new insight into this area; ii) We propose a new UDA method that takes

advantage of adversarial training and self-supervision to improve the model robust-

ness; iii) Comprehensive empirical studies demonstrate the robustness of our method

against adversarial attacks on two benchmark settings, i.e., ”GTA5 to Cityscapes”

and ”SYNTHIA to Cityscapes”.
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4.2 Related Work

4.2.1 Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) refers to the scenario where no labels

are available for the target domain. In the past few years, various UDA methods

are proposed for semantic segmentation, which can be mainly summarized as three

streams: i) adapt domain-invariant features by directly minimizing the representation

distance between two domains [17, 32]; ii) align pixel space through translating images

from the source domain to the target domain [18, 33]; iii) align structured output

space, which is inspired by the fact that source output and target output share

substantial similarities in terms of structure layout [19]. However, simply aligning

cross-domain distribution has limited capability in transferring pixel-level domain

knowledge for semantic segmentation. To address this problem, the most recent

studies integrate self-training into existing UDA frameworks and demonstrate the

state-of-the-art performance [55, 34, 39, 46].

Our method instead resorts to self-supervision by integrating contrastive learning

into existing UDA methods. This strategy demonstrates two advantages: i) provides

supervision for the target domain, which is proved to be robust to the label corruption;

ii) encourages the model to learn more transferable and robust features. Another

major difference is that our method mainly focuses on improving model robustness

against adversarial attacks, which is overlooked by existing UDA methods.

4.2.2 Self-supervised Learning

Self-supervision aims to make use of massive amounts of unlabeled data through

getting free supervision from the data itself. This is typically achieved by training

self-supervised tasks (a.k.a., pretext tasks) through two paradigms, i.e., pre-training

& fine-tuning and multi-task learning. Specifically, the pre-training & fine-tuning
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first performs pre-training on the pretext task, then fine-tunes on the downstream

task. In contrast, multi-task learning optimizes the pretext task and the downstream

task simultaneously. Our method falls into the latter, where the downstream task

is to predict the segmentation labels of the target domain. To learn transferable

and generalizable features through self-supervision, it is essential to design pretext

tasks that are tailored to the downstream task. Commonly used pretext tasks

include exemplar [114], rotation [115], predicting the relative position between two

random patches [120], and jigsaw [121]. Motivated by this, recent UDA methods

introduce self-supervision into segmentation adaptation to learn domain invariant

feature representations [122, 123]. Although these commonly used pretext tasks

contribute to cross-domain feature alignment, they are mainly designed to capture

the global feature, and therefore have limited capability in learning fine-grained

representations that are essential in semantic segmentation.

By contrast, this chapter proposes to use adversarial examples to build pretext

tasks. Specifically, we maximize agreement between each image and its adversarial

example via a contrastive loss in the output space. This is different from [117] that

performs contrastive learning in the latent space. Furthermore, rather than focus on

single-domain tasks [124, 125], our method is tailored to UDA environments to adapt

domain knowledge and improve robustness simultaneously. Therefore, i) our method

is encouraged to learn more transferable features which are domain-invariant and

fine-grained; ii) the trained model is more robust to label corruption and adversarial

attacks. Another closely related work is [126] which shares a similar spirit with us

but with clear differences: i) rather than perturb the intermediate feature maps,

we perform the perturbation to the input images; ii) we target on improving model

robustness, instead of the segmentation accuracy on clean images.
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4.2.3 Adversarial Attacks

Previous studies reveal that adversarial attacks are commonly observed in

machine learning methods such as SVMs [127] and logistic regression [128]. Recent

publications suggest that neural networks are also highly vulnerable to adversarial

perturbations [129, 130]. Even worse, adversarial attacks are proven to be transferable

across different models [131], i.e., the adversarial examples generated to attack a

specific model are also harmful to other models. To fully understand adversarial

attacks in deep neural networks (DNNs), considerable attention is received in the

past few years. Specifically, [130] proposes a fast gradient sign method (FGSM) to

efficiently generate adversarial examples with only one gradient step. DeepFool [132]

generates minimal perturbations by iteratively linearizing the image classifier. By

utilizing the differential evolution, [133] enables us to generate one-pixel adversarial

perturbations to accurately attack DNNs.

Unlike the aforementioned studies that focus on effectively creating adversar-

ial attacks, our method uses adversarial examples to build pretext tasks for UDA

models, and in turn to improve the model robustness. This is motivated by the fact

that a clean image and its adversarial example should have the same segmentation

output. Therefore, we can get supervision for free and encourage our method to learn

discriminative representation for segmentation tasks.

4.3 Methodology

We first briefly recall the preliminary of UDA, adversarial training, and self-

supervision. We then perform the first-of-its-kind empirical study to show that existing

UDA methods are vulnerable to adversarial attacks, which arises tremendous concerns

for the application of these methods in safety-critical areas. To address this problem,
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we propose a new domain adaptation method known as ASSUDA to improve the model

robustness without satisfying much predictive accuracy. Specifically, our method takes

advantage of adversarial training and self-supervision and thus enabling us to generate

more robust and generalizable features.

4.3.1 Preliminary

4.3.1.1 UDA in Semantic Segmentation

Consider the problem of UDA in semantic segmentation, where a labeled source

domain Xs{(x(i)s , y(i)s )}nsi=1 and an unlabeled target domain Xt{x(j)t }ntj=1 are given. Our

goal is to learn a segmentation model fθC (·) which guarantees accurate prediction on

the target domain. Formally, the loss function of a typical UDA model is defined as:

Lseg(xs, ys; θC) + αLdis(xs, xt), (4.1)

where Lseg is the typical segmentation objective, Ldis measures the domain distance.

The most commonly used Ldis is the adversarial loss Ladv that encourages a discrimi-

native and domain-invariant feature representation through a domain discriminator

DθD(·) [17, 18, 19], which is formalized as:

Ladv(xs, xt; θC , θD) = E[logDθD(fθC (xs))]+

E[log(1−DθD(fθC (xt)))]

(4.2)

4.3.1.2 Adversarial Training

Recall that the objective of the vanilla adversarial training is:

arg min
x

E(x,y)∼D[max
η∈S
L(fθ(x+ η), y)] (4.3)
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Figure 4.1: Robustness study of BDL [34] on ”GTA5 to Cityscapes” with backbone
ResNet101. (A) the traditional paradigm uses clean test data to evaluate the perfor-
mance of BDL; (B) we use PSPNet as the surrogate model to generate perturbed test
data which are then used to evaluate BDL; (C) a clean image and its segmentation
output predicted by BDL; (D), (E), and (F) indicate the perturbed images of (C)
with ε = 0.1, ε = 0.25, and ε = 0.5, respectively, along with their BDL predictions.
Although the perturbations are unnoticeable, they can easily deceive BDL, resulting
in dramatic performance degradation.

Base ε GTA5 to City SYNTHIA to City

VGG16
0.1 41.3 → 30.5 39.0 → 29.3
0.25 41.3 → 14.6 39.0 → 13.6
0.5 41.3 → 7.10 39.0 → 5.90

ResNet101
0.1 48.5 → 36.2 51.4 → 41.2
0.25 48.5 → 19.9 51.4 → 26.6
0.5 48.5 → 6.50 51.4 → 11.0

Table 4.1: Performance of pre-trained BDL on clean test data vs perturbed test data.
Three sets of perturbed data are generated with ε = 0.1, ε = 0.25, and ε = 0.5,
respectively.

where S are allowed perturbations, x̃← x+ η is an adversarial example of x with the

perturbation η. To obtain η, the most commonly used attack method is FGSM [130]:

η = ε sign(5xL(fθ(x), y)), (4.4)

where ε is the magnitude of the perturbation. The generated adversarial examples x̃

are imperceptible to human but can easily fool deep neural networks. Recent studies

further prove that training models exclusively on adversarial examples can improve

the model robustness [134].
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4.3.2 Robustness of UDA Methods

Although existing UDA methods achieve record-breaking predictive accuracy,

their robustness against adversarial attacks remains unexplored. We hypothesis that

they are also vulnerable to adversarial attacks, which makes it risky to apply them in

safety-critical scenarios. To fill this gap and to validate our hypothesis, we perform

black-box attacks on BDL [34] by conducting the following two steps: 1) for each

clean image in the test data, we first generate its adversarial example by attacking

PSPNet [69] with ε = 0.1, ε = 0.25 and ε = 0.5, respectively; 2) we then evaluate the

pre-trained BDL model on the generated adversarial examples (or perturbed test data)

(Figure 4.1). The rationale behind this setting is that i) recent state-of-the-art UDA

methods in semantic segmentation [37, 38, 39, 46, 111] share similar spirits with BDL,

so conducting pilot studies on this method would be representative; ii) a black-box

attack assumes that the attacker can only access very limited information of the

victim model, which is a common case in the real world. Therefore, a black-box attack

would be very dangerous if it can work; iii) adversarial attacks are transferable across

different models [130], i.e., the adversarial examples generated to attack a surrogate

model are also harmful to other models. We hereby perform the black-box attack to

examine the transferability of adversarial examples on UDA models.

As shown in Table 4.1, despite the remarkable performance of BDL on the

clean test data, even slight and unnoticeable perturbations can result in dramatic

performance degradation. For instance, BDL (with VGG16 backbone) only achieves a

mean IoU (mIoU) of 30.5% on the perturbed test data generated by ε = 0.1, compared

to 41.3% on the clean data. By increasing the perturbation ratio ε, the performance

can drop even further (Figure 4.1), indicating that BDL can be easily fooled by

slight perturbations on the test data, even though the perturbation is generated by

a surrogate model. This empirical study suggests that existing UDA methods are
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Figure 4.2: An overview of the proposed method. For each sampled pair of source
image xs and target image xt, we generate their adversarial example x̃s and x̃t,
respectively. A segmentation model f(·) and a domain discriminator are trained to
maximize/minimize agreement and align cross-domain representations.

also possibly vulnerable to adversarial perturbations, which can make them especially

risky for some security-related areas.

4.3.3 Adversarial Self-Supervision UDA

To address this problem, the most straightforward approach is adversarial

training (equation 4.3) which requires class labels to generate adversarial examples.

