
DESIGNING LARGE-SCALE KEY-VALUE SYSTEMS ON HIGH-SPEED STORAGE
DEVICES

by
XINGSHENG ZHAO

Presented to the Faculty of the Graduate School of
The University of Texas at Arlington in Partial Fulfillment

of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON
May 2022

DESIGNING LARGE-SCALE KEY-VALUE SYSTEMS ON HIGH-SPEED STORAGE
DEVICES

The members of the Committee approve the doctoral
dissertation of Xingsheng Zhao

Song Jiang
Supervising Professor

Hong Jiang

Hao Che

Jia Rao

Dean of the Graduate School

Copyright © by Xingsheng Zhao 2022
All Rights Reserved

To my family,
for their constant support and unconditional love.

ACKNOWLEDGEMENTS

The end of one journey is the beginning of the next. Before the new journey begins,
I would like to thank a great many people who have greatly supported me during my PhD
study at UT Arlington and the writing of this thesis.

First and foremost, I would like to express my deepest gratitude to my erudite super-
visor, Dr. Song Jiang for his continuous support, invaluable guidance and generous help
during my PhD study. I am so glad to be part of our group. And I still remember the day
when I was on the same flight to the United State with Dr. Jiang as the beginning of my
PhD journey. What a coincidence! I will also not forget all those illuminating discussions
with him at each stage of my research and my writing, which could turn out to be a whole
day long, led me to this final completion of this thesis. I learned a lot from his inspiring
ideas and enthusiasm in scientific researches. Those experiences trained me to be a person
with independent thought and an open mind, which will be very helpful for my future study
and work.

I would also like to extend my deepest appreciation to my committee members, Dr.
Hong Jiang, Dr. Hao Che, and Dr. Jia Rao, for their constructive comments, suggestions,
and supports throughout this work.

I am grateful to my industry colleagues. I would like to thank Qingda Lu, Zhu
Pang, Shuo Chen, Qingqing Zhou and Kuang He, for their supports and suggestions. I am
delighted to have worked with them.

I also had great pleasure of working with my labmates, who shared their best knowl-
edge with me. I thank Yuehai Xu, Xingbo Wu, Fan Ni, Leijie Zeng, Haitao Wang, Zhuo
Huang, Chen Zhong, Venkata Naga Prajwal Challa, Kun suo, Yong Zhao, Xiaofeng Wu,
Lingfeng Xiang, Hang Huang, for your enthusiastic support, timely help and encourage-
ment. I also want to thank my friends at UTA, Chaochao Yang, Huiyang Li, Jian Li, Jiayi
Wang, Lin Sun, for your accompany.

This five years PhD journey would not have been possible without the support of my
family. I would not have made it this far without them. Mom, thank you for everything you
have done for me. Thanks for being always present and doing the (im)possible to keep me
going further. Yingge, my dear wife and best friend. I am so luck to meet you at college.
Without you, I will never have the courage to pursue the PhD journey in a foreign country.
Your kindness, patience, tolerance and understanding helped me be a better person.

May 1, 2022

v

ABSTRACT

DESIGNING LARGE-SCALE KEY-VALUE SYSTEMS ON HIGH-SPEED STORAGE
DEVICES

Xingsheng Zhao, Ph.D.
The University of Texas at Arlington, 2022

Supervising Professor: Song Jiang

With the evolution of new technologies, such as edge computing, full self-driving,
virtual reality, and multi-media streaming, the volume of data is growing at an acceler-
ated speed. The global data volume could achieve 175 zettabytes by 2025. With this
huge amount of data, the focus of data management has been shifted from traditional SQL
databases to NoSQL databases, which provide higher performance and better scalability.
Key-value (KV) stores are a common type of NoSQL database and are becoming a major
storage infrastructure in various application domains. With the development of high-speed
storage devices, such as NVMe SSD, Open-channel SSD, and non-volatile memory, new
challenges and opportunities have appeared for KV stores. Traditional KV stores suffer
from large write amplification and non-trivial indexing overhead on the high-speed stor-
age devices. And the performance bottleneck gradually shifts from the storage side to the
software side in modern database designs.

In this dissertation, we propose solutions to overcome the obstacles in the KV store
design. To support efficient indexing and range search, key-value items must be sorted.
However, the sorting process can be excessively expensive. In the KV systems adopting
the Log-Structured Merge Tree (LSM) structure, the write amplification can be very large
due to its repeated internal merge-sorting operation. We propose WipDB, which lever-
ages relatively stable key distributions to bound the write amplification at a small number.
Meanwhile, to improve the efficiency for large-scale KV stores, we need persistent indexes
on the Non-volatile memory (PMEM) to provide instant-recovery ability for the database.
However, existing designs of the persistent index, especially the persistent hash table, al-
ways make trade-offs between performance, consistency, and persistency. To meet all three
requirements, we propose TurboHash for building a high-performance KV store.

Though PMEM provides persistency of data, compared to the DRAM, the perfor-
mance of PMEM is still much worse than DRAM in terms of either latency and throughput

vi

(by around 3X or more). While using DRAM as a read cache and/or write-back buffer
seems to be a plausible remedy to close the performance gap, traditional cache designs are
not effective or even not functional for data of either weak temporal or spatial access local-
ity and requiring persistency and crash consistency. To address these issue, we propose a
framework, that turns an index structure designed for persistent memory into a much faster
one with application-managed caching and buffering.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . v
ABSTRACT . vi
Chapter Page
1. INTRODUCTION . 1

1.1 Reducing the Write Amplification for Key-Value Stores 1
1.2 Reducing Overhead for Crash-consistent Indexes on NVMs 2
1.3 Using Hybrid DRAM-PMEM architecture to improve indexes performance

for persistent memory . 3
1.4 Organization . 4

2. WIPDB: A WRITE-IN-PLACE KEY-VALUE STORE THAT MIMICS BUCKET
SORT . 5
2.1 Introduction . 5
2.2 Background . 8

2.2.1 Why LSM-tree? . 8
2.2.2 Why Approximate Sorting? . 9
2.2.3 Overcoming Variation of Key Density 11
2.2.4 The Write-in-place Approach . 12

2.3 The WipDB Design . 13
2.3.1 The WipDB Architecture . 13
2.3.2 The Operations . 15
2.3.3 Efficiency and Persistence of MemTables 15
2.3.4 Support of Range Search . 16
2.3.5 Bucket Splitting and Merging . 17
2.3.6 Use of Write Ahead Log for DRAM resident MemTable 18
2.3.7 Read-aware Compaction Scheduling 19

2.4 Evaluation . 21
2.4.1 Experiment Setup . 21
2.4.2 Write Performance . 22
2.4.3 Read Performance . 24
2.4.4 Impact of WAL on Restart Time 26
2.4.5 Results of the YCSB Benchmarks 26

2.5 Related Work . 28
2.5.1 Optimizations for efficient compaction. 29

viii

2.5.2 The tiering merge scheme. 29
2.5.3 Key-value separation. 30
2.5.4 In-memory key-value stores . 30

2.6 Summary . 31
3. TURBOHASH: A HASH TABLE FOR KEY-VALUE STORE ON PERSIS-

TENT MEMORY . 32
3.1 Introduction . 32
3.2 Motivations . 36

3.2.1 Probing Scope and Distance. 36
3.2.2 Sequential and Random Accesses. 37

3.3 The Design of TurboHash . 38
3.3.1 The Architecture . 38
3.3.2 Establishing the Search Path . 39
3.3.3 A Bucket’s Data Structure . 41
3.3.4 Insert, Update, Delete, and Read 42
3.3.5 Shard Resizing & Failure Recovery 45

3.4 Evaluation . 45
3.4.1 Experiment Setup . 46
3.4.2 Overall Performance . 47
3.4.3 Latency Comparison . 49
3.4.4 Results of YCSB Benchmarks . 51
3.4.5 Load Factor . 52
3.4.6 Probing Distance . 53
3.4.7 Shard Rehashing . 54

3.5 Related Work . 55
3.5.1 Hash Table for Persistent Memory 55
3.5.2 Hash Table Concurrency Control 56

3.6 Summary . 56
3.7 Appendix . 57

4. Spot-On: Optimizing Use of DRAM to Improve Performance of Index Structures
on Intel Optane DC Persistent Memory . 61
4.1 Introduction . 61

4.1.1 DRAM as a Cache of PMEM . 62
4.1.2 DRAM as a Write Buffer of PMEM 62

4.2 Background . 63
4.2.1 Non-Volatile Memory . 63
4.2.2 Persistent Indexes . 64

ix

4.3 Case Study . 65
4.3.1 Case Study: Buffering . 65
4.3.2 Case Study: Out-place-update . 66
4.3.3 Case Study: Caching . 67
4.3.4 Combine Together . 67

4.4 Design . 69
4.4.1 Three layers in SPTree . 70
4.4.2 Concurrent Control . 71
4.4.3 Search Operation . 71
4.4.4 Insert/Update/Delete/Lookup/scan 72
4.4.5 Split and Merge . 73
4.4.6 Recovery and Crash Consistency 73

4.5 Evaluation . 74
4.5.1 Experiment Setup . 75
4.5.2 Overall Performance . 75
4.5.3 Latency Comparison . 77
4.5.4 Recovery . 77

4.6 Summary . 78
5. CONCLUSIONS AND FUTURE WORK . 79

5.1 Contributions . 79
5.2 Future Work: Data rearrangement supporting log-structured storage 79

REFERENCES . 81
BIOGRAPHICAL STATEMENT . 87

x

CHAPTER 1

INTRODUCTION

We are in the era of big data. Large volumes of data are being generated, stored, and
analyzed every second. This happens not only in data centers hosting thousands of servers,
but also in everyone’s computers and smartphones. While the data volume is quickly grow-
ing, the tasks on organizing, retrieving, and processing the data become ever challenging.
In the recent years the focus of data management has been largely shifted from traditional
SQL databases to NoSQL (Not-only-SQL) databases, such as key-value (KV) stores and
key-value caches, which provides essential functionalities and much higher performance
for storing and retrieving data. Unfortunately, the design of these systems are often in-
effective, sometimes incapable of tackling challenging tasks involving massive amount of
data. Even running on servers with powerful CPUs, large DRAM, fast storage devices of
large capacity, and low-latency network, the applications still have a hard time achieving
their expected performance.

This dissertation investigates the causes of the issues in KV systems and identifies
opportunities to enable efficient data accessing for big-data applications.

1.1 Reducing the Write Amplification for Key-Value Stores
Key-value (KV) stores have become a major data management component in a stor-

age system. By providing a KV API for writing, reading, and updating data items, the
store makes it possible for the upper-level software to access the storage in its own de-
fined key space for values of any sizes. In contrast to the rigid block interface provided
by the block storage subsystems, such as physical/virtual disks and storage volumes, a KV
interface makes user-facing software, much easier to develop, as it can leave chores, such
as address conversion between keys and block addresses and storage space management,
to the KV system. More importantly, in a distributed system the key space can be conve-
niently partitioned into multiple shards, enabling a shared-nothing architecture to achieve
linear horizontal scalability. However, to realize its full potential a KV store must be well
designed to simultaneously meet a number of goals, which are (1) good performance with
small KV items in a storage system of large capacity, (2) support of range search, (3) low
read amplification, and (4) low write amplification. It is a challenge to simultaneously

1

achieve all these goals in a KV system. To achieve the first three goals, the KV items have
to be sorted by their keys. If sorted, the store can index disk blocks, instead of individual
KV items, to significantly reduce index size and use only one disk access to service a read
request. When the items are sorted, range search (e.g., for all items between two keys,
or for items of a common prefix) can be well supported. Unfortunately, maintaining an
always and fully sorted list on the disk is a prohibitive task. It usually leads to exorbitant
write amplification.

To address these issues, we propose a new KV store (WipDB). Accordingly, the
write amplification can be effectively reduced and most sorting operations can be moved
off the read service’s critical path. WipDB dynamically partitions the entire space into
a large number of buckets with the knowledge of long-term key distribution, and placing
keys directly in the corresponding buckets. Meanwhile, expecting existence of read locality
in the key space, WipDB introduces a locality-aware sorting scheme. Sorting indifferent
buckets can be scheduled so that sorting of KV items in buckets that do not actively service
read requests can be postponed. Experiment results show that WipDB improves write
throughput by 3 to 8×(to around 1 Mops/s on one Intel PCIe SSD) over state-of-the-art
KV stores.

1.2 Reducing Overhead for Crash-consistent Indexes on NVMs
A hash table is a fundamental data structure for efficient organization of key-value

(KV) data in the memory. It allows data to be quickly located with few intermediate index
search. This is especially important for organizing a very large number of small KV items,
where often it may take only one cache-line memory access to retrieve a data item. Had
many non-sequential memory accesses been required on an index structure, such as B+ tree
or skip list, the actual cost of reading a small piece of data would be amplified by multiple
times [72, 53]. Accordingly, hash tables have been employed to manage key-value cache in
the DRAM, such as MemCached [55, 28] and Redis. With emergence of byte-addressable
non-volatile memory, efforts have been made to design persistent hash tables on the mem-
ory [84, 52, 15, 44, 83, 48, 86, 43, 71, 85, 32], as well as using persistent memory to build
KV stores [76, 24, 38, 37, 78, 81]. One of the major issues and challenges on designing
a high-performance persistent hash table is on its efficient support of crash consistency
and atomic update. With crash consistency, a data structure can stay in a consistent state,
or be restored to a consistent state after an unexpected crash. To assure the consistency,
one has to enforce a particular order on a sequence of actions. A simple example is that
a hash table’s bucket has to be allocated and initialized before its address can be assigned
to a pointer in the table’s directory. To enforce the order, fence/flush primitives, which are

2

expensive, have to be used between the operations. More extensive use of fence/flush is
required for updating a directory during a rehashing operation. For data integrity, update
of a piece of data, such as a key or a value, must be atomic. After a recovery from an
unexpected crash, either a version of the data before the update or the one after the update
must be recovered. This means that the data cannot be modified in place if it is larger than
an atomic write unit (8 bytes). Otherwise, it may destroy the old version without making
the new version established at the time of a crash.

We propose a persistent hash table design, named TurboHash, for a high-performance
key-value store on the non-volatile byte-addressable memory (Intel Optane DC), by ad-
dressing all of the aforementioned issues. TurboHash first hashes keys into multiple shards.
Each shard is a small hash table. TurboHash is designed to support a KV store whose ca-
pacity, in terms of number of KV items, can be well planned according to known memory
size and expected KV sizes. Accordingly, we can pre-determine number of shards accord-
ing to expected shard capacity. By using a well-randomized hashing function, such as
MurMurHash, and allowing a sufficiently high shard capacity, we can avoid an expensive
re-sharding operation on the entire table. Within each shard, buckets of 256 bytes are phys-
ically contiguous. Linear probing is used to resolve hash collisions within a shard. When
a collision cannot be resolved in the existing shard, the shard itself is resized. TurboHash
uses linear probing in a shard and supports out-of-place updates. Specifically, it proposes
near-place update (in the same bucket where the old version stays), and uses one atomic
write to efficiently make old/new versions of a key invisible/visible, respectively. It sup-
ports lock-free reads. It develops well-defined search paths so that a search does not have
to always cover the entire probing scope for a negative search. Experiment results demon-
strate that TurboHash improves state-of-art designs by 2×-8× in terms of throughput and
latency.

1.3 Using Hybrid DRAM-PMEM architecture to improve indexes per-
formance for persistent memory
The memory/storage hierarchy, which consists of multiple levels including CPU

cache, DRAM, and block devices such as SSDs and HDDs, has been stable for decades.
Accordingly, the principal management designs for data across its levels, such as set-
associative CPU caches, page-based virtual memory and block-based read cache and write-
back buffer, are well established by carefully considering individual devices’ performance
characteristics to maximize the hierarchy’s performance. However, with emergence of Intel
Optane DC persistent memory (Optane PMEM for short), the first commercially available
persistent byte-addressable memory, a new level is introduced into the hierarchy. We con-

3

tend that it is necessary for the DRAM to serve as a cache level for the PMEM to boost its
effective performance.

Like DRAM, the Optane PMEM is a byte-addressable memory device that can be
directly accessed via load and store instructions. However, its performance gap with the
DRAM is still significant (around 2.5X-3X worse than that of DRAM in terms of its latency
and throughput). Therefore, placing the PMEM underneath the DRAM in the hierarchy has
the potential of taking advantage of DRAM’s high performance. While DRAM is used as
PMEM’s cache, it not only should be used as a read cache, but also must be used as a
write buffer to enable the write-back policy. Optane PMEM has an access unit of 256 bytes
to the memory’s media, any write smaller than the size leads to a write amplification and
reduction of effective throughput. To address these issues, we designed Spot-on, a frame-
work which turns an index structure designed for persistent memory into a much faster one
with application-managed caching and buffering. We develop SPTree based on Spot-on.
SPTree buffers the internal nodes in DRAM and existing keys in bloom filters, while asyn-
chronously updating internal nodes in PMEM for crash consistency. Meanwhile, it assigns
write buffer for write-intensive workloads to reduce write amplification. Experiments show
that SPTree provides higher write and read throughput up to 2X - 4X respectively compared
with the state-of-the-art persistent B+-Tree designs.

1.4 Organization
The rest of the dissertation is organized as follows. In Chapter 2, we introduce the

root causes of write-amplification (WA) for LSM-tree based Key-Value stores, and how can
we reduce the WA with an upper bound by extending the database horizontally with the
knowledge of key distribution. In Chapter 3, we present TurboHash, a persistent hash table
providing both high-performance and crash consistency for large scale Key-Value Stores.
In Chapter 4, we propose Spot-on, a framework that improves the PMEM index perfor-
mance by caching and buffering. We also develop SPTree, a high performance persistent
B+-Tree. In Chapter 5, we summarize our contributions and discuss the future work.

4

CHAPTER 2

WIPDB: A WRITE-IN-PLACE KEY-VALUE STORE THAT MIMICS
BUCKET SORT

Key-value (KV) stores have become a major storage infrastructure on which databases,
file systems, and other data management systems are built. To support efficient indexing
and range search, the key-value items must be sorted. However, this sorting process can
be excessively expensive. In the KV systems adopting the popular Log-Structured Merge
Tree (LSM) structure or its variants, the write volume can be amplified by tens of times due
to its repeated internal merge-sorting operation.

In this paper we propose a KV store design that leverages relatively stable key dis-
tributions to bound the write amplification by a number as low as 4.15 in practice. The
key idea is, instead of incrementally sorting KV items in the LSM’s hierarchical structure,
it writes KV items right in place in an approximately sorted list, much like a bucket sort
algorithm does. The design also makes it possible to keep most internal data reorganization
operations off the critical path of read service. The so-called Write-in-place (Wip) scheme
has been implemented with its source code publicly available. Experiment results show
that WipDB improves write throughput by 3 to 8× (to around 1 Mops/s on one Intel PCIe
SSD) over state-of-the-art KV stores.

2.1 Introduction
Key-value (KV) stores have become a major data management component in a stor-

age system. By providing a KV API for writing, reading, and updating data items, the store
makes it possible for the upper-level software to access the storage in its own defined key
space for values of any sizes. In contrast to the rigid block interface provided by the block
storage subsystems, such as physical/virtual disks and storage volumes, a KV interface
makes user-facing software, such as file systems [36, 64] and database systems [25, 12],
much easier to develop, as it can leave chores, such as address conversion between keys
and block addresses and storage space management, to the KV system. More importantly,
in a distributed system the key space can be conveniently partitioned into multiple shards,
enabling a shared-nothing architecture to achieve linear horizontal scalability.

5

However, to realize its full potential a KV store must be well designed to simulta-
neously meet a number of goals, which are (1) good performance with small KV items in
a storage system of large capacity, (2) support of range search, (3) low read amplification,
and (4) low write amplification.

It is a challenge to simultaneously achieve all these goals in a KV system. It has been
noted that in many real-world KV workloads small keys and values are common [4, 54].
A KV item can be tens of bytes. Each (4KB) disk block may contain tens of such items.
In a server of multi-terabyte storage space there can be tens of billions of such items. If
such a huge number of data items are individually indexed, the index size (tens of, and even
hundreds of gigabytes) can be too large to be fully held in the memory. If (some) index
data are only stored on the disk, it needs multiple disk reads (for index data and then KV
data) to service a read request, leading to high read amplification. To achieve the first three
goals, the KV items have to be sorted by their keys. If sorted, the store can index disk
blocks, instead of individual KV items, to significantly reduce index size and use only one
disk access to service a read request. When the items are sorted, range search (e.g., for all
items between two keys, or for items of a common prefix) can be well supported.

Unfortunately, maintaining an always and fully sorted list on the disk is a prohibitive
task. Analogous to expensive data shifting operations for maintaining a sorted array in the
memory, writing new KV items into an on-disk sorted list, which is stored in one or multiple
files, involves re-writing of file(s). This usually leads to exorbitant write amplification.
High write amplification, on the one hand, compromises foreground throughput as more
bandwidth is consumed by background disk I/O. On the other hand, it reduces lifetime of
SSD disks. Unsurprisingly, major efforts on improvement of KV stores have been on the
amelioration of the write-amplification issue.

Currently the most successful effort is to employ the log structured merge tree (LSM-
tree) technique to maintain multiple and increasingly large levels of sorted lists [57] (See
Figure 2.1a). Example KV systems adopting the technique include Google’s LevelDB [30]
and Facebook’s RocksDB [26]. In these systems new KV items in the incoming write
requests are progressively merge-sorted on different levels across the hierarchical struc-
ture and finally enter the last and the largest level of a sorted list. Though LSM-tree can
significantly reduce write amplification, the amplification can still be as high as 20∼70X
depending on store size [73, 62, 50, 10]. To reduce the high write cost, researchers adopt
the approximate sorting technique, attempting to avoid rewriting data in the same level and
reduce the amplification to as low as number of levels (e.g., 5∼7X) [62, 73]. In such a
sorting method, the key space is partitioned into multiple buckets (each for a given key
range), and KV items are globally sorted (across the buckets) but locally unsorted (within a
bucket). While the level size grows exponentially in the LSM-tree hierarchy, the store usu-

6

MemTable

Before Compaction After Compaction

L0

L1
L2

31-59 31-59
32-61 32-6166-78 80-91 66-73 74-98

66-981-28 1-28
2-28 16-28

2-99 2-99
1-100 1-100

1-100 1-100

(a) Compaction in LSM-tree

…

L0

L1
…

1-20 21-40

21-35
22-31

21-38

41-60

41-60
42-51
45-57
43-59

1-14
2-17
2-19
1-18

Compaction

MemTables

Bucket Index
WipDB

(b) WipDB

Figure 2.1: Architectures of LSM tree and WipDB

ally has seven or fewer levels. If successful, the technique can substantially reduce write
amplification.

However, current approximate sorting technique has two critical issues in its effort on
achieving low write amplification. The first issue is that the approximate sorting technique
cannot be effectively applied on the LSM-tree structure due to its demand on an appropriate
key partitioning. As a consequence, the stores adopting this technique either do not sup-
port range search (e.g., LSM-trie [73]) or consume a considerable amount of memory in
guards to reduce the write amplification. (e.g., PebblesDB [62]). The second issue is that
the expensive across-level progressive sorting operations compromise performance of read
requests. In terms of performance impact, the high write amplification is less of an issue
on the write performance than on the read performance. If the sorting operations are not
immediately conducted (e.g., postponed to less busy periods), writes can be quickly done.
However, the read performance will be seriously degraded if the items are not adequately
sorted (more explanation in Section 2.2). However, if the sorting is carried out immedi-
ately, expensive across-level sorting would consume substantial bandwidth, also degrading
the read performance.

In this paper we propose a new KV store architecture to fundamentally address the
two issues. Accordingly, the write amplification can be effectively reduced and most sort-
ing operations can be moved off the read service’s critical path. In the way, all the four

7

goals can be simultaneously achieved. The proposed KV store is named WipDB (Write-in-
place). It mimics the bucket sort by partitioning the entire key space into a large number of
buckets, and placing keys directly in the corresponding buckets. In contrast, existing LSM-
tree-based KV stores, including LevelDB and the optimized ones using the approximate
sorting technique, place KV items into a level’s corresponding buckets (e.g., represented
by SSTables in LevelDB) and move them down to next level’s buckets using merge sort in
a level-by-level manner, as shown in Figure 2.1a. However, similar to that in a bucket sort a
key has only one bucket in WipDB holding it and KV items are not moved across buckets.
KV items in a bucket are managed with a miniature LSM tree (see Figure 2.1b).

In this WipDB architecture, both of the aforementioned issues can be well addressed.
First, the approximate sorting can be used in each miniature LSM tree of a bucket without
key partitioning to reap its full performance benefit. Second, expecting existence of read
locality in the key space, WipDB introduces a locality-aware sorting scheme. Sorting in
different buckets can be scheduled so that sorting of KV items in buckets that do not actively
service read requests can be postponed. This benefit for hiding internal data sorting cost is
not possible in existing LSM-tree-based KV stores.

