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ABSTRACT

LEARNING TOPOLOGY PRESERVING EMBEDDINGS FOR

SPEEDING UP NEAREST NEIGHBOR RETRIEVAL

MASON LARY, M.S.

The University of Texas at Arlington, 2022

Supervising Professor: Vassilis Athitsos

Given a database of objects and a query object, it’s possible to gather

a number of the closest neighbors to the query object. This operation is

important to a number of diverse fields such as computer vision, content-

based information retrieval, and chemistry. However, distance measures used

to determine neighbors can cause queries to be computationally expensive,

either because the distance measure is complex or because it is nonmetric

and prevents efficient indexing methods.

This work presents novel methods of triplet mining that enable neu-

ral networks using triplet loss to learn the manifold that data resides in.

These neural networks can learn to embed arbitrary data with arbitrary dis-

tance measures between them. Experiments are performed on an offline digit

dataset, speech commands, and offline and online sign language data. Re-

sults demonstrate effectiveness over a baseline when a network architecture



suited for a particular dataset is trained. When compared to other meth-

ods of topology preserving embeddings, the neural network based method

outperforms in all but one dataset. Results show there is not a particular

method of triplet mining that vastly outperforms the others, and the best

method likely depends on the problem being addressed.
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Chapter 1

Introduction

In this thesis, we demonstrate that networks trained with triplet loss are ca-

pable of topology preserving encodings when triplets are chosen intelligently.

This encoding is capable of speeding up nearest neighbor queries in a variety

of situations. This chapter serves as an introduction to nearest neighbors,

topology preserving encodings, and some of the applications that can benefit

from these encodings. It concludes with the contributions produced by this

work.

1.1 Nearest Neighbors Retrieval

K nearest neighbors is a simple algorithm where a query object is presented to

a database of other objects, and the k nearest database objects to the query

object are returned. These objects can then be used in further processing,

1



Figure 1.1: An example of the KNN algorithm. When asked for the 2 nearest
neighbors of query object q, objects 1 and 2 would be returned if L2 is used
as a distance measure.

such as when trying to classify the object, or can be used as-is in the case of

a retrieval problem.

To determine the nearest neighbors, a distance function d must be used.

Typically, d is a Minkowski distance such as L2 between query objects and

database objects. However, as seen in Figure 1.2, a Minkowski distance

may perform poorly for a particular space. Fortunately, specialized distance

functions exist in several domains that can provide superior classification

accuracy compared to Euclidean distances [1–4]. Unfortunately, these cus-

tomized distance functions are generally much less efficient to compute than

Minkowski distances. With large datasets of objects, using these distances

with query points can be too slow for applications.

In addition, many of these domain specific distances are nonmetric and do

not follow the triangle inequality. Unfortunately, many of the data structures
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Figure 1.2: A demonstration from [5] of how Euclidean distance measures
may be inappropriate in certain spaces. In the C curve, data points at the
ends of the manifold would be considered close using Euclidean distance while
being far apart if the manifold is followed. However, the geodesic distance
is likely more expensive to calculate. By embedding this curve into a 1D
shape, the efficient Euclidean distance can be taken in place of the geodesic
distance and still provide the same results.

that are used to speed up nearest neighbor searches rely on the triangle

inequality holding in the space [6–9]. Without this guarantee, brute-force

searches must be performed, further slowing down queries. As represented in

Figure 1.2, this work presents a method of training neural networks to embed

data points from these nonmetric spaces into lower dimensional metric spaces

where efficient retrieval methods can be performed.

3



1.2 Topology Preservation

An embedding that attempts to speed up nearest neighbor computations is

useless unless it maintains the relative distances between objects. In other

words, between objects A, B, and C in a space, if A and B are closer than

A and C, this relationship should hold in the embedded space. Perfectly

preserving the topology of the original space would allow nearest neighbor

queries to return the exact same results as in the original space.

It’s usually impossible to perfectly preserve these relationships. However,

for use with k nearest neighbors, relationships need to be preserved only for

k neighbors of an object, meaning only local relationships need to be focused

on. The methods of triplet mining presented in this work attempt to focus

on these local relationships, ignoring the extraneous global structure of the

data.

1.3 Applications

Retrieval problems based on nearest neighbors can be found in many fields,

all of which could benefit from this work. This section explores a few of these

applications.

4



Figure 1.3: A diagram from [10] demonstrating the mechanism of a CBIR
system for image retrieval. Images have features extracted and stored in the
database. When a query is presented, features are calculated for it and a
similarity measure is used to compare it to database feature vectors. The
most similar images are returned.

Content-Based Information Retrieval

Content-based information retrieval, or CBIR, refers to a number of systems

that are able to retrieve objects from a dataset using the content of a query.

Perhaps the most well known of these systems are reverse image services,

although similar systems exist for audio [11, 12] and document lookup [13].

For image lookup systems, we find several algorithms at play. They gen-

erally act by extracting features from images and using them in a distance
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function between images, as seen in 1.3. For instance, the QBIC system [14]

uses color, shape, and texture features to compare images. WebSeek [15] is

another of these systems that includes color and wavelet transform features

for comparison. Besides being useful for web searches, these systems can be

employed for more serious instances, such as medical diagnoses and adult

content detection [16].

Document retrieval systems also exist. As mentioned in [17, 18], signa-

ture files or inverted index files act as compressed vectors representing entire

documents, allowing for quick queries of a document database using a dis-

tance function. It’s even possible to store and retrieve audio this way, using

features such as loudness, bandwidth, and pitch [19, 20].

Chemoinformatics

The structure of a molecule helps determine its properties. Therefore, when

designing drugs or determining the properties of a new molecule, knowing the

properties of similar molecules is incredibly useful. Databases of molecular

structure have been built up, and queries can be made to determine the

closest structures. Efficient distance measure design is therefore important

as the size of these databases grow [21, 22].
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Robotics

Robotic systems can employ nearest neighbor-based systems for a number

of tasks. For instance, in human-robot interaction [23], the exploration of

complex environments [24], or even approximating inverse kinematics [25].

For all of these systems, speeding up the nearest neighbor search while

retaining accuracy is a prime goal. Specialized distance functions are created

that work on object representations to find nearest neighbors when given

a query object. The work presented here can obviously have an impact in

these fields, as it attempts to solve the same problem, but in a general way.

Instead of defining specific methods for the data, a generic method can be

applied to new data types to reduce their dimensions and speed up database

retrieval.

1.4 Thesis Contributions

As has been shown, methods for speeding up nearest neighbor search are

heavily researched in both academic and industrial applications. Accurate

distance functions are effectively useless in a world of large datasets if they

are not efficient. In order to reach the speed required by a production system,

either distance functions need to be simpler or need to be metric, which may

come at the cost of decreased accuracy.

The work presented here demonstrates Siamese neural networks trained

using triplet loss. While this is not a novel approach, a large part of training

7



these networks comes from choosing training examples. This work presents

novel methods for triplet mining with the express purpose of speeding up

these nearest neighbor queries by weighting objects based on their distance

from the anchor point.