However, we are unable to access the labels of target data under the scenario of UDA

(equation 4.1). The success of existing UDA methods heavily relies on the self-training

strategy that alternatively generates highly confident pseudo labels for the target

domain and re-trains the model using these labels [34, 38, 46, 111, 20]. Although

pseudo labels provide an opportunity to generate adversarial examples for the target

data, these labels are usually noisy and less accurate. Hendrycks et al.prove that

self-supervision improves the robustness of deep neural networks for vision tasks [118].

Nevertheless, commonly used pretext tasks (e.g., rotation prediction and jigsaw) model
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global representation and fail to provide the critical supervision signals in learning

discriminative features for semantic segmentation.

Algorithm 1: The whole training process.
Input: Source data {Xs, Ys} and target data {Xt},

segmentation model initialized as θC ,

domain discriminator initialized as θD,

batch size N , number of training iteration R

Result: θC and θD

for r ← 1 to R do

Sample a batch of source-target pairs {x(k)s , x
(k)
t }Nk=1

# adversarial attack

for k ∈ {1, ..., N} do
Generate adversarial examples: {x̃(k)s , x̃

(k)
t }Nk=1

Define x(4k−3) = x
(k)
s , x(4k−2) = x

(k)
t , x(4k−1) = x̃

(k)
s , x(4k) = x̃

(k)
t

end

# adversarial self-supervision

for i ∈ {1, ..., 4N} and j ∈ {1, ..., 4N} do

si,j = exp(
−dist

(
fθC (x(i)),fθC (x(j))

)
2σ2 )

end

Define `i,j = −log exp(si,j)∑4N
k=1 1[k 6=i]exp(si,k)

# contrastive loss

Lcon = 1
4N

∑N
k=1[`4k−3,4k−1 + `4k−1,4k−3 + `4k−2,4k + `4k,4k−2]

# update model parameters

θC ← θC − β 5θC Ltotal

θD ← θD − λ5θD Ltotal
end

return θC and θD

These challenges raise the question: can we take advantage of both adversarial

training and self-supervision in improving the robustness of UDA methods in semantic

segmentation? To answer this question, we propose to build a pretext task by using

adversarial examples (Figure 4.2). Specifically, we consider a clean image and its
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adversarial example as a positive pair and maximize agreement on their segmentation

outputs by a contrastive loss. This is motivated by the fact that a clean image and its

adversarial example should share the same segmentation map. Different from [117]

that uses a contrastive loss in the latent space, our pretext task is performed in the

output space to learn discriminative representations for semantic segmentation. To

adapt knowledge from the source domain to the target domain, a domain discriminator

is applied to the source and target outputs. It is worth mentioning that the domain

discriminator minimizes the domain-level difference, while the contrastive loss is

performed on the pixel level.

Our model is built upon BDL [34] that generates the transformed source images

Xs→t and pseudo labels Yt′ of Xt. For simplicity, we use Xs to represent Xs→t in the

remaining of this chapter, unless otherwise specified. At each training iteration r, a

minibatch of N source-target pairs are randomly sampled from Xs and Xt, resulting in

2N examples: {x(i)s , x(i)t }Ni=1. Their adversarial examples {x̃(i)s , x̃(i)t }Ni=1 are generated

by:

x̃(i)s = x(i)s + εmsign(5x[Lseg(x(i)s , y(i)s ; θC)])

x̃
(i)
t = x

(i)
t + εmsign(5x[Lseg(x(i)t , y

(i)
t′ ; θC)])

(4.5)

where εm is the training perturbation magnitude.

Given these 4N data points {x(i)s , x(i)t , x̃
(i)
s , x̃

(i)
t }Ni=1, each pair of examples {x(i)α , x̃(i)α }

is considered as a positive pair (α can be either s or t to denote a source or a target

domain), while the other 4N − 2 examples are considered as negative examples. We

define the contrastive loss for a positive pair (i, j) as

`i,j = − log exp(sim(fθC (x(i)), fθC (x(j))))∑4N
k=1 1[k 6=i]exp(sim(fθC (x(i)), fθC (x(k))))

, (4.6)

where sim(U,V) = exp(−dist(U,V)/(2σ2)) is Gaussian kernel that is used to measure

the similarity between two segmentation output tensors U and V, dist(; ) is the
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Euclidean distance. The contrastive loss Lcon(xs, x̃s, xt, x̃t; θC)) is computed across all

positive pairs (see Algorithm 1). Taken together, the training objective of our goal is

min
θC

max
θD
Ltotal, where Ltotal is:

Ltotal = Lseg(xs, ys; θC) + Lseg(x̃s, ys; θC)+

Lseg(xt, yt′ ; θC) + Lseg(x̃t, yt′ ; θC)+

γLadv(xs, xt; θC , θD)+

γLadv(x̃s, x̃t; θC , θD)+

δLcon(xs, x̃s, xt, x̃t; θC),

(4.7)

where δ and γ are two hyper-parameters. Therefore, our model can leverage the

regularization power of adversarial examples through a self-supervision manner, and

in turn, improve the model robustness against adversarial attacks. The whole training

process is detailed in Algorithm 1.

4.4 Experiments

4.4.1 Datasets

Following the same setting as previous studies, we use GTA5 [49] and SYNTHIA-

RAND-CITYSCAPES [50] as the source domain, and use Cityscapes [66] as the target

domain. GTA5 is composed of 24,966 images (resolution: 1914 × 1052) with pixel-level

semantic labels, which are collected from a photo-realistic open-world game known as

Grand Theft Auto V. SYNTHIA-RAND-CITYSCAPES dataset is generated from a

virtual city, including 9,400 images (resolution: 1280 × 760) with precise pixel-level

semantic annotations. Cityscapes is a large-scale street scene dataset collected from 50

cities. A total of 5,000 images (resolution: 2048 × 1024) are contained in Cityscapes,

with 2,975 training images, 500 validation images, and 1,525 test images. We follow
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FDA [39]

0.1

73.9 18.5 69.7 7.5 6.4 18.7 23.9 21.5 76.7 12.2 66.3 45.2 18.4 70.2 18.9 13.9 14.6 9.3 22.0 32.0 10.2 42.4
AdaptSegNet [19] 71.9 22.7 70.8 7.6 7.9 16.5 15.4 8.3 71.8 12.2 52.6 33.8 0.6 65.8 15.8 7.6 0.0 0.7 0.1 25.4 9.6 35.0
PCEDA [135] 90.9 25.0 73.5 6.3 7.2 14.2 24.0 27.4 76.2 23.4 70.3 45.0 19.9 70.0 16.3 20.3 0.0 9.8 25.1 33.4 11.2 44.6
BDL [34] 64.0 21.9 70.0 10.0 3.9 8.4 20.5 12.8 77.4 22.3 79.2 49.8 13.8 73.2 17.8 12.1 0.0 7.8 15.2 30.5 10.8 41.3
Ours 90.6 41.5 80.1 22.6 10.4 15.4 23.0 16.0 82.7 34.9 81.6 52.5 23.9 82.2 22.5 21.9 7.0 15.4 21.4 39.3 0.4 39.7

FDA

0.25

25.4 3.4 24.5 0.5 1.6 2.4 7.7 6.4 58.6 1.2 44.8 6.5 1.4 14.6 4.9 0.4 0.1 0.1 1.3 10.8 31.4 42.4
AdaptSegNet 5.4 5.0 43.8 1.2 2.2 3.7 6.3 2.5 31.3 3.9 22.8 6.2 0.0 11.9 4.3 0.1 0.0 0.0 0.0 7.9 27.1 35.0
PCEDA 34.6 1.5 40.9 0.6 1.6 2.2 9.6 11.1 56.4 0.5 43.8 12.7 2.0 28.0 7.0 3.7 0.0 1.0 5.0 13.8 30.8 44.6
BDL 25.4 4.7 55.1 2.8 1.5 1.3 9.1 4.3 61.3 1.5 54.1 26.7 0.1 20.7 6.5 1.5 0.0 0.7 1.0 14.6 26.7 41.3
Ours 89.7 30.4 78.2 13.4 11.4 11.1 19.4 14.5 79.2 27.0 84.8 49.7 19.0 78.6 17.1 18.1 3.0 7.2 17.2 35.2 4.5 39.7

FDA

0.5

22.0 0.4 3.2 0.0 1.3 0.1 1.9 0.6 33.8 1.1 22.6 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 4.6 37.6 42.4
AdaptSegNet 0.1 0.0 14.4 0.0 2.1 0.7 2.9 0.4 23.3 0.0 8.4 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 2.8 32.2 35.0
PCEDA 26.8 0.1 15.0 0.1 1.3 0.1 2.5 2.3 18.1 0.0 15.4 0.1 0.0 2.0 0.2 0.0 0.0 0.0 0.0 4.4 40.2 44.6
BDL 27.8 0.9 36.8 0.5 1.2 0.1 2.7 0.9 34.1 0.0 25.1 5.4 0.0 0.7 0.0 0.0 0.0 0.0 0.0 7.1 34.2 41.3
Ours 75.7 11.7 66.1 2.7 6.0 3.7 13.6 8.6 66.8 14.0 79.1 37.2 4.0 59.0 7.2 9.6 0.4 0.1 6.0 24.8 14.9 39.7

FDA [39]

0.1

85.8 27.8 70.2 8.6 7.4 17.9 30.7 23.4 70.8 22.4 59.7 53.8 26.5 71.6 29.2 26.8 6.3 23.1 38.3 36.9 13.5 50.4
FADA [98] 53.2 19.7 65.2 6.3 14.1 21.3 19.0 8.2 74.4 21.6 55.7 50.3 14.8 73.2 13.4 9.1 1.0 9.6 20.5 29.0 20.2 49.2
IntraDA [36] 89.1 31.1 76.6 11.3 16.4 14.9 25.3 15.8 80.8 29.4 74.9 54.3 23.3 78.7 32.1 39.2 0.0 21.5 30.8 39.2 7.1 46.3
CLAN [57] 75.8 21.3 69.8 11.9 7.3 12.7 24.6 8.8 77.1 20.4 66.9 51.0 19.6 65.4 28.7 31.3 2.5 15.2 24.8 33.4 9.8 43.2
MaxSquare [108] 28.6 9.3 52.0 3.9 3.1 9.7 29.1 10.3 73.6 10.2 41.7 46.1 19.1 36.1 26.5 10.7 0.2 17.2 28.0 24.0 22.4 46.4
AdaptSegNet [19] 80.9 21.2 66.3 7.4 5.7 7.4 25.2 6.5 76.2 12.5 69.9 45.6 11.7 71.3 21.8 8.0 1.6 6.5 14.3 29.5 12.9 42.4
PCEDA [135] 89.8 31.8 75.8 17.4 9.2 26.9 31.1 30.0 80.0 19.3 85.6 55.2 27.5 79.4 30.2 34.4 0.0 20.3 38.3 41.2 9.3 50.5
BDL [34] 75.5 31.3 75.3 8.8 8.5 17.1 29.3 23.0 76.9 22.4 80.5 51.2 25.8 51.9 24.0 33.3 1.6 20.3 31.3 36.2 12.3 48.5
Ours 89.3 37.7 81.3 21.0 18.3 28.6 29.0 31.4 81.8 33.9 82.2 51.9 25.9 80.4 34.9 31.3 0.0 30.4 33.1 43.3 0.6 43.9