In summary, in the paper we make three major contributions: (1) we propose a new
LSM-tree-based KV store architecture that allows new keys to be written in their right
places (buckets) in a sorted list at the outset by utilizing long-term key distribution; (2) by
improving and hiding write-related sorting cost, WipDB can make both writes and reads
efficient; and (3) we have implemented WipDB and extensively evaluate its efficiency by
comparing it with state-of-the-art KV stores.

2.2 Background
To motivate the design of the proposed WipDB, in this section we will discuss the

design rationale of the LSM-tree architecture and its weaknesses, as well as existing efforts
attempting to address the weaknesses and their inadequacies.

2.2.1 Why LSM-tree?
As we have indicated, KV items must be sorted in the storage for reduced index size

(so that it can be all cached in the memory) and support of range search. This is especially
the case for a KV store hosting a large number of small KV items. The challenge is to keep
the items sorted when new items keep streaming into the store, as the cost can be huge.
Assuming that the store currently has M KV items (of the same size) that have been fully
sorted on the disk. A list of N (sorted) new items currently in the memory are to be written

8

to the store. To maintain a fully sorted store, one has to write M +N items, rather than just
the N new items to the store. Specifically, one needs to first read the M items off the disk,
merge-sort the new list of N items with the existing list of M items into one list, and write
the resulting sorted list back to the disk. The operation is often named compaction [12].
The write amplification is (M + N)/N , which can be huge when the store size (M) and
the ratio of the two lists (M/N), named compaction ratio, become increasingly large. To
address the issue there are two potential ways. One is to reduce the ratio (M/N). LSM-
tree takes this way. The other is to increase size of the in-memory list (N). This is the way
taken by the proposed WipDB. However, there are significant hurdles to overcome on the
way towards its effectiveness (see Section 2.2.3).

To limit the ratio and allow the store to grow to a very large size, LSM-tree introduces
multiple sorted lists to form a multi-level hierarchy. As illustrated in Figure 2.1a, these
levels are named Levels 0, 1, ..., and n − 1 in a n-level hierarchy. Except for L0, which
sits at the top of the hierarchy and may have multiple sub-levels of similar size, every other
level is up to 10X as large as the level immediately above it.

Because compaction is conducted only between two adjacent levels, the compaction
ratio is bounded by 10, or the write amplification for moving KV items from one level to
its next lower level is bounded by 11. For example, in a 5-level LSM-tree store, starting
at Level 0 KV items move down the hierarchy level-by-level in a sequence of compactions
and produce a write amplification of up to 44 when they arrive at Level 4. Though LSM-
tree’s write amplification is way much smaller than the store that inserts items directly into
a single sorted list, its amplification is still significant. High write amplification consumes
much of the I/O bandwidth and makes both write and read requests slow.

2.2.2 Why Approximate Sorting?
Apparently, LSM-tree’s 20-70X write amplification is still a major performance con-

cern. Recently, significant efforts have been made to reduce the cost by using approximate
sorting to avoid rewriting data in the same level [73, 62]. As we know, to reduce write
amplification LSM-tree does not directly sort KV items into a single list. Instead, it only
sorts the items in the same level (horizontally sorted) and leaves items in different levels
unsorted (vertically unsorted). In the approximate sorting, the key space in each level is
partitioned into multiple segments, named buckets. Keys between the buckets are sorted.
Keys within a bucket are not fully sorted. There can be multiple overlapping small sorted
lists in a bucket. Each level is said to be approximately sorted.

By allowing each level to be horizontally unsorted, the key-value architectures, repre-
sented by LSM-trie [73] and PebblesDB [62], can potentially reduce a compaction’s write

9

amplification to 1, and possibly make the store’s write amplification as low as its level
count. Here is the reason. During a compaction, to move items in a bucket at a level to its
next level, the store first merge-sorts the small lists in a bucket into one sorted list. It then
uses the boundaries of buckets at the next level to segment the list and simply writes each
segment to its corresponding bucket in the next level. Allowing KV items to be partially
(either horizontally or vertically) unsorted, a read operation needs to search more sorted
lists, such as levels in a LSM-tree and small lists in a bucket of an approximately sorted
list. By using stronger bloom filters this may not be a performance concern. The real
concern is on use of the approximate sorting in different levels.

For the approximate sorting approach to be effective, one has to segment the key
space appropriately so that each bucket has about equal number of KV items 1. Otherwise,
some buckets may receive new items at a (much) higher rate than others, making them
and their downstream buckets become very large, and their compactions expensive. The
hierarchy would also grow in an unbalanced manner. This is why LevelDB introduces
constant-size SSTable. It is also reminiscent of the tree balancing issue addressed in the B+
tree.

Currently, the issue is not well addressed in the use of approximate sorting, leaving
its performance promises unfilled. To ensure a balanced LSM-tree structure, LSM-trie
hashes user-supplied keys with a cryptographic hash function like SHA-1, and uses the
hashed keys for sorting in the tree. A consequence of this approach is that range search
is not supported. In contrast, PebblesDB attempts to preserve the support of range search
by keeping user keys sorted. To this end, it uses a probabilistic function to select some
keys as “guards” from all keys entering a level to form buckets (between two adjacent
guards). Number of guards, or buckets, in a region of the key space in a level is roughly
proportional to the region’s key density. Intuitively, each bucket has about the same number
of KV items. But positions of guards may keep changing, especially for guards in the higher
levels (Level iwhere i is small), in response to variation of key density in the corresponding
key regions. In PebblesDB, a guard in a higher level must also be a guard in all of its lower
levels [62]. Adding a new guard into a level requires splitting of a bucket. This will either
cause rewriting data in the same level, which defeats the very purpose of using approximate
sorting, or requires an immediate premature compaction of the bucket to the next level,
leading to a cascade of downward compactions. Both can significantly offset the benefit of
the approximate sorting.

1This is a requirement similar to that on an efficient bucket sort.

10

2.2.3 Overcoming Variation of Key Density
The key to success of the approximate sorting approach is stability of the key dis-

tribution in the key space. In other words, the key densities in different regions of the key
space need to remain roughly unchanged (at least for an extended period of time), so as to
keep the partitioning (into the buckets) stable. We assume user keys generated by applica-
tions have a long-term relatively stable distribution (e.g., for weeks, months, or even years).
For real-world services, keys are often constructed by sequencing some descriptors of an
object. For example, a key about an Amazon’s product can be generated as Grocery →
Snack Foods→ Cookies→ Chocolate→ Oreo Mini Chocolate Sandwich Cookies. In the
example of Google’s BigTable [12], which decomposes a database table into KV items for
storage in a distributed KV store, a key is generated by concatenating row name, column
name, timestamp, such as com.google.maps/index.html+Spanish+04/18/2019,12:00am. In
the real world the number of products or news articles under a certain category, or popu-
larity of a category, can be expected to be stable within a relatively long time period. So is
the long-term key-distribution stability in many significant application scenarios 2.

The issue is that existing use of the approximate sorting approach cannot exploit the
long-term stability, as such stability may only exist in the last one or two levels, which
store majority of a store’s KV items inserted over weeks, months, or even years reflecting
the user keys’ inherent and stable distribution. In contrast, KV items in the top levels are
inserted in a short time period and may exhibit a key distribution that’s different from the
long-term stable one and can change quickly from time to time. For example, Level 0
has a capacity of tens of megabytes, and may only store KV items inserted in the last few
minutes. However, when stores such as PebblesDB [62] applies the approximate sorting
approach at every level, dramatic and expensive bucket adjustment is expected in the most
(top) levels, which cascades to the lower levels.

To illustrate the situation, we continuously write 100-byte KV items, whose keys are
generated using the db_bench tool in the LevelDB code release. In each level we con-
tiguously place a hypothetical guard for every 50K keys, or a bucket between two adjacent
guards holding 50K KV items. After 1 billion items have been inserted, we track variation
of guard positions in Levels 1, 2, and 3 after every compaction. As Figure 2.2 shows, in
all the three levels the guard positions vary but at different intensity. In other words, if we
had fixed the guard positions the number of KV items in a bucket can be highly variable in
Levels 1 and 2. However, in a lower level (Levels 3), where much more items are stored,
spontaneous variation of key distribution can be smoothed out.

2In Section 2.4.2, we experimentally show that WipDB’s performance advantage is not contingent on
existence of a strong stability at all.

11

0

50

100
L

ev
el

 1

0

50

100

L
ev

el
 2

6000 7000 8000 9000 10000 11000
0

50

100

L
ev

el
 3

%

Number of Compactions

G
ua

rd
 P

os
iti

on

Figure 2.2: Guard positions in different levels in LevelDB (L1, L2, and L3) after certain
number of compactions in the system. The position is expressed as a percentage of the
guard key in the entire key space (0..109). A workload with the uniform distribution is used
here.

2.2.4 The Write-in-place Approach
To leverage the stable key space distribution, we propose to eliminate the top levels

in the LSM-tree structure and partition the key space of the last level into equal-capacity
buckets according to the workload’s long-term key distribution. Within each bucket of lim-
ited capacity KV items are organized as a miniature LSM-tree, as illustrated in Figure 2.1b.
While the proposed write-in-place (WipDB) approach similarly allows partially sorting in
both horizontal and vertical dimensions, the novelty is to switch the order of the dimen-
sions where the partially sorting technique is applied to make exploitation of the long-term
stable key distribution possible.

LevelDB introduces the partially sorted structure on the vertical dimension (multiple
overlapping sorted levels). PebblesDB further allows partial sorting on the horizontal di-
mension (multiple partially sorted buckets in each level). In contrast, WipDB first applies
the partially sorting technique on the horizontal dimension by directly placing keys in the
right buckets. It then uses the technique on the vertical dimension by using LSM-tree in

12

each bucket. The new architecture has two benefits. First, because the LSM-tree in a bucket
is of limited size, WipDB can apply the approximate sorting technique to avoid rewriting
in the same level without further partitioning any level of the tree into smaller buckets.
Second, the sorting operation in a bucket can be scheduled according to the read request
pattern to potentially move it out of read operations’ critical path.

2.3 The WipDB Design
By leveraging the approximate sorting technique at only one level that contains a

long list of data items and exhibits stability of a key distribution, WipDB can pre-define
buckets in the key space and write incoming KV items into the buckets they belong to
(write-in-place). Conceptually, WipDB mimics the bucket sort with KV items sorted across
the buckets. Within a bucket, the items are managed within an LSM-tree. The design of
WipDB addresses a number of critical issues, including how to partition the key space into
buckets, how to efficiently write KV items into the buckets on the disk, how to prevent
new KV items in the memory from being lost upon power failure or system crash, how
to minimize the performance impact of in-bucket sorting, and how to adapt the buckets to
change of key distribution.

2.3.1 The WipDB Architecture
In the WipDB architecture (Figure 2.1b), the key space is partitioned into a certain

number of buckets so that each bucket is supposed to contain about the same number of
KV items according to the observed key distribution. Each of the buckets admits new KV
items directly from a buffer in the memory that corresponds to the bucket. The buffer is
responsible for receiving new KV items whose keys are in same range of its corresponding
bucket. As the buffer plays a role similar to MemTable in LevelDB [30], we name it
MemTable too. The difference is that there are multiple MemTables, each for a bucket on
the disk. When a MemTable is full, it’s written to its corresponding bucket on the disk as
a file containing a sorted list of KV items. This process is similar to the minor-compaction
operation in LevelDB, where a MemTable becomes an SSTable in Level 0 of the LSM-tree
on the disk.

As we mentioned, we use the LSM-tree structure within each bucket. To reduce
write amplification due to compaction within the LSM-tree, we adopt the technique used
in LSM-trie and PebblesDB, where a level consists of multiple overlapping sublevels, to
avoid rewriting in the same level (see Figure 2.1b). Specifically, in a compaction operation
KV items in the sublevels of Level i (i = 0, 1, 2, . . .) are merge-sorted into one list, which

13

1000 2000
(a) Cache Misses

107

109

C
ou

nt
Hash-Huge Hash SkipLists 1-SkipList

1000 2000
(b) TLB Misses

1

2

Pe
rc

en
ta

ge
 (%

)

1000 2000
(c) Put Throughput

1

2

3

M
op

s/
s

Figure 2.3: Performance comparison of skip list and hash table.

Tag
Tag Tag Tag Tag

Tag Tag TagPointer

Entry64 byte 64 byte

2 byte hash tag 6 byte pointer to target entry

Pointer Pointer Pointer Pointer
Pointer Pointer Pointer

1-20 21-40 41-60MemTables

HashTable

Bucket Index

……

Figure 2.4: MemTable Design

is then written back as a new sublevel of Level i + 1 with a write amplification of one.
Interestingly, though the three KV stores (WipDB, LSM-Trie, and PebblesDB) use the
same technique for significantly reduced write amplification, only WipDB can take its full
advantage. As we mentioned, when one big LSM-tree is used to manage a KV store,
each level has to be partitioned into multiple segments, such as SSTables in LevelDB. The
store conducts compactions on a few selected segments once at a time to cap the time
of a compaction operation. To make the tree grow in a balanced manner, both LSM-trie
and PebblesDB make a major effort attempting to maintain about the same number of
items in each segment. This is challenging as short-term key distribution keeps changing.
To this end, LSM-trie gives up support of range search by using SHA-1 hashed keys in
the sorting. PebblesDB constantly adds guards in each level, incurring SSTable splitting
operations and rewriting in the same level. WipDB addresses this issue by removing the
need of introducing segments into a level. As a WipDB store can have a sufficient number
of buckets so that each bucket won’t grow very large (e.g, up to a 1GB). Each level is
limited at a relatively small size (e.g., tens of Megabytes). This makes partitioning within

14

a WipDB’s level unnecessary. Therefore, all sorted KV items in a sublevel of a bucket’s
LSM-tree are stored in one file, which is named LevelTable. A compaction is applied on
multiple LevelTables of a level. In this way, the write amplification can be as low as the
number of levels.

2.3.2 The Operations
WipDB supports all basic KV store operations, including write, deletion, modifica-

tion, and read. Like most other KV stores, WipDB executes write, delete, and modification
operations, collectively named update operations as writing new KV items to the store. In
particular, for deletion operation a special KV item, whose value is a tombstone marker in-
dicating it’s a deletion request, is written. The actual deletion and modification are actually
performed during compactions.

A read operation can request for either one KV item (point search) or all items in a
key range (range search). A point search starts at the MemTable and proceeds across the
LevelTables in the order of levels until a key is found or it reaches the last (sub)level in the
corresponding bucket. In the process, use of Bloom filters in each sublevel can avoid most
or all access of files that do not contain the requested key. However, for range search every
LevelTable must be read and searched for the keys in the specified range. The results from
the sublevels in all relevant buckets are combined and returned to the requester. Therefore,
range search is an I/O-intensive and expensive operation.

2.3.3 Efficiency and Persistence of MemTables
In LevelDB, MemTable is maintained as a sorted data structure (skip list), so that it

can directly support range search and be readily written to the disk as a Level-0 SSTable.
However, such a design can be problematic for WipDB.

WipDB may have a large number (e.g., a few thousands) of MemTables. Its enlarged
working set and weakened access locality may lead to a very high CPU cache miss ratio.
A write is always preceded by a lookup in a MemTable for its insertion location. A lookup
in a sorted structure, such as a skip list, may require multiple memory accesses and incur
multiple cache misses. To illustrate this, we set up systems of different number of MemTa-
bles, each with a capacity of 10K KV items, and write random keys into them. As shown
in Figure 2.3, KV items in each bucket can be organized as a skip list (“SkipLists”), a hash
table (“Hash”), or a hash table with huge page enabled in Linux (“Hash-Huge”). We also
include results for all keys in one big skip list (“1-SkipList”). The system setup is described
in Section 2.4.1. As shown, using skip lists causes much more cache and TLB misses, and
accordingly produces a write throughput much lower than using hash table. This issue of

15

using a sorted in-memory table is particularly serious when high-speed SSDs are used and
the store has a low write amplification.

To address the issue, WipDB uses a hash table to implement a MemTable. As shown
in Figure 2.4, each entry of the hash-table’s directory has 64 bytes (the cacheline size),
which consists of eight 8-bytes slots. The entry is 64-byte-aligned. One memory access
can retrieve all its eight slots into the cache. Conceptually, each slot stores a KV item. In
reality, we hash the key into a two-byte tag. The tag and a six-byte pointer pointing to the
space storing the KV item are stored in the slot. The eight slots in an entry are used as a
log. New KV items are appended at the end of the log. A lookup in the entry starts from
current end of the log. When the hash table is full (i.e., any of its entry has overflown)
WipDB freezes the table, sorts its data items, and writes them to the disk as a LevelTable
at Level 0. Meanwhile, a second empty hash table is set up to continue admitting incoming
KV items.

Any KV items in the MemTables hosted in the DRAM are subject to loss due to
power failure or system crash until they turn into LevelTable on the disk. Therefore, WipDB
writes any new KV items into a write-ahead-log before their requests are acknowledged.

2.3.4 Support of Range Search
The hash-table-based MemTable does not directly support range search. When a

range-search request arrives at a MemTable, WipDB immediately sorts the data items cur-
rently in the hash table and place them in a one-time-use buffer, which is discarded after
the range search has completed its scanning. KV items are copied, rather than moved, from
the hash table to the buffer.

This design choice is in stark contrast with FloDB [6], a KV store dedicated for im-
proving operating efficiency of the skiplist based MemTable. FloDB adds a hash table on
top of the MemTable and keeps pushing KV items from the hash table to the MemTable.
WipDB cannot adopt such a design. With such a two-level in-memory structure a read
request still needs to search the skip list (unless the item has been found in the hash ta-
ble), causing many cache misses, which compromises performance. Interestingly, FloDB
cannot use WipDB’s choice either as it assumes a MemTable as large as 192 GB to take
full advantage of memory’s high speed. In contrast, each WipDB’s MemTable has only
one or a few megabytes, or a few thousand KV items. While a range search operation
is very expensive, it is well affordable to sort this relatively small number of items in a
hash table. In addition, if a bucket receives a large number of range queries during a time
window, WipDB replaces the hash-based MemTable with a skiplist-based one to reduce
sorting overhead for this bucket. If no more range-query requests arrive after next minor

16

compaction, it changes back to hash-based MemTable. This adaptive strategy adjusts the
MemTable structure of each bucket individually based on the workload, so that the sorting
overhead can be minimized.

To ensure that items arriving after a range search request from being considered,
WipDB leverages a global unique and monotonically increasing sequence number assigned
to any incoming item in the order of their arrival. Such a sequence-number mechanism is
also adopted in other KV stores such as LevelDB and RocksDB. When a search request is
received, the sequence number currently available for assignment is attached to the search.
During a search any items whose sequence numbers are equal to or larger than the sequence
number with the search are skipped.

2.3.5 Bucket Splitting and Merging
WipDB does not pre-assign a large number of buckets when a store is initialized as

the key distribution is not known yet. Instead, it has only one or a few initial buckets. When
the store grows or the key distribution of the incoming KV items changes, a bucket may
become too large, and have too many levels (or sublevels), which degrades read perfor-
mance. In principle the WipDB’s structure is similar to a hash table, whose bucket capacity
also needs to be capped for desired lookup performance. The difference is that KV items
in a WipDB are sorted across its buckets. For this reason, it can be much more efficient to
reduce a bucket’s size. Instead of reshuffling the entire store, WipDB can individually split
a bucket once it reaches its capacity.

Assuming each level of the LSM tree in a bucket consists of maximally T sublevels.
When a bucket reaches its capacity each of its levels consists of T full sublevels. We choose
to evenly split the bucket intoN smaller buckets when it exceeds its capacity threshold. We
consistently apply the same set of N − 1 splitters at each sublevel to produce N segments.
Items in the ith segments (i = 1, 2, . . . , N) of all sublevels constitute one of the N new
buckets. As WipDB grows incrementally from a small number of buckets initially to thou-
sands of buckets by this bucket splitting, the choice of the splitters is important to balancing
buckets. To this end, similar to the sample sort, for each sublevel we first choose N − 1

splitters that evenly partition it. Assuming there are L levels, or L × T sublevels, we then
sort the list of the L × T × (N − 1) splitters and choose N − 1 splitters that evenly split
the splitter list for the bucket splitting. During the splitting, the bucket continues servicing
incoming requests. When N new buckets are created, items in the MemTable are written to
one of the new buckets according to their keys. Therefore, N new Memtables are created,
each for a new bucket, to receive incoming items. In the meantime, the old bucket becomes
read-only to serve read requests that cannot be satisfied in the new buckets. WipDB carries

17

out a full compaction to turn the old bucket into one sorted list. It then partitions the list
into N segments according to the selected splitters and places them in the new buckets re-
spectively as their last levels. Eventually, all requests can be processed by the new buckets
and the old bucket is removed.

A bucket shrinks after repeated deletion of its KV items. While existence of small
buckets does not compromise performance, it may increase number of buckets and thus
memory footprint. Small buckets can be removed by merging them with their neighboring
buckets, which helps reduce WipDB’s memory demand. Admittedly, by having multiple
MemTables WipDB uses more memory for its in-memory data structure than other KV
stores such as RocksDB and PebblesDB. However, its demand on memory is still very
small. For example, for a 5TB disk filled with KV items of around 512B each, the memory
demand is only 2GB, which is negligible on a commercial server equipped with several
hundreds of GB memory. Furthermore, its use of the additional memory brings significant
improvement of write performance, as will be shown in Section IV. This benefit is not
available to existing KV stores even if a much larger memory is offered.

WipDB’s write amplification (WA) is mainly attributed to (1) compaction operations
on LSM trees within individual buckets; and (2) bucket splitting operations. As we have
discussed, with its use of vertical approximate sorting WipDB’s compaction-induced WA is
bounded by Lmax, the maximally allowed level count in a bucket. Assuming a full bucket’s
size is 1 and its splitting produces N new buckets, each with a size of 1

N
. Each of the

new buckets will be split again with the entire bucket being re-written after it grows from
size 1

N
to 1 with a minimal 1 − 1

N
data written into the bucket from users. Accordingly,

the split-induced I/O write amplification is upper-bounded by the ratio between amount of
write for bucket splitting and amount of write of new data from users, which is 1/(1− 1

N
),

or N
N−1

. Considering write amplification due to both compaction and bucket splitting, the
store’s WA is upper-bounded by Lmax+

N
N−1

, regardless of bucket count or the actual store
size. Assuming a practically configured WipDB store whose Lmax = 3, N = 8, the total
WA is no more than 4.15.

2.3.6 Use of Write Ahead Log for DRAM resident MemTable
In order to tolerate power failure, WipDB adopts a basic principle similar to existing

KV stores, such as LevelDB, which writes a KV item to a write-ahead log (WAL) when it
is still in the MemTable. The main issue for WipDB to address is how to reclaim the log
space occupied by the KV items that have been safely persisted into the KV store itself.

In LevelDB KV items are persisted on the disk in their arrival order, which is also
their order in the log. Each item is assigned a monotonically increasing sequence number in

18

c(1),d(5)
n(2),q(6)j(3),k(10) x(4),z(8)

11

11

11

12

12

22

22

13

13

14

14

……

……

66

66

7

7

7

8

8

8

9

9

10 …

…10

11

11

a(7),c(14)

a(7),c(14)

h(12) m(9),n(13) u(11)

u(11)

MemTable

free space
Minor Compaction

After Minor Compaction

valid record garbage key(seq. No.)

tail

tail

head

head

SSTable

Log

Figure 2.5: Space reclamation in WipDB’s Write-Ahead Log

the order. Therefore, when an item with a particular sequence number is written to the disk,
any items whose numbers are not larger than the sequence number in the log, or any items
before a corresponding offset in the log file, can be removed. However, this is true only for
items within individual MemTables in WipDB. WipDB has multiple MemTables. All new
items are written to a common log. But they may be distributed in different MemTables.

We track the smallest sequence number in each MemTable among those whose corre-
sponding KV items are not yet persisted. We then choose the smallest of every MemTable’s
smallest number. All items in the log whose sequence numbers not greater than this small-
est number, which are contiguous in the log file, can be removed. In this way, the log space
can still be efficiently reclaimed. The process is illustrated in Figure 2.5, where new items
are written at the log head and free space starts at the tail. The smallest sequence number
is at the tail (e.g., Sequence number 7). Note that there can be removable (garbage) items
interspersed among valid items, such as items with Sequence numbers 8 and 10. After the
leftmost MemTable is flushed to the disk, the tail moves forward to Sequence number 9.
The space before the position can them be reclaimed and reused.

To prevent the log from becoming too large, WipDB sets up a threshold on the log
size. When the threshold is reached, MemTables at the log tail are written to the disk to
shrink the log.