These methods are agnostic to the type of the network and the type of

data, as long as it can be passed into a network. This allows for a gen-

eral solution to this problem rather than specialized solutions for particular

applications, providing a significant speedup to queries in various domains.
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Chapter 2

Background

This chapter introduces some background information needed while going

forward in this thesis. Section 2.1 introduces the problem formally, along

with definitions and notation. Section 2.2 introduces some of the distance

functions that would be considered complex. Section 2.3 concludes the chap-

ter with an explanation of the filter and refine method for computing nearest

neighbors from embedded points.

2.1 Formal Problem Definition

We are given a space of objects A with a distance measure D between objects

in the space. A database of objects O is drawn from this space. To find the

k nearest neighbors of an object x ∈ A - O, we can compute D(x, y) for

∀y ∈ O and retrieve the k objects with the lowest distances.

9



Unfortunately, D may be an expensive distance function, and may there-

fore be prohibitive in a realistic application. What we require is a mapping

F: A → Rd which can map an object into a real d-dimensional space. From

here, an efficient Minkowski distance such as L2 can be applied to the mapped

objects to obtain a distance. This new distance function is represented by

θ. In other words, to obtain a distance in this new space, we can compute

θ(F (x), F (y)).

For this mapping to be useful, it should produce embedded points that

are topologically equivalent to the original space. Topological equivalence is

defined as follows: For all x, y, z ∈ A

θ(F (x), F (y)) < θ(F (x), F (z)) ↔ D(x, y) < D(x, z)

Unfortunately, perfectly preserving the topology of a higher dimensional

space through a lower dimensional mapping is incredibly difficult. Our goal

then is to create a mapping that tries to preserve as many of the relationships

between points as possible.

2.2 Computationally Expensive Distances

Throughout the introduction of this thesis, allusions have been made about

computationally expensive distance functions without a definition of what

they are. In this section, a few of these functions are presented.

10



The concept of computationally expensive distance functions is subjective

based on the system being implemented. For the purposes of this thesis,

the view taken in [26] that distances that are superlinear to compute in

the dimension of the objects are considered expensive. Since Minkowski

distances are linear to compute in the size of the vector, they are considered

computationally efficient.

Chamfer Distance

Figure 2.1: An example of the directed chamfer distance, where the distance
from each circle object to its nearest square neighbor is taken.

The chamfer distance is a distance measure between point clouds. Given

point clouds A and B, the directed chamfer distance is calculated as

D(A,B) =

∑
a∈Aminb∈B ||b− a||2

|A|

In other words, distances are calculated as the average distance from a

11



Figure 2.2: By converting images into binary images, chamfer distance can
be taken between two images. Here, the two stars will obviously show a lower
distance than the star and moon image

point in cloud 1 to its nearest point in cloud 2 using Euclidean distance, as

can be seen in Figure 2.1. The direct form of chamfer distance is obviously

not symmetrical, but an undirected form can be created as

Dsym(A,B) =
D(A,B) +D(B,A)

2

By converting images into binary images, they effectively act as point

clouds. They can then be compared with each other using chamfer distance,

a technique seen in Figure 2.2. This is a useful measure in problems such as

image matching [27, 28].

As mentioned in [26], chamfer distance is O(dlog d) where d is the number

of possible white pixels in an image. Finding the closest white pixel takes

O(log d) using a 2D binary search, and this process is done for O(d) pixels.

This makes chamfer distance superlinear and therefore inefficient for nearest

neighbors.

Also mentioned in [26], chamfer distance can be calculated in O(d) time

if the distance transform is calculated for each image. However, this would

12



require the storage of a distance transform for each database image. This

would effectively double the amount of storage needed for the database, which

is less than ideal.

Dynamic Time Warping (DTW)

Figure 2.3: Demonstrates an example of dynamic time warping and how it
maps points between two time series, even if they are on different temporal
scales.

Dynamic time warping is a distance measure employed on time series

that may have different lengths from each other. The approach is based on

dynamic programming and aligns the two time series in such a way that they

13



minimize a cost function.

Dynamic time warping and variants such as dynamic time-space warping

have been applied in many situations involving time series, such as speech

recognition and handwriting recognition [29–32].

In a naive form, DTW is O(NM) where N and M are lengths of sequences.

Recently, [33] showed that O(N2/loglog(N)) time and space can be achieved

for two inputs of length N, but this still doesn’t meet the criteria laid out in

the beginning of the section for an efficient distance measure. As described

in [34], DTW can also be generalized to time series with multiple dimensions.

Edit Distance

Figure 2.4: A visualization of the Levenshtein edit distance. This method
uses dynamic programming to find the alignment between two strings and
looking at the number of transformations to turn one string into another.

Various distance measures known as an edit distance can be defined on

the space of strings. These measures quantify dissimilarity between strings

by looking at the number of transforms to bring one string to the other. The

various measures differ in the types of operations they allow between the

14



strings.

For instance, the Levenshtein distance [35], the most common edit dis-

tance, uses the number of deletions, insertions, and substitutions between

two strings to compute a distance. Using these properties, dynamic pro-

gramming can be used to align the strings and find the distance value. The

dynamic programming algorithm has a runtime of O(mn) between strings of

length m and n. A more advanced edit distance called Smith-Waterson can

be employed to align sequences of DNA, which also uses an O(mn) dynamic

programming algorithm.

2.3 Filter and Refine

At retrieval time, we would normally embed the query object and find how-

ever many nearest neighbors are required by the application in the embedded

space. However, because our embedding process is likely far from perfect,

these neighbors are not likely to be the true neighbors of the query point.

However, if our embedding has been trained with fairly high accuracy,

then the nearest neighbors from the original space are likely still close to the

query. In that case, we can perform a filter and refine step to retrieve the

nearest neighbors to our query object

In filter and refine, we define a number of neighbors, p, in the embedding

space that we want to consider. This number p is greater than the number of

nearest neighbors k we would like to retrieve from the database. In the filter

15



step, we compute the distance between the query object and all database

objects using some efficient Minkowski distance. In the refine step, we utilize

the more expensive, but likely more accurate, distance function to recalculate

the order of the p nearest neighbors. From these p objects, we can retrieve

the k nearest neighbors.

A filter and refine strategy allows for an approximation of the nearest

neighbors, skipping the need to calculate the expensive distance function for

each database object. If the embedding performs well, this approximation

may not be far off from the ground truth nearest neighbors. This strategy

is quite common in nearest neighbor retrieval using dimensionality reduction

[3, 26, 36].
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Chapter 3

Related Work

Topology preserving encodings are useful for numerous purposes. Therefore,

there is much literature focusing on them. Presented is a small sample of the

works focused on topology preserving embeddings for use in dimensionality

reduction, data visualization, and the speedup of k nearest neighbor queries.

A survey of many of these methods can be found in [3, 5].

3.1 Topology Preserving Reductions

Nonlinear reduction is a broad topic consisting of methods that can reduce

the amount of dimensions in data that follow nonlinear relationships. Of

particular importance to this work are methods that preserve the topology

of the original space, although other reduction techniques exist, such as those

that attempt to preserve distance between objects, a much stricter restriction

17



than topology preservation. A reference for these methods as well as others

not focused on topology can be found at [5].