FDA

0.25

50.8 6.7 51.0 1.6 3.7 3.5 17.2 6.3 49.5 1.5 60.9 28.3 12.8 49.1 14.5 4.6 1.2 2.6 25.0 20.6 29.8 50.4
FADA 54.1 14.8 50.4 2.2 8.2 6.8 4.7 0.9 59.4 7.4 32.8 29.9 3.0 53.6 4.1 0.3 1.2 0.7 5.9 17.9 31.3 49.2
IntraDA 26.4 3.0 46.3 0.4 4.5 0.7 8.6 0.5 30.9 0.4 43.9 21.3 1.2 47.5 8.33 7.5 0.0 0.2 6.5 13.6 32.7 46.3
CLAN 58.3 9.4 52.7 5.0 2.7 1.3 14.7 2.1 58.5 3.0 64.5 37.6 14.0 46.1 20.0 13.6 1.8 3.6 17.3 22.4 20.8 43.2
MaxSquare 15.2 2.3 37.9 2.7 1.5 1.0 15.8 1.8 54.1 1.5 30.6 14.3 7.2 31.5 11.8 1.6 0.0 0.7 13.8 12.9 33.5 46.4
AdaptSegNet 66.9 4.8 32.8 1.3 2.4 0.7 13.2 1.2 60.6 2.4 65.3 19.6 1.5 49.0 8.2 1.2 0.0 0.1 0.8 17.5 24.9 42.4
PCEDA 76.4 3.0 50.9 1.5 3.3 11.5 18.1 10.0 59.3 0.6 59.4 37.0 16.1 49.6 11.6 5.6 0.0 2.6 25.2 23.3 27.2 50.5
BDL 40.7 7.2 56.6 3.1 2.0 4.0 20.3 5.5 62.7 1.5 65.8 19.4 15.3 30.2 8.0 8.4 0.0 6.4 21.2 19.9 28.6 48.5
Ours 87.9 26.6 75.0 11.1 12.5 24.4 26.0 28.3 74.2 19.5 81.8 48.7 22.9 78.5 31.8 34.2 0.0 27.2 30.2 39.0 4.9 43.9

FDA

0.5

14.5 0.9 23.2 1.0 5.3 1.1 7.6 0.9 28.4 0.0 57.9 3.0 0.2 8.2 3.8 0.0 0.0 0.0 1.6 8.3 42.1 50.4
FADA 17.4 7.6 18.1 1.2 2.1 0.4 0.5 0.1 29.2 0.0 11.8 3.8 0.2 18.5 0.0 0.1 0.0 0.0 0.0 5.8 43.4 49.2
IntraDA 26.4 3.0 46.3 0.4 4.5 0.7 8.6 0.5 30.9 0.4 43.9 21.3 1.2 47.5 8.3 7.5 0.0 0.2 6.5 13.6 32.7 46.3
CLAN 33.0 0.6 39.2 2.3 1.8 0.1 8.4 0.2 36.2 0.3 38.1 21.5 3.4 38.0 9.4 3.4 0.0 0.1 4.3 12.6 30.6 43.2
MaxSquare 17.0 0.3 33.6 0.6 2.2 0.4 9.9 0.4 29.5 0.0 31.2 3.5 0.4 28.8 5.7 0.4 0.0 0.0 1.3 8.7 37.7 46.4
AdaptSegNet 43.0 0.2 10.1 0.7 2.8 0.2 7.3 0.1 34.8 0.0 58.1 4.9 0.0 18.6 0.8 0.3 0.0 0.0 0.0 9.6 32.8 42.4
PCEDA 30.4 0.0 36.6 0.2 1.7 1.5 4.0 1.2 27.1 0.0 8.1 9.7 0.4 7.4 1.2 0.0 0.0 0.0 5.3 7.1 43.4 50.5
BDL 9.7 0.1 25.9 0.0 0.8 0.2 8.1 0.6 43.5 0.0 13.7 4.8 4.3 7.6 2.6 0.0 0.0 0.2 1.9 6.5 42.0 48.5
Ours 82.9 10.0 49.8 3.4 4.5 12.7 20.7 19.9 59.9 5.8 78.6 35.9 12.6 60.2 18.9 18.2 0.0 10.8 15.5 27.4 16.5 43.9

Table 4.2: Quantitative study of ”GTA5 to Cityscapes”. VGG16 (upper part) and
ResNet101 (lower part) are used as backbones in this experiment. The performance is
measured on 19 common classes with criteria: per-class IoU, mean IoU (mIoU), mIoU
drop (performance degradation of the model after being attacked), and mIoU∗. The
higher the mIoU and the lower the mIoU drop, the more robust the model is. The
best result in each column is highlighted in bold.
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FDA [39]

0.1

68.5 28.4 72.7 0.4 0.3 22.2 5.1 19.1 57.6 75.7 45.8 18.8 55.6 18.5 5.1 31.5 32.8 7.7 40.5
PCEDA [135] 80.9 25.0 73.5 6.3 7.1 14.2 24.0 27.4 76.2 70.3 45.0 19.9 70.0 20.3 9.8 25.1 37.2 3.9 41.1
BDL [34] 34.9 21.2 47.8 0.0 0.2 20.5 9.2 20.2 67.2 74.3 49.0 17.5 57.2 11.9 2.5 34.6 29.3 9.7 39.0
Ours 88.2 46.5 46.5 0.0 0.1 24.6 8.4 23.8 79.3 81.2 54.4 24.5 78.2 22.4 9.2 44.4 41.3 -2.2 39.1

FDA

0.25

46.3 16.0 38.7 0.0 0.2 4.9 2.5 8.9 31.3 38.9 8.6 5.3 17.7 6.0 1.3 5.4 14.5 26.0 40.5
PCEDA 75.6 11.4 59.1 0.0 0.4 9.6 5.5 12.9 63.1 45.0 30.7 13.4 34.9 8.6 2.5 24.5 24.8 16.3 41.1
BDL 8.0 8.9 31.1 0.0 0.1 8.7 6.9 9.8 52.0 54.1 22.9 4.9 25.6 2.5 0.8 13.3 13.6 25.4 39.0
Ours 87.4 41.6 73.7 0.0 0.1 23.2 8.7 23.0 75.7 78.8 49.7 21.1 72.5 20.3 7.5 39.5 38.9 0.2 39.1

FDA

0.5

42.2 4.9 14.2 0.0 0.1 0.6 1.0 1.7 26.2 1.9 0.5 0.4 1.5 0.1 0.1 0.1 6.0 34.5 40.5
PCEDA 66.2 1.1 47.9 0.0 0.4 3.1 2.5 5.0 47.8 18.8 10.0 1.9 8.3 3.2 1.1 10.2 14.2 26.9 41.1
BDL 0.6 1.0 24.8 0.0 0.0 1.6 1.9 2.3 35.8 18.6 2.2 0.1 4.1 0.1 0.0 0.5 5.9 33.1 39.0
Ours 68.8 21.8 57.1 0.0 0.1 17.9 6.8 15.6 65.9 54.2 30.4 12.8 43.1 5.9 4.1 25.3 26.9 12.2 39.1

FDA [39]

0.1

83.4 32.4 73.5 7 7 7 13.1 18.9 71.6 79.5 56.1 24.9 77.5 27.6 18.2 42.8 47.7 4.8 52.5
FADA [98] 74.0 32.5 69.8 7 7 7 6.8 15.8 57.0 58.3 46.7 8.6 55.1 18.0 4.5 9.8 35.1 17.4 52.5
DADA [54] 80.0 33.8 75.0 7 7 7 8.0 9.4 62.1 76.3 49.7 14.3 76.3 27.8 5.2 31.7 42.3 7.5 49.8
MaxSquare [108] 70.1 23.3 72.8 7 7 7 6.7 7.2 60.2 77.6 48.7 13.8 63.7 17.4 3.1 20.1 37.3 10.9 48.2
AdaptSegNet [19] 79.5 34.7 76.6 7 7 7 4.1 5.4 61.0 80.8 49.3 18.3 72.1 26.1 7.5 29.8 41.9 4.8 46.7
PCEDA [135] 64.5 33.4 77.1 7 7 7 17.6 16.5 50.1 81.3 48.9 24.8 71.9 25.7 13.3 41.0 43.6 10.0 53.6
BDL [34] 79.2 33.7 75.3 7 7 7 5.6 8.7 61.1 80.6 45.0 21.7 65.7 26.7 8.5 24.5 41.2 10.2 51.4
Ours 89.1 46.6 78.2 7 7 7 11.4 16.9 76.1 81.5 52.6 26.7 79.9 35.3 25.0 37.5 50.5 -1.1 49.4

FDA

0.25

8.6 9.0 40.8 7 7 7 3.9 7.1 21.5 51.3 14.5 6.9 35.3 5.4 0.0 14.4 16.8 35.7 52.5
FADA 80.8 23.5 59.3 7 7 7 1.7 3.7 50.6 15.6 26.2 0.8 21.2 6.2 0.3 2.1 22.5 30.0 52.5
DADA 58.0 11.5 42.7 7 7 7 4.5 4.2 31.9 41.2 23.4 6.0 53.9 8.3 0.4 14.0 23.1 26.7 49.8
MaxSquare 70.3 4.6 53.1 7 7 7 8.1 6.0 37.2 61.0 11.2 3.9 42.3 6.9 0.4 3.4 23.7 24.5 48.2
AdaptSegNet 28.4 7.6 56.8 7 7 7 4.4 2.6 26.4 62.8 22.5 9.8 44.2 8.3 1.1 10.2 21.9 24.8 46.7
PCEDA 15.4 7.2 64.9 7 7 7 9.3 9.8 27.0 71.4 35.3 13.9 52.0 12.3 2.2 25.4 26.7 26.9 53.6
BDL 46.9 9.1 65.5 7 7 7 4.0 5.9 34.7 68.5 22.7 12.5 50.7 10.8 1.2 12.8 26.6 21.3 51.4
Ours 87.4 25.0 70.7 7 7 7 10.9 18.2 60.0 74.9 43.8 20.7 64.8 17.7 4.5 29.9 40.7 8.7 49.4