2.3.7 Read-aware Compaction Scheduling
In an LSM-tree-based multi-level KV store, read performance can be compromised

by searching in SSTables in different levels. The more the levels, the more likely for Bloom
filters in the SSTables to have false positives and for a read request to take more than one

19

disk access. To this end, compaction must be conducted to push new items downwards and
reduce level count. However, intensive compactions can consume much I/O bandwidth and
slow down the concurrent read requests. Should we be able to schedule compactions with
priority on KV items being intensively read and reduce number of levels hosting these read
items, the negative impact of compactions on read requests can be reduced. However, this
is very difficult as LSM-tree’s top levels are covered by a few SSTables. And it’s hard to
separate items being read from those being written into different compactions.

WipDB addresses the issue in its design. Each of its buckets, managed as a small
LSM-tree, is only responsible for a fraction of the entire key space. As long as write
and read requests do not intensively fall in the same buckets, WipDB can prioritize com-
pactions on read-intensive buckets to reduce their levels and improve read performance.
Even if the write and read key spaces are highly overlapped, it’s likely the case where
newly written items are immediately read in the following requests and the read requests
can be serviced at a cache before they reach the storage system [82, 7]). For scheduling of
compaction of all sublevels of a level in a bucket, WipDB considers two factors, which are
number of current sublevels, denoted sub_count and number of times any of the sublevels
are accessed to serve read requests since the last compaction of the level, denoted read_-
count. sub_count should be in the range of [min_count, max_count]. A level becomes
eligible for compaction when it has at least min_count sublevels. This level receives the
highest priority for compaction when it reaches max_count sublevels. Suppose average of
eligible levels’ read_counts is avg_read_count, the relative read count for a level of read_-
count reads is rela_read_count = read_count

avg_read_count . Also if the average of eligible levels’ sub_-
count is avg_sub_count, the relative sublevel count for a level of sub_count sublevels is
rela_sub_count = sub_count

avg_sub_count . The priority (p) of a level’s compaction is qualified as
p = (read_weight)×(rela_read_count)+rela_sub_count, where min_count ≤ sub_count <
max_count.

The read_weight adjusts the weight of the read performance relative to importance
of a balanced compaction across the buckets according to the sublevel count. The priority
values are dynamically updated and the N levels with the highest values are selected for
concurrent compactions. By adopting a large read_weight, WipDB allows read-intensive
buckets to be aggressively compacted for high-performance read service. In the meantime,
it leaves the write-intensive and read-little buckets lightly compacted to save more band-
width and further improve read performance. Based on our empirical study, we set default
values of min_count, max_count, and read_weight as 4, 20, and 10, respectively.

20

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (M

op
s/

s)
WipDB
RocksDB

WipDB-S
RocksDB-1.6G

PebblesDB
LevelDB

0 1 2 3 4 5 6 7 8
Store Size (Billion of Keys)

0
500 Number of Buckets in WipDB

(a) Write Throughput

0 1 2 3 4 5 6 7 8
Store Size (Billion of Keys)

0

3

6

9

12

15

18

W
rit

e
A

m
pl

ifi
ca

tio
n

3.14

WipDB PebblesDB RocksDB LevelDB

(b) Write Amplification

 R1861 GB
W2526 GB

0

1

2

3

4

5

6

34.5%

34.0%46.5%

31.5%53.5%

Level
WipDB

Read
Write

 R6135 GB
W6459 GB

13.8%

13.1%14.1%

12.5%13.2%

12.6%13.2%

12.1%12.7%

12.1%12.8%

23.7%34.0%

PebbelsDB

 R17323 GB
W17484 GB

08.1%02.9%

09.7%09.8%

29.7%30.0%

37.8%38.3%

14.6%19.0%

RocksDB

 R13891 GB
W14042 GB

06.4%

06.3%06.4%

08.5%08.6%

26.0%26.3%

36.5%36.9%

16.4%21.8%

LevelDB

(c) IO at Different Levels

Figure 2.6: Write performance. “WipDB” uses the hash table for MemTable. “WipDB-
S” uses skiplist. In (c) percentages of read and write amount at each level of a store are
marked in the graph. The total read and write amounts, including those for compaction,
are shown under respective graphs.

2.4 Evaluation
We implement a prototype of WipDB and evaluate it against three state-of-the-art KV

stores: LevelDB (v1.20), RocksDB [26] (v5.18), and PebblesDB [62] (git #220d0fa).
In the evaluation, we will answer the following questions:

• How does WipDB improve write performance?
• How effective is WipDB’s MemTable?
• How does WipDB perform with workloads of changing key distribution?
• How does the compaction scheduling improve WipDB’s read performance?

2.4.1 Experiment Setup
The experiments were run on a Dell T440 server with two 4-core Intel Xeon Gold

5122 CPUs and 64GB DRAM. To minimize the interference between threads or cores,
hyper-threading is turned off from BIOS. The server runs a 64-bit Linux (v4.20.0) with
an ext4 file system on an Intel 750 SSD (PCIe, 1.2 TB). The SSD has up to 1200 MB/s
sequential write throughput and up to 440K IOPS for random 4KB reads.

In the evaluation, WipDB uses 2MB MemTable for each bucket. LevelDB, RocksDB,
and PebblesDB use 64 MB Me-mTables. We configure WipDB with Lmax = 3, T = 8 and
N = 8. Another SSD of the same type holds the log file(s) to avoid impact of logging
on systems’ frontend operations in each of the four stores. Meanwhile, every 1000 write
requests are logged as a batch for high efficiency.

21

2.4.2 Write Performance
WipDB aims to substantially reduce the high write amplification ratio (WA) of LSM-

tree-based KV stores. To evaluate the performance improvement of WipDB for write-
intensive workloads, we use 16-byte keys and 100-byte values with uniform distribution
and send 8 billion write requests (around 900 GB data) to each store. WipDB is con-
figured to have 100 buckets at beginning except stated otherwise. All the stores, except
LevelDB which only supports one background thread, use seven compaction threads. We
show throughput and WA of WipDB, LevelDB, RocksDB, and PebblesDB in Figures 2.6.

Write throughput and WA. As shown, WipDB has much higher throughputs than
the other stores. This improvement is primarily due to its low write amplification (see
Figure 2.6b). In particular, RocksDB and LevelDB’s write amplification is about 5× to 6×
higher than that of WipDB. Admittedly WipDB uses more memory for its MemTables. To
reveal impact of this increase of MemTable size, we include an experiment of RocksDB
whose MemTable is configured to be of 1.6GB, the peak size of WipDB’s MemTables in
the experiments. This RocksDB’s results are shown as ‘RocksDB-1.6G’ in Figure 2.6a. The
throughput doesn’t improve. A larger Memtable does help collect more writes for larger
batched I/O and improved I/O efficiency. However, increasing the Memtable size will have
diminishing return on fast devices and the dominant factor on the stores’ performance is the
amount of I/O, which is determined by a store’s WA. PebblesDB’s WA is also 2× of that of
WipDB 3 The total amount of I/O during the writes is shown in Figure 2.6c. PebblesDB’s
extra writes are caused by having more levels and constantly splitting SSTables to generate
new guards, while WipDB maintains at most three levels and conducting bucket splitting
only when a bucket reaches its the size limit.

Since WipDB has a consistently low WA, its throughput remains stable and high at
about 0.8 Mops/s. It is worth noting that initially WipDB’s WA increases as the store grows.
At the moment it reaches its peak value, 3.14 as shown in Figure 2.6b, the overall WA drops
slightly. The reason is twofold. On the one hand, as WipDB starts to split, the number of
buckets grows, and more data can be stored at Levels 0 and 1. Hence the WA becomes
smaller with fewer levels. On the other hand, the workload contains update requests, which
makes the size of new SSTables generated by compaction smaller than the total size of the
SSTables being compacted.

WipDB’s MemTable. To improve its memory access efficiency, WipDB initial-
izes with hash based MemTable, instead of skiplist. To assess the impact of this design,

3In the experiment with PebbleDB, we manually change its opensourced code by setting top_level_bits,
a variable controlling probability of generating guards, from 27 to 31 to reduce number of guards. This is
necessary to allow PebbleDB to finish its execution. Otherwise, the program would run out of memory (on
our server with 64GB memory) when the store reaches two billion KV items.

22

0

20

0.5 Billion
Histogram at Different Time

0

20

1.5 Billion

0

20

2.5 Billion

0

20

3.5 Billion

Range 1 Range 2 Range 3 Range 4

0.2

0.4

0.6

0.8

1.0

Mops/s

Exponential Normal Uniform Exponential-Reverse

Throughput

0 1 2 3 4
Store Size (Billion of Keys)

2.5

3.0

3.5

Write Amplification

0.2 k

0.4 k

0.6 k

0.8 k

1.0 k

Bucket #

Number of Buckets

Figure 2.7: Write throughput when key distribution changes. Blue bars in the right graph
show the distribution of buckets (number of buckets in each 1/60 key space) in the key
space at four sample time points when the store reaches 0.5, 1.5, 2.5 and 3.5 billion items,
respectively.

we include a version of WipDB that is initialized with skiplist-based MemTable, marked
‘WipDB-S’ in Figure 2.6a. As shown, WipDB’s write throughput is 2× of that of WipDB-
S. WipDB-S’s throughput remains stable at a lower rate (around 0.4 Mops/s), while its WA
ratio is as low as that of WipDB. With the increase of bucket count from 100 to around 800,
the working set of the MemTables grows much larger than the CPU cache size. Echoing
observations shown in Figure 2.3, the degraded throughput of WipDB-S is due to its use
of sorted skip list that causes much more CPU cache misses in its index walk than use of
hash table. It is noted this issue of memory access performance arises only in the design of
a high-performance KV store using high-speed storage devices.

Responding to changing key distribution.
Real-world workloads are usually skewed [4] and their key distribution is likely to

change over time, causing some buckets in WipDB to grow much faster and having more
(sub)levels than the others. WipDB addresses this issue with bucket splitting. To evaluate
how WipDB responds to key distribution change, we run a WipDB store initially with only
one bucket. In the meantime, we separate the entire key range into four equal-size and non-
overlapping regions, and serve four write workloads with different key distributions, each

23

writing to a different region, one at a time, to simulate a workload of dynamical key pattern
changes. The four regions, in the order of their key ranges, receive KV items (16 B keys and
100 B values) of exponential, normal, and uniform key distributions, and then exponential
again with its key order reversed, respectively. Each region receives 1 billion KV items.
The experiment results are shown in Figure 2.7. As shown in the left graph, the number of
buckets increases with the increase of store size. The increase rate slows whey the work-
load switches to the uniform distribution without having skewed writes to rapidly fill and
split a subset of buckets. The right graph of Figure 2.7 shows that the bucket distributions
consistently match the key distributions in the key regions, demonstrating WipDB’s adapt-
ability in its bucket placement for equalized bucket sizes. During the execution, the WA
may be modestly reduced. When buckets become filled and are then split into small ones
with much fewer (sub)levels, their WAs accordingly become smaller. It is worth noting that
the write throughput is the lowest at the moment when key distribution switches. Because
new buckets are always generated by splitting existing buckets, this bucket splitting for
accommodating new a key distribution leads to the throughput loss.

Note that in the WipDB’s design, we do not assume an advance knowledge on num-
ber of buckets to be used and how the buckets should cover the key space (the store can
be initialized with only one bucket). We only assume a long-term relatively stable key
distribution to prevent an extreme scenario that may lead to excessively large number of
buckets. In the scenario, some buckets receive many KV items and are filled. They are then
split into new near-empty ones. The new buckets would receive few KV items afterwards.
The consequence is that a very large number of buckets/MemTables leads to serious cache
misses and compromised system’s performance. However, from the experiment results we
understand that the assumption on the key distribution does not have to be strong. The
system’s performance is highly tolerant to the change of the distribution and bucket count
increase.

2.4.3 Read Performance
To evaluate read performance, we first build a store of 1 billion KV items (about

100GB). We then use eight threads to read items until another thread finishes sending 300
million write requests at a rate up to 150 Kops/s (by inserting time delay between requests).
The read and write throughput is shown in Figure 2.8 (Note that the read Y axis is on
the right of the graphs). In the meantime, to evaluate the impact of WipDb’s read-aware
compaction (RC) design, we include a version of WipDB that disable RC, marked ‘WipDB-
DRC’.

24

25
50
75

Read

25
50
75

25
50
75

25
50
75

25
50
75

200

400

Read

200

400

200

400

200

400

200

400

Th
ro

ug
hp

ut
 (K

op
s/

s)

50
100
150

WipDB-DRC
Write

50
100
150

WipDB

50
100
150

PebblesDB

50
100
150

RocksDB

500 1000 1500 2000 2500 3000 3500 4000

50
100
150

(a) Uniform

LevelDB

seconds

50
100
150

WipDB-DRC
Write

50
100
150

WipDB

50
100
150

PebblesDB

50
100
150

RocksDB

500 1000 1500 2000 2500 3000 3500 4000

50
100
150

(b) Exponential

LevelDB

seconds

Figure 2.8: Throughput with mixed read/write requests. One thread sends 300 million
random (uniform) write requests at the rate of 150 Kops/s(if possible). Eight threads send
read requests until all the writes finish. WipDB that Disable Read-aware Compaction is
marked as ‘WipDB-DRC’.

In the experiment where read requests have no locality (uniform), as shown in Fig-
ure 2.8(a), read throughput of all the four stores become lower after the write requests
arrive. However, only WipDB sees its read throughput recovered during the writes, while
others’ read throughput keep dropping and then stay at its low level. This is mainly due to
WipDB’s consistently lower WA values. WipDB-DRC’s read throughput shows slight dif-
ference with WipDB. As there exists weak access locality, RC makes a minor contribution
to improving performance. LevelDB uses only one thread for compactions and aggressively
compacts SSTables to the last two levels. Accordingly its write throughput is intensively
fluctuated.

We then repeat the experiment with exponential key distribution for the read re-
quests. The results are shown in Figure 2.8(b). With a very strong access locality the read
throughput is multiple times higher than that with the uniform key distribution. When the
write requests arrive, all stores, except WipDB, observe much lower read throughput. Only
WipDB roughly maintains its read throughput with some fluctuations. During the time pe-

25

riod, WipDB’s read throughput often more than doubles that of other stores. As shown,
WipDB-DRC’s read throughput is 30% lower than WipDB. This is apparently the con-
sequence of WipDB’s read-aware compaction scheduling design that leaves much of the
compaction in the key range with light reads off the read requests’ critical path. WipDB
identifies read-intensive buckets and applies more aggressive compaction with priority on
them. Therefore, the buckets that serve most read requests can be compacted faster and
have fewer sublevels for fast read. Therefore, among all the stores WipDB has the lowest
read latency, as shown in Table 2.1.

Table 2.1: Read Latency for 99 Percentile

Store Uniform Exponential
WipDB_DRC 439 us 247 us

WipDB 365 us 190 us
PebblesDB 1698 us 324 us
RocksDB 765 us 293 us
LevelDB 526 us 249 us

2.4.4 Impact of WAL on Restart Time
A WipDB store has hundreds of or even more MemTables. New KV items from

different MemTables are written to a common log. This will lead to a log file much larger
than those for stores using only one MemTable. When the store unexpectedly crashes and
requires a re-start, it may take a longer time period to read the log for a restart. Figure 2.9
shows the log size and the restart time when a store is built with write requests of different
key distributions at a size in terms of number of buckets. Initially, the log and the restart
time grow linearly with the number of buckets. When the WipDB store reaches around
400 buckets, the log size and the restart time stay stable at around 1.5GB and 12 seconds,
respectively.

2.4.5 Results of the YCSB Benchmarks
The Yahoo! Cloud Serving Benchmark (YCSB) [16] is a popular benchmark used

to evaluate performance of NoSQL databases. We modify db_bench to support YCSB
benchmarks and run eight threads and send 8 million requests for each workload. All
the stores are pre-loaded with 1 billion (around 100GB) KV items. The results of the
benchmarks are shown in Figure 2.10.

26

50 550 1050 1550
0

5

10

15

20
Uniform

50 550 1050 1550

Exponential

50 550 1050 1550

Zipfian

0.0

0.5

1.0

1.5

Number of Buckets

R
es

ta
rt

 T
im

e
(s

ec
) L

og Size (G
B

)

Figure 2.9: Restart time (curves) and log size (bars).

Load A B C D E F0
1
2
3
4
5
6
7

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

13
4.

1
ko

ps
/s

10
6.

0

60
.2

61
.5

60
.2

32
.2

53
.6

WiPDB LevelDB PebDB RocksDB

Figure 2.10: Throughput of YCSB benchmarks

For the all-write workload (“Load”) that pre-loads 1 billion items into the store, as
expected WipDB has a much higher throughput than other stores. The other workloads
consist of only or mostly read requests. WipDB is proposed to mainly optimize write op-
erations so as to improve performance of writes and that of reads concurrent with writes.
When writes accounts for only a fraction of total I/O load in the workload, WipDB is not
expected to make a substantial difference. As shown, Workloads B and C have a 95/5
reads/write mix and a 100% read, respectively. WipDB’s read throughput is comparable
to others’ performance. It’s a little lower than that of RocksDB. Note that RocksDB is a
production-level system that has been carefully engineered with numerous optimizations.
WipDB is an experimental prototype with only limited optimization efforts. Therefore, this
small performance gap is not a surprise. Though Workload A has a 50/50 reads/write mix,
its 50% read requests contribute over 90% of the execution time (as each read usually needs

27

26038

19849

446

0

982

588

0

31

1821

1

128

1704

WipDB RocksDBPebblesDB LevelDB

Figure 2.11: File size histogram. The number above each figure is the number of files within
the size range.

Table 2.2: Latency for 99 Percentile

Store A B C D E F
WipDB 349 344 343 323 1133 351

LevelDB 253 342 328 341 688 364
PebblesDB 443 534 543 603 3008 671
RocksDB 237 241 241 241 638 248

to read an entire data block). Therefore, the performance gap still exists. Nevertheless, for
almost all the workloads, WipDB outperforms LevelDB and PebblesDB. Workload E con-
sists of short range queries that require searching a store’s every (sub)level. WipDB has
more sublevels than levels of LevelDB and RocksDB, and thus has a higher read amplifi-
cation. The read latency (us) is shown in Table 2.2. WipDB’s latency is comparable to that
of LevelDB, expect for workloads A and E. PebblesDB has the highest latency because the
randomly chosen guards cause file fragmentation. As shown in Figure 2.11, more than half
of its file are smaller than 1 MB. Meanwhile, PebblesDB has over 20× files than the other
store, causing more file-system overhead.

2.5 Related Work
LSM-tree has become the most popular data structure for the storage layer of NoSQL

databases due to its optimized write performance compared to other structures such as B+-
tree. LSM-tree achieves this by avoiding expensive in-place writes and moving the internal

28

data reorganization to the background. However, write amplification in LSM-tree-based
systems can still easily go over 10×, which leaves a wide gap between the user-perceived
performance and that offered by the low-level storage devices, the SSDs. Because of this,
improving write efficiency in LSM-tree-based KV stores has become a daunting task for
persistent KV stores. This section discusses representative works on amelioration of the
high WA.

2.5.1 Optimizations for efficient compaction.
Real-world KV workloads often demonstrate skewed patterns [4], which have been

leveraged by researchers to apply specialized optimizations. For example, bLSM [67] uses
a merge scheduler that aims to minimize write stalls by coordinating compaction operations
across multiple levels. Thonangi et al. [69] introduces ChooseBest, a compaction policy
that selects an SSTable at Lk with the fewest overlapping SSTables at Lk+1 to minimize the
merge cost. Skip tree [79] allows KV items to be written to a deeper level without going
through the level-by-level merges. VT-tree [68] reduces disk writes by reusing existing
data in the old tables. TRIAD [5] takes advantage of the skewed workload where hot keys
are likely to be short-lived. It identifies the hot keys and keeps them in the MemTable and
the WAL instead of moving them to the Level-0 SSTables. In this way, the write traffic to
the top levels can be effectively reduced. The above optimization are orthogonal to WipDB
and may help to further improve the efficiency of WipDB.

2.5.2 The tiering merge scheme.
In LevelDB [30] and RocksDB [26], compaction operation needs to rewrite a sig-

nificant amount of data at the deeper level (Lk+1) but moves only 1/N of that amount of
data from Lk. The tiering merge scheme was proposed to eliminate the significant rewrites.
By merging multiple SSTables from Levelk and writing to Levelk+1 without rewriting any
Levelk+1 data, write amplification can be effectively reduced to only Lmax, the number of
levels in the store. wB-Tree [14] uses a B+-tree-like structure to organize the tables to
maintain a small Lmax. Similarly, LSM-trie [73] uses a prefix-tree (trie) structure for the
same purpose. However, since both wB-tree and LSM-trie depend on hashing to main-
tain balanced tree structures, they gives up the ability of performing range operations.
sDB [62] employs a probabilistic method to partition the keys at each level to enable
tiering with the range-query capability retained. SifrDB [51] also employs tiering. In
LSM-Bush[21] and Dostoevsky [20], a lazy-leveling scheme is introduced to use tiering
for levels from 1 to Lmax − 1 and use leveling at Level Lmax, the last level. In this way,
the WA is O(Lmax + T), where T is the size ratio between adjacent levels. Different from

29

the above schemes, WipDB employs a partitioning approach to limit its bucket’s size and
accordingly the number of levels. As a result, WipDB achieves a lower write amplifi-
cation (O(Lmax +

N
N−1

)) (N is the split-ratio) without sacrificing read efficiency. Both of
L-Store [65] and WipDB aim to improve write performance. Additionally, L-store converts
the data from a write-optimized organization to a read-friendly one to serve read-intensive
OLAP workloads. This is similar to regular LSM-based stores that finally compact all data
into the last level if writes do not keep coming. WipDB is designed to opportunistically
improve read performance even with write requests by prioritizing hot buckets’ compaction
for fast read.

2.5.3 Key-value separation.
It is observed that rewriting the values in KV items can contribute to a major amount

of I/O in the compaction for relatively large values, compared to the size of metadata and
key which is usually tens of bytes. WiscKey [50] proposed a simple yet effective method,
KV separation, to write values into a log and keep them from the compaction. However,
the value log requires regular GC operations to reclaim free space. The log GC can be
particularly expensive under skew real-world workloads. Significant amount of cold data
needs to be consistently removed, which drives up the store-wise write-amplification to
up to 20× and offsets the benefit of KV separation [10]. To reduce this GC overhead,
HashKV [10] replaces the log with a sophisticated mechanism that divides the log into
partitions and separates the cold items from the hot data, which again shifts the overhead
to read by adding another layer of indirection. WipDB solves the high write-amplification
issue by directly partition the key space without creating any indirection.

2.5.4 In-memory key-value stores
. For applications demanding high concurrency and low latency, in-memory key-

value stores are always preferred. HotRing[13] is proposed as a hotspot-aware and lock-
free design to speed up multi-core performance for highly skewed workloads. Redis and
Aerospike [19] provide a hybrid solution which provides memory-access speed as well as
on-disk data persistency when specified conditions are met. In contrast, WipDB is still a
on-disk KV store providing always data persistency and expecting on-disk data access for
most read requests.

30

2.6 Summary
We introduce WipDB, a key-value store designed to manage small key-value items

in a storage system of large capacity. By introducing approximate sorting and the write-
in-place LSM-tree scheme, WipDB minimizes write amplification for LSM-tree-based KV
stores. Meanwhile, the read-aware scheduling of compaction moves most compaction off
the critical path of read service. Our results show that WipDB can significantly improve for
both write and mixed read/write workloads. Source code of our WipDB implementation is
available at https://gitlab.com/sjiang-lab/wipdb .

31

CHAPTER 3

TURBOHASH: A HASH TABLE FOR KEY-VALUE STORE ON PER-
SISTENT MEMORY

Major efforts on the design of a persistent hash table on a non-volatile byte-addressable
memory are on efficient support of crash consistency with fence/flush (first fence and then
flush operations) primitives and on table rehashing. When a data entry in a hash bucket
cannot be updated with one atomic write, out-of-place update, instead of in-place update,
is required to avoid data corruption after a failure. This often causes extra fences/flushes.
Meanwhile, when open addressing techniques, such as linear probing, are adopted for high
load factor, the scope of search for a key can be large. Excessive use of fence/flush and
extended key search paths are two major sources of performance degradation with hash
tables in a persistent memory.

To address the issues, we design a persistent hash table, named TurboHash, for build-
ing high-performance key-value store. TurboHash has a number of much desired features
all in one design. (1) It supports out-of-place update with a cost equivalent to that for
an in-place write and lock-free read. (2) Long-distance linear probing is minimized (only
when necessary). (3) It only conducts shard resizing for expansion and avoids expensive
directory-level rehashing; And (4) it exploits hardware features for high I/O and computa-
tion efficiency, including Intel’s Optane DC’s performance characteristics and Intel AVX
instructions. In particular, all of the features are enabled with the consideration of a criti-
cal performance characteristic of the emergent Intel Optane DC persistent memory, which
is its internal 256-byte block access. We have implemented TurboHash on the memory
and conducted extensive evaluations. Experiment results show that TurboHash improves
state-of-the-arts by 2×-8× in terms of throughput and latency.