Many of these methods utilize a lattice to in order to describe the manifold

that the data exists on. A lattice is essentially a graph, where points in the

space are vertices and weighted edges represent distances between the points.

These methods can be categorized based on whether the lattice is fixed or

dynamic during the reduction process.

Self-Organizing Maps

Self-Organizing maps are a method of dimensionality reduction based on the

concept of vector quantization [5, 37]. Vector quantization is the representa-

tion of data points using a smaller number of prototype points. As a simple

example, k means represents a cluster using a centroid point.

An SOM starts out as a P dimensional lattice, where P is the dimension

of the embedding space. However, this lattice also has coordinates in the

data space. The goal of the learning algorithm is to learn these data space

coordinates.

In simple terms, points in the lattice are moved toward data points, sim-

ilar to the centroids moving in k means. However, rather than each lattice

point moving independently, neighboring lattice points are moved at the same

time. To determine the lower dimensional coordinates of a point in the data,

a nearest neighboring lattice point is chosen to represent it. Since the lattice

point has a lower dimensional coordinate, this can be used as the embedded

18



coordinates for the point. Because neighboring points in the lattice stay to-

gether as the lattice is morphed to the data, similar points in the data get

mapped to similar points in the lattice.

Self-Organizing maps have found success in data visualization and time

series forecasting [38, 39]. In their base form, they are algorithmically simple

to implement and can be quite robust when used for visualizations. How-

ever, being a vector quantization method, data is not actually embedded in

the lower dimensional space. In addition, lattices above 2 dimensions are

very tough to learn, limiting the ability of this method for creating higher

dimensional embeddings.

Generative Topographic Mappings

Proposed in [40], GTMs are essentially a probabilistic SOM. Points on the

lower dimensional manifold can be sampled and transformed through a non-

linear function to produce a point in the data space. Noise is added to the

point, turning the model into a mixture of Gaussians that can then be trained

through EM.

GTMs incur the same disadvantages as an SOM. Higher dimensional la-

tent spaces can not be used for the manifold, meaning embeddings of arbi-

trary dimensions are not possible.
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While both of these methods have been used successfully in several applica-

tions, neither can be used for embedding in arbitrary dimensions. The work

presented in this paper rectifies this issue and allows a user defined dimension

to map points to.

3.2 Data Visualization

t-SNE

t-SNE, or t-Distributed Stochastic Neighbor Embedding [41], is a popular

method for high dimensional data visualization. It attempts to view the

global structure of a dataset in a lower dimensional space by creating a lower

dimensional map with a similar distribution of points to the original space.

This is accomplished by using the distances between objects to generate

probabilities of points picking each other as neighbors. By minimizing the

KL divergence between the probability distributions in each space, similar

relative distances between objects are created in the lower space.

However, t-SNE suffers from a few issues that this paper attempts to

rectify. For instance, the main parameter for performing t-SNE mappings

is perplexity, which can be thought of as a continuous number of nearest

neighbors. This parameter is infamously confusing with works attempting

to remove it from the equation [42]. This issue is further compounded by

20



Figure 3.1: A visualization in 2 dimensions of the MNIST dataset using t-
SNE. Notice the clusters that form between items in the same class.

the fact that t-SNE is not deterministic, so viewing changes caused by this

parameter can be tricky.

Unfortunately, as a tool for pure visualization, t-SNE can not embed a

test set, preventing it from being used in the speedup of nearest neighbor

queries. In addition, since t-SNE is only useful for visualization, only low

dimensional maps can be used by it.

It should be noted that parametric versions of t-SNE have been created

which allow the embedding of new data points [43]. However, this work has

looked at the ability of the mapping to preserve classification accuracy, a

slightly less restrictive problem than preserving retrieval accuracy.
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UMAP

UMAP, or Uniform Manifold Approximation and Projection [44], is another

dimensionality reduction technique that is generally used for data visual-

izations. Using principles of Riemannian geometry and algebraic topology,

UMAP is able to embed a manifold into an arbitrary dimension.

What sets UMAP apart from t-SNE is its ability to embed new objects

into the learned space. This makes it useful as both a data visualization

technique and dimensionality reduction technique.

3.3 Efficient Nearest Neighbor Embeddings

The other methods in this section perform some form of dimensionality reduc-

tion that attempts to preserve relative distances between objects. However,

not all of these methods are built to embed new data points or result in a

space in which Minkowski distances can be taken. The following methods

attempt to perform both of these tasks.

SparseMap

SparseMap, discussed in [45], is a variant of a method of embedding known

as Lipschitz embeddings. The idea behind Lipschitz embeddings is to define

a coordinate space using subsets of elements in the dataset. A distance

function can be defined between objects and these reference sets. These

distances can then act as coordinates in this coordinate system. SparseMap
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presents heuristics that allow for efficient Lipschitz calculations.

MetricMap

MetricMap, discussed in [46], projects data from the original space into a

pseudo-Euclidean space, meaning some coordinate axes produced contribute

negatively to ”distances” between objects [3]. Projections of the data are

performed using pairs of reference objects, where the number of pairs used

determines the dimension of the embedded space.

FastMap

FastMap is described in [47] and is one of the methods of comparison used

in experiments. FastMap is similar to MetricMap in that each dimension of

the embedding is generated from a pair of objects in the space. In FastMap,

these projects are into a Euclidean space, rather than a pseudo-Euclidean

space. Unfortunately, the base form of FastMap can not handle nonmetric

distances and must be altered to embed nonmetric spaces [3].

BoostMap

BoostMap has several versions described in multiple papers [26, 48, 49] and

is the method most heavily focused on for comparisons. The version from

2004 has been chosen as a comparison with the method described in this

work.
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The idea behind BoostMap is that embeddings can be seen as equivalent

to combinations of weak classifiers. SparseMap, MetricMap, and FastMap

use geometric principles to find embeddings, but the view taken by BoostMap

allows for machine learning techniques to be applied to learn an embedding.

For each dimension, embeddings are defined as either the distance from a

reference object, or the projection onto the line between two reference objects

as seen in FastMap. These simple embeddings can be used on triplets of

objects (q, a, b) to act as weak classifiers, determining if a or b is closer to

q.

The objects that act as reference objects belong to C and the objects

that can be used for triplets belong to T . The number of triplets that can

be created is also capped to a user specified value to control the runtime of

the algorithm.

Finding the best combination and weights of a group of weak classifiers

can be done using AdaBoost. At the end of training, the final embedding

can be found by applying each learned 1-dimensional embedding to the data.

BoostMap has been shown to perform well across under a variety of situations

[26, 48–50].
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Chapter 4

Triplet Mining Methods

This chapter presents the techniques employed and invented for this work.

Section 4.1 explains triplet loss and its importance in topology preservation.

Section 4.2 covers the triplet mining technique used by our networks.

4.1 Triplet Loss

When training neural networks, the loss function is of utmost importance. It

determines what the network learns by penalizing outputs that don’t conform

to the expected. For instance, a neural network set to classify objects can

have a cross entropy loss function, which penalizes outputs which classify the

object as something different from its actual label.

