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Abstract

Representation theory of Lie algebra of a finite dimensional reductive Lie algebra g is a

long-standing problem. The ultimate goal is to classify all representations of g. However.

the only case only case when a complete classification is obtained is the case of g = sl(2),

[5]. Hence, it is natural to study certain categories of representations of g for which some

finiteness conditions on the action of certain elements of g is enforced. In this thesis,

we introduce a class of representations T (g, V,S) of sl(n + 1) of mixed tensor type. By

varying the polynomial g, the gl(n)-module V , and the set S, we obtain important classes

of weight representations over the Cartan subalgebra h of sl(n + 1), and representations

that are free over h. Moreover, An isomorphism theorem and simplicity criterion for

T (g, V,S) is provided.
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Chapter 1

Introduction

There are two important, but opposite in nature, categories of modules of finite-dimensional

reductive Lie algebras a. The first one consists of weight modules, namely, those that de-

compose into direct sums of their weight spaces relative to a fixed Cartan subalgegra h.

The second one is the category of h-free modules. The classification of the simple objects

in these categories is far from reach unless one imposes an additional finiteness condi-

tion. In particular, simple weight a-modules with finite weight multiplicities have been

classified by O. Mathieu, [13], following works of G. Benkart, D. Britten, S. Fernando, V.

Futorny, A. Joseph, F. Lemire, and others. On the other hand, the classification of all

simple h-free modules of finite-rank is still an open problem and the only known case is

when the rank equals one, [15].

An important part of Mathieu’s breakthrough paper [13] is the new notion of coherent

family - a “big” weight module whose support coincides with the whole h∗. Coherent

families have explicit geometric realizations via sections of vector bundles of algebraic

varieties (called tensor coherent families), and also can be constructed purely algebraically

through twisted localization of highest weight modules. The geometric realization is

especially convenient in the case of sl(n + 1), when the coherent families are direct sums

of tensor products T (P,V ) = P ⊗V of mixed type. More precisely, P is a module over the
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algebra D(n) of polynomial differential operators of O = C[t1, ..., tn] and V is a module

over the Lie algebra gl(n). As a result, we have an explicit presentation of the root

elements of sl(n+1) in terms of differential operator presentation. The tensor modules of

mixed type T (P,V ) were introduced by Shen, [18] and Rudakov, [17], and play important

role in the representation theory of various Lie algebras of derivations and vector fields,

see for example, [4], [10], [12], [19], [20].

Throughout the thesis we fix s = sl(n+1). One of the tools used in the study of h-free

s-modules is the weighting functor W. This functor maps an h-free module M of finite

rank to a coherent family M and raises a natural question about further connections

between the categories of weight and h-free modules. A main purpose of the present

thesis is to make such connection and in particular to combine both types of modules

together. This is done thanks to applying two functors on the tensor modules T (O, V ).

The two functors are exponentiation expg by a polynomial g, and a Fourier transform ψS

relative to a subset S of {1,2, ..., n}. As a result we define the exponential tensor modules

T (g, V,S). The case of g = 0 and improper set S is closely related to the geometric

realization of Mathieu’s tensor coherent families. When g = 0, by varying S we obtain

all injective partly-irreducible coherent families. In particular, every simple bounded s-

module appears as a submodule of some coherent family of general type.

The case when g has degree 1 and V is 1-dimensional leads to the complete list of

h-free modules of rank 1. Furthermore, we obtain interesting classes of Whittaker mod-

ules and weight modules relative to other Cartan subalgebras. Also, connections with

the weighting functor and Witten deformation of the de Rham complex are discovered.

Two of the main results in the present paper are a simplicity criterion and an isomor-

phism theorem for T (g, V,S). In particular, we provide new families of simple non-weight

modules over sl(n+ 1) obtained through explicit presentation of the Lie algebra in terms

of differential operators. The main tools used in the proofs of these two results are the
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twisted localization and translation functors.

3



Chapter 2

Preliminary Concepts

All vector spaces, algebras, and tensor products are assumed to be over C unless otherwise

stated. We set JkK = {1,2, ..., k} for a positive integer k. By Z≥k we denote the set of all

integers i such that i ≥ k. We define Z>k, Z≤k, and Z<k similarly. Let C∗ = C ∖ {0}.

By Sk we denote the symmetric group of k letters.

2.1 Lie algebras

Definition 2.1.1. An F-Lie algebra is a pair (g, [⋅, ⋅]) consisting of a vector space g over

a field F and a (Lie) bracket [⋅, ⋅] ∶ g × g ↦ g, which is a bilinear map and satisfies the

following conditions:

1. [x, y] = −[y, x] (skew symmetry),

2. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity)

∀a, b ∈ F and ∀x, y, z ∈ g.

Remark 1. A Lie algebra can be defined over any arbitrary field F. However, the ground

field F will be C throughout the rest of this thesis.
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For a vector space V, we denote End(V ) the algebra of endomorphisms of V . End(V )

is a Lie algebra when paired with the commutator as the Lie bracket. We denote this Lie

algebra by gl(V ).

A special case of gl(V ) is when V is a finite dimensional vector space of dimension

n over C. By fixing a basis of V , gl(V ) can be identified as the Lie algebra gl(n,C),

where gl(n,C) = {n × n matrices with entries in C}. gl(n,C) is called the general linear

Lie algebra. The basis of gl(n,C) is {Eij ∶ 1 ≤ i, j ≤ n}, where Eij is the elementary n × n

matrix with 1 in the ij position and 0 elsewhere. Moreover, the Lie bracket on its basis

elements can be computed explicitly using the following formula:

[Eij,Ekl] = δjkEil − δliEkj,

where δi,j is the Kronecker delta function.

