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ABSTRACT

Machine Learning Methods for Statistical Analysis and Representation Learning on

Neuroimaging Data

Fan Yang, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professor: Dr. Won Hwa Kim

With the recent advance and widespread adoption of imaging technological inno-

vations, clinical practitioner and scientists can easily acquire and store a large amount

of various neuroimaging modalities, such as Diffusion Tensor Imaging (DTI), Magnetic

Resonance Imaging (MRI), resting-state functional MRI (rs-fMRI) and Positron Emission

Tomography (PET), etc. These novel imaging data sources cover a rich amount of factors

that influence patients’ cognitive health, offer an objective view of patients at unprecedented

multi-resolution for the understanding of brain structure and function, and have the sig-

nificant potential to improve healthcare by aiding better decision-making in diagnosing,

monitoring and treating diseases. Machine Learning methods have emerged as the state-

of-the-art in learning from the large-scale neuroimaging data. While their use for medical

applications is interesting and insightful, it is often very challenging in practice. Some of

the major challenges we encounter in the adoption of Machine Learning methods for neuro-

science tasks are that examining the association between the socioeconomic characteristic

and brain clinical measurements is difficult given the subtle variations between groups with

different socioeconomic status, that effectively characterizing the early symptoms of the
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Alzheimer’s disease (AD) is in many cases not possible, that forecasting and capturing the

disease-related dynamics of clinical measurements is necessary to better understand the

progression of AD, and that modelling the dynamic associations between lengthy sequences

of multivariate variables for brain connectivity analysis is computational expensive. To

take care of these challenges, we propose multiple novel Machine Learning methods for

providing a multi-scale representation of the original measurement to enhance the sensitiv-

ity of downstream statistical analysis, for integrating graph structure and diagnostic label

information to characterize early symptoms of AD, for incorporating time-dependent label

information to better understand the progression of AD, and for efficiently estimate and

predict dynamic covariances on large-scale time series data. We demonstrate our developed

methods on the challenging real-word data from various clinical studies in the neuroscience

domain, including Adolescent Brain Cognitive Development (ABCD) study, Alzheimer’s

Disease Neuroimaging Initiative (ADNI) study, and Human Connectome Project (HCP). Our

contributions advance the state-of-the art in regard to leveraging Machine Learning methods

for neuroscience applications and accentuate the foreground in which artificial intelligence

on large-scale neuroimaging data can improve healthcare with better decision-makings.
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CHAPTER 1

Introduction

Machine learning methods have emerged as the de-facto state-of-the-art for learning

from large-scale neuroimaging data, however, their use on neuroscience applications is

customarily challenging in practice. In this thesis, we focus on developing novel machine

learning techniques and models for the purpose of handling various real-world neuroimaging

modalities, such as Magnetic Resonance Imaging (MRI), Diffusion Tensor Imaging (DTI),

resting-state functional MRI (rs-fMRI), and Positron Emission Tomography (PET), etc.

Our contributions have advanced the state-of-the art in regard to utilizing machine learning

methods for neuroscience applications, which exemplifies the significant potential that

artificial intelligence and machine learning on large-scale neuroimaging data can improve

healthcare tasks with better decision-makings. In this chapter, we will first discuss the

motivations in Section 1.1 which includes what kind of neuroimaging data we are interested

in and how those data look like. Sections 1.2 and 1.3 discuss what kind of technical

challenges we are facing and how those data inspire our methodologies development. Lastly,

we display an outline of the structure of this thesis in Section 1.4.

1.1 Motivations

With the advent of state-of-the-art machine learning methods, it has been proven

tremendously successful on a wide range of application problems from various domains,

such as recommendation engines in e-commerce, self-driving in computer vision and au-

tomatic translation in applied linguistics. Machine learning, the study of inferring and

learning patterns from data, represents an automated learning pipeline over massive datasets,
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which makes the learning process more efficient and cost-effective. In addition, machine

learning methods also benefit from exponentially growing computational resources and data

acquisition techniques. Due to the aforementioned reasons, machine learning methods have

enjoyed wide popularity in both academic research and industry communities. However,

how to effectively extract knowledge from and efficiently exploit neuroimaging data in the

neuroscience domain is still under-explored.

There are various forms of neuroimaging modalities used in clinical practice and

scientific research which characterize different aspects of the brain, as shown in Figure 1.1.

Broadly speaking, magnetic resonance imaging (MRI) is one of the most commonly used

imaging techniques which is based on the magnetization properties of atomic nuclei in the

brain to provide high-resolution imaging of brain structure and physiology [3]. T1-weighted

(T1-w) scans are the most standard of MRI sequences whose scans have two major uses:

localization of brain regions and estimation of tissue density [1]. Diffusion MRI (dMRI)

measures the strength and direction of water molecules’ movement during the scan [4]. When

more volumes (e.g., above 30 directions) are acquired to increase directional resolution

and allow tensor-based analyses, such sequences will be referred to as diffusion-tensor

imaging (DTI) [1]. The aforementioned MRI sequences all focus on capturing and imaging

the brain structures. On the contrary, functional MRI (fMRI) images the functions by using

a mechanism called the blood-oxygen-level-dependent (BOLD) signal [1, 5]. Moreover,

positron emission tomography (PET) scans utilize radioactive tracers that are injected in the

body to characterize metabolic changes at the cellular level in the brain tissue.

With this wealth of information, a natural question to ask in this context is whether and

how we can potentially leverage these vast amounts of messages from the neuroimaging data

to help with disease diagnosis, disease progression prediction and statistical analyses that

lead to better decision-making in healthcare. Our primary objective is to advance the state-of-

the-art in the use of machine learning methods and neuroimaging datasets for neuroscience

2



Figure 1.1: An example of various neuroimaging modalities [1].

applications. Specifically, our goals are to make novel methodological contributions that

enable the use of machine learning methods on neuroimaging data to extract rich feature

representations from raw data to help with the downstream tasks. We additionally aim to

evaluate these methodological contributions on real-world datasets from the neuroscience

domain.

1.2 Technical Challenges

The focus of this thesis lies primarily in addressing the technical challenges associated

with the use of machine learning in the neuroscience domain. Precisely, we aim to develop

effective and efficient machine learning approaches to handle neuroimaging data from

various imaging modalities for applications in the neuroscience domain. Some of the main

challenges we are confronted by in applying machine learning methods for neuroscience

problems are described as below.
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First of all, we study the problem of multi-resolutional statistical analysis on the

Adolescent Brain Cognitive Development (ABCD) study dataset, in which we can perform

a better statistical analysis based on different multi-resolutions of feature representations.

Specifically, we aim to examine the association between household income (one major

socioeconomic characteristic) and fractional anisotropy (one of microstructural characteris-

tics) of cortical regions from the ABCD study. While ABCD offers sufficient data (i.e., a

large sample size), it is still difficult to capture the subtle variations in fractional anisotropy

(FA) between closely-spaced groups within the spectrum of socioeconomic strata. To detect

even the subtle variations in the brain, it is imperative to have a more sensitive method that

transforms the data into a new domain where the differences between the groups can be

captured better. Inspired from wavelet transform in traditional signal processing, in order for

a sensitive method, we aim to develop a novel transform that derives a multi-scale feature

from structured data X ∈ RN×P with N samples and P features to improve the downstream

analysis. As we know, wavelet transform will transform a given signal f(x) in the Euclidean

space to the frequency space and yield a multi-scale representation of the original signal

f(x) [6]. The central concept from wavelet transform is that wavelets behave as band-pass

filters in the frequency space [7], thus if we can design a filter in the frequency space using

a set of orthogonal bases (e.g., Fourier bases), we are able to develop a novel transform that

derives multi-scale representation of the original signal even in a complex domain [8, 9].

However, our main barrier is that for the given structured data (i.e., FA measures on regions

of interest (ROIs) from N subjects) in the ABCD study, the underlying space of the data

remains unknown to us.

Secondly, we examine the problem of disentangled representation learning on the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) study dataset, in which we can de-

velop a disentangled representation learning framework to extract meaningful dynamic and

static features from neuroimaging data. Particularly, we first aspire to be able to effectively
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characterize the early symptoms of the Alzheimer’s Disease (AD) based on the longitudinal

cortical thickness measures from the ADNI study. AD is a progressive neurodegenerative

condition which is characterized by the neurodegenerations in the brain [10, 11, 12, 13, 14],

hence it is of great importance that the symptoms of the disease can be effectively charac-

terized early. In this regard, we would like to analyze the longitudinal cortical thickness

measures over structural brain networks with diagnostic labels of AD, and it is expected

that disentangling those longitudinal measures with time-invariant and time-varying compo-

nents could provide unique insights on the characterization of the early disease symptoms.

Specifically, we aim to develop a framework that learns a latent disentangled representation

comprising time-varying and time-invariant components of the observations to characterize

the early symptoms of the disease. However, although recent works [15, 16] on variational

autoencoders [17] are able to learn various representations in an unsupervised manner, they

do not introduce supervision at all when dealing with temporal data, nor do they consider

the structural brain connectivity from DTI which can provide a prior knowledge on the

topology of specific ROIs in the brain. Second, we further seek to capture the disease-related

dynamics of β-amyloid and forecast amyloid depositions at future timestamps from the

ADNI study, to better early characterize the progression of AD. Unfortunately, due to the

fact that only limited timestamps (i.e., less than 3 timestamps on average) are available

per subject, it is very difficult to learn the complex dynamics of β-amyloid over brain

networks. Moreover, the observations from imaging scans can be complexly affected by

many factors both time-varying and time-invariant, such as anatomical structure and disease

effect. Hence, we aim to disentangle the observations in the latent space that composed

of time-invariant component (e.g., anatomical information) and time-varying component

(e.g., dynamics changes), which will help make the model more explainable and easier

to control the conditional data generation. However, prior works [18, 19] on disentangled

representations mainly focused on video or audio data, the research for representation disen-
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tanglement of neuroimaging sequential data has been under-explored, let alone incorporating

the time-dependent label information and graph structure and performing the forecasting

task as well.

Lastly, we investigate the problem of dynamic covariance modeling on the HCP

dataset, in which we can develop a non-parametric statistical model for the dynamic covari-

ance modeling yielding a multi-scale descriptor feature which is significantly informative

to clinical behavior scores. Specifically, we aim to study modelling temporal associations

between a sequence of multivariate variables in a large-scale functional Magnetic Reso-

nance Imaging (fMRI) dataset from Human Connectome Project (HCP). Typically for brain

connectivity analyses in Neuroimaging, for the ease of convenience, in the conventional

connectivity constructions, the associations or covariance between a knot of timeseries

measurements across different ROIs in the brain are assumed to be static in time [20, 21, 22].

Nevertheless, it has been demonstrated in several studies that brain connectivities change

over time whose dynamic variation may be significant [23, 24]. Therefore, to investigate the

time-varying coactivation patterns in brain activities [23, 25, 26], modelling such dynamic

changes of covariance between ROIs is an essential problem in both Machine Learning

and Neuroscience. However, the recent works based on Wishart process (WP) [27, 28] are

limited as they often have computational issues due to the computing burden induced from

latent Gaussian processes.

1.3 Our Approaches

In this thesis, we address these technical challenges by developing novel methodolog-

ical approaches leveraging machine learning on neuroimaging data, and we demonstrate

the potential of applying these approaches to the challenging problems in the neuroscience

domain. This thesis is an interdisciplinary work which includes novel contributions both in
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terms of methodological advances in machine learning domain, as well as in the applications

of machine learning methods to challenging problems in neuroscience domain. The main

contributions of this work are summarized as follows.

First of all, to deal with the problem of designing a framework which yields a

multi-scale representation of the original data for improving the statistical sensitivity for

downstream analyses, we leverage a precision matrix which is the inverse of covariance

matrix. Since it is symmetric and positive definite, it has a set of orthonormal eigenvectors

which can be used to develop an orthogonal transform with the filter function defined

over the spectrum of eigenvalues. Thus, we can define a multi-scale descriptor based on the

developed transform which provides a multi-scale representation of the original measurement

to enhance the downstream statistical analysis. We validate our framework on the ABCD

dataset to demonstrate the significant performance improvements of our framework over

raw measurements in identifying clinically meaningful cortical ROIs which are susceptible

to socioeconomic inequality.

Secondly, to cope with the problem of disentangled representation learning for better

early characterization of AD, we first propose an innovative Semi-supervised Sequential

Graph Autoencoder model, which leverages ideas from the sequential variational autoen-

coder, graph convolution and semi-supervising frame-work, to learn a latent disentangled

representation of the observations that are composed of time-varying and time-invariant com-

ponents. We not only incorporate the label information as a supervision to balance between

extraction of underlying structure and accurate prediction of class labels, but also integrate

graph structure to help robustly learn the disentangled latent space. Our proposed method is

validated on the longitudinal cortical thickness data from ADNI study to demonstrate its

benefits for effective latent representation on longitudinal data for diagnostic label prediction

and longitudinal data generation. Second, to further characterize the longitudinal β-amyloid

over the structural brain network for better understanding of AD progression, we develop a
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framework that learns a latent disentangled representation composed of time-varying and

time-invariant latent variables to capture the disease-related dynamics of β-amyloid and as

well as forecast the future amyloid depositions using the disentangled representation. We

not only incorporate the time-dependent label as a supervision in the model to characterize

longitudinal effect with more effective representation learning, but also integrate a brain

network to make the framework more robust to the subject-wise heterogeneous dynamics

when learning the disentangling latent representation, as it could consider the arbitrary

topology of brain networks across the population. Furthermore, we validate this framework

to longitudinal β-amyloid data on brain networks with diagnostic labels of AD from ADNI.

The experimental results suggests a significant potential that this framework will facilitate

clinical research by overcoming the limitation of amyloid data collection and help physicians

better understand the role of amyloid in the progression of AD before the disease symptoms

manifest.

Lastly, to tackle the problem of modelling dynamic changes of covariance, we develop

a Predictive Wishart Process (PWP) which is a novel parsimonious stochastic process

providing a collection of positive semi-definite random matrices indexed by input variables.

We thoroughly study its stochastic properties and propose a posterior inference associated

with our hierarchical models. We also provide a multi-task learning framework using our pro-

posed PWP to jointly model multiple large-scale signals. The reconstructive performance

and predictive performance for dynamic covariances are demonstrated on a large-scale real

fMRI dataset from HCP, which empirically prove the efficiency and practicality of our

framework.
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1.4 Organization

In a nutshell, various novel machine learning methods are proposed throughout this

thesis which can facilitate the use of machine learning on neuroimaging data to extract

meaningful feature representations to help with the downstream tasks. In the following

paragraphs, we briefly provide an overview of this thesis which consists of three parts as

described below.

Part I focuses on the work on the multi-resolutional statistical analysis on the ABCD

dataset including Chapter 2, in which we present a novel covariance-based wavelet-like

transform (COVLET) yielding a multi-scale representation of the original feature measures

that increases the performance of downstream analyses [29].

Part II discusses the work on the disentangled representation learning on the ADNI

dataset containing Chapter 3 and Chapter 4. In Chapter 3, we propose an innovative and

ground-breaking Disentangled Sequential Graph Autoencoder which learns a latent dis-

entangled representation composed of time-variant and time-invariant latent variables to

characterize the longitudinal measurements [30]. Chapter 4 presents a supervised sequential

graph variational autoencoder to capture the disease-related dynamics and as well as forecast

the future measurements using the learned disentangled representation [31].