These neural networks can embed objects into any dimension. However,

to obtain topology preservation, we need a loss function that penalizes en-
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codings that have different topologies in the embedded space. This is the

goal of triplet loss.

Triplet loss is based on the notion of an anchor object, positive object,

and negative object. An anchor object is any object that we would like to

use as a reference point. The positive object is another object, separate from

the anchor, that should be embedded closer to the anchor than the negative

object. The negative object is separate from the anchor and the positive

object, and should be farther from the anchor object than the positive object.

Our neural network can be seen as an encoding F : X → Rd, where

X ∈ A, the space of all objects, and d is the dimension of the space we’d like

to encode it into. Given anchor x ∈ A, positive object y ̸= x, and negative

object z where z ̸= x, z ̸= y, and D(x, y) < D(x, z), we can define triplet

loss for a single triple as

L(x, y, z) = max {0, ||F (x)− F (y)||2 − ||F (x)− F (z)||2 +m}

m represents the margin of the loss function, which makes sure the en-

codings of positive and negative examples are not too close to each other in

the embedded space. Given a batch of triplets, we can average the loss for

each triplet to form a total loss for the batch. Also note that we don’t have

to choose L2 as our metric in the function. Euclidean distance was chosen

for its speed in the embedded space.

As stated in [51], triplet loss works well when we want semantically similar
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points in the original space to map to close points in Rd and semantically

different points in the original space to map to distant points in Rd. However,

we don’t just want similar points to be close together, but to have their

relative distances to other points be the same. Therefore, we have to be

careful about what triplets we give to the loss function.

4.2 Triplet Mining

As our dataset grows, the number of triplets that can be formed grows cubi-

cally. The number of valid triplets to choose from is a subset of all possible

triples, but the size of this set makes it infeasible to train with. Triplet min-

ing describes the technique employed in generating triplets with which to

train our networks.

When mining triplets, we need to take care to not get triplets that are

too easy or too hard for the network. As shown in [51], using triplets that

are of a low quality can extend training times or even cause networks to not

learn the necessary mappings for a majority of the data. Therefore, we will

need a definition of important triplets.

To further limit the number of triplets that need to be considered, a

note should be made that not all points around the anchor are of the same

importance. In other words, if we expect queries to look for n neighbors, then

we can focus on perfecting the embedding for n neighbors of each anchor.

This saves us from spending too much time training the network to preserve
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the topology for points that are too far apart and whose distances cause little

change in nearest neighbor retrieval. A similar stipulation was made in [26]

as a means of focusing on important training triplets.

It should also be noted that the process of generating a positive object

and a negative object are separated from each other. This means that a

combination of the positive generating techniques and negative generating

techniques is possible. For all the examples given, each training object in a

batch is used as the anchor object of a single triple.

Random Positive

The simplest method of generating triplets is randomly. Using every training

object as an anchor, the n nearest neighbors can be calculated using the

original distance measure. From these nearest neighbors, a random neighbor

can be chosen as a positive object using equal weighting for each object.

Since the nearest neighbors have been calculated for the anchor object,

this method assumes that each nearest neighbor object is equally important

to focus on.

Random Negative

By choosing a positive object, we have chosen the set of objects we may

choose as a negative object. Any object that is farther from the anchor

object in the original space than the positive object can be chosen as the
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negative object with equal weighting.

However, choosing an object at random, we run the risk of choosing an

object that is embedded farther from the anchor than the positive object by

at least the margin distance. This means that the loss for this triplet is 0,

and it would not contribute to the overall learning for the epoch. We ideally

want to pick an object that has been embedded closer to the anchor object

than the positive object, a mistaken embedding, in order to learn the most

from an example. However, if there are no embedded objects that fit this

description, we can’t choose a negative object. For simplicity, we stick to

choosing one at random, despite the possible inefficiency.

Gaussian Positive

Choosing a positive object uniformly may not be the optimal choice as it

may allow the learning of topology far from the anchor point to take place

rather than a closer object. For instance, if n is 50, choosing to calculate loss

using the 50th nearest neighbor to an anchor point may not be as helpful as

using the first 10 nearest neighbors.

We therefore want to weight our positive pick so that closer objects are

picked more often than further ones. This can be accomplished using a

technique from [41]. We can define pj|i as the probability that object xi

would choose object xj as its neighbor, assuming that neighbors are picked

according to their probability density under a Gaussian centered at object
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xi. Mathematically, the density of object xj given xi is

fj|i = e
−D(xi,xj)

2

2σ2
i

The probability of choosing j as a neighbor given i as an anchor is then

pj|i =
fj|i∑
j ̸=i fj|i

An object closer to the anchor has a higher chance of being chosen as the

positive object, while objects that are too far away have a close to 0 chance

of being chosen. Of course, this raises the question of the value of σ. In

choosing our positive object, we would still like to focus on the k nearest

objects to our anchor point. Assuming the distance between anchor xi and

its kth nearest neighbor is 3σ from the center, we can easily calculate sigma.

This prioritizes choosing objects within the k nearest neighbors while giving

more attention to objects that should be closer to the anchor point.

Gaussian Negative

Of course, if we can choose our positive object using a more complicated

weighting scheme, we can do the same with our negative object. Once we’ve

chosen our positive object, the set of objects from which a negative object

can be drawn has also been fixed. As discussed in uniform choice, we only

want to consider objects that have been mistakenly embedded closer to the
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anchor than the positive object.

To do this, we need to carefully choose our σ value. The distance from

the anchor point to the positive point in the embedded space is chosen to

be 3σ. This heavily weights these points with incorrect embeddings to be

chosen, while still allowing correctly embedded points to be chosen in the

case that no negative points are encoded closer to the anchor point. This

alleviates the issue of never being able to choose a negative object.

Closest Negative

The Gaussian weighting of negative objects leads to a simpler idea. When

choosing a negative object, we can choose the negative closest to the anchor

point. This object would have the highest probability in the Gaussian selec-

tion process, so this may serve as a faster alternative when selecting negative

objects.

Similar to Gaussian weighting, this would focus on the most incorrect

negative objects, hopefully learning to embed these objects quickly.
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Chapter 5

Experiments

In order to demonstrate the efficacy of these techniques, experiments are

performed on several datasets and distance functions. This section describes

the datasets chosen as well as their associated distance measures. It then

goes on to describe the setup of the experiments, including parameters for

different models and training phases. Finally, results of experiments are

shown.

5.1 Datasets

Australian Sign Language Dataset (Tctodd)

The Tctodd dataset was created using 95 Australian signs for work found in

[52]. A single signer produced 27 examples of each sign while wearing gloves

built for the tracking of signing.
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Recording was done for both hands, with 11 data points per hand. These

data points were

• x, y, z position in meters

• Roll, pitch, yaw

• Bend angle of each finger

22 values were gathered for the duration of the sign, producing for each

sign a 22 dimension time series. These time series were filled with 0 values

in order to match the length of the longest sequence. The distance between

each time series was taken using multi-dimensional dynamic time warping

[34].