FDA

0.5

0.0 0.0 7.2 7 7 7 1.3 0.7 17.8 13.7 0.0 0.0 2.5 0.2 0.0 0.0 3.3 49.2 52.5
FADA 76.0 15.9 56.3 7 7 7 0.2 0.6 45.0 0.2 7.6 0.0 5.2 0.9 0.0 0.1 16.0 36.5 52.5
DADA 42.9 2.3 16.3 7 7 7 1.8 0.7 24.1 12.5 2.5 0.8 23.5 2.1 0.0 4.8 10.3 39.5 49.8
MaxSquare 42.7 0.2 25.3 7 7 7 5.0 2.7 24.5 18.0 0.8 0.1 15.0 1.5 0.0 0.2 10.5 37.7 48.2
AdaptSegNet 2.1 0.4 24.5 7 7 7 2.1 0.5 19.2 21.4 1.4 2.2 11.7 1.7 0.1 2.5 6.9 39.8 46.7
PCEDA 0.1 0.1 40.0 7 7 7 2.4 1.8 21.0 37.2 13.1 1.3 9.3 2.5 0.7 1.6 10.1 43.5 53.6
BDL 2.8 0.7 32.1 7 7 7 2.0 1.8 20.3 53.7 2.7 1.3 22.3 1.4 0.4 1.7 11.0 40.4 51.4
Ours 65.5 4.3 44.0 7 7 7 6.6 13.7 31.9 60.8 12.6 7.8 24.8 3.4 1.2 14.4 22.4 27.0 49.4

Table 4.3: Quantitative study of ”SYNTHIA to Cityscapes”. VGG16 (upper part) and
ResNet101 (lower part) are used as backbones in this experiment. The comparison is
performed on 16 common classes for VGG16 and 13 common classes for ResNet101.

the tradition to use the training images from Cityscapes as the target domain and use

the validation images as the clean test data.

4.4.2 Implementation Details

Following the same experimental protocol in this area, we use two network

architectures: DeepLab-v2 [70] with VGG16 [86] backbone, and DeepLab-v2 with

ResNet101 backbone. The domain discriminator has 5 convolution layers with kernel

4×4 and stride of 2, each of which is followed by a leaky ReLU parameterized by 0.2
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except the last one. The channel number of each layer is {64, 128, 256, 512, 1}. The

Adam optimizer with initial learning rate 1e-4 and momentum (0.9, 0.99) is used in

DeepLab-VGG16. We apply step decay to the learning rate with step size 30000 and

drop factor 0.1. Stochastic Gradient Descent optimizer with momentum 0.9 and weight

decay 5e-4 is used in DeepLab-ResNet101. The learning rate of DeepLab-ResNet101

is initialized as 1e-4 and is decreased by the polynomial policy with a power of 0.9.

Adam optimizer with momentum (0.9, 0.99) and initial learning rate 1e-6 is used

in the domain discriminator. We set εm = 1.0 in equation 4.5. Code and data are

available at https://github.com/uta-smile/ASSUDA.

4.4.3 Perturbed Test Data

To evaluate model robustness, we first generate the perturbed test data. Specifi-

cally, PSPNet [69] is used as the surrogate model owing to its popularity. We generate

three sets of perturbed test data using FGSM with ε = 0.1, ε = 0.25, and ε = 0.5.

The generated perturbed data sets are then used for performance assessment. For

a fair comparison with existing UDA methods, we download the pre-trained models

from the original papers and perform the evaluation.

4.4.4 Experimental Results

Since the robustness of existing UDA methods remains unexplored, we first

comprehensively evaluate their robustness against adversarial attacks in this section

(Table 4.2 and Table 4.3). We then perform a comparison of our method on two widely

used benchmark settings, i.e., ”GTA5 to Cityscapes” and ”SYNTHIA to Cityscapes”.

Three criteria, i.e., mIoU, mIoU drop, and mIoU∗ are used for performance assessment.

Specifically, mIoU and mIoU∗ indicate the mean IoU on the perturbed test data

and the clean test data, respectively, while mIoU drop indicates the performance
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Image Ground TruthFDA FADA OursBDL

Figure 4.3: Qualitative comparison of our method against BDL [34], FDA [39], and
FADA [98] on the perturbed test data (ε = 0.25). All of these models are trained on
”GTA5 to Cityscapes” with ResNet101. The first column indicates perturbed test
images.

degradation (i.e., the difference between mIoU and mIoU∗). Therefore, the higher the

mIoU and the lower the mIoU drop, the more robust the model is.

4.4.4.1 GTA5 to Cityscapes

As shown in Table 4.2, we achieve the best performance on all three adversarial

attacks. In particular, even slight adversarial perturbations can mislead AdaptSegNet

[19] and BDL [34] and dramatically degrade their performance. For instance, when

evaluated with VGG16 backbone on perturbed test data from ε = 0.25, they only

achieve mIoU 7.9 and mIoU 14.6, with mIoU drop 27.1 and 26.7, respectively. Similarly,

two recently proposed UDA methods, i.e., FDA [39] and PCEDA [135] suffer from

mIoU drop of 31.4 and 30.8, respectively. By contrast, our method still gets mIoU

35.2 and only has a performance drop of mIoU 4.5. The results suggest that existing

UDA methods in semantic segmentation are broadly vulnerable to adversarial attacks.
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Clean Image

Figure 4.4: Qualitative study of our method under three adversarial attacks, i.e.,
ε = 0.1, ε = 0.25, and ε = 0.5. All of these models are trained on ”SYNTHIA to
Cityscapes” with ResNet101.

The reason is that although these methods demonstrate remarkable performance

on the clean test data (as indicated by mIoU∗), none of them, however, take the

adversarial attack into account during learning transferable representations. Instead,

we innovatively propose adversarial self-supervision to improve the robustness of UDA

models by taking advantage of both adversarial training and self-supervision. This

is evidenced by the qualitative study in Figure 4.3, where our method demonstrates

accurate predictions on the perturbed test data.

In terms of the clean performance (or mIoU∗), our method usually lags behind the

existing state of the arts. This is consistent with recent studies that clean performance

and adversarial robustness might be at odds [136, 137].

4.4.4.2 SYNTHIA to Cityscapes

Table 4.3 shows the performance comparison on ”SYNTHIA to Cityscapes”,

where our method again demonstrates significant robustness improvement. In contrast,

other UDA methods can be easily fooled by small perturbations in the test data.

Interestingly, our method achieves better performance on the perturbed test data

(ε = 0.1) than on the clean test data. This can be explained by the fact that training

on adversarial examples can regularize the model somewhat, as reported in [130, 129].
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GTA5 to Cityscapes SYNTHIA to Cityscapes

ε δ = 0 Ours δ = 0 Ours

0.1 39.2 39.3 41.5 41.3
0.25 33.8 35.2 36.7 38.9
0.5 21.8 24.8 23.6 26.9

0.1 43.3 43.3 49.7 50.5
0.25 37.8 39.0 37.8 40.7
0.5 24.3 27.4 15.7 22.4

Table 4.4: Ablation study of δ with backbone VGG16 (upper part) and ResNet101
(lower part).

We further perform a qualitative study of our method when evaluated on the test

data with different magnitudes of the perturbation. As shown in Figure 4.4, although

large ε usually results in worse performance, our method still demonstrates robust

predictions.

4.4.4.3 Ablation Study

To learn the contribution of the self-supervision, we conduct the ablation study

in Table 4.4. Compared to δ = 0 which only contains self-training, incorporating

self-supervision consistently improves the performance. We further investigate the

training perturbation magnitude εm in equation 4.5. Table 4.5 reveals that εm = 1.0

(Ours) results in more robust UDA model than εm = 0.1. The reason is that the

adversarial examples generated by εm = 1.0 are highly perturbed compared to the

adversarial examples from εm = 0.1, which in turn encourages our model to be more

robust against perturbations.
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VGG16 ResNet101

ε εm = 0.1 εm = 1.0 εm = 0.1 εm = 1.0

0.1 36.4 39.3 44.9 43.3
0.25 17.8 35.2 34.3 39.0
0.5 7.4 24.8 15.7 27.4

Table 4.5: Ablation study of εm on ”GTA5 to Cityscapes”.

4.5 Summary and Discussion

In this chapter, we introduce a new unsupervised domain adaptation framework

for semantic segmentation. This is motivated by the observation that the robustness

of semantic adaptation methods against adversarial attacks has not been investi-

gated. Our pilot studies reveal that existing UDA methods can be easily deceived

by unnoticeable perturbations. We therefore propose adversarial self-supervision

by maximizing agreement between clean samples and their adversarial examples to

improve model robustness. Extensive empirical studies are performed to explore the

benefits of our method in improving the model robustness against adversarial attacks.

The effectiveness of our method is thoroughly proved on commonly used benchmarks.

It is noteworthy that existing UDA studies are mainly built upon convolutional

neural networks (CNNs) to learn domain-invariant representations. With the recent

exponential increase in applying Vision Transformer (ViT) [40] to vision tasks, the

capability of ViT in adapting cross-domain knowledge, however, remains unexplored

in the literature. This will be our main focus in the next chapter.
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CHAPTER 5

TVT: Transferable Vision Transformer for Unsupervised Domain

Adaptation

In this chapter, we first comprehensively investigates the performance of ViT

[40] on a variety of domain adaptation tasks. Surprisingly, ViT demonstrates superior

generalization ability, while the performance can be further improved by incorporating

adversarial adaptation. Notwithstanding, directly using CNNs-based adaptation

strategies fails to take the advantage of ViT’s intrinsic merits (e.g., attention mechanism

and sequential image representation) which play an important role in knowledge

transfer. To remedy this, we propose an unified framework, namely Transferable

Vision Transformer (TVT), to fully exploit the transferability of ViT for domain

adaptation. Specifically, we delicately devise a novel and effective unit, which we term

Transferability Adaption Module (TAM). By injecting learned transferabilities into

attention blocks, TAM compels ViT focus on both transferable and discriminative

features. Besides, we leverage discriminative clustering to enhance feature diversity

and separation which are undermined during adversarial domain alignment. To

verify its versatility, we perform extensive studies of TVT on four benchmarks and

the experimental results demonstrate that TVT attains significant improvements

compared to existing state-of-the-art UDA methods.

