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ABSTRACT

CONTROL AND SIMULATION OF RELATIVE

MOTION FOR AERIAL REFUELING IN

RACETRACK MANEUVER

Publication No.

Eunyoung Kim, M.S.

The University of Texas at Arlington, 2007

Supervising Professor: Atilla Dogan

This thesis addresses the problem of controlling the receiver aircraft to achieve a

successful aerial refueling. For the performance verification of the controller, a new set of

nonlinear, 6-DOF, rigid body equations of motion for the receiver aircraft has been used.

The equations are written in terms of state variables that are relative to the reference

frame that is attached to, translates and rotates with the tanker aircraft. Furthermore,

the nonlinear equations contain the wind effect terms and their time derivatives to repre-

sent the aerodynamic coupling involved between the two aircraft. These wind terms are

obtained using an averaging technique that computes the effective induced wind compo-

nents and wind gradients in the receiver aircraft’s body frame. Dynamics of the engine

and the actuators are also included in the study. A position-tracking controller has been

designed using ”gain scheduling” technique based on a combination of integral control

and optimal LQR design. The scheduling is utilized to satisfy the performance require-

ment of the controller during the whole ”racetrack” maneuver of the tanker in a standard

v



aerial refueling operation. The nominal flight conditions that are used for the lineariza-

tion of the nonlinear equations of motion are (i) straight wing-level flight and (ii) steady

turn. The position tracking controller can be used for (i) flying from observation position

to the refueling position, (ii) station keeping for the actual fuel transfer during the whole

racetrack maneuver of the tanker and (iii) flying away from the refueling position once

the fuel transfer is completed. The performance of the controller is evaluated in a high

fidelity simulation environment, which, employing the new sets of equations of motion,

includes the relative motion of the receiver and the tanker and the aerodynamic coupling

due to the trailing vortex of the tanker. The simulation and control design are applied to

a tailless fighter aircraft with innovative control effectors and thrust vectoring capability.
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CHAPTER 1

INTRODUCTION

1.1 Background on Aerial Refueling Related Research

The effectiveness of aircraft is increased with the capability of aerial refueling,

which extends the range, endurance and payload capacity [1]. There has recently been

several research efforts in this area, especially for the purpose of enabling unmanned

aerial vehicles with this critical capability. There are two different aerial refueling pro-

cedures, probe-and-drogue method, and boom-receptacle method. Probe and drogue

refueling (PDR) is the standard aerial refueling procedure for both the US Navy and

North Atlantic Treaty Organization (NATO) nations. PDR method has two significant

drawbacks. First, this method depends on the receiver aircraft to make the refueling

connection. Second, this fuel transfer rates are slower than the boom receptacle refueling

[1]. Boom-receptacle refueling (BRR) is employed by the US Air Force (USAF). The

disadvantage of BRR is that it requires the use of special tankers with booms and human

operator in the tanker. However the receiver’s workload is slightly lower, compared to

PDR method, especially during night or bad weather flight condition, since the boom

operator will actually carry out the connection [1]. While it is potentially applicable to

PDR method, this paper focuses on the development of an integrated simulation envi-

ronment and control algorithms for a receiver aircraft in BRR operation while the tanker

flies in a racetrack maneuver. Racetrack maneuver is the standard pattern flown by

tanker aircraft with straight legs and bank turns [1].

There has been some recent work such as those reported in References [2, 3, 4, 5,

6, 7, 8, 9] demonstrating the benefits of and issues with the control system development
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for aerial refueling. Ref. [2] designs a PID control law for each of the three separate

position error channels. The first channel is from x-component of the position error

vector to the throttle; the second channel is from y-component to the ailerons; and the

third one is from z-component to the elevator. The controller performance is analyzed

in a simulation environment in station keeping and in maneuvering between contact,

pre-contact and observation positions while the tanker flies straight-level and turns. The

simulation has the 6-DOF models of the two aircraft; both are with respect to an inertial

frame and the relative motion is determined by utilizing kinematic relations. The effect of

the trailing wake-vortex is not modeled in the simulation, but the effect of a Von-Karman

type turbulence model angle-of-attack and side slip angle is included. The controllers

are also evaluated in actual flight tests. Ref. [3] addresses the tanker-boom interactions,

and how to model them for simulation purposes. Ref. [4] investigates the applicability of

proportional navigation guidance, developed for missile guidance, and line-of-sight angle

control, developed for instrument landing systems, in the area of aerial refueling. In [4],

the longitudinal and lateral relative motions are separately controlled. The controllers

are evaluated in a simulation environment employing the linear model of a jet trainer as

the receiver. This reference also uses a turbulence model to represent the wind effect and

ignores the modeling of the vortex induced wind field. Ref. [5] developed “a reference-

observer-based tracking controller” using a cooperative vision based sensor for docking in

PDR operations. In controller performance evaluation, Ref. [5] uses a linearized aircraft

model with a simplified wake-vortex model and a turbulence model. Ref. [6] describes

the implementation of a modeling and simulation environment for evaluating a refueling

control scheme based on sensor fusion between GPS-based and machine vision-based

measurements. In this reference also, the tanker and the receiver are separately modeled

while the wake-vortex effect is modeled through the interpolation of experimental data

as perturbation to the aerodynamic coefficients. In Ref. [7], an approach for simulating
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a PDR maneuver based on optical sensors is presented. Ref. [7] also uses a nonlinear

model of the receiver aircraft without considering the wake-vortex effect. Ref. [8] develops

an autopilot using techniques from differential games and adaptive control for PDR. It

considers only longitudinal dynamics, uses a simplified longitudinal model of the receiver

and assumes that the tanker is in steady-level flight. Ref. [9] presents a lateral autopilot

design for aerial refueling using root-locus method. A simple roll disturbance model is

created as a function of downwash amplitude and frequency.

1.2 Contribution

This research work applies the earlier work on mathematical modeling of relative

motion [10, 11, 12] and aerodynamic coupling [13] to the simulation of aerial refueling,

and develops control laws for the motion of the receiver relative to the tanker that flies

in racetrack maneuvers. An integrated simulation environment is developed to take into

account tanker maneuvers, motion of the receiver relative to the tanker and the aerody-

namic coupling due to the trailing wake-vortex of the tanker. The simulation employs

a full 6-DOF nonlinear mathematical model of the tanker aircraft. Additionally, the

receiver dynamics is modeled utilizing the new set of equations derived to explicitly for-

mulate the translational and rotational motion of the receiver relative to the tanker.

Further, the equations have explicit terms that incorporate the vortex-induced wind ef-

fects in the translational and rotational dynamics and kinematics. The separate dynamic

model of the tanker, including its own controller, allows the simulation of the standard

racetrack maneuvers of the tanker in aerial refueling operations. The mathematical model

of the receiver expressed in terms of the relative position and orientation with respect

to the tanker’s body frame facilitates the formulation, in a single frame work, of ma-

neuvers of the receiver to move to the contact position and the station-keeping at the

contact position while the tanker flies in racetrack pattern. For the racetrack maneuvers
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of the tanker, an LQR-based MIMO state-feedback and integral control is developed to

track commanded speed, altitude and yaw rate. Similarly, for the relative motion of

the receiver, an LQR-based MIMO state-feedback and integral control is designed to

track commanded trajectory expressed in the body frame of the tanker. Both controllers

schedule their corresponding feedback and integral gains based on the commanded speed

and yaw rate of the tanker. The tanker aircraft model represents KC-135R while the

receiver aircraft model is for a tailless fighter aircraft with innovative control effectors

(ICE) and thrust vectoring capability. Thus, the receiver aircraft has six control vari-

ables (three control effectors, throttle setting and two thrust vectoring angles) while the

tanker has four standard control variables (three control surfaces and throttle setting).

Since the receiver has redundant control variables, various control allocation schemes are

investigated for trajectory-tracking and station-keeping while the tanker flies in various

racetrack maneuvers with different commanded turn rates.

1.3 Thesis Summary

The remainder of the thesis is organized as follows. Chapter 2 gives the equations

of motion of the tanker and the modeling of the trailing wake-vortex and its effect on

the receiver dynamics are briefly discussed while Chapter 3 presents the modeling of

the receiver aircraft. Chapter 4 starts with the requirements for the trajectory tracking

controller for the tanker and receiver aircraft and presents later on the design procedure

and the structure of the control law. Chapter 5 describes various simulation cases based

on tanker maneuvers and receiver control-allocation schemes as well as some special

cases to quantify the effects of gain scheduling and trailing wake-vortex. Finally, Section

6 presents the conclusion and discusses topics for future work.



CHAPTER 2

MODELING OF THE TANKER DYNAMICS RELATIVE TO THE

INERTIAL FRAME

2.1 Introduction

The performance of an aerial refueling operation depends on the motion of the

tanker as much as the motion of the receiver. Thus, for the evaluation of aerial refueling

controllers, the simulation environments should include the full dynamic model of the

tanker. In standard aerial refueling operation, the tanker flies in a pre-specified race-

track maneuver relative to an inertial frame while the receiver moves and stays at the

contact position defined relative to the tanker. Further, for a true representation of the

aerodynamic coupling due to the trailing wake vortex, the motion of the tanker should

be modeled accurately. In the following sections, the scalar forms of the equations of

motion of the tanker are presented as they are used in the simulation and in the control

design.

2.2 Translational Kinematics Equations

The translational kinematics equation is written in terms of the position vector of

the tanker with respect to an inertial frame. In matrix form, the translational kinematics

equation is

ṙBT = RT
BTIRBTwT

VwT (2.1)

where rBT is the position of the tanker relative to the inertial frame expressed in the

inertial frame, RBTI is the rotation matrix from the inertial frame to the body frame of

the tanker, RBTwT
is the rotation matrix from the tanker wind frame to body frame,

5
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VwT is the velocity of the tanker relative to the surrounding air expressed in the tanker

wind frame. The followings are the scalar forms of translational kinematics equations:

ẋT =VT
[

cos βT cosαT cos θT cosψT + sin βT (− cosφT sinψT + sinφT sin θT cosψT )

+ cos βT sinαT (sinφT sinψT + cosφT sin θT cosψT )
]

(2.2)

ẏT =VT
[

cos βT cosαT cos θT sinψT + sin βT (cosφT cosψT + sinφT sin θT cosψT )

+ cos βT sinαT (− sinφT cosψT + cosφT sin θT sinψT )
]

(2.3)

żT =VT
[
− cos βT cosαT sin θT + sin βT sinφT cos θT + cos βT sinαT cosφT cos θT

]
(2.4)

where (xT , yT , zT ) is the position of the tanker aircraft relative the inertial frame, (ψT , θT , φT )

is the orientation of the tanker relative to the inertial frame in terms of the Euler angles,

(VT , βT , αT ) are the airspeed, side slip angle and angle-of-attack of the tanker.

2.3 Translational Dynamics Equations

Translational dynamics equation of the tanker aircraft in matrix form is


V̇T

β̇T

α̇T

 = E−1
T S(ωBT

)RBTwT
VwT +

1

mT

E−1
T

(
RBRIMTRBTwT

AT + PT

)
(2.5)

where

E−1
T =


cosαT cos βT sin βT cos βT sinαT

− 1
VT

cosαT sin βT
1
VT

cos βT − 1
VT

sinαT sin βT

− 1
VT

sec βT sinαT 0 1
VT

cosαT sec βT

 (2.6)

The external forces acting on the tanker are the gravitational force MT (expressed

in the inertial frame), the aerodynamic force AT (expressed in the wind frame of the
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tanker) and propulsive force PT (expressed in the body frame of the tanker). In general,

the representations of the forces are

MT =


0

0

mT g

 AT =


−DT

−ST

−LT

 PT =


TT cos δT

0

−TT sin δT

 (2.7)

where g is the gravitational acceleration, mT is the mass of the tanker, (DT , ST , LT ) are

the drag, side force and lift on the tanker, respectively, TT is the thrust magnitude, and

δT is the thrust inclination angle. Also, note that S(·) is the skew-symmetric matrix

operation on the representation of a vector and defined as

S(x) =


0 x3 −x2

−x3 0 x1

x2 −x1 0

 , (2.8)

for an arbitrary vector x with the representation [x1 x2 x3]T .

The scalar forms of the translational dynamics equation are given as:

V̇T = g [cos θT sin βT sinφT + cos βT (cosφT cos θT sinαT − cosαT sin θT )]

+
1

mT

[−DT + TT cos (αT + δT ) cos βT ] (2.9)

β̇T = −rT cosαT + pT sinαT

+
g

VT
[− cosφT cos θT sinαT sin βT + cos βT cos θT sinφT + cosαT sin βT sin θT ]

− 1

mT VT
[ST + TT cos (αT + δT ) sin βT ] (2.10)

α̇T = qT − (pT cosαT + rT sinαT ) tan βT

+
g sec βT
VT

[cosαT cosφT cos θT + sinαT sin θT ]

− sec βT
mT VT

[LT + TT sin (αT + δT )] (2.11)
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where (pT , qT , rT ) is the angular velocity of the tanker expressed in the tanker’s body

frame. The aerodynamic forces are given by the following standard expressions

DT =
1

2
ρV 2

T STCDT , (2.12)

ST =
1

2
ρV 2

T STCST , (2.13)

LT =
1

2
ρV 2

T STCLT , (2.14)

where ST is the reference area of the tanker and ρ is the ambient air density. The

aerodynamic coefficients are

CDT = CD0 + CDα2 α2
T (2.15)

CST = CS0 + CSββT + CSδrδrT (2.16)

CLwing = CL0 + CLααT + CLα2 (αT − αref )2 + CLq
cT

2VT
qT (2.17)

CLtail = CLδeδeT (2.18)

CLT = CLwing + CLtail (2.19)

where (δaT ,δeT ,δrT ) are the deflections of the control surfaces (aileron, elevator, rudder,

respectively) and cT is the chord length for the tanker. As it will be seen in the next

section, the notation for the tanker’s stability derivatives is the same as that for the

receiver. However, it is should be obvious to the reader that their values for the tanker and

the receiver are different as they are different aircraft. Note also that the lift coefficients

for the wing and the horizontal tail are defined separately. This is needed for the modeling

of the aerodynamic coupling as explained in Chapter 3.

2.4 Rotational Kinematics Equations

The rotational kinematics equation in matrix form is the well known standard

equation:

RBTIṘBTI = −S(ωBT
) (2.20)
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where ωBT
is the representation of the angular velocity vector of the tanker relative to

the inertial frame expressed in its own body frame as

ωBT
=


pT

qT

rT

 (2.21)

The rotational motion of the tanker aircraft in terms of Euler angles is, in scalar form,

φ̇T = pT + qT sinφT tan θT + r cosφT tan θT (2.22)

θ̇T = qT cosφT − r sinφT (2.23)

ψ̇T = (qT sinφT + rT cosφT ) sec θT (2.24)

where note that both the orientation in terms of (ψT , θT , φT ), and the angular velocity,

(pT , qT , rT ), of the tanker are relative to the inertial frame.

2.5 Rotational Dynamics Equations

The matrix form of the rotational dynamics of the tanker is modeled with the

standard rotational dynamics equation.

ω̇BT = I−1

T
MBT + I−1

T
S(ωBT

)I
T
ωBT (2.25)

where I
T

is the inertia matrix of the tanker aircraft, MBT is the moment of the external

forces around the origin of tanker body frame and expressed in the tanker body frame as

MBT =


LT

MT

NT

 (2.26)
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The scalar forms of the rotational dynamics equation are given as:

ṗT =
1

(IxxIzz − I2
xz)

[
(Ixx − Iyy + Izz) IxzpT qT +

(
Iyy − Izz + I2

zz − I2
xz

)
qT rT

+IzzLT + IxzNT
]

(2.27)

q̇T =
1

Iyy

[
(Izz − Ixx) pT rT +

(
r2
T − p2

T

)
Ixz +MT

]
(2.28)

ṙT =
1

(IxxIzz − I2
xz)

[ (
I2
xx − IxxIyy + I2

xz

)
pT qT + (−Ixx + Iyy − Izz) IxzqT rT

+IxzLT + IxxNT
]

(2.29)

where I(·)(·) is the moment or product of inertia of the tanker relative to the corresponding

axis of the tanker’s body frame. Note here also that the notation for I(·)(·) is the same

for both tanker and the receiver while their values are obviously different. (LT ,MT ,NT )

are the rolling, pitching and yawing moments, respectively.

LT =
1

2
ρV 2

T ST bTCLT (2.30)

MT =
1

2
ρV 2

T ST cTCMT
+ ∆zTTT (2.31)

NT =
1

2
ρV 2

T ST bTCNT (2.32)

where bT is the wingspan of the tanker aircraft and ∆zT is the moment arms of the thrust

in the tanker’s body frame. The aerodynamic moment coefficients are

CLT = CL0 + CLδaδaT + CLδrδrT + CLββT + CLp
bT

2VT
pT + CLr

bT
2VT

rT (2.33)

CMT
= CLααT + CLδeδeT + CMq

cT
2VT

qT (2.34)

CNT = CN0 + CN δaδaT + CN δrδrT + CNββT + CNp
bT

2VT
pT + CN r

bT
2VT

rT (2.35)

2.6 Engine Dynamics

The thrust generated by the engine (TT ) is

TT = ξT TmaxT (2.36)
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where ξT denotes the instantaneous throttle setting and TmaxT is the maximum available

thrust of the tanker and assumed to be constant in this paper. The engine dynamics is

modeled as that of a first order system with time constant τT . Therefore, we have

ξ̇T =
ξT − ξtT
τT

, (2.37)

where ξtT is the commanded throttle setting (0≤ ξt ≤ 1).