1795 of the time series were taken as a training set. The other 770 were

chosen as a test set, giving a 70/30 split of the data.

Using 3-NN, classification accuracy is 20.3% versus a random chance guess

of 1.05%. The distance between a query object and all database objects can

be calculated in an average of .097 seconds.

MNIST

The second dataset is the very well known MNIST dataset. 70000 28x28

images are given representing handwritten digits.

A random subset of 15000 images were used for training and 5000 for

testing. This gives this experiment a 75/25 split between training and testing.
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The chamfer distance was chosen for this dataset. Edge images were

created using a Canny edge detector. Using 3-NN, classification accuracy is

93.3% versus a random chance guess of 10%. The distance between a query

object and all database objects can be calculated in an average of 4.435

seconds.

Speech Commands

The third dataset is from [53] and contains 105,829 audio samples of 35 words,

spoken by 2618 speakers. Each sample is approximately 1 second long at 16

KHz.

To preprocess, samples were resampled to 1 KHz and filled with 0 values

to have the same length. A subset of the data was also taken to reduce

runtime. 8484 samples were drawn to represent the training set, and 1100

samples were drawn to represent the test set.

Using 3-NN, classification accuracy is 9.5% versus a random chance guess

of 2.9%. The distance between a query object and all database objects can

be calculated in an average of 39.572 seconds.

ASL Finger Spelling (ASL5)

The final dataset comes from [54]. It consists of 48000 images from 5 signers

signing each letter of the English alphabet, except for ’j’ and ’z’ due to the

need for motion data. From videos of these signs, frames containing the signs
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Figure 5.1: An overview of the ASL5 dataset. As can be seen, 5 signers
signed the letters of the alphabet except for ’j’ and ’z’.

are taken.

A subset of 16000 and 6000 images were randomly chosen for training and

test sets, respectively. Preprocessing consisted of resizing each image to 80

by 80 pixels. The chamfer distance was chosen as a distance measure between

images. Using 3-NN, classification accuracy is 16.3% versus a random chance

guess of 4.2%. The distance between a query object and all database objects

can be calculated in an average of 16.62 seconds.

The distance measures chosen for each dataset are capable of performing

better than random chance in a k nearest neighbors classification. While the

accuracies are not particularly high, the goal of this work is not to increase

classification accuracy, but to embed data points in a topologically similar

space. Therefore, classification accuracy should not be the main focus of

attention when viewing experiments.
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5.2 Network Architecture

While the focus of this work is on the mining of triplets and the use of triplet

loss in networks, the architecture used in experiments should be mentioned.

Triplet loss and triplet mining is agnostic of the type of the network, but 2

different architectures are presented depending on the type of data.

For experiments using the ASL5, MNIST, and Speech Commands dataset,

a simple feed forward network is used. The design of the architecture was

inspired by [55] due to its success in dimensionality reduction. It consists of

4 linear layers with 200 nodes, 100 nodes, 50 nodes, and d nodes, where d

is the dimension of the embedding, respectively. Each layer except the last

has a ReLU activation function, while the last contains a sigmoid activation

function, which places embeddings on an n-dimensional hypercube to prevent

large distances in the embedded space.

Time series data has a different format from regular data vectors, so a

different network architecture is needed to work with it. A network based on

[56] is used, which is a deep architecture for working with raw audio signals.

Since the Speech Commands dataset consists of raw audio signals, another

experiment is performed on this dataset using this architecture to compare

how the network design affects the results of the embedding. This network

is also used for the Tctodd dataset as it consists of time series data.

The network contains a 1-dimensional convolutional filter, increasing chan-

nels to 256, followed by a batch normalization and max pool layer. This is

36



followed by another 1-dimensional convolutional filter, batch normalization,

and max pool layer that results in a d channel output, where d is the dimen-

sion of the embedding space. An average pooling layer is used to reduce the

size of the output vectors. A sigmoid activation layer is applied at the last

step of the network.

5.3 Retrieval Experiments

To compare the efficacy of these neural networks, BoostMap and FastMap

models are created for each dataset and distance measure. The specific ver-

sion of BoostMap used comes from [48], which requires a set C of candidate

objects, a set T of training objects, and a number of objects used in vali-

dation calculations. In addition, a number of random triples to draw is also

specified for each experiment. Explanations of these parameters can be found

in Section 3.3. For FastMap, only a dimension of the embedded space has

to be specified. For all experiments, a FastMap model was trained to embed

data into a 256 dimension space. BoostMap models were built to embed

into a 128 dimension space, but if validation loss was unchanging over a long

period of time, the process was stopped and the dimension taken to be what-

ever the training process stopped at. For neural networks, for each dataset,

7 networks of dimensions 1, 2, 4, 8, 16, 32, 64, and 128 are trained. Each

network is trained for 40 epochs with a k nearest neighbors parameter of 10.

Fully connected networks are trained with a learning rate of .001 using the
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Adagrad optimizer while convolutional networks are trained with a learning

rate of .01 using the Adam optimizer.

As mentioned in section 4.2, we have 2 ways of picking positive objects

and 3 ways of for negative objects. In the following figures, the different

methods are represented with the following identifiers.

GC Positive items are chosen using Gaussian weighting. Negative objects

are chosen as the closest negative object to the anchor.

GG Positive items are chosen using Gaussian weighting. Negative objects

are chosen using Gaussian weighting.

GR Positive items are chosen using Gaussian weighting. Negative objects

are chosen randomly.

RC Positive objects are chosen randomly. Negative objects are chosen as

the closest negative object to the anchor.

RG Positive objects are chosen randomly. Negative objects are chosen using

Gaussian weighting.

RR Positive objects are chosen randomly. Negative objects are chosen ran-

domly.

In addition, networks are trained with completely random triplets as a

baseline to demonstrate the effectiveness of proper triplet mining.
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To measure how well the system performs, metrics from [26] are used. A

set of test vectors can be embedded in each dimension that a model exists

for. Of course, the test vectors have ground truth nearest neighbors in the

original space and different nearest neighbors in the embedded space. We

can define a percentage p and a number of nearest neighbors k. Given k,

we can report the minimum number of exact distance calculations across all

dimensions that are needed in a filter-and-refine approach to correctly retrieve

the k nearest neighbors for p percent of test vectors. For all experiments, we

report results for 90%, 95%, and 99%.

MNIST

To train BoostMap, 7000 instances were used for C and T . The remaining

1000 objects were used as a validation set. The training process created a 47

dimensional embedding before validation loss stopped changing, well below

the requested 128 dimensions.

Looking at Figure 5.2, we see that triplet mining based methods out-

perform both BoostMap and FastMap by a large margin. The performance

of BoostMap is quite surprising. As shown in [26], BoostMap is capable of

performing well when approximating chamfer distance and has a tendency

to outperform FastMap. This is true for advanced versions of BoostMap [50]

and earlier iterations [49].

It should be noted that when training BoostMap on the MNIST dataset,

[49] uses a distance measure called shape context matching rather than the
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chamfer distance. The difference in distance measures may be causing these

results for BoostMap. The maximum dimension of the embedding is also

concerning. It’s likely a greater amount of parameter tuning is needed for

BoostMap to achieve its greatest results.