Remark 2. In general, we can define a Lie algebra structure on A, where A is an as-

sociative algebra over a field. By letting [x, y] = xy − yx, where xy is the multiplication

structure on A, (A, [., .]) becomes a Lie algebra.

Example 2.1.2 (Witt algebra and Virasoro algebra). Let Wn be vector space with basis

{lm∣m ∈ Z} together with the Lie bracket defined as [lm, ln] = (m−n)lm+n for all m,n ∈ Z.

Wn is an infinite dimensional Lie algebra, which is called the Witt algebra.

Let V be a vector space with basis {lm∣m ∈ Z}∪{c}, where the Lie bracket is defined as

following:

[lm, ln] = (m − n)lm+n + δm+n,0
c
12(m

3 −m),

[c,V] = 0.

V is the central extension of Wn, which is called the Virasoro algebra.

Witt algebra and Virasoro algebra have many applications in Physics.
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Definition 2.1.3. A vector subspace h of g is a Lie subalgebra if [x, y] ∈ h for all x, y ∈ h.

Since Tr(xy) = Tr(yx) for every x, y ∈ gl(n,C), sl(n,C) = {n × n traceless matrices

with entries in C} is a Lie subalgebra of gl(n,C) . The Lie algebra sl(n,C) is called the

special linear algebra.

Remark 3. For the sake of simplicity, we denote gl(n,C) by gl(n) ,and sl(n,C) by sl(n).

In particular, The Lie algebra sl(2) will be used frequently throughout this thesis as

examples. sl(2) has the following standard basis:

f =

⎛
⎜
⎜
⎝

0 0

1 0

⎞
⎟
⎟
⎠

; h =

⎛
⎜
⎜
⎝

1 0

0 −1

⎞
⎟
⎟
⎠

; and e =

⎛
⎜
⎜
⎝

0 1

0 0

⎞
⎟
⎟
⎠

.

Nonetheless, the Lie bracket with respect to the above basis is given by the following

formulas:

[h, e] = 2e, [h, f] = −2f, [e, f] = h.

Definition 2.1.4. An ideal i of a Lie algebra g is a subalgebra of g such that [x, y] ∈ i

for all x ∈ i, y ∈ g .

Example 2.1.5. sl(n) is an ideal of gl(n).

Let A be a subset of g. The set of elements in g that commute with all elements a

in A is called the centralizer of A in g. We denote this set by Cg(A). Nonetheless, the

centralizer of g in g is called the center of g. By definition, the center of a Lie algebra g

is an ideal of g.

Example 2.1.6. The center of gl(n) is the set of all scalar multiple of the identity matrix

In.

Definition 2.1.7. The derived series of a Lie algebra g is the sequence of ideals g(0) =

g,g(1) = [g(0),g(0)], ...,g(k) = [g(k−1),g(k−1)]. The lower central series of a Lie algebra g is

the sequence of ideals g0 = g,g1 = [g0,g0], ...,gk = [gk−1,gk−1].
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A lie algebra g is nilpotent if there exists k ∈ Z≥0 such that gk = 0. A lie algebra g is

solvable if there exists k ∈ Z≥0 such that g(k) = 0. By definition, g(k) ⊂ gk. Thus, every

nilpotent Lie algebra is sovable. We denote Rad(g) the largest solvable ideal of g, which

is called the radical of g.

One example of nilpotent lie algebra is the subalgebra of gl(n) consisting of all strictly

upper triangular matrices, which is denoted by n(n). Note that n(n) is also a solvable

Lie algebra. However, The lie subalgebra consisting of all upper triangular matrices t(n)

is solvable only.

Definition 2.1.8. Let g and g
′

be Lie algebras. A linear map ϕ ∶ g → g
′

is a homomor-

phism of Lie algebras if ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ g.

One crucial example of Lie algebra homomorphisms is ϕ ∶ g → gl(V ). This map

together with the vector space V is a representation of g, which will be studied throughout

this thesis.

Definition 2.1.9. Let g be a Lie algebra and h be a Lie subalgebra of g. The normalizer

of h is the subalgebra Ng(h) = {x ∈ g∣[x,h] ⊂ h}. A subalgebra h is self-normalizing if

Ng(h) = h.

2.2 Semisimple Lie algebras, Root systems, and their

properties

Definition 2.2.1. A non-abelian Lie algebra g is simple if the only ideals of g are 0 and

g.

A lie algebra g is semisimple if g = ⊕n
i=1 gi, where gi is simple for all i. In fact, if

Rad g = 0, g is semisimple.
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The lie algebra gl(n) is not semisimple since gl(n) = sl(n) ⊕ CIn. However, sl(n) is

simple and thus, it is also semisimple.

A lie algebra g comes with a symmetric, bilinear form called the Killing form, which

is defined as follow:

k(x, y) ∶= Tr([x, [y, ]]), for x, y ∈ g.

Note that k ∶ g×g→ C is also associative in the sense that k([x, y], z) = k(x, [y, z])∀x, y, z ∈

g.

The killing form k is non-degenerate if and only if g is semisimple. This condition is

known as a Cartan criterion.