Part III focuses on the work on the dynamic covariance modeling on the HCP dataset

including Chapter 5, in which we develop a novel parsimonious stochastic process named as

Predictive Wishart Process (PWP) which provides a collection of positive semi-definite

random matrices indexed by input variables and a model based multi-scale descriptor feature.

With the proposal of novel frameworks and extensive experimental results on real-

world datasets, we advance and demonstrate the state-of-the-art in the use of machine

learning methods on neuroimaging data. The full description on those proposed machine

learning approaches are introduced in the subsequent chapters.
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Part I

Multi-resolutional Statistical Analysis on

ABCD Data
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CHAPTER 2

COVLET: Covariance-based Wavelet-like Transform for Statistical Analysis of Brain

Characteristics in Children

Adolescence is a period of substantial experience-dependent brain development. A

major goal of the Adolescent Brain Cognitive Development (ABCD) study is to understand

how brain development is associated with various environmental factors such as socioe-

conomic characteristics. While ABCD study offers a large sample size, it still requires a

sensitive method to detect subtle associations when studying typically developing children.

Therefore, we propose a novel transform, i.e. covariance-based multi-scale transform (COV-

LET), which derives a multi-scale representation from a structured data (i.e., P features

from N samples) that increases performance of downstream analyses. The theory driving

our work stems from wavelet transform in signal processing and orthonormality of the

principal components of a covariance matrix. Given the microstructural properties of brain

regions from children enrolled in the ABCD study, we demonstrate a multi-variate statistical

group analysis on family income using the multi-scale feature derived from brain structure

and validate improvement in the statistical outcomes. Furthermore, our multi-scale descrip-

tor reliably identifies specific regions of the brain that are susceptible to socioeconomic

disparity.

2.1 Introduction

Adolescence is a period of rapid brain development shaped by genetic, physiologic and

socioeconomic variables [32, 33]. While previous studies have utilized techniques largely

focusing on macrostructural properties of the cerebral cortex such as its thickness, surface
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area and volume [34], the microstructural characteristics such as diffusion of water along the

tracts of the neuronal fibers may provide insights into the functional properties of the brain

[35]. These properties, measured with high-resolution Diffusion Tensor Imaging (DTI), have

previously been used to study the association of socioeconomic disadvantage with brain

structure and function in children. Fractional anisotropy (FA) from DTI, representing the

diffusion of water perpendicular to the orientation of the neuronal fibers, has significant

potential to identify association of the brain characteristics with neurobehavioral outcomes

such as cognitive development [36, 37, 38].

The Adolescent Brain and Cognitive Development (ABCD) study [39], a longitudinal

assessment of nearly 12,000 children commencing at the age of 9-11 years through adulthood,

provides an unprecedented opportunity to explore development of the brain in adolescence

with novel statistical tools. Therefore, we used the baseline dataset from the ABCD study

(version 2.0.1) to examine the association between major socioeconomic characteristics,

household income and microstructural characteristics (i.e., FA) of cortical regions. While

ABCD provides a large sample size, the subtle variations in FA between closely-spaced

groups within the spectrum of socioeconomic strata are still difficult to capture, requiring

a more sensitive method that transforms the data into a new domain where the differences

between the groups can be ascertained better.

Here, we have developed a novel transform that derives a multi-scale feature from

structured data X ∈ RN×P with N samples and P features, which can improve its down-

stream analyses. The technical core of our method is inspired from wavelet transform in

traditional signal processing. Wavelet transform transforms a signal f(x) in x (in the Eu-

clidean space) to the frequency space and its wavelet representation yields “multi-scale”

representation of the original signal f(x) [6]. Such a multi-scale representation of signalshas

provided successful results in Computer Vision for providing efficient features for robust

comparisons of images [40, 41, 42], and shown benefits for statistical group analysis [43, 44].
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Wavelets behave as band-pass filters in the frequency space where the scales are defined

by the bandwidth covered by the filters [7]. Therefore, if such a filter can be designed in a

dual space (e.g., frequency space) defined by orthogonal bases (e.g., Fourier bases), we can

design a novel transform that derives multi-scale representation of signals even in a complex

domain [8, 9].

The main barrier in our setting is that we are given with a structured data (e.g., FA

of regions of interest (ROIs) from N subjects) instead of images, where the underlying

space of the data is unknown. In this scenario, we utilize a precision matrix, i.e., inverse

covariance matrix, which is symmetric and positive definite and thus has a set of “orthonor-

mal” eigenvectors. The orthonormality lets us define an orthogonal transform, and together

with filter functions on the spectrum of eigenvalues, we can design a novel multi-scale

representation of the original measurement X . With a premise that multi-scale comparison

of data can enhance downstream inference [45], we define a multi-scale descriptor based on

the developed transform to increase sensitivity of a statistical analysis.

In summary, we propose a framework which utilizes a precision matrix to provide a

multi-scale descriptor on the original features. Our main contributions are: 1) We develop

a novel covariance-based wavelet-like transform (COVLET) which delivers a multi-scale

representation of the original feature measures; 2) We conduct extensive experiments

on ABCD dataset, which demonstrates significant performance improvements over raw

measurements; 3) We identify clinically meaningful cortical ROIs, which are susceptible to

socioeconomic inequality.
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2.2 Continuous Wavelets Transform in the L2(R) Space

Conventional wavelets transform is well understood in the L2(R) space and is funda-

mental to our proposed framework. To make this paper self-contained, we provide a brief

review of wavelets transform in this section.

Wavelets transform transforms a signal f(x) to the frequency space by decomposing

the signal f(x) as a linear combination of oscillating basis functions and their coefficients [6].

Although similar to Fourier transform, however, wavelet transform make use of a localized

basis function, i.e., providing a compact finite support that is centered at a specific position.

This contrasts wavelet transform from Fourier transform which uses sin() as a basis with

infinite duration.

Wavelet transforms require a mother wavelet ψs,a as the basis. The scale parameter

s and translation parameter a control the dilation and location of the mother wavelet

respectively. A set of mother wavelets is formalized as

ψs,a =
1

s
ψ(
t− a
s

). (2.1)

The forward wavelet transform of a signal f(x) is defined as an inner product of these

wavelets with the signal f(x), which yields wavelet coefficients Wf (s, a) as

Wf (s, a) = 〈f, ψs,a〉 =
1

s

∫ ∞
−∞

f(x)ψ∗(
x− a
s

)dx, (2.2)

where ψ∗ is complex conjugate of ψ. Moreover, defining the scaling in the Fourier domain

let us further express the wavelet coefficients as

Wf (s, a) =
1

2π

∫ ∞
−∞

eiωaψ̂∗(sω)f̂(ω)dω, (2.3)

where f̂(ω) denotes the Fourier representation of the f(x) in the frequency space ω [7].

Briefly, (2.3) suggests that filtering f̂ at multiple scales at s with the mother wavelet ψ̂ offers

a multi-scale view of the original signal f(x).
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2.3 Multi-scale Analysis via Covariance: COVLET

Let X ∈ RP×N be a standardized (zero-mean) feature matrix with N samples, each of

which has P features. Computing a covariance matrix from X yields ΣP×P = 1
N
XXT , and

a precision matrix is defined as the inverse convariance matrix, Ω = Σ−1. In the multivariate

normal distribution setting, the precision matrix reveals conditional independence relations

across different variables, i.e., pair-wise features, as a graphical model [46]. Specifically,

Ωij = 0 implies that features xi and xj are conditionally independent given other features

{xk}k 6=i,j .

The precision matrix ΩP×P is symmetric and positive definite (p.d.), and thus has

a set of positive eigenvalues 0 < λ1 ≤ λ2 ≤ . . . ≤ λP with corresponding orthonormal

eigenvectors ν1, ν2, . . . , νP as bases. Then we define a Hilbert space H on RP with inner

product such that 〈f, h〉 =
∑P

i=1 fihi ∈ R for any f, h ∈ H .

With the background above, we can define an orthogonal transform for any sig-

nal/measurement f ∈ H , where the transformed signal f̂ is given by

f̂(`) = 〈ν`, f〉 =
P∑
p=1

ν`(p)f(p), (2.4)

and its inverse transform expresses the original f as an expansion using the f̂ as

f(p) =
P∑
`=1

f̂(`)ν`(p). (2.5)

Due to the orthonormality of the bases ν`, a Parseval relation exists such that 〈f, h〉 = 〈f̂ , ĥ〉.

Based on the precision matrix Ω, we define a linear bounded operator T sg ∈ B(H,H) at

scale s such that

T sg ν` = g(sλ`)ν`, (2.6)

for any eigenvector ν`, where g is a bounded operator from R to R (i.e., a kernel function as a

band-pass filter). We term it as Covariance-wavelet (Covlet) operator. Based on the definition
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of the Covlet on eigenvectors, it can be naturally extended on the whole eigenspace. Since

eigenvector bases are complete on RP , T sg is well defined on RP .

Lemma 2.3.0.1. T sg is a self-adjoint operator, i.e., 〈T sg f, h〉 = 〈f, T sgh〉.

The self-adjoint property from Lemma A.1.0.1, whose proof is given in supplement,

together with (2.4) consequently implies that

T̂ sg f(`) = 〈ν`, T sg f〉 = 〈T sg ν`, f〉 = g(sλ`)f̂(`), (2.7)

which means that the operator is equivalent to applying a filter function g(·) on top of

coefficients f̂ . According to equation (2.7) and the orthonormal property, applying the

inverse transform in (2.5) then shows

T sg f(p) =
P∑
`=1

g(sλ`)f̂(`)ν`(p), (2.8)

where the operator T sg is applied on the p-th feature. This operation in (2.8) is defined as the

Covlet transform of an original signal f(p) (i.e. feature) as

Cf (s, p) = 〈T sg δp, f〉, (2.9)

which yields Covlet coefficients Cf (s, p) where δp denotes a Dirac delta function at p. As

claimed by Lemma A.1.0.1, the self-adjoint property implies that

Cf (s, p) = 〈δp, T sg f〉 = T sg f(p). (2.10)

We observe a close analogy between our Covlet operator and the conventional wavelets

operator as they both define the mapping through bases. However, as indicated by equations

(2.3) and (2.8), they utilize different sets of bases according to eigenvectors of the precision

matrix and Fourier bases, respectively. Furthermore, such a transform delivers a multi-scale

view of signals defined on each features by repeating this procedure for multiple scales.

Therefore, we define the Covlet Multi-scale Descriptor (CMD) as a set of Covlet coefficients

on each feature p for each scale in S = {s1, s2, · · · , s|S|},

CMDf (p) = {Cf (s, p)|s ∈ S}. (2.11)
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Figure 2.1: Multi-scale FA. First: FA measures, Second: CMD at scale s1 = 2.11e − 05,
Third: CMD at scale s2 = 4.27e− 06, Fourth: CMD at scale s3 = 8.67e− 07.

This CMD is a multi-scale feature that is derived from the original univariate measure-

ment/signal by performing multi-scale filtering in a dual space spanned by the eigenvectors

ν, i.e., PCA. An example of (standardized) CMD from FA measure is shown in Fig. 2.1. It

captures local context along the geometry of the manifold where the data X are defined.

When the geometry is given as a graph, the Ω in our framework can be replaced by graph

Laplacian and will be formulated as Spectral Graph Wavelet Transform (SGWT) in [7].

2.4 Identifying Changes in Microstructure of Neuron Tracts with Family Income

2.4.1 Experimental Design

Dataset. The ABCD study is the largest long-term study on brain development [39]

and child health in the U.S. supported by the National Institutes of Health (NIH). The dataset

included 11,873 children enrolled by October 2018, which is also pre-packaged and publicly

available (version 2.0.1) on the National Institute of Mental Health Data Archive (NDA)

under the data use agreement.

Table 2.1: Demographics of the ABCD study.

Demographics BP NP H M L

# of Subjects 954 8883 4208 2794 2835
Gender (M/F) 488/466 4610/4273 2000/2208 1345/1449 1394/1441

Age (mean,std) 118.5± 7.3 119.1± 7.5 119.4± 7.5 118.8± 7.5 118.7± 7.5

BP: below-poverty, NP: non-poverty, H: high, M: middle, L: low; Age is measured in months.
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For our experiments, children were grouped based on household income level. In

the first analysis, they were separated into two groups by the poverty criteria from U.S.

Census Bureau; the threshold in the U.S. for a single parent family was $16, 910 [47]. We

defined a below-poverty (BP) group with the subjects with the family income level below

level 4 in the dataset (i.e., < $16, 000), and a non-poverty (NP) group with the remaining

subjects. For the second analysis, subjects were divided into three groups based on the

following household income bracket [48]: we regarded household income below $50, 000

as Low, between $50, 000 and $100, 000 as Middle, and above $100, 000 as High income

groups. 9, 837 children were included following exclusion of missing data. The demographic

characteristics of the children are presented in Table 4.1.

For brain structural characteristics, we specifically analyzed the mean FA at each ROI

from the diffusion tensor imaging (DTI), which represents a fundamental microstructural

property of the brain. FA values were obtained from 148 distinct regions of interest (ROIs)

based on the Destrieux atlas [49].

Group Comparison / Parameters. We performed group analyses to demonstrate

that CMD enhances downstream statistical analysis and identify income-related ROIs. For

the baseline, we used a general linear model (GLM) on the original univariate FA measure

to correct for covariates (i.e., age, biological sex at birth, and scanner serial number), and

obtained p-values at each ROI. We then applied a multivariate general linear model (MGLM)

on CMD, which is a multi-variate feature derived using the Covlet, and resultant p-values

were adjusted for the covariates. For both analyses, multiple comparisons were corrected

with Bonferroni correction at α = 0.01, and the final p-values and ROIs that met the defined

threshold were compared.

For the kernel function g(·) for CMD, we used a spline function defined in [7]. We

used total of 4 scales for the BP vs. NP analysis and 5 scales for Low/Middle/High income

comparisons. The scales were defined in the spectrum of the precision matrix, i.e., [0, λP ].
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2.4.2 Group Analysis Results

Table 2.2 summaries the number of significant ROIs whose p-values met the multi-

ple comparisons correction. A larger number of significant ROIs were obtained utilizing

CMD compared to the results obtained utilizing the raw FA values, also demonstrating an

improvement in statistical sensitivity in every category.

Below-poverty vs. Non-poverty. Comparing the BP and NP groups, we detected only

6 ROIs that met the Bonferroni correction at α = 0.01 using the raw FA values. However,

using CMD, we identified 22 different ROIs that met the same Bonferroni correction with

improved p-values. Interestingly, the 6 ROIs that were discovered by the baseline were

subsumed by the ROIs found with CMD. The list of surviving ROIs from BP vs. NP analysis

and corresponding p-values are given in Table 2.3, and these ROIs and their p-values are

further demonstrated in Fig. 2.2 on a cortical surface of the brain. Looking at the top 11

ROIs in the left column of Table 2.3, we observed that many top ROIs with the lowest

p-values are located within the frontal region in the brain, and detailed interpretation of this

observation will be given in section 2.4.4.