2.7 Actuator Dynamics

For the present study, only the actuator saturation are considered. The deflection

range attainable from each control surface is (-20 deg, 20 deg).



CHAPTER 3

MODELING OF THE RECEIVER DYNAMICS RELATIVE TO THE

TANKER

3.1 Introduction

In an efficient aerial refueling operation, the receiver aircraft needs to be controlled

with respect to the tanker’s position and orientation rather than with respect to the

inertial reference. Moreover, the receiver aircraft will be exposed to a nonuniform wind

field during the whole refueling operation when it is in the proximity of the tanker due

to the trailing vortex of the tanker. To address these challenges, a new set of nonlinear

equations was derived earlier [10] and used herein to represent the position and orientation

of the receiver relative to the tanker and at the same time to explicitly represent the vortex

effect on the dynamics of the receiver aircraft. In the following sections, the matrix forms

of the equations are given as they are used in the simulation of the closed loop system. In

their scalar forms, however, the wind terms are not included as the controller is designed

without the assumption of the availability of the wind terms.

3.2 Translational Kinematics Equations

The translational kinematics equation is written in terms of the position vector of

the receiver with respect to the tanker, not its absolute position vector with respect to

the inertial frame. In matrix form, the translational kinematics equation is [10].

ξ̇ = RT
BRBT

RBRwR
Vw + RT

BRBT
W −RBTI ṙBT + S(ωBT

)ξ (3.1)

12
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where ξ is the position of the receiver relative to the tanker expressed in the body frame

of the tanker, RBRwR
is the rotation matrix from the receiver wind frame to body frame,

Vw is the velocity of the receiver relative to the surrounding air expressed in the receiver

wind frame, W is the velocity of the surrounding air relative to the ground expressed

in the receiver body frame, RBRBT
is the rotation matrix from tanker body frame to

receiver body frame, and ṙBT is the velocity of the tanker relative to the inertial frame.

The followings are the scalar forms of Eq. (3.1) without the wind terms:

ẋ = V
[

cos β cosα cos θ cosψ + sin β (− cosφ sinψ + sinφ sin θ cosψ)

+ cos β sinα (sinφ sinψ + cosφ sin θ cosψ)
]

(3.2)

− cos θT cosψT VxT − cos θT sinψT VyT + sin θT VzT

+rT y − qT z

ẏ = V
[

cos β cosα cos θ sinψ + sin β (cosφ cosψ + sinφ sin θ cosψ)

+ cos β sinα (− sinφ cosψ + cosφ sin θ sinψ)
]

(3.3)

− (− cosφT sinψT + sinφT sin θT cosψT )VxT

− (cosφT cosψT + sinφT sin θT sinψT )VyT + sinφT cos θT VzT

−rT x+ pT z

ż = V
[
− cos β cosα sin θ + sin β sinφ cos θ + cos β sinα cosφ cos θ

]
− (sinφT sinψT + cosφT sin θT cosψT )VxT (3.4)

− (− sinφT cosψT + cosφT sin θT sinψT )VyT − cosφT cos θT VzT

+qT x− pT y

where (x, y, z) is the position of the receiver aircraft relative to the tanker, (ψ, θ, φ)

is the orientation of the receiver relative to the tanker in terms of the Euler angles,

(V, β, α) are the airspeed, side slip angle and angle-of-attack of the receiver, (ψT , θT , φT )
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is the orientation of the tanker relative to the inertial frame. Recall that (pT , qT , rT ) are

the components of the angular velocity of the tanker relative to the inertial frame, and

(VxT , VyT , VzT ) are the components of the velocity of the tanker relative to the inertial

frame. Note that VxT = ẋT in Eq. (2.2), VyT = ẏT in Eq. (2.3), and VzT = żT in Eq. (2.4).

3.3 Translational Dynamics Equations

The translational dynamics equation of the receiver aircraft including the wind

effect in matrix form is [10]
V̇R

β̇R

α̇R

 = E−1
R

[
S(ωBRBT

) + RBRBT
S(ωBT

)RT
BRBT

](
RBRwR

Vw +W

)

−E−1
R Ẇ +

1

mR

E−1
R

(
RBRBT

RBTIMR + RBRwR
AR + PR

)
(3.5)

where

E−1
R =


cosα cos β sin β cos β sinα

− 1
VR

cosα sin β 1
VR

cos β − 1
VR

sinα sin β

− 1
VR

sec β sinα 0 1
VR

cosα sec β

 (3.6)

The external forces acting on the receiver are the gravitational force MR (expressed in the

inertial frame), the aerodynamic force AR (expressed in the wind frame of the receiver)

and the propulsive force PR (expressed in the body frame of the receiver). In general,

the representations of the forces MR, AR and PR are

MR =


0

0

mR g

 AR =


−D

−S

−L

 PR =


Tx

Ty

Tz

 (3.7)
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where mR is the mass of the receiver, (D,S, L) are the drag, side force and lift on the

receiver, respectively, and (Tx, Ty, Tz) are the components of the thrust vector in the body

frame of the receiver.

The propulsion force PR has three components, which are functions of thrust mag-

nitude TR and the direction of the thrust vector. The thrust vectoring is parameterized

by the angles of the thrust vector with the receiver’s body xy– and xz– planes. Thus, as

seen in Fig. 3.1, the components of the thrust are

Tx = TR cos δz cos δy

Ty = TR sin δz (3.8)

Tz = TR cos δz sin δy

Note that a positive δy rotation of the thrust generates a positive thrust component in the

positive z–direction while inducing a positive pitching moment (moment around y-axis).

Similarly, a positive δz rotation of the thrust generates a positive thrust component in the

positive y–direction while inducing a negative yawing moment (moment around z-axis).

x

y

z

z’

y’
T

δy

δz

CM

Ty

Tx

Tz

x’

∆z

∆x

Figure 3.1. Thrust vectoring angles and moment arms.
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The aerodynamic forces are given by

D =
1

2
ρV 2

RSRCD , (3.9)

S =
1

2
ρV 2

RSRCS , (3.10)

L =
1

2
ρV 2

RSRCL , (3.11)

where SR is the reference area of the receiver. The aerodynamic coefficients are

CD = CD0 + CDαα + CDα2α
2 + CDδeδe + CDδe2δ

2
e (3.12)

CS = CS0 + CSββ + CSδaδa + CSδrδr (3.13)

CL = CL0 + CLαα + CLα2(α− αref )2 + CLq
c

2VR
qrel + CLδeδe (3.14)

where (δa,δe,δr) are the deflections of the control effectors (aileron, elevator, rudder) as the

conventional control surfaces or (elevon, pitch flap, clamshell) as in the ICE (Innovative

Control Effectors) aircraft, respectively. Note that, in Eq. (3.14), qrel is the angular

velocity of the receiver relative to the surrounding air around the body–y axis. However,

in control design, qrel = q since the wind is not considered.

The scalar forms of the translational dynamics equation, without the wind terms,

are given as:

V̇ = g

{
cosα cos β (− cos θ cosψ cos θT + cos θ sinψ sinφT cos θT − sin θ cosφT cos θT )

+ sin β
[
− (− cosφ sinψ + sinφ sin θ cosψ) sin θT

+ (cosφ cosψ + sinφ sin θ sinψ) sinφT cos θT

+ sinφ cos θ cosφT cos θT
]

(3.15)

+ cos β sinα
[
− (sinφ sinψ + cosφ sin θ cosψ) sin θT

+ (− sinφ cosψ + cosφ sin θ sinψ) sinφT cos θT

+ cosφ cos θ cosφT cos θT
]}

+
1

mR

(−D + Tx cosα cos β + Ty sin β + Tz cos β sinα)
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β̇ = sinα (p+ pT cosψ cos θ + qT sinψ cos θ − rT sin θ)

− cosα
[
r + pT (sinφ sinψ + cosφ cosψ sin θ) + qT (sin θ cosφ sinψ − sinφ cosψ)

+rT cosφ cos θ
]

+
g

V

{
− cosα sin β (− cos θ cosψ sin θT + cos θ sinψ sinφT cos θT − sin θ cosφT cos θT )

+ cos β
[
− (− cosφ sinψ + sinφ sin θ cosψ) sin θT

+ (cosφ cosψ + sinφ sin θ sinψ) sinφT cos θT + sinφ cos θ cosφT cos θT
]

− sinα sin β
[
− (sinφ sinψ + cosφ sin θ cosψ) sin θT (3.16)

+ (− sinφ cosψ + cosφ sin θ sinψ) sinφT cos θT

+ cosφ cos θ cosφT cos θT
]}

+
1

mR V
(−S − Tx cosα sin β + Ty cos β − Tz sinα sin β)

α̇ = q − pT (cosφ sinψ − sin θ sinφ cosψ) + qT (cosφ cosψ + sin θ sinφ sinψ)

+rT sinφ cos θ

− sinα tan β
[
r + pT (sinψ sinφ+ cosψ sin θ cosφ) + qT (sinψ sin θ cosφ− sinψ sinφ)

+rT cosφ cos θ
]

+ cosα tan β (−p− pT cosψ cos θ − qT sinψ cos θ + rT sin θ) (3.17)

+
g

V

{
− sec β sinα (− cos θ cosψ sin θT + cos θ sinψ sinφT cos θT − sin θ cosφT cos θT )

+ cosα sec β
[
− (sinφ sinψ + cosφ sin θ cosψ) sin θT

+ (− sinφ cosψ + cosφ sin θ sinψ) sinφT cos θT

+ cosφ cos θ cosφT cos θT
]}

+
sec β

mR V
(−L− Tx sinα + Tz cosα)

Note that the motion of the tanker aircraft –both translational and rotational– is

represented as exogenous inputs in the translational equations of motion of the receiver
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aircraft. The variables included in this category are translational velocity (VxT , VyT , VzT ),

orientation in terms of Euler angles (ψT , θT , φT ) and angular velocity (pT , qT , rT ), all

relative to the inertial frame.

3.4 Rotational Kinematics Equations

The rotational motion of the receiver aircraft, similar to its translational motion,

is also analyzed with reference to the tanker body frame. Even though the standard

rotational kinematics and dynamics equations are used, their interpretations are different

because both angular position and angular velocity of the receiver aircraft are relative to

the tanker body frame, an accelerating and rotating reference frame.

The rotational kinematics equation of the receiver aircraft in matrix form is also

the well known standard equation:

RBRBT
ṘT

BRBT
= −S(ωBRBT

) (3.18)

where ωBRBT is the representation of the angular velocity vector of the receiver aircraft

relative to the tanker body frame expressed in its own body frame as

ωBRBT =


pRT

qRT

rRT

 (3.19)

The scalar forms of this matrix equation in terms of Euler angles are:

φ̇ = p+ q sinφ tan θ + r cosφ tan θ (3.20)

θ̇ = q cosφ− r sinφ (3.21)

ψ̇ = (q sinφ+ r cosφ) sec θ (3.22)

where note that both the orientation, (ψ, θ, φ), and the angular velocity, (p, q, r), of the

receiver are relative to the tanker.
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3.5 Rotational Dynamics Equations

The matrix form of the rotational dynamics of the receiver is also modeled as

ω̇BRBT = I−1

R
MBR + I−1

R
S(ωBRBT

+ RBRBT
ωBT

)I
R

(ωBRBT + RBRBT
ωBT )

−S(ωBRBT
)RBRBT

ωBT −RBRBT
ω̇BT (3.23)

where I
R

is the inertia matrix of the receiver aircraft, MBR is the moment of the external

forces around the origin of the receiver body frame and expressed in the receiver body

frame as

MBR =


L

M

N

 (3.24)

The moment has two main components; due to aerodynamic forces and due to the thrust,

thus

L =
1

2
ρV 2

RSRbCL −∆zTy + ∆yTz (3.25)

M =
1

2
ρV 2

RSRcCM −∆zTx −∆xTz (3.26)

N =
1

2
ρV 2

RSRbCN −∆yTx + ∆xTy (3.27)

where b is the wingspan, c is the cord length of the receiver aircraft, and (∆x, ∆y, ∆z)

are the moment arms of the thrust in the body frame of the receiver (see Fig. 3.1). The

aerodynamic moment coefficients are

CL = CL0 + CLδaδa + CLδrδr + CLββ + CLp
b

2VR
prel + CLr

b

2VR
rrel (3.28)

CM = CM0 + CLαα + CLδeδe + CMq
c

2VR
qrel (3.29)

CN = CN0 + CN δaδa + CN δrδr + CNββ + CNp
b

2VR
prel + CN r

b

2VR
rrel (3.30)

where (prel,qrel,rrel) are components of the angular velocity of the aircraft relative to the

surrounding air. When the aircraft is in a vortex field as in the case of tanker’s trailing
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wake vortex field, these angular velocity components will be different from the angular

velocity relative to the tanker.

The scalar forms of the rotational dynamics equation are given as:

ṗ =
(IzzL+ IxzN )

(IxxIzz − I2
xz)

+
(IyyIxx − I2

zz − I2
xz)

(IxxIzz − I2
xz)

[
q + pT (cosψ sin θ sinφ− sinψ cosφ)

+qT (sinψ sin θ sinφ+ cosψ cosφ) + rT cos θ sinφ
]

[
r + pT (cosψ sin θ cosφ+ sinψ sinφ) (3.31)

+qT (sinψ sin θ cosφ− cosψ sinφ) + rT cos θ cosφ
]

+
(IyyIxz − IxxIxz − IzzIxz)

(IxxIzz − I2
xz)

[
p+ pT cosψ cos θ + qT sinψ cos θ − rT sin θ

]
[
− q + pT (sinψ cosφ− cosψ sin θ sinφ)

−qT (cosψ cosφ− sinψ sin θ sinφ)− rT cos θ sinφ
]

−r
[
pT (cosψ sin θ sinφ− sinψ cosφ) + qT (sinψ sin θ sinφ+ cosψ cosφ) + rT cos θ sinφ

]
+q
[
pT (cosψ sin θ cosφ+ sinψ sinφ) + qT (sinψ sin θ cosφ− cosψ sinφ)

+rT cos θ cosφ
]
− ṗT cosψ cos θ − q̇T sinψ cos θ + ṙT sin θ

q̇ =
M
Iyy
− Ixz
Iyy

[
p+ pT cosψ cos θ + qT sinψ cos θ − rT sin θ

]2
+
Ixz
Iyy

[
r + pT (cosψ sin θ cosφ+ sinψ sinφ)

+qT (sinψ sin θ cosφ− cosψ sinφ) + rT cos θ cosφ
]2

+
(Izz − Ixx)

Iyy

[
p+ pT cosψ cos θ + qT sinψ cos θ − rT sin θ

]
(3.32)[

r + pT (cosψ sin θ cosφ+ sinψ sinφ) + qT (sinψ sin θ cosφ− cosψ sinφ) + rT cos θ cosφ
]

+r
[
pT cosψ cos θ + qT sinψ cos θ − rT sin θ

]
− q̇T (sinψ sin θ sinφ+ cosψ cosφ)

−p
[
pT (cosψ sin θ cosφ+ sinψ sinφ) + qT (sinψ sin θ cosφ− cosψ sinφ)

+rT cos θ cosφ
]

+ ṗT (sinψ cosφ− cosψ sin θ sinφ)− ṙT cos θ sinφ
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ṙ =
(IxxN + IxzL)

(IxxIzz − I2
xz)

+
(IyyIxz − IxxIxz − IzzIxz)

(IxxIzz − I2
xz)

[
r + pT (cosψ sin θ cosφ+ sinψ sinφ)

+qT (sinψ sin θ cosφ− cosψ sinφ) + rT cos θ cosφ
]

[
q + pT (cosψ sin θ sinφ− sinψ cosφ) + qT (sinψ sin θ sinφ+ cosψ cosφ)

+rT cos θ sinφ
]

+
(I2
xx − IxxIyy + I2

xz)

(IxxIzz − I2
xz)

[
p+ pT cosψ cos θ + qT sinψ cos θ − rT sin θ

]
(3.33)[

q + pT (cosψ sin θ sinφ− sinψ cosφ)

+qT (sinψ sin θ sinφ+ cosψ sinφ) + rT cos θ sinφ
]

+p
[
pT (cosψ sin θ sinφ− sinψ cosφ)

+qT (sinψ sin θ sinφ+ cosψ cosφ) + rT cos θ sinφ
]

−q
[
pT cosψ cos θ + qT sinψ cos θ − rT sin θ

]
− ṗT (cosψ sin θ cosφ+ sinφ sinφ)

−q̇T (sinψ sin θ cosφ− cosψ sinφ)− ṙT cos θ cosφ

where I(·)(·) is the moment or product of inertia of the receiver relative to the correspond-

ing axis of the receiver body frame.

3.6 Engine Dynamics

As in the case of the tanker, the engine model of the receiver is also a first or-

der transfer function with constant maximum thrust, obviously with different maximum

thrust and different time constant.