Definition 2.2.2. Let h be a Lie subalgebra of g. h is called a Cartan subalgebra if h is

a nilpotent self-normalizing subalgebra of g.

In the case g = gl(n), it is easy to see that the Cartan subalgebra h is the one, which

contains all diagonal matrices of g. Specifically, h = SpanC{Eii ∶ 1 ≤ i ≤ n}.

We denote h∗ = Hom(h,C) = {f ∶ h→ C ∶ f is an C-linear map}. For α ∈ h∗, we denote

gα = {g ∈ g ∶ [h, g] = α(h)g,∀h ∈ h}.

Remark 4. For g is a semi-simple Lie algebra over C, the Cartan subalgebra h acts

diagonally on g. Moreover, h is abelian. Hence, we have the following decomposition

g =⊕α∈h∗ gα.

Definition 2.2.3. The root system of a Lie algebra g is the set Φ = {α ∈ h∗ ∶ gα ≠ 0}.

For each α ∈ Φ, gα is callled a root space corresponding to the root α. A nonzero

element in gα is called a root vector. We note that g = h⊕⊕α∈Φ gα since g0 = h. For α ∈ Φ,

we pick eα ∈ gα, fα ∈ g−α, and let hα ∶= [eα, fα] such that eα, fα, and hα form a standard

basis of sl(2). Note that α(hα) = 2.
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Theorem 2.2.1 (Properties of Φ). Let α,β ∈ Φ such that β ∉ {±α}, we have the

following:

1. β(hα) ∈ Z;

2. β − β(hα)α ∈ Φ;

3. Cα ∩Φ = {±α};

4. if α + β ∈ Φ, then [gα,gβ] = gα+β;

5. Φ spans h∗.

Definition 2.2.4. Define the operator ⟨., .⟩ ∶ h∗ × h∗ → C by ⟨α,β⟩ = 2 (α,β)(β,β) , where (., .) is

the standard inner product on the vector space h∗.

Definition 2.2.5. Let σα be the reflection of h∗ across the hyperplane orthogonal the root

α, defined by λ↦ λ − ⟨λ,α⟩α.

Definition 2.2.6. The set W = {σα ∶ α ∈ Φ} is called the Weyl group of Φ.

We denote ρ = 1
2 ∑α∈ϕ+ α. By definition, W is a subgroup of GL(h∗). We define the

dot action of W on h∗ as w ⋅ λ = w(λ + ρ) − ρ. We denote the stabilizer of λ via the dot

action by Wλ = {w ∈W ∶ w ⋅ λ = λ}.

Definition 2.2.7. Let π ⊂ Φ. π is called a base of Φ if each root β ∈ Φ can be expressed

uniquely as ±∑α∈π cαα , where cα ∈ Z≥0.

We denote Φ+ ∶= {α ∈ Φ ∶ α ∈ Z≥0Φ} and Φ− ∶= {α ∈ Φ ∶ α ∈ Z≤0Φ}. Φ+ and Φ− are called

the set of positive and negative roots, respectively. Note that the root system Φ can be

written as the disjoint union Φ = Φ+ ⊔Φ−.

By letting n− ∶=⊕α∈Φ− gα and n+ ∶=⊕α∈Φ+ gα, we obtain a triangular decomposition of

our semi-simple complex Lie algebra g :

9



g = n− ⊕ h⊕ n+.

This triangular decomposition depends on π and h.

Definition 2.2.8. Let b = h ⊕ n+. b is called the Borel subalgebra of g with respect to π

and h.

As an example, we consider the following root system:

Figure 2.1: Root system of type A2

The base of the above root system is π = {α,β}. The set of positive roots is Φ+ =

{α,β,α + β} and the set of negative roots is Φ− = {−α,−β,−α − β}.

Given g = sl(n), a common basis of sl(n) is {Eij,Ekk −Ek+1,k+1 ∶ 1 ≤ i, j ≤ n, i ≠ j,1 ≤

k ≤ n − 1}. Note that a Cartan subalgebra of sl(n) with respects to the above basis can

be realized as SpanC{Ekk −Ek+1,k+1 ∶ 1 ≤ k ≤ n − 1}. Let {ϵi ∶ 1 ≤ i ≤ n} be dual basis of

{Eii ∶ 1 ≤ i ≤ n}, where ϵi(Ejj) = δij. We have the following information of the Lie algebra

sl(n):

• Root system: Φ = {εi − εj ∶ i ≠ j}.

• Φ+ = {εi − εj ∶ i < j}, Φ− = {εi − εj ∶ i > j}.

• Basis π = {εi − εi+1 ∶ i = 1, ..., n − 1}.

10



• Root subspaces:

(sl(n))εi−εj ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

SpanC{eij}, i < j

SpanC{eji}, i > j

• Weyl group: W = Sn (permutations of the εi).

sl(2) case

• sl(2) = SpanC{f, h, e}, where f, h, e are defined as above.

• n− = SpanC{f},h = SpanC{h},n+ = SpanC{e}.

• Φ = {±α}, where α(h) = 2.

• π = α.

Remark 5. In the case that g = sl(2), h∗ ≅ C. It is convenient to identify h∗ as C and

the simple root α as 2.

2.3 Lie algebra Modules

Definition 2.3.1. A representation of a Lie algebra g is a pair (ρ, V ), where V is a vector

space and ρ ∶ g→ gl(V ) is a Lie algebra homomorphism.