Looking at the methods relying on triplet mining, we find that GRmethod

has outperformed other methods, especially at 90% and 95% accuracy. Sur-

prisingly, as the accuracy level increases, the differences in speedup between

RR and GR become more marginal, as shown in Table 5.1. It can also be

seen that each data mining method outperformed the baseline method using

completely random triplets.

It should also be noted here that except for the 99% accuracy level, the

Gaussian positive methods outperform the corresponding random methods,

demonstrating the slight superiority of the Gaussian weighting on positive

objects, at least for this dataset. In addition, it can be seen as the number

of neighbors being retrieved increases, the margins between the methods

decreases, meaning the GR method sees most of its benefit at lower k values.
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Figure 5.2: Results on the MNIST dataset using chamfer distance for com-
parisons. 5000 test objects were used.
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MNIST Dataset with Chamfer Distance
90% 95% 99%

k=1 k=10 k=50 k=1 k=10 k=50 k=1 k=10 k=50

R
# Distances 11336 14403 14815 13381 14758 14939 14726 14963 14990
Speedup 1.32 1.04 1.01 1.12 1.02 1.00 1.02 1.00 1.00

BM
# Distances 8190 12342 13775 10404 13268 14208 12771 14135 14699
Speedup 1.83 1.22 1.09 1.44 1.13 1.06 1.17 1.06 1.02

FM
# Distances 9026 11725 12799 10568 12428 13217 12343 13172 13788
Speedup 1.66 1.28 1.17 1.42 1.21 1.13 1.22 1.14 1.09

GC
# Distances 782 2696 5042 1188 3614 6132 2594 5685 8874
Speedup 19.18 5.56 2.98 12.63 4.15 2.45 5.78 2.64 1.69

GG
# Distances 878 3099 5798 1341 3980 6993 2741 6023 10361
Speedup 17.08 4.84 2.59 11.19 3.77 2.15 5.47 2.49 1.45

GR
# Distances 406 1776 3940 660 2498 5022 1446 4523 8034
Speedup 36.95 8.45 3.81 22.73 6.00 2.99 10.37 3.32 1.87

RC
# Distances 925 3037 5381 1406 3962 6506 2740 6121 9191
Speedup 16.22 4.94 2.79 10.67 3.79 2.31 5.47 2.45 1.63

RG
# Distances 1120 3489 6066 1612 4290 7291 3087 6321 9908
Speedup 13.39 4.30 2.47 9.31 3.50 2.06 4.86 2.37 1.51

RR
# Distances 450 2046 4432 697 2888 5714 1742 4648 8346
Speedup 33.33 7.33 3.38 21.52 5.19 2.63 8.61 3.23 1.80

Table 5.1: A table summarizing the number of exact distances needed by
each method to return the k nearest neighbors with 90%, 95%, and 99%
accuracy. Also includes the speedup from brute force search in the original
space, which takes 4.435 s on 15000 database objects. The best method for
a particular percent and k is bolded. BoostMap and FastMap have been
abbreviated to BM and FM, respectively. R represents the baseline network
trained with completely random triplets.
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ASL5

BoostMap was trained with 7500 objects ∈ C and 7500 objects ∈ T with

the remaining 1000 objects used for verification. The embedding that was

learned consists of 109 dimensions.

The same pattern as the MNIST dataset emerges in Figure 5.3, with

BoostMap and FastMap performing fairly poorly at learning this chamfer

distance. We also find that the GR method of data mining is once again the

best performing, but only by a small margin when compared to methods like

RG and GG. As shown in Table 5.2, these other methods have very similar

speedups, and therefore using the GR method may provide only marginal

benefits over other methods, at least when learning the chamfer distance.

However, all three methods GR, GG, and RG were able to beat the baseline

at different accuracy level, demonstrating improvement over random triplet

mining despite there not being a visibly superior method.

Unlike results from the MNIST dataset, it can be seen in Table 5.2 that

besides the GR method, the Gaussian positive method does not always out-

perform its corresponding random method. This lends credibility to the idea

that different methods are best for different datasets, rather than a particular

method being superior. However, with both chamfer distance datasets, GR

was the top performer, possibly demonstrating superiority at learning the

chamfer distance.
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Figure 5.3: Results on the ASL5 dataset using chamfer distance for compar-
isons. 6000 test objects were used.
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ASL5 Dataset with Chamfer Distance
90% 95% 99%

k=1 k=10 k=50 k=1 k=10 k=50 k=1 k=10 k=50

R
# Distances 11216 13615 14711 12346 14398 15423 14683 15645 15871
Speedup 1.43 1.18 1.09 1.30 1.11 1.04 1.09 1.02 1.01

BM
# Distances 7328 12132 13858 9703 13204 14398 12811 14425 15205
Speedup 2.18 1.32 1.15 1.65 1.21 1.11 1.25 1.11 1.05

FM
# Distances 6559 11371 13524 8484 12547 14087 12125 14074 15192
Speedup 2.44 1.41 1.18 1.89 1.28 1.14 1.32 1.14 1.05

GC
# Distances 6255 11458 14551 8113 12916 15385 11956 15267 15936
Speedup 2.56 1.40 1.10 1.97 1.24 1.04 1.34 1.05 1.00

GG
# Distances 3442 6732 9163 4470 7902 10323 6940 10273 12418
Speedup 4.65 2.38 1.75 3.58 2.02 1.55 2.31 1.56 1.29

GR
# Distances 3038 6019 8562 4164 7229 9870 6337 9908 11671
Speedup 5.27 2.66 1.87 3.84 2.21 1.62 2.52 1.61 1.37

RC
# Distances 4457 9196 12356 5882 10680 13322 9115 13084 14934
Speedup 3.59 1.74 1.29 2.72 1.50 1.20 1.76 1.22 1.07

RG
# Distances 3437 6448 9318 4569 7768 10462 6561 10511 12737
Speedup 4.66 2.48 1.72 3.50 2.06 1.53 2.44 1.52 1.26

RR
# Distances 4345 8974 11921 5836 10478 12950 8911 12954 14630
Speedup 3.68 1.78 1.34 2.74 1.53 1.24 1.80 1.24 1.09

Table 5.2: A table summarizing the number of exact distances needed by
each method to return the k nearest neighbors with 90%, 95%, and 99%
accuracy. Also includes the speedup from brute force search in the original
space, which takes 16.62 s on 16000 database objects. The best method for
a particular percent and k is bolded. BoostMap and FastMap have been
abbreviated to BM and FM, respectively. R represents the baseline network
trained with completely random triplets.
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Speech Commands

For the Speech Commands dataset, BoostMap was trained with 4000 objects

∈ C and 4000 objects ∈ T . The remaining 484 objects were used for verifi-

cation. The model was able to train embeddings up to 53 dimensions, below

the 128 expected dimensions.

According to Figure 5.4, BoostMap performs the best at the 90% accuracy

level. However, at the 95% and 99% levels, the best performance switches

between BoostMap and the RR method. As shown in Table 5.3, the mar-

gin of performance between RR and other methods widens, suggesting it

as the best method to use for applications. Interestingly, the relationship

between Gaussian and random methods are flipped from previous datasets.