5.1 Introduction

Deep neural networks (DNNs) demonstrate unprecedented achievements on

various machine learning problems and applications. However, such impressive perfor-

mance heavily relies on massive amounts of labeled data which requires considerable
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time and labor efforts to collect. Therefore, it is desirable to train models that can

leverage rich labeled data from a different but related domain and generalize well on

target domains with no or limited labeled examples. Unfortunately, the canonical

supervised-learning paradigm suffers from the domain shift issue that poses a major

challenge in adapting models across domains. This motivates the research on unsuper-

vised domain adaptation (UDA) [138] which is a special scenario of transfer learning

[8]. The key idea of UDA is to project data points of the labeled source domain and

the unlabeled target domain into a common feature space, such that the projected

features are both discriminative (semantic meaningful) and domain-invariant, in turn,

generalize well to bridge the domain gap. To achieve this goal, various methods

have been proposed in the past decades, among which adversarial adaptation has

become the dominant technique in this field, which attempts to align cross-domain

representations by minimizing an adversarial loss through a domain discriminator

[24, 25, 31].

Recently, Vision Transformer (ViT) [40] has received increasing attention in

the vision community. Different from CNNs that act on local receptive fields of the

given image, ViT models long-range dependencies among visual features across the

entire image, through the global self-attention mechanism. Specifically in ViT, each

image is split into a sequence of fixed-size non-overlapping patches, which are then

linearly embedded and concatenated with position embeddings. To be consistent

with NLP paradigm, a class token is prepended to the patch tokens, serving as the

representation of the whole image. Then, those sequential embeddings are fed into a

stack of transformers to learn desired visual representations. Due to its advantages in

global context modeling, ViT has obtained excellent results on various vision tasks,

such as image classification [40], object detection [139, 140], segmentation [141, 45],

and video understanding [142, 143].
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Despite that ViT is becoming increasingly popular, two important questions

related to domain adaption remain unanswered. First, how does the generalization

ability of ViT across different domains? There are several contemporary work [41,

42, 43] that apply DeiT [44] and Swin [45] to UDA, yet the ViT has not been

investigated. The second question is, how can we properly improve ViT in adapting

different domains? One intuitive approach is to directly apply adversarial discriminator

onto the class tokens to perform adversarial alignment, where the state of a class

token represents the entire image. However, cross-domain alignment of such global

features assumes all regions or aspects of the image have the equal transferability

and discriminative potential, which is not always tenable. For instance, background

regions can be easier aligned across domains, while foreground regions are more

discriminative. In other words, some discriminative features may lack transferability,

and some transferable features may not contribute much to the downstream task (e.g.,

classification). Therefore, in order to properly enhance the transferability of ViT, it is

essential to identify fine-grained features that are both transferable and discriminative.

In this chapter we aim to present our answers to the two aforementioned questions.

Firstly, to fill the blank of understanding ViT’s generalization ability, we first conduct a

comprehensive study of vanilla ViT [40] on public UDA benchmarks. As expected, our

experimental results demonstrate that ViT even in the source-only setting outperforms

its strong CNNs-based counterparts. There could be multiple deep reasons behind

the strong performance of ViT [144, 145], which are not in the scope of this chapter.

Besides, we observe further improvements by applying an adversarial discriminator

to the class tokens of ViT, which only aligns global representations. However, such

strategy suffers from the oversimplified assumption and ignores the inherent properties

of ViT that are beneficial for domain adaptation: i) sequential patch tokens actually

give us the free access to fine-grained features; ii) the self-attention mechanism in
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transformer naturally works as a discriminative probe. In the light of this, we propose

an unified UDA framework that makes full use of ViT’s inherent merits. We name it

Transferable Vision Transformer (TVT).

The key idea of our method is to retain both transferable and discriminative

features which are essential in knowledge adaptation. To achieve this goal, we first

introduce the novel Transferability Adaption Module (TAM) built upon a conventional

transformer. TAM uses a patch-level domain discriminator to measure the trans-

ferabilities of patch tokens, and injects learned transferabilities into the multi-head

self-attention block of a transformer. On one hand, the attention weights of patch

tokens in the self-attention block are used to determine their semantic importance, i.e.,

the features with larger attention are more discriminative yet without transferability

guarantees. On the other hand, as patch tokens can be regarded as fine-grained

representations of an image, the higher transferability of a token means the local

features are more transferable across domains though not necessarily discriminative.

By simply replacing the last transformer of ViT with a plug-and-play TAM, we could

drive ViT to focus on both transferable and discriminative features.

Since our method performs adversarial adaptation that forces the learned features

of two domains to be similar, one underlying side-effect is that the discriminative

information of target domain might be destroyed during feature alignment. To

address this problem, we design a Discriminative Clustering Module (DCM) inspired

by the clustering assumption. The motivation is to enforce the individual target

prediction close to one-hot encoding (well separated) and the global target prediction

to be uniformly distributed (global diverse), such that the learnt target-domain

representation could retain maximum discriminative information about the input

values.

Contributions of this chapter are summarized as follows:
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• As far as we know, we are the first investigating the capability of ViT in

transferring knowledge on the domain adaptation task. We believe this work

gives good insights to understand and explore ViT’s generalization ability while

applied to various vision tasks.

• We propose TAM that delicately leverages the intrinsic characteristics of ViT,

such that our method can capture both transferable and discriminative features

for domain adaptation. Moreover, we adopt discriminative clustering assumption

to alleviate the discrimination destruction during adversarial alignment.

• Without any bells and whistles, our method set up a new competitive baseline

cross several public UDA benchmarks.

5.2 Related Work

5.2.1 Unsupervised Domain Adaptation

Transfer learning aims to learn transferable knowledge that are generalizable

across different domains with different distributions [8, 76]. This is built upon the

evidence that feature representations in machine learning models, especially in deep

neural networks, are transferable [146]. The main challenge of transfer learning is to

reduce the domain shift or the discrepancy of the marginal probability distributions

across domains [138]. In the past decades, various methods have been proposed to

address one canonical transfer learning problem, i.e., unsupervised domain adaptation

(UDA), where no labels are available for the target domain. For instance, DDC

[12] attempted to learn domain-invariant features by minimizing Maximum Mean

Discrepancy (MMD) [29] between two domains. Long et al. further improved DDC by

embedding hidden representations of all task-specific layers in a reproducing Hilbert

space and used a multiple kernel variant of MMD to measure the domain distance [13].

75



Long et al. proposed to align joint distributions of multiple domain-specific layers

across domains through a joint maximum mean discrepancy metric [28]. Another

line of effort was inspired by the success of adversarial learning [30]. By introducing

a domain discriminator and modeling the domain adaption as a minimax problem

[24, 25, 31], an encoder is trained to generate domain-invariant features, through

deceiving a discriminator which tries to distinguish features of source domain from

that of target domain.

It is noteworthy that all of these methods completely or partially used CNNs

as the fundamental block [26, 2, 7]. By contrast, our method explores ViT [40]

to tackle the UDA problem, as we believe ViT has better potential and capability

in domain adaptation owning to some of its properties. Although previous UDA

methods (e.g., adversarial learning) are able to improve vanilla ViT to some extent,

they were not well designed for transformer-based models, and thereby cannot leverage

ViT’s inherent characteristic of providing attention information and fine-grained

representations. However, Our method is delicately designed with the nature of ViT

and could effectively leverages the transferability and discrimination of each feature

for knowledge transfer, thus having better chance in fully exploiting the adaptation

power of ViT.

5.2.2 Vision Transformer

Transformers [101] was firstly proposed in the NLP field and demonstrate record-

breaking performance on various language tasks, e.g., text classification and machine

translation [147, 148, 149]. Much of such impressive achievement is attributed to the

power of capturing long-range dependencies through attention mechanism. Spurred

by this, some recent studies attempted to integrate attention into CNNs to augment

feature maps, aiming to provide the capability in modeling heterogeneous interactions
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[150, 151, 152]. Another pioneering work of completely convolution-free architecture

is Vision Transformer (ViT), which applied transformers on a sequence of fixed-size

non-overlapping image patches. Different from CNNs that rely on image-specific

inductive biases (e.g., locality and translation equivariance), ViT takes the benefits

from large-scale pre-training data and global context modeling. One such method [40],

known for its simplicity and accuracy/compute trade-off, competes favorably against

CNNs on the classification task and lays the foundation for applying transformer to

different vision tasks. ViT and its variants have proved their wide applicability in

object detection [139, 153, 140], segmentation [141, 154], and video understanding

[142, 143], etc.

Despite the success of ViT on different vision tasks, to the best of our knowledge,

neither their transferability nor the design of UDA methods with ViT have been

previously discussed in the literature. To this end, we focus in this chapter on the

investigation of ViT’s capability in knowledge transferring across different domains.

Furthermore, we propose a novel UDA framework tailored for ViT by exploring its

intrinsic merits and prove its superiority over existing methods. It is noteworthy that

there are several contemporary work [41, 42, 43] that apply DeiT [44] and Swin [45] to

UDA. Specifically, [41, 42] uses cross-attention to obtain the mixup representations of

source and target images, [43] uses two class tokens to learn domain-specific information.

Different from these works, our study focuses on the empirical investigation of ViT’s

generalization ability and proposes a plug-and-play module to boost ViT’s performance

in knowledge transfer.
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5.3 Preliminaries

5.3.1 Adversarial Learning UDA

We consider the image classification task in UDA, where a labeled source domain

Ds{(xsi , ysi )}nsi=1 with ns examples and an unlabeled target domain Dt{xtj}ntj=1 with nt

examples are given. The goal of UDA is to learn features that are both discriminative

and invariant to the domain discrepancy, and in turn guarantee accurate prediction

on the unlabeled target data. Here, a common practice is to jointly performs feature

learning, domain adaptation, and classifier learning by optimizing the following loss

function:

Lclc(xs, ys) + αLdis(xs, xt) (5.1)

where Lclc is supervised classification loss, Ldis is a transfer loss with various possible

implementations, and α is used to control the importance of Ldis. One of the most

commonly used Ldis is the adversarial loss which encourages a domain-invariant feature

space through a domain discriminator [24].