A g-representation (ρ, V ) could be seen as g-module V with action x ⋅ v = ρ(x)(v).

In particular, a vector space V together with the bilinear action g ×M → M defined by

(g,m)↦ g ⋅m, is a g-module if

[x, y] ⋅m = x ⋅ y ⋅m − y ⋅ x ⋅m, for all x, y ∈ g and m ∈M .

Remark 6. Through out the rest of this thesis, module language will be used instead of

representation.
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Example 2.3.2. Let g = gl(n) and V = Cn, we define the natural module by letting each

element in gl(n) acts on Cn by the normal matrix multiplication. This module structure

also holds for any Lie subalgebras of gl(n).

Example 2.3.3. Let g be any Lie algebra. The Adjoint module of g is defined as x ⋅ y =

adx(y) = [x, y]∀x, y ∈ g.

A subspace W of a g-module V is a submodule if W is invariant under the action of g,

namely gW ⊂W . By default, {0} and V are submodules of V. Moreover, If V contains no

other submodules beside {0} and V , then V is a simple, or irreducible. On one hand, A

module V is said to be semi-simple or completely reducible if V can be written as dirrect

sum of simple modules. On the other hand, V is an indecomposible module if it is not

the direct sum of proper submodules.

Example 2.3.4. Let g = gl(n), and V = C[x1, x2, ..., xn]. V is a g-module, where

the g-action can be defined as Eij ⋅ f(x1, x2, ..., xn) = xi
∂f
∂xj

, for all f(x1, x2, ..., xn) ∈

C[x1, x2, ..., xn]. Note that V is a completely reducible module since V =⊕∞i=0C[x1, x2, ..., xn]i,

where C[x1, x2, ..., xn]i is a space of homogeneous polynomials of degree i.

Definition 2.3.5. Let V and W be g-module. A g-module homomorphism is a linear

map ϕ ∶ V →W such that ϕ(g ⋅ v) = g ⋅ ϕ(v), for all g ∈ g, v ∈ V .

Definition 2.3.6. Let W be a submodule of V over a Lie algebra g. The quotient vector

space V /W is a g-module where the g-action is defined as x ⋅ (v +W ) = x ⋅ v +W .

2.3.1 The universal enveloping algebra

Let (V,φ) be a representation of Lie algebra g with φ ∶ g → gl(V ) is a Lie algebra

homomorphism. It is difficult to study representations of Lie algebra since im(φ) is not

closed under composition of linear maps. Hence, it is natural to assign an object with

associative-structure to each Lie algebra g such that Lie bracket is encoded as commutator.
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We recall that any associative algebra A is a Lie algebra with [x, y] = xy−yx ∀x, y ∈ U .

We denote this Lie algebra (A, [., .]).

Definition 2.3.7. The universal enveloping algebra of a Lie algebra g is defined as an

associative algebra U together with a Lie algebra homomorphism ι ∶ g → (U, [., .]) such

that for an associative algebra A and any Lie algebra homomorphism α ∶ g → (A, [., .]),

there exist a unique homomorphism of associative algebra γ ∶ U → A, such that α = γ ○ ι.

That is, the following diagram is a commutative diagram:

For a C-vector space V , we define the tensor algebra T (V ) of V as the direct sum

T (V ) ∶= ⊕∞k=0 V
⊗k where V ⊗0 ∶= F,V ⊗k ∶= V ⊗ ... ⊗ V (k-copies of V ). Note that T (V ) is

an associative algebra over C.

Construction of the universal enveloping algebra: for a Lie algebra g, the

universal enveloping algebra U(g) ∶= T (g)/J , where J is a 2-sided ideal generated by

{x⊗ y − y ⊗ x − [x, y] ∶ x, y ∈ g}.

Remark 7. Let h be a Cartan subalgebra of g with basis {h1, ..., hk}. U(h) ≅ C[h1, ..., hk]

as associative algebras. This observation will be used frequently in this thesis.

Theorem 2.3.1 (Poincare-Birkhoff-Witt theorem). Let (g1, g2, ..., gn) be an ordered

basis of g. Then {gk11 g
k2
2 ...g

kn
n ∶ ki ∈ Z≥0} forms a basis of U(g).
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Example 2.3.8. Let g = sl(2), the basis of U(sl(2)) is {f ihjek ∶ i, j, k ∈ Z≥0}.

We denote the centralizer of h in U(g) by U(g)0 ∶= {u ∈ U(g) ∶ [h,u] = 0∀h ∈ h}. By

definition, U(g)0 is an associative and unital subalgebra of U(g) . The center of U(g) is

denoted by Z(g). By definition of Z(g) and U(g)0, Z(g) ⊂ U(g)0.

Example 2.3.9. In the case g = sl(2), we denote c ∶= (h + 1)2 + 4fe ∈ U(sl(2)). It

can be checked by direct computation that c ∈ Z(sl(2)). Nonetheless, this element c is

called the Casimir element of the Lie algebra sl(2). Moreover, Z(sl(2)) = C[c] and

U(sl(2))0 = C[c, h].

2.3.2 Weight modules and highest weight modules

Definition 2.3.10. An g-module M is a weight module if M = ⊕λ∈h∗Mλ, where Mλ =

{m ∈M ∣ h ⋅m = λ(h)m, for every h ∈ h}.

The weight space of M corresponds to λ is Mλ and dimMλ is the multiplicity of the

weight λ. For a weight module M , we denote the support of M as Supp(M) ∶= {λ ∈ h∗ ∶

Mλ ≠ 0}. In fact, M =⊕λ∈Supp(M)Mλ.