High vs. Middle vs. Low income groups. While the group differences between High

and Low income groups were discernible (Table 2.2), the number of significant ROIs for the

comparisons between High and Middle, and Middle and Low groups were small. However,

using CMD, we found two ROIs for High vs. Middle group analysis, and 7 ROIs from

the Middle vs. Low group comparisons. In Table 2.3, we present the list of significant

ROIs when comparing Middle income versus Low income groups. Again, we identified

Table 2.2: Number of ROIs showing variation based on family income level

Feature BP vs NP H vs L H vs M M vs L

Original FA 6 7 0 1
CMD (COVLET) 22 48 2 7

BP: below-poverty, NP: non-poverty, H: high, M: middle, L: low
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Figure 2.2: Group analysis results from Below-poverty vs. Non-poverty family income
groups. p-value maps in − log10 scale are shown on a brain surface. Top: using original FA
values, Bottom: using CMD. Notice much stronger signal in the bottom.

only two regions using the raw FA values, but seven ROIs using CMD with subsequent

improvement in statistical outcomes. From these comparisons, we concluded that CMD

enables the underlying signal to become more detectable, even with subtle differences.

2.4.3 Family Income Group Classification

We further performed classification of family income groups with 10-fold cross-

validation using Elastic Net [50]. The purpose was to see if CMD from FA improves

prediction performance over the raw FA measures, especially when it has shown improved

statistical outcomes in section 2.4.2. Due to class imbalance, we used NearMiss under-

sampling [51]. Classification performances were evaluated by accuracy, precision and recall

metrics which are summarized in Table 2.4. Using CMD, the accuracy improves by 8% and

precision gets increased by 6% in binary case, and similarly for 3-class case, both accuracy

and precision improved by 6%. These results show that CMD improves the prediction ability

over the raw measurements, controlling for Type-1 error with increased precision.
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2.4.4 Neuroscientific Interpretation

The use of a covariance-based wavelet-like (COVLET) transform facilitated more

sensitive inference on household income compared to raw FA alone. The finding that majority

of the brain ROIs identified in the current study as being within or close to the frontal lobe

of the brain is consistent with previous literature that examined the association between

socioeconomic characteristics and brain structure. In the largest previous study that included

Table 2.3: Identified ROIs and p-values from BP vs. NP (Left) and Mid vs. Low income
(Right) analyses.

(a) BP vs. NP

Idx ROI p-value Idx ROI p-value
1 s.front.middle.lh 6.9e-09 12 g.precentral.rh 5.7e-06
2 g.front.sup.rh 2.1e-08 13 g.precentral.lh 1.1e-05
3 g.front.sup.lh 7.1e-08 14 g.cing.post.dorsal.rh 1.1e-05
4 g.and.s.subcentral.lh 4.6e-07 15 g.cing.post.ventral.rh 1.2e-05
5 g.front.middle.lh 6.7e-07 16 s.front.sup.rh 1.4e-05
6 s.front.middle.rh 7.6e-07 17 s.temp.transverse.lh 1.7e-05
7 s.parieto.occipital.rh 7.7e-07 18 g.temp.sup.plan.polar.lh 1.9e-05
8 g.and.s.transv.frontopol.rh 1.4e-06 19 g.temp.sup.plan.polar.rh 2.2e-05
9 g.oc.temp.med.parahip.rh 3.2e-06 20 g.postcentral.lh 2.3e-05
10 s.occipital.ant.lh 4.2e-06 21 g.oc.temp.med.parahip.lh 2.3e-05
11 g.and.s.cingul.ant.rh 5.6e-06 22 s.interm.prim.jensen.lh 4.2e-05

(b) Mid vs. Low income

Idx ROI p-value

1 g.front.sup.lh 6.0e-07

2 s.front.sup.rh 6.6e-07

3 s.occipital.ant.lh 1.0e-06

4 s.front.middle.rh 2.0e-06

5 g.front.sup.rh 1.3e-05

6 s.parieto.occipital.rh 4.2e-05

7 s.interm.prim.jensen.lh 5.5e-05
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Table 2.4: Classification performance measurements.

2-Class 3-Class

Measures Accuracy Precision Recall Accuracy Precision Recall
Original FA 0.77 0.76 0.89 0.41 0.40 0.42

CMD (COVLET) 0.85 0.82 0.91 0.47 0.46 0.46
∗Note that macro average precision and recall are reported in 3-class case.

1,100 children, household income accounted for significant variation in regions within

the bilateral frontal, temporal and parietal lobes [52]. In smaller studies that assessed the

relationship between white matter integrity and socioeconomic characteristics, individuals

earning higher incomes demonstrated higher FA as well as cognitive ability [53].

Despite the dominance of ROIs within the frontal lobe as identified in the current study,

previous studies do not appear to consistently demarcate ROIs in a standardized fashion,

in part due to the varied impact of developmental processes on cortical columns, synaptic

formation and pruning [54]. Indeed, the frontal lobe is central to executive functioning–a do-

main that spans cognition and behavior–and therefore remains vulnerable to stressors during

childhood development [55, 56]. Previous studies have generally focused on macrostruc-

tural characteristics of the brain such as cortical thickness, surface area and volume, which

could be susceptible to overlapping developmental influences. Importantly, the current

study provides the first ever large scale evidence that the associations between brain and

socioeconomic status extend to their microstructural properties.

2.5 Conclusion

To increase sensitivity in statistical inference/prediction methods for structured data,

we proposed a novel transform that utilizes its covariance structure, i.e., Covlet. The Covlet

captures local context information along the geometry of precision matrix and provide a

multi-scale feature, which lets us compare samples with different labels more robustly. We
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performed statistical analysis and classification of children based on family income using

large-scale ABCD dataset and demonstrated quantitative improvements in their outcomes.

As qualitative results, we identified several ROIs whose microstructure is susceptible to

socioeconomic inequality, which were not identifiable with conventional approaches.

23



Part II

Disentangled Representation Learning

on ADNI Data
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CHAPTER 3

Representation Learning I: Disentangled Sequential Graph Autoencoder for Preclinical

Alzheimer’s Disease Characterizations from ADNI study

Given a population longitudinal neuroimaging measurements defined on a brain net-

work, exploiting temporal dependencies within the sequence of data and corresponding

latent variables defined on the graph (i.e., network encoding relationships between regions of

interest (ROI)) can highly benefit characterizing the brain. Here, it is important to distinguish

time-variant (e.g., longitudinal measures) and time-invariant (e.g., gender) components

to analyze them individually. For this, we propose an innovative and ground-breaking

Disentangled Sequential Graph Autoencoder which leverages the Sequential Variational

Autoencoder (SVAE), graph convolution and semi-supervising framework together to learn

a latent space composed of time-variant and time-invariant latent variables to characterize

disentangled representation of the measurements over the entire ROIs. Incorporating target

information in the decoder with a supervised loss let us achieve more effective representation

learning towards improved classification. We validate our proposed method on the longi-

tudinal cortical thickness data from Alzheimer’s Disease Neuroimaging Initiative (ADNI)

study. Our method outperforms baselines with traditional techniques demonstrating benefits

for effective longitudinal data representation for predicting labels and longitudinal data

generation.

3.1 Introduction

Representation learning is at the core of Image Analysis. Lots of recent attentions are

at a disentangled representation of data, as the individual disentangled representations are
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highly sensitive to a specific factor whereas indifferent to others [57, 58, 59, 16, 60]. A typi-

cal disentangling method would find a low-dimensional latent space for high-dimensional

data whose individual latent dimensions correspond to independent disentangling factors.

For longitudinal data, one can expect to decompose the longitudinal data into time-invariant

factors and time-variant factors by obtaining the “disentangled” representation as longitudi-

nal observations are affected by both time-variant and static variables [18, 61, 62]. In the

context of neuroimaging studies, the disentangled representation would be able to separate

time-independent concepts (e.g. anatomical information) from dynamical information (e.g.

modality information) [63], which may offer effective ways of compression, conditional

data generation, classification and others.

Recent advances in variational autoencoders (VAE) [17] have made it possible to

learn various representations in an unsupervised manner for neuroimaging analysis [15, 16].

Moreover, various vibrant of autoencoders are also proposed to model temporal data; for

example, [18] introduced the factorised hierarchical variational auto-encoder (FHVAE) for

unsupervised learning of disentangled representation of time series. Sequential variational

autoencoder was proposed in [61] benefiting from the usage of the hierarchical prior. It

disentangles latent factors by factorizing them into time-invariant and time-dependent

parts and applies an LSTM sequential prior to keep a sequential consistency for sequence

generation. [62] modeled the time-varying variables via LSTM in both encoder and decoder

for dynamic consistency.

There are two major issues with current approaches. First, while these methods can

deal with temporal nature of the data, they do not necessarily introduce supervision at all.

Moreover, from a neuroscience perspective, the domain knowledge tells us that the regions

of interest (ROIs) in the brain are highly associated to each other both functionally and

structurally [64, 65, 66, 67]. This association provides a prior knowledge on connection

between the ROIs as a graph; for example, structural brain connectivity from tractography
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on Diffusion Tensor Imaging (DTI) provides a path for anisotropic variation and diffusion

of structural changes in the brain such as atrophy of cortical thickness. Most of the existing

methods do not consider this arbitrary topology of variables, if there is any, into account,

which can provide significant benefit for downstream tasks. To summarize, learning with

(either full or partial) supervision on longitudinal neuroimaging measurements on a brain

network is still under-explored.

Given longitudinal observations (e.g., cortical thickness) on specific ROIs in the brain

and a structural brain network characterized by bundles of neuron fiber tracts, our aim is to

develop a framework to learn a latent disentangled representation of the observations that

are composed of time-variant and time-invariant latent variables. For this, we propose an

innovative Semi-supervised Sequential Graph Autoencoder model which leverages ideas

from the sequential variational autoencoder (SVAE), graph convolution and semi-supervising

framework. The core idea is to incorporate target information as a supervision in the decoder

with a supervised loss, which let us achieve more effective representation for downstream

tasks by balancing extraction of underlying structure as well as accurately predicting class

labels.

Our proposed framework learns a latent disentangled representation composed of time-

variant and time-invariant latent variables to characterize the longitudinal measurements

over the entire structural brain network that consists of ROIs. Our contributions are as

summarized follows: our model can 1) learn an ideal disentangled representation which

separates time-independent content or anatomical information from dynamical or modality

information and conditionally generate synthetic sequential data; 2) perform semi-supervised

tasks which can jointly incorporate supervised and unsupervised data for classification tasks;

3) leverage graph structure to robustly learn the disentangling latent structure. Using our

framework, we analyzed longitudinal cortical thickness measures on brain networks with

diagnostic labels of Alzheimer’s Disease (AD) from Alzheimer’s Disease Neuroimaging
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Initiative (ADNI) study. As AD is a progressive neurodegenerative condition characterized by

neurodegeneration in the brain caused by synthetic factors [10, 11, 12, 13, 14], it is important

to effectively characterize early symptoms of the disease. We expect that disentangling ROI

measures with time-variant and static components can provide unique insights.

3.2 Background

Our proposed framework involves two important concepts: 1) graph convolutions and

2) SVAE. Hence, we begin with brief reviews of their basics.

3.2.1 Graph Convolutions

Let G = {V,E, A} be an undirected graph, where V is a set of nodes with |V| = n,

E is a set of edges and A is an adjacent matrix that specify connections between the nodes.

Graph Fourier analysis relies on the spectral decomposition of graph Laplacian defined as

L = D − A, where D is a diagonal degree matrix with Di,i =
∑

j Ai,j . The normalized

Laplacian is defined as L = In − D−1/2AD−1/2, where In is the identity matrix. Since

L is real and positive semi-definite, it has a complete set of orthonormal eigenvectors

U = (u1, . . . ,un) with corresponding non-negative real eigenvalues {λl}nl=1. Eigenvectors

associated with smaller eigenvalues carry slow varying signals, indicating that connected

nodes share similar values. In contrast, eigenvectors associated with larger values carry faster

varying signals across the connected nodes. We are interested in the smallest eigenvalues due

to the negation used to compute the Laplacian matrix in terms of the Euclidean Commute

Time Distance [68]. Let x ∈ Rn be a signal defined on the vertices of the graph. The graph
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Fourier transform of x is defined as x̂ = UTx, with inverse operation given by x = U x̂.

The graphical convolution operation between signal x and filter g is

g ∗ x = U((UTg)� (UTx)) (3.1)

= UĜUTx.

Here, UTg is replaced by a filter Ĝ = diag(θ) parameterized by θ ∈ θn in Fourier domain.

Unfortunately, eigendecomposition of L and matrix multiplication with U are expensive.

Motivated by the Chebyshev polynomials approximation in [7], [64] introduced a Chebyshev

polynomial paramterization for ChebyNet that offers fast localized spectral filtering. Later,

[66] provided a simplified version of ChebyNet by considering a second order approximation

such that g ∗ x ≈ θ(In + D−1/2AD−1/2)x and illustrate promising model performance

in graph-based semi-supervising learning tasks, and GCN is deeply studied in [67]. Then,

FastGCN was proposed in [69] which approximates the original convolution layer by

Monte Carlo sampling, and recently, [70] leveraged graph wavelet transform to address the

shortcomings of spectral graph convolutional neural networks.

3.2.2 Sequential Variational Autoencoder

Variational autoencoder (VAE), initially introduced in [17] as a class of deep genera-

tive mode, employs a reparameterized gradient estimator for a evidence lower bound (ELBO)

while applying amortized variational inference to an autoencoder. It simultaneously trains

both a probabilistic encoder and decoder for elements of a data set D = (x1, . . . ,xM) with

latent variable z. Sequential variational autoencoders (SVAEs) extend VAE to sequential

data D, where each data are x1:T = (x1, . . . , xT ) [61, 62]. SVAEs factorize latent variables

into two disentangled variables: the time-invariant variable f and time-varying variable

z1:T = (z1, . . . ,zT ). Accordingly, decoder is casted as a conditional probabilistic density

pθ(x|f , z1:T ) and encoder is used to approximate the posterior distribution pθ(f , z1:T |x) as
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qφ(f , z1:T |x) that is referred to as an “inference network” or a “recognition network”. θ

refer to the model parameters of generator and φ refer to the model parameters of encoder.

SVAEs are trained to maximize the following ELBO:

L(θ,φ;D) = Ep̂(x1:T )

[
Eqφ(z1:T ,f |x1:T ) ln pθ(x1:T |f , z1:T )

−KL(qφ(f , z1:T |x1:T ), pθ(f , z1:T ))
]
, (3.2)

where p̂(x1:T ) is the empirical distribution with respect to the data set D, qφ(f , z1:T |x1:T )

is the variational posterior, pθ(x1:T |f , z1:T ) is the conditional likelihood and pθ(f , z1:T ) is

prior over the latent variables.

3.3 Proposed Model

Let us first formalize the problem setting. Consider a dataset consists of shared graph

G, and M unsupervised data points D = {Xi}Mi=1 and M sup supervised data points Dsup =

{Xi, yi}M
sup

i=1 as pairs.Xi = (Xi,1, . . . Xi,Ti) refer to the i-th sequential observations on N

nodes of a graph G with C input channels, i.e., Xi,t ∈ RN×C , and yi is the corresponding

class label such as diagnostic labels.

We propose a semi-supervised sequential variational autoencoder model, and for

convenience we omit the index i whenever it is clear that we are referring to terms associated

with a single data point and treat individual data as (X, y).

3.3.1 Objective Function

Typical semi-supervised learning pipelines for deep generative models, e.g., [71, 72],

define an objective function for optimization as

L(θ,φ;D,Dsup) = L(θ,φ;D) + τLsup(θ,φ;Dsup). (3.3)
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Figure 3.1: A graphical model visualisation of the encoder (left) and decoder (right). In the
encoder, label y is inferred by data x and time-invariant r.v. f are inferred by label y and
data x, and time-varying r.v. z are sequentially inferred by label y, time-invariant r.v. f and
data x. In the decoder, data are sequentially generated from time-invariant random variable
(r.v.) f , time-varying r.v. z and label y via latent r.v. w.