3.7 Actuator Dynamics

For the present study, only the actuator saturation and rate limit effects are consid-

ered for the receiver. Other dynamics should be included in future work. The deflection
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range attainable from the elevon is (-30 deg, 30 deg), from the pitch flap (-30 deg, 30 deg)

and from the clamshells (-60 deg, 60 deg). All three control effectors have a rate limit of

±90 deg/sec. Likewise, the thrust vectoring has a limit of ± 30 deg in both directions

and a rate limit of ±30 deg/sec.

3.8 Modeling the Vortex and Its Effect

It is to be noted that the wind effect terms constituting the elements W , Ẇ in

the receiver’s equations of motion presented earlier are considered to be based on the

uniform wind distribution acting at the receiver’s CM, expressed in its body frame. But,

the vortex-induced wind field acting on the receiver aircraft is non-uniform in nature.

Therefore, to be able to use the above aircraft equations of motion without doing any

modifications, there is a need to approximate the non-uniform induced wind components

and gradients by equivalent uniform wind and gradients. Once a fairly reasonable ap-

proximation can be achieved, the implementation of aerodynamic coupling between the

tanker and the receiver becomes far more direct and computationally efficient than the

conventional procedure which involves first the calculation of induced forces and mo-

ments from the wind distribution, and then inserting these forces and moments in the

aircraft dynamics equations. The procedure for a simple and fairly accurate method of

approximating the non-uniform vortex-induced wind field by its uniform equivalent is

briefly explained in this section.

In our dynamic model for aerial refueling, the tanker is considered to produce two

pairs of straight, semi-infinite trailing vortex filaments – one from the wings and one from

the horizontal tail – that induce additional wind velocities on the body of the receiver

aircraft (see Fig. 3.2). These vortex-induced wind velocities cause changes in the forces

and moments experienced by the receiver. However, instead of attempting to directly

estimate the induced forces and moments on the follower, the induced wind velocities
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Figure 3.2. Trailing vortex from the wings and horizontal tail.

and wind gradients are computed. The induced wind velocities are written as a function

of the relative separation as well as the relative orientation between the tanker and the

receiver using a modified horseshoe vortex model based on the Helmholtz profile. Since

the induced wind and wind gradients are non-uniform along the body dimensions of the

receiver aircraft, an averaging technique is implemented to compute the effective wind and

wind gradient as uniform approximations. The effective wind components and gradients

are introduced into the nonlinear aircraft equations that include the components of wind

and the temporal variation of wind in the body frame to determine the effect on the

receiver’s dynamics. The effect of vortex decay over time is also included in our model.

Special care has been taken to accommodate different geometrical dimensions for the

tanker and the receiver aircraft and also to include many useful geometrical parameters

of the aircraft like the wing sweep angle, the dihedral angle and the relative distance

between the center of mass of the aircraft and the aerodynamic center of the wing, in

estimating the vortex-effect experienced during aerial refueling. Interested readers are
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refered to Refs. [12, 13, 14, 10, 11, 15, 16, 17] for further details of the actual vortex

model and the averaging technique used to estimate the vortex-effect on the receiver.



CHAPTER 4

CONTROL DESIGN

4.1 Control Design for Tanker

In an aerial refueling operation, the tanker aircraft flies in a pre-specified course

while a receiver aircraft refuels and others fly in formation waiting for their turn for

refueling. In general, the tanker aircraft flies at a constant altitude with a constant

speed. The refueling flight course for the tanker aircraft is constituted by steady straight

level flights and steady constant altitude turns such as in a “racetrack” maneuver.

4.1.1 Requirements

While a human pilot will fly the tanker aircraft in racetrack maneuvers for UAVs

to refuel in real-life applications, in the computer simulation environment, a controller

should be designed and implemented for the tanker aircraft to fly in any desired racetrack

maneuver as at least a pilot would fly the aircraft. With the controller implemented in the

simulation environment, the tanker aircraft should fly at any commanded altitude and

with any commanded speed provided they are feasible for the tanker aircraft. Further,

the tanker aircraft should be able to execute any steady turn as commanded. The steady

turns, in this thesis, are specified by the yaw rate of the aircraft. The tanker aircraft

should track commanded yaw rate changes with small transient and zero steady-state

error. While starting and ending a turn, and during the turn, deviations in altitude

and speed from their respective nominal values should be small and decay to zero at

the steady-state. Overall, the closed-loop performance of the tanker aircraft, in the

25
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simulation environment, should be similar to the flight of a piloted tanker aircraft in an

actual racetrack maneuver.

4.1.2 Control Design Approach

To satisfy all the requirements, a combination of a multi-input-multi-output state-

feedback LQR and integral control technique is employed in designing the altitude and

speed hold, and yaw rate tracking controller. The control variables available for the

tanker aircraft are the three conventional control surfaces and the throttle setting. The

outputs to be controlled are the airspeed, altitude and yaw rate.

A gain scheduling scheme is implemented based on the commanded speed and

yaw rate. The tanker’s equations of motion which are given in the previous section

are linearized at four different steady-state trimmed nominal conditions. Two of the

nominal conditions correspond to tanker flying straight level at constant altitude with

two different airspeeds and the other two correspond to tanker turning with a specifed

turn rate at constant altitude with the same two airspeeds. These four nominal cases are

summarized in Table 4.1.

Table 4.1. Nominal Conditions by Turn rate and Airspeed

Nominal Condition Tanker Yaw Rate Tanker Airspeed

1 ψ̇T,1 VT,1
2 ψ̇T,1 VT,2
3 ψ̇T,2 VT,1
4 ψ̇T,2 VT,2

Specification of the nominal conditions and the solution of the equations of motion

for determining the nominal values of the tanker aircraft states and control variables at

each nominal condition are presented in Appendix A. Note that the nominal conditions
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are parameterized by the tanker yaw rate and speed. Thus, the nominal values of the

states and the control variables are also functions of the two parameters. Once a set of

nominal values for each of the four nominal conditions are determined, the equations of

motion of the tanker are linearized at each nominal condition using the respective set of

nominal values. In Appendix B, the linearization procedure for the tanker aircraft is

summarized and the resultant matrices of the state-space representation are presented.

Appendix E provides the nominal values of the states and control variables in each

nominal conditions.

Followings are the four different sets of linearized equation of motion, in state-space

form, for the tanker.

∆ẋT = AT,i ∆xT + BT,i ∆uT (4.1)

where AT,i ∈ <9×9, BT,i ∈ <9×4, i ∈ {1, 2, 3, 4}, for the four nominal conditions described

in Table 4.1, respectively. See Appendix B for the details of AT and BT and see Appendix

G for the nominal values for AT and BT for the four nominal conditions. The state vector

for the tanker aircraft is

∆xT = [∆VT ∆βT ∆αT ∆pT ∆qT ∆rT ∆θT ∆φT ∆zT ]T (4.2)

The control input vector is

∆uT = [∆δaT ∆δeT ∆δrT ∆ξtT ]T (4.3)

where (δaT , δeT , δrT ) are the control surface deflections of the tanker and ξtT is the throttle

setting for the tanker. In all equations above, ∆ indicates that the corresponding variable

is the deviation from its nominal value. Since the requirements of the controller are to

track commanded speed, altitude and yaw rate, the following output vector of the tanker

aircraft is chosen

y
T

=
[
∆VT ∆zT ∆ψ̇T

]T
(4.4)
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To ensure zero tracking error at steady state condition, the state space equations

are augmented by three integrators for speed error, altitude error and yaw rate error:

ėT = y
T
− y

T,c
(4.5)

where y
T,c

= [∆VT,c ∆zT,c ∆ψ̇T,c]
T is the commanded output vector of the tanker. Thus,

in scalar form

ėVT = ∆VT −∆VT,c

ėzT = ∆zT −∆zT,c (4.6)

ėψ̇T = ∆ψ̇T −∆ψ̇T,c

By including the augmentation states in the state–space equations, the augmented state

equation becomes ∆ẋT

ėT

 =

 AT,i 09×3

CT 03×3


 ∆xT

eT

+

 BT,i

03×4

∆uT −

 09×3

I3×3

 y
T,c

(4.7)

Using LQR design technique, the state feedback gain matrix [KT,xKT,e] is obtained

to minimize the cost function:

J(uT ) =

∞∫
0

{
[ ∆xTT eTT ]QT,i

 ∆xT

eT

+ ∆uTTRT,i ∆u

}
dt (4.8)

where QT,i ∈ <12×12 are symmetric positive semidefinite, RT,i ∈ <4×4 are symmetric

positive definite and NT,i ∈ <12×4 are symmetric positive definite. Note that matrices

QT,i, RT,i and NT,i can be selected separately for each nominal condition. Thus, the

state feedback control laws with the integral control are

∆uT,i = −KxT,i
∆xT −KeT,i

eT (4.9)

where i ∈ {1, 2, 3, 4}, corresponding to the four nominal conditions. In the implementa-

tion of these controllers, a ”scheduling” scheme should be employed, based on scheduling
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parameters, ψ̇T and VT to determine effective values of the gains at a given flight condi-

tion. To formulate the overall non-linear controller based on the linear designs at the four

nominal conditions, Lagrange interpolation scheme is utilized. Thus, the gain scheduling

control law is

∆u =

(
ψ̇T,c − ψ̇T,2

)
(VT,c − VT,2)(

ψ̇T,1 − ψ̇T,2
)

(VT,1 − VT,2)
u1 +

(
ψ̇T,c − ψ̇T,2

)
(VT,c − VT,1)(

ψ̇T,1 − ψ̇T,2
)

(VT,2 − VT,1)
u2

+

(
ψ̇T,c − ψ̇T,1

)
(VT,c − VT,2)(

ψ̇T,2 − ψ̇T,1
)

(VT,1 − VT,2)
u3 +

(
ψ̇T,c − ψ̇T,1

)
(VT,c − VT,1)(

ψ̇T,2 − ψ̇T,1
)

(VT,2 − VT,1)
u4 (4.10)

Note that the control law assumes the availability of full state measurement or

estimation for feedback. The control variables available for the tanker aircraft are the

three conventional control surfaces and the throttle setting. The outputs to be controlled

are the airspeed, altitude and yaw rate.

4.2 Control Design for Receiver

For successful aerial refueling operation, the receiver should approach the tanker,

stay at the refueling contact position during the actual fuel transfer and fly away once the

refueling is completed, all in a safe manner despite various sources of disturbance such

as trailing wake vortex, fuel transfer and motion of the tanker. These three phases of

aerial refueling can easily be addressed in a single framework by utilizing the equations of

motion of the receiver, derived relative to the tanker. Since the motion of the receiver is

defined in the tanker’s body frame, the reference trajectory for the receiver can easily be

defined relative to the tanker. Obviously, during the phase in which the receiver should

stay at the refueling contact position (station-keeping phase), the reference trajectory

for the receiver becomes a point in the body-frame of the tanker. Once a safe reference

trajectory that consists of the approach from the observation position to the contact
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position, the contact position and the fly-away are determined to ensure the overall

safety of the receiver and the tanker, a trajectory-tracking controller is needed to make

the receiver follow the reference trajectory in a safe and timely manner. Therefore, it

is very important to have a controller that can fly the receiver close to the reference

trajectories.

4.2.1 Requirements

The primary requirement of the control design is the tracking of the generated

trajectories, with zero steady-state error in the x, y, z coordinates in the tanker’s body

frame, under the disturbance of trailing vortex, time variation of the inertia properties of

the receiver and the possible steady maneuvers of the tanker’s body frame. Meanwhile,

the control inputs generated by the controller should not cause significant saturation on

the magnitudes and rates of the actuators. Moreover, during the transient, overshoot

or undershoot on trajectory response should be minimized to ensure the safety of the

refueling. At the same time, the response of the closed loop system should be fast

enough so that the approach and fly–away maneuvers are completed as planned and the

high-wind regions of the trailing vortex field are exited in a timely fashion. Additionally,

during the approach, fly–away and station-keeping maneuvers, the angle-of-attack and

the airspeed should not be close to their corresponding stall values. In this regard, very

big pitch angle should not be commanded. Finally, to ensure the safety of the aircraft, the

bank angle should be small relative to its nominal value. As stated earlier, the controller

should perform satisfactorily in all phases of the ”racetrack” maneuver, i.e. while the

tanker is in a straight wing–level flight, in a steady turn, in transition from straight flight

to turn and in transition back to straight flight.



31

e
 o ∆y

 C u y

 0

e

x
 0

Tanker ManeuverVortex

∆ x

u

x1
s

Integrator
Kx

CKe A/C

Figure 4.1. State feedback and integral control structure.

4.2.2 Control Design Approach

To satisfy all the requirements, similar to the tanker’s case, a combination of a

multi-input-multi-output state-feedback LQR and integral control technique is employed

in designing the position tracking controller. Moreover, a gain scheduling scheme is

implemented based on the speed and turn rate. The equations of motion given in Section

3 are linearized at four different steady-state trimmed nominal conditions. Two of the

nominal conditions correspond to tanker flying straight level at constant altitude with

two different airspeeds and the other two correspond to tanker turning with a specified

turn rate at constant altitude with the same two airspeeds. These four nominal cases are

described earlier in the tanker control design section.

To linearize the equations of motion of the receiver, the nominal values of its

states should be determined at the four nominal conditions. However, first note that

the translational and rotational dynamics equations of the receiver include Euler angles

and angular velocity components of the tanker. Thus, the first step is to determine

the nominal values of the tanker aircraft at the four nominal conditions. Recall that

this task is carried out in Appendix A. Then, the nominal values of the receiver are

determined at the four nominal conditions. Details of this procedure is given in Appendix
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C. In Appendix D, the linearization procedure and the resultant state-space matrices

are presented. This leads to four different sets of linearized equations of motion:

∆ẋ = Ai ∆x+ Bi ∆u+ Hi ∆w (4.11)

where Ai ∈ <12×12, Bi ∈ <12×6, Hi ∈ <12×6, i ∈ {1, 2, 3, 4}, for the four nominal

conditions described in Table 4.1, respectively. Appendix F provides the nominal values

of the states and control variables in each nominal conditions. See Appendix H for the

numerical values for A,B for four nominal conditions. The state vector is

∆x = [∆V ∆β ∆α ∆p ∆q ∆r ∆ψ ∆θ ∆φ ∆x ∆y ∆z]T (4.12)

The control input vector is

∆u = [∆δa ∆δe ∆δr ∆ξ ∆δy ∆δz]
T (4.13)

The disturbance vector due to the motion of the tanker is

∆w = [∆VxT ∆VyT ∆VzT ∆pT ∆qT ∆rT ∆ṗT ∆q̇T ∆ṙT ∆ψT ∆θT ∆φT ]T (4.14)

In all equations above, ∆ indicates that the corresponding variable is the perturbation

from its nominal value. Note that, since the nonlinear equations of motion are derived

in terms of the states of the receiver relative to the tanker, in the linearized equations,

the effect of the motion of the tanker on the relative motion is clearly identified by Hi

matrices. However, Hi matrices are not utilized in the control design presented in this

paper and this is left as a topic for future work.

Since the position tracking controller is to be designed for the receiver relative to

the tanker, the outputs to be tracked are (∆x, ∆y,∆z). Thus, output vector is chosen

to be

y = [∆x ∆y ∆z]T (4.15)
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To ensure zero tracking error at steady state condition, the state space equations

are augmented by three integrators, one for each position error:

ė = y − yc (4.16)

where yc = [∆xc ∆yc ∆zc]
T is the commanded trajectory for the receiver in the body

frame of the tanker for approaching the refueling contact position. Thus, in scalar form

ėx = ∆x−∆xc

ėy = ∆y −∆yc (4.17)

ėz = ∆z −∆zc

By including the augmentation states in the state–space equations, the augmented state

equation becomes ∆ẋ

ė

 =

 Ai 012×3

C 03×3


 ∆x

e

+

 Bi

03×6

∆u+

 Hi

03×6

∆w −

 012×3

I3×3

 yc
(4.18)

Using LQR design technique, the state feedback gain matrix [Kx Ke] is obtained

to minimize the cost function:

J(u) =

∞∫
0

{
[ ∆xT eT ]Qi

 ∆x

e

+ ∆uTRi ∆u

}
dt (4.19)

where Qi ∈ <15×15 are symmetric positive semidefinite and Ri ∈ <6×6 are symmetric

positive definite. Note that matrices Qi and Ri can be selected separately for each

nominal condition. Thus, the state feedback control laws with the integral control are

∆ui = −Kxi
∆x−Kei

e (4.20)

where i ∈ {1, 2, 3, 4}, corresponding to the four nominal conditions. In the implementa-

tion of these controllers, a ”scheduling” scheme should be employed, based on a specified



34

set of scheduling parameters, ψ̇T and VT to determine effective values of the gains at a

given flight condition. To formulate the overall non-linear controller based on the linear

designs at the four nominal conditions, Lagrange interpolation scheme is utilized. Thus,

the gain scheduling control law is

∆u =

(
ψ̇T,c − ψ̇T,2

)
(VT,c − VT,2)(

ψ̇T,1 − ψ̇T,2
)

(VT,1 − VT,2)
u1 +

(
ψ̇T,c − ψ̇T,2

)
(VT,c − VT,1)(

ψ̇T,1 − ψ̇T,2
)

(VT,2 − VT,1)
u2

+

(
ψ̇T,c − ψ̇T,1

)
(VT,c − VT,2)(

ψ̇T,2 − ψ̇T,1
)

(VT,1 − VT,2)
u3 +

(
ψ̇T,c − ψ̇T,1

)
(VT,c − VT,1)(

ψ̇T,2 − ψ̇T,1
)

(VT,2 − VT,1)
u4 (4.21)

Note that the control law assumes the availability of full state measurement or

estimation for feedback. As shown in Eq. (4.12), the states of the receiver consist of

airspeed, side slip angle and angle-of-attack of the receiver as well as the angular ve-

locity, orientation and position of the receiver relative to the tanker. Further, for the

implementation of the gain scheduling scheme in Eq. (4.21), commanded speed and yaw

rate of the tanker should be communicated to the receiver. While not used in this paper,

if one wants to utilize the disturbance matrix in the control law, the disturbance states

due to the motion of the tanker will need to be communicated to the receiver as well. As

shown in Eq. (4.14), the disturbance vector consists of translational and angular velocity,

angular acceleration and the orientation of the tanker relative to the inertial frame.