Lemma 2.3.2. For any α ∈ Φ, and λ ∈ h∗, gαMλ ⊂Mλ+α.

Proof. Let v ∈Mλ, g ∈ gα, and h ∈ h.

h ⋅ (g ⋅ v) = g ⋅ (h ⋅ v) + [h, g] ⋅ v = g ⋅ λ(h)v + α(h)g ⋅ v = (λ + α)(h)g ⋅ v

Hence, g ⋅ v ∈Mλ+α.

We denote the space ZΦ of all Z-linear combinations of roots, which is called the root

lattice corresponds to the root system Φ. Note that ZΦ forms an additive subgroup of

h∗. From the above lemma, M is simple if Supp(M) is in a single coset of h∗/ZΦ.

In the case that g = sl(2), the root lattice is 2Z.
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Example 2.3.11. Adjoint module of g is a weight module if g is a semi-simple Lie algebra

over C since g = ⊕α∈h∗ gα, where gα = {g ∈ g ∶ [h, g] = α(h)g,∀h ∈ h}. In this example,

Suppg = Φ ∪ {0}.

Moreover, The adjoint module g on U(g) is a weight module since the adjoint action

of h on U(g) is diagonalizable. In the case of g = sl(2), the adjoint action of h on a basis

element of U(sl(2)) can be computed explicitly as follow:

[h, f ihjek] = 2(k − i)f ihjek.

However, the regular module of g on U(g) is not a weight module since h acts freely

on U(g) by PBW theorem.

Example 2.3.12. Let ξ ∈ C/2Z and a ∈ C. We consider the vector space V (ξ, a) with

basis {vµ ∶ µ ∈ ξ}. V (ξ, a) is a weight module of sl(2) under the following action:

e ⋅ vµ =
1

4
(a − (µ + 1)2)vµ+2,

f ⋅ vµ = vµ−2,

h ⋅ vµ = µvµ.

Note that Supp(V (ξ, a)) = ξ, where ξ ∈ C/2Z. This module is usually called a dense

module. Nonetheless, any simple weight sl(2)-module is a subquotient of some V (ξ, a),

which is described in detail in [14].

Definition 2.3.13. For λ,µ ∈ h∗, we define the following partial order λ ≤ µ if µ − λ ∈

Z≥0Φ+ .

Definition 2.3.14. Let M be a weight module, and λ ∈ Supp(M). If λ is maximal with

respects to the above partial order in Supp(M), then λ is called the highest weight of M .

Nonetheless, M is called a highest weight module of the weight λ in this case.
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Highest weight modules were first studied by Verma in his thesis in 1966 [22]. Verma

modules are typical examples of highest weight modules and they can be constructed as

follow:

For λ ∈ h∗, let Cλ be the 1 dimensional h–module where h ⋅ v = λ(h)v, for all h ∈ h.

By setting n+Cλ = 0, Cλ becomes a h ⊕ n+–module (U(b)-module) .The Verma module

corresponds to weight λ is a g–module, which is defined as M(λ) = U(g)⊗U(b) Cλ.

Lemma 2.3.3. Let M(λ) be a Verma module of weight λ of a Lie algebra g. Then:

1. M(λ) ≅ U(n−) as U(n−)-module;

2. dimV λ = 1;

3. Supp(M(λ)) = λ −Z≥0Φ+.

Construction of the Verma module M(λ) of sl(2):

Fix λ ∈ C and let vλ ∈ Cλ be a basis element. Cλ is a U(b)-module since h ⋅ vλ = λvλ

and e ⋅ vλ = 0. Through the above definition of Verma modules and PBW theorem,

M(λ) = SpanC{f
i ⊗ vλ ∶ i ∈ Z≥0}. Moreover, the action sl(2) on M(λ) can be visualized

through the following diagram:
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In this example, Supp(M(λ)) = λ − 2i, for all i ∈ Z≥0 . The weight multiplicity is 1 for

every ν ∈ Supp(M(λ)).

By construction, M(λ) has a unique maximal submodule. We denote L(λ) the simple

quotient of M(λ) by its maximal submodule.

Definition 2.3.15. Let λ ∈ h∗. λ is integral if λ(hα) ∈ Z, for all α ∈ π.

It is a well-known result that L(λ) is a finite dimensional g-module if and only if

λ(hα) ∈ Z≥0, for all α ∈ π. In this case, λ is called an integral, dominant weight. This

result also gives a classification of all simple finite dimensional g module. Nonetheless,

this result will be used in the later chapters.

In the case the g = sl(2), h∗ ≅ C, we consider λ = n ∈ Z≥0. The Verma module M(n)

has a maximal submodule M(−n − 2), and L(n) =M(n)/M(−n − 2). Moreover, L(n) is

a finite dimensional of dimension n+1.

2.3.3 Coherent families

We recall that U(g)0 is the centralizer of h in U(g).

Definition 2.3.16. A coherent g-family of degree d is a weight g-module M such that:

(i) dimMλ = d for every λ ∈ h∗

(ii) For any u ∈ U(g)0, the map λ↦ Tr (u∣Mλ) is polynomial in λ.

Coherent family was first introduced by Mathieu in 2000 in order to classify simple

weight modules with finite weight multiplicities of reductive Lie algebras. It can be

understood as a ”big” weight module where its support is the whole h∗.