3.1 Introduction
A hash table is a fundamental data structure for efficient organization of key-value

(KV) data in the memory. It allows data to be quickly located with few intermediate index
search. This is especially important for organizing a very large number of small KV items,
where often it may take only one cache-line memory access to retrieve a data item. Had
many non-sequential memory accesses been required on an index structure, such as B+

32

tree or skip list, the actual cost of reading a small piece of data would be amplified by
multiple times [72, 53]. Accordingly, hash tables have been employed to manage key-
value cache in the DRAM, such as MemCached [55, 28] and Redis. With emergence of
byte-addressable non-volatile memory, efforts have been made to design persistent hash
tables on the memory [84, 52, 15, 44, 83, 48, 86, 43, 71, 85, 32], as well as using persistent
memory to build KV stores [76, 24, 38, 37, 78, 81].

One of the major issues and challenges on designing a high-performance persistent
hash table is on its efficient support of crash consistency and atomic update. With crash
consistency, a data structure can stay in a consistent state, or be restored to a consistent
state after an unexpected crash. To have the consistency, one has to enforce a particular
order on a set of actions. A simple example is that a hash table’s bucket has to be allocated
and initialized before its address can be assigned to a pointer in the table’s directory. To
enforce the order, fence/flush primitives, which are expensive, have to be used between the
operations. More extensive use of fence/flush is required for updating a directory during a
rehashing operation.

For data integrity, updating of a piece of data, such as a key or a value, must be
atomic. After a recovery from an unexpected crash, either a version of the data before
the update or the one after the update must be recovered. This means that the data cannot
be modified in place if it is larger than an atomic write unit (8 bytes). Otherwise, it may
destroy the old version without making the new version established at the time of a crash.
Therefore, one has to use out-of-place write. However, this raises two potential perfor-
mance issues for a modify/delete request as it needs to write at different places (creation of
a new version and invalidation of the old one). First, currently available persistent memory,
i.e., Intel Optane DC [35], has a 256-byte access unit (block) [77]. Two writes at two differ-
ent blocks are significantly more expensive than one block write. Second, ideally the new
version can be made visible and the old version is invalidated with one 8-byte atomic write.
Otherwise, a write order has to be established between the two writes using a flush/fence.

Another major issue in the design of a hash table is how to resolve collision with
both time and space efficiency. Upon occurrence of a hash collision in a full bucket, there
are three approaches to resolve it. Approach A is to double the size of the hash table
via rehashing to make each bucket be only about half occupied. Approach B is to apply
Approach A only in a segment of buckets where the collision occurs to avoid global key
reshuffling, such as extendible hashing [27]. And Approach C is to look for an idle slot
in alternative buckets where the colliding key can be placed, such as cuckoo hashing [59].
Apparently, these approaches (from A to C) become increasingly less disruptive to existing
hash structure and more time-efficient. More extensive structural changes will lead to more
space allocations, pointer assignments, and key relocation. Using a less disruptive approach

33

can greatly help reduce impact of collision on the performance, especially on persistent
memory where additional costs have to be paid for crash consistency.

Approach C is usually known as open addressing. Example techniques include lin-
ear probing, quadratic probing, cuckoo hashing, Horton Tables [8], and Hopscotch hash-
ing [31]. However, not all of the schemes play well with the persistent memory, such
as Optane DC. For example, cuckoo hashing and its variant Horton Tables need to con-
stantly relocate keys along a path to reach an idle slot. It has to frequently use expensive
fence/flush. Schemes such as quadratic probing and cuckoo hashing often write new keys
to non-consecutive buckets. For a read request to locate the key on its probing path consist-
ing of non-consecutive buckets, its access speed is much lower than linear probing where
the probing path represents a contiguous memory space. Optane DC memory has a 256B
access unit and is capable of sequential prefetching, with a sequential access speed 2-3X
higher than that of random access [77].

While a linear probing can be efficient, there are some critical issues to be addressed.
First, the adjacent buckets on a probing path must be physically contiguous for search
efficiency; Second, the probing scope must be sufficiently large for a high load factor and
less frequent rehashing. Load factor is the size ratio of the space used for holding actual
data and allocated space. It quantifies the space efficiency of a hash table. Without a
carefully designed key placement policy, a search, especially a negative search (whose
search key is not in the hash table), may have to cover most or all buckets in a probing
scope, compromising read performance.

Our Solution In this paper, we propose a persistent hash table design, named Tur-
boHash, for a high-performance key-value store on the persistent byte-addressable mem-
ory (Intel Optane DC), or Pmem in short, by addressing all of the aforementioned issues.
TurboHash first hashes keys into multiple shards. Each shard is a small hash table, which
is set at a limited capacity (e.g., 1MB for 53,000 16-byte KV items) to cap the worst-case
time, or tail latency, of requests serviced within a shard. In the meantime, we lavishly
pre-allocate shards so that a TurboHash store’s capacity limit can be way higher than the
size of the physical Pmem a machine can can actually have. As each shard consumes only
8-byte metadata, this over-provisioning is well affordable. As an example, for a TurboHash
with one million shards to provide an 8TB capacity limit (assuming a 8MB shard capacity),
the space cost of representing shards is only 8MB. In return, this shard over-provisioning
strategy avoids expensive resizing (or rehashing) over the entire hash table that seriously
compromise tail latency. Instead, there are only localized and small-scale resizing within
individual shards to minimize tail latency.

TurboHash achieves much desired features, such as lock-free reads and short prob-
ing paths, which are often objectives of other hash-table optimization efforts. A unique

34

contribution of TurboHash is its novel design that enables these features by accommodat-
ing Intel Optane Pmem’s performance characteristics. The byte-addressable Pmem is more
like a block device in terms of its performance behavior [81]. The Pmem has a 256-byte
block access unit. Any small random access, such as updating of a few bytes of metadata,
in the table may result in over 10X read/write amplification. Prior optimization techniques
assuming an in-DRAM hash table may become ineffective for the Pmem. In one example,
for lock-free reads, existing works, such as CLevel [15], carry out updating of a KV item
usually by creating a new version and atomically switching the pointer pointing to the item
from its old version to the new version. While the pointer and new version of the (small)
item are often in two different 256B blocks, there would be two block writes, which is not
efficient. In another example, to avoid holes due to deletions in a linear probing path, it
has been suggested to move the item at the path tail to fill a hole [40]. However, this may
involve two writes at different Pmem blocks: one is to invalidate the tail item, and the other
is to write it into the hole.

To this end, TurboHash makes a number of innovative design choices to confine mul-
tiple writes/reads of data and metadata within one 256B Pmem block to unlock the Pmem’s
full performance potential. In particular, TurboHash’s buckets are of 256 bytes each and
are physically contiguous. It proposes to use near-place update (in the same bucket where
the old version stays), instead of out-of-place, and one atomic write to respectively inval-
idate/validate old/new versions of a KV item within the a 256B bucket to enable efficient
in-Pmem lock-free reads.

In summary, we make a number of contributions:
• Recognizing that a large probing scope is important for a high load factor and in-

frequent rehashings, we experimentally reveal that actual probing distances can be
much shorter than the probing scope. We then propose a strategy that enables only
necessary probing distances, especially for negative search.

• We tailor TurboHash’s design for a large-scale KV store on persistent memory with
its sharded structure and physically contiguous bucket layout for minimal use of
fence/flush and efficient memory access.

• TurboHash introduces lock-free reads and efficient near-place updates.
• This work represents a first effort of extensively exploiting Intel Optane DC Pmem’s

block-access-like performance characteristic in its design to customize hash-table
optimization techniques to the first widely-deployed Pmem.

• We evaluate TurboHash on Intel Optane DC memory in comparison with recently
proposed persistent hash table designs, such as CCEH, dash, and clevel hashing.
Experiment results show that TurboHash has 2× to 8× improvements in terms of
throughput and latency.

35

3.2 Motivations
In this section we present experiment measurements on characteristics of linear-

probing-based hash tables and Intel Optane DC Pmem to serve as rationale of TurboHash’s
design.

3.2.1 Probing Scope and Distance.
In a hash table using open addressing, the number of alternative buckets where a new

key under collision can be placed is highly correlated to the table’s load factor. The more
alternative buckets, the more leeway a key has for its placement at locations other than its
home bucket (the bucket initially given by the hash function). A key’s probing scope refers
to the set of buckets this probe is likely to reach (starting from its home bucket). Increasing
the scope is important for high space efficiency. We assume a new key is placed in the
first bucket with idle slot(s) on its linear search path. A key’s search path grows within its
probing scope when more keys are hashed to its home bucket. The path ends at the bucket
where the newest key to the home bucket is inserted. In theory, a key probing can terminate
at the last bucket on the path. The probing distance is the actual number of buckets a probe
has to traverse on the path to either find the search key (positive search) or declare the key
doesn’t exist in the table (negative search). Therefore, the distance is capped by the path’s
length and can be shorter than the probing scope’s size. Still, increasing the probing scope
allows for longer probing distances, which may make a key search more expensive. We
study the relationship between probing scope, load factor, and probing distance. To this
end, we set up a linear-probing-based hash table of 1024 buckets. Each bucket has 16 16B-
slots. The table is rehashed by doubling its size whenever a collision cannot be resolved
within a probing scope. We keep inserting keys to an initially empty hash table with a
given probing scope size. Figure 3.1a shows load factors right before every rehashing.
As shown, the scope size has a significant impact on the load factor. Small scopes, such
as 2 or 4 buckets, can lead to too-low load factors. A search path’s length represents the
necessary probing distance of a negative search for a key, as the key doesn’t exist beyond
the path’s end. Figure 3.1b shows average search distance corresponding to load factors in
Figure 3.1a at different probing scope sizes. As shown, the necessary search distance can
be much shorter than the corresponding probing scope. For example, at the 6th rehashing
the load factor is 0.8 with the 16-bucket scope. But the average probing distance is only
1.7 buckets. This implies that as long as the search path is recognized, the actual probing
distance can be short for high access performance, and a large probing scope can be used
for high load factor.

36

2 4 6 8 10 12
Number of Rehash

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo
ad

 F
ac

to
r

(a)

2 4 6 8 10 12
Number of Rehash

1

2

3

4

5

6

7

8

Av
er

ag
e

Pr
ob

e
D

is
ta

nc
e 64

32
16
8
4
2

(b)

Figure 3.1: Load factors and average probing distances with different probing scope (in
number of buckets) during insertion of 100 million KV items.

01234
Bandwidth (GB/s)

1

2

4

8

16

32

rnd_bandwidth
seq_bandwidth

0 1000 2000 3000
Latency (ns)

rnd_read_latency
seq_read_latency

(a) Pmem Read

01234
Bandwidth (GB/s)

1

2

4

8

16

32

rnd_bandwidth
seq_bandwidth

0 2000 4000 6000
Latency (ns)

rnd_write_latency
seq_write_latency

(b) Pmem Write

Figure 3.2: Random and sequential performance of the Pmem. The measurements of per-
formance (throughput and latency) are collected via the PCM (Processor Counter Monitor)
tool. For writes, each one is followed with a clwb to flush the data, and each group of writes
is followed with mfence.

3.2.2 Sequential and Random Accesses.
To illustrate the performance gap between sequential and random accesses on a per-

sistent memory (Intel Optane DC), we experimentally simulate access patterns where each
probing is either on random memory locations or sequential locations. Each probing con-
sists of a group of 8-byte accesses. These accesses are on different 64-byte memory spaces
(simulating buckets), which are either randomly or sequentially placed. A probing always
starts at a random location. The access group size is set to 1, 2, 4, 8, 16, or 32 (simulat-

37

ing probing distance). Figures 3.2a and 3.2b show the read/write throughput and average
latency for each access group. As shown, for a reasonably large group, such as those with
4 or more accesses, sequential performance is significantly higher than that of its random
counterpart in terms of either throughput or latency. The gap becomes even larger with
a larger group. With a group of 16 accesses, the performance gaps are about 4-7X. The
reason is that Intel Optane DC is accessed in the 256B unit. With a random access of 8
bytes, one 256B block is actually accessed at the persistent memory’s media [77], caus-
ing a significant read or write amplification. A sequential access can also benefit from the
prefetching mechanism available in the memory.

3.3 The Design of TurboHash
There are a number of challenges we must address to achieve TurboHash’s design

objectives, including high load factor, sequential and short search path, support of out-
of-place updates, crash consistency, lock-free reads, and minimal use of fence/flush. In
the design we will address these challenges: (1) how to limit a search within necessary
distance, rather than the entire probing scope, especially for non-existing keys? (2) how to
switch from old version to new version of an KV item in one atomic primitive? and (3)
how to leverage hardware features such as Intel Optane’s 256B access block and SIMD
instructions for higher I/O and computation efficiency?

3.3.1 The Architecture
As we have stated, the entire key space is partitioned into many shards. Keys in

each shard are organized in a hash table. Each of the hash tables can have thousands of
256B buckets. It supports efficient resizing, high load factor, and high-performance access.
By using a highly randomized hash function, such as MurmurHash [2] or MD5, keys are
uniformly hashed into the shards.

As shown in Figure 3.3, each shard has a descriptor. All descriptors form a shard
directory. The directory stays in the persistent memory (Pmem) for its persistency, and is
mirrored in the DRAM for access efficiency. Each shard descriptor records bucket count in
the shard and a pointer to the shard. There are differences between shard descriptors in the
Pmem and in the DRAM. In the Pmem, it includes two sets of bucket count and pointer to
allow out-of-place updating of the count/pointer after a shard resizing. Additionally, it has
a 1-byte version number indicating which set is currently in use. After writing a new set
of count/pointer, an atomic update of the version number makes it effective. Afterwards,

38

WriteLock Bucket Count *shard_ptr

!"#$%&'

()$*+,-
.,/-01

.,/-02
340$1

340$2

!"#$%&-
atomic commit
by changing
the versionrecover

5#6+% 7)6)0) !)89&:,9
1;&<&1= 1>;&<&1=
?#@* !6,0*

2; 2; =; 1';

A

1 Byte

1B
1B
8B
1B
8B

1 Byte 6 Bytes

Shard
Directory

Bucket

256B
256B
256B

Bucket 0
Bucket 1
Bucket 2

...

ShardMeta

DRAM

PMEM

...

Access(X)

Search X B+-%&C/.D)0

0#@EF
G G GA A A

A A A

A A A

2 2

H H H
0#@&II&J !6,0&H

Slots 2, 3 and 8 have
same tags with tag_x

remove
Slot 2

remove
Slot 3

Hash(X)

valid
filter

tag
compare

delete
filter

Figure 3.3: TurboHash’s Architecture. In TurboHash, each bucket has 14 slots. Among
them, 13 slots are available for storing KV items. TurboHash supports any size of KV
items. When key or value is larger than 8 bytes, the slot in a bucket stores an 8-byte hashed
key and an 8-byte pointer to the KV item, which is stored at a separate space.

count/pointer in the corresponding descriptor in the DRAM are updated. And the old shard
will be recycled using the epoch-based reclamation [29].

There is a write lock (WriteLock) in the in-DRAM descriptor that establishes mutual
exclusion among service of write requests (i.e., insert, update, or delete) in a shard. Because
there can be many (a few thousands or more) shards in the hash table, the impact of the lock
on concurrency is limited. In particular, this lock is only applied on write requests, which
are more expensive as they likely involve writing KV items, updating metadata, and even
shard rehashing. In contrast, TurboHash makes service of read requests fully lock-free.

3.3.2 Establishing the Search Path
A shard is allocated as a whole with all of its buckets in a contiguous space. Each

bucket has a fixed number of slots. Each slot holds one KV item. For a linear probing
scheme, in today’s practice a new KV item can be placed into any empty slot within the
probing scope. Slots can become available anywhere in the scope whenever their resident
KV items are deleted. New KV items may be placed in any of these empty and other
available slots in the scope. While such a placement without restriction is flexible and space

39

efficient, it often makes the search distance much longer. In the search for a non-existing
key, which is the operation carried out before every new key insertion, the distance will
always be the scope size. A search has to proceed until the search key is found or it reaches
the boundary of the probing scope. The buckets do not contain information to establish a
search path which can be (much) shorter than the scope size so that only necessary buckets
are searched. As we have indicated, if we can keep new KV items in buckets as close as
possible to their home bucket and establish a search path covering the buckets, a search
does not have to walk beyond the path. In such a case, when the scope is set to a large size
for high load factor, the cost of key search does not have to increase proportionally.

The solution appears at first sight to be a straightforward one, which is just to place
a new KV item in the available slot on its linear search path and remember the path’s last
bucket. This is a valid idea. However, the difficult question is how to remember a path’s
last bucket. An intuitive approach would be to explicitly record this path-end information
and update it whenever the path grows. But this approach leads to high time overhead and
likely high space overhead. The possible places where the path-end can be recorded may be
the home bucket, the currently end bucket on the path, or a separate data structure. In any
of the places its updating overhead can be too high. When a new item is written into a new
bucket and extends the path, the path-end must be accordingly updated (an ancillary write).
These two writes are likely in two different Optane 256B access blocks, which are actually
two block writes. Furthermore, the ancillary write must be completed before the KV write
to guarantee following reads will reach the new item and the new item can be reached after
a system crash. To this end, a fence/flush is required. If the path-end is recorded in the
end bucket, two ancillary writes are required when the path grows (one in the new end
bucket for indicating the new path-end and one in the old end bucket for invalidating it).
Furthermore, the space overhead can be too high, as a bucket can simultaneously be the
end bucket of multiple paths (up to the probing scope size). It would be too expensive
for each bucket to pre-allocate such a large space for these possible paths. To address the
issue, TurboHash doesn’t record and update this path-end information at all. Its approach
is motivated by three observations: (1) in most of the time a hash table has abundant empty
bucket slots until a rehashing is to be triggered soon; (2) once a rehashing is carried out,
many empty bucket slots are spread out in the table; and (3) even when a rehashing is near,
the load factor is still less than 80-90% (see Figure 3.1a). Therefore, TurboHash uses a
non-fully occupied bucket (with empty slots) to indicate a path end. To this end, it gives
a slot whose data has been deleted a flag indicating that this slot is available for receiving
a new KV item but isn’t considered an empty slot. A path grows only when there are not
empty slots in its current end bucket (and certainly not in any other buckets on the path).
In this way, if a bucket with empty slot(s) are encountered during a search on a path, it is

40

guaranteed that the search key will not be found beyond this bucket and a continuous search
is not necessary. Admittedly, this bucket may not be an accurate end bucket of the path (as
it may not contain key(s) hashed to the path’s home bucket). However, this is good enough
to significantly reduce number of buckets involved in a search, as will be demonstrated in
Section 3.4.

Another design issue is on the update operation. As we have indicated, for data crash
consistency, an out-of-place write, instead of in-place overwrite, is required for an update
operation. The challenges are similar to that with updating of the path-end information.
First, there are two writes: one for writing the new KV item and an ancillary one for
invalidating its old version. These two writes would be random accesses if without a careful
arrangement. Second, the operation that makes the new version visible and the old version
invisible has to be an atomic one for correctness if a lock-free read is allowed for high
throughput. TurboHash’s solution is to introduce near-place update, which limits the out-
of-place write within the same bucket where the old-version KV item resides. As a bucket
is of 256B and the metadata on (in)validating slots in a bucket are within a 8B atomic write
unit, all the writes are in one the Optane access block with high efficiency.

3.3.3 A Bucket’s Data Structure
As we have mentioned, for access efficiency each bucket is set as 256B long, the

access unit of the Intel Optane Persistent memory. As shown in Figure 3.3, within a bucket
there are 14 slots, each for storing a KV item with a 8B key and a 8B value. The 8B value
can be a pointer to another space where the real value is stored should the value is larger
than 8B. Besides the data, there are three types of metadata in a bucket. One is about slot
status, including the valid bitmap and the delete bitmap. A bit in the 2-byte valid bitmap
indicates whether the key in the corresponding slot is valid. A bit in the 2-byte delete
bitmap indicates whether the KV item in the corresponding slot has been deleted. A slot’s
valid becomes 1 when a new KV item is written into it. When this item is deleted, its delete
bit becomes 1. However, its valid bit remains as 1 as the key in the slot is still meaningful.
A slot holding a deleted key isn’t considered as an empty slot for the purpose of detecting
a path end. Only a slot whose valid bit is 0 is defined as an empty one. However, the slot
holding the deleted item is available to receive a new KV item by overwriting the deleted
one. An insert operation always writes a new KV item in the first slot with a deleted item (if
available) on its search path. After the overwriting, this slot’s valid and delete bits become
1 and 0.

41

The second type of medadata is for concurrency control, including a 4-byte sequence
number. This number is incremented by one whenever a write operation (delete, insert, or
update) happens in the bucket. It facilitates lock-free reads.

The third type of metadata is for improving performance, including an array of tags.
A tag is a 1-byte summary of a key by hashing the key in the corresponding slot. By
grouping 14 summary keys in an array, TurboHash can use an SIMD instruction (“_mm_-
cmpeq_epi8_mask") for a quick preliminary search of all keys in a bucket.

As mentioned, TurboHash introduces the near-place update for high efficiency. To
this end, it reserves an empty slot in each bucket for out-of-place updating of a KV item in
the same bucket. That is, if a slot is the only (last) empty slot in a bucket, it doesn’t accept
a new KV item. This bucket is considered full for the purpose of detecting a path end.

3.3.4 Insert, Update, Delete, and Read
We describe the search operation before detailing how the four types of requests are

served.

3.3.4.1 The Search Operation

Search for a given key is the most frequently used operation in a hash table. It not
only is used to service a read request but also has to be employed before every insert/up-
date/delete operation is performed at a bucket. The difference between read and the write
requests is that the latter ones need to hold the write lock during the search. Like that in
any linear-probing hash table, a search begins at the home bucket determined by the search
key and the hash function, and continues on the sequential search path. At each bucket on
the path, it needs to compare the search key with each of keys in the bucket. To speed up
this process, TurboHash compares a 1-byte hashed value of the search key with each of the
14 tags in the bucket in parallel by using an Intel AVX SIMD instruction. Only the slots
whose tags are matched and their valid bits are set and delete bits are not set will have their
keys compared with the search key. If there is a match with the search key, the search key
is found. If there isn’t a match of the search key, the search will continue to the next bucket.
It will terminate at a bucket where a matched key is found or at the path-end bucket, which
is defined as the one with more than one slot whose valid bit is 0, or the one that has at least
two empty slots (one of them is reserved for near-place update). The search operation is
part of an insert/update/delete/read request service (see Algo. 1 and 4).

42

3.3.4.2 Insert

The thread servicing an insert request first acquires the write lock and proceeds with
the aforementioned search operation for an empty slot or a valid slot that contains the search
key within the search scope. Note that the empty slot does not include the one containing
a deleted key. The search remembers position of the first deleted key it encounters. If the
search arrives at a valid slot whose key matches the search key but has been deleted, this
is a negative search, and the new key is inserted in the slot. If the search reaches the path
end (a bucket with more than one empty slot with one of the them reserved for near-place
updating), this is also a negative search. If a deleted key has been recorded on the path,
the new key is inserted in its slot. Otherwise, it is inserted in one of the empty slots in
the path-end bucket. To facilitate lock-free read, the insert thread takes two steps for the
insert operation in a bucket. It first writes the key and value into the 16-byte slot’s data
segment as well as the corresponding tag (Algo. 2). It uses fence/flush to secure the data
on the Pmem before moving to the second step, in which it makes the new data visible to
reads. Specifically, it uses one 8-byte atomic write to set valid and delete bits to ’1’ and
’0’, respectively, and increments the sequence number by 1. Again it uses fence/flush to
conclude the insert and then releases the write lock. If the search reaches end of the search
scope and still cannot find an empty space or deleted space for an insertion, it performs
shard rehashing and then inserts the key in the enlarged shard before releasing the write
lock. If the search arrives at a valid slot holding the search key not yet deleted, this insert
is actually an update request.

3.3.4.3 Update

As mentioned, TurboHash’s update operation is a near-place update. Like the insert
operation, an update within a bucket also takes two steps. Holding the WriteLock, the
thread uses an empty slot in the bucket as the reserved slot to write the new KV item and
updates the corresponding tag followed with a fence/flush. It then uses one atomic write
to the slot’s valid bitmap to turn the old version invalid and this new version visible, and
increments the sequence number by one. With the atomicity, the valid bits for the old and
new version slots can only be ’10’ or ’01’ at any moment during the operation. Without
holding any lock, a read thread can see one and only one version at any moment. After this,
the WriteLock is released (see Algo.2).

43

3.3.4.4 Delete

After a delete service thread identifies the slot storing the same valid key not yet
deleted using the search operation with the WriteLock, it uses one atomic write to set the
slot’s delete bit and increments the sequence number by one. It then releases the lock. Note
that it does not reset the slot’s valid bit, and thus does not break any search paths. (see
Algo.3).

3.3.4.5 Read

A read thread does not need any lock. It uses the search operation to look for the key.
If it is not found within the probing scope, the read is completed declaring non-existence
of the key. Otherwise, if a valid and non-deleted key is found in a slot, we cannot simply
return the value in the slot. This is because without holding a lock the read value is likely
modified right before the read and is thus a wrong one.