CHAPTER 5

SIMULATION RESULTS

5.1 Nomimal Conditions

The gain scheduling controller is designed based on four nominal conditions, which

are: (1) ψ̇T = 0 and VT = 180 m/s, (2) ψ̇T = 0 and VT = 200 m/s, (3) ψ̇T = 1.7 deg/s

and VT = 180 m/s, (4) ψ̇T = 1.7 deg/s and VT = 200 m/s. The linear LQR/Integral

controllers are designed and implemented in such a way that various levels of control

input allocations can be tested. The control variable allocation is achieved by varying the

respective elements of the control weighting matrix R of the cost function in Eq. (4.19).

Three different allocation cases simulated and compared are:

Case–1 : A combination of control effectors and thrust vectoring is used. R is chosen

to be a diagonal matrix with the following elements

R(i, i) = (10, 10, 100, 1000, 500, 100) (5.1)

Case–2 : Only control effectors are used without any thrust vectoring. R is chosen to

be a diagonal matrix with the following elements

R(i, i) = (5, 1, 10, 700, 1000000, 1000000) (5.2)

Case–3 : Pitch Flap and Clamshell are fixed at their nominal values. Elevon and thrust

vectoring are the only control variables used. R is chosen to be a diagonal matrix

with the following elements

R(i, i) = (10, 10000000, 10000000, 1000, 50, 100) (5.3)

In all the three cases, Q is chosen to be a diagonal matrix with the following elements

Q(i, i) = 0.1× (1, 1, 1, 1, 1, 1, 1, 1, 100, 1, 0.1, 1, 1, 0.06, 1) (5.4)

35
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Figure 5.1. Target trajectories and altitude histories during turns with three different
yaw rates.

5.2 Simulation Results

Since the performance of an aerial refueling operation depends on the motions of

both the tanker and the receiver, the full 6-DOF nonlinear dynamics of both tanker and

receiver are simulated in an integrated environment. The refueling is performed at the

nominal altitude of 7010 meters while the tanker is flying at the speed of 200 m/sec. The

simulation starts when the tanker is in a straight-level flight and stays in this condition

until the receiver aircraft moves from the observation position to the refueling contact

position. While the receiver is at this position, the tanker starts turning with a specified

yaw rate until the yaw angle change is 180 degrees to complete the U-turn portion of

the refueling maneuver. During this time, the receiver should be able to maintain the

proximity of the refueling contact position without unacceptable deviation. Figure 5.1

shows three cases of tanker turn with different turning rates. In the rest of the paper,
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Figure 5.2. Time histories of yaw rate and yaw angle during three different turns.

these cases will be referred to as TANKER-CASE-1, TANKER-CASE-2 and TANKER-

CASE-3. While the first plot of Figure 5.1 shows the xy-projections of the entire target

trajectories, the second plot shows the altitude histories only during the turns. Note

from the second plot of Figure 5.1 that tanker altitude slightly deviates from the nominal

altitude during the turns. Even if the deviation is very small (less than 1 meter) for the

tanker, as will be shown later, it might be very significant for the performance of the

refueling. The three turns are generated with different turn rates as shown in Figure 5.2.

The tanker model has its own gain scheduling controller to track commanded altitude,

speed and yaw rate. The commanded yaw rate for TANKER-CASE-1 is generated from

the 1.7 deg/sec step response of fourth order linear filter with time constants of 10, 10, 10

and 1 seconds. That for TANKER-CASE-2 is the 2.2 deg/sec step response of the same

filter. TANKER-CASE-3 has the 1.7 deg/sec step response of a second order linear filter

with two time constants of 10 seconds. Note that the yaw rates are scheduled so as for

the yaw angle to end up to be 180 degrees. For the receiver’s gain scheduling controller,

the same step signals for the yaw rate, after passing through a first order filter with time
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constant of 10 sec, are used for scheduling purposes in the interpolation scheme shown

as ψ̇T,C in Eq. (4.21).

Figure 5.3 shows the variation of airspeed, angle-of-attack and side-slip-angle of the

tanker during the turns. This variations are important for the receiver aircraft because

they affect the wind field in the wake of the tanker, particularly at the refueling position

and, in turn, change the wind components and gradients that the receiver aircraft is

exposed to.
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Figure 5.3. Airspeed, angle-of-attack and side-slip angle of tanker during the three turn
cases.

Figure 5.4 shows the pitch and bank angles of the tanker. These variations are also

important for the receiver aircraft because they directly change the relative orientation

and thus cause the refueling position to move.

At the start of the simulation, the receiver aircraft is at the observation position,

i.e., laterally offset from the tanker by 60.96 meters, longitudinally 15.24 meters behind

the refueling contact position and vertically at the same level as the contact position.
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Figure 5.4. Pitch and bank angles of tanker during the turns.

The refueling contact position is 25.33 meters directly behind and 6.46 meters below the

c.g. of the tanker without any lateral offset. In other words, the receiver is initially at

(-40.56, 60.96, 6.46) in the body-frame of the tanker and should go to and stay at (-25.33,

0, 6.46) for refueling. The receiver should move from the initial position to the refueling

contact position by first maneuvering laterally right behind the tanker and then moving

forward to the contact position without any altitude change (see Figs 5.5 and 5.6).
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Figure 5.5. Trajectory of the aircraft relative to the tanker in xy-plane.
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Figure 5.6. Commanded and actual x, y and z positions of the receiver during the
approach maneuver.

Figure 5.5 shows the x- and y- components of both commanded and actual trajec-

tory of the receiver in the body frame of the tanker in case-1. Fig 5.6 illustrates the x- , y-

and z- components of the trajectory in time domain. As will be shown more clearly, when

the simulation starts, the vortex induced wind is not on and at 10 seconds, the wind is

turned on and gradually increased to the normal level. This is done to ensure the start

of the simulation without any numerical problem and also to see the effect of the vortex

in the initial flight configuration. As seen in Fig 5.6, the lateral maneuver is initiated

at around 50 seconds and lasts about a minute until the receiver is directly behind the

tanker at 110 seconds. Then at 125 seconds, the receiver starts moving forward towards

and reaches the refueling contact position in about 50 seconds. The trajectories of the

other two control allocation cases are not presented because they all are similar to each

other. Both figures show that the commanded trajectories are closely tracked during the

maneuver. Note that positive z-direction in down. Thus, the two spikes are in fact due
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to slight altitude lost first when the lateral maneuver starts and second when the forward

motion is initiated.
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Figure 5.7. Deflection of the three control effectors in the three cases during the whole
simulation.

Figure 5.7, 5.8 and 5.9 show the initial levels of the control variables, how they vary

during the approach maneuver and when the tanker turns in all three control-allocation

cases. These figures only shows TANKER-CASE-1 because the plots are similar in the

other tanker-turn cases. Figure 5.7 illustrates the deflections of the three control effectors,

elevon, pitch flap and clamshell. Note that the pitch flap and clamshell stay almost

constant in case 3 because they are fixed at their nominal values. In all three cases,

very small deflections and deflection rates (much smaller than their respective saturation

levels) in all the three effectors are used to move the receiver to the refueling position

and keep it there during the turns. Both elevon and clamshell, as expected, are mainly

used during the lateral maneuver and stays almost constant during the forward motion

in the approach maneuver. While the control effectors are used during the turn, their
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Figure 5.8. Thrust vectoring angle variation in the three cases during the whole simula-
tion.

deflections are smaller compared to the deflections in the time of the approach maneuver.

Note that elevon and clamshell deflect in the negative direction in case-2 when no thrust

vectoring is used while elevon deflects positive in both cases-1 and -3 and clamshell

deflects positive in case-1 during the turn. This implies the effect of thrust vectoring

on the use of the control effectors. Figure 5.8 shows the rotation of the thrust vector

in terms of its angles with the xy- and xz- planes of the body-frame of the receiver.

Note that rotation of the thrust vector from xy-plane induces pitching moment while

generating vertical force. Similarly, rotation of the thrust vector from xz-plane induces

yawing moment while generating lateral force. Also note that both angles stay zero

in case-2 since it represents no-thrust-vectoring configuration. As expected, the thrust

vectoring is used the most in case-3 where the pitch flap and clamshell are fixed. The

rotation of the thrust vector is small in case-1 because it is used in combination with the

control surfaces.
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Figure 5.9. Variation in throttle level during the whole simulation in the three cases.

Figure 5.9 illustrates the level of throttle in the three cases. In all cases, the

variation of throttle setting is very similar. Note the increase in the throttle setting (60

sec-100 sec) during the lateral maneuver to get right behind the tanker. This is because

when the receiver aircraft is behind the tanker, it is subject to strong downwash, which

results in higher required thrust. Note also that as the receiver approaches the refueling

position, the level of throttle does not change significantly, except during the time of

transient. This is due to the fact that the longitudinal variation of the vortex-induced

wind is very small in this range. The slight difference in the level of throttle between the

cases near 200 sec when the tanker is still in straight-level flight before it starts turning

is due to the different thrust vectoring angles and different orientation of the aircraft at

the refueling position. Variations of throttle setting in the three tanker-turn cases during

the turn of the tanker (after 200 sec) are similar and the levels of throttle setting before

the turn starts and after the turn ends are the same, as expected.

Figure 5.10 shows how the orientation of the receiver relative to the tanker changes

during the approach maneuvers and the tanker turn in the three cases in terms of Euler
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Figure 5.10. Orientation of the aircraft relative to the tanker in the three cases during
the whole simulation.

angles. Note that both during the approach maneuver and tanker turn, all the angles are

kept small, i.e. the orientation of the receiver is close to the orientation of the tanker.

Comparison of yaw response in case-2 (no thrust vectoring) with the other two cases in

which thrust vectoring is utilized indicates the positive effect of thrust vectoring in yaw

motion during both lateral motion and tanker turn.

The vortex induced wind components and gradients are shown in Fig. 5.11 in

control allocation case-1 and TANKER-CASE-1. In the other cases, the plots are similar.

First note that at 10 seconds, the vortex is “turned on” and the aircraft is exposed to

small upwash and sidewash and a slight “rolling” gradient. During the lateral maneuvers,

as the receiver gets laterally closer to the tanker (starting at 50 sec), the magnitudes of

both effective wind components and gradients increase. At about 70 seconds when the

lateral distance to the tanker is about 60 percent of the tanker’s wingspan, the highest

upwash (negative Wz) is experienced. As the receiver gets closer to the tanker when the

lateral distance to the tanker is about 45 percent of the tanker’s wingspan, the receiver
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Figure 5.11. The wind components and gradients the receiver is exposed to in case-1
during the whole simulation.

experiences the greatest rolling vortex (P) and the upwash turns into downwash (positive

Wz) while the sidewash (Wy) increases dramatically. This is manifested in the rolling

oscillation as seen in Fig. 5.10 and altitude drop in Fig. 5.6. During this transition, a

yawing vortex (R) gradient is experienced while a pitching vortex (Q) gradient develops.

As the receiver gets even closer to a position right behind the tanker, the rolling vortex

gradient and sidewash disappear and downwash increases to its highest level. When the

receiver is right behind the tanker, two main vortex effects remain: strong downwash and

pitching vortex. As stated earlier, when the receiver approaches the tanker from behind,

the wind components and the gradients remain almost constant since wind variation

is very small in this range of the longitudinal relative positions. Also note the small

variation in the wind components and gradients during the tanker turn. This is partly

because the receiver relative position and orientation experience small deviation and

partly because the tanker’s airspeed, angle-of-attack and sideslip angle changes while it

turns. To quantify the effect of the trailing wake-vortex on the trajectory tracking
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Figure 5.12. Comparision of the trajectory tracking errors in the presence and absence
of the trailing wake-vortex.

performance, each control-allocation case is simulated with the vortex effect modeling

turned off in addition to normal simulation in which the trailing wake-vortex is active

as it should be. The simulations of all three control-allocation cases result in similar

performance degradation due to the presence of the wake vortex. Thus, only case-2 (no

thrust vectoring) is presented in Fig. 5.12, which shows the trajectory tracking error in

three components with and without the wind effect. As seen in Fig. 5.12, the presence

of the wake-vortex degrades the trailing performance during the time when the receiver

moves laterally from the observation position to a point right behind the tanker. This

result is consistent with the observation in Fig. 5.11, which shows, in summary, that

the receiver experiences the highest variations in wind components and gradients during

this time. During the time when the receiver moves forward to the contact position, the

effect of the wake-vortex is minimal even if the aircraft is exposed to almost constant

high level of downwash and pitching vortex.
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Figure 5.13. Deviation of the receiver position from the refueling position while the
tanker turns in TANKER-CASE-1.

To be able to maintain the refueling contact while the target turns, the deviation

from the refueling position should be minimal. At the same time, the relative orientation

should stay small. To analyze the performance of the controllers in terms of these im-

portant requirements, phase portraits of position and orientation are presented as shown

in Figs. 5.13 to 5.18. Note that the phase portraits are plotted based on the data only

during the tanker turns (i.e. after 200 sec). Fig. 5.13 shows the position deviation from

the refueling contact position while the tanker turns in TANKER-CASE-1. Note that

y-deviation stays within 0.8 and -0.6 meters and x-deviation is between -0.6 and 0.5

meters in all three control allocation cases. Regarding z-deviation, case-3 is worse than

the others. This is apparently due to the fact that the pitch flap is stuck and thrust

vectoring is used instead to generate pitching moment. However, overall, all three cases

result in small deviation in all three directions.

Figure 5.14 shows the phase portraits of Euler angles to illustrate the deviation of

the receiver orientation from the tanker orientation. In all three cases, the receiver stays
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Figure 5.14. Deviation in relative orientation while the tanker turns in TANKER-CASE-
1.

close to the tanker in terms of orientation. In the pitch angle, variation is about the

same for all cases while cases-2 shows larger deviation in yaw and case-3 yields larger

deviation in bank.

Figure 5.15 and 5.16 present the same information as Figs. 5.13 and 5.14 but in

TANKER-CASE-2 where the tanker turns based on a larger yaw rate command. Fig.

5.15 shows similar trend as in the previous case in the sense that deviations in x and y are

almost the same in all three cases while case-3 is worse in z-deviation. More importantly,

amount of deviations in y- and z- directions are significantly increased while x-deviation

is slightly changed. These results are as expected because, as shown in both nonlinear

and linearized equations, the motion of the tanker acts as a source of disturbance and

the magnitude of disturbance increases as the tanker maneuvers more sharply.

Deviation in orientation is also worsened, as compared to the previous tanker-turn

case, as shown in Fig. 5.16, especially in bank angle. Figs. 5.17 and 5.18 show the same

degradation in both position and orientation deviation in TANKER-CASE-3. Recall,
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Figure 5.15. Deviation of the receiver position from the refueling position while the
tanker turns in TANKER-CASE-2.

however, that while the commanded step change is still 1.7 deg/sec, the rate of change

in yaw-rate is higher as a lower order filter is used.

Figures 5.19 to 5.24 are presented to show the comparison between the gain schedul-

ing controller and the linear controller of the nominal condition 2 as summarized in Table

4.1. Further, these figures are used to show the effect of vortex in the performance of

the controllers while the tanker turns. In all these figures, the tanker turns according

to TANKER-CASE-2 as this is the worst case in terms of the receiver position and

orientation deviation.

Figures 5.19 and 5.20 are for control allocation case-1, i.e. combination of thrust

vectoring and control effectors are used. Figs. 5.21 and 5.22 are for control allocation

case-2, i.e. no thrust vectoring is available. Figs. 5.23 and 5.24 are for control allocation

case-3, namely pitch flap and clamshell are fixed. Note that case-1, case-2 and case-3,

specified in the legends of each figure, imply (1) gain scheduling controller, (2) linear
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Figure 5.16. Deviation in relative orientation while the tanker turns in TANKER-CASE-
2.

controller and (3) gain scheduling controller while the trailing wake vortex is “turned

off”.

The main observations commonly seen in these figures are as follows. The gain

scheduling controller has small improvement over the linear controller. Particularly,

in z-direction, the gain scheduling controller results in smaller deviations in all three

control-allocation cases (Figs. 5.19, 5.21 and 5.23). Also, the yaw angle deviations in

control-allocation cases 2 and 3 (Figs. 5.22 and 5.24) are smaller with gain scheduling.