Similarly, our approach jointly models unsupervised and supervised collections of terms

over D and Dsup. The formulation in Eq. 3.3 introduces a constant τ to control the relative

strength of the supervised term. As the unsupervised term in Eq. 3.3 is exactly same as that

of Eq. 3.2, we focus on the supervised term Lsup in Eq. 3.3 expanded below. Incorporating a

weighted component as in [71],

Lsup(θ,φ;Dsup) (3.4)

= Ep̂(X,y)

[
Eqφ(f ,z|X,y)

[
ln
pθ(X, y,f , z)

qφ(f , z|X, y)

]
+ α ln qφ(y|X)

]
where α balances the classification performance and reconstruction performance. Discus-

sions on generative and inference model will continue in the later sections.

3.3.2 Generative Model

This section discusses modeling conditional probabilistic density pθ(X|f , z, y) with

its corresponding prior. We incorporate the topology information of the graph G into the

generative process using a graph convolution. Specifically, we assume that sequencesX are

generated from P -dimensional latent vectorsW = (W1, . . . ,WT ) and Wt ∈ RN×P via

Xt = ÂWtΘ, (3.5)
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where Â = D̃−1/2ÃD̃−1/2, Ã = A+ I and D̃ii =
∑

j Ãij . A is the adjacent matrix for the

graph G and Θ is the trainable weight matrix. Then we assume the latent variablesW are

generated from two disentangled variables: the time-invariant (or static) variable f and the

time-varying (or dynamic) variables z, as well as the label y, as shown in Figure 3.1. A joint

for the generative model is given as

pθ(X, y,z,f) (3.6)

= pθ(f)pθ(y)
T∏
t=1

pθ(zt|z<t)pθ(Xt|y,f , zt).

The prior of f is defined as a Gaussian distribution: f ∼ N (0, I). Time-varying latent

variables z1:T follow a sequential prior zt|zt−1 ∼ N (µt, diag(σ2
t )), where [µt,σt] are

estimated by a recurrent network, such as LSTM [73] or GRU [74], in which the hidden

states are updated temporally. The generating distribution of Wt is conditional on y, f

and zt: vec(Wt)|y,f , zt ∼ N (µw,t, diag(σ2
w,t)), where [µw,t,σw,t] = ψDecoder(y,f , zt).

This decoder ψDecoder can be any flexible neural network such as multilayer perceptron

(MLP). The f will be capable of modelling global aspects of the whole sequences which

are time-invariant, while z1:T will model time-varying features. As mentioned in [61], to

separate the static and dynamic information, smaller dimension of zt is preferred. In the

context of ADNI study, zt would encode how ROIs at timestamp t is morphed into those at

timestamp t+ 1. In the context of generative model, we employ LSTM as the prior for z

and use MLP for the conditional probabilistic density, and we set the dimension P = 1.

32



3.3.3 Inference Model

The developed SVAE within our framework proposes a recognition model qφ(y,f , z|X) =

qφ(y|X)qφ(f , z|y,X) to approximate the posterior pθ(y,f , z|X). The recognition model

is formulated as

y ∼ Cat(Softmax(py)) , (3.7)

f ∼ N (µf , diag(σ2
f )) ,

zt ∼ N (µt, diag(σ2
t )) ,

where py = ψEncodery (X1:T ), [µf ,σf ] = ψEncoderf (y,X1:T ) and [ut, 2 logσt] = ψEncoderR (y,X≤t).

It implies that the label y and the time-invariant variable f are conditional on the whole

sequence via ψEncodery and ψEncoderf , while the time-dependent variable zt is inferred by

the sequence before time t, X≤t. The inference model is visualized in Figure 3.1 and is

factorized as

qφ(y, z1:T ,f |X1:T )

= qφ(y|X1:T )qφ(f |y,X1:T )
T∏
t=1

qφ(zt|f , y,X≤t) . (3.8)

In the context of our inference model, we employ three independent LSTMs for three

conditional probabilistic densities of y,f and z.

3.4 Experimental Results

We conducted experiments on structural brain connectivity from DTI in ADNI. DTI

images were processed by tractography, which extracted neuron fiber tracts and longitudinal

cortical thickness measures registered at Destrieux atlas [49] with 148 ROIs. The dataset had

five labels; we merged control (CN), Significant Memory Concern (SMC) and Early Mild
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Cognitive Impairment (EMCI) groups as Pre-clinical AD group, and Late Mild Cognitive

Impairment (LMCI) and Alzheimer’s Disease (AD) as Prodromal AD group to ensure

sufficient sample size. The dataset included N=140 subjects with the Pre-AD group (93

subjects/330 records) and the Pro-AD group (47 subjects/170 records). The mean (std) of

ages and sex ratio (Male:Famale) in Pre-AD group and Pro-AD group are 74.02(6.72)/

(185:145) and 74.87(6.92)/ (95:75), respectively. An overall graph was obtained by taking

the average of the adjacency matrices. Experiments for disentangle representation and

quantitative analysis were performed given below.

3.4.1 Disentangled Representation

In this experiment, we randomly took 100 subjects’ records for training, 20 subjects’

records for validation and the other 20 subjects’ records for testing. We set the dimension

size of f as 8 and the dimension size of z as 32. We also set the size of hidden states in

LSTMs as 32.

We randomly selected two subjects with more than three records (i.e., time-points),

where subject 1 belongs to Prodromal AD group and subject 2 belongs to Pre-clinical AD

Figure 3.2: Top panel shows the true brain surfaces at timestamp t0, t1 and t2 for subject 1
(Pro-AD) and subject 2 (Pre-AD), respectively. Bottom panel shows the reconstructed brain
surfaces for subject 1 (Recon) and subject 1’s brain surfaces through the dynamic swapping
(DS). Drawings generated using BrainPainter [2].
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Figure 3.3: Label swapping task. Left panel shows generated brain surfaces for subject 1
(Pro-AD) based on the true label at timestamp t0, t1 and t2, respectively. Right panel shows
generated brain surfaces for the same subject 1 but based on the false label.

group. Suppose that the two subjects’ sequential records are given for anatomical information

and modality information denoted by R1 and R2. Our method performs the reconstruction

task and the dynamic swapping task in which the record generation is based on the true y,

f from R1 and z from R2 as in Figure 4.2. It shows that the reconstruction captures both

anatomical information and modality information, and figures generated from the dynamic

swapping task illustrate that time-varying latent variables z succeed to learning the modality

information.

In Figure 3.3, we show results from the label swapping task on subject 1, where

we generate cortical thickness based on the f from R1, z from R1 and true/false labels y.

Comparing the generated measures of subject 1 with the true measures in Figure 4.2, we

found that generated measures based on the true label are more similar to the true measures

and that based on the false label has totally different patterns but similar to the true measures

of subject 2 in Figure 4.2. It suggests that the decoder in our model correctly learns the label.

To understand the disentangled representation on the time invariant latent variable f ,

we carry out latent traversals in f as in [75]. Specifically, we first computed the average

Kullback–Leibler divergence for f with its prior. Then we selected the two dimensions

in f with the largest two values (the 1st and 3rd elements), which refer to the two most

informative dimensions and then traverse a single latent dimension on 10 equally spaced

grids on [−3, 3]. For better visualization, we chose the first image as baseline and subtracted
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Figure 3.4: Latent traversals task. Top: the latent brain surfaces for dim-1 on subject 1
(pro-AD). Bottom: the latent brain surfaces for dim-3 on subject 1 .

the baseline of image from all generated images. Then we normalized those images in a unit

region [0, 1] shown in Figure 3.4.

3.4.2 Quantitative Analysis

We carry out 7-fold cross validation (CV) in which we take six folds for training (one

fold for validation from the training set) and one fold for testing. We set the dimension

size of f as 8 and the dimension size of z as 4. We also set the size of hidden states in

LSTMs as 8. We compared our model with S3VAE model [62], which has a generator as

in Figure 3.1 but without a probabilistic model on label y. As S3VAE is unsupervised, we

cannot directly compare our model with it. Instead, we tackle the classification task via

a two-stage approach. Specifically, we train S3VAE to obtain latent f and train a naive

neural network for the label classification. As for testing, we first get f from trained S3VAE

Table 3.1: Reconstruction and classification performance with 7-fold cross validation.

RMSE Accuracy Precision Recall

Our model (α = 1) 0.257(0.041) 0.657(0.168) 0.416(0.367) 0.446(0.349)
Our model (α = 10) 0.258(0.046) 0.736(0.151) 0.541(0.346) 0.492(0.337)
S3VAE (Supervised) 0.263(0.042) 0.664(0.164) 0.000(0.000) 0.000(0.000)
S3VAE (Two stages) 0.254(0.043) 0.664(0.164) 0.000(0.000) 0.000(0.000)
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and classify f . Also, we propose a supervised loss based on the latent time-invariant f for

S3VAE as one competitor. The generative model is modified as

pθ(X, y,z,f) (3.9)

= pθ(f)pθ(y|f)
T∏
t=1

pθ(zt|z<t)pθ(Xt|f , zt),

where we employ a fully connected network following a softmax activation function for

pθ(y|f). We treat the pro-AD as positive result and then report three classification mea-

sures, accuracy, precision and recall. We also report root mean square error (RMSE) as

a reconstruction measure for testing data in Table 3.1. As for our proposed model, we

consider the regularization weights α = 1 and α = 10. We find that our model has a better

reconstruction performance in comparison to the supervised S3VAE model and performs

similarly to the two-stage S3VAE. As for classification, our model with α = 10 outperforms

other models. We note that S3VAE based methods always categorize patients into pre-AD

group, suffering from the imbalance classification issue. Our model resolves this issue and

obtains a significantly better classification result according to both higher precision and

recall scores. Finally, we note that to get better reconstruction or prediction results, properly

tuning the hyperparameter α is important.

3.5 Conclusion

In summary, we propose a novel Sequential Autoencoder model. It incorporates the

graph information via graph convolution operation, and it jointly models supervised and

unsupervised data. Our model is flexible for data generation and it can conditionally generate

sequential data based on label, disentangled time-invariant and time-varying latent variables.

Quantitatively, we show that this model has competitive classification and reconstruction

performance compared with two modified state-of-the-art S3VAE models.
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CHAPTER 4

Representation Learning II: Disentangled Representation of Longitudinal β-Amyloid for

AD via Sequential Graph Variational Autoencoder with Supervision

The emergence of Positron Emission Tomography (PET) imaging allows us to quantify

the burden of amyloid plaques in-vivo, which is one of the hallmarks of Alzheimer’s disease

(AD). However, the invasive exposure to radiation and high imaging cost significantly restrict

the application of PET imaging in characterizing the evolution of pathology burden which

often requires longitudinal PET image sequences. In this regard, we propose a proof-of-

concept solution to generate the complete trajectory of pathological events throughout the

brain based on very limited number of PET scans. We present a novel variational autoencoder

model to learn a latent population-level representation of neurodegeneration process based

on the longitudinal β-amyloid measurements at each brain region and longitudinal diagnostic

stages. As the propagation of pathological burdens follow the topology of brain connectome,

we further cast our neural network into a supervised sequential graph VAE, where we use the

brain network to guide the representation learning. Experiments show that the disentangled

representation can capture the disease-related dynamics of amyloid and forecast the level of

amyloid depositions at future time points.

4.1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder resulting in

memory loss and cognitive impairments that interfere with functions for daily life [76]. In

the current pathophysiologic understanding of AD, β-amyloid deposition occurs as the first

pathological event in AD, followed by tau fibrillary tangles as the downstream effect of
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amyloid, and chronologically lead to the neurodegeneration as the final signal of a series of

cognitive disorders [77]. Therefore, accumulation of β-amyloid neuritic plaques is one of

the earliest risk factor for potential development of AD [78], and is one of the key proteins

to assess in understanding AD [77, 79].

Positron Emission Tomography (PET) is a non-invasive imaging providing a direct

measure of in vivo β-amyloid status to better characterize early AD. Despite the improved

diagnostic ability from amyloid PET, the cost for PET scans are very expensive (∼$5, 000)

which prevents its use for widespread clinical adoption. Under limited amyloid PET data at

present, to facilitate clinical research on β-amyloid, a framework that can learn the dynamics

of amyloid and forecast future measures based on limited past timestamps may be of great

interest, which will benefit understanding of how amyloid functions and its critical roles in

neurodegeneration.

Many studies have shown that structural brain connectivity from Diffusion Tensor

Imaging (DTI) is highly associated with AD progression [80, 81], whose topology between

regions of interest (ROIs) behaves as a path for the amyloid deposition [82]. However, it is

very challenging to learn the complex dynamics of β-amyloid over brain networks through

noisy data from limited timestamps per subject (e.g., less than 3 timestamps on average).

In this work, given the limited and noisy longitudinal β-amyloid PET measures over a

structural brain network, our aim is to develop a framework to uncover the disease dynamics

or progression pattern of β-amyloid and forecast amyloid depositions at future timestamps

to better understand and characterize the progression of AD. Unfortunately, this is not easy

as the observations from imaging scans are complexly affected by several variables such as

age, gender, anatomical structure, disease effect, etc.

Notice that these variables can be separated as time-varying and time-invariant com-

ponents, where the progression of AD is a major factor for the time-varying one. Therefore,

separating them in a latent space is critical; disentangled representation learning would be
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(a) Encoder (b) Decoder

Figure 4.1: A graphical visualisation of the encoder and decoder. (a) Encoder: time-invariant
random variable (r.v.) f are inferred by time-dependent labels y and data X , and time-
varying r.v. z are sequentially inferred by labels y and data X; (b) Decoder: data are
sequentially generated from time-dependent labels y, time-invariant r.v. f and time-varying
r.v. z via latent r.v.W .

able to disentangle time-invariant contents (e.g., anatomical information) from time-varying

contents (e.g., morphological changes, dynamics of amyloid). Such disentangled representa-

tions not only help the model become more explainable, but also can benefit conditional data

generation for downstream tasks [62, 83], e.g., cross-modality registration and segmentation

[84, 85].

To this end, motivated by the schematics of Sequential Graph Variational Autoen-

coder [18, 19], we develop a framework that learns a latent disentangled representation

composed of time-varying and time-invariant latent variables to characterize the longitudinal

β-amyloid over the structural brain network. The core idea is to capture the disease-related

dynamics of β-amyloid and as well as forecast the future amyloid depositions using the

disentangled representation. The major contributions of this work are: 1) We incorporated

“time-dependent” label as a supervision in the model to characterize longitudinal effect,

2) We integrated a brain network to make the framework more robust to the subject-wise

heterogeneous dynamics when learning the disentangling latent representation, 3) We val-

idated this framework to longitudinal β-amyloid data on brain networks with diagnostic

labels of AD from Alzheimer’s Disease Neuroimaging Initiative (ADNI). The experimental

40



results suggests a significant potential that this framework will facilitate clinical research

by enriching amyloid data collection and help better understand the role of amyloid in the

progression of AD before the disease symptoms manifest.