5.3.2 Self-attention Mechanism

The main building block of ViT is Multi-head Self-Attention (MSA), which is

used in the transformer to capture long-range dependencies [101]. Specifically, MSA

concatenates multiple scaled dot-product attention (short for SA) modules, where

each SA module takes a set of queries (Q), keys (K), and values (V) as inputs. In

order to learn dependencies between distinct positions, SA computes the dot products

of the query with all keys, and applies a softmax function to obtain the weights on

the values.

SA(Q,K,V) = softmax(
QKT

√
d

)V (5.2)
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where d is the dimension of Q and K. With SA(Q,K,V), MSA is defined as:

MSA(Q,K,V) = Concat(head1, ..., headk)W
O

where headi = SA(QWQ
i ,KWK

i ,VWV
i )

(5.3)

where WQ
i , WK

i , WV
i are projections of different heads, WO is another mapping

function. Intuitively, using multiple heads allows MSA to jointly attend to information

from different representation subspaces at different positions.

5.4 Methodology

In this section, we first investigate ViT’s ability in knowledge transfer on various

adaptation tasks. After that, we conduct the early attempts to improve ViT’s

transferability by incorporating adversarial learning. Finally, we introduce our method

named Transferable Vision Transformer (TVT), which consists two new adaptation

modules to further improve ViT’s capability for cross-domain adaptation..

5.4.1 ViT’s Generalization Ability

To the best of our knowledge, the generalization ability of ViT has not been

studied in the literature before, although ViT and its variants have shown great

success in various vision task. To probe into ViT’s capability of domain adaptation,

we choose the vanilla ViT [40] as the backbone in all of our studies, owing to its

simplicity and popularity. We train vanilla ViT by labeled source data only and assess

its generalization ability by the classification accuracy on target data. As mentioned

above, CNNs-based approaches dominate UDA research in the past decades and

demonstrate great successes. Therefore, we compare vanilla ViT with CNNs-based

architectures, including LeNet [26], AlexNet [2], and ResNet [7]. All experiments are

performed on well-established benchmarks with standard evaluation protocols.
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Take the results on Office-31 dataset for example. As shown in Table 5.2, Source

Only ViT obtains impressing classification accuracy 89.5%, which is much better

than its strong CNN opponents AlexNet (70.1%) and ResNet (76.1%). Similar phe-

nomenon can be observed in other benchmark results, where ViT competes favorably

against, if not better than, the other state-of-the-arts CNNs backbones, as shown in

Table 5.1,5.3,5.4. Surprisingly, Source Only ViT even outperforms strong CNNs-based

UDA approaches without any bells and whistles. For instance, it achieves an average

accuracy 78.7% on Office-Home dataset (Table 5.3), beating all CNN-based UDA

methods. Compared to SHOT [155] recognized as the best UDA model nowadays,

Source Only ViT obtains 7% absolute accuracy boost, a big step in pushing the frontier

of UDA research. There could be multiple reasons behind the strong performance of

ViT [144, 145], for example, the striking differences between the features learned by

ViTs and CNNs [144]. We leave this as future work. Despite this, a large gap still

exists between the Source Only and Target Only models (88.3% vs 99.2%) as shown in

Table 5.1, which indicates potential improvement space of ViT’s generalization ability.

5.4.2 ViT w/ Adversarial Adaptation: Baseline

We first investigate how ViT benefits from adversarial adaptation [24], which

is widely used in CNNs-based UDA methods. We follow the typical adversarial

adaptation fashion that employs an encoder Gf for feature learning, a classifier Gc for

classification, and a domain discriminator Dg for global feature alignment. Here, Gf

is implemented as ViT and Dg is applied to output state of the class tokens of the

source and target images. To accomplish domain knowledge adaptation, Gf and Dg

play a minimax game: Gf learns domain-invariant features to deceive Dg, while Dg
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distinguishes source-domain features from that of target-domain. The objective can

be formulated as:

Lclc(xs, ys) =
1

ns

∑
xi∈Ds

Lce(Gc(Gf (x
s
i )), y

s
i )

Ldis(xs, xt) = − 1

n

∑
xi∈D

Lce(Dg(Gf (x
∗
i )), y

d
i ),

(5.4)

where n = ns + nt, D = Ds
⋃
Dt, Lce is cross-entropy loss, the superscript ∗ can be

either s or t to denote a source or a target domain, and yd denotes the domain label

(i.e., yd = 1 is source, yd = 0 is target).

We denote ViT with adversarial adaptation as our Baseline. As shown in Ta-

ble 5.1,5.2,5.3,5.4, Baseline shows 7.8%, 0.8%, 1.6%, and 3.2% absolute accuracy

improvements over vanilla ViT, respectively on the four benchmarks. Those results

reveal that global feature alignment with a domain discriminator helps ViT’s general-

ization ability. However, compared with the digit recognition task, Baseline achieves

limited improvements on object detection which is more complicated and challenging.

We boils down such observation to a conclusion that simply applying global adversarial

alignment cannot exploit ViT’s full transferable power, since it fails to consider two

key factors: (i) not all regions/features are equally transferable or discriminative. For

effective knowledge transfer, it is essential to focus on both transferable and discrimina-

tive features; (ii) ViT naturally provides fine-grained features given its forward passing

sequential tokens, and attention weights in transformer actually convey discriminative

potentials of patch tokens. To address these challenges and fully leverage the merits of

ViT, a new UDA framework named Transferable Vision Transformer (TVT) is further

proposed.
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5.4.3 Transferable Vision Transformer (TVT)

An overview of TVT is shown in Figure 5.1, which contains two main modules:

(i) a Transferability Adaptation Module (TAM) and (ii) a Discriminative Clustering

Module (DCM). These two modules are highly interrelated and play a complementary

role in transferring knowledge for ViT-based architectures. TAM encourages the

output state of class token to focus on both transferable and semantic meaningful

features, and DCM enforces the aligned features of target-domain samples to be

clustered with large margins. As a consequence, the features learnt by TVT are

discriminative in classification and transferable across domains as well. We detail each

module in what follows.

5.4.4 Transferability Adaptation Module

As shown in Figure 5.1, we introduce the Transferability Adaptation Module

(TAM) that explicitly considers the intrinsic merits of ViT, i.e., attention mechanisms

and sequential patch tokens.

As the patch tokens are regarded as local features of an image, they are corre-

sponded to different image regions or captures different visual aspects as fine-grained

representations of an image. Assuming patch tokens of different semantic importance

and transferabilities, TAM aims at assigning different weights to those tokens, to

encourage the learned image representations, i.e., the output state of class token,

to attend to patch tokens that are both transferable and discriminative. While the

self-attention weights in ViT could be employed as discriminative weights, one major

hurdle here is, the transferability of each patch token is not available. To bypass this
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Figure 5.1: An overview of the proposed TVT framework. As in ViT, both source
and target images are split into fixed-size patches which are then linearly mapped
and embedded with positional information. The generated patches are fed into
a transformer encoder whose last layer is replaced by Transferability Adaptation
Module (TAM). Feature learning, adversarial domain adaptation and classification are
accomplished by ViT-akin backbone, two domain discriminators (on patch-level and
global-level), Discriminative Clustering Module (DCM) and the MLP-based classifier

difficulty, we adopt a patch-level domain discriminator Dl that matches cross-domain

local features [156, 157] by optimizing:

Lpat(xs, xt) = − 1

nR

∑
xi∈D

R∑
r=1

Lce(Dl(Gf (x
∗
ir)), y

d
ir), (5.5)

where R is number of patches, and Dl(fir) is the probability of this region belonging

to the source domain. During adversarial learning, Dl tries to assign 1 for a source-

domain patch and 0 for the target-domain ones, while Gf combats such circumstances.

Conceptually, a patch that can easily deceive Dl (i.g., Dl is around 0.5) is more

transferable across domains and should be given a higher transferability. We therefore

use tir = T (fir) = H(Dl(fir)) ∈ [0, 1] to measure the transferability of rth token of
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ith image, where H(·) is the standard entropy function. An other explanation of the

transferability is: by assigning weights to different patches, it disentangles an image

into common space representations and domain-specific representations, while the

passing paths of domain-specific features are softly suppressed.

We then convert the conventional MSA into the transferable MSA (T-MSA) by

transferability adaptation, i.e., injecting the learned transferabilities into attention

weights of the class token. Our T-MSA is built upon the transferable self-attention

(TSA) block that is formally defined as:

TSA(q,K,V) = softmax(
qKT

√
d

)� [1;T (Kpatch)]V (5.6)

where q is the query of the class token, Kpatch is the key of the patch tokens, � is

Hadamard product, and [; ] is concatenation operation. Obviously, softmax(qK
T

√
d

) and

[1;T (Kpatch)] indicate the discrimination (semantic importance) and the transferability

of each patch token, respectively. To jointly attend to the transferabilities of different

representation subspaces and of different locations, we thus define T-MSA as:

T-MSA(q,K,V) = Concat(head1, ..., headk)W
O

where headi = TSA(qWq
i ,KWK

i ,VWV
i )

(5.7)

Taken them together, we get the TAM as follows:

ẑl = T-MSA(LN(zl−1)) + zl−1

zl = MLP(LN(ẑl)) + ẑl,

(5.8)

where LN is LayerNorm layer, MLP denotes Multi-Layer Perception, zl is hidden

representation at layer l. We only apply TAM to the last transformer layer where

patch features are spatially non-local and of higher semantic meanings. By this means,

TAM focuses on fine-grained features that are transferable across domains and are

discriminative for classification. So we have l = L, where L is the total number of

transformer layers in ViT.
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5.4.5 Discriminative Clustering Module

Towards the challenging problem of learning a probabilistic discriminative clas-

sifier with unlabeled target data, it is desirable to minimize the expected classification

error on the target domain. However, cross-domain feature alignment through TAM

by forcing the two domains to be similar may destroy the discriminative information of

the learned representation, if no semantic constrains of the target domain is introduced.