Note that since finitely generated bounded modules have finite length (Lemma 3.3

in [13]), we can define the semisimplification Mss of a coherent family M. Namely,

Mss =⊕λ∈h∗/ZΦM[λ]ss, whereM[λ] =⊕α∈ZΦM
λ+α.
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Proposition 2.3.17. Let M be a coherent family.

1. For any λ ∈ h∗, M[λ] has finite length.

2. The coherent family M and M[λ]ss have the same simple subquotients.

Example 2.3.18. Fix a ∈ C and consider the the following module

V (a) =⊕ξ∈C/2Z V (ξ, a),

where V (ξ, a) is defined in 2.3.12.

Coherent family can be expressed in terms of differential operators as the following

example.

Example 2.3.19. Fix a ∈ C. LetM(a) be the sl(2)-module with basis {tλ ∶ λ ∈ C}, where

the action is given by the following formulas:

e ↦ at − t2∂t,

f ↦ ∂t,

h ↦ 2t∂t − aI.

This is a coherent family of degree 1.

A coherent family can be obtained by applying twisted localization functor on a single

Verma module. It is known that Coherent families exist for Lie algebras of type A and C

([13]).

2.3.4 U(h)– free modules

Remark 8. If M is a weight module, then U(h) acts locally finitely on M , i.e. dimU(h) ⋅

m <∞, ∀m ∈M .
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In contrast with weight modules, a U(h)-free module is a module on which U(h) acts

freely. In particular, a U(g)-module M is a U(h)-free module of rank k if and only if

Res
U(g)
U(h)M ≅ U(h)

k.

Example 2.3.20. Let N = C[t]et be an sl(2)-module where the sl(2)-action is defined as

follow:

e ↦ −t2∂t,

f ↦ ∂t,

h ↦ 2t∂t.

Note that the action of h on N is a free action from direct computation. In fact, N

is a U(h)– free module of rank 1, which will be presented as a case of exponential tensor

module in later chapter.

Example 2.3.21. Let M = C[h] be a sl(2)-module where the sl(2)-action is defined as

follow:

h ⋅ f(h) = 2hf(h),

e ⋅ f(h) = hf(h − 1),

f ⋅ f(h) = −hf(h + 1).

Note that the sl(2)-module M is free over U(h) of rank 1. Moreover, simple sl(n +

1)–modules that are free over U(h) of rank 1 was classified by Nilsson in 2013 ([15]),

which is summarized as follow:

Let hk ∶= ek,k−
1
n+1 ∑

n+1
i=1 ei,i. Recall that h is the Cartan subalgebra of sl(n+1) spanned

by hi, i = 1, ..., n. We identify U(h) with C[h1, ..., hn]. Let σi ∈ Aut(C[h]) be defined by

σi(f(h1, ..., hn)) = f(h1, ..., hi − 1, ..., hn), i ∈ JnK. Then, following [15], for S ⊂ JnK and
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b ∈ C we define the s-module MS
b as follows. The underlying space of MS

b is C[h1, ..., hn]

and the sl(n + 1)-action is defined by

hk ⋅ f ∶= hkf, k ∈ JnK;

ei,n+1 ⋅ f ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(h1 + ... + hn + b)σif, i ∈ S,

(h1 + ... + hn + b)(hi − b − 1)σif, i /∈ S;

en+1,j ⋅ f ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

−(hj − b)σ−1j f, j ∈ S,

−σ−1j f, j /∈ S;

ei,j ⋅ f ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(hj − b)σiσ−1j f, i, j ∈ S,

σiσ−1j f, i ∈ S, j /∈ S,

(hi − b − 1)(hj − b)σiσ−1j f, i /∈ S, j ∈ S,

(hi − b − 1)σiσ−1j f, i, j /∈ S.

One of the main results in [15] is that the modules Fa(MS
b ) and FτFa(MS

b ), for S ⊂ JnK,

a ∈ Cn, form a skeleton in the category of sl(n + 1)-modules which are free of rank 1 when

restricted to U(h). In this thesis, we will present the list of these modules as a particular

case of exponential tensor modules.

2.3.5 Central character

Definition 2.3.22. Let M be a g-module. The central character of M is a Lie algebra

homomorphism χ ∶ Z(g)→ C, where z.m = χ(z)m, for all z ∈ Z(g) and m ∈M .

Note that every simple modules have central characters. However, the converse is

20



not always true. A well-known counter example is the class of Verma modules. In fact,

Verma modules might not be simple but always have central character. Moreover, a

Verma module M(λ), its submodules, and subquotients, have the same central character

corresponds to the weight λ. This central character is usually denoted as χλ.

Another important result is that every central character can be realized as a central

character of a Verma module. In another words, if χ is the central character of a module

M , χ = χλ for some λ ∈ h∗.

A module M is said to have generalized central character if M = ⊕χMχ, where

Mχ ∶= {m ∈M ∶ for each z ∈ Z(g) there is k(z) ∈ Z≥1 such that (z − χ(z))k(z) = 0}. Since

z ∈ Z(g), Mχ is a submodule of M.

2.3.6 Harish-Chandra Homomorphism

We denote I ∶= U(g)0⋂U(g)n+. It is easy to see that I is a 2 sided ideal of U(g)0.

Furthermore, we also have U(g)0 = U(h)⊕ I as vector spaces.