4.2 Methods

4.2.1 Supervised Sequential Graph VAE Model

Supervised Sequential Graph Variational Autoencoder (SSG-VAE) is designed for

learning a disentangled representation composed of time-variant and time-invariant la-

tent variables to capture the dynamics of longitudinal measures and forecast the mea-

sure at the future timestamp. We observed sequential data that appear as M sup pairs

of supervised data points Dsup = {Xi,yi}M
sup

i=1 over a shared graph G with N nodes,

where Xi = (Xi,1, . . . Xi,Ti) refer to the i-th sequential observations, i.e., Xi,t ∈ RN , and

yi = (yi,1, . . . yi,Ti) denote the corresponding time-dependent diagnostic labels. We will

leave out the index i wherever it is clear that the terms we are referring to are associated with

a single data point. SSG-VAE simultaneously trains a probabilistic encoder and decoder,

and factorizes latent variables into two disentangled variables: time-invariant variable f

and time-varying variable z1:T = (z1, . . . ,zT ). We expect that latent variable f can encode

the time-invariant global aspects of the data, while latent variable z will encode how the

time-varying information at timestamp t is morphed into that of timestamp t + 1. The

architectures of decoder and encoder are visualised in Figure 4.1.
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4.2.1.1 Objective Function

We design a supervised variational autoencoder framework with an objective function

[71, 72] defined over Dsup as

Lsup(θ,φ;Dsup)

= Ep̂(X,y)

[
Eqφ(f ,z|X,y)

[
ln
pθ(X,y,f , z)

qφ(f , z|X,y)

]]
, (4.1)

where the model parameters of the decoder is denoted as θ and the model parameters of the

encoder is denoted as φ. Here, p̂(.) denotes the empirical distribution, pθ(.) refers to the

decoder distribution and qφ(.) is the variational posterior.

4.2.1.2 Prior

The prior of time-invariant latent variable f is defined as a standard Gaussian distribu-

tion, i.e., f ∼ N (0, I). We assume that time-varying latent variables z1:T follow a sequential

prior zt|zt−1 ∼ N (µt, diag(σ2
t )), where [µt,σt] are the parameters of the prior distribution

and is parameterized as a recurrent network LSTM [73], in which the hidden states are

updated temporally. Moreover, prior distributions of time-dependent labels y follow the

multinomial distribution, i.e., pθ(yt) = Cat(yt|π). Assuming labels y, time-invariant f and

time-varying z1:T are mutually independent, the joint prior pθ(y,f , z1:T ) can be factorized

as

pθ(y,f , z1:T ) =
T∏
t=1

pθ(yt)pθ(f)
T∏
t=1

pθ(zt|z<t). (4.2)

We use independent priors to regularize latent variables to be as independent as possible.
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4.2.1.3 Generative Model: Decoder

The generative model is formalized by the factorization as

pθ(X,y,f , z1:T ) (4.3)

=
T∏
t=1

pθ(yt)pθ(f)
T∏
t=1

pθ(zt|z<t)pθ(Wt|yt,f , zt)pθ(Xt|Wt),

where W = (W1, . . . ,WT ) denotes the P -dimensional latent vectors and Wt ∈ RN×P .

Latent vectors W are generated from the time-dependent y and the two disentangled

variables, i.e., the time-invariant f and the time-varying z. We assume that data sequences

X are generated from latent vectorsW via the graph convolution as

Xt = ÂWtΘ, (4.4)

where Θ is the trainable weight matrix, A is the adjacent matrix of the graph G, Â =

D̃−1/2ÃD̃−1/2, Ã = A+ I , and D̃ii =
∑

j Ãij . That is, we incorporate the topology of the

graph G into the generative process using graph convolution.

4.2.1.4 Inference Model: Encoder

We use variational model qφ(f , z1:T |X,y) to approximate the true posterior distri-

bution pθ(f , z1:T |X,y) over latent variables given data [86, 17]. Our inference model is

factorized as

qφ(f , z1:T |X,y) = qφ(f |y1:T , X1:T )
T∏
t=1

qφ(zt|y≤t, X≤t) . (4.5)

We can see that the time-invariant variable f are conditional on the entire time sequences

of data and time-dependent labels y, while the time-dependent variable zt is inferred from

the sequences before timestamp t, i.e., X≤t and y≤t. We model both f and z via a recurrent

network LSTM.
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4.2.2 Predictive Supervised Sequential Graph VAE Model

Although SSG-VAE model in Section 4.2.1 can successfully learn a disentangled

representation which decomposes the static, time-varying and label information, it cannot

be utilized for data forecasting at future timestamps, due to the lack of the forecasting layer

in the model. To conquer this challenge, we extend our model SSG-VAE to the Predictive

Supervised Sequential Graph VAE (PSSG-VAE) model, which allows us to forecast the

latent variables and output outcomes in the future time stamps.

Assuming the complete data pairs X = (X1, . . . , XT ) and y = (y1, . . . , yT ), we

denote the observed data pairs as X̃ = (X1, . . . , XT−1) and ỹ = (y1, . . . , yT−1), with

XT , yT denotes the forecast data pair. Then we can reformulate the inference model in

Section 4.2.1.4 as

qφ(f , z1:T |X,y) = qφ(f , z1:T−1|X̃, ỹ)qφ(zT |zT−1), (4.6)

where qφ(zT |zT−1) can be any parametric function and we use a naive linear transition model

for the remainder of this work, and qφ(f , z1:T−1|X̃, ỹ) can be factorized similarly using

Eq. 4.5. With the aforementioned reformulation of the inference model, our extended model

PSSG-VAE will be capable of data forecasting at future timestamps.

4.3 Experimental Results

4.3.1 ADNI Dataset

Total ofN=720 subjects were taken from the ADNI study that contained both amyloid

PET and DTI images. Longitudinal β-amyloid data were processed from amyloid PET scans,

and structural connectivity matrices (i.e., number of fiber tracts connecting different ROIs)

were derived from DTI registered at Destrieux atlas in FreeSurfer [49] using a in-house

tractography pipeline. Specifically, standardized uptake value ratio (SUVR) was computed

for β-amyloid at each brain region, and an overall graph was obtained by taking the average
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Figure 4.2: Latent Traversals over Labels. From left to right: generated β-amyloid on
brain surfaces with latent variables fixed and diagnostic labels varying from CN to AD,
respectively. Label-related patterns match with existing knowledge from the neuroscience
domain.

of connectivity matrices from healthy subjects. Diagnostic labels of each scan categorize

subjects’ dementia stage as one of Cognitive Normal (CN), Significant Memory Concern

(SMC), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI)

and Alzheimer’s Disease (AD). Demographics of the subjects are presented in Table 4.1.

Table 4.1: Demographics of the ADNI dataset.

Demographics CN SMC EMCI LMCI AD

# of Subjects 204 80 240 107 89
Gender (M/F) 106:98 27:53 138:102 61:46 44:45

Age (mean,std) 73.33(6.06) 71.06(5.01) 70.91(7.16) 72.04(7.92) 73.22(7.48)

CN: Cognitive Normal; SMC: Significant Memory Concern; EMCI: Early Mild Cognitive
Impairment; LMCI: Late Mild Cognitive Impairment; AD: Alzheimer’s Disease.

4.3.2 Experimental Setup

We applied the framework to the dataset from Alzheimer’s Disease Neuroimaging

Initiative(ADNI) including longitudinal β-amyloid data on brain networks with diagnostic

stage labels of AD. We conducted three experiments to validate the performance of our

framework as described below. The experiments were performed with 3-fold cross validation.

Section 4.3.3 displays the task of latent traversals over labels, where we explored how the
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patterns of generated amyloid will change corresponding to the variations of diagnostic

labels. Section 4.3.4 shows the reconstruction performance on the dynamics of β-amyloid,

as compared with the ground truth and visualized on the brain surfaces. Section 4.3.5

demonstrates the forecasting performances at the future timestamp. Here, since each subject

has different number of visits, we propose two baseline approaches for the comparison with

our approach. One is the averaging where the amyloid measure at the last timestamp is

estimated as the average of all historical measures at previous timestamps (assuming no

time-varying effect), the other is the linear regression by leveraging the average from all past

timestamps as the predictors. Root mean square error (RMSE) and Mean Absolute Error

(MAE) between the ground truth and the predicted are used as the metrics for the evaluation

of forecasting performance.

4.3.3 Latent Traversals over Labels

To explore the relation between labels and generated amyloid, we conducted the

latent traversals task over labels of diagnostic stages using our proposed SSG-VAE model in

Section 4.2.1. Specifically, we fixed a time-invariant variable f and a time-varying variable

z, and we varied the corresponding label from 0 to 4, which represents the label from CN to

AD respectively. We reconstructed the β-amyloid with those different labels but the same

other latent variables shown in Figure 4.2. It is clear that as the status of disease stage

becomes worse, the values of amyloid measurement become larger, matching the existing

knowledge from the neuroscience domain.

4.3.4 Reconstruction on the Dynamics of β-Amyloid

Here we illustrate that our SSG-VAE model can learn the complex dynamics of β-

amyloid by showing the reconstruction results on the testing data. We show the true amyloid

and reconstructed amyloid on brain surfaces in Figure 4.3. It visually demonstrates that the
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reconstruction not only captures the anatomical information but also successfully learns the

true dynamics from the limited and noisy longitudinal data, as it resembles the patterns of

amyloid on brain surfaces across timestamps (see the color changes in Figure 4.3).

Figure 4.3: Top: true brain surfaces for a randomly selected subject at timestamp t0, t1 and
t2 (True). Bottom: reconstructed brain surfaces for the same subject at timestamp t0, t1 and
t2 (Recon). Drawings generated using BrainPainter [2].

4.3.5 Forecasting β-Amyloid at the Future Timestamp

We also applied PSSG-VAE model in Section 4.2.2 on the same dataset. The overall

RMSEs on all testing data for average approach, regression approach and our approach are

0.38, 0.22 and 0.19, respectively. Our approach attains the lowest overall RMSE on the

forecasting. We also summarised the RMSEs and MAEs across all the diagnostic labels in

Table 4.2. It can be seen that our approach performs significantly better than the regression

approach on the earliest CN stage, which shows the advantage of our approach that it can

capture the earliest sign of cognitive decline at the preclinical stage. Moreover, we visualized

RMSEs in the boxplot for average approach, regression approach and our proposed approach

in Figure 4.4. It shows that the forecasts from our approach is more robust and has smaller
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Figure 4.4: Boxplot of forecasting performance at the future timestamp visualizing RMSEs
for average approach, regression approach and our approach. Our approach yields the lowest
overall RMSE and has smaller variation when compared to other approaches.

variation, as demonstrated by the smaller interquartile range and fewer extreme outliers in

the boxplot.

Table 4.2: Forecasting Performance across diagnostic stages.

CN SMC EMCI LMCI AD

Average
RMSE 0.42 0.39 0.35 0.37 0.36
MAE 0.32 0.31 0.28 0.30 0.28

Regression
RMSE 0.30 0.20 0.17 0.17 0.20
MAE 0.21 0.16 0.13 0.13 0.15

Ours RMSE 0.20 0.20 0.17 0.15 0.19
MAE 0.15 0.15 0.13 0.11 0.14

CN: Cognitive Normal; SMC: Significant Memory Concern; EMCI: Early Mild Cognitive
Impairment; LMCI: Late Mild Cognitive Impairment; AD: Alzheimer’s Disease.
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4.4 Conclusion

Understanding the dynamics of β-amyloid and forecasting amyloid depositions at

future timestamps will help facilitate the clinical research in the preclinical stages of the

disease. In this paper, we developed a novel Supervised Sequential Graph Autoencoder

model to learn a latent disentangled representation comprising time-varying and time-

invariant information to characterize the longitudinal β-amyloid data over the structural

brain network. With the learned disentangled representation of ROI specific measures,

our framework can capture the robust dynamics of amyloid and forecast future amyloid

depositions from a few past time points.
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Part III

Dynamic Covariance Modeling on HCP

Data
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CHAPTER 5

Dynamic Covariance Estimation via Predictive Wishart Process with an Application on

Brain Connectivity Estimation

Modelling the complex dependence in multivariate time series data is a fundamental

problem in statistics and machine learning. Traditionally, the task has been approached

with methods such as multivariate autoregressive models and multivariate generalized

autoregressive conditional heteroskedasticity models, and Gaussian process based methods

are recently becoming popular by leveraging the flexibility of non-parametric learning.

However, few methods exist that directly model the dynamics of the covariance matrices

except generalized Wishart process (GWP), and even the generalized Wishart process is

limited with applications on small data due to the extremely high computational capacity

induced by multiple Gaussian processes. In this regards, we propose a novel stochastic

process named as Predictive Wishart Process (PWP), which provides a collection of

positive semi-definite random matrices indexed by input variables. PWP projects process

realizations of GWP to a lower dimensional subspace to efficiently estimate every GWP .

We discuss its theoretical properties and design Bayesian and variational inferences for

efficiency. The PWP is empirically tested on synthetically generated time-series data to

validate competitive reconstructive performance and efficient predictive performance, and

applied on a large-scale real functional magnetic resonance imaging (fMRI) dataset from

Human Connectome Project (HCP) to demonstrate its practicality via a multi-task learning

framework.
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5.1 Introduction

Accurate estimation of associations over a set of variables is a fundamental problem

in statistics (and machine learning) with significant interest from diverse domains. Typically,

the associations (e.g., covariance) are assumed to be static, and they are often estimated

using structural equation models or graphical models [87, 88, 89]. However, when the

given data are time-dependent, they often exhibit heteroscedasticity, i.e., the variances and

correlations of variables of interest are time-varying [90, 91, 92, ?, ?]. Therefore, accounting

for both temporal and spatial dependency in the covariance is critical in various motivating

applications, e.g., capturing the time-varying volatility of a collection of risky assets in

econometrics [93, 27], and modelling spatial variations in correlations for customarily

recorded multivariate measurements at a large collection of locations for geoscience [94, 95].

Such a problem routinely arise in brain connectivity analyses in Neuroimaging,

which often requires estimating covariance from a knot of measurements (e.g., timeseries)

across spatially parcellated Regions of Interest (ROIs) in the brain. Here, the covariance

quantifies the level of associations between different ROIs as a functional connectivity [20].

Conventional connectivity constructions assume that the functional associations are static

in time over the entire scan period [21, 22]. Nevertheless, several studies demonstrate that

the functional connectivities change over time whose temporal variation may be significant

[23, 24]. Therefore, deriving dynamic associations between ROIs is an important problem for

both statistics and neuroscience, which investigates the time-varying co-activation patterns

in the brain activities [23, 25, 26].

Unfortunately, modelling such dynamic changes of covariance is quite challenging,

because the given data are often in a large scale in length and typically only a single

observation is recorded at each time stamp. In the statistical literature, modeling the dynamics

of covariance has been tackled with Multivariate Generalized Autoregressive Conditional

Heteroskedasticity (MGARCH) models [96], and alternative approaches were proposed
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such as Bayesian nonparametric models based on Wishart process (WP) [27, 28]. However,

recent works including Generalized Wishart Process (GWP) on Bayesian inference for WP

are limited as they often require extremely high computational capacity due to the burden

introduced from latent Gaussian processes, and hence makes it difficult to scale down for

practical model inference.

To tackle the problem above, we develop Predictive Wishart Process (PWP), which

is a novel parsimonious stochastic process which approximates the traditional GWP . We

thoroughly study the stochastic properties of the PWP and provide full Bayesian posterior

inference, which has been dismissed in previous literature. This framework is scalable

to generate time-varying covariance Σ(x) for a given index x from large-scale data (see

Figure 5.1) under rigorous mathematical properties. The complexity of generating time-

varying covariance matrices is linear with respect to the number of covariance matrices (N)

as opposed to GWP whose complexity of generating latent variables in each GP is cubic in

N . Due to the parsimony of the predictive process, both Bayesian and variational inferences

of the dynamic covariance structure with PWP become efficient.