However, note that x-deviation in all three control-allocation cases (Figs. 5.19, 5.21

and 5.23) are larger with gain scheduling in the positive direction while little better in

negative direction. In the y-deviation, there is no obvious benefit of gain scheduling. In

terms of pitch and bank deviations (Figs. 5.20, 5.22 and 5.24), gain scheduling and linear

controllers result in very similar performance.
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Figure 5.17. Deviation of the receiver position from the refueling position while the
tanker turns in TANKER-CASE-3.

When case-1 and case-3 in all figures are compared, i.e., gain scheduling controller

used with vortex and without vortex, degradation of performance due to the trailing

wake vortex can be clearly seen. In all pitch angle and yaw angle graphs, and pitch angle

and bank angle graphs, case 1 and case 3 has same pattern. However case 1 is shifted up

compared with case 3 because the wind effect pushes the pitch angle up.
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Figure 5.18. Deviation in relative orientation while tanker turns in TANKER-CASE-3.
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Figure 5.19. Deviation of the receiver position from the refueling position in TANKER-
CASE-2.
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Figure 5.20. Deviation in relative orientation in TANKER-CASE-2.
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Figure 5.21. Deviation of the receiver position from the refueling position in TANKER-
CASE-2.
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Figure 5.22. Deviation in relative orientation in TANKER-CASE-2.
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Figure 5.23. Deviation of the receiver position from the refueling position in TANKER-
CASE-2.
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Figure 5.24. Deviation in relative orientation in TANKER-CASE-2.



CHAPTER 6

CONCLUSIONS AND RECOMMENDATION FOR FUTURE WORK

A trajectory tracking controller is designed to control the position and orientation

of a receiver aircraft in a boom-receptacle aerial refueling operation. The controller

can be used in all three phases of refueling operation by simply issuing an appropriate

commanded trajectory: to move the receiver aircraft to the contact position; to keep

it there during the fuel transfer; and then to move it away; while the tanker flies in

a race-track maneuver. An LQR MIMO state-feedback and integral control method

is employed to track the three components of the commanded position of the receiver

relative to the tanker in the tanker’s body frame. The gains of the controller are scheduled

based on the turn rate and speed of the tanker. The tanker-receiver pair modeled and

simulated are KC-135R and a tailless fighter aircraft with innovative control effectors

(ICE) and thrust vectoring capability. Three versions of the controller are designed and

simulated to investigate different control allocation schemes: (i) control effectors and

thrust vectoring are simultaneously used, (ii) only control effectors are used and (iii)

pitch flap and clamshell are stuck at their nominal values; elevon and thrust vectoring

are used.

The performance of the controller is analyzed in an integrated simulation environ-

ment with 6-DOF nonlinear receiver and tanker dynamics including the aerodynamic

coupling due to the tanker’s trailing vortex. Since full 6-DOF nonlinear model of the

tanker with its own controller is used in the simulation, the effect of the tanker maneu-

vers on the relative motion of the receiver is clearly shown. The maneuvering tanker

influences the relative motion via two mechanisms: (i) As formulated in the nonlinear

56
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and also the linearized equations, the tanker motion acts as a direct disturbance on the

relative motion. For example, when tanker banks, the contact position laterally moves.

(ii) The maneuvers of the tanker changes the trailing vortex field that the receiver air-

craft is exposed to. For example, when the tanker turns, the velocity vector of the tanker

rotates within its body frame, which, in turn, changes the induced wind at the contact

position. This means that the receiver aircraft will be exposed to different induced wind

when the tanker flies in straight-level than that when the tanker turns even if the receiver

can maintain its relative position and orientation.

The equations of motion of the receiver derived previously and used in this study,

formulate the motion of the receiver aircraft in terms of position and orientation states

that are relative to the tanker aircraft. The linearization of these equations results in the

clear manifestation of the tanker motion as disturbance on the relative motion. While not

utilized in this paper, this formulation has the potential of improving the station-keeping

performance during the tanker turns and will be the subject of future work.

The performance of the three control-allocation schemes are studied in three dif-

ferent race-track maneuvers of the tanker. These maneuvers differ in terms of the yaw

rates of the tanker during the turns. In straight-level phase, all three maneuvers are

effectively the same. While the tanker flies in straight-level, the controllers move the

receiver aircraft from the observation position to the refueling contact position through a

commanded trajectory. Simulation results show that all three control-allocation schemes

can effectively follow the commanded trajectory without excessive control effort. Simu-

lation results show that when thrust vectoring is not used, the control effector deflections

are larger as one would expect. Similarly, when control effectors are stuck, the thrust

vectoring is needed more to accomplish the same task. Simulation results also show that

by adjusting the weighting matrices, the LQR method can easily provide an effective

control allocation between the control effectors and thrust vectoring. When the receiver



58

moves behind the tanker through the commanded trajectory, the simulation can show

how the induced wind components and the gradients vary depending on the position

and orientation of the receiver relative to the tanker. Even if the controller are designed

based on the linearized equations without the wind terms and thus do not have access

to wind information, simulations have shown that all three control allocation can safely

follow the commanded trajectory through the wind field.

In the simulations, the tanker starts the turn phase of the race-track maneuvers

after the receiver moves to and stays at the contact position. The performances of

the three control-allocation schemes in three cases of tanker turns are analyzed based

on the phase-portraits of position deviations from the contact position and orientation

deviations from the tanker orientation while the tanker starts and completes a full U-

turn, and goes back to the straight-level flight. Phase-portrait plots demonstrate that

the station-keeping performance while the tanker turns is affected by the rate of turn

much more than by the control-allocation scheme used. The tanker turn is quantified by

yaw rate of the tanker. The simulation results show that the station-keeping performance

degrades more as the tanker-turn sharper. Particularly, variation in yaw-rate rather than

the yaw-rate itself (i.e., how fast the tanker goes in and out of a turn) has more influence

on the deterioration of the performance, i.e. more deviation in relative position and

orientation. A comparative analysis is carried out to see whether the gain scheduling

brings any benefit to the performance using the phase-portraits. Instead of scheduling

the gains, the gains are kept at their values computed based on the linearized model

around the straight-level flight. Comparison of the simulation results reveals that the

improvement due to gain scheduling is small. Given the fact that commanded speed

and yaw rate for the tanker should be transmitted to the receiver to implement the gain

scheduling, linear controller might be considered more favorable. Finally, the effect of

wake vortex is clearly shown by comparing simulation results with those generated by
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turning off the wind. Both during the maneuver of the receiver to move to the contact

position and during the tanker turn, the presence of induced wind and wind gradient

increases the deviations of position from the commanded trajectory. As future work, the

stochastic turbulence effect on the refueling performance will be studied.
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NOMINAL CONDITION ANALYSIS FOR TANKER AIRCRAFT
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Since the linearization is to be carried out for both steady straight-level flight and

turn, the nominal condition analysis is carried out in such a way that both conditions

are analyzed by the same formulation. The trimmed steady-state nominal condition is

parameterized by VT0 and ψ̇T0. During the whole racetrack maneuver, the desired side slip

angle is 0, and thus βT0 = 0. Airspeed and angle-of-attack are constants, i.e. VT = VT0

and αT = αT0. Further, since the altitude during the whole racetrack maneuver is desired

to be constant, żT0 = 0. Note also that for a given steady-state nominal flight condition,

regardless whether it is a straight-level flight or turn, angular velocity components are

also constants, i.e. pT = pT0, qT = qT0 and rT = rT0. Additionally, pitch and roll angles

are constants, i.e. θT = θT0 and φT = φT0, and ψ̇T = ψ̇T0. Then the rotational kinematics

equations at any nominal conditions yield

pT0 = − sin θT0 ψ̇T0 (A.1)

qT0 = sinφT0 cos θT0 ψ̇T0 (A.2)

rT0 = cosφT0 cos θT0 ψ̇T0 (A.3)

Then, the translational dynamics equations in Eqs. (2.9) to (2.11) and the constitutive

equations in Eqs. (2.12) to (2.19) at a steady-state trimmed flight condition yield.

0 = g
(

cosφT0 cos θT0 sinαT0 − cosαT0 cos θT0

)
+

1

mT

[
− 1

2
ρV 2

T0ST (CD0

+CDααT0 + CDα2α2
T0 + CDδeδeT0

) + TT0 cos(αT0 + δT )
]

(A.4)

0 = cosφT0 cos θT0 sinαT0ψ̇T0 + sin θT0 sinαT0ψ̇T0 −
g

VT0

cos θT0 sinφT0

+
1

2mT

ρVT0ST (CS0 + CSδrδrT0
+ CSδaδaT0

) (A.5)

0 = sinφT0 cos θT0ψ̇T0 +
g

VT0

(cosαT0 cosφT0 cos θT0 + sinαT0 sin θT0)

− 1

2mT

ρVT0ST (CL0 + CLααT0 + CLα2(αT0 − α2
ref )

+CLq
c

2VT0

sinφT0 cos θT0φ̇T0 + CLδeδeT0
)− 1

mTVT0

TT0 sin(αT0 + δT ) (A.6)
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The rotational dynamics equations in Eqs. (2.27) to (2.29) and the contitutive equations

in Eqs. (2.30) to (2.35) yield

0 =
1

IxxIzz − I2
xz

[
− Ixz(Ixx − Iyy + Izz) sin θT0 cos θT0 sinφT0ψ̇

2
T0

+(IyyIzz − I2
zz − I2

xz) sinφT0 cosφT0 cos θ2
T0ψ̇

2
T0

+
1

2
ρV 2

T0ST bT Izz(CL0 + CLδaδaT0
+ CLδrδrT0

− CLp
bT

2VT0

sin θT0ψ̇T0

+CLr
bT

2VT0

cosφT0 cos θT0ψ̇T0)

+
1

2
ρV 2

T0ST bT Ixz(CN0 + CN δaδaT0
+ CN δrδrT0

− CNp
bT

2VT0

sin θT0ψ̇T0

+CNr
bT

2VT0

cosφT0 cos θT0ψ̇T0)
]

(A.7)

0 =
1

Iyy

[
(Ixx − Izz) sin θT0 cos θT0 cosφT0ψ̇

2
T0 + Ixz cos θ2

T0ψ̇
2
T0(cosφ2

T0 − 1)

+
1

2
ρV 2

T0S
2
T0c(CM0 + CMααT0 + CMδeδeT0

+ CMq

c

2VT0

sinφT0 cos θT0ψ̇T0)

+∆zTTT0 cos δT + ∆xTTT0 sin δT
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(A.8)
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+CLr
bT

2VT0

cosφT0 cos θT0ψ̇T0)
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bT

2VT0

cosφT0 cos θT0ψ̇T0)
]

(A.9)

Additionally, since altitude is constant, żT equation in Eq. (2.4) at a steady-state

trimmed flight condition yields

0 = sinαT0 cosφT0 cos θT0 − cosαT0 sin θT0 (A.10)

Note that in these seven algebraic equations, there are seven unknowns: αT0, θT0, φT0,

TT0, δaT0
, δeT0

, δrT0
. By solving these seven equations, the nominal values of the unknowns
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are completed. Further, using Eqs. (A.1), (A.2), and (A.3), the nominal values of the

angular velocity components, pT0, qT0 and rT0, are calculated.

Note that this nominal condition analysis is parameterized by ψ̇T0. That is, if a

straight-level flight is to be analyzed, ψ̇T0 is set to 0. If a specific turn is to be analyzed,

then ψ̇T0 is set to the desired turn rate.



APPENDIX B

TANKER’S MATRICES IN THE STATE-SPACE EQUATIONS
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Linearization of the tanker’s equations of motion is carried out by two steps. The

equations of motion in Eqs. (2.9) to (2.11) (translational dynamics), (2.27) to (2.29)

(rotational dynamics), Eqs. (2.22) and (2.23) (φ̇T and θ̇T equations in rotational kine-

matics) and Eq. (2.4) (żT equation) can be written in compact form as

ẋ = f(x, v) (B.1)

where

x = [VT βT αT pT qT rT θT φT zT ]T

v = [DT ST LT LT MT NT TT ]T

Note that the constitutive equations in Eqs. (2.12) to (2.19), (2.30) to (2.35), and

(2.36) can also be written in compact form as

v = g(x, u) (B.2)

where u = [δaT δeT δrT ξT ]T . Note that in this formulation the first order engine dynamics

is not included.

Instead of carrying out the linearization after substituting v from (B.2) into (B.1),

Eqs. (B.1) and (B.2) are linearized separately. This significantly simplifies the lineariza-

tion procedure. Further, if the constitutive equations need to be modified for some reason,

there would be no need to carry out the whole linearization; only new set of constitutive

equations would need to be linearized. The linearization of Eqs. (B.1) and (B.2) yields

respectively.

∆ẋ = A ∆x+B ∆v (B.3)

∆v = E ∆x+ F ∆u (B.4)

substituting ∆v into (B.3) results in the linearized equations of motion for the tanker

∆ẋ = AT,i ∆x+BT,i ∆u (B.5)
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where index i denotes a specific nominal condition and

AT,i = A+BE

BT,i = BF

Note that for nominal conditions specified in Table 4.1, Eq. (B.5) yields Eq. (4.1). In the

remainder of this Appendix, matrices A,B,E, and F are presented in detail.

A = a(i, j), A ∈ <9×9, i = {1, ..., 9}, j = {1, ..., 9}

a(1, 1) = 0

a(1, 2) = g cos θT0 sinφT0

a(1, 3) = g cosφT0 cos θT0 cosαT0 + g sinαT0 sin θT0 − TT0

mT
sin(αT0 + δT )

a(1, 4 : 6) = 0

a(1, 7) = −g sinαT0 sin θT0 cosφT0 − g cosαT0 cos θT0

a(1, 8) = −g sinαT0 sinφT0 cos θT0

a(1, 9) = 0

a(2, 1) = − g
V 2
T0

cos θT0 sinφT0 + ST
mTV

2
T0

a(2, 2) = − g
VT0

cosφT0 cos θT0 sinαT0 + g
VT0

sin θT0 cosαT0 − TT0

mTVT0
cos(αT0 + δT )

a(2, 3) = rT0 sinαT0 + pT0 cosαT0

a(2, 4) = sinαT0

a(2, 5) = 0

a(2, 6) = − cosαT0

a(2, 7) = − g
VT0

sin θT0 sinφT0

a(2, 8) = g
VT0

cos θT0 cosφT0

a(2, 9) = 0

a(3, 1) = qT0

a(3, 2) = −pT0 cosαT0 − rT0 sinαT0
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a(3, 3) = − g
VT0

sinαT0 cosφT0 cos θT0 + g
VT0

sin θT0 cosαT0 − TT0

mTVT0
cos(αT0 + δT )

a(3, 4) = 0

a(3, 5) = 1

a(3, 6) = 0

a(3, 7) = − g
VT0

cosαT0 cosφT0 sin θT0 + g
VT0

sinαT0 cos θT0

a(3, 8) = − g
VT0

cosαT0 sinφT0 cos θT0

a(3, 9) = 0

a(4, 1 : 3) = 0

a(4, 4) = (Ixx − Iyy + Izz)IxzqT0
1

IxxIzz−I2
xz

a(4, 5) = ((Ixx − Iyy + Izz)IxzpT0 + (IyyIzz − I2
zz − I2

xz)rT0) 1
IxxIzz−I2

xz

a(4, 6) = (IyyIzz − I2
zz − I2

xz)qT0
1

IxxIzz−I2
xz

a(4, 7 : 9) = 0

a(5, 1 : 3) = 0

a(5, 4) = (Izz−Ixx)rT0−2IxzpT0

Iyy

a(5, 5) = 0

a(5, 6) = (Izz−Ixx)pT0+2IxzrT0

Iyy

a(5, 7 : 9) = 0

a(6, 1 : 3) = 0

a(6, 4) = (I2
xx−IxxIyy+I2

xz)qT0

IxxIzz−I2
xz

a(6, 5) = (I2
xx−IxxIyy+I2

xz)pT0+(Iyy−Ixx−Izz)IxzrT0

IxxIzz−I2
xz

a(6, 6) = (Iyy−Ixx−Izz)IxzqT0

IxxIzz−I2
xz

a(6, 7 : 9) = 0

a(7, 1 : 4) = 0

a(7, 5) = cosφT0

a(7, 6) = − sinφT0
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a(7, 7) = 0

a(7, 8) = −qT0 sinφT0 − rT0 cosφT0

a(7, 9) = 0

a(8, 1 : 3) = 0

a(8, 4) = 1

a(8, 5) = sinφT0 tan θT0

a(8, 6) = cosφT0 tan θT0

a(8, 7) = qT0 sinφT0 sec θ2
T0 + rT0 cosφT0 sec θ2

T0

a(8, 8) = qT0 cosφT0 tan θT0 − rT0 sinφT0 tan θT0

a(8, 9) = 0

a(9, 1) = − cosαT0 sin θT0 + sinαT0 cosφT0 cos θT0

a(9, 2) = VT0 sinφT0 cos θT0

a(9, 3) = VT0 sin θT0 sinαT0 + VT0 cos θT0 cosφT0 cosαT0

a(9, 4 : 6) = 0

a(9, 7) = −VT0 cosαT0 cos θT0 − VT0 sinαT0 cosφT0 sin θT0

a(9, 8) = −VT0 cos θT0 sinαT0 sinφT0

a(9, 9) = 0

B = b(i, j), B ∈ <9×7, i = {1, ..., 9}, j = {1, ..., 7}

b(1, 1) = − 1
mT

b(1, 2 : 6) = 0

b(1, 7) = cos(αT0+δT )
mT

b(2, 1) = 0

b(2, 2) = − 1
mTVT0

b(2, 3 : 7) = 0
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b(3, 1 : 2) = 0