Definition 2.3.23. The Harish-Chandra homomorphism is a homomorphism of associa-

tive algebras, which is defined as the projection φ ∶ U(g)0 → U(h).

By U(h)(W,⋅), we denote the algebra U(h), which is invariant under the dot action of

W .

Theorem 2.3.4. The restriction of the Harish-Chandra homomorphism to Z(g) induces

an isomorphism between Z(g) and U(h)(W,⋅).

Corollary 2.3.4.1. Let λ,µ ∈ h∗, χλ = χµ iff λ ∈W ⋅ µ.
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2.4 Functors

2.4.1 Twisting functors

Let ϕ ∶ g→ g be a Lie algebra automorphism. We define a the endofunctor F on g-module

as follow:

Fϕ ∶ g-module → g-module, where M ↦Mϕ.

Here M is a g-module and Mϕ is identified as M where the g-action is twisted by the

automorphism ϕ . Explicitly, the action of g on Mϕ is given by x ●m = ϕ(x) ⋅m, for all

m ∈M , x ∈ g.

2.4.2 Translation functors

Let V be a finite-dimensional g-module, and let η, λ ∈ h∗ be such that λ−η ∈ SuppV . Let

gµ-mod denote the category of s-modules which admit a generalized central character χµ.

The translation functor T η,λV ∶ gη-mod → gλ-mod is defined by T η,λV (M) = (M ⊗ V )
χλ ,

where (M ⊗ V )
χλ stands for the direct summand of M ⊗V admitting generalized central

character χλ. Assume in addition that λ− η belongs to the W -orbit of the highest weight

of V , the stabilizers of η + ρ and λ + ρ in the Weyl group coincide and η + ρ, λ + ρ lie in

the same Weyl facet. Then T η,λV ∶ gη-mod → gλ-mod defines an equivalence of categories

(see [3]).

2.4.3 Weighting functor for sl(n + 1)

The definition of weighting functor W appeared first in [16] attributing the idea to O.

Mathieu. For any module M over sl(n + 1), the weighting W(M) of M is a coherent

family defined as follows. Let MaxU(h) denote the set of maximal ideals of U(h). Also,
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for λ ∈ h∗ by λ ∶ U(h)→ C we denote the algebra homomorphism such that λ∣h = λ. Then

W(M) ∶= ⊕
m∈MaxU(h)

M/mM = ⊕
λ∈h∗

M/ker(λ)M

has an sl(n+1)-module structure via the action xα ⋅(v+ker(λ)M) ∶= (xα ⋅v)+ker(λ + α)M ,

where xα is in the α-root space of sl(n + 1).

Example 2.4.1. Let h1 =
1
2(e11 − e22). Let M = C[h] be a sl(2)- module where the

sl(2)-action is defined as follow:

h1 ⋅ f(h) = hf(h),

e ⋅ f(h) = hf(h − 1),

f ⋅ f(h) = −hf(h + 1).

We recall that Φsl(2) = {±α}, where α(h1) = 1. Let vλ = 1 + ker(λ)M . We apply

weighting functor on M as follow:

• e12 ⋅ vλ = e12 ⋅ 1 + ker(λ + α)M = h + ker(λ + α)M = λ + α(h) + ker(λ + α)M = λ + 1 +

ker(λ + α)M = (λ + 1)vλ+1,

• e21 ⋅ vλ = e21 ⋅ 1 + ker(λ − α)M = −h + ker(λ − α)M = −λ + α(h) + ker(λ − α)M =

−λ + 1 + ker(λ − α)M = (−λ + 1)vλ−1,

• h1 ⋅ vλ = h1 ⋅ 1 + ker(λ)M = h + ker(λ)M = λvλ.

Note that W(M) is a vector space with basis {vλ ∶ λ ∈ C}, where the sl(2)-action is

defined as above. Nonetheless, W(M) is a coherent family of degree 1. Moreover, This

observation can be generalized as the following proposition.

Proposition 2.4.2 ([16]). If M is a U(h)-free module of rank d, W(M) is a coherent

family of degree d.
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Chapter 3

The Lie algebras D(n) and sl(n + 1)

Throughout the remainder of the thesis, O = C[t1, ..., tn] and O0 will stand for the max-

imal ideal of O generated by t1, ..., tn. We use the multi-index notation. In particular,

tν = tν11 ...t
νn
n , where t = (t1, ..., tn) and ν = (ν1, ..., νn) with νi ∈ C. If n is fixed, we

set C[t] = C[t1, ..., tn] = O, C[t±1] = C[t±11 , ..., t±1n ], and tνC[t±1] = tν11 ...t
νn
n C[t±11 , ..., t±1n ],

where the latter is the span of all (formal) monomials tν1+k11 ...tνn+knn , ki ∈ Z. We set

∂i ∶=
∂
∂ti

and use the notation ti for the element in End(O) corresponding to multiplica-

tion by ti. Let ei,j stand for the (i, j)th elementary matrix of gl(n + 1), while Ei,j will

stand for the (i, j)th elementary matrix of gl(n). We fix the following basis of sl(n + 1):

{hk, ei,j ∣ 1 ≤ i, j ≤ n + 1, i ≠ j, k = 1, ..., n}, where hk ∶= ek,k −
1
n+1 ∑

n+1
i=1 ei,i. In particular,

ei,i − ej,j = hi − hj if 1 ≤ i, j ≤ n and ei,i − en+1,n+1 = hi +∑
n
j=1 hj. Unless otherwise stated,

whenever ei,j is used we assume that i ≠ j. Moreover, the Lie bracket on the basis of

sl(n + 1) can be computed explicitly using the following formula:

[ei,j, ei′,j′] = δj,i′ei,j′ − δi,j′ei′,j,1 ≤ i, i′, j, j′ ≤ n + 1, i ≠ j, i′ ≠ j′;

[hk, ei,j] = (δk,i − δk,j)ei,j;

[hk, h′k] = 0.