Within the slot there are two phases of read. One is carried out by the search opera-
tion, including reading the tags, valid/delete bits, and the keys for comparison. If the first
phase finds the read key, the second phase is to read the corresponding value. These two
phases of read are not atomic and cannot prevent other write threads from interfering. To
eliminate a potential hazard, the read thread reads the sequence number before and after
reading the value. Fence is placed between the two reads to ensure the ordering. It then
compares the two numbers. If they are equal, the correct value has been read. Otherwise,
the value may have been modified and could be wrong. And the read service is retried (see
Algo. 1).

To explain why reading wrong values will not occur with the use of sequence number,
we examine the timeline of the relevant read/write events. For the read thread there are
four read events, which are R1 (read the tags), R2 (an atomic read of valid/delete bits
and sequence number) for all slots with valid/non-deleted bits and matched tags, R3 (read
the relevant keys and then value of the matched key), and finally R4 (read the sequence
number again). We consider a write request (delete, insert, or update) is completed at
its last atomic write to update bitmaps and increment the sequence number. If the two
sequence numbers are equal, there must not be any write requests completed between R2
and R4 because any such a completion will cause the sequence number to be incremented.
Furthermore, because service of write requests is serialized, there is at most one write
request between R2 and R4. Otherwise, there must be a completion of a write request.
Fortunately, if there is a write request between R2 and R4, it is guaranteed that it will not
modify the bitmaps/sequence-number, or the read key and its value in the bucket. First, if

44

the write request is an insert, it must have matched with a key different from the read key.
Otherwise, the valid/non-deleted status of the read key would keep it from inserting in the
bucket. Second, if it is a delete or an update, both do not change the read key and value.
Therefore, if the read thread confirms that the sequence number does not change, the read
value must be correct. In addition, we show that a read thread can always find its target
key and value if they are in the table. Obviously this is not an issue if the target key is not
involved in any write requests during the read service. The target key is not available for
the read if it is read after a delete or before an insert of the key. This is not an issue either.
If the key is the target of an update during the read (between the R2 and R4 read events),
the read thread can always read a value (assuming the key is not yet deleted). If the update
completes before R4, a retry will be performed to read the new value. Otherwise, it will
read the old value.

3.3.5 Shard Resizing & Failure Recovery
Shard resizing is performed by an insert thread when it cannot find an available slot

within the probing scope. Then the shard, which is up to a few MB, is sequentially read to
the DRAM, where an enlarged shard is built. The new shard is then sequentially written to
the Pmem. During the period of time, read requests can still be served on the old version of
the shard. When the new shard has been persistently written, the pointer to the shard in the
shard’s descriptor is updated (first in the Pmem descriptor then atomically updated in the
DRAM). After this, all requests will be served on the new version. When the read threads
on the the old shard complete their service, the space for the old version will be reclaimed
when no other threads access it [29].

Since TurboHash does not change its directory structure and always commits a new
shard with a 8-byte atomic update by modifying its version number in the Pmem and the
8-byte ShardMeta in the DRAM (shown in Figure 3.3), a system crash will not cause con-
sistency issue for its directory. And as all writes are only available after committing the
valid/delete bitmaps, partially updated key-value items are not visible to users. The only
effort for a failure recovery is to read the directory in the Pmem and rebuild the in-DRAM
directory.

3.4 Evaluation
In this section, we experimentally evaluate TurboHash by comparing it with several

state-of-the-art hash tables for persistent memory, including CCEH [52], Dash [48], P-
CLHT [44], and clevel hashing (CLEVEL) [15]. We implement TurboHash using persistent

45

allocator, Ralloc [9]. CCEH is a dynamic hash table for persistent memory. It supports
resizing through segment splitting and directory resizing. Dash is also a dynamic hash
table. It is similar to CCEH, but with several optimizations, including fingerprinting [58],
and version based search. P-CLHT is a linked-list based persistent hash table, based on
CLHT [18]. Each bucket of P-CLHT can store three key-value items. CLEVEL is an
upgraded version of level hashing [84] by enabling asynchronous resizing.

3.4.1 Experiment Setup

Table 3.1: Experimental Setup

Processor Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz
Core 20 per socket

L3 Cache 55 MiB
Pmem 6 * 128GB Intel Optane DC
Mode Interleaved App-Direct Mode

OS CentOS Linux 8
Compiler GNU 8.3.1, cmake 3.11.4

In our experiments, we use two different key-value sizes for comparison, 16 bytes
(8B key and 8B value) and 30 bytes (15B key and 15B value). In the case of 30-byte KV
items, real key and value are in a separately allocated space, and a 8B hashed key and a
8B pointer to the space are stored in the hash table.CCEH161 and DASH162 assume 16-
byte KV item (8B key and 8B value). CCEH30, CLEVEL30, and CLHT30 use 30-byte
key-value items (15B key and 15B value). They are implemented using libpmemobj by
authors of the clevel hashing paper (git:#13ad3f2) 3. The TurboHash with 16B and
30B KV items are named TURBO16 and TURBO30, respectively. All the threads in an
experiment are pinned to one socket using numactl. All the hash tables are initialized
with a capacity of 12 million KV items. In the experiments TurboHash is initialized with
64K shards (each has 16 buckets to have a total of 12 million capacity at the beginning), and
uses a 16-bucket probing scope. CCEH16 adopts a 8-bucket scope (We use the copy-on-
write version as it provides better read performance). CCEH30 uses a 4-bucket scope, as
suggested in their code. CLEVEL30’s scope is between 4-8, depending on its level count.
CLHT30 conducts probing within a hash bucket, and buckets are organized on a linked list

1Source code of CCEH16: https://github.com/DICL/CCEH
2Source code of DASH16: https://github.com/baotonglu/dash
3https://github.com/chenzhangyu/Clevel-Hashing

46

https://github.com/DICL/CCEH
https://github.com/baotonglu/dash
https://github.com/chenzhangyu/Clevel-Hashing

0 10 20 30 40
Number of Threads

2
4
6
8
10

Th
ro

ug
hp

ut
 (M

op
s/

s)
TURBO16
CCEH16
DASH16

TURBO30
CCEH30

CLEVEL30
CLHT30

(a) Insert

0 10 20 30 40
Number of Threads

20
40
60
80
100

Th
ro

ug
hp

ut
 (M

op
s/

s)

TURBO16
CCEH16
DASH16

TURBO30
CCEH30

CLEVEL30
CLHT30

(b) positive read

0 10 20 30 40
Number of Threads

20
40
60
80
100
120

Th
ro

ug
hp

ut
 (M

op
s/

s)

TURBO16
CCEH16
DASH16

TURBO30
CCEH30

CLEVEL30
CLHT30

(c) negative read

0 10 20 30 40
Number of Threads

5
10
15
20
25

Th
ro

ug
hp

ut
 (M

op
s/

s)

TURBO16
CCEH16
DASH16

TURBO30
CCEH30

CLEVEL30
CLHT30

(d) Update

0 10 20 30 40
Number of Threads

5
10
15
20
25
30

Th
ro

ug
hp

ut
 (M

op
s/

s)

TURBO16
DASH16

TURBO30
CLEVEL30

CLHT30

(e) Delete

0 10 20 30 40
Number of Threads

200

400

600

800

Pm
em

 I/
O

(G
B)

TURBO16
CCEH16
DASH16

TURBO30
CCEH30

CLEVEL30
CLHT30

(f) Insert

0 10 20 30 40
Number of Threads

200

400

Pm
em

 I/
O

(G
B)

TURBO16
CCEH16
DASH16

TURBO30
CCEH30

CLEVEL30
CLHT30

(g) positive read

0 10 20 30 40
Number of Threads

500

1000

1500

Pm
em

 I/
O

(G
B)

TURBO16
CCEH16
DASH16

TURBO30
CCEH30

CLEVEL30
CLHT30

(h) negative read

0 10 20 30 40
Number of Threads

200
400
600
800
1000
1200

Pm
em

 I/
O

(G
B)

TURBO16
CCEH16
DASH16

TURBO30
CCEH30

CLEVEL30
CLHT30

(i) Update

0 10 20 30 40
Number of Threads

100
200
300
400
500

Pm
em

 I/
O

(G
B)

TURBO16
DASH16

TURBO30
CLEVEL30

CLHT30

(j) Delete

0 10 20 30 40
Number of Threads

2.5
5.0
7.5
10.0
12.5

Pm
em

 B
an

dw
id

th
 (G

B/
s) TURBO16

CCEH16
DASH16

TURBO30
CCEH30

CLEVEL30
CLHT30

(k) Insert

0 10 20 30 40
Number of Threads

5
10
15
20
25

Pm
em

 B
an

dw
id

th
 (G

B/
s) TURBO16

CCEH16
DASH16

TURBO30
CCEH30

CLEVEL30
CLHT30

(l) positive read

0 10 20 30 40
Number of Threads

5
10
15
20
25

Pm
em

 B
an

dw
id

th
 (G

B/
s) TURBO16

CCEH16
DASH16

TURBO30
CCEH30

CLEVEL30
CLHT30

(m) negative read

0 10 20 30 40
Number of Threads

5

10

Pm
em

 B
an

dw
id

th
 (G

B/
s) TURBO16

CCEH16
DASH16

TURBO30
CCEH30

CLEVEL30
CLHT30

(n) Update

0 10 20 30 40
Number of Threads

2.5
5.0
7.5
10.0
12.5

Pm
em

 B
an

dw
id

th
 (G

B/
s) TURBO16

DASH16
TURBO30
CLEVEL30

CLHT30

(o) Delete

Figure 3.4: Throughput and Pmem I/O volume with different hash-table requests.

for collision resolution. All the experiments are run on a server with an Intel Xeon Gold
6230 20-core processor, 64GB DRAM and 6 × 128GB Intel Optane DC.

3.4.2 Overall Performance
To evaluate the performance of the hash tables, we conduct extensive experiments,

including insertions of new KV items (Insert), reading existing keys (Positive Read), read-
ing non-existing keys (Negative Read), overwriting existing KV items (Update), and delet-
ing all KV items (Delete). Experiment results are shown in Figure 3.4. In each experiment
different number of threads (from 1 to 40 threads) are used. For Insert, Update, and Delete,
each thread sends 120million/Number_of _threads requests. For Positive Read and Neg-
ative Read, each thread sends 10 million requests. Figure 3.4 reports throughput of the
hash tables (number of requests serviced per second) and the corresponding raw Pmem
I/O volume. This I/O volume represents all read/write data amount on the Optane Pmem’s
media, including amplified I/O due to existence of its 256B access unit. It is measured with
ipmwatch, available in the Intel VTune Amplifie tool.

47

Insert. TurboHash conducts about four rehashing within a shard during Insertion.
Other hash tables in comparison also conduct four rehashing. All the hash tables have a
load factor of around 60%. For small key-value size (8B key and 8B value), CCEH16,
DASH16, and TURBO16 store the data in the hash table slots. As shown in Figure 3.4a,
with fewer than 20 threads TURBO16 and CCEH16 have similar Insert performance.
When the number of thread is more than 20, TURBO16’s throughput is 10% higher than
CCEH16. The performance gap between TURBO16 with CCEH16/DASH16 is due to use
of lock: TURBO16 uses a DRAM spinlock while CCEH16 uses an in-Pmem writer lock
on its hash table segment and DASH16 uses Pmem lock on its bucket. The lock on the
Pmem causes more Pmem write I/O. The write locks in the Pmem are frequently updated.
Each update is a small write on a 256B Optane block. Optane has a small write buffer to
exploit write locality [77]. However, with high concurrency (of many threads), the working
set for the lock updates is larger than the buffer, causing frequent buffer evictions and write
amplification. Figure 3.4f shows that CCEH16 causes 18% more Pmem I/O and DASH16
has 60% more Pmem I/O, which are mainly caused by more Pmem writes due to the Pmem
lock. For 30-byte KV size, TURBO30’s throughput is about 6× higher than the others. For
CCEH30, we see a much larger amount of Pmem I/O (10× more than TURBO30’s) (see
Figure 3.4f). The main reason is that in order to support the atomic update operation for
data size larger than 8 bytes, CCEH30 uses libpmemobj’s transaction feature for out-
of-place writes. It uses undo logging for application object updates, and introduces large
write amplification [80]. Because of the limited Pmem bandwidth, this much increased I/O
leads to CCEH30’s large write throughput degradation. As CLHT30 uses a linked list to
organize its buckets, searching on the list causes random small access on the Pmem. As
we indicated in Figure 3.2, random access to the Pmem can be 4X slower than sequential
writes. Clevel hashing has a bottom-to-top searching strategy in its multi-level structure.
It has to search all the possible buckets to ensure the key does not exist before any inser-
tion. Searching the randomly located buckets introduces large read amplification, causing
its Pmem I/O volume 5× more than TURBO30, as shown in Figure 3.4f.

Positive Read. We see significant performance improvement for TURBO16 over
CCEH16. The source code of CCEH16 implements double hashing for reads, which aims
to increase load factor at the cost of larger read amplification. As we can see in Figure 3.4g,
CCEH16 has more I/O than TURBO16. TURBO16 also has better read performance than
DASH16. This is due to DASH16’s higher I/O volume because of the stash search. For
30-byte key-value items, TURBO30 has 140% to 600% throughput improvement over the
others. The major reason is that TurboHash uses sequential reads as much as possible to
minimize read amplification and thus has the least I/O volume, as shown in Figure 3.4g.

48

Negative Read. TurboHash has the best negative-read performance among the schemes.
A major reason is that it reads much less amount of data during the key search (see Fig-
ure 3.4h). TurboHash reads only KV items before the end of a search path. DASH16 has
to search all the target buckets and the stash buckets. CCEH also needs to search its entire
scope. CCEH30 reads more data than CCEH16 because CCEH30 doubles the bucket size
to accommodate large key and value, causing more data to be read within a probing scope.
CLEVEL30 and CLHT30’s search is on a path consisting of non-contiguous memory lo-
cations which comprise the performance. With reduced search paths and sequential Pmem
access, the negative read performance of TurboHash is much higher than the others, shown
in Figure 3.4c.

Update. In the Update experiment all existing key-value items are updated. Update
is a special case of Insert. Compared to Insert throughput, TURBO16’s Update throughput
improves the most (almost 2 × as high as its Insert throughput). There are two reasons.
One is that Update’s search path is shorter than Insert’s. The other is that Update does not
cause shard rehashing. TURBO30 also achieves a higher throughput, though with a smaller
improvement. Frequent random access to the KV items outside of the slots in TURBO30
makes the Pmem and CPU resources more constrained, leaving less room for improvement.

Delete. TurboHash always achieves the highest throughput because it has the lowest
I/O volume due to its shorter and sequential search paths (Delete not implemented in
CCEH).

3.4.3 Latency Comparison
In this section, we evaluate the read/write latency of all hash tables. We use 16

threads to write 120 million key-value items. Each thread sends 10 million read requests.
As shown in Figure 3.5, TurboHash almost always has the lowest latency among

the hash tables in all the test workloads (Positive Read, Negative Read, and Insert). By
applying the linear probing and using only necessary probing length, TurboHash achieves
the lowest I/O volume. It also avoids random access to the Pmem. As shown in Figure 3.6,
CCEH16 has 4× I/O volume as much as that of TURBO16 for Negative Read, because
it reads more buckets than necessary to find an non-existing key. The extra I/O causes the
higher latency.

In most of the experiments, TURBO16 outperforms DASH16, except the P99 la-
tency for Negative Read. It is because with the large linear probing scope (16 buckets),
TURBO16 may have to search for a long distance to reach some KV items placed at the
other end of the scope, causing longer tail latency. This issue can be alleviated by reducing
the probe scope. CCEH30 has 3×, 5×, and 5× more I/O volume than TURBO30 for Posi-

49

avg median p99
2
4
6
8

10
12
14

No
rm

al
ize

d
La

te
nc

y

14
51

.1
 n

s

84
8.

4
ns

28
36

.8
 n

s

TURBO16
CCEH16
DASH16
TURBO30
CCEH30
CLEVEL30
CLHT30

(a) Insert Latency Compari-
son.

avg median p99

2
4
6
8

10
12

No
rm

al
ize

d
La

te
nc

y

56
6.

2
ns

51
7.

7
ns

11
21

.7
 n

s

TURBO16
CCEH16
DASH16
TURBO30
CCEH30
CLEVEL30
CLHT30

(b) Positive-Read Latency
Comparison

avg median p99

2
4
6
8

10
12

No
rm

al
ize

d
La

te
nc

y

59
8.

2
ns

53
1.

5
ns

15
00

.8
 n

s

TURBO16
CCEH16
DASH16
TURBO30
CCEH30
CLEVEL30
CLHT30

(c) Negative-Read Latency
Comparison

Figure 3.5: Latency comparison between the hash tables (with 120 million insertions and
160 million reads using 16 threads)

Insert Positive
Read

Negative
Read

0

2

4

6

8

10

12

No
rm

al
ize

d
Th

ro
ug

hp
ut

9.
3M

op
s/

s

31
.3

M
op

s/
s

8.
9M

op
s/

s

Insert Positive
Read

Negative
Read

0

200

400

600

800
Pm

em
 I/

O
(G

B)

TURBO16
CCEH16

DASH16
TURBO30

CCEH30
CLEVEL30

CLHT30

Write I/O

Figure 3.6: Throughput and raw Pmem I/O volume (with 120 million Inserts and 160
million Reads using 16 threads). Grey bars in (b) indicate the portion of write volume.

tive Read, Negative Read, and Insert, respectively. In addition to large read volume and ran-
dom access, CCEH30 amplifies writes volume in its support of 15-byte atomic writes with
undo logging. Thus, CCEH30 has the largest I/O traffic and the worst latency for 30-byte
key-value items. CLEVEL30 has 5× higher average Insert latency than TURBO30. There
are several reasons. First, it searches from the bottom to the top levels of its multi-level hash
table before an insertion can be carried out. That is, a fixed overhead is added to any Insert.
Second, its bucket size (64 byte) does not match the Pmem access block size (256 bytes).
Therefore, each read to a bucket introduces 4× read amplification. As we can see in the
left graph of Figure 3.6, CLEVEL30 has 3× more I/O volume than TURBO30. Third, as
buckets on the search path are non-contiguous in the Pmem, CLEVEL30 introduces more
random access on the Pmem, which compromises latency.

50

Load A B C D F0.0
0.5
1.0
1.5
2.0
2.5

No
rm

al
ize

d
Th

ro
ug

hp
ut

10
.2

6
M

op
s/

s

15
.8

7
M

op
s/

s

32
.5

0
M

op
s/

s

39
.2

2
M

op
s/

s

35
.0

5
M

op
s/

s

12
.1

6
M

op
s/

s

TURBO16
CCEH16

DASH16
TURBO30

CCEH30
CLEVEL30

CLHT30

Figure 3.7: Throughput normalized to CCEH16. Load: 100% write. A: 50% write, 50%
read, B: 5% write, 95% read, C: 100% read, D: 5% write, 95% read the latest, F: 50%
read-modify-write, 50% read.

As a consequence, both the write latency and throughput are compromised, as shown
in Figure 3.5a and the left graph of Figure 3.6. For average Positive Read latency, TURBO30
is about 15% lower than CLEVEL30. The improvement is not significant even though
Clevel hashing has more I/O and random access. This is because current load factor for
both hash tables is around 50%, which means that most of keys can be found at their home
buckets in the search paths. The performance gap is more noticeable for Negative Read.
We see 2× lower average read latency for TURBO30 compared with CLEVEL30, which
has to search all the buckets (around 4 to 8) at random locations. CCEH30 has the highest
read latency. As shown in the right graph of Figure 3.6, CCEH30 generates some write
volume at the Pmem during service of read requests. It places a read lock in the Pmem
and frequently updates the lock, which degrades its latency. CLHT30’s latency is similar
to that of CLEVEL30. For Insert, it also reads all the buckets at random locations along its
search path (a linked list) before any insertion. So the I/O amplification and write latency
are both high. As a consequence, the write throughput becomes lower, which is only 17%
of TURBO30, as shown in the left graph of Figure 3.6.

3.4.4 Results of YCSB Benchmarks
The Yahoo! Cloud Serving Benchmark (YCSB) [16] is a popular benchmark used

to evaluate performance of NoSQL databases. We write a test bench for all the hash tables
to support YCSB benchmarks, which generate uniform workloads of different access be-
haviors (“Load", “A",..“F") (see Fig 3.7). The results for skewed workloads are similar to

51

0 20 40 60 80 100
Number of records (million)

0.2
0.4
0.6
0.8

Lo
ad

 Fa
ct

or

TURBO16
CCEH16
DASH16
TURBO30
CCEH30
CLEVEL30
CLHT30

Figure 3.8: Load factor after every one million inserts. Each hash table is initialized with a
capacity of 12 million items.

that for uniform workloads and we omit the results due to space limits. We run 20 threads
and send 10 million requests in each workload. For the all-write workload ("Load") that
loads 120 million items to the hash table, as expected TurboHash (either TURBO16 or
TURBO30) has a higher throughput than others, as shown in Fig 3.7. Each of the other
workloads starts after the "Load" and consists of only or mostly read requests. For all the
workloads, TurboHash has up to 2.6× higher throughput than CCEH. CCEH30 has the
lowest throughput, as it always requires a bucket lock for reads. The extra write due to lock
acquisition during a search compromises its performance. TURBO30 has 1.5×-4× higher
throughput over CLHT30 and CLEVEL30. This is because TURBO30 has much less I/O
than the others due to its efficient search strategy.

3.4.5 Load Factor
Load factor is a critical metric measuring a hash table’s space efficiency. One may

trade space efficiency for access performance of a hash table. TurboHash achieves both
space efficiency and high performance with short search path and sequential Pmem access.
In this section we compare load factor variations during insertion of 100 million key-value
items in the hash tables. The results are shown in Figure 3.8.

The maximum load factor of CCEH30 is less than 44% because it only probes at
most 4 buckets before a hash collision occurs. CCEH16 has a higher peak load fac-
tor (70%) because the implementation optimized by its inventors enables double hashing
inside the segments. Though both DASH and TurboHash achieve the highest peak load fac-
tor (85%), TurboHash has a much higher throughput (see Figure 3.4). Though CLEVEL30
and CLHT30 can achieve similarly high peak load factor (80%), they allow more flexible
placement of KV items for collision resolution, which leads to probing at random Pmem
locations and compromises access performance. TURBO30 always searches buckets se-

52

1 6 11 16

105

106

107
Fr

eq
ue

nc
y LF: 0.1

Avg: 1.00

1 6 11 16

LF: 0.2
Avg: 1.00

1 6 11 16

LF: 0.3
Avg: 1.00

1 6 11 16

LF: 0.4
Avg: 1.00

1 6 11 16

105

106

107

Fr
eq

ue
nc

y LF: 0.5
Avg: 1.00

1 6 11 16

LF: 0.6
Avg: 1.02

1 6 11 16

LF: 0.7
Avg: 1.08

1 6 11 16

LF: 0.8
Avg: 1.34

(a) Load

1 6 11 16

105

106

107

LF: 0.1
Avg: 1.00

1 6 11 16

LF: 0.2
Avg: 1.00

1 6 11 16

LF: 0.3
Avg: 1.00

1 6 11 16

LF: 0.4
Avg: 1.00

1 6 11 16

105

106

107

LF: 0.5
Avg: 1.00

1 6 11 16

LF: 0.6
Avg: 1.07

1 6 11 16

LF: 0.7
Avg: 1.44

1 6 11 16

LF: 0.8
Avg: 6.13

(b) Del. & Re-Insert

Figure 3.9: Probe distance histogram and average probe distance (Avg) for non-existing
keys under different load factor (LF). (a) are the histograms after loading new keys to reach
various load factors. (b) shows the results after we delete all the keys in each hash table
and then insert another set of keys to reach the same load factor. The probing scope is 16
buckets.

Positive Search

10 1

100

101

102

 avg: 0.59
 p50: 0.58
 p99: 1.04

Negative Search

 avg: 0.57
 p50: 0.52
 p99: 1.28

micro
second

(a) Load

Positive Search

10 1

100

101

102

 avg: 0.73
 p50: 0.68
 p99: 1.85

Negative Search

 avg: 1.75
 p50: 1.27
 p99: 7.43

micro
second

(b) Del. & Re-Insert

Positive Search

10 1

100

101

102

 avg: 0.59
 p50: 0.57
 p99: 1.02

Negative Search

 avg: 0.57
 p50: 0.52
 p99: 1.27

micro
second

(c) After GC

Figure 3.10: Read latency histograms with a 0.8 load factor. (a) Loading new keys into
empty hash tables. b) The results after we delete all the keys and then load a new set of
keys to the same load factor. (c) The results after a garbage collection.

quentially for strong spatial locality, which produces up to 8× higher performance in terms
of both throughput and latency (see Figure 3.5).