Here, we see that the random methods of generating positive objects has a

larger speedup than their Gaussian counterparts, suggesting that the ran-

dom weighting method of producing positive objects is better suited to this

dataset. We also see that each data mining method outperforms the base-

line random triplets, although at the highest accuracy level, various methods

approach the same performance as it.

However, the architecture of the network likely has a large impact on the

results of training. Filling a temporal sequence with zeros and using a fully

connected network is unlikely to find the best representations of each object

as relationships between neighboring data in the time series are ignored.

Results generated from a convolutional architecture are shown in Figure 5.5.

Here, we see a drastic difference in the results of the neural networks.
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Previously, BoostMap was a top performer at all three accuracy levels, but is

now one of the worst performers at the 95% and 99% accuracy levels. Even

at the 90% level, BoostMap performs about as well as the RR level.

According to Table 5.4, RR shows the highest speedup in most situations.

However, the difference between it and other random methods is typically

very small, especially at the 99% level. We also see that once again, the ran-

dom methods outperform the Gaussian methods, providing further evidence

that the random weighted method is more suited for this particular dataset.

Surprisingly, the random baseline method of training is able to perform better

than FastMap at the 90% and 95% level, well above its performance using

the fully connected network. This could point to equal importance in the

network design and the method of triplet mining for manifold learning.
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Figure 5.4: Results on the Speech Commands dataset using dynamic time
warping for comparisons. 1100 test objects were used. A fully connected
network was trained to embed the test points.
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Speech Commands Dataset with DTW (FC Architecture)
90% 95% 99%

k=1 k=10 k=50 k=1 k=10 k=50 k=1 k=10 k=50

R
# Distances 7356 8343 8448 7943 8414 8467 8316 8462 8478
Speedup 1.15 1.02 1.00 1.07 1.01 1.00 1.02 1.00 1.00

BM
# Distances 1572 3639 5008 2487 4588 6039 4423 6434 7566
Speedup 5.40 2.33 1.69 3.41 1.85 1.40 1.92 1.32 1.12

FM
# Distances 3085 6545 7249 4963 7021 7553 7010 7660 8048
Speedup 2.75 1.30 1.17 1.71 1.21 1.12 1.21 1.11 1.05

GC
# Distances 6450 7966 8246 7254 8256 8369 8146 8422 8446
Speedup 1.32 1.07 1.03 1.17 1.03 1.01 1.04 1.01 1.00

GG
# Distances 3533 5510 6726 4351 6238 7501 6491 7765 8269
Speedup 2.40 1.54 1.26 1.95 1.36 1.13 1.31 1.09 1.03

GR
# Distances 2711 4348 5387 3361 4913 5871 4843 6753 7460
Speedup 3.13 1.95 1.57 2.52 1.73 1.45 1.75 1.26 1.14

RC
# Distances 3801 5792 7314 4562 6726 7744 6767 8001 8426
Speedup 2.23 1.46 1.16 1.86 1.26 1.10 1.25 1.06 1.01

RG
# Distances 3101 4732 5781 3714 5440 6445 5129 7050 7794
Speedup 2.74 1.79 1.47 2.28 1.56 1.32 1.65 1.20 1.09

RR
# Distances 2568 4048 5148 3076 4589 5708 4088 6532 6904
Speedup 3.30 2.10 1.65 2.76 1.85 1.49 2.08 1.30 1.23

Table 5.3: A table summarizing the number of exact distances needed by
each method to return the k nearest neighbors with 90%, 95%, and 99%
accuracy. Also includes the speedup from brute force search in the original
space, which takes 39.57 s on 8484 database objects. The best method for
a particular percent and k is bolded. BoostMap and FastMap have been
abbreviated to BM and FM, respectively. A fully connected architecture was
used to obtain these results. R represents the baseline network trained with
completely random triplets.
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Figure 5.5: Results on the Speech Commands dataset using dynamic time
warping for comparisons. 1100 test objects were used. A convolutional net-
work architecture was used to embed points
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Speech Commands Dataset with DTW (CNN Architecture)
90% 95% 99%

k=1 k=10 k=50 k=1 k=10 k=50 k=1 k=10 k=50

R
# Distances 3549 5491 6727 4134 6477 7515 6419 7887 8094
Speedup 2.39 1.55 1.26 2.05 1.31 1.13 1.32 1.08 1.05

BM
# Distances 1572 3639 5008 2487 4588 6039 4423 6434 7566
Speedup 5.40 2.33 1.69 3.41 1.85 1.40 1.92 1.32 1.12

FM
# Distances 3085 6545 7249 4963 7021 7553 7010 7660 8048
Speedup 2.75 1.30 1.17 1.71 1.21 1.12 1.21 1.11 1.05

GC
# Distances 2963 4304 5321 3435 4781 5656 4215 5674 6235
Speedup 2.86 1.97 1.59 2.47 1.77 1.50 2.01 1.50 1.36

GG
# Distances 2417 4043 5079 2992 4454 5625 3888 5420 6470
Speedup 3.51 2.10 1.67 2.84 1.90 1.51 2.18 1.57 1.31

GR
# Distances 2588 4061 5050 3065 4475 5551 3976 5335 6537
Speedup 3.28 2.09 1.68 2.77 1.90 1.53 2.13 1.59 1.30

RC
# Distances 2699 3970 4822 3088 4252 5253 3754 5059 6167
Speedup 3.14 2.14 1.76 2.75 2.00 1.62 2.26 1.68 1.38

RG
# Distances 2057 3710 4792 2612 4097 5291 3703 5162 6114
Speedup 4.12 2.29 1.77 3.25 2.07 1.60 2.29 1.64 1.39

RR
# Distances 2082 3638 4736 2505 3960 5274 3603 5056 6095
Speedup 4.07 2.33 1.79 3.39 2.14 1.61 2.35 1.68 1.39

Table 5.4: A table summarizing the number of exact distances needed by
each method to return the k nearest neighbors with 90%, 95%, and 99%
accuracy. Also includes the speedup from brute force search in the original
space, which takes 39.57 s on 8484 database objects. The best method for
a particular percent and k is bolded. BoostMap and FastMap have been
abbreviated to BM and FM, respectively. R represents the baseline network
trained with completely random triplets.
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Tctodd

For the Tctodd dataset, the BoostMap model used 850 objects for C and 850

objects for T . The other 95 objects were used for validation. The model

trained a 33 dimensional embedding.

Immediately, it’s apparent from Figure 5.6 that the neural network models

were not able to learn a great embedding. Both BoostMap and FastMap

provide significantly higher speedup at all data points contained in Table

5.5. What speedup neural networks provide is seen for very low k values

while providing virtually no benefit at higher k values, essentially mimicking

the performance of the baseline training method.