The main contributions of our work are summarized as:

(i) We introduce a novel matrix variate stochastic process and theoretically demonstrate

its desirable properties,

(ii) We propose Markov chain Monte Carlo (MCMC) and variational expectation maxi-

mization inference associated with a hierarchical Gaussian model and illustrate both

computational benefits and comparable predictive performance of PWP;

(iii) We provide a multi-task learning framework using PWP to jointly model multiple

large-scale signals, and empirically prove the efficiency and practicality of PWP by

tackling a real large-scale problem where conventional methods fails.

Extensive experiments are carried on synthetic experiments (with ground truth) as

well as on a large-scale real Neuroimaging study (i.e., Human Connectome Project (HCP))
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Figure 5.1: A draw from a Predictive Wishart Process (PWP). Each ellipse is a 2 × 2
covariance matrix index by observed time {ti}Nt=1 or inducing time {zj}Mj=1. The rotation
indicates the correlation between the two variables, and the major and minor axes scale with
the eigenvalues (i.e., λ1, λ2) of the matrix. A draw from a PWP consists of two steps: (i),
we draw a collection of matrices indexed by inducing time; (ii), we map the collection of
matrices to another collection of matrices indexed by observed time.

with resting-state functional MRI (fMRI) [97] for reconstruction and prediction of dynamic

covariances. Utilizing PWP leads to improvement in characterizing behavioral scores with

dynamic covariance; our pioneering exploration on modelling dynamic connectivity should

be worth pursuing further.

5.2 Related Works

There exists a large body of literature on modeling time-varying covariance matrix, and

classical strategies for estimating the covariance rely on standard regression methods with

the Cholesky decomposition of the covariance or precision matrices [98, 99]. Alternatively,

nonparametric approaches have been proposed in [100, 95].

For modelling multivariate time series, heteroscedastic modeling has a long history,

where the main approaches are Multivariate Generalized Autoregressive Conditional Het-

eroskedasticity (MGARCH) models [96, 101, 102], multivariate stochastic volatility models

[103, 104] and Wishart process [105, 28].
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In particular, there exist two Wishart process based methods: Wishart autoregressive

processes [105] that construct positive definite volatility matrices with latent autogressive

(AR) models, and generalised Wishart process (GWP) [28] that utilize Gaussian process

to model latent process instead of AR models. Due to the limited expressiveness of AR

models, Wishart autoregressive process cannot handle the long temporal dependence. On

the other hand, GWP led to a diverse class of covariance dynamics, but it is not scalable to

large datasets due to the expensive computation induced from corresponding latent Gaussian

processes. Our approach attains the best of both worlds by utilizing a predictive process to

model the dependence within those latent functions.

5.3 Preliminary

In this section, we briefly review a predictive process (PP) [106, 107], as it sets the

foundation of our proposed PWP construction. We begin with distributions over functions

u(x) using Gaussian process (GP) as

u(x) ∼ GP(m(x), C(x, x′)), (5.1)

with a mean function m(x) and a covariance function C(x, x′) of choice specified with

hyper-parameters τ . And we name it parent process.

In the remainder of this paper, we consider a zero-mean Gaussian process, i.e.,

m(x) ≡ 0. Given a collection of inducing inputs z = (z1, . . . , zM), the collection of

function values u has a joint Gaussian distribution as

u = (u(z1), . . . , u(zM))T ∼ N (0,C∗), (5.2)

where C∗ is the covariance matrix introduced by the covariance function C(x, x′) on

inducing points z.

A predictive process, i.e. PP , is derived from its parent process (5.1) on a completely

specified lower dimensional subspace. Specifically, given (5.1), the predictive process is
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defined as ũ(x) ∼ PP(0, C(x, x′)) = GP(0, C̃(x, x′)) that is equivalent to a new specified

Gaussian process defined by the covariance function

C̃(x, x′) = cT (x)C∗−1c(x′) , (5.3)

where c(x) = (C(x, z1), . . . , C(x, zM))T . Here, two major properties of PP are given

[106]:

ũ(x) = cT (x)C∗−1u , (5.4)

C̃(x, x) ≤ C(x, x) . (5.5)

Note that (5.4) shows that the predictive process can be treated as a linear projection on

the subspace spanned by u, and (5.5) reveals that the predictive process will underestimate

the variance of its parent process. A modified predictive process proposed in [107] can

correct the bias of variances by replacing (5.3) with

C̃(x, x′) =


C(x, x′) x = x′

cT (x)C∗−1c(x′) x 6= x′.

(5.6)

In this paper, we construct our PWP based on the native PP rather than the modified

version to design a concrete predictive process.

5.4 The Predictive Wishart Process

In this section, we first introduce the concept and construction of our proposed PWP ,

then in the following we discuss its theoretical properties.

5.4.1 Construction of Predictive Wishart Process

Suppose that we have V × D independent predictive process functions with an unit

variance in its parent process, i.e. C(x, x) = 1 for x ∈ X , as

ũvd(x)
ind∼ PP(0, Cd(x, x

′)), (5.7)
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where v = 1, . . . ,V represents the index of the degrees of freedom V , and d = 1, . . . ,D

is the index of the dimension of the multivariate features. We assume V ≥ D to ensure

our construction is well defined. Here, the objective is to design a collection of positive

semi-definite (p.s.d.) random matrices Σ(x) (e.g., covariance matrices), indexed by any

arbitrary input variable x ∈ X (e.g., time). Let ũv(x) = (ũv1(x), . . . , ũvD(x))T , and let

S ∈ SD represent a positive definite matrix with its unique lower Cholesky decomposition

matrix L such that LLT = S. We denote Ũ(x) = (ũ1(x), . . . , ũV(x)).

Predictive Wishart Process (PWP) is defined as a collection of p.s.d. random matrices

{Σ(x)} indexed by x ∈ X , by modelling the process as

Σ(x) = LŨ(x)Ũ(x)TLT =
V∑
v=1

Lũv(x)ũTv (x)LT . (5.8)

with all latent processes following independent predictive processes. We denote this process

as PWP(L,V , τ) that depends on a lower triangular matrix L and a degree of freedom

V . The lower triangular matrix L models the marginal variance-covariance at any fixed

timestamp and the degrees of freedom V describes the flexibility of temporal dependence

and the hyper-parameters τ characterize latent processes.

If each predictive process of ũvd(x) is replaced by its parent process (5.1), and

then this process is formulated as Generalized Wishart Process (GWP) [28] which is a

generalization of the original Wishart process defined by [108]. The Predictive Inverse

Wishart Process (PIWP), consequently, can be indirectly defined as Ω(x) = Σ−1(x),

given Σ(x) ∼ PWP(L,V , τ). We note that at any index x, the distribution of Ω(x) is an

inverse Wishart distribution.

5.4.2 Properties of Predictive Wishart Process

We first show that the proposed PWP at any input x follows a well-defined Wishart

distributionWD in the theorem below.
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Theorem 1. For any input variable x, the distribution of Σ(x) ∼ PWP(L,V , τ) at x is

the Wishart distribution such that Σ(x) ∼ WD(V , S∗), where S∗ = LBLT and B is the

diagonal matrix with elements bd = C̃d(x, x).

Remarks 1. Theorem 1 shows the marginal distribution of PWP prior at any input x is a

well-defined Wishart distribution, and the distribution of Σ(x) in PWP is different from

GWP .

Notice that when the predictive process priors are replaced by modified predictive

process priors [106, 107], the distribution of Σ(x) at any input variable x is the Wishart

distribution such that Σ(x) ∼ WD(V , S).

For simplicity, in the reminder of paper, we assume that all latent functions ũvd share

the same covariance function C. We derive expressions for the covariance between elements

of Σ(x) and Σ(x′) for any pair of inputs x and x′ in Theorem 2, assuming L is diagonal and

{ũvd} have an identical predictive process prior. Proofs of Theorem 1 and 2 will be given in

the Appendix.

Theorem 2. Assume that L is a diagonal matrix and {ũvd} have an independent identical

predictive process priors. For any pair of inputs variables x and x′, the covariance between

Σij(x) and Σkl(x
′) is given as

cov(Σij(x),Σkl(x
′))

=


2Vl4i C̃2(x, x′) i = j = k = l

Vl2i l2j C̃2(x, x′) i = k 6= j = l

0 otherwise.

(5.9)

Remarks 2. Theorem 2 discusses the temporal cross-relation of dynamic covariance matri-

ces. The covariance turns out to be proportional to the C̃2(x, x′) and hence shows that the

selection of C undoubtedly plays an important role of controlling the autocorrelations. The

covariance relation can be generalized to any lower triangular L.
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Remarks 3. Although the priors of Σ(x) from PWP and GWP both belong to Wishart

distribution, they have different scale matrices, S = LLT for GWP and S∗ = LBLT for

PWP . Because bd(x) = C̃(x, x) and C(x, x) = I , this difference depends on how well

C̃ approximates C. Notice that C̃ is the Nyström approximation of C in (5.3) [109], and

the error ‖C̃ − C‖F under the Frobenious norm has an upper bound which is a polynomial

function of the square root of the quantization error
∑N

n=1 ‖xi − zc(i)‖ with c coding

each input xi with the closest inducing input zj . Therefore, the difference of prior of

Σ(x) from PWP and GWP is determined on the displacement of inducing inputs and

quantitatively influenced by the quantization error. We suggest the K-mean sampling method

for the displacement of inducing inputs, and the sampling approach is used to minimize the

quantization error.

5.5 Hierarchical Gaussian Model with PWP

Given a D×N dataset Y = (y(x1), · · · ,y(xN)) with D-dimensional multivariate

features indexed by the input variables x1, · · · , xN . We consider a conditional Gaussian

model with time-varying covariance modeled by PWP as

yi|Σi ∼ N (0,Σi),

Σ(x) ∼ PWP(L,V , τ), (5.10)

where yi = y(xi) and Σi = Σ(xi). We propose two inference approaches: 1) Bayesian

and 2) Variational inferences. Specifically, Bayesian inference is a Markov Chain Monte

Carlo method (MCMC), which accurately provides the samples of posterior distributions.

As MCMC can be computationally expensive because it would take long time to converge,

we also propose a variational inference which is well suited for large datasets. Moreover, in

practice, learning the uncertainty of model parameters L and τ is not of interest and thus we

treat them as hyper-parameters to relieve computational burden. Two inference methods are
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briefly summarized in Table 5.1 and will be described in details in the following sections

respectively.

Table 5.1: A summary of inference approaches for PWPs. Here, w, τ , L refer to the induc-
ing variables, input-dependent hyper-parameters and input-independent hyper-parameters,
respectively.

Inference + Parameters
w τ L

PWP-MCMC MCMC MCMC MCMC
PWP-VB VB (optimized) (optimized)

+ PWP-MCMC: Bayesian inference, PWP-VB: Varia-
tional inference.

5.5.1 Bayesian Inference Approach

This section discusses a Bayesian inference with PWP . In the context of (5.10), the

objective is to infer the posterior p(Σ(x)|y) using Gibbs sampling [110], which is a Markov

chain Monte Carlo (MCMC) algorithm for obtaining a sequence of observations in cycles

from the conditional distribution of one parameter with the remaining parameters fixed to

their current values.

For the sampling, we rewrite (5.10) as a hierarchical model:

yi|L, Ũi ∼ N (yi|0, LŨiŨT
i L

T ), (5.11)

ũvd = cTC∗−1wvd, (5.12)

wvd|τ ∼ N (wvd|0, C∗), (5.13)

where Ũi = Ũ(xi), ũvd = (ũvd(x1), . . . , ũvd(xN))T , wvd = (uvd(z1), . . . , uvd(zM))T . Here

uvd refers to the function of the parent process with respect to ũvd(x). On the other hand, C∗

refers to covariance between {zi}Mi=1 and c is cross covariance between {xi}Ni=1 and {zi}Mi=1.
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As for the prior specification, we set prior of hyper-parameters of GPs τ ∼ π(τ) and

the prior of the lower triangular matrix L ∼ π(L). The prior of τ is chosen based on the

choice of covariance function C. In the experiments, we consider two types of covariance

functions, one for periodic covariance function and the other for square exponential function.

We put a flat normal distribution as a prior of the log of lengthscale parameters. And for

π(L), we put independent standard Gaussian priors for the entries on or below the diagonal

of L. We then design a Gibbs sampling procedure as

p(w|Y , τ, L) ∝ p(Y |w, L, τ)p(w|τ), (5.14)

p(τ |Y ,w, L) ∝ p(Y |w, L, τ)p(w|τ)π(τ), (5.15)

p(L|Y ,w, τ) ∝ p(Y |w, L, τ)π(L), (5.16)

where w represent the vector of functions evaluated from the inducing points, τ denote

the input-dependent hyper-parameters in PWP and they are also the hyper-parameters in

the covariance function C, and L denote the input-independent hyper-parameters in PWP .

Furthermore, we present the details of parameter initialization, posterior sampling and

inducing point selection regarding the MCMC implementation for the Bayesian inference

approach.

5.5.1.1 Parameter Initialization

According to Theorem 1 that Σ(x) ∼ W(V , S∗), the prior expectation of covari-

ance matrix Σ(x) equals VS∗. In the initialization step, we assume that Σ(x1), . . . ,Σ(xN)

are independent, then the covariance matrix Σ(x) has an unbiased estimate Σ̂(x) =

1
N−1

∑N
i=1 yiy

T
i . Consequently, L̂ can be estimated by the Cholesky decomposition of

Σ̂
V by assuming that S∗ is close to S. Then following (5.10), we estimate the w and τ by

maximizing the log likelihood of Y given L̂.
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5.5.1.2 Details on Posterior Sampling

We first sample the ũvd from its posterior distribution via indirect sampling of wvd

using (5.14). Given the property of predictive process (5.4) and wvd, ũvd is generated via

ũvd = cC∗−1wvd. As for the sampling of w, we employ the Elliptical Slice sampling and

this sampling procedure requires to computing the posterior of w, taking O(M2N) time

complexity where N is the number of observations and M is the number of inducing points.

Therefore the sampling complexity is linear to the number of observations N . In contrast

to GWP in which sampling the latent function from the posterior would take O(N3) time

complexity, PWP is much more efficient, especially when the number of inducing points

M is significantly smaller N , i.e., M�N . Then, we sample τ using (5.15) and sample

L using (5.16). Since the posterior of τ and L do not have a closed-form expression, we

leverage Metropolis Hastings for sampling.

5.5.1.3 Inducing Points Selection

For selecting the inducing points, we take equal-spaced points {zi}Mi=1 over the whole

input space X to ensure the better prediction performance over the whole input space.

These z are fed in (5.2) that leads to the definition the PWP . While Bayesian inference

yields the true posterior for better estimation of covariance, it is often intractable due to

slow convergence with exhaustive sampling. We therefore propose an efficient variational

inference in the following.

5.5.2 Variational Expectation Maximization

Variational inference provides an alternative efficient inference approach at the price

of precision of the posterior approximation. It is a Bayesian technique of approximating

the posterior which has emerged as an important tool [86, 111]. We consider the same
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hierarchical model from (5.11, 5.12, 5.13), and L and τ are treated as hyper-parameters as

opposed to Bayesian inference. This is because learning the posterior distribution of those

hyper-parameters is not of interest in practice, and it would save computation in training.