3.4.6 Probing Distance
To evaluate the probing efficiency in terms of probing distance, we measure the dis-

tance with the searching of non-existing keys in TurboHash under different load factors. As
shown in Figure 3.9, though the probing distance increases with the load factor, its impact
on the distance is limited. First, the increase even with a large load factor is still small.
For example, with the 0.8 load factor, the longest distance is only 6 (much shorter than the
probing scope size, which is 16) and the average distance is 1.34. Second, long distances

53

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Buckets

0

2000

4000

Av
g

R
eh

as
h

Ti
m

e
(u

s)

Rehash Small Key
Rehash Large Key

Figure 3.11: Rehashing time with different shard size.

hold only a small fraction of all of the distances in a histogram (note that the graph is of a
logarithmic scale).

As slots with deleted keys do not break a search path, they may unintentionally make
the path longer and compromise probing efficiency. To observe the effect, for each of the
hash table shown in Figure 3.9(a), we delete all of its keys and then insert another set
of keys to the same load factor level. We then redo the experiments to obtain a new set of
histogram graphs (see Figure 3.9(b)) Now with a high load factor, such as 80%, the average
probe distance for non-existing keys increases to 6.13, which causes the average negative-
read-latency increases to 1.75µs (from 0.57µs). However, this experiment represents a
rare scenario. And an easy remedy exists. When it is determined that there are too many
deleted keys in a shard, TurboHash may conduct a garbage collection operation, which is
a special shard rehashing, to remove the deleted keys. The only difference of this special
shard rehashing from a regular one is that it will keep the new shard of the same size.
Figure 3.10 shows the latency histograms before and after a delete-and-reinsert, as well as
after a garbage collection. It shows that while a delete-and-reinsert operation can increase
the latency, especially for the long-tail latency of negative search, its good performance can
be recovered with a garbage collection.

3.4.7 Shard Rehashing
As shown in Figure 3.11, the rehashing time is proportional to the shard size. Each

rehashing doubles number of buckets in the shard, and each key will be relocated to a
bucket in the new shard. Because the shard size is doubled, TurboHash can simply double
the index of a bucket in the old shard (a bucket array) to obtain the index of a bucket in the
new shard where all of its keys are relocated. Even if a key is larger than 8 bytes and the full
key is not in the bucket, the relocation doesn’t involve additional Pmem access because the

54

hashed keys are stored in the table. For a shard of 8192 buckets, the average rehashing time
is 5-6 µs. While the rehashing operation and its impact on the tail latency can hardly be
avoided in any hash table design, TurboHash has its unique design that helps to bound its
impact. TurboHash assumes a large number of shards in its design by over-provisioning.
For a hash table of 128K shards and each shard initially of 16 buckets, it can store 10
billions 16-byte KV items when a shard is resized to 8192 buckets. At this time the hash
table occupies 256GB Pmem and 1 MB DRAM for a directory of 128K shards. The 1MB
directory can be effectively buffered in the LLC cache for high performance. For hosting a
large KV store, the directory can be comfortably set at a larger size to accommodate more
relatively smaller shards without concern on its DRAM demand.

3.5 Related Work
TurboHash is a variant of dynamic hashing. It resizes the table as needed and uses

fine-grained resizing/rehashing (per shard). The dynamic hash table has been used in many
real systems [60, 66]. And our focus is on the design of a high-performance dynamic
hashing for persistent memory.

3.5.1 Hash Table for Persistent Memory
As commercial persistent memory has been available in recent years, a well-designed

hash table for persistent memory is on demand to leverage Pmem to provide high perfor-
mance service. There have been some recent works on designing hash tables for Pmem,
such as PFHT [22], level hashing [84], clevel hashing [15], CCEH [52], and P-CLHT [44].
PFHT is a variant of cuckoo hashing for Pmem that avoids cascading writes by allowing
only one cuckoo displacement. It uses a stash to prevent full resizing and improves the
load factor. Level hashing has two hash tables, making it a two-level structure (top level
and bottom level). While the bottom level is half of the top level, each resizing only moves
around one third of the data. Clevel hashing is a variant of level hashing. It implements
asynchronous resizing, so the write tail latency can be improved. CCEH is an extendible
hash table which expands the capacity by segment split and directory doubling. P-CLHT
is a linked list based persistent hash table. Each bucket of P-CLHT is of 64 bytes and can
store three key-value items. While all those hash table have made significant efforts to
improve access efficiency, none of them considers the 256-byte access granularity of ex-
isting Pmem (Intel Optane DC). TurboHash is designed for sequential probing on reduced
number of buckets on the Pmem. Its access efficiency is further improved by avoiding

55

across-shard resizing, which is possible for a hash table dedicated for a KV store whose
scale is often known in advance.

3.5.2 Hash Table Concurrency Control
CCEH [52] uses reader/writer lock in its directory to support concurrency control.

Level hashing [84] adopts a fine-grained locking for each slot, and each insertion may lock
up to two slots. Clevel hashing [15] makes use of Compare-and-Swap (CAS) primitive to
support concurrent writes while read is lock-free. P-CLHT [44] employs bucket lock for
writes and the read is lock-less. All of these hash tables, except Clevel hashing, have a
globally-locked rehashing scheme (directory resizing for CCEH), which may disrupt the
service and cause long tail latency. Clevel hashing proposes a dynamic multi-level hash
structure to asynchronously resize the table at the cost of searching more levels (bottom-to-
top searching), which compromises read performance as more buckets at random locations
have to be searched. In TurboHash, we only have a write lock at a shard, which caps the tail
latency while maintains high read/write performance. The support of lock-free access in
existing hash tables, such as clevel hashing and P-CLHT, will not be available when a key
or a value is in-place updated in a non-atomic manner (certainly with a lock). TurboHash
does not have this limit by using a sequence-number-based approach.

3.6 Summary
We introduce TurboHash, a persistent hash table designed for high-performance key-

value stores in this paper. By enabling out-of-place update at a cost equivalent to that for an
in-place write, conducting probing on a path sequentially and only for a necessary length,
and utilizing Intel Optane DC’s hardware feature, TurboHash minimizes the Pmem I/O
traffic and achieves 2× to 8× improvement of access performance over state-of-the-art
Pmem hash table designs in terms of both throughput and latency.

56

3.7 Appendix

Algorithm 1: Lock Free Search
1 Function Search(key, callback):
2 [slot, isfind] = FindSlot(key)
3 if isfind then
4 callback (slot)
5 return TRUE
6 return FALSE
7 Function FindSlot(key):
8 key_hash = Hash(key)
9 shard = LocateShard(key)

10 bucket = LocateBucket(shard, key_hash)
11 hash_tag = ExtractTag(key_hash)
12 probe_distance = 0
13 while probe_distance < MAX_DISTANCE do
14 seq_no = bucket.meta.seq_no
15 match_pos = bucket.SIMDmatch(hash_tag)
16 foreach pos ∈ match_pos do
17 slot = buckets.slots[pos]
18 if key == slot.key then
19 if bucket.NeedRetry(seq_no) then
20 bucket = LocateBucket(bucket.id)
21 go to 14 // Retry in current bucket

22 return {slot, TRUE}
23 if bucket.ReachSearchEnd() then
24 return {"", FALSE}
25 bucket = bucket.Next()
26 probe_distance++

/* Reach the maximum probe distance. */

27 return {"", FALSE}

57

Algorithm 2: Insert and Update in TurboHash
1 Function Insert(key, value):
2 shard = LocateShard (key)
3 WriteLockGuard guard(shard)
4 is_find, bucket_id, slot_id, old_slot_id = FindSlotForInsert(key)
5 if is_find == TRUE then
6 bucket = LocateBucket(bucket_id)
7 bucket.Insert(key, value, slot_id, old_slot_id)
8 return TRUE
9 else

10 shard.Rehash()
11 go to 2
12 Function Bucket::Insert(key, val, slot_id, old_slot_id):
13 slot = slots[slot_i]; tags[slot_i] = key.tag
14 slot.key = key; slot.val = val
15 CLWB + SFENCE
16 new_meta = this->meta;
17 new_meta.valid = new_meta.valid | (1 << slot_i)
18 if old_slot_i 6= -1 then

// Flip the old slot bit in the valid bitmap.

19 new_meta.valid ⊕ = (1 << old_slot_i)
// Epoch based reclamation.

20 epoch.markForDeletion(slots[old_slot_i])
21 new_meta.delete & = ∼(1 << slot_i)
22 new_meta.seq_no++
23 this->meta = new_meta
24 CLWB + SFENCE

58

Algorithm 3: Delete
1 Function Delete(key):
2 shard = LocateShard (key)
3 WriteLockGuard guard(shard)
4 bucket = LocateBucket(shard, key_hash)
5 probe_distance = 0
6 while probe_distance < MAX_DISTANCE do
7 match_pos = bucket.SIMDmatch(hash_tag)
8 foreach pos ∈ match_pos do
9 slot = buckets.slots[pos]

10 if key == slot.key then
11 bucket.Delete(pos)

/* Epoch based reclamation */

12 epoch.markForDeletion(slot)
13 return TRUE
14 if bucket.ReachSearchEnd() then
15 return FALSE
16 bucket = bucket.Next()
17 probe_distance++

/* Reach the maximum probe distance. */

18 return FALSE
19 Function Bucket::Delete(slot_id):
20 new_meta = this->meta;
21 new_meta.delete |= 1 << slot_id
22 new_meta.seq_no++
23 this->meta = new_meta
24 CLWB + SFENCE // Persist the 8-byte bucket meta.

59

Algorithm 4: Ancillary Functions
1 Function FindSlotForInsert(key):
2 key_hash = Hash(key)
3 shard = LocateShard(key)
4 bucket = LocateBucket(shard, key_hash)
5 bucket_id = -1
6 slot_id = -1
7 hash_tag = ExtractTag(key_hash)
8 probe_distance = 0
9 while probe_distance < MAX_DISTANCE do

10 match_pos = bucket.SIMDmatch(hash_tag)
11 foreach pos ∈ match_pos do
12 slot_key = bucket.slots[pos].key
13 if key == slot_key then
14 slot_id = bucket.PickEmptySlot()
15 return {TRUE, bucket.id, slot_id, pos}
16 if slot_id == -1 And bucket.meta.delete 6= 0 then
17 bucket_id = bucket.id
18 slot_id = bucket.PickDeleteSlot()
19 if bucket.ReachSearchEnd() then
20 if slot_id == -1 then
21 bucket_id = bucket.id
22 slot_id = bucket.PickEmptySlot()
23 return {TRUE, bucket_id, slot_id, -1}
24 bucket = bucket.Next()
25 probe_distance++
26 if slot_id 6= -1 then

// Find deleted slot on the searching path
27 return {TRUE, bucket_id, slot_id, -1}
28 return {False, -1, -1, -1}
29 Function Bucket::SIMDmatch(hash_tag):
30 hash_vec = _mm_set1_epi8 (hash_tag)
31 res = _mm_cmpeq_epi8_mask (hash_vec, tags);
32 return res & valid & (∼ delete)
33 Function Bucket::NeedRetry(old_seq_no):
34 if old_seq_no 6= meta.seq_no then
35 return TRUE
36 return FALSE
37 Function Bucket::PickEmptySlot():

/* choose from empty slot */
38 return __builtin_ctz(∼ valid)
39 Function Bucket::PickDeleteSlot():

/* choose from deleted slot */
40 return __builtin_ctz(delete)
41 Function Bucket::CanInsert():
42 return delete != 0 or ReachSearchEnd()
43 Function Bucket::ReachSearchEnd():
44 return __builtin_popcount(valid) < 13

60

CHAPTER 4

Spot-On: Optimizing Use of DRAM to Improve Performance of Index
Structures on Intel Optane DC Persistent Memory

Intel Optane DC Persistent Memory (PMEM) is the first commercially available and
rapidly deployed persistent memory. Compared to the DRAM, PMEM’s larger capac-
ity and cheaper price makes it a lucrative platform to persist data with its unrivaled high
throughput, low latency properties. This motivated a large number of efforts to incorpo-
rate conventionally fast data management approaches like hash-table, B+ tree and other
index structures into PMEM to better utilize its performance and persistence characteris-
tics. However, it is observed that PMEM despite being byte-addressable, behaves like a
block device, having an access unit of 256 bytes (XPLine). Consequently, as the nature
of updates in these index structures is inherently smaller than PMEM’s XPLine, PMEM is
observed to incur huge performance penalty due to high write amplification. A similar cost
can also be seen for index reads. While the idea of translating DRAM as a read cache and/or
write-back buffer seems to be an effortless solution to close the performance gap, existing
index designs fail to provide a holistic solution that manages both read and write ampli-
fications while simultaneously proving persistence, crash consistency, and quick recovery
after a crash.

In this work we propose a framework "Spot-on" that enhances persistent memory
index structures using application-managed caching and buffering. This framework is
built upon observations from applying a DRAM layer upon some representative persistent-
memory index structures, including a B+ tree, a skip list, and a hash table. Using spot-on
framework we develop a B+-Tree, SPTree, a novel index structure that facilitates ap-
plications to selectively cache read-intensive parts of an index and buffer writes to index
structure, while providing crash consistency and quick recovery upon crash. Compared to
the state-of-art indexes, SPTree provides higher write and read throughput up-to 2X and
4X respectively.

4.1 Introduction
The memory/storage hierarchy, which consists of multiple levels including CPU

cache, DRAM, and block devices such as SSDs and HDDs, has been stable for decades.

61

Accordingly, the principal management designs for data across its levels, such as set-
associative CPU caches, page-based virtual memory and block-based read cache and write-
back buffer, are well established by carefully considering individual devices’ performance
characteristics to maximize the hierarchy’s performance. However, with emergence of Intel
Optane DC persistent memory (Optane PMEM for short), the first commercially available
persistent byte-addressable memory, a new level is introduced into the hierarchy. We con-
tend that it is necessary for the DRAM to serve as a cache level for the PMEM to boost its
effective performance.

4.1.1 DRAM as a Cache of PMEM
Like DRAM, the Optane PMEM is a byte-addressable memory device that can be

directly accessed via load and store instructions. However, its performance gap with the
DRAM is still significant (around 2.5X-3X worse than that of DRAM in terms of its latency
and throughput). In the meantime, the PMEM can have a 5-10x increase of per-module ca-
pacity over the DDR4 DRAM while its per-GB price is 2X-5X less expensive than DRAM.
Therefore, placing the PMEM underneath the DRAM in the hierarchy has the potential of
taking advantage of both DRAM’s high performance and PMEM’s large capacity and low
price. Indeed, the Optane PMEM has a memory mode in which DRAM acts a cache for
data accessed on the PMEM. Though little is known on how Intel CPU’s IMC (Integrated
Memory Controller) enables this transparent caching, a constraint in the use of the mode
highlights the challenge in the management of this memory level. The constraint is that the
persistent memory has to be treated as a volatile memory, or data in the memory cannot
survive a system restart. The capability of retaining data on the PMEM is one of its major
features attractive to many potential users.

4.1.2 DRAM as a Write Buffer of PMEM
While DRAM is used as PMEM’s cache, it not only should be used as a read cache,

but also must be used as a write buffer to enable the write-back policy for three reasons.
First, DRAM is faster than PMEM by around 2-3X for reads and is around 4-6X for writes
in terms of bandwidth. Second, recent studies have shown that Optane PMEM has an access
unit of 256 bytes to the memory’s media. Any write smaller than the size leads to a write
amplification and reduction of effective throughput. For example, with 64-byte random
writes the PMEM’s throughput is reduced to about 1/4 of its peak one [81]. Third, to ensure
crash consistency for written data, an application may have to frequently use expensive
fence and flush instructions between writes to the PMEM, which may significantly degrade
write efficiency. DRAM can used as a write buffer to coalesce writes and flushing buffer to

62

PMEM. In doing so random writes to PMEM are transformed into one big sequential write
that aligns with PMEM’s access granularity so as to extract high throughput from PMEM.
It is tempting to use large amounts of DRAM to fix shortcomings of PMEM, however it is
difficult to retain PMEM’s persistence feature with a DRAM as its cache.

Some fundamental challenges exist due to unique characteristics of the DRAM-
PMEM layers. Unlike CPU-caches/DRAM layers, the DRAM as a cache for PMEM
presents unique challenges. This is primarily due to DRAM being much larger than the
CPU cache. While the CPU cache can be battery/capacitor protected to keep dirty data in
it from being lost upon a power failure, the DRAM cache is unlikely to have such a sup-
port. This presents a dilemma about the usage of DRAM as a cache for PMEM as using
DRAM to enhance performance naturally leads to using large amounts of DRAM while
simultaneously presenting a risk of losing data due to DRAM’s volatile nature.

To address these issues, we propose a framework, Spot-on, for designing DRAM-
PMEM hybrid indexes to provide low latency, high throughput and persistency features
on the persistent memory (Intel Optane NVDIMM). The framework provides guidelines
which can be summarized as buffered, out-of-place merging then caching(BOC). B: For
write-intensive workload, we can apply write buffer to batch small writes and flush them
together to PMEM to reduce write amplification. O: During batch merging, we should
always use out-of-place merging if possible to reduce usage of flush&fence to improve
the efficiency. C: For indexes facing pointer chasing problem, we should also cache the
frequent accessed parts in DRAM to reduce the overhead of random access in PMEM.
Meanwhile, based on these guidelines, we design a persistent B+-Tree, Spot-on Tree (SP-
Tree), which leverages the DRAM for caching and buffering. In SPTree, the internal nodes
are stored in DRAM while the updates to the internal nodes are propagated to a persistent
B+-Tree asynchronously for crash consistency. Existing keys in SPTree are also cached
in bloom filters to avoid access on PMEM for negative reads of non-existing keys. Write
buffers can also be configured in SPTree to reduce write amplification.

4.2 Background
In this section, we describe the background of non-volatile memory and some exist-

ing persistent index designs.

4.2.1 Non-Volatile Memory
Intel Optane Persistent memory is the first commercially available non-volatile mem-

ory (NVDIMM). It can be configured in two different modes. The first one is called

63

Memory Mode, in which the CPU regards the Optane as a larger main memory and uses
the DRAM as its cache. In this mode, the Optane NVDIMM does not provide persistency.
The second mode is App-Direct Mode. In this mode, the Optane NVDIMM works
as a persistent device. A file system which supports Direct Access (DAX) provides direct
access to the persistent memory, and bypasses the file system block I/O.

Though Optane NVDIMM provides the processor with cacheline (64-byte) access
granularity, the physical media access granularity is 256 bytes (XPLine) [77, 74, 81]. Any
non-contiguous writes of data smaller than XPLine size requires a read-modify-write oper-
ation, leading to write amplification and reduced effective memory bandwidth. To reduce
write amplification, Optane NVDIMM employs a write-combining buffer to merge adja-
cent small writes.

4.2.2 Persistent Indexes
There are mainly two kinds of persistent indexes. The first one is persistent hash

table, such CCEH[52], Level hashing[84] and Dash[48]. And the the second is persistent
range indexes, including FastFair[34], FP-Tree[58].

Persistent Hash Table. Existing works on persistent hashing mostly focus on build-
ing a hash index by directly updating the index in-place on persistent memory, such as
PFHT [23], level hashing [84], and CCEH [52]. PFHT is a cuckoo hashing variant that is
optimized to reduce memory writes during serving write requests by allowing at most one
displacement in a write. Level hashing applies a two-level hash scheme so that each key
can have three buckets as the candidates for insertion, which helps improve the load factor.
Instead of double hashing, CCEH is an extendable hashing that uses a linear probing strat-
egy so that a successful insertion only requires one memory write. All of these works try
to reduce persistent memory writes during insertion in order to design a write-optimized
hashing. However, for the existing persistent-memory device, Optane PMEM, the in-place
update designs still cause large write amplifications as Optane PMEM’s physical media
access granularity is 256B [77].

Persistent Range Indexes. There have been some works on designing b-tree for
persistent memory. FastFair[34] is lock-free read B+-tree which avoid expensive copy-on-
write and logging to tolerate transient inconsistency. BzTree[3] relies on Persistent Multi-
word Compare-And-Swap(PMwCAS) primitive to implement a lock-free tree. FP-Tree[58]
store inner nodes of the tree in DRAM to achieve high performance. However, it has to
scan all nodes on PMEM to reconstruct the inner nodes after reboot or crash. PACTree[39]
employs persistent trie index as the internal nodes and asynchronously update the internal
nodes using a structural-modification-operation (SMO) log.

64

Buffer

Buffer Buffer Buffer

Buffer Buffer Buffer

BufferBuffer

!"

!"

#"

#"

!"

!"

!"

!"

$"

$"

#"

#"

#"

#"

$"

$"

!%

!%

$&

$&

#&

#&

!&

!&

'()*+',)-./0112(3 45,6//07)*87)963 :;<=9>.9*8

??

??

&&

&&

!!

!!

Search 45

Insert 45

%%

%%

$$

$$

??

??

##

##

@96/A8B6C

</DE/F8

4GA=/8

...

...

...

...

...

...

Figure 4.1: Three Data Structure

4.3 Case Study
In this section, we analyze three persistent index data structures and propose guide-

lines for designing hybrid DRAM-PMEM data structures. We extensively study three
data structure: CCEH[52] (persistent hash table), FastFair [34] (persistent b-tree) and P-
Skiplist (our version of persistent skiplist) [61], as shown in Figure 4.1. From the empirical
analysis, we summarize three lessons on designing hybrid DRAM-PMEM index data struc-
ture. We coined the lessons as buffered, out-of-place merging then caching(BOC).

The key BOC guidelines are that, the read-modify-write in XPLine and long latency
of random access in NVDIMM is the fundamental performance bottleneck for persistent
index data structure. We propose that an persistent index should 1 buffer small writes in
DRAM then update them to PMEM in a batch manner, and use 2 out-of-place merging to
reduce flush&fence. When there is pointer chasing problem in the indexes, we should 3
cache the searching path in DRAM to minimize the search latency.

4.3.1 Case Study: Buffering
Optane NVDIMM differs from DRAM in several ways. One of them is that there is

a mismatch between CPU cache-line access granularity(64-byte) and the 3D-Xpoint media
access granularity(256-byte) in both 1st and 2nd generation of Intel Optane NVDIMM
devices[74]. To overcome this mismatch, Optane NVDIMM has a write-combining buffer
(16KB) to merge small writes and reduce write amplification[74]. Given the small size, it
is hard to exploit the locality and hit the buffer.

For writes in persistent index data structure, most of them are small writes, such as
insertion of a new record(16-byte key-value pair), structural modification operations (SMO)

65

cceh fastfair skiplist0

20

40

60

80

100 GB
Total Write on PMEM

NoBuffer
WithBuffer

Figure 4.2: Total data written on PMEM with 120 million insertion of 16-byte key-value
pairs.

in b+-tree, which may lack of locality considering the small write buffer in NVDIMM. With
this mismatch between CPU and NVDIMM, most of the small writes result in read-modify-
write operations, which leads to high write amplification and reduced effective memory
bandwidth.

In this case study, we add write buffers in DRAM for all three data structures. For
CCEH, write buffers with half of the segment size are allocated. For FastFair, each leaf
node also has a write buffer with half of the leaf node size. P-Skiplist only create write
buffers for nodes whose height is higher than two, and each buffer can store at most 16
records.

We run a benchmark to insert 120 million key-value pairs(8-byte key and 8-byte
value). As shown in Figure 4.2, with write buffer, the total amount of the data written to
PMEM can reduce by at most 4 times.

4.3.2 Case Study: Out-place-update
An potential issue of adding write buffer for persistent indexes is that when we merge

the records in the buffer to PMEM in an in-place manner, we may need to repeatedly add
flush&fence within a small contiguous range of PMEM space (segments in CCEH, leaf
nodes in FastFair) to maintain crush consistency in case of power failure . It is reported
that reading a recently flushed cacheline after fence instructions could experience much
higher latency as the read has to wait the flush to complete[74].

To analyze the effect of flush&fence in buffer merging, we implement out-of-place
buffer merging in CCEH and FastFair. Since P-Skiplist’s key-value pairs are stored sepa-

66

rately in the linked list nodes, it is always an out-of-place manner for insertion. So we do
not consider P-Skiplist in this case.

In CCEH, when a write buffer of a segment is full, first we copy the segment to
DRAM. Then we merge the records in write buffer to the DRAM copy and write it back
to PMEM in a new space. Finally we atomically change the directory pointer to this new
segment. For FastFair, the similar approach is also employed for the leaf nodes. When
merging the write buffer, a new leaf node is created to hold all the records in both the old
leaf node and write buffer. Then the new leaf replace the old leaf by changing the parent
pointer and left sibling’s next pointer.

As shown in Figure 4.3’s first row, for the single thread results, the performance of
the indexes which use in-place merging for write buffers (cceh-B and fastfair-B) is slower
than that which use out-of-place merging strategy (cceh-BO and fastfair-BO). Though both
of them have similar I/O, the main reason is the flush&fence overhead.