b(3, 3) = - 1
mTVT0

b(3, 4 : 6) = 0

b(3, 7) = − sin(αT0+δT )
mTVT0

b(4, 1 : 3) = 0

b(4, 4) = Izz
IxxIzz−I2

xz

b(4, 5) = 0

b(4, 6) = Ixz
IxxIzz−I2

xz

b(4, 7) = 0

b(5, 1 : 4) = 0

b(5, 5) = 1
Iyy

b(5, 6 : 7) = 0

b(6, 1 : 3) = 0

b(6, 4) = Ixz
IxxIzz−I2

xz

b(6, 5) = 0

b(6, 6) = Ixx
IxxIzz−I2

xz

b(6, 7) = 0

b(7, 1 : 7) = 0

b(8, 1 : 7) = 0

b(9, 1 : 7) = 0

E = e(i, j), E ∈ <7×8, i = {1, ..., 7}, j = {1, ..., 8}

e(1, 1) = ρVT0ST (CD0 +DDααT0 + CDα2α2
T0 + CCδeδeT0

)

e(1, 2) = 0

e(1, 3) = 1
2
ρV 2

T0ST (CDα + 2αT0CDα2)
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e(1, 4 : 8) = 0

e(2, 1) = ρVT0ST (CS0 + CSδrδrT0
+ CSδaδaT0

)

e(2, 2) = 1
2
ρV 2

T0STCSβ

e(2, 3 : 8) = 0

e(3, 1) = ρVT0ST (CL0 + CLααT0 + CLα2(αT0 − αref )2 + CLδeδeT0
+ CLq

c
4VT0

qT0)

e(3, 2) = 0

e(3, 3) = 1
2
ρV 2

T0ST (CLα + 2CLα2(αT0 − αref ))

e(3, 4) = 0

e(3, 5) = c
4
ρVT0STCLq

e(3, 6 : 8) = 0

e(4, 1) = ρVT0ST bT (CL0 + CLδaδaT0
+ CLδrδrT0

+ b
8VT0

CLppT0 + b
8VT0

CLrrT0)

e(4, 2) = 1
2
ρV 2

T0ST bTCLβ

e(4, 3) = 0

e(4, 4) = 1
4
ρVT0ST b

2
TCLp

e(4, 5) = 0

e(4, 6) = 1
4
ρVT0ST b

2
TCLr

e(4, 7 : 8) = 0

e(5, 1) = ρVT0ST cT (CM0 + CMααT0 + CMδeδeT0
+ CMq

c
4VT0

qT0)

e(5, 2) = 0

e(5, 3) = 1
2
ρV 2

T0ST cTCMα

e(5, 4) = 0

e(5, 5) = 1
4
ρVT0ST c

2
TCMq

e(5, 6 : 8) = 0

e(6, 1) = ρVT0ST bT (CN0 + CN δaδaT0
+ CN δrδrT0

+ b
4VT0

CNppT0 + b
4VT0

CN rrT0)

e(6, 2) = 1
2
ρV 2

T0ST bTCNβ
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e(6, 3) = 0

e(6, 4) = 1
4
ρVT0ST b

2
TCNp

e(6, 5) = 0

e(6, 6) = 1
4
ρVT0ST b

2
TCN r

e(6, 7 : 8) = 0

e(7, 1 : 8) = 0

F = f(i, j), F ∈ <7×4, i = {1, ..., 7}, j = {1, ..., 4}

f(1, 1) = 0

f(1, 2) = 1
2
ρV 2

T0STCDδe

f(1, 3 : 4) = 0

f(2, 1) = 1
2
ρV 2

T0STCSδa

f(2, 2) = 0

f(2, 3) = 1
2
ρV 2

T0STCSδr

f(2, 4) = 0

f(3, 1) = 0

f(3, 2) = 1
2
ρV 2

T0STCLδe

f(3, 3 : 4) = 0

f(4, 1) = 1
2
ρV 2

T0ST bTCLδa

f(4, 2) = 0

f(4, 3) = 1
2
ρVT0ST b

2
TCLδr

f(4, 4) = 0

f(5, 1) = 0

f(5, 2) = 1
2
ρV 2

T0ST cTCMδe

f(5, 3) = 0
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f(5, 4) = TmaxT (∆zT 0 cos δT0 + ∆xT 0 sin δT0)

f(6, 1) = 1
2
ρV 2

T0ST bTCN δa

f(6, 2) = 0

f(6, 3) = 1
2
ρV 2

T0ST bTCN δr

f(6, 4) = 0

f(7, 1 : 3) = 0

f(7, 4) = TmaxT
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In aerial refueling operation, the receiver aircraft should maintain its position and

orientation relative to the tanker aircraft. Thus, the nominal conditions for the receiver

should be closely related to the nominal conditions of the tanker. Recall that the pres-

ence of the wake induced wind acting on the receiver is ignored during the linearization

procedure. Further, note that the seven algebraic equations derived for the nominal con-

dition analysis of the tanker, in Appendix A, are valid for any other aircraft. Since

the objective is to maintain relative position and orientation, translational and angular

velocity components of the receiver should be same as those of the tanker. Thus, for

nominal condition analysis; V0 = VT0, p0 = pT0, q0 = qT0 and r0 = rT0. Further, yaw

rates of the tanker and the receiver should be the same, i.e., ψ̇0 = ψ̇T0. Similar to tanker,

side slip angle of the receiver at the nominal conditions is set to zero, i.e., β0 = 0. Also,

the receiver maintains its altitude, i.e., ż0 = 0. At nominal conditions, the thrust vec-

toring angles are prefered to be zero, i.e. δy0 = 0 and δz0 = 0. Thus, the same set of

algebraic equations, in Appendix A, is used for determining the nominal values of other

states and control variables, using the receiver aircraft data. As in the case of the tanker

analysis, the seven algebraic equations are solved for α0, θ0,I , φ0,I , T0, δa0, δe0, δr0. Note

that θ0,I and φ0,I are the Euler angles of the receiver aircraft relative to the inertial frame

since the equations used are based on the equations of motion relative to the inertial

frame. Recall that in the equations of motion of the receiver aircraft, Euler angles are

the parameterization of the receiver aircraft relative to the tanker. While all the other

nominal values are directly applicable, the relative Euler angles need to be computed.

Note that

RBRI = RBRBT
RBTI (C.1)

where RBRI is the rotation matrix from the inertial frame to the receiver’s body frame,

RBRBT
is the rotation matrix from the tanker’s body frame to the receiver’s body frame,
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and RBTI is the rotation matrix from the inertial frame to the tanker’s body frame.

Eq. (C.1) can be written in terms of 3-2-1 Euler angles,

R(ψI , θI , φI) = R(ψ, θ, φ)R(ψT , θT , φT ) (C.2)

where (ψI , θI , φI) are the Euler angles of the receiver relative to the inertial frame, (ψ, θ, φ)

are the Euler angles of the receiver relative to the tanker’s body frame and (ψT , θT , φT ) are

the Euler angles of the tanker relative to the inertial frame. At the nominal conditions,

set the relative yaw angle to zero, i.e. ψ0 = 0. Note that this is justified by the fact

that both receiver and the tanker turn at the same yaw rate at the nominal conditions.

Rewriting Eq. (C.2) at the nominal conditions yield

R(ψ0,I(t), θ0,I , φ0,I) = R(0, θ0, φ0)R(ψT0(t), θT0, φT0) (C.3)

where there are only two unknowns, θ0 and φ0. To solve for these two unknowns, the 1st

raw and 3rd column entries of the left and right sides yield the first equation

− sin θ0,I = − cos θ0 sin θT0 − sin θ0 cosφT0 cos θT0 (C.4)

The 2nd raw and 3rd column entries of the left and right sides gives the second equation

sinφ0,I cos θ0,I = − sinφ0 sin θ0 sin θT0 + cosφ0 sinφT0 cos θT0

+ sinφ0 cos θ0 cosφT0 cos θT0 (C.5)

These two equations are solved for the unknowns θ0 and φ0.
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Linearization of the receiver equations of motion is also carried out by two steps as

was done for the tanker. Equations of motion in Eqs. (3.15) to (3.17) (translational dy-

namics), (3.31) to (3.33) (rotational dynamics), (3.20) to (3.22) (rotational kinematics)

and (3.2) (3.4) (translational kinematics) are written in compact form as

ẋ = f(x, v, w) (D.1)

where

x = [V β α p q r ψ θ φ x y z]T

v = [D S L LM N Tx Ty Tz]
T

w = [VxT VyT VzT ψT θT φT pT qT rT ṗT q̇T ṙT ]T

The constitutive equations in Eqs. (3.9) to (3.14), (3.25) to (3.30), (3.8) to (3.9) and

the thrust as the product of maximum thrust available and throttle setting (ξ) can also

be written in compact form as

v = g(x, u, w) (D.2)

where

u = [δa δe δr ξ δy δz]
T

The linearization of Eqs. (D.1) and (D.2) yields respectively

∆ẋ = A x+B v +H w (D.3)

v = E x+ F u+G w (D.4)

Substituting ∆v into Eqs. (D.3) results in the linearized equations of motion for the

receiver

∆ẋ = Ai ∆x+Bi u+Hi w (D.5)
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where index i denotes a specific nominal condition, and

Ai = A+BE

Bi = BF

Hi = BG+H

Note that for nominal conditions specified in Table 4.1, Eq. (D.5) yields Eq. (4.11). In

the remainder of this Appendix, matrices A,B,H,E, F and G are presented in detail.

A = a(i, j), A ∈ <12×12, i = {1, ..., 12}, j = {1, ..., 12}

a(1, 1) = 0

a(1, 2) = g sinφT0 cos θT0 + Ty0

mR

a(1, 3) = g sin θT0 sinα0 + g cosφT0 cos θT0 cosα0 − (Tx0 sinα0+Tz0 cosα0)
mR

a(1, 4 : 6) = 0

a(1, 7) = g sinφT0 cosα0 cos θT0

a(1, 8) = −g(cosφT0 cos θT0 cosα0 + sin θT0 sinα0)

a(1, 9) = −g sinφT0 cos θT0 sinα0

a(1, 10 : 12) = 0

a(2, 1) = − rT0

V0
cosα0 + pT0

V0
sinα0

a(2, 2) = g
V0

(sin θT0 cosα0 − cosφT0 cos θT0 sinα0)

− 1
mRV0

(Tx0 cosα0 + Tz0 sinα0)

a(2, 3) = rT0 sinα0 + PT0 cosα0

a(2, 4) = sinα0

a(2, 5) = 0

a(2, 6) = − cosα0

a(2, 7) = qT0 sinα0 + g
V0

sin θT0

a(2, 8) = −pT0 cosα0 − rT0 sinα0
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a(2, 9) = g
V0

cosφT0 cos θT0 + qT0 cosα0

a(2, 10 : 12) = 0

a(3, 1) = qT0

V0

a(3, 2) = −rT0 sinα0 − pT0 cosα0

a(3, 3) = g
V0

(sin θT0 cosα0 − cosφT0 cos θT0 sinα0)

− 1
mRV0

(Tx0 cosα0 + Tz0 sinα0)

a(3, 4) = 0

a(3, 5) = 1

a(3, 6) = 0

a(3, 7) = −pT0 − g
V0

sinφT0 cos θT0 sinα0

a(3, 8) = g
V0

(cosφT0 cos θT0 sinα0 − sin θT0 cosα0)

a(3, 9) = rT0 − g
V0

sinφT0 cos θT0 cosα0

a(3, 10 : 12) = 0

a(4, 1 : 3) = 0

a(4, 4) = (Ixx−Iyy+Izz)IxzqT0

IxxIzz−I2
xz

a(4, 5) = IzzIyy−I2
zz−I2

xz

IxxIzz−I2
xz

rT0 + Ixx−Iyy+Izz
IxxIzz−I2

xz
IxzpT0 + rT0

a(4, 6) = IyyIzz−I2
zz−I2

xz

IxxIzz−I2
xz

qT0 − qT0

a(4, 7) = IyyIzz−I2
zz−I2

xz

IxxIzz−I2
xz

(−pT0rT0) + Iyy−Ixx−Izz
IxxIzz−I2

xz
Ixz(p

2
T0 − q2

T0)

a(4, 8) = IyyIzz−I2
zz−I2

xz

IxxIzz−I2
xz

pT0qT0 + Iyy−Ixx−Izz
IxxIzz−I2

xz
IxzqT0rT0

a(4, 9) = IyyIzz−I2
zz−I2

xz

IxxIzz−I2
xz

(−q2
T0 + r2

T0) + Ixx−Iyy+Izz
IxxIzz−I2

xz
IxzpT0rT0

a(4, 10 : 12) = 0

a(5, 1 : 3) = 0

a(5, 4) = −2 Ixz
Iyy
pT0 + Izz−Ixx

Iyy
rT0 − rT0

a(5, 5) = 0

a(5, 6) = 2 Ixz
Iyy
rT0 + Izz−Ixx

Iyy
pT0 + pT0
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a(5, 7) = −2 Ixz
Iyy
pT0qT0 + Izz−Ixx

Iyy
rT0qT0

a(5, 8) = 4 Ixz
Iyy
rT0pT0 + Izz−Ixx

Iyy
(−r2

T0 + p2
T0)

a(5, 9) = 2 Ixz
Iyy
rT0qT0 − Izz−Ixx

Iyy
pT0qT0

a(5, 10 : 12) = 0

a(6, 1 : 3) = 0

a(6, 4) = I2
xx−IxxIyy+I2

xz

IxxIzz−I2
xz

qT0 + qT0

a(6, 5) = Iyy−Ixx−Izz
IxxIzz−I2

xz
IxzrT0 + I2

xx−IxxIyy+I2
xz

IxxIzz−I2
xz

pT0 − pT0

a(6, 6) = Iyy−Ixx−Izz
IxxIzz−I2

xz
IxzqT0

a(6, 7) = Ixx−Iyy+Izz
IxxIzz−I2

xz
IxzpT0rT0 + I2

xx−IxxIyy+I2
xz

IxxIzz−I2
xz

(q2
T0 − p2

T0)

a(6, 8) = Iyy−Ixx−Izz
IxxIzz−I2

xz
IxzpT0qT0 + I2

xx−IxxIyy+I2
xz

IxxIzz−I2
xz

(−qT0rT0)

a(6, 9) = Iyy−Ixx−Izz
IxxIzz−I2

xz
Ixz(−q2

T0 + r2
T0) + I2

xx−IxxIyy+I2
xz

IxxIzz−I2
xz

pT0rT0

a(6, 10 : 12) = 0

a(7, 1 : 5) = 0

a(7, 6) = 1

a(7, 7 : 12) = 0

a(8, 1 : 4) = 0

a(8, 5) = 1

a(8, 6 : 12) = 0

a(9, 1 : 3) = 0

a(9, 4) = 1

a(9, 5 : 12) = 0

a(10, 1) = cosα0

a(10, 2) = 0

a(10, 3) = −V0 sinα0

a(10, 4 : 7) = 0
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a(10, 8) = V0 sinα0

a(10, 9 : 10) = 0

a(10, 11) = rT0

a(10, 12) = −qT0

a(11, 1) = 0

a(11, 2) = V0

a(11, 3 : 6) = 0

a(11, 7) = V0 cosα0

a(11, 8) = 0

a(11, 9) = −V0 sinα0

a(11, 10) = −rT0

a(11, 11) = 0

a(11, 12) = pT0

a(12, 1) = sinα0

a(12, 2) = 0

a(12, 3) = V0 cosα0

a(12, 4 : 7) = 0

a(12, 8) = −V0 cosα0

a(12, 9) = 0

a(12, 10) = qT0

a(12, 11) = −pT0

a(12, 12) = 0

B = b(i, j), B ∈ <12×9, i = {1, ..., 12}, j = {1, ..., 9}

b(1, 1) = − 1
mR
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b(1, 2 : 6) = 0

b(1, 7) = 1
mR

cosα0

b(1, 8) = 0

b(1, 9) = 1
mR

sinα0

b(2, 1) = 0

b(2, 2) = − 1
mRV0

b(2, 3 : 7) = 0

b(2, 8) = 1
mRV0

b(2, 9) = 0

b(3, 1 : 2) = 0

b(3, 3) = − 1
mRV0

b(3, 4 : 6) = 0

b(3, 7) = − 1
mRV0

sinα0

b(3, 8) = 0

b(3, 9) = 1
mRV0

cosα0

b(4, 1 : 3) = 0

b(4, 4) = Izz
IxxIzz−I2

xz

b(4, 5) = 0

b(4, 6) = Ixz
IxxIzz−I2

xz

b(4, 7 : 9) = 0

b(5, 1 : 4) = 0

b(5, 5) = 1
Iyy

b(5, 6 : 9) = 0

b(6, 1 : 3) = 0

b(6, 4) = Ixz
IxxIzz−I2

xz
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b(6, 5) = 0

b(6, 6) = Ixx
IxxIzz−I2

xz

b(6, 7 : 9) = 0

b(7, 1 : 9) = 0

b(8, 1 : 9) = 0

b(9, 1 : 9) = 0

b(10, 1 : 9) = 0

b(11, 1 : 9) = 0

b(12, 1 : 9) = 0

H = h(i, j), H ∈ <12×12, i = {1, ..., 12}, j = {1, ..., 12}

h(1, 10) = 0

h(1, 11) = −g(cos θT0 cosα0 + cosφT0 sin θT0 sinα0)