Given above specifications, the evidence lower bound (ELBO), a lower bound of the

log marginal likelihood is derived with Shannon entropy H as

log p(Y ) ≥ Eq(w)[log p(Y ,w)] +H(q(w)) = ELBO, (5.17)

where q(w) is a variational distribution of w.

We assume q(w) belongs to normal distribution. Instead of directly maximizing the

ELBO (5.17) with respect to q(w) and (L, τ) via stochastic gradient descend, we iteratively

and conditionally update q(w) and (L, τ) until they converge. It is called variational expec-

tation maximization (VEM) inference [?]. Specifically, given (L, τ), maximizing the ELBO

(5.17) is equivalent to minimizing the Kullback-Leibler divergence between the variational

distribution q(w) and the posterior distribution p(w|y). Due to the Gaussian assumption in

q(w), we approximately update q(w) via the Laplace approximation [112] q∗(w). On the

other hand, given a q(w), (L, τ) are updated by

L∗, τ ∗ = arg max
L,τ

N∑
i=1

Eq(w)[logN (yi|0, LŨiŨT
i L

T )] +R

= arg max
L,τ

N∑
i=1

[logN (yi|0, L〈Ũi〉〈Ũi〉TLT )] +R

= arg max
L,τ

N∑
i=1

Li +R, (5.18)

where both regularization term R = KL(q(w)‖p(w)) and latent variables Ũi depend on τ ,

and 〈·〉 = Eq(w)[·]. We iteratively update q(w) and (L, τ) until they converge.
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5.5.3 Prediction of Covariance at New Timestamp

For both Bayesian and variational EM inferences, given a new time stamp x∗, we

extract posterior samples {w(s), τ (s), L(s)}Ss=1 from MCMC or variational distributions, then

we sample the corresponding ũ∗vd = ũvd(x
∗) using

ũ
∗(s)
vd = c∗TC∗−1w

(s)
vd , (5.19)

where c∗ denotes the vector of covariance functions evaluated between the new time stamp

x∗ and inducing inputs {zi}Mi=1, i.e. c(x∗), and w(s)
vd represents the sth posterior sample.

Consequently, according to the construction (5.8), we obtain the posterior predictive samples

of Σ∗ = Σ(x∗) by

Σ∗(s) =
V∑
v=1

L(s)ũ
∗(s)
vi ũ

∗(s)
vj L

(s)T . (5.20)

At last, we estimate Σ∗ using the posterior predictive mean of the samples {Σ∗(s)}Ss=1.

5.6 Multi-task Learning with PWP

In this section, we consider a scenario of feature selection for multiple tasks, where

each task is assigned with unique features. Assume that we haveN tasks in which the ith task

consists of a multivariate time series with length Ni, i.e. Yi = {yi,j}Nij=1. The corresponding

time stamps are denoted as xi = {xi,j}Nij=1 and each observation yi,j ∈ RM is assigned to

the time stamp xi,j . A hierarchical model is formulated as

yi,j|Σi,j ∼ N (0,Σi,j) ,

Σi(x) ∼ PWP(Li,V , τ) , (5.21)

where Σi,j = Σi(xi,j). We assume that the model of Σi(·) shares the same degreee of

freedom V and the same hyper-parameters in GPs τ , but has individual effect modeled by

the task-specified lower triangular matrix Li for the ith task. This specification suggests

that covariances across tasks share the same latent temporal process prior, and covariances
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within each task share a task-specified correlation structure modeled by the lower triangular

matrix Li. Thus, we take the Li as a feature for task i which directly refers to task-specific

feature.

To find out task-specific features, we estimate Li(τ) for each task i under different

settings of τ where τ can be treated as different scale and Li(τ) is the feature at the scale τ .

Because in the multi-task learning context, extracting task-specified feature is of interest

and thus we treat Li(τ) as model parameters. Specifically, we consider a square exponential

covariance function in PWP where τ is the length scale parameter, and we define a PWP

Multi-scale Descriptor (PWPMD) as

PWPMDτ (i) = {L∗i ;L∗i , q∗(w) = arg max
Li,q(w)

(ELBO|τ)}. (5.22)

Here, under each setting of τ , L∗i becomes a feature for the ith task. It has the same

size of the feature of each task regardless of the number of observations Ni, and can be

used for downstream prediction tasks. To infer the multi-scale descriptor, we propose a

variational EM algorithm and describe it in Algorithm 1.
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Algorithm 1: Variational Expectation Maximization Algorithm for Multitask

Learning
Input :Observations Y ; Hyper-parameters of covariance functions τ

Output :Variational distribution q(w); Task-specified features {Li}Ni=1

1 do

2 Fix all task-specified features {Li}Ni=1 and update the variational distribution

q(w) by the Laplace approximation on p(w|Y , {Li}Ni=1);

3 for i← 1 to N do

4 Fix the variational distribution q(w) and update the Li by maximizing the

term in ELBO that is only related to Li:

L∗i = arg max
Li

Ni∑
j=1

[logN (yi,j|0, Li〈Ũij〉〈Ũij〉TLTi )] (5.23)

where 〈·〉 = Eq(w)[·].

5 end

6 while Both q(w) and {Li}Ni=1 converge;

5.7 Simulation Study

In this section, we performed an experiment on the synthetic multivariate time-series

data which were generated based on ground truth covariance matrices Σs to validate both

covariance reconstruction and predictive performance of PWP .

5.7.1 Experimental Setup

Synthetic Data Generation. We generated multivariate time series data using the GWP

model with a periodic covariance function for all {uvd(x)} such that k(x, x′) = σ2e−2 sin(π∗(x−x′)/p)2 ,

with a scale parameter σ and a period parameter p. Specifically, N = 350,D = 2 and V = 3,

L was chosen as an identity matrix and hyper-parameters were set as σ = 1, p = 100,
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Table 5.2: Parameter posterior credible intervals 50 (2.5, 97.5), RMSE of the reconstruction
for Σs, NLML with mean (standard deviation) and corresponding average inference time
for 100 iterations.

True GWP PWP(B)20 PWP(B)50 PWP(B)100 PWP(VI)20 PWP(VI)50 PWP(VI)100 DCC

L00 1 1.12(0.98,1.28) 1.36(0.97.1.68) 1.17(1.06,1.43) 0.99(0.84, 1.08) 1.63 1.55 1.57 -
L01 0 -0.02(-0.04,0.07) -0.06(-0.19, -0.01) 0.04(-0.03, 0.15) 0.02(-0.02,0.08) 0.33 0.31 0.31 -
L11 1 1.04(0.92,1.11) 1.05(0.87, 1.21) 1.12(1.02,1.26) 1.02(0.78,1.46) 1.16 1.10 1.10 -

RMSE (Σ00) - 1.15 1.23 1.10 0.55 0.84 0.81 0.95 2.71
RMSE (Σ01) - 0.48 0.95 0.74 0.90 0.67 0.65 0.70 1.67
RMSE (Σ11) - 0.53 0.46 0.61 0.49 0.95 0.85 0.88 1.50

NLML - 1098.94(2.88) 1105.88(6.69) 1096.82(3.37) 1105.27(4.19) 1082.05 1083.90 1081.53 -
Time (sec) - 50.24 25.39 35.97 43.81 - - - -

Subscript indicates the number of inducing points used in each model. (B) refers to Bayesian inference and (VI) refers to Variation inference. For all Bayesian
inference, we have informative initialization on all latent variables based on the true values. We also provide the ground true parameters L.

(a) Marginal Var. of y1 (b) Marginal Var. of y2 (c) Covariance

Figure 5.2: Top: Reconstruction of Σs; Bottom: 95% confident intervals (shown in red
dashed lines) in the reconstruction with PWP100, (a) the marginal variances at the first
dimension (1st diagonal element of Σs), (b) the marginal variances at the second dimension
(2nd diagonal element of Σs), (c) the covariances (symmetric off-diagonal element of Σ)s.
Our proposed PWP delivers smoother estimations compared with DCC and also provides
a comparable fitting performance compared to GWP .

assuming that the period of the time series is 100. The first 300 data points were used for

training and the following 50 samples were used for testing.

Baselines. Most recent methods such as GWP and zero-mean multivariate GARCH models,

i.e., Dynamic Conditional Correlation (DCC) [113], were chosen as the baseline methods.

67



Setup. For PWP , different number of inducing points (i.e., M = 20, 50, and 100) with

the same type of periodic covariance function were investigated. We implemented both

Bayesian inference and variational EM inference for PWP . We fixed the hyper-parameter

p = 100 since that is difficult to learn.

For Bayesian inference, we initialized L at the values near the true values in GWP ,

latent variables w at the estimates via the inverse of (5.12) with the true Ũ . This yields

informative initialization to identify the property of the global optima in GWP and PWP

for inferences. During the Bayesian inference of PWP , we used 5000 samples whose

first 2500 samples were burned-in. For variational EM inference, L andw were randomly

initialized.

Evaluation Metric. In Table 5.2, we displayed the root mean square error (RMSE) of

parameters for L as the evaluation of inference. We displayed the RMSE between true

variance-covariance matrices and corresponding reconstruction as the evaluation of co-

variance reconstruction. Moreover we also provided the negative log marginal likelihood

(NLML) to evaluate the model fitting.

In Table 5.3, We showed the predictive performance of PWP with i-step ahead

forecast, where observations until the last timestamp x in training data are considered to

predict Σ(x+ i) and i = 1, . . . , 50.

5.7.2 Results and Discussions

Parameter estimation and model fitting results in Table 5.2 illustrate that PWP has a

significantly better covariance matrix estimation performance than the DCC model due to

the notably smaller RMSE. Comparing with the GWP , with a suitable number of inducing

points, PWP has a competitive result for both parameter estimation and covariance matrix

estimation. As for the computational benefits, the computation time of PWP is significantly

lowered compared with GWP in the same Bayesian setting.
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As for the predictive performance, we conducted Bayesian inference for PWP as a

fair comparison with the Bayesian inference in GWP . We reported the RMSEs of predicted

covariance matrices and true covariance matrices for GWP , PWP with 20, 50 and 100

inducing points and DCC models in Table 5.3. The averaged RMSEs over all entries for

the five models are 0.53, 0.52, 0.70, 0.70 and 2.53. It shows that PWP has a comparable

performance compared with GWP and significantly outperforms the DCC. Moreover, we

visualized the ground truth for Σs and the reconstruction of Σs in PWP100 in Figure 5.2

and showed the uncertainty quantification of covariance matrices in PWP , illustrating that

PWP achieves a great uncertainty quantification in the sense that the confident intervals

cover almost the true values with a narrow band-width.

With respect to the computational benefits, we find that as the number of inducing

points decrease the computation time would be significantly shorter than that from GWP .

It matches the theoretical analysis of the computational complexity which is linear to the

number of observations N in contrast to the O(N3) in GWP .

Table 5.3: RMSE between predicted Σ̂∗ and true Σ∗ element-wisely for the next 50 times-
tamps. PWP has a comparable performance with GWP even with much less inducing
points.

Model+ Variance 1 Variance2 Covariance

GWP 0.72 0.49 0.45
PWP20 0.50 0.84 0.36
PWP50 0.93 0.70 0.58
PWP100 0.75 0.95 0.55
DCC 5.10 2.19 1.41

+ Subscript indicates the number of inducing points
used for PWP . For GWP and PWP , Bayesian
inference and informative initialization on all latent
variables based on the true values were used.
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The results in Table 5.2 show that: For Bayesian inference, as the number of inducing

inputs (M ) increases, the parameter estimates ofL become closer to the true values. However,

the performance of covariance reconstruction and data fitting does not always improve as

M increases in our setting. This may be caused by the efficiency of sampling the inducing

variables w. Even with an efficient elliptical slice sampling, as the size of w increases,

the sampling step suffers from the slow mixing of sampling and cause undesirable fitting

performance. It demonstrates that PWP becomes more expressive with more inducing

points but fitting becomes more difficult, which emphasizes that the importance of the

selection of inducing points.

On the other hand, PWP has a comparable prediction performance with GWP even

with less inducing points. This may be because the learning of Gaussian processes in GWP

is affected by over-fitting, while the learning of predictive processes in PWP resists this

issue.

As for the variational EM inference of PWP , it would provide biased estimates on

L but we find that those estimates are consistently robust under different settings of the

inducing points. Beside that, the variational EM inference provides comparable performance

on both covariance reconstruction and model fitting.

5.8 Analysis of Dynamic Brain Connectivity

We performed two experiments on dynamic functional brain connectivity using real

brain imaging data to confirm the practicality of PWP . As GWP was not scalable for the

real data, we compared PWP with DCC-GARCH models for the individual analysis of

dynamic functional connectivity. Then, we performed a multi-task learning task on multiple

rs-fMRI timeseries via variational EM algorithm to identify associations between functional

connectivity and behavioral scores.
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5.8.1 Experimental Setup

Human Connectome Data. The pre-processed resting-state functional MRI (rs-fMRI) data

used in this experiment were obtained from the Human Connectome Project (HCP) S1200

data release [114] for 812 subjects whose fMRI data were complete and reconstructed

using the improved r227 recon algorithm. Timeseries data were generated through the

HCP preprocessing pipeline [97] which yielded one representative timeseries across 4800

timestamps per independent component analysis (ICA) component for each subject at

several different dimensionalities. Specifically, we used the rs-fMRI timeseries from 15 ICA

components with a length of 4800.

Setup. We took the whole 4800 observations to estimate covariance matrices and computed

the log likelihood at each timestamp. For PWP , we selected 50 inducing points uniformly

located in the whole time interval. Squared exponential covariance function was employed

here to model the dynamics of covariance matrix of HCP data. We considered a weakly

informative prior on the length scale parameter log τ ∼ N (0, 102) and a data-driven prior

on L, Lij ∼ N (0, 202) for i ≥ j. On our server machine with 128G RAM (which is not

small), GWP model failed to run on the HCP dataset due to its lack in scalability. Therefore,

we compared our results with four parametric DCC-GARCH models. Three of them employ

a autoregression-moving-average model with order (1,1) for the mean but leverage different

types of noise following multivariate Normal (MVN ), multivariate Student-t (MVT ) and

multivariate Laplace distributions (MVL). The last DCC-GARCH model sets zero mean

and has noise following multivariate Normal distributions (MVN 0).

Since as the Markov chain Monte Carlo yields less biased result than variational EM

algorithm shown in Table 5.3, we conducted the Markov chain Monte Carlo inference and

estimated model parameters using the maximum a posteriori. Given those estimates, we

reconstructed covariance matrices on the observed timestamps.
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Figure 5.3: Dynamic correlations between ICA components (i.e., dynamic functional con-
nectivity) and corresponding network representations derived from the estimations of Σ(x)
at x = 1001, 2001, 3001, 4800 with HCP timeseries data. Top row: connectivity matrices;
Middle row: corresponding network representations (thicker edge represents larger absolute
edge values and the colormap renders the value of the edge from low to high); Bottom row:
three true ICA components and corresponding inferred dynamic correlation processes.

5.8.2 Individual Functional Connectivity Construction

We randomly selected one participant (ID: 990366) for the demonstration of individual

dynamic functional connectivity derivation. The log-likelihood of observation (i.e., ICA) at

each timestamp was computed and plotted as a boxplot for all observations in Figure 5.4.