4.3.3 Case Study: Caching
For index data structures whose operations contain many random reads (in the form

of pointer chasing), the performance could be bottlenecked by slow random NVDIMM
reads. Read latency on Optane NVDIMM is considerably higher than DRAM(2X-3X)
because reads need to fetch data from the 3D-Xpoint media, which has longer media la-
tency [77]. Meanwhile, most of the pointer chasing happen in the internal nodes whose
size may only occupy small portion of the entire data structure size. So it is worth caching
the internal nodes in DRAM to boost the lookup performance.

In this case study, we cache the internal nodes in all three indexes (directory in
CCEH, inner nodes of FastFair, nodes with height higher than 2 in P-Skiplist) and mea-
sure their insert/read latency for 120 million requests.

As shown in Figure 4.4, caching internal nodes have almost no effect on CCEH as
it only has one pointer chasing for each operation, which is locating the segment from
directory. However, we observe significant improvement for FastFair and P-Skiplist as
they need to do more pointer chasing(random reads) in internal nodes before finding a
target node.

4.3.4 Combine Together
In the previous three case studies, we summarize the guidelines as buffered, out-of-

placed merging then caching(BOC). We apply those guidelines to all three indexes one by
one and measure the performance improvement during insertion of 120 million key-value
pairs.

67

0 1 2 3

50

1
Th

re
ad

 GB
cceh

0 1 2 3

100

 GB
fastfair

IO Read IO Write

0 1 2

500

 GB
skiplist

0 1 2 3

50

20
 T

hr
ea

ds

 GB

0 1 2 3

50

100

 GB

0 1 2

250

500

 GB

cce
h

cce
h-B

cce
h-B

O

cce
h-B

OC

25

50

40
 T

hr
ea

ds

 GB

fas
tfa

ir

fas
tfa

ir-B

fas
tfa

ir-B
O

fas
tfa

ir-B
OC

50

100

 GB

ski
plis

t

ski
plis

t-B
O

ski
plis

t-B
OC

250

500

 GB

0.5

1.0

 Mops/s

0.25

0.50

 Mops/s

Throughput

0.1

0.2

0.3

 Mops/s

5

10

15
 Mops/s

5

 Mops/s

2

4

 Mops/s

10

 Mops/s

5

10

 Mops/s

5

 Mops/s

Figure 4.3: I/O and throughput for inserting 120 million key-value pairs (8-byte key and
8-byte value).

As shown in Figure 4.3, the write buffer not only reduces write amplification but
also read amplification. This is not a surprise since during the buffer merging, the PMEM
data to be merged can be cached in DRAM. The cost of reads is amortized via batching.
Meanwhile, the benefits of out-of-place update (merging) are consistent from single thread
case to multi-thread case. The throughput of out-of-place version (cceh-BO, fastfair-BO)
is always higher than the in-place version (cceh-B, fastfair-B). Finally, caching the inter-
nal nodes not only reduces latency of pointer chasing, most importantly it reduces huge
amount of read I/O during search (fastfair-BOC, skiplist-BOC), and significantly improves
the effective PMEM memory bandwidth.

68

0us 2us 5us 8us
latency

In
se

rt
La

te
nc

y
Di

st
rib

ut
io

n
cceh

0us 5us 10us 15us
latency

fastfair

0us 10us 20us 30us
latency

skiplist

0us 0us 1us 2us

Re
ad

 L
at

en
cy

 D
ist

rib
ut

io
n

0us 2us 4us 0us 10us 20us

Figure 4.4: Case study for Insert/Read latency. Read area represent the results for indexes
with caching.

4.4 Design
Following the guidelines, we propose SPTree, a DRAM-PMEM hybrid persistent

tree index that utilize caching and buffering to address issues such as, long latency of
pointer chasing, write amplification due to mismatch between key-value pair size and
XPLine size(256-byte), quick recovery after power failure. As show in Figure 4.5, SPTree
consists of three layers: toy layer, middle layer, and bottom layer. The top layer caches the
internal nodes in DRAM. Meanwhile it also has a PMEM backup which is updated asyn-
chronously. If a crash happens, we can recover the internal nodes from the PMEM backup
instantly. The middle layer caches the inserted keys in bloom filters, which can filter out
most of the point queries for non-existing keys. Meanwhile, the middle layer can also be
assigned with write buffers based on available DRAM resources for write-intensive work-
loads to reduce write amplification. The bottom layer stores the leaf nodes on PMEM. The
leaf node groups fingerprints in an array (tags) for a quick preliminary search. Meanwhile,
It applies a two-phase insertion method to reduce the usage of flush and fence instructions.
The first phase writes key-value pairs and theirs tags to the leaf node. Then the second
phase will validate the bitmap in the leaf node to expose the inserted records. In this way,
only two flush&fence are needed even for the batch insertion.

69

async

PMEM Top LayerDRAM Top Layer

PMEM Bottom Layer

DRAM Middle Layer
Mnode

Bnode Bnode Bnode

Mnode Mnode
Mnode (middle layer node)

Write Ahead Log

Bnode (bottom layer node)

lkey

lkey

hkey version

hkey

bloom filter

Lnode

prev_ptr type size data

Lnode …

next bitmap cur_ver tags kv pairs
64 entries

seqssort_ver

write bufferL_ptr

Figure 4.5: SPTree Architecture

4.4.1 Three layers in SPTree
Top Layer. The top layer of SPTree consists of two parts, the DRAM part and

PMEM part. The DRAM top layer takes charge of indexing the middle layer nodes, which
contain the information (key range) of the bottom layer’s leaf nodes. SPTree uses the
DRAM top layer to address the high latency issue of pointer chasing in PMEM, i.e., all
operations in SPTree only search in the DRAM top layer before a target leaf node in the
bottom layer is found. We modify the artree[45] as the DRAM top layer. In SPTree, the
PMEM top layer is used for recovery after a reboot or power failure. It is updated asyn-
chronously by background threads to move the slow updates in PMEM off critical path. Ev-
ery time when a leaf node split, the new leaf node’s indexing information is synchronously
updated in the DRAM top layer, and sent to background threads and then propagated to a
persistent b+-tree (FastFair) asynchronously. If some of the updates have not been updated
in the PMEM top layer when a power failure happens, we can still recover those missing
information by checking the possible smallest key(lkey) and largest key(hkey) in the leaf
nodes. Please refer the following section of recover for details.

Middle Layer. The middle layer consists of Mnodes(middle layer nodes) in DRAM.
Mnode stores the key range information of a leaf node belonging to this Mnode, which
are lkey (smallest key) and hkey (largest key). When a search reaches to a Mnode, the

70

search key is checked with the key range in the Mnode. If the search key does not belong
to this Mnode, we need to go back to the top layer to retry. A Mnode also stores a bloom
filter which remembers all the existing keys in its leaf node. Every insertion will update
the bloom filter in its belonged Mnode. In this way, by caching the existing key in a
probabilistic manner, we can avoid most of non-existing key search to the PMEM leaf
node. A Mnode may also be configured with a write buffer, which buffers all the new
inserted key-value pairs. Once a buffer is full, all the records in the buffer will be merged
to the relative leaf node.

Write Ahead Log. If some of the Mnodes contain write buffers, then the key-value
pairs stored in those buffers may be lost during a power failure. To address issue, SPTree
also keeps a write-ahead-log (WAL) for recovery if the write buffer is enabled in Mnodes.

Bottom Layer. The leaf nodes, or Bnodes (bottom layer nodes) are the data nodes
which store all the key-value pairs in persistent memory. The Bnodes are organized a singly
linked-list. Each Bnode can store 64 key-value pairs. Key fingerprints (tags) are used for
a quick preliminary search of all keys by using SIMD instruction (_mm_cmpeq_epi8_-
mask). Two-phase insertion is enable in the Bnode, which writes batched key-value pairs
in the slots first followed with one flush&fence. Then the bitmap is updated with another
flush&fence. In this way, SPTree minimizes the usage of flush&fence to improve efficiency.

4.4.2 Concurrent Control
SPTree relys on Optimistic Lock Coupling[46] for concurrent control. An

optimistic lock consists of a lock and a version counter (packed in 8-byte). For writers, the
optimistic lock provides exclusion which only allows one writer at a time. When unlock,
the lock is released and the version number increases by one atomically. For readers, they
do not acquire the lock. Instead, they wait until the write lock is freed. Then they will
compare the version before and after reading the value. If the version changes, they will
retry until success. Both of the DRAM top layer and the middle layer apply optimistic lock.

4.4.3 Search Operation
Search for a given key is the most frequent used operation in the SPTree. It is not

only used to service a read request, but also has to be employed before every insert /update
/delete /lookup /scan operation is performed. A search operation first traverses the DRAM
top layer to find a largest key that is smaller or equal to the search key. This largest key
is the lkey in a Mnode. Then the search key is compared with the hkey in the Mnode to
ensure the search key is in the key range of this Mnode. Otherwise, if the search key is out
of range (probably due to split), we then travel around in the middle layer (double linked

71

list) to locate the correct Mnode. During the search operation, the PMEM top layer is never
touched since it is only used for recovery.

4.4.4 Insert/Update/Delete/Lookup/scan
Insert. The thread servicing a insert request first searches the DRAM top layer to

locate a Mnode. A necessary middle layer traversal is performed to jump to the target
Mnode, whose key range includes the inserted key. Then the write lock is acquired on
Mnode. If the Mnode contains a write buffer, the key-value pair is inserted into the write
buffer, and appended to a write ahead log (WAL) for crash consistency. Otherwise, the
thread inserts the key-value pair directly in the related Bnode on PMEM. In the first case,
if write buffer is full, SPTree applies a minor compaction to flush all the key-value pairs to
the related Bnode, and clear the write buffer. SPTree uses two-phase insertion to do minor
compaction. 1 All the key-value pairs and their tags are written to the Bnode followed
by one flush&fence. 2 The bitmap to indicate valid items is set and the version (cur_ver)
advances by one. Meanwhile, A split is conducted if necessary. Finally, the bloom filter in
Mnode is set for the inserted key.

Update. Update is similar with insert for locating the target Mnode. After a target
Mnode is found, the bloom filter is checked to see if the key could exist. If not, we return
directly. Otherwise we acquire the write lock. If there is a write buffer in the target Mnode,
we try to update the key-value in the buffer, and write the new value to the WAL if update
success. Otherwise, we check the related Bnode for update.

Delete. For delete, after we reach a target Mnode, we also check the bloom filter first
to avoid unnecessary access to PMEM. If bloom filter return true, then we try to remove the
search key in write buffer if it exists in the Mnode. A successful remove in Mnode’s write
buffer will be followed with an WAL write to record this deletion. Whether the Mnode has
write buffer or not, we always try to remove the search key in the Bnode. This is different
with update which will return if update success in the write buffer. The reason is that if
there is a write buffer in Bnode, we may have a new key and an old key in the buffer and
Bnode, respectively. Once we delete the new key in the buffer without removing the old
key in Bnode, a follow up read for this key will return wrong answer (the old key-value
pair instead of NULL).

Lookup. Lookup operation in SPTree is lock-free read. By applying the optimistic
lock, we will check the version in Mnode before and after the read. If the version does
not change, that means no inserts happen during the read and we return the value safely.
Otherwise, we retry lookup from the beginning.

72

Scan. Scan operation first finds the target Mnode whose lkey is equal or smaller than
the lower bound of the scan range, while the hkey is larger than the lower bound. Then it
checks whether a reconstruct of the sequence array (seqs) is needed by comparing cur_-
ver and sort_ver. If cur_ver is larger than sort_ver, it means new inserts happen
since last last reconstruct of the seqs, then we acquire the write lock and sort the keys in
Bnode and store the ascending orders in the seqs array. Meantime, we set sort_ver
equal to cur_ver to indicate this Bnode is ready for scan. When there are keys stored
in the Mnode write buffer, a minor compaction is triggered before scanning. During the
scan of a Bnode, the keys fall in the scan range are collected in a buffer. Then the value
of cur_ver before and after the scan is compared. If they are equal, those buffered key-
value pairs are appended in the output array. Otherwise, we retry scan in this Bnode. Scan
continues to the sibling Bnode until the output array is full or the key is out of scan range.

4.4.5 Split and Merge
When a Bnode (leaf node) is full, SPTree conducts a split, which creates a new Bnode

along with its Mnode. Then a [lkey, Mnode pointer] mapping is inserted to the DRAM top
layer while a [lkey, Bnode pointer] is sent to the background thread to asynchronously
update the PMEM top layer. During split, 1 the writer first acquires the lock for current
Bnode and its next sibling. 2 Then it allocates a new Bnode, move the right half of the key-
value pairs from the full node to the new Bnode, and set the next pointer in the full node
pointing to the new node. These three operations are atomically conducted using the leak-
free PMEM allocator (such as Intel PMDK’s pmemobj_alloc()) to prevent memory
leak. 3 Then bitmap and hkey in the full Bnode is modified to evict the split-out keys.
4 Last, the mapping information is updated in the DRAM top layer and propagate to the

PMEM top layer.
When a delete operation detects that two adjacent nodes have keys less than the half

of one node’s capacity, a merge operation is triggered. 1 We first acquire the two nodes’
write locks. 2 Then we shift the key-value pairs in the right Bnode to the left Bnode
using two-phase insertion (set the kv pairs first, then the bitmap). 3 Next we modify the
left Bnode’s hkey as the the right Bnode’s hkey, mark the right Bnode as deleted in its
cur_ver and drop the Bnode. 4 Finally we update the mapping in the top layer.

4.4.6 Recovery and Crash Consistency
Since SPTree uses DRAM top layer and DRAM middle layer to provide service,

these two layers need to be reconstructed after a reboot or a power failure. SPTree can
rebuild the DRAM top layer and Mnodes in a quick way. All the updates in the DRAM top

73

layer are propagate to the PMEM top layer, and the PMEM top layer stores the pointers
to the Bnodes in PMEM. During recovery, SPTree can quickly collect all the pointers to
Bnodes by scanning the PMEM top layer, which is only around 2% of entire index size.
Then we rebuilds the Bnode’s Mnode and DRAM top layer parallelly, which is not possible
if we scan the singly linked list of Bnodes one by one on recovery.

If this recovery is after a crash, then we need to fix the incomplete state. If a crash
happens before split step 2 complete, SPTree can recover to the state before split (guaran-
teed by the allocator). If crash happens after step 2 and before step 3 , then a dummy leaf
node is linked to bottom layer. The incomplete status looks like following: [split node, lkey:
10, hkey:100] -> [dummy node, lkey: 50, hkey:100] -> [next node, lkey: 100, hkey:200] ...
The dummy node will have a lkey lower than its previous node’s hkey. If we find a dummy
node during recovery, we fix it by dropping the dummy node. If crash happens during step
3 (hkey is set and the bitmap has not been set), then the split node will have keys which

do not belong to it. This can be easily fixed by ignore those out-of-range keys during next
split. If crash happens before step 4 finishes, we only need to fix the missing mapping in
the top layer. We can identify the missing mappings by comparing the adjacent Mnode’s
lkey and hkey after a normal recovery. A Mnode’s hkey is always same as its next sibling’s
lkey. If not, then we scan the linked list from current Mnode’s Bnode to recover the missing
Mnodes.

If a crash happens before a merge step 2 competes, SPTree can recover to the state
before merging because the shifted kv pairs have not been exposed by the bitmap. If the
crash happens before 3 , the shifted kv pairs can be filtered out using hkey. If the crash
is after 3 setting the hkey and before dropping the right node, then the incomplete status
looks like: [merge-left node, lkey: 10, hkey:100] -> [merge-right node, lkey: 50, hkey:100]
-> [next node, lkey: 100, hkey:200]. The merge-right node has a lkey lower than merge-left
node’s hkey. We fix this by dropping the merge-right node during recovery. If the crash is
before 4 , the dummy mapping will point to a deleted Bnode, then we delete this mapping
during recovery.

For consistency in Bnode, all the key-value pairs that have not completed the second
phase (setting the bitmap) will not be exposed. So we will not observe any partially updated
items. If some Mnodes have write buffers, the content in the buffer can be recovered after
we replay the WAL.

4.5 Evaluation
In this section, we experimentally evaluate SPTree by comparing it with several state-

of-the-art B+-Tree for persistent memory, including FastFair[34] and PACTree[39].

74

0 10 20 30 40
Number of Threads

5

10

Th
ro

ug
hp

ut
 (M

op
s/

s)
fastfair
pactree

sptree
sptree-B

(a) Insert

0 10 20 30 40
Number of Threads

5
10
15
20
25

Th
ro

ug
hp

ut
 (M

op
s/

s)

fastfair
pactree

sptree
sptree-B

(b) Positive Read

0 10 20 30 40
Number of Threads

20

40

Th
ro

ug
hp

ut
 (M

op
s/

s)

fastfair
pactree

sptree
sptree-B

(c) Negative Read

0 10 20 30 40
Number of Threads

2

4

6

Th
ro

ug
hp

ut
 (M

op
s/

s)

fastfair
pactree

sptree
sptree-B

(d) Scan

0 10 20 30 40
Number of Threads

50

100

150

200

Pm
em

 I/
O

(G
B)

fastfair
pactree

sptree
sptree-B

(e) Insert

0 10 20 30 40
Number of Threads

50

100

Pm
em

 I/
O

(G
B)

fastfair
pactree

sptree
sptree-B

(f) Positive Read

0 10 20 30 40
Number of Threads

50

100

150

200

Pm
em

 I/
O

(G
B)

fastfair
pactree

sptree
sptree-B

(g) Negative Read

0 10 20 30 40
Number of Threads

200

400

Pm
em

 I/
O

(G
B)

fastfair
pactree

sptree
sptree-B

(h) Scan

0 10 20 30 40
Number of Threads

2.5
5.0
7.5
10.0
12.5
15.0

Pm
em

 B
an

dw
id

th
 (G

B/
s) fastfair

pactree
sptree
sptree-B

(i) Insert

0 10 20 30 40
Number of Threads

5

10

15

Pm
em

 B
an

dw
id

th
 (G

B/
s) fastfair

pactree
sptree
sptree-B

(j) Positive Read

0 10 20 30 40
Number of Threads

5

10

15

Pm
em

 B
an

dw
id

th
 (G

B/
s) fastfair

pactree
sptree
sptree-B

(k) negative read

0 10 20 30 40
Number of Threads

5
10
15
20
25

Pm
em

 B
an

dw
id

th
 (G

B/
s) fastfair

pactree
sptree
sptree-B

(l) Scan

Figure 4.6: Throughput and PMEM I/O volume with different requests.

4.5.1 Experiment Setup
In our experiments, we use 16 byte key-value pairs for comparison. All the threads

in an experiment are pinned to one socket using numactl. SPTree’s DRAM footprint is
about 12% of the total size of the PMEM bottom layer when write buffer is not enabled.
If all the Mnodes in the SPTree have write buffer (sptree-B), the DRAM footprint is about
33%.

All the experiments are run on a server with an Intel Xeon Gold 6230 20-core pro-
cessor, 64GB DRAM and 6 × 128GB Intel Optane DC.

4.5.2 Overall Performance
To evaluate the performance of the trees, we conduct extensive experiments, includ-

ing insertions of new KV items (Insert), reading existing keys (Positive Read), reading

75

non-existing keys (Negative Read), range queries (Scan). Experiment results are shown
in Figure 4.6. In each experiment different number of threads (from 1 to 40 threads) are
used. For Insert each thread sends 120million/Number_of _threads requests. For Positive
Read and Negative Read, Scan each thread sends 10 million requests. Figure 4.6 reports
throughput of the btrees (number of requests serviced per second) and the corresponding
raw PMEM I/O volume. This I/O volume represents all read/write data amount on the Op-
tane PMEM’s media, including amplified I/O due to existence of its 256B access unit. It is
measured with ipmwatch, available in the Intel VTune Amplifie tool.

Insert. As shown in Figure 4.6a, SPTree always outperforms the others for insert
performance. This is mainly because for the other two trees, the pointer chasing in the
internal nodes causes large read amplification, resulting reduced effective memory band-
width. As shown in Figure 4.6e and 4.6i, though the bandwidth of FastFair and PACTree
during insertion is equal or higher than that of SPTree, their high I/O actually results in
the lower performance. When the write buffer is enable for SPTree (sptree-B), the total
I/O is reduced by 3X. This is mainly because by using write buffer, we reduce the write
amplification as well as the read amplification as mentioned in section 4.3.4.

Positive Read. We see 25% performance improvement for SPTree over the others.
This advantage mainly comes from the reduced I/O during search in the internal nodes. As
shown in Figure 4.6f, SPTree’s I/O is only 1/3 of the others. When write buffer is enabled,
we see slightly performance improvement over the one without buffer. This is because the
write buffer also functions as a read buffer for Positive Read. Hence a small portion
of the request does not touch the Bnode (PMEM). That’s why I/O of sptree-B is lower, as
shown in Figure 4.6f.

Negative Read. SPTree has 4X performance improvement compared with the other
two trees, as shown in Figure 4.6c. This is because we cache the existing keys in the
Mnodes’ bloom filter, which filters out most of the unnecessary PMEM access during Neg-
ative Read. As shown in Figure 4.6g and 4.6k, there is nearly no PMEM I/O and we barely
read the PMEM. All the saved bandwidth can be used to servicing other requests.

Scan. Both SPTree and PACTree use an indirection array for sorting keys in the
leaf node. This strategy comes with a cost of higher read amplification compared with
the physically sorted key-value pairs in FastFair. As shown in Figure 4.6h, SPTree and
PACTree have higher I/O during Scan. However, thanks to the low overhead of the DRAM
top layer, SPTree’s scan performance is only 10% lower than FastFair, while PACTree is
30% lower.

76

Fa
st

&F
ai

r Median:
2.41us

Insert
Median:
1.52us

Positive Read
Median:
2.19us

Negative Read
Pa

ct
re

e Median:
2.94us

Median:
1.55us

Median:
1.16us

SP
Tr

ee

Median:
1.90us

Median:
1.23us

Median:
0.47us

2us 5us 8us

SP
Tr

ee
-B Median:

0.84us

2us 4us 6us

Median:
1.19us

2us 4us 6us

Median:
0.47us

Figure 4.7: Latency Comparison

4.5.3 Latency Comparison
In this section, we evaluate the read/write latency of all the trees. We use 20 threads

to write 120 million key-value items. Each thread sends 4 million read requests.
As shown in Figure 4.7, SPTree always has the lowest latency among the other two

trees in all the test workloads (Insert, Positive Read, Negative Read). By
caching the internal nodes in DRAM, the random pointer chasing problem in PMEM is
avoided. Meanwhile, caching inserted keys in bloom filter also help SPTree avoid the
access to PMEM for non-existing keys. In our practice, after 120 million key-value pairs
are inserted, the false positive rate is around 5%. It is worth noting that when write buffer
is enabled, the insert latency for SPTree (SPTree-B) reduces 3X compared with the one
without write buffer, which is at the cost of only around 30% DRAM footprint.

4.5.4 Recovery
If write buffer for SPTree is not enabled, SPTree can start servicing the requests

without rebuilding the DRAM top and middle layer because the PMEM top layer can be
used. In the meantime, it can rebuild the DRAM layers in the background and then put it
into usage. As shown in Figure 4.8, the time to rebuild the DRAM top and middle layer is
negligible (1 second for 250 million keys) because we rebuild the DRAM layers based on
the packed PMEM top layer in parallel.

77

0m 50m 100m 150m 200m 250m
Recovered Keys

0.0

0.5

1.0

Re
co

ve
ry

 T
im

e(
s)

Figure 4.8: Recovery time to rebuild DRAM top and middle layer.

4.6 Summary
We introduce SPTree, a persistent B+-Tree designed for high-performance system

in this paper. By enabling caching (internal nodes and existing keys) and write buffer at a
cost of reasonable DRAM footprint, and two-phase writes to reduce usage of flush&fence,
SPTree minimizes the PMEM I/O traffic and achieves 2X to 4X improvement of access
performance over the state-of-the-art PMEM B+-Tree designs in terms of both throughput
and latency.

78

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Contributions
The contribution of this dissertation can be summarized as follows:

• We introduce WipDB, a key-value store designed to manage small key-value items
in a storage system of large capacity. By introducing approximate sorting and the
write-in-place LSM-tree scheme, WipDB minimizes write amplification for LSM-
tree-based KV stores. Meanwhile, the read-aware scheduling of compaction moves
most compaction off the critical path of read service. Our results show that WipDB
can significantly improve for both write and mixed read/write workloads.

• We design TurboHash, a persistent hash table designed for high-performance key-
value stores in this paper. By enabling out-of-place update at a cost equivalent to that
for an in-place write, conducting probing on a path sequentially and only for a neces-
sary length, and utilizing Intel Optane DC’s hardware feature, TurboHash minimizes
the Pmem I/O traffic and achieves 2× to 8× improvement of access performance
over state-of-the-art Pmem hash table designs

• We propose Spot-on, which turns an index structure designed for persistent memory
into a much faster one with application-managed caching and buffering. We develope
SPTree, which provides higher write and read throughput up to 2X - 4X respectively
compared with the state-of-the-art design.