h(1, 12) = −g(sinφT0 cos θT0 sinα0)

h(2, 1 : 3) = 0

h(2, 4) = sinα0

h(2, 5) = 0

h(2, 6) = − cosα0

h(2, 7 : 10) = 0

h(2, 11) = − g
V0

sinφT0 sin θT0

h(2, 12) = g
V0

cos θT0 cosφT0

h(3, 1 : 4) = 0

h(3, 5) = 1

h(3, 6 : 10) = 0

h(3, 11) = g
V0

(sinα0 cos θT0 − cosα0 cosφT0 sin θT0)
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h(3, 12) = − g
V0

cosα0 cos θT0 sinφT0

h(4, 1 : 3) = 0

h(4, 4) = Ixx−Iyy+Izz
IxxIzz−I2

xz
IxzqT0

h(4, 5) = IyyIzz−I2
zz−I2

xz

IxxIzz−I2
xz

rT0 + Ixx−Iyy+Izz
IxxIzz−I2

xz
IxzpT0

h(4, 6) = IyyIzz−I2
zz−I2

xz

IxxIzz−I2
xz

qT0

h(4, 7) = -1

h(4, 8 : 12) = 0

h(5, 1 : 3) = 0

h(5, 4) = −2 Ixz
Iyy
pT0 + Izz−Ixx

Iyy
rT0

h(5, 5) = 0

h(5, 6) = 2 Ixz
Iyy
rT0 + Izz−Ixx

Iyy
pT0

h(5, 7) = 0

h(5, 8) = -1

h(5, 9 : 12) = 0

h(6, 1 : 3) = 0

h(6, 4) = I2
xx−IxxIyy+I2

xz

IxxIzz−I2
xz

qT0

h(6, 5) = Iyy−Ixx−Izz
IxxIzz−I2

xz
IxzrT0 + I2

xx−IxxIyy+I2
xz

IxxIzz−I2
xz

pT0

h(6, 6) = Iyy−Ixx−Izz
IxxIzz−I2

xz
IxzqT0

h(6, 7 : 8) = 0

h(6, 9) = -1

h(6, 10 : 12) = 0

h(7, 1 : 12) = 0

h(8, 1 : 12) = 0

h(9, 1 : 12) = 0

h(10, 1) = − cos θT0 cosψT0
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h(10, 2) = − cos θT0 sinψT0

h(10, 3) = sin θT0

h(10, 4) = 0

h(10, 5) = −z0

h(10, 6) = y0

h(10, 7 : 9) = 0

h(10, 10) = VxT0 cos θT0 sinψT0 − VyT0 cos θT0 cosψT0

h(10, 11) = VxT0 cosψT0 sin θT0 − VyT0 sin θT0 sinψT0 + VzT0 cos θT0

h(10, 12) = 0

h(11, 1) = cosφT0 sinψT0 − sinφT0 sin θT0 cosψT0

h(11, 2) = − cosφT0 cosψT0 − sinφT0 sin θT0 sinψT0

h(11, 3) = − sinφT0 cos θT0

h(11, 4) = z0

h(11, 5) = 0

h(11, 6) = −x0

h(11, 7 : 9) = 0

h(11, 10) = VxT0 cosφT0 cosψT0 + VxT0 sinφT0 sin θT0 sinψT0

+VyT0 cosφT0 sinψT0 − VyT0 sinφT0 sin θT0 cosψT0

h(11, 11) = −VxT0 cosψT0 sinφT0 cos θT0 − VyT0 sinψT0 sinφT0 cos θT0

+VzT0 sinφT0 sin θT0

h(11, 12) = −VxT0 sinφT0 sinψT0 − VxT0 cosψT0 sin θT0 cosφT0

+VyT0 cosψT0 sinφT0 − VyT0 sinψT0 sin θT0 cosφT0

−VzT0 cos θT0 cosφT0

h(12, 1) = − sinφT0 sinψT0 − cosψT0 cosφT0 sin θT0

h(12, 2) = sinφT0 cosψT0 − cosφT0 sin θT0 sinψT0
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h(12, 3) = − cosφT0 cos θT0

h(12, 4) = −y0

h(12, 5) = x0

h(12, 6 : 9) = 0

h(12, 10) = −VxT0 sinφT0 cosψT0 + VxT0 sinψT0 cosφT0 sin θT0

−VyT0 sinφT0 sinψT0 − VyT0 cosψT0 cosφT0 sin θT0

h(12, 11) = −VxT0 cosψT0 cosφT0 cos θT0 − VyT0 sinψT0 cosφT0 cos θT0

+VzT0 cosφT0 sin θT0

h(12, 12) = −VxT0 sinψT0 cosφT0 + VxT0 cosψT0 sin θT0 sinφT0

+VyT0 cosψT0 cosφT0 + VyT0 sinψT0 sin θT0 sinφT0

+VzT0 cos θT0 sinφT0

E = e(i, j), E ∈ <9×12, i = {1, ..., 9}, j = {1, ..., 12}

e(1, 1) = ρV0S(CD0 + CDαα0 + CDα2α2
0 + CDδeδe0)

e(1, 2) = 0

e(1, 3) = 1
2
ρV 2

0 S(CDα + 2α0CDα2)

e(1, 4 : 12) = 0

e(2, 1) = ρV0S(CS0 + CSδrδr0 + CSδaδa0)

e(2, 2) = 1
2
ρV 2

0 SCSβ

e(2, 3 : 12) = 0

e(3, 1) = 4mRρV0S
4mR+ρSCLα̇c

(CL0 + CLαα0 + CLα2(α0αref )
2 + CLδeδe0 + CLα̇cqT0

4V0
)

e(3, 2) = −mRρV0SCLα̇c
4mR+ρSCLα̇c

(rT0 sinα0 + pT0 cosα0)

e(3, 3) = mRρV0S
4mR+ρSCLα̇c

[2V0CLα + 4V0CLα2(α0 − αref )

+gcCLα̇
V0

(sin θT0 cosα0 − cosφT0 cos θT0 sinα0)

− CLα̇c
mRV0

(Tx0 cosα0 + Tz0 sinα0)]



87

e(3, 4) = 0

e(3, 5) = mRρV0Sc
4mR+ρSCLα̇c

(CLq + CLα̇)

e(3, 6) = 0

e(3, 7) = −mRρV0SCLα̇c
4mR+ρSCLα̇c

(pT0 + g
V0

sinφT0 cos θT0 sinα0)

e(3, 8) = mRρV0SCLα̇c
4mR+ρSCLα̇c

(g cosφT0 cos θT0 sinα0 − g sin θT0 cosα0)

e(3, 9) = mRρV0SCLα̇c
4mR+ρSCLα̇c

(rT0 − g
V0

sinφT0 cos θT0 cosα0)

e(3, 10 : 12) = 0

e(4, 1) = ρV0Sb(CL0 + CLδaδa0 + CLδrδr0)

e(4, 2) = 1
2
ρV 2

0 SbCLβ

e(4, 3) = 0

e(4, 4) = 1
4
ρV0Sb

2CLp

e(4, 5) = 0

e(4, 6) = 1
4
ρV0Sb

2CLr

e(4, 7 : 12) = 0

e(5, 1) = ρV0Sc(CM0 + CMαα0 + CMδeδe0 + c
4V0
CMα̇qT0)

−ρ2V0S2c2CMα̇

4mR+ρSCLα̇c
(CL0 + CLαα0 + CLα2(α0 − αref )2 + CLδeδe0 +CLα̇cqT0

4V0
)

e(5, 2) = −1
4
ρV0SC

2CMα̇(rT0 sinα0 + pT0 cosα0)

+ρ2V0S2c3CMα̇CLα̇
4(4mR+ρSCLα̇c)

(rT0 sinα0 + pT0 cosα0)

e(5, 3) = 1
2
ρV 2

0 ScCMα + 1
4
ρSc2CMα̇ [g sin θT0 cosα0 − g cosφT0 cos θT0 sinα0

− 1
mR

(Tx0 cosα0 + Tz0 sinα0)]

− ρ2S2V0c2CMα̇

4(4mR+ρSCLα̇c)
[2V0CLα + 4V0CLα2(α0 − αref )

+gCLα̇c
V0

(sin θT0 cosα0 − cosφT0 cos θT0 sinα0)

− CLα̇c
mRV0

(Tx0 cosα0 + Tz0 sinα0)]

e(5, 4) = 0

e(5, 5) = 1
4
ρV0Sc

2(CMq + CMα̇) − ρ2V0S2c3CMα̇

4(4mR+ρSCLα̇c)
(CLq + CLα̇)
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e(5, 6) = 0

e(5, 7) = 1
4
ρV0ScCMα̇ ( ρSc2CLα̇

4mR+ρSCLα̇c
− 1) (pT0 + g

V0
sinφT0 cos θT0 sinα0)

e(5, 8) = 1
4
ρSc2CMα̇g(1− mRρScCLα̇

4mR+ρSCLα̇c
)(cosφT0 cos θT0 sinα0 − sin θT0 cosα0)

e(5, 9) = 1
4
ρV0Sc

2CMα̇ (1− ρScCLα̇
4mR+ρSCLα̇c

) (rT0 − g
V0

sinφT0 cos θT0 cosα0)

e(5, 10 : 12) = 0

e(6, 1) = ρV0Sb(CN0 + CN δaδa0 + CN δrδr0)

e(6, 2) = 1
2
ρV 2

0 SbCNβ

e(6, 3) = 0

e(6, 4) = 1
4
ρV0Sb

2CNp

e(6, 5) = 0

e(6, 6) = 1
4
ρV0Sb

2CN r

e(6, 7 : 12) = 0

e(7, 1 : 12) = 0

e(8, 1 : 12) = 0

e(9, 1 : 12) = 0

F = f(i, j), F ∈ <9×6, i = {1, ..., 9}, j = {1, ..., 6}

f(1, 1) = 0

f(1, 2) = 1
2
ρV 2

0 SCDδe

f(1, 3 : 6) = 0

f(2, 1) = 1
2
ρV 2

0 SCSδa

f(2, 2) = 0

f(2, 3) = 1
2
ρV 2

0 SCSδr

f(2, 4 : 6) = 0

f(3, 1) = 0
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f(3, 2) =
2mRρV

2
0 SCLδe

4mR+ρSCLα̇c

f(3, 3) = 0

f(3, 4) = ρSCLα̇c
4mR+ρSCLα̇c

cos δz0Tmax(cosα0 sin δy0 − sinα0 cos δy0)

f(3, 5) = ρSCLα̇c
4mR+ρSCLα̇c

T0 cos δz0(sinα0 sin δy0 + cosα0 cos δy0)

f(3, 6) = ρSCLα̇c
4mR+ρSCLα̇c

sin δz0(T0 sinα0 cos δy0 − cosα0 sin δy0)

f(4, 1) = 1
2
ρV 2

0 SbCLδa

f(4, 2) = 0

f(4, 3) = 1
2
ρV 2

0 SbCLδr

f(4, 4) = Tmax(4y0 cos δz0 cos δy0 −4z0 sin δz0)

f(4, 5) = −4y0T0 cos δz0 sin δy0

f(4, 6) = −T0(4y0 sin δz0 cos δy0 + cos δz0)

f(5, 1) = 0

f(5, 2) = 1
2
ρV 2

0 ScCMδe −
ρ2V 2

0 S
2c2CMα̇CLδe

2(4mR+ρSCLα̇c)

f(5, 3) = 0

f(5, 4) = cos δz0Tmax(4z0 cos δy0 −4x0 sin δy0)

+ 1
4mR

ρSc2CMα̇ cos δz0Tmax(cosα0 sin δy0 − sinα0 cos δy0)

+ ρ2S2c3CMα̇CLα̇
4mR(4mR+ρScCLα̇)

cos δz0Tmax(sinα0 cos δy0 − cosα0 sin δy0)

f(5, 5) = −T0 cos δz0(4z0 sin δy0 +4x0 cos δy0)

+ 1
4mR

ρSc2CMα̇T0 cos δz0 (sinα0 sin δy0 + cosα0 cos δy0)

− ρ2S2c3CMα̇CLα̇
4mR(4mR+ρScCLα̇)

(sinα0 sin δy0 + cosα0 cos δy0)T0 cos δz0

f(5, 6) = T0 sin δz0(4x0 sin δy0 −4z0 cos δy0)

+ 1
4mR

ρSc2CMα̇T0 sin δz0 (sinα0 cos δy0 − cosα0 sin δy0)

+ ρ2S2c3CMα̇CLα̇
4mR(4mR+ρScCLα̇)

T0 sin δz0(cosα0 sin δy0 − sinα0 cos δy0)

f(6, 1) = 1
2
ρV 2

0 SbCN δa

f(6, 2) = 0
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f(6, 3) = 1
2
ρV 2

0 SbCN δr

f(6, 4) = Tmax(4x0 sin δz0 −4y0 cos δz0 cos δy0)

f(6, 5) = 4y0T0 cos δz0 sin δy0

f(6, 6) = T0(4x0 cos δz0 +4y0 sin δz0 cos δy0)

f(7, 1 : 3) = 0

f(7, 4) = cos δz0 cos δy0Tmax

f(7, 5) = −T0 cos δz0 sin δy0

f(7, 6) = −T0 sin δz0 cos δy0

f(8, 1 : 3) = 0

f(8, 4) = sin δz0Tmax

f(8, 5) = 0

f(8, 6) = T0 cos δz0

f(9, 1 : 3) = 0

f(9, 4) = cos δz0 sin δy0Tmax

f(9, 5) = −T0 sin δy0 sin δz0

f(9, 6) = T0 cos δz0 cos δy0

G = g(i, j), G ∈ <9×12, i = {1, ..., 9}, j = {1, ..., 12}

g(1, 1 : 12) = 0

g(2, 1 : 12) = 0

g(3, 1 : 4) = 0

g(3, 5) = mRρV0ScCLα̇
4mR+ρScCLα̇

g(3, 6 : 10) = 0

g(3, 11) = mRρScCLα̇
4mR+ρScCLα̇

(g sinα0 cos θT0 − g cosα0 cosφT0 sin θT0)

g(3, 12) = − mRρScgCLα̇
4mR+ρScCLα̇

cosα0 cos θT0 sinφT0
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g(4, 1 : 12) = 0

g(5, 1 : 4) = 0

g(5, 5) = 1
4
ρV0Sc

2CMα̇ −ρ2V0S2c3CLα̇CMα̇

4(4mR+ρScCLα̇)

g(5, 6 : 10) = 0

g(5, 11) = 1
4
ρSc2gCMα̇ (1− ρSc2CLα̇

4mR+ρScCLα̇
) (sinα0 cos θT0 − cosα0 cosφT0 sin θT0)

g(5, 12) = 1
4
ρSc2gCMα̇ cosα0 cos θT0 sinφT0 ( ρScCLα̇

4mR+ρScCLα̇
− 1)

g(6, 1 : 12) = 0

g(7, 1 : 12) = 0

g(8, 1 : 12) = 0

g(9, 1 : 12) = 0



APPENDIX E

NOMINAL VALUES OF TANKER STATES AND CONTROL

VARIABLES
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Nominal values of tanker states

xT = [VT βT αT pT qT rT θT φT zT ]T

The units of the states are respectively;

[m/s rad rad rad/s rad/s rad/s rad rad m]T

Nominal values of tanker control inputs are

uT = [δaT δeT δrT ξtT ]T

The units of the states are respectively;

[rad rad rad unitless]T

xT01 = [ 180 0 0.0651 0 0 0 0.0651 0 −7010 ]T

xT02 = [ 200 0 0.0485 0 0 0 0.0485 0 −7010 ]T

xT03 = [ 180 0 0.0769 −0.0020 0.0137 0.0262 0.0682 0.4827 −7010 ]T

xT04 = [ 200 0 0.0602 −0.0015 0.0149 0.0256 0.0521 0.5273 −7010 ]T

uT01 = [ 0 −0.0662 0 0.0922 ]T

uT02 = [ 0 −0.0474 0 0.1117 ]T

uT03 = [ 0.0093 −0.0814 −0.0019 0.0936 ]T

uT04 = [ 0.0079 −0.0625 −0.0017 0.1131 ]T



APPENDIX F

NOMINAL VALUES OF RECEIVER STATES AND CONTROL

VARIABLES

94



95

Nominal values of receiver states

x = [V β α p q r ψ θ φ x y z]T

The units of the state are respectively;

[m/s rad rad rad/s rad/s rad/s rad rad rad m m m]T

Nominal values of receiver control inputs are

u = [δa δe δr ξ δy δz]
T

The units of the states are respectively;