We also plotted the same boxplots of log-likelihoods estimated from DCC models. PWP

and DCCMVN 0 assume zero mean, which makes them comparable. The figure shows that

PWP performs relatively worse than DCC models in terms of the mean of log-likelihood,

but it provides more stable results than DCC models in the sense of less extreme outliers

and lower variance.
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Figure 5.4: Boxplots of log-Likelihood w.r.t. the whole 4800 timestamps (i.e., time) with the
reconstructed covariance matrix. PWP shows better stability than DCCs with less extreme
outliers and lower variance.

In Figure 5.3, we presented dynamic correlation matrices and the structural networks

derived from the estimated Σ(x) at timestamp x = 1001, 2001, 3001, 4800 to show the

changes of their functional brain connectivity across time. This result proves the hypothesis in

[23] that the structure of covariance along time in functional connectivity may be significant,

and shows a significant potential that our PWP is a very powerful tool to visualize the

estimate of covariance in time-varying data. Moreover, to directly illustrate the temporal

relation, we provided the plot of three ICA components as well as their corresponding

inferred correlation processes in Figure 5.3. It illustrates that the correlations between ICA

components are not random and they have certain patterns.

5.8.3 Multi-task Learning on HCP Data

In order to show the applicability of our dynamic brain connectivity features, we

compared the fitting performances of PWPMD against baseline features.
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Here we considered a three-level multi-scale descriptor from (5.22) where the length

scale parameter τ in the squared exponential covariance function is set to 500, 2000 and

5000. We used the matrix from Cholesky decomposition of the sample covariance matrix as

the baseline features for each subject as conducted in [115, 89, 116]. Then we conducted the

linear regression between the features extracted from the rs-fMRI timeseries and exogenous

variables.

We considered five behavioral scores available in the HCP dataset as exogenous

variables: MMSE, PSQI, PainIntens (raw), PainInterf T-score and Mars Log Scores. Specifi-

cally, Mini Mental Status Exam (MMSE) [117, 118] is a broad measure of cognitive status,

Pittsburgh Sleep Questionnaire (PSQI) [119] is a measure of sleep quality, Pain Intensity

Raw Score (PainIntens) [120] consists of a single item measuring immediate (i.e., acute)

pain in adults, Pain Interference T-score (PainInterf) [120] measures the degree to which

pain interferes with other activities in life in adults, and Mars Contrast Sensitivity Test

(Mars) [121, 122, 123] is a brief and reliable measure that assesses color contrast sensitivity.

The resulting R2 scores from linear model fitting are reported in Table 5.4. It is appar-

ent that the PWPMD achieves the best fitting performance across all five HCP behavioral

measures. Notably, the PWPMD exhibits better performance by 39% when compared

Table 5.4: R2 scores of linear model fitting with different features for different exogenous
variables.

Feature
Linear Regression

MMSE PSQI PainIntens PainInterf Mars

Baseline features 0.21 0.19 0.16 0.18 0.19
PWPMD 0.48 0.50 0.45 0.48 0.58

MMSE: Mini Mental Status Exam; PSQI: Pittsburgh Sleep Question-
naire; PainIntens: Pain Intensity Raw Score; PainInterf: Pain Interference
T-score; Mars: Mars Contrast Sensitivity Test.
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with the baseline feature on behavioral measurement Mars Log Score, and also outper-

forms the baseline by 27%, 31%, 29%, 30% on MMSE score, PSQI score, PainIntens raw

score, PainInterf T-score, respectively. Our experiments illustrate that our proposed dynamic

brain connectivity features PWPMD significantly improve the regression performance

as compared with the baseline features. The promising results from these experiments on

HCP dataset implicate a great potential for our PWP for multi-task learning in real-world

clinical applications.

5.9 Conclusion

There is a significant interest in modeling time-varying changes of relationships

between different variables in both theoretical and application-wise perspectives. As previous

stochastic approaches heavily suffer from computational burden, we introduced a novel

stochastic process, i.e., PWP , which can model dynamic covariance matrices accurately

and efficiently. Not only we provide theoretical guarantee that it is a well defined process,

but also illustrate that it is easy to be incorporated into different models such as hierarchical

Gaussian model and multi-task model. Moreover, we empirically evaluate our ideas and

its usefulness with two independent sets of experiments. Especially for the real experiment

on HCP data, features derived from dynamic functional connectivity can be useful for

multi-task learning over traditional approaches extracting features from covariance matrices.

We believe there is a significant potential that PWP can further utilized in various areas

where time-varying associations between variables need to effectively characterized.
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CHAPTER 6

Conclusion

In summary, the main goal of this thesis was to advance the state-of-the-art, develop

and prototype machine learning models for neuroimaging applications. Building on the

machine learning frameworks, we developed several approaches in this thesis that tackled the

fundamental challenges which routinely arose in neuroimaging applications. We evaluated

our proposed approaches using several typical yet challenging real-world neuroimaging data

from the neuroscience domain, including Magnetic Resonance Imaging (MRI), Diffusion

Tensor Imaging (DTI), resting-state functional MRI (rs-fMRI), and Positron Emission

Tomography (PET). The experimental results demonstrated that our proposed methods

advanced the the state-of-the-art in machine learning for neuroimaging applications, which

can provide effective and efficient solutions for problems on real-world neuroimaging data.

In the following paragraphs, we briefly summarize the key contributions of each

individual method presented in this thesis:

Multi-resolutional Statistical Analysis on ABCD Data. In Chapter 2, we proposed

a novel transform that utilizes the precision matrix for structured data to increase sensitivity

in downstream statistical tasks. It can capture the local context information along the

geometry of precision matrix and yield a multi-scale feature. We conducted statistical

analysis and classification task based on household income using large-scale ABCD dataset

and demonstrated significant quantitative improvements. Furthermore, we detected multiple

ROIs whose microstructures are susceptible to socioeconomic disparity which were not

identifiable with conventional approaches.
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Disentangled Representation Learning on ADNI Data. In Chapter 3 and 4, we

investigated the problem of disentangled representation learning for neuroimaging appli-

cations on ADNI dataset. First, in Chapter 3, we proposed a novel sequential autoencoder

model which is flexible for data generation as well as conditionally generate sequential

data based on label, disentangled time-varying and time-invariant latent variables. We quan-

titatively demonstrated that our model has competitive reconstruction and classification

performance as compared to two modified versions of unsupervised state-of-the-art S3VAE

models. Second, in Chapter 4, we developed a novel supervised sequential graph autoen-

coder model which learns a latent disentangled representation consisting of time-varying and

time-invariant information to early characterize the longitudinal amyloid over the structural

brain network. We demonstrated that our model not only can capture the robust dynamics of

amyloid but also forecast future amyloid depositions from limited past time points.

Dynamic Covariance Modeling on HCP Data. In Chapter 5, we studied the problem

of modeling time-varying changes of relationships between different variables from both

theoretical and application-wise perspectives. We introduced a novel stochastic process

which can model the dynamic covariance matrices to overcome the limitation of previous

stochastic approaches that heavily suffer from the computational burden. We empirically

evaluated our model on the real-world HCP dataset and exemplified that features derived

from dynamic functional connectivity can be useful for multi-task learning over traditional

approaches extracting features from static covariance matrices, which shows a significant

potential that our model can be a very powerful tool to estimate the time-varying covariance

for real-world clinical applications.

In a nutshell, this thesis advanced the state-of-the-art in the field of leveraging machine

learning techniques for neuroimaging applications and highlighted the potential of applying

machine learning methods on large-scale real-world neuroimaging data to improve decision-

makings in the neuroscience domain. It is expected that the adoption of machine leaning
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methods for applications on neuroimaging data may potentially continue to expand in

the future, in which machine learning plays a critical role in improving and, ultimately,

revolutionizing the decision-makings for the neuroimaging problems from the neuroscience

domain.
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APPENDIX A

Supplementary Materials for Chapter 2
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In this appendix, we present the supplementary materials for Chapter 2.

A.1 Proof of Lemma 1

We provide here the proof of Lemma 1 as follows.

Lemma A.1.0.1. T sg is a self-adjoint operator, i.e., 〈T sg f, h〉 = 〈f, T sgh〉.

Proof. For any signals f, h ∈ H , because of the uniqueness of basis representation, there

exist coefficient f1, f2 . . . , fP ∈ R and h1, h2, . . . , hP ∈ R such that f =
∑P

`=1 f`ν` and

h =
∑P

`=1 h`ν`. Then we have

〈T sg f, h〉 = 〈T sg (
P∑
`=1

f`ν`),
P∑
`=1

h`ν`〉

=
P∑
`=1

g(sλ`)f`h`

= 〈
P∑
`=1

f`ν`, T
s
g (

P∑
`=1

h`ν`)〉

= 〈f, T sgh〉. (A.1)

We hence complete the proof.

A.2 Classification Performance

We summarized the values of accuracy, precision and recall across all folds for both

2-calss and 3-class cases in Table A.1. Figure A.1 shows the ROC curves for the binary

case on both raw cortical FA and CMD. It can be observed that ROC curve on CMD more

tightly approaches the top-left corner. The area under the curve (AUC) goes up by roughly

2% for the ROC curve on CMD as compared with that of the ROC curve for the raw FA

measurements.
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Figure A.1: ROC curves for 2-class case. Left: ROC on CMD, Right: ROC on raw FA
measures.

Table A.1: Classification performance measurements across folds.

2-Class 3-Class

Measures Folds Accuracy Precision Recall Accuracy Precision Recall

Original FA

Fold 1 0.72 0.69 0.91 0.41 0.40 0.43
Fold 2 0.81 0.80 0.91 0.41 0.41 0.43
Fold 3 0.70 0.68 0.93 0.41 0.40 0.44
Fold 4 0.81 0.80 0.90 0.39 0.38 0.40
Fold 5 0.72 0.73 0.87 0.42 0.41 0.42
Fold 6 0.79 0.78 0.89 0.41 0.41 0.43
Fold 7 0.76 0.76 0.88 0.40 0.39 0.40
Fold 8 0.76 0.78 0.89 0.40 0.40 0.43
Fold 9 0.82 0.82 0.82 0.42 0.41 0.43

Fold 10 0.79 0.77 0.86 0.41 0.40 0.42

CMD (COVLET)

Fold 1 0.85 0.81 0.91 0.48 0.47 0.47
Fold 2 0.85 0.82 0.91 0.50 0.50 0.49
Fold 3 0.86 0.82 0.93 0.48 0.47 0.47
Fold 4 0.89 0.83 0.97 0.47 0.47 0.46
Fold 5 0.88 0.86 0.91 0.47 0.47 0.46
Fold 6 0.84 0.82 0.87 0.49 0.49 0.48
Fold 7 0.86 0.84 0.88 0.48 0.48 0.47
Fold 8 0.84 0.81 0.89 0.44 0.44 0.43
Fold 9 0.85 0.81 0.92 0.46 0.46 0.45

Fold 10 0.83 0.78 0.92 0.44 0.44 0.43
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In this appendix, we present the supplementary materials for Chapter 5.

B.1 Theorem Proving

B.1.1 Proof of Theorem 1

Here we present the proofs of Theorem 1 as below.

Proof. In the construction of PWP , {ũvd} have independent predictive process priors.

Therefore, we have

ũv(x) = (ũv1(x), . . . , ũvD(x))T ∼ ND(0, B), (B.1)

where B is the diagonal matrix with elements bd = C̃d(x, x). Because of Cd(x, x) = 1

and the property (5.5), bd ≤ 1 for d = 1, . . . ,D. According to the property of multivariate

Gaussian distribution, it immediately follows that

Lũv(x) ∼ ND(0, S∗), (B.2)

where S∗ = LBLT . Due to (B.3) and according to the definition of Wishart distribution, we

have Σ(x) ∼ WD(V , S∗). Since V ≥ D in the construction, this Wishart distribution is well

defined.

B.1.2 Proof of Theorem 2

Here we present the proofs of Theorem 2 as below.

Proof. We denote the diagonal elements of L as (l1, . . . , lD), then according to

Σ(x) = LŨ(x)Ũ(x)TLT

=
V∑
v=1

Lũv(x)ũTv (x)LT , (B.3)
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the (i, j)th element of the covariance Σ(x) is given as

Σij(x) =
V∑
v=1

liũviũvjlj . (B.4)

According to (5.7), we let ũ0d
iid∼ PP(0, C̃(x, x′)), and then we have

cov(Σij(x),Σkl(x
′))

=
V∑
v=1

liljlkllcov(ũvi(x)ũvj(x), ũvk(x
′)ũvl(x

′))

=Vliljlkllcov(ũ0i(x)ũ0j(x), ũ0k(x
′)ũ0l(x

′)). (B.5)

Because of the symmetric property of covariance, let s 6= t, and we only need to consider

three classes summarized as the following three cases:

1. cov(Σss(x),Σss(x
′)).

2. cov(Σst(x),Σst(x
′)) and cov(Σst(x),Σts(x

′)).

3. Otherwise.

For the first case, without loss of generality, we assume i = j = k = l, then we rewrite (B.5)

as

cov(Σij(x),Σkl(x
′))

=Vliljlkll
(
E(ũ2

0i(x)ũ2
0i(x

′))− E(ũ2
0i(x))E(ũ2

0i(x
′))
)

=Vliljlkll
(
C̃(x, x)C̃(x′, x′) + 2C̃2(x, x′)− C̃(x, x)C̃(x′, x′)

)
=2Vl4i C̃2(x, x′). (B.6)
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In the second case, without loss of generality, we assume i = k 6= j = l, then we rewrite

(B.5) as

cov(Σij(x),Σkl(x
′))

=Vliljlkll
(
E(ũ0i(x)ũ0i(x

′))E(ũ0j(x)ũ0j(x
′))

− E(ũ0i(x)ũ0j(x))E(ũ0i(x
′)ũ0j(x

′))
)

=Vl2i l2j C̃2(x, x′). (B.7)

The third case includes two situations: (a) i 6= j, k, l, or (b) i = j 6= k = l. As for situation

(a), (B.5) is rewritten as

cov(Σij(x),Σkl(x
′))

=Vliljlkll
(
E(ũ0i(x)ũ0j(x)ũ0k(x

′)ũ0l(x
′))

− E(ũ0i(x)ũ0j(x))E(ũ0k(x
′)ũ0l(x

′))
)

=Vliljlkll
(
E(ũ0i(x))E(ũ0j(x)ũ0k(x

′)ũ0l(x
′))

− E(ũ0i(x))E(ũ0j(x))E(ũ0k(x
′)ũ0l(x

′))
)

= 0. (B.8)

And it is trivial that situation (b) has the same result.

B.2 Dynamic Correlation Matrices on More Participants

We also display the dynamic correlation matrices derived from the estimated Σ(x)

at timestamp x = 1001, 2001, 3001 and 4800 on more randomly selected participants with

IDs 169946, 199958 and 668361 in Figure B.1 part (a), (b) and (c), respectively. These plots

show the changes of brain connectivity across time as well and further provide evidences

that the structure of covariance/correlation may be significantly time-varying.
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(a) Dynamic correlations on participant with ID 169949

(b) Dynamic correlations on participant with ID 199958

(c) Dynamic correlations on participant with ID 668361

Figure B.1: Dynamic correlations (i.e., dynamic functional connectivity between ICA
components) derived from the estimations of Σ(x) at x =1001, 2001, 3001 and 4800 with
HCP timeseries data.
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