5.2 Future Work: Data rearrangement supporting log-structured stor-
age
Log-structured stores have been widely used in storage systems for storing massive

amount of data over the past decades [41, 42, 17, 75, 63, 47, 56, 11, 49, 70]. It is a log-based
architecture that optimizes write by avoiding random writes. Since all writes, including
updates, are appended in a circular log, an in-memory index is maintained to retrieve the
valid data. As a consequence, the space occupied by invalid data is recycled by garbage
collection (GC) process. For update-intensive workloads, as more requests are received,
frequent GC operations will be triggered, leading to massive I/Os due to the movement of
valid data. Such frequent GC incurs a high write amplification (WA). A work [49] reports

79

that the WA can reach to 20× for update-intensive workload with Zipfian distribution. The
high WA is harmful to both performance and SSD endurance as SSD has limited amount
of P/E cycles [33].

To reduce the write amplification caused by frequent garbage collection, many re-
search works focus on improving GC efficiency. One approach, HashKV [11], uses hash-
ing to partition the data based on the access frequency (hotness awareness) such that hot
data and cold data can be separated into different logs. The main idea of the hotness aware-
ness is that updates to the hot data can be accumulated and be recycled together, which
reduces the rewrite of the cold data and decreases WA. Another optimization (KVell[47])
allows overwriting in the append log. All insertions are appended to a circular log while
a list is maintained to archive the position of the deleted data. Those spaces are used to
store new records of the same size. However, there are restrictions for those optimizations
to work. For HashKV, it inevitably rewrites the cold data to a separate log during GC to
enable Hot-cold data separation. The second work only supports fixed-size records.

For cloud storage that is built on the distributed log-structured store, network through-
put is another concern besides write amplification. As most of the data movement passes
through the network, high write amplification may cause high network saturation, which
harms the quality of service in terms of latency as delivering high network throughput
results in rising latency. Mohammad et al.[1] provides a solution that sacrifices part of
network bandwidth for latency. By capping utilization of the link capacity (e.g. 90%),
they free up space for sensitive requests and avoid buffering as well as the associated large
delays. However, this is a trade-off between latency and available network bandwidth. For
distributed log-structured stores, as the high WA may quickly saturate the entire network
capacity, there will not be available network resources for this trade-off.

With the support of new hardware and software design, e.g., page re-mapping support
in the FTL of SSDs, the data movement cost can be optimized and reduced considerably.
I am interested in analyzing the workload and the distribution of garbage data, and extend
my research to support efficient data movement in log-structured store design in the future.

80

REFERENCES
[1] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda. Less is more: Trading

a little bandwidth for ultra-low latency in the data center. In Presented as part of the 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 12), pages 253–266, San Jose,
CA, 2012. USENIX.

[2] A. Appleby. Murmurhash. https://sites.google.com/site/murmurhash/, 2008.

[3] J. Arulraj, J. Levandoski, U. F. Minhas, and P.-A. Larson. Bztree: A high-performance latch-free range
index for non-volatile memory. Proceedings of the VLDB Endowment, 11(5):553–565, 2018.

[4] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Workload analysis of a large-scale
key-value store. In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint International
Conference on Measurement and Modeling of Computer Systems, SIGMETRICS ’12, pages 53–64,
New York, NY, USA, 2012. ACM.

[5] O. Balmau, D. Didona, R. Guerraoui, W. Zwaenepoel, H. Yuan, A. Arora, K. Gupta, and P. Konka.
Triad: Creating synergies between memory, disk and log in log structured key-value stores. In USENIX
ATC ’17, pages 363–375, 2017.

[6] O. Balmau, R. Guerraoui, V. Trigonakis, and I. Zablotchi. Flodb: Unlocking memory in persistent
key-value stores. In Proceedings of the Twelfth European Conference on Computer Systems, EuroSys
’17, pages 80–94, New York, NY, USA, 2017. ACM.

[7] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding a needle in haystack: Facebook’s photo
storage. In Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementa-
tion, OSDI’10, page 47–60, USA, 2010. USENIX Association.

[8] A. D. Breslow, D. P. Zhang, J. L. Greathouse, N. Jayasena, and D. M. Tullsen. Horton tables: Fast
hash tables for in-memory data-intensive computing. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 281–294, Denver, CO, June 2016. USENIX Association.

[9] W. Cai, H. Wen, H. A. Beadle, M. Hedayati, and M. L. Scott. Understanding and optimizing persistent
memory allocation. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, PPoPP ’20, page 421–422, New York, NY, USA, 2020. Association for
Computing Machinery.

[10] H. H. Chan, C.-J. M. Liang, Y. Li, W. He, P. P. Lee, L. Zhu, Y. Dong, Y. Xu, Y. Xu, J. Jiang, et al.
Hashkv: Enabling efficient updates in {KV} storage via hashing. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 1007–1019, 2018.

[11] H. H. W. Chan, Y. Li, P. P. C. Lee, and Y. Xu. Hashkv: Enabling efficient updates in kv storage via
hashing. In Proceedings of the 2018 USENIX Conference on Usenix Annual Technical Conference,
USENIX ATC ’18, page 1007–1019, USA, 2018. USENIX Association.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst.,
26(2):4:1–4:26, June 2008.

[13] J. Chen, L. Chen, S. Wang, G. Zhu, Y. Sun, H. Liu, and F. Li. Hotring: A hotspot-aware in-memory key-
value store. In 18th USENIX Conference on File and Storage Technologies (FAST 20), pages 239–252,
Santa Clara, CA, Feb. 2020. USENIX Association.

81

https://sites.google.com/site/murmurhash/

[14] S. Chen and Q. Jin. Persistent b+-trees in non-volatile main memory. Proc. VLDB Endow., 8(7):786–
797, Feb. 2015.

[15] Z. Chen, Y. Huang, B. Ding, and P. Zuo. Lock-free concurrent level hashing for persistent memory.
In 2020 USENIX Annual Technical Conference (USENIX ATC 20), pages 799–812, online, July 2020.
USENIX Association.

[16] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking cloud serving
systems with ycsb. In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC ’10, page
143–154, New York, NY, USA, 2010. Association for Computing Machinery.

[17] H. Dai, M. Neufeld, and R. Han. Elf: An efficient log-structured flash file system for micro sensor
nodes. In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems,
SenSys ’04, page 176–187, New York, NY, USA, 2004. Association for Computing Machinery.

[18] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concurrency: The secret to scaling concur-
rent search data structures. ACM SIGARCH Computer Architecture News, 43(1):631–644, 2015.

[19] A. Davoudian, L. Chen, and M. Liu. A survey on nosql stores. ACM Comput. Surv., 51(2), Apr. 2018.

[20] N. Dayan and S. Idreos. Dostoevsky: Better space-time trade-offs for lsm-tree based key-value stores
via adaptive removal of superfluous merging. In Proceedings of the 2018 International Conference on
Management of Data, SIGMOD ’18, pages 505–520, New York, NY, USA, 2018. ACM.

[21] N. Dayan and S. Idreos. The log-structured merge-bush & the wacky continuum. In Proceedings of the
2019 International Conference on Management of Data, SIGMOD ’19, page 449–466, New York, NY,
USA, 2019. Association for Computing Machinery.

[22] B. Debnath, A. Haghdoost, A. Kadav, M. G. Khatib, and C. Ungureanu. Revisiting hash table design for
phase change memory. In Proceedings of the 3rd Workshop on Interactions of NVM/FLASH with Op-
erating Systems and Workloads, INFLOW ’15, New York, NY, USA, 2015. Association for Computing
Machinery.

[23] B. Debnath, A. Haghdoost, A. Kadav, M. G. Khatib, and C. Ungureanu. Revisiting hash table design for
phase change memory. In Proceedings of the 3rd Workshop on Interactions of NVM/FLASH with Op-
erating Systems and Workloads, INFLOW ’15, New York, NY, USA, 2015. Association for Computing
Machinery.

[24] B. Debnath, S. Sengupta, and J. Li. Flashstore: High throughput persistent key-value store. Proc.
VLDB Endow., 3(1–2):1414–1425, Sept. 2010.

[25] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available key-value store. In Proceedings of
Twenty-first ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07, pages 205–220,
New York, NY, USA, 2007. ACM.

[26] Facebook. Rocksdb. https://rocksdb.org.

[27] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Extendible hashing—a fast access method for
dynamic files. ACM Trans. Database Syst., 4(3):315–344, Sept. 1979.

[28] B. Fan, D. G. Andersen, and M. Kaminsky. Memc3: Compact and concurrent memcache with dumber
caching and smarter hashing. In 10th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 13), pages 371–384, Lombard, IL, Apr. 2013. USENIX Association.

[29] K. Fraser. Practical lock-freedom. Technical Report UCAM-CL-TR-579, University of Cambridge,
Computer Laboratory, Feb. 2004.

[30] Google. Leveldb. https://github.com/google/leveldb, 2020.

82

[31] M. Herlihy, N. Shavit, and M. Tzafrir. Hopscotch hashing. In G. Taubenfeld, editor, Distributed
Computing, pages 350–364, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[32] D. Hu, Z. Chen, J. Wu, J. Sun, and H. Chen. Persistent memory hash indexes: An experimental
evaluation. Proc. VLDB Endow., 14(5):785–798, Jan. 2021.

[33] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka. Write amplification analysis in flash-based
solid state drives. In Proceedings of SYSTOR 2009: The Israeli Experimental Systems Conference,
SYSTOR ’09, New York, NY, USA, 2009. Association for Computing Machinery.

[34] D. Hwang, W.-H. Kim, Y. Won, and B. Nam. Endurable transient inconsistency in Byte-Addressable
persistent B+-Tree. In 16th USENIX Conference on File and Storage Technologies (FAST 18), pages
187–200, Oakland, CA, Feb. 2018. USENIX Association.

[35] Intel. Intel optane persistent memory. https://www.intel.com/content/www/us/en/
products/memory-storage/optane-dc-persistent-memory.html, 2021.

[36] W. Jannen, J. Yuan, Y. Zhan, A. Akshintala, J. Esmet, Y. Jiao, A. Mittal, P. Pandey, P. Reddy, L. Walsh,
et al. Betrfs: Write-optimization in a kernel file system. ACM Transactions on Storage (TOS), 11(4):1–
29, 2015.

[37] O. Kaiyrakhmet, S. Lee, B. Nam, S. H. Noh, and Y. ri Choi. Slm-db: Single-level key-value store with
persistent memory. In 17th USENIX Conference on File and Storage Technologies (FAST 19), pages
191–205, Boston, MA, Feb. 2019. USENIX Association.

[38] S. Kannan, N. Bhat, A. Gavrilovska, A. Arpaci-Dusseau, and R. Arpaci-Dusseau. Redesigning lsms for
nonvolatile memory with novelsm. In 2018 USENIX Annual Technical Conference (USENIX ATC 18),
pages 993–1005, Boston, MA, July 2018. USENIX Association.

[39] W.-H. Kim, R. M. Krishnan, X. Fu, S. Kashyap, and C. Min. Pactree: A high performance persistent
range index using pac guidelines. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, SOSP ’21, page 424–439, New York, NY, USA, 2021. Association for Computing
Machinery.

[40] D. E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting and Searching. Addison
Wesley Longman Publishing Co., Inc., USA, 1998.

[41] J. T. Kohl, C. Staelin, and M. Stonebraker. Highlight: Using a log-structured file system for tertiary
storage management. In USENIX Winter, 1993.

[42] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and S. Moriai. The linux implementation of a
log-structured file system. SIGOPS Oper. Syst. Rev., 40(3):102–107, July 2006.

[43] R. M. Krishnan, W.-H. Kim, X. Fu, S. K. Monga, H. W. Lee, M. Jang, A. Mathew, and C. Min. TIPS:
Making volatile index structures persistent with dram-nvmm tiering. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21), pages 773–787. USENIX Association, July 2021.

[44] S. K. Lee, J. Mohan, S. Kashyap, T. Kim, and V. Chidambaram. Recipe: Converting concurrent dram
indexes to persistent-memory indexes. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, page 462–477, New York, NY, USA, 2019. Association for Computing
Machinery.

[45] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: Artful indexing for main-memory
databases. In Proceedings of the 2013 IEEE International Conference on Data Engineering (ICDE
2013), ICDE ’13, pages 38–49, Washington, DC, USA, 2013. IEEE Computer Society.

[46] V. Leis, F. Scheibner, A. Kemper, and T. Neumann. The art of practical synchronization. In Proceedings
of the 12th International Workshop on Data Management on New Hardware, DaMoN ’16, New York,
NY, USA, 2016. Association for Computing Machinery.

83

https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html

[47] B. Lepers, O. Balmau, K. Gupta, and W. Zwaenepoel. Kvell: The design and implementation of a fast
persistent key-value store. In Proceedings of the 27th ACM Symposium on Operating Systems Princi-
ples, SOSP ’19, page 447–461, New York, NY, USA, 2019. Association for Computing Machinery.

[48] B. Lu, X. Hao, T. Wang, and E. Lo. Dash: Scalable hashing on persistent memory. Proc. VLDB Endow.,
13(8):1147–1161, Apr. 2020.

[49] L. Lu, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Wisckey: Separating keys from
values in ssd-conscious storage. In 14th USENIX Conference on File and Storage Technologies (FAST
16), pages 133–148, Santa Clara, CA, Feb. 2016. USENIX Association.

[50] L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Wisckey:
Separating keys from values in ssd-conscious storage. ACM Trans. Storage, 13(1):1–28, 2017.

[51] F. Mei, Q. Cao, H. Jiang, and J. Li. Sifrdb: A unified solution for write-optimized key-value stores
in large datacenter. In Proceedings of the ACM Symposium on Cloud Computing, SoCC ’18, pages
477–489, New York, NY, USA, 2018. ACM.

[52] M. Nam, H. Cha, Y. ri Choi, S. H. Noh, and B. Nam. Write-optimized dynamic hashing for persistent
memory. In 17th USENIX Conference on File and Storage Technologies (FAST 19), pages 31–44,
Boston, MA, Feb. 2019. USENIX Association.

[53] F. Ni and S. Jiang. Rapidcdc: Leveraging duplicate locality to accelerate chunking in cdc-based dedupli-
cation systems. In Proceedings of the ACM Symposium on Cloud Computing, SoCC ’19, page 220–232,
New York, NY, USA, 2019. Association for Computing Machinery.

[54] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, et al. Scaling memcache at facebook. In USENIX NSDI ’13, pages 385–398, 2013.

[55] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani. Scaling memcache at facebook. In 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 13), pages 385–398, Lombard,
IL, Apr. 2013. USENIX Association.

[56] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley db. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference, ATEC ’99, page 43, USA, 1999. USENIX Association.

[57] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured merge-tree (lsm-tree). Acta Inf.,
33(4):351–385, June 1996.

[58] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner. Fptree: A hybrid scm-dram persistent
and concurrent b-tree for storage class memory. In Proceedings of the 2016 International Conference
on Management of Data, SIGMOD ’16, page 371–386, New York, NY, USA, 2016. Association for
Computing Machinery.

[59] R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144, May 2004.

[60] S. Patil and G. Gibson. Scale and concurrency of giga+: File system directories with millions of files.
In 9th USENIX Conference on File and Storage Technologies (FAST 11), volume 11, pages 13–13, San
Jose, CA, Feb. 2011. USENIX Association.

[61] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun. ACM, 33(6):668–676, June
1990.

[62] P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham. Pebblesdb: Building key-value stores using
fragmented log-structured merge trees. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, pages 497–514, New York, NY, USA, 2017. ACM.

84

[63] P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham. Pebblesdb: Building key-value stores using
fragmented log-structured merge trees. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, page 497–514, New York, NY, USA, 2017. Association for Computing Machin-
ery.

[64] K. Ren and G. Gibson. Tablefs: Enhancing metadata efficiency in the local file system. In Proceedings
of the 2013 USENIX Conference on Annual Technical Conference, USENIX ATC’13, pages 145–156,
Berkeley, CA, USA, 2013. USENIX Association.

[65] M. Sadoghi, S. Bhattacherjee, B. Bhattacharjee, and M. Canim. L-store: A real-time OLTP and OLAP
system. In M. H. Böhlen, R. Pichler, N. May, E. Rahm, S. Wu, and K. Hose, editors, EDBT 2018,
Vienna, Austria, March 26-29, 2018, pages 540–551. OpenProceedings.org, 2018.

[66] F. Schmuck and R. Haskin. Gpfs: A shared-disk file system for large computing clusters. In Proceed-
ings of the 1st USENIX Conference on File and Storage Technologies, FAST ’02, page 19–es, USA,
2002. USENIX Association.

[67] R. Sears and R. Ramakrishnan. blsm: A general purpose log structured merge tree. In Proceedings
of the 2012 ACM SIGMOD International Conference on Management of Data, SIGMOD ’12, pages
217–228, New York, NY, USA, 2012. ACM.

[68] P. Shetty, R. Spillane, R. Malpani, B. Andrews, J. Seyster, and E. Zadok. Building workload-
independent storage with vt-trees. In Proceedings of the 11th USENIX Conference on File and Storage
Technologies, FAST’13, pages 17–30, Berkeley, CA, USA, 2013. USENIX Association.

[69] R. Thonangi and J. Yang. On log-structured merge for solid-state drives. In 2017 IEEE 33rd Interna-
tional Conference on Data Engineering (ICDE), pages 683–694. IEEE, 2017.

[70] H. T. Vo, S. Wang, D. Agrawal, G. Chen, and B. C. Ooi. Logbase: A scalable log-structured database
system in the cloud. Proc. VLDB Endow., 5(10):1004–1015, June 2012.

[71] Q. Wang, Y. Lu, J. Li, and J. Shu. Nap: A black-box approach to numa-aware persistent memory
indexes. In 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI 21),
pages 93–111. USENIX Association, July 2021.

[72] X. Wu, F. Ni, and S. Jiang. Search lookaside buffer: Efficient caching for index data structures. In
Proceedings of the 2017 Symposium on Cloud Computing, SoCC ’17, page 27–39, New York, NY,
USA, 2017. Association for Computing Machinery.

[73] X. Wu, Y. Xu, Z. Shao, and S. Jiang. Lsm-trie: An lsm-tree-based ultra-large key-value store for
small data. In Proceedings of the 2015 USENIX Conference on Usenix Annual Technical Conference,
USENIX ATC ’15, pages 71–82, Berkeley, CA, USA, 2015. USENIX Association.

[74] L. Xiang, X. Zhao, J. Rao, S. Jiang, and H. Jiang. Characterizing the performance of intel optane
persistent memory: A close look at its on-dimm buffering. In Proceedings of the Seventeenth European
Conference on Computer Systems, EuroSys ’22, page 488–505, New York, NY, USA, 2022. Association
for Computing Machinery.

[75] J. Xu and S. Swanson. NOVA: A log-structured file system for hybrid volatile/non-volatile main mem-
ories. In 14th USENIX Conference on File and Storage Technologies (FAST 16), pages 323–338, Santa
Clara, CA, Feb. 2016. USENIX Association.

[76] B. Yan, X. Cheng, B. Jiang, S. Chen, C. Shang, J. Wang, K. Huang, X. Yang, W. Cao, and F. Li.
Revisiting the design of lsm-tree based OLTP storage engine with persistent memory. Proc. VLDB
Endow., 14(10):1872–1885, 2021.

[77] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson. An empirical guide to the behavior
and use of scalable persistent memory. In 18th USENIX Conference on File and Storage Technologies
(FAST 20), pages 169–182, Santa Clara, CA, Feb. 2020. USENIX Association.

85

[78] T. Yao, Y. Zhang, J. Wan, Q. Cui, L. Tang, H. Jiang, C. Xie, and X. He. Matrixkv: Reducing write
stalls and write amplification in lsm-tree based KV stores with matrix container in NVM. In 2020
USENIX Annual Technical Conference (USENIX ATC 20), pages 17–31, online, July 2020. USENIX
Association.

[79] Y. Yue, B. He, Y. Li, and W. Wang. Building an efficient put-intensive key-value store with skip-tree.
IEEE Transactions on Parallel and Distributed Systems, 28(4):961–973, April 2017.

[80] L. Zhang and S. Swanson. Pangolin: A fault-tolerant persistent memory programming library. In 2019
USENIX Annual Technical Conference (USENIX ATC 19), pages 897–912, Renton, WA, July 2019.
USENIX Association.

[81] W. Zhang, X. Zhao, S. Jiang, and H. Jiang. Chameleondb: A key-value store for optane persistent
memory. In Proceedings of the Sixteenth European Conference on Computer Systems, EuroSys ’21,
page 194–209, New York, NY, USA, 2021. Association for Computing Machinery.

[82] zhichao Cao, S. Dong, S. Vemuri, and D. H. Du. Characterizing, modeling, and benchmarking rocksdb
key-value workloads at facebook. In 18th USENIX Conference on File and Storage Technologies (FAST
20), pages 209–223, Santa Clara, CA, Feb. 2020. USENIX Association.

[83] P. Zuo and Y. Hua. A write-friendly and cache-optimized hashing scheme for non-volatile memory
systems. IEEE Transactions on Parallel and Distributed Systems, 29(5):985–998, 2018.

[84] P. Zuo, Y. Hua, and J. Wu. Write-optimized and high-performance hashing index scheme for persistent
memory. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18),
pages 461–476, Carlsbad, CA, Oct. 2018. USENIX Association.

[85] P. Zuo, J. Sun, L. Yang, S. Zhang, and Y. Hua. One-sided rdma-conscious extendible hashing for
disaggregated memory. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pages 15–
29. USENIX Association, July 2021.

[86] Y. Zuriel, M. Friedman, G. Sheffi, N. Cohen, and E. Petrank. Efficient lock-free durable sets. Proc.
ACM Program. Lang., 3(OOPSLA), Oct. 2019.

86

BIOGRAPHICAL STATEMENT

Xingsheng Zhao was born in Xuancheng, Anhui in 1991. He received his B.E.,
M.E. degrees of Automation from Southeast University, Nanjing, China, in 2013 and 2016,
respectively. He received his Ph.D. degree of Computer and Information Sciences from
University of Texas at Arlington in 2022. His main areas of research interest are high
performance key-value stores, persistent index data structures and storage system.

87

	ACKNOWLEDGEMENTS
	ABSTRACT
	INTRODUCTION
	Reducing the Write Amplification for Key-Value Stores
	Reducing Overhead for Crash-consistent Indexes on NVMs
	Using Hybrid DRAM-PMEM architecture to improve indexes performance for persistent memory
	Organization

	WIPDB: A WRITE-IN-PLACE KEY-VALUE STORE THAT MIMICS BUCKET SORT
	Introduction
	Background
	Why LSM-tree?
	Why Approximate Sorting?
	Overcoming Variation of Key Density
	The Write-in-place Approach

	The WipDB Design
	The WipDB Architecture
	The Operations
	Efficiency and Persistence of MemTables
	Support of Range Search
	Bucket Splitting and Merging
	Use of Write Ahead Log for DRAM resident MemTable
	Read-aware Compaction Scheduling

	Evaluation
	Experiment Setup
	Write Performance
	Read Performance
	Impact of WAL on Restart Time
	Results of the YCSB Benchmarks

	Related Work
	Optimizations for efficient compaction.
	The tiering merge scheme.
	Key-value separation.
	In-memory key-value stores

	Summary

	TURBOHASH: A HASH TABLE FOR KEY-VALUE STORE ON PERSISTENT MEMORY
	Introduction
	Motivations
	Probing Scope and Distance.
	Sequential and Random Accesses.

	The Design of TurboHash
	The Architecture
	Establishing the Search Path
	A Bucket's Data Structure
	Insert, Update, Delete, and Read
	Shard Resizing & Failure Recovery

	Evaluation
	Experiment Setup
	Overall Performance
	Latency Comparison
	Results of YCSB Benchmarks
	Load Factor
	Probing Distance
	Shard Rehashing

	Related Work
	Hash Table for Persistent Memory
	Hash Table Concurrency Control

	Summary
	Appendix

	Spot-On: Optimizing Use of DRAM to Improve Performance of Index Structures on Intel Optane DC Persistent Memory
	Introduction
	DRAM as a Cache of PMEM
	DRAM as a Write Buffer of PMEM

	Background
	Non-Volatile Memory
	Persistent Indexes

	Case Study
	Case Study: Buffering
	Case Study: Out-place-update
	Case Study: Caching
	Combine Together

	Design
	Three layers in SPTree
	Concurrent Control
	Search Operation
	Insert/Update/Delete/Lookup/scan
	Split and Merge
	Recovery and Crash Consistency

	Evaluation
	Experiment Setup
	Overall Performance
	Latency Comparison
	Recovery

	Summary

	CONCLUSIONS AND FUTURE WORK
	Contributions
	Future Work: Data rearrangement supporting log-structured storage

	REFERENCES
	BIOGRAPHICAL STATEMENT