As shown in Figure 5.2, although the target feature is indistinguishable from the source

feature, it is distributed in a mess which limits its discriminative power. To address

this limitation, we are inspired by the assumptions that: (i) pt = softmax(Gc(Gf (xt)))

are expected to retain as much information about xt as possible [158]; and (ii) decision

boundary should not cross high density regions, but instead lie in low density regions,

which is also known as cluster assumption [159]. Fortunately, these two assumptions

can be met by maximizing mutual information between the empirical distribution on

the target inputs and the induced target label distribution [160, 161, 162], which can

be formally defined as:

I(pt;xt) = H(p̄t)− 1

nt

nt∑
j=1

H(ptj)

= −
K∑
k=1

p̄tklog(p̄tk) +
1

nt

nt∑
j=1

K∑
k=1

ptjklog(ptjk)

(5.9)

where ptj = softmax(Gc(Gf(x
t
j))), p̄

t = Ext [pt], and K is the number of classes. Note

that maximizing − 1
nt

∑nt
j=1H(ptj) enforces the target predictions close to one-hot

encoding, therefore the cluster assumption is guaranteed. To ensure the global

diversity, we also maximize H(p̄t) to avoid that every target data is assigned to the

same class. With I(pt;xt), our model is encouraged to learn tightly clustered target

features with uniform distribution, such that the discriminative information in the

target domain are retained.
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Table 5.1: Performance comparison on the Digits dataset. TVT* indicates that the
backbone is pre-trained on ImageNet

Algorithm S→M U→M M→U Avg

Source Only

L
eN

et

67.1 69.6 82.2 73.0
RevGrad [163] 73.9 73.0 77.1 74.7
ADDA [25] 76.0 90.1 89.4 85.2
SHOT-IM [155] 89.6 96.8 91.9 92.8
CyCADA [164] 90.4 96.5 95.6 94.2
CDAN [31] 89.2 98.0 95.6 94.3
MCD [165] 96.2 94.1 94.2 94.8

Target Only 99.4 99.4 98.0 98.9

Source Only

V
iT

88.6 88.2 73.1 88.3
Baseline 92.7 98.6 97.0 96.1
TVT* 98.0 98.9 97.7 98.2
TVT 99.0 99.4 98.2 98.9

Target Only 99.7 99.7 98.3 99.2

To summarize, the objective function of TVT is:

Lclc(xs, ys) + αLdis(xs, xt) + βLpat(xs, xt)− γI(pt;xt) (5.10)

where α, β, and γ are hyper-parameters.

5.5 Experiments

To verify the effectiveness of our model, we conduct comprehensive studies on

commonly used benchmarks and present experimental comparisons against state-of-

the-art UDA methods as shown below.

5.5.1 Datasets

5.5.1.1 Digits

is an UDA benchmark on digit classification. We follow the same setting in

previous work to perform adaptations on MNIST [26], USPS, and Street View House

Numbers (SVHN) [27]. For each source-target domain pair, we train our model using
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the training sets of each domain, and perform evaluations on the standard test set of

the target domain.

5.5.1.2 Office-31

[166] contains 4,652 images of 31 categories, which were collected from three

domains: Amazon (A), DSLR (D), and Webcam (W). The Amazon (A) image were

downloaded from amazon.zom, while the DSLR (D), and Webcam (W) were photoed

under the office environment by web and digital SLR camera, respectively.

5.5.1.3 Office-Home

[167] consists of images from four different domains: Artistic images (Ar), Clip

Art (Cl), Product im- ages (Pr), and Real-World images (Rw). A total of 65 categories

are covered within each domain.

5.5.1.4 VisDA-2017

[171] is a synthesis-to-real object recognition task used for the 2018 VisDA

challenge. It covers 12 categories. The source domain contains 152,397 synthetic 2D

renderings generated from different angles and under different lighting conditions,

while the target domain contains 55,388 real-world images.

5.5.2 Existing Methods

We use the results in their original papers for fair comparison. For each type of

backbone, we report its lower bound performance, denoted as Source Only, meaning

the models are trained with source data only. For digit recognition, we also show the

Target Only results as the high-end performance, which is obtained by both training
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Table 5.2: Performance comparison on the Office-31 dataset. TVT* indicates that the
backbone is pre-trained on ImageNet. ”-S” and ”-B” indicate that the backbone is
DeiT-Small and DeiT-Base, respectively

Algorithm A→ W D→ W W→ D A→ D D→ A W→ A Avg

Source Only

A
le

x
N

et

61.6 95.4 99.0 63.8 51.1 49.8 70.1
DDC [12] 61.8 95.0 98.5 64.4 52.1 52.2 70.6
DAN [13] 68.5 96.0 99.0 67.0 54.0 53.1 72.9
RevGrad [163] 73.0 96.4 99.2 72.3 53.4 51.2 74.3
JAN [28] 75.2 96.6 99.6 72.8 57.5 56.3 76.3
CDAN [31] 78.3 97.2 100.0 76.3 57.3 57.3 77.7
PFAN [168] 83.0 99.0 99.9 76.3 63.3 60.8 80.4

Source Only

R
es

N
et

68.4 96.7 99.3 68.9 62.5 60.7 76.1
DDC [12] 75.6 96.0 98.2 76.5 62.2 61.5 78.3
DAN [13] 80.5 97.1 99.6 78.6 63.6 62.8 80.4
RevGrad [163] 82.0 96.9 99.1 79.7 68.2 67.4 82.2
JAN [28] 86.0 96.7 99.7 85.1 69.2 70.7 84.6
CDAN [31] 94.1 98.6 100.0 92.9 71.0 69.3 87.7
TADA [157] 94.3 98.7 99.8 91.6 72.9 73.0 88.4
TAT [169] 92.5 99.3 100.0 93.2 73.1 72.1 88.4
SHOT [155] 90.1 98.4 99.9 94.0 74.7 74.3 88.6
ALDA [170] 95.6 97.7 100.0 94.0 72.2 72.5 88.7

Source Only-S

D
ei

T

86.9 97.7 99.6 87.6 74.9 73.5 86.7
CDTrans-S [41] 93.5 98.2 99.6 94.6 78.4 78.0 90.4
Source Only-B 90.4 98.2 100.0 90.8 76.8 76.4 88.8
CDTrans-B [41] 96.7 99.0 100.0 97.0 81.1 81.9 92.6

Source Only

S
w

in 89.2 94.1 100.0 93.1 80.9 81.3 89.8
BCAT [42] 99.2 99.5 100.0 99.6 85.7 86.1 95.0

Source Only

V
iT

89.2 98.9 100.0 88.8 80.1 79.8 89.5
Baseline 91.6 99.0 100.0 90.6 80.2 80.1 90.2
TVT* 95.7 98.7 100.0 95.4 80.6 80.3 91.8
TVT 96.4 99.4 100.0 96.4 84.9 86.1 93.9

and testing on the labeled target data. Baseline denotes vanilla ViT with adversarial

adaptation [24].

5.5.3 Implementation Details

The ViT-Base with 16×16 input patch size (or ViT-B/16) [40] pre-trained on

ImageNet-21K [106] is used as our backbone. The transformer encoder of ViT-B/16

contains 12 transformer layers in total.
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Table 5.3: Performance comparison on the Office-Home dataset. TVT* indicates that
the backbone is pre-trained on ImageNet. ”-S” and ”-B” indicate that the backbone
is DeiT-Small and DeiT-Base, respectively

Algorithm A→CA→PA→RC→AC→PC→RP→AP→CP→RR→AR→CR→PAvg

Source Only
A

le
x
N

et
26.4 32.6 41.3 22.1 41.7 42.1 20.5 20.3 51.1 31.0 27.9 54.9 34.3

DAN [13] 31.7 43.2 55.1 33.8 48.6 50.8 30.1 35.1 57.7 44.6 39.3 63.7 44.5
RevGrad [163] 36.4 45.2 54.7 35.2 51.8 55.1 31.6 39.7 59.3 45.7 46.4 65.9 47.3
JAN [28] 35.5 46.1 57.7 36.4 53.3 54.5 33.4 40.3 60.1 45.9 47.4 67.9 48.2

Source Only

R
es

N
et

34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN [13] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
RevGrad [163] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN [28] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN [31] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
TAT [169] 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8
ALDA [170] 53.7 70.1 76.4 60.2 72.6 71.5 56.8 51.9 77.1 70.2 56.3 82.1 66.6
TADA [157] 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
SHOT [155] 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8

Source Only-S

D
ei

T

55.6 73.0 79.4 70.6 72.9 76.3 67.5 51.0 81.0 74.5 53.2 82.7 69.8
CDTrans-S [41] 60.6 79.5 82.4 75.6 81.0 82.3 72.5 56.7 84.4 77.0 59.1 85.5 74.7
WinTR-S [43] 65.3 84.1 85.0 76.8 84.5 84.4 73.4 60.0 85.7 77.2 63.1 86.8 77.2
Source Only-B 61.8 79.5 84.3 75.4 78.8 81.2 72.8 55.7 84.4 78.3 59.3 86.0 74.8
CDTrans-B [41] 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5

Source Only

S
w

in 64.5 84.8 87.6 82.2 84.6 86.7 78.8 60.3 88.9 82.8 65.3 89.6 79.7
BCAT [42] 75.3 90.0 92.9 88.6 90.3 92.7 87.4 73.7 92.5 86.7 75.4 93.5 86.6

Source Only

V
iT

66.2 84.3 86.6 77.9 83.3 84.3 76.0 62.7 88.7 80.1 66.2 88.7 78.7
Baseline 71.9 80.7 86.7 79.9 80.4 83.5 76.9 70.9 88.3 83.0 72.9 88.4 80.3
TVT* 67.1 83.5 87.3 77.4 85.0 85.6 75.6 64.9 86.6 79.1 67.2 88.0 78.9
TVT 74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6

We train all ViT-based models using mini-batch Stochastic Gradient Descent

(SGD) optimizer with the momentum of 0.9. We initialized the learning rate as 0 and

linearly increase it to lr = 0.03 after 500 training steps. We then decrease it by the

cosine decay strategy. The only exception is that we set lr = 0.003 for D→ A and

W→ A in Office-31 dataset.
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Table 5.4: Performance comparison on the VisDA-2017 dataset. TVT* indicates
that the backbone is pre-trained on ImageNet. ”-B” indicates that the backbone is
DeiT-base