[rad rad rad unitless rad rad]T

x01 = [ 180 0 0.0516 0 0 0 0 0.0135 0 −25.33 0 6.46 ]T

x02 = [ 200 0 0.0371 0 0 0 0 0.0115 0 −25.33 0 6.46 ]T

x03 = [ 180 0 0.0662 0 0 0 0 0.0154 0.0173 −25.33 0 6.46 ]T

x04 = [ 200 0 0.0475 0 0 0 0 0.0132 0.0176 −25.33 0 6.46 ]T

u01 = [ 0 −0.0281 0 0.4878 0 0 ]T

u02 = [ 0 −0.0259 0 0.5795 0 0 ]T

u03 = [ −0.1272× 10−4 −0.0297 0.2207× 10−4 0.5049 0 0 ]T

u04 = [ −0.1082× 10−4 −0.0275 0.1707× 10−4 0.5951 0 0 ]T



APPENDIX G

STATE AND CONTROL MATRICES FOR TANKER
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AT,1 =



−0.0079 0 8.9178 0 0 0 −9.8066 0 0

0 0.1061 0 0.0651 0 −0.9979 0 0.0544 0

−0.0006 0 −0.6542 0 0.9869 0 0 0 0

0 −4.2119 0 −0.8270 0 0.4023 0 0 0

−0.0002 0 −2.5095 0 −0.2965 0 0 0 0

0 1.5329 0 −0.0208 0 −0.2186 0 0 0

0 0 0 0 1.0000 0 0 0 0

0 0 0 1.0000 0 0.0652 0 0 0

0 0 180 0 0 0 −180 0 0



BT,1 =



0 0 0 7.7056

0 0 −0.0249 0

0 −0.0257 0 −0.0030

−1.1947 0 0.4413 0

0 −2.2006 0 0.1941

0.0883 0 −0.9179 0

0 0 0 0

0 0 0 0

0 0 0 0


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AT,2 =



−0.0086 0 8.9880 0 0 0 −9.8067 0 0

0 0.1179 0 0.0486 0 −0.9988 0 0.0490 0

−0.0005 0 −0.7268 0 0.9869 0 0 0 0

0 −5.1998 0 −0.9189 0 0.4470 0 0 0

−0.0002 0 −3.0981 0 −0.3295 0 0 0 0

0 1.8925 0 −0.0231 0 −0.2429 0 0 0

0 0 0 0 1.0000 0 0 0 0

0 0 0 1.0000 0 0.0486 0 0 0

0 0 200 0 0 0 −200 0 0



BT,2 =



0 0 0 7.7135

0 0 −0.0277 0

0 −0.0286 0 −0.0020

−1.4750 0 0.5448 0

0 −2.7168 0 0.1941

0.1090 0 −1.1332 0

0 0 0 0

0 0 0 0

0 0 0 0


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AT,3 =



−0.0080 4.5416 7.6407 0 0 0 −9.8004 −0.3494 0

−0.0001 0.1060 0 0.0769 0 −0.9970 −0.0017 0.0481 0

−0.0131 0 −0.6543 0 0.9869 0 0.0009 −0.0252 0

0.9566 −4.2119 0 −0.8268 −0.0267 0.3883 0 0 0

−0.0002 0 −2.5095 0.0268 −0.2965 −0.0013 0 0 0

0.0069 1.5329 0 −0.0205 −0.0004 −0.2188 0 0 0

0 0 0 0 0.8857 −0.4642 0 −0.0296 0

0 0 0 1.0000 0.0317 0.0605 0.0297 0 0

0 83.3615 159.5333 0 0 0 −179.8852 −6.4123 0



BT,3 =



0 0 0 7.6987

0 0 −0.0249 0

0 −0.0257 0 −0.0035

−1.1947 0 0.4413 0

0 −2.2006 0 0.1941

0.0883 0 −0.9179 0

0 0 0 0

0 0 0 0

0 0 0 0


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AT,4 =



−0.0087 4.9286 7.4627 0 0 0 −9.8021 −0.2970 0

0.0001 0.1179 0 0.0603 0 −0.9982 −0.0013 0.0423 0

−0.0143 0 −0.7269 0 0.9869 0 0.0007 −0.0246 0

1.1533 −5.1998 0 −0.9186 −0.0261 0.4318 0 0 0

−0.0002 0 −3.0981 0.0262 −0.3295 −0.0008 0 0 0

0.0084 1.8925 0 −0.0227 0.0004 −0.2431 0 0 0

0 0 0 0 0.8641 −0.5033 0 −0.0296 0

0 0 0 1.0000 0.0263 0.0451 0.0297 0 0

0 100.516 172.9061 0 0 0 −199.9080 −6.0563 0



BT,4 =



0 0 0 7.7081

0 0 −0.0277 0

0 −0.0286 0 −0.0025

−1.4750 0 0.5448 0

0 −2.7168 0 0.1941

0.1090 0 −1.1332 0

0 0 0 0

0 0 0 0

0 0 0 0





APPENDIX H

STATE, CONTROL AND DISTURBANCE MATRICES FOR RECEIVER

101



102

A01 =



−0.0175 0 5.1342 0 0 0 0 −9.8031 0 0 0 0

0 0.0092 0 0.0516 0 −0.9987 0.0035 0 0.0543 0 0 0

−0.0006 0 −0.7446 0 0.9869 0 0 −0.0015 0 0 0 0

0 −5.6296 0 −1.3291 0 0.0982 0 0 0 0 0 0

0.0004 0 −1.7202 0 −0.6979 0 0 0 0 0 0 0

0 −1.3800 0 −0.0429 0 −0.0196 0 0 0 0 0 0

0 0 0 0 0 1.0001 0 0 0 0 0 0

0 0 0 0 1.0000 0 0 0 0 0 0 0

0 0 0 1.0000 0 0.0135 0 0 0 0 0 0

0.9993 0 −6.8481 0 0 0 0 6.8481 0 0 0 0

0 180.0000 0 0 0 0 179.8697 0 −9.2838 0 0 0

0.0380 0 179.8697 0 0 0 0 −179.8697 0 0 0 0



A02 =



−0.0188 0 5.6588 0 0 0 0 −9.8041 0 0 0 0

0 0.0075 0 0.0371 0 −0.9993 0.0024 0 0.0489 0 0 0

−0.0005 0 −0.8275 0 0.9869 0 0 −0.0011 0 0 0 0

0 −6.9501 0 0 0 0.1092 0 0 0 0 0 0

0.0004 0 −2.1237 −0.0477 −0.7754 0 0 0 0 0 0 0

0 −1.7038 0 0 0 −0.0217 0 0 0 0 0 0

0 0 0 0 0 1.0001 0 0 0 0 0 0

0 0 0 0 1.0000 0 0 0 0 0 0 0

0 0 0 1.0000 0 0.0115 0 0 0 0 0 0

0.9997 0 −5.1343 0 0 0 0 5.1343 0 0 0 0

0 200.0000 0 0 0 0 199.9341 0 −7.4149 0 0 0

0.0257 0 199.9341 0 0 0 0 −199.9341 0 0 0 0


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A03 =

[
A103 | A203

]
where A03 ∈ <12×12, A103 ∈ <12×6 and A203 ∈ <12×6.

A103 =



−0.0181 4.6903 2.9809 0 0 0

0 0.0093 −0.0008 0.0621 0 −0.9981

−0.0006 0.0008 −0.7449 0 0.9869 0

0 −5.6296 0 −1.3291 −0.0024 0.0686

0.0004 0 −1.7202 −0.0008 −0.6979 −0.0053

0 −1.3800 0 −0.0352 0.0038 −0.0194

0 0 0 0 0.0173 1.0000

0 0 0 0 0.9999 −0.0173

0 0 0 1.0000 0.0003 0.0154

0.9989 0.0479 −8.4105 0 0 0

−0.0011 179.9732 −3.0991 0 0 0

0.0467 3.1047 179.7769 0 0 0



A203 =



4.5360 −8.6876 −0.2913 0 0 0

0.0044 0.0007 0.0618 0 0 0

0.0008 −0.0015 −0.0001 0 0 0

−0.0001 0 −0.0005 0 0 0

0.0004 0.0007 0 0 0 0

−0.0001 0.0002 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0.1929 8.4084 −0.0003 0 0.0262 −0.0137

179.8034 0 −11.1786 −0.0262 0 −0.0020

0 −179.8034 −0.1928 0.0137 0.0020 0


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A04 =

[
A104 | A204

]
where A04 ∈ <12×12, A104 ∈ <12×6 and A204 ∈ <12×6.

A104 =



−0.0193 5.0770 3.0769 0 0 0

−0.0001 0.0076 −0.0007 0.0475 0 −0.9987

−0.0005 0.0007 −0.8277 0 0.9869 0

0 −6.9501 0 −1.4769 −0.0023 0.0770

0.0004 0 −2.1237 0.0008 −0.7754 −0.0041

0 −1.7038 0 −0.0393 0.0003 −0.0216

0 0 0 0 0.0176 0.9999

0 0 0 0 0.9998 −0.0176

0 0 0 1.0000 0.0002 0.0132

0.9994 0.0467 −6.8614 0 0 0

−0.0008 199.9689 −3.5233 0 0 0

0.0343 3.5270 199.8512 0 0 0



A204 =



4.9253 −8.4753 −0.2413 0 0 0

0.0031 0.0006 0.0572 0 0 0

0.0007 −0.0011 0 0 0 0

0 0 −0.0004 0 0 0

0.0004 −0.0007 0 0 0 0

0 0.0002 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0.1676 6.8595 −0.0022 0 0.0256 −0.0149

199.8823 0 −9.5043 −0.0256 0 −0.0015

0 −199.8823 −0.1676 0.0149 0.0015 0


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B01 =



0 0 0 3.2621 0 0.0822

0 0 0 0 0 0.0089

0 −0.2095 0 −0.0009 0 0.0088

−33.3885 0 −1.0073 0 0 −0.5498

0 −12.1132 0 −0.0748 1.1730 0

−0.9884 0 −1.1999 0 0 −0.8371

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



B02 =



0 0 0 3.2642 0 0.0703

0 0 0 0 0 0.0095

0 −0.2328 0 −0.0006 0 0.0095

−41.2203 0 −1.2436 0 0 −0.6532

0 −14.9545 0 −0.0748 1.3937 0

−1.2203 0 −1.4814 0 0 −0.9946

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


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B03 =



0 0 0 3.2601 0 0.1024

0 0 0 0 0 0.0092

0 −0.2095 0 −0.0011 0 0.0091

−33.3885 0 −1.0073 0 0 −0.5691

0 −12.1132 0 −0.0748 1.2142 0

−0.9884 0 −1.1999 0 0 −0.8665

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



B04 =



0 0 0 3.2628 0 0.0924

0 0 0 0 0 0.0097

0 −0.2328 0 −0.0008 0 0.0097

−41.2203 0 −1.2436 0 0 −0.6708

0 −14.9545 0 −0.0748 1.4312 0

−1.2203 0 −1.4814 0 0 −0.0213

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


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Note ψT0 in nominal condition 1 and ψT0 in nominal condition 2 are different constants.

H01,02 =

 H1

H2 | H3


where H01,02 ∈ <12×12, H1 ∈ <9×12, H2 ∈ <3×9 and H3 ∈ <3×3.

H101 =



0 0 0 0 0 0 0 0 0 0 −9.8058 0

0 0 0 0.0516 0 −0.9987 0 0 0 0 0.0000 0.0544

0 0 0 0 1.0000 0 0 0 0 0 −0.0007 0

0 0 0 0 0 0 −1.0000 0 0 0 0 0

0 0 0 0 0 0 0 −1.0000 0 0 0 0

0 0 0 0 0 0 0 0 −1.0000 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0



H201 =


−0.5403 cosψT0 −0.5403 sinψT0 0.8415 0 −6.46 0 0 0 0

sinψT0 − cosψT0 0 6.46 0 25.33 0 0 0

−0.0998 cosψT0 −0.0998 sinψT0 −0.9950 0 −25.33 0 0 0 0



H301 =


−97.254 sinψT0 151.29 cosψT0 0

180 cosψT0 0 −17.964 cosψT0

17.964 sinψT0 −179.1 cosψT0 −180 sinψT0



H102 =



0 0 0 0 0 0 0 0 0 0 −9.8060 0

0 0 0 0.0371 0 −0.9993 0 0 0 0 0 0.0490

0 0 0 0 1.0000 0 0 0 0 0 −0.0006 0

0 0 0 0 0 0 −1.0000 0 0 0 0 0

0 0 0 0 0 0 0 −1.0000 0 0 0 0

0 0 0 0 0 0 0 0 −1.0000 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0


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H202 =


− cosψT0 − sinψT0 0 0 −6.46 0 0 0 0

sinψT0 − cosψT0 0 6.46 0 25.33 0 0 0

0 0 −1 0 −25.33 0 0 0 0



H302 =


200 sinψT0 0 0

200 cosψT0 0 0

0 −200 cosψT0 −200 sinψT0


Note in nominal conditions 3 and 4, ψT0, VxT0, VyT0 and VzT0 are time-varying as these

conditions represent tanker turn.

H03,04 =

 H1

H2 | H3 | H4 | H5 | H6


where H03,04 ∈ <12×12, H1 ∈ <9×12, H2 ∈ <3×2, H3 ∈ <3×7, H4 ∈ <3×1, H5 ∈ <3×1 and

H6 ∈ <3×1.

H103 =



0 0 0 0 0 0 0 0 0 0 −9.8017 −0.2821

0 0 0 0.0621 0 −0.9981 0 0 0 0 −0.0017 0.0481

0 0 0 0 1.0000 0 0 0 0 0 0.0001 −0.0252

0 0 0 −0.0001 −0.0286 −0.0150 −1.0000 0 0 0 0 0

0 0 0 0.0271 0 −0.0024 0 −1.0000 0 0 0 0

0 0 0 −0.0063 0.0012 0.0001 0 0 −1.0000 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0



H203 =


−0.5403 cosψT0 −0.5403 sinψT0

0.8776 sinψT0 − 0.0479 cosψT0 −0.8776 cosψT0 − 0.0479 sinψT0

−0.4794 sinψT0 − 0.0876 cosψT0 0.4794 cosψT0 − 0.0876 sinψT0


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H303 =


0.8415 0 −6.46 0 0 0 0

−0.4770 6.46 0 25.33 0 0 0

−0.8732 0 −25.33 0 0 0 0



H403 =


−0.5403(VxT0 sinψT0 − VyT0 cosψT0)

0.8776(VxT0 cosψT0 + VyT0 sinψT0) + 0.0478(VxT0 sinψT0 − VyT0 cosψT0)

−0.4794(VxT0 cosψT0 + VyT0 sinψT0) + 0.0876(VxT0 sinψT0 − VyT0 cosψT0)



H503 =


0.8405(VxT0 cosψT0 − VyT0 sinψT0) + 0.5403VzT0

0.4770(−VxT0 cosψT0 − VyT0 sinψT0 + VzT0)

−0.8732(VxT0 cosψT0 + VyT0 sinψT0) + 0.0876VzT0



H603 =


0

0.4794(−VxT0 sinψT0 + VyT0 cosψT0)− 0.0876(VxT0 cosψT0 + VyT0 sinψT0)− 0.8732VzT0

0.8776(−VxT0 sinψT0 + VyT0 cosψT0) + 0.0478(VxT0 cosψT0 + VyT0 sinψT0)− 0.4770VzT0



H104 =



0 0 0 0 0 0 0 0 0 0 −9.8032 −0.2343

0 0 0 0.0475 0 −0.9989 0 0 0 0 −0.0013 0.0423

0 0 0 0 1.0000 0 0 0 0 0 0.0001 −0.0246

0 0 0 −0.0001 −0.0279 −0.0163 −1.0000 0 0 0 0 0

0 0 0 0.0264 0 −0.0019 0 −1.0000 0 0 0 0

0 0 0 −0.0068 0.0009 0.0001 0 0 −1.0000 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0



H204 =


−0.5403 cosψT0 −0.5403 sinψT0

0.8776 sinψT0 − 0.0479 cosψT0 −0.8776 cosψT0 − 0.0479 sinψT0

−0.4794 sinψT0 − 0.0876 cosψT0 0.4794 cosψT0 − 0.0876 sinψT0


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H304 =


0.8415 0 −6.46 0 0 0 0

−0.4770 6.46 0 25.33 0 0 0

−0.8732 0 −25.33 0 0 0 0



H404 =


−0.5403(VxT0 sinψT0 − VyT0 cosψT0)

0.8776(VxT0 cosψT0 + VyT0 sinψT0) + 0.0478(VxT0 sinψT0 − VyT0 cosψT0)

−0.4794(VxT0 cosψT0 + VyT0 sinψT0) + 0.0876(VxT0 sinψT0 − VyT0 cosψT0)



H504 =


0.8405(VxT0 cosψT0 − VyT0 sinψT0) + 0.5403VzT0

0.4770(−VxT0 cosψT0 − VyT0 sinψT0 + VzT0)

−0.8732(VxT0 cosψT0 + VyT0 sinψT0) + 0.0876VzT0



H604 =


0

0.4794(−VxT0 sinψT0 + VyT0 cosψT0)− 0.0876(VxT0 cosψT0 + VyT0 sinψT0)− 0.8732VzT0

0.8776(−VxT0 sinψT0 + VyT0 cosψT0) + 0.0478(VxT0 cosψT0 + VyT0 sinψT0)− 0.4770VzT0


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