The network architecture used on the Tctodd dataset comes from [56]

and was developed for working with raw audio data. While layer sizes were

changed to decrease the receptive window for the data, the nature of the

network may be inappropriate for this dataset. This is a deep neural network

expecting large audio signals. The small dataset size and the small size of

each signal may make this network unsuitable for this application. Perhaps,

there are networks more suited to learning representations of this data.
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Figure 5.6: Results on the Tctodd dataset using multidimensional dynamic
time warping for comparisons. 770 test objects were used.
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Tctodd Dataset with Multidimensional DTW
90% 95% 99%

k=1 k=10 k=50 k=1 k=10 k=50 k=1 k=10 k=50

R
# Distances 1220 1700 1775 1457 1751 1782 1672 1782 1793
Speedup 1.47 1.06 1.01 1.23 1.03 1.01 1.07 1.01 1.00

BM
# Distances 46 230 953 62 359 1191 198 913 1430
Speedup 39.02 7.80 1.88 28.95 5.00 1.51 9.07 1.97 1.26

FM
# Distances 58 312 1061 91 641 1244 333 1013 1500
Speedup 30.95 5.75 1.69 19.73 2.80 1.44 5.39 1.77 1.20

GC
# Distances 1208 1655 1756 1396 1710 1779 1659 1777 1791
Speedup 1.49 1.08 1.02 1.29 1.05 1.01 1.08 1.01 1.00

GG
# Distances 730 1457 1718 1050 1593 1745 1570 1747 1777
Speedup 2.46 1.23 1.04 1.71 1.13 1.03 1.14 1.03 1.01

GR
# Distances 511 1467 1715 883 1607 1746 1465 1737 1766
Speedup 3.51 1.22 1.05 2.03 1.12 1.03 1.23 1.03 1.02

RC
# Distances 766 1473 1664 926 1580 1713 1358 1695 1767
Speedup 2.34 1.22 1.08 1.94 1.14 1.05 1.32 1.06 1.02

RG
# Distances 892 1467 1722 1082 1580 1766 1520 1740 1791
Speedup 2.01 1.22 1.04 1.66 1.14 1.02 1.18 1.03 1.00

RR
# Distances 796 1489 1693 1130 1577 1722 1485 1713 1773
Speedup 2.26 1.21 1.06 1.59 1.14 1.04 1.21 1.05 1.01

Table 5.5: A table summarizing the number of exact distances needed by
each method to return the k nearest neighbors with 90%, 95%, and 99%
accuracy. Also includes the speedup from brute force search in the original
space, which takes .097 s on 1795 database objects. The best method for
a particular percent and k is bolded. BoostMap and FastMap have been
abbreviated to BM and FM, respectively. R represents the baseline network
trained with completely random triplets.
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5.4 Nearest Neighbor Parameter

As explained in Section 4.2, a parameter n was defined that determined which

objects to focus on when choosing triplets. In Section 5.3, it was mentioned

that this parameter was set to 10 for all networks trained. Experiments were

performed by getting the nearest 50 neighbors, so it may have been better

to choose 50 as a parameter to optimize the networks for this number of

neighbors. This section demonstrates the effect on experiment results from

changing this parameter to focus on larger numbers of neighbors. We explore

the effects of the n parameters having values 10, 20, 30, 40, and 50 neighbors

on the MNIST dataset.

The experiment is identical to that in Section 5.3, where the number

of exact distances needed to find k nearest neighbors is taken at different

accuracy levels. In this case, a single method of triplet mining is used in

each figure, rather than all 6, to reduce graph clutter.

The nearest neighbors parameter has less of an effect on results than

expected. As shown in Figures 5.7 and 5.10, changing the parameter for

the GC and RC method has little effect on the outcome of the experiment.

As seen in Figures 5.8 and 5.11, changing the parameter has more of an

influence on the output. However, differences appear to be marginal, and as

k grows, the difference in results becomes negligible. GR, shown in Figure

5.9, shows a preference for n = 10, but this benefit is lost as k increases.

RR, shown in Figure 5.12, shows a benefit for n = 30 as long as k is low.
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These results match [50], which has a similar parameter that provides limited

benefit during training.

Similar results were found on other datasets, but were left out for brevity.

Overall, choosing n seems to have a low effect on the training of the model.

Therefore, an arbitrary low value of 10 was chosen for n in the experiments

in Section 5.3.
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Figure 5.7: Results on the MNIST dataset using chamfer distance for com-
parisons. 6000 test objects were used. Values of 10, 20, 30, 40, and 50 were
used for the n parameter when training a neural network using the GC triplet
strategy.
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Figure 5.8: Results on the MNIST dataset using chamfer distance for com-
parisons. 6000 test objects were used. Values of 10, 20, 30, 40, and 50 were
used for the n parameter when training a neural network using the GG triplet
strategy.
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Figure 5.9: Results on the MNIST dataset using chamfer distance for com-
parisons. 6000 test objects were used. Values of 10, 20, 30, 40, and 50 were
used for the n parameter when training a neural network using the GR triplet
strategy.
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Figure 5.10: Results on the MNIST dataset using chamfer distance for com-
parisons. 6000 test objects were used. Values of 10, 20, 30, 40, and 50 were
used for the n parameter when training a neural network using the RC triplet
strategy.
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Figure 5.11: Results on the MNIST dataset using chamfer distance for com-
parisons. 6000 test objects were used. Values of 10, 20, 30, 40, and 50 were
used for the n parameter when training a neural network using the RG triplet
strategy.
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Figure 5.12: Results on the MNIST dataset using chamfer distance for com-
parisons. 6000 test objects were used. Values of 10, 20, 30, 40, and 50 were
used for the n parameter when training a neural network using the RR triplet
strategy.
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Chapter 6

Conclusion

Due to its simplicity, accuracy, and ability to allow domain specific distances,

k nearest neighbors is a staple in many fields. The ability to speed up queries

is therefore worthy of looking into, especially for queries in difficult, non-

metric spaces of objects. This work has demonstrated a method for solving

this problem using neural networks.

Through experiments, we have shown the effectiveness of training neural

networks using triplet loss to speed up nearest neighbor searches, beating

or coming even with previous methods such as BoostMap and FastMap in

a number of domains using diverse distance functions. In addition, these

methods of data mining perform better than a baseline method of random

triplets, demonstrating their usefulness in manifold learning.

Neural network based model also provide hidden speedups not seen in

these experiments. The time to train a BoostMap model, and the time to
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embed multiple objects, can take a long time. Neural network models are

quick to train, and multiple objects can be embedded at the same time using

matrices, providing even more of a speed increase over other models.

The only dataset that proved a failure was the Tctodd dataset. The re-

sults from this and using a fully connected network on the Speech Commands

dataset demonstrates the need for good network design when designing an

embedding system. More research is needed to determine if an architecture

exists that performs well on the Tctodd dataset or if the size and nature of

the dataset prevented positive results from a neural network-based model.

This work has demonstrated potential methods of triplet mining for the

express purpose of training neural networks to embed objects such that near-

est neighbor queries are sped up. With the popularity of neural network

tools, these methods are also simple and efficient to implement in a number

of workflows. With the presented evidence, these methods have been shown

to be effective for various objects and situations, demonstrating the potential

of a neural network-based approach to topology preservation.
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