Algorithm planebcycl bus car houseknifemcyclpersonplantsktbrdtraintruck Avg

Source Only

R
es

N
et

55.1 53.3 61.959.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
RevGrad [163] 81.9 77.7 82.844.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
MCD [165] 87.0 60.9 83.764.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
ALDA [170] 93.8 74.1 82.469.4 90.6 87.2 89.0 67.6 93.4 76.1 87.7 22.2 77.8
DTA [172] 93.7 82.2 85.683.8 93.0 81.0 90.7 82.1 95.1 78.1 86.4 32.1 81.5
SHOT [155] 94.3 88.5 80.157.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9

Source Only-B

D
ei

T

97.7 48.1 86.661.6 78.1 63.4 94.7 10.3 87.7 47.7 94.4 35.5 67.1
CDTrans-B [41] 97.1 90.5 82.477.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
WinTR-B [43] 98.7 91.2 93.091.9 98.1 96.1 94.0 72.7 97.0 95.5 95.3 57.9 90.1

Source Only

S
w

in 98.7 63.0 86.768.5 94.6 59.4 98.0 22.0 81.9 91.4 96.7 25.7 73.9
BCAT [42] 99.1 91.6 86.672.3 98.7 97.9 96.5 82.3 94.2 96.0 93.9 61.3 89.2

Source Only

V
iT

98.2 73.0 82.562.0 97.3 63.5 96.5 29.8 68.7 86.7 96.7 23.7 73.2
Baseline 94.6 81.6 81.869.9 93.5 69.9 88.6 50.5 86.8 88.5 91.5 20.1 76.4
TVT* 97.1 88.8 86.464.4 96.4 97.4 90.6 64.1 92.0 90.3 93.7 59.6 85.1
TVT 97.1 92.9 85.366.4 97.1 97.1 89.3 75.5 95.0 94.7 94.5 55.1 86.7

Table 5.5: Ablation study of each module

Methods Digits Office-31 Office-Home VisDA-2017 Avg

Source Only 88.3 89.5 78.7 73.2 82.4
+TAM 97.2 91.2 81.3 79.3 87.3
+DCM 98.9 93.9 83.6 86.7 90.8

5.5.4 Results of Digit Recognition

For the digit recognition task, we perform evaluations on SVHN→MNISt,

USPS→MNIST, and MNIST→USPS, following the standard evaluation protocol

of UDA. Shown in Table 5.1, TVT obtains the best mean accuracy for each task and

outperforms prior work in terms of the average classification accuracy. TVT also

performs better than Baseline (+2.7%) due to the contribution of the proposed TAM

and DCM. In particular, TVT achieves comparable results to Target Only model,

indicating that the domain shift problem is well alleviated.
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5.5.5 Results of Object Recognition

For object recognition task, Office-31, Office-Home, and VisDA-2017 are used in

evaluation. As shown in Table 5.2 5.3, 5.4, TVT sets up new benchmark results for all

the three datasets. On the medium-sized Office-Home dataset (Table 5.3), we achieve

the significant improvement over the best prior UDA method (83.6% vs 71.8%).

Results on the large-scale VisDA-2017 dataset (Table 5.4) show that we not

only achieve a higher average accuracy, but also compete favorably against ALDA and

SHOT. Specifically, we use the most naive pseudo-labeling strategy (pseudo labels

with high confidence) [173] in this experiment. Note that DTA also enforces the

cluster assumption to learn discriminative features, but it fails to encourage the global

diversity which may leads to a degenerate solution where every point is assigned to

the same class. Besides, TVT surpasses both Source Only and Baseline, revealing its

effectiveness in transferring domain knowledge by (i) capturing both transferable and

discriminative fine-grained features and (ii) retaining discriminative information while

searching for the domain-invariant representations.

This is also evidenced by the t-SNE visualization of learned features as showcased

in Figure 5.2. Obviously, TAM can effectively align source and target domain features

by exploiting the local feature transferability. However, the target feature is not

well-separated due to that target labels in training are absent and the discriminative

information are destroyed by adversarial alignment. Fortunately, this problem is

alleviated by DCM by assuming that datapoints should be classified with large margin,

as illustrated in Figure 5.2 (D). It is noteworthy that several contemporary work

[41, 42, 43] use DeiT [44] or Swin [45] as the backbone and outperforms our method.

We argue that this can be mainly explained by the data-efficient merits of DeiT and

Swin. Detailed discussion are referred to the supplementary.

91



(A) Source Only (B) Baseline

(C) TAM (D) TVT

Figure 5.2: t-SNE visualization of VisDA-2017 dataset, where red and blue points
indicate the source (synthetic rendering) and the target (real images) domain, respec-
tively

5.5.6 Ablation Study

To learn the individual contribution of TAM and DCM in improving the knowl-

edge transferability of ViT, we conduct the ablation study in Table 5.5. Compared to

Source Only, TAM consistently improves the classification accuracy with average 4.9%

boost, indicating the significance of capturing both transferable and discriminative

features. The performance is further improved by incorporating DCM, justifying the

necessary of retaining the discriminative information of the learned representation. It

is noteworthy that DCM brings the largest improvement on the large-scale synthetic-

to-real VisDA-2017 dataset. We suspect that the large domain gap in VisDA-2017

(synthetic 2D rendering to natural image) is the leading reason, since simply aligning

two domains with large domain shift results in a mess distributed feature space.
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(A) Image (C) Baseline(B) Source Only (D) TVT

Figure 5.3: Attention map visualization of person, truck, and bicycle in VisDA-2017
dataset. The hotter the color, the higher the attention

This challenge, however, can be largely addressed by DCM that enables retaining

discriminative information based on a cluster assumption.

5.5.7 Attention Visualization

We visualize the attention map of the class token in TAM to verify that our

model can attend to local features that are both transferable and discriminative.

Without loss of generality, we randomly sample target-domain images in VisDA-2017

dataset for comparison. As shown in Figure 5.3, our method captures more accurate

regions than Source Only and Baseline. For instance, to recognize the person in the

top-left image, Source Only mainly focus on women’s shoulder which is discriminative

yet not highly transferable. Moving beyond the shoulder region, the baseline also

attends to faces and hands that can generalize well across domains. Our method,

instead, ignores the shoulder and only highlight those regions that are important

for classification and transferable. Certainly, by leveraging the intrinsic attention

mechanism and fine-grained features captured by sequential patches, our method

promotes the capability of ViT in transferring domain knowledge.
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5.6 Summary and Discussion

In this chapter, we perform the first-of-its-kind investigation of ViT’s general-

ization ability in UDA task. To further improve the power of ViT in transferring

domain knowledge, we propose TVT by explicitly considering the intrinsic merits of

transformer architecture. Specifically, TVT captures both transferable and discrimina-

tive features in the given image, and retains discriminative information of the learnt

domain-invariant representations. Experimental results on widely used benchmarks

show that TVT outperforms prior UDA methods by a large margin.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

DNNs have proved their unprecedented power in various applications, such

as computer vision, natural language processing, drug discovery, recommendation

systems, bioinformatics, and financial fraud detection. However, it is widely recognized

that the success of DNNs heavily depends on massive labeled data. This poses a great

challenge to some scenarios where the labeled data is not always available. To address

this problem, transfer learning, especially UDA, has been proposed and thoroughly

investigated in the past decade. Although numerous UDA methods have been proposed

and successfully applied to real-world tasks, these methods still suffer from various

problems. In this dissertation, we have discussed current research challenges in UDA

and proposed new methods to address these challenges.

6.1 Conclusion

6.1.1 Label-Driven Reconstruction for Domain Adaptation in Semantic Segmentation

Although the image-to-image translation strategy reduces the appearance discrep-

ancy between the source domain and the target domain, it also introduces translation

bias. Furthermore, existing UDA methods in semantic segmentation fail to ensure

prediction consistency in the target domain. Therefore, we propose to use target-to-

source translation and reconstruct source and target images from their label space to

encourage semantic consistency. More details are referred to Chapter 2.
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6.1.2 Context-Aware Domain Adaptation in Semantic Segmentation

It is well known that context dependency is essential for semantic segmentation,

while its transferability remains unexplored in UDA. Hereby, we introduce two cross-

domain attention modules to capture spatial and channel context between source and

target domains. The obtained contextual dependencies can be adapted across domains

to facilitate knowledge transfer, which is proved in empirical studies. More details are

referred to Chapter 3.

6.1.3 Exploring Robustness of Unsupervised Domain Adaptation in Semantic Seg-

mentation

Despite the success achieved by DNNs, recent studies prove that they are

vulnerable to adversarial attacks. Motivated by this observation, we investigate the

robustness of existing UDA methods and observe that these models can dramatically

degrade under an unnoticeable perturbation. We hereby propose to leverage adversarial

examples to improve the robustness of UDA against adversarial attacks. More details

are referred to Chapter 4.

6.1.4 TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

Existing UDA methods are mainly built upon CNNs, while the generalization

ability of vision transformer (ViT) is still not well understood. We, therefore, inves-

tigate the capability of ViT in transferring knowledge on domain adaptation tasks.

Furthermore, we propose a new UDA method that leverages the intrinsic characteris-

tics of ViT, such that our method can capture both transferable and discriminative

features for domain adaptation. More details are referred to Chapter 5.
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6.2 Future Work

In terms of future works, a few open challenges and directions are outlined as

follows. One such direction is to design more advanced pseudo labeling strategies

to improve the accuracy of the target pseudo labels. The rationale is that pseudo

labeling plays an important role in recent UDA methods. Therefore, more accurate

target pseudo labels are expected to improve the performance further. Although

previous studies apply various strategies to address this issue, they still suffer from

severe inaccuracy problems, which are problematic.

Another direction is to explore the attention mechanisms of transformer architec-

tures. It is well-known that cross-attention is good at aligning different distributions,

such as distributions from different domains. As a preliminary study, our recent work

[20] demonstrates the power of cross-attention in UDA. However, the combination

of cross-attention and UDA is largely unexplored, suggesting great potential in the

future.

More generally, we should consider domains from different modalities, such as

vision-language adaptation. Our preliminary studies suggest that visual features and

linguistic features can be aligned well in the embedding space [174, 175]. Research

along this direction would be incredibly valuable and more generalizable.
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