This choice of basis of the Lie algebra sl(n + 1) is purely for the convenience in terms
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of computations. For n is a fixed positive integer, s = sl(n + 1), and g ≃ gl(n) is a fixed

subalgebra of s defined in Section 4.2.4.

3.1 The Lie algebra D(n)

Definition 3.1.1. D(n) is the associative subalgebra of End(O) generated by ti, ∂i, i =

1, ..., n, subject to

titj − tjti = ∂i∂j − ∂j∂i = 0; ∂itj − tj∂i = δij.

Remark 9. D(n) is a Lie algebra with the Lie bracket defined as [x, y] = xy − yx,∀x, y ∈

D(n).

3.2 Automorphisms of D(n) and sl(n + 1)

3.2.1 Some automorphisms of sl(n + 1)

By τ we will denote the negative transpose on gl(n+ 1), i.e. τ(ei,j) = −ej,i and we use the

same letter for the restriction of τ on sl(n + 1). Then τ is an involutive automorphism.

For a ∈ (C∗)n+1, we set φa(ei,j) =
ai
aj
ei,j. Then φa and τ are automorphisms of sl(n+1) and

φa = φa′ is and only if a′ = ca for some c ∈ C∗. By Fτ and Fa we denote the endofunctors

on g-mod corresponding to the twists by τ and φa, respectively.
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3.2.2 Fourier transform and Exponentiation on D(n)

The Fourier transform on D(n) is an automorphism of D(n) defined by a subset S of

{1,2, ..., n} as follows:

ψS(ti) = ∂i, ψS(∂i) = −ti, if i ∈ S,

ψS(tj) = tj, ψS(∂j) = ∂j, if j ∉ S.

For an arbitrary polynomial g ∈ O, we define the automorphism θg of D(n) via θg(ti) =

ti, θg(∂i) = ∂i +
∂g
∂ti

, for i = 1, ..., n. We will call θg, the g-exponentiation on D(n). Since

θg = θg+c, we will assume that g ∈ O0 whenever θg is considered.

If M is a D(n)-module, by M expg we will denote the modules obtained from M after

twisting by θg. Alternatively, M expg can be thought as the space Meg with the natural

action of D(n). In the special case when g is a homogeneous linear polynomial g = ∑
n
i=1 biti,

we will denote θg and M
expg by θb and M expb , respectively, where b = (b1, ..., bn) is in Cn.

3.2.3 Twisted localization of D(n)-modules and sl(n+1)-modules

We first recall some properties of the twisted localization functor in general. Let U be

an associative unital algebra and H be a commutative subalgebra of U . We assume in

addition that H = C[h] for some vector space h, and that

U = ⊕
µ∈h∗
Uµ,

where

Uµ = {x ∈ U ∣[h,x] = µ(h)x,∀h ∈ h}.

Definition 3.2.1. An elelment a ∈ U is said to be ad-nilpotent if for any u ∈ U , there

exists an n(u) > 0 so that ad(a)n(u)(u) = 0.
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In order to localize a noncommutative associative algebra U with respects to a subset

A, A need to be an Ore subset of U . It is easy to check that set ⟨a⟩ = {an ∣ n ≥ 0} is

an Ore subset of U for a be an ad-nilpotent element of U . We define the ⟨a⟩-localization

D⟨a⟩U of U . For a U -module M by D⟨a⟩M =D⟨a⟩U ⊗UM we denote the ⟨a⟩-localization of

M . Note that if a is injective on M , then M is isomorphic to a submodule of D⟨a⟩M . In

the latter case we will identify M with that submodule.

We next recall the definition of the generalized conjugation of D⟨a⟩U relative to x ∈ C.

This is the automorphism ϕx ∶D⟨a⟩U →D⟨a⟩U given by

ϕx(u) =∑
i≥0
(
x

i
)ad(a)i(u)a−i.

If x ∈ Z, then ϕx(u) = axua−x. With the aid of ϕx we define the twisted module Φx(M) =

Mϕx of any D⟨a⟩U -moduleM . Finally, we set Dx
⟨a⟩M = ΦxD⟨a⟩M for any U -moduleM and

call it the twisted localization of M relative to a and x. We will use the notation ax ⋅m

(or simply axm) for the element in Dx
⟨a⟩M corresponding to m ∈ D⟨a⟩M . In particular,

the following formula holds in Dx
⟨a⟩M :

u(axm) = ax (∑
i≥0
(
−x

i
)ad(a)i(u)a−im)

for u ∈ U , m ∈D⟨a⟩M .

We will apply the twisted localization functor for (U ,H) in the following three cases:

(i) U = D(n), h =⊕n
i=1 (Cxi∂i);

(ii) U = U(sl(n + 1)), h =⊕n
i=1 (Chi);

(iii) U = U(gl(n)), h =⊕n
i=1 (CEii).

In case (i), for simplicity, we will use the following notation: D+i = D⟨ti⟩, D
−
i = D⟨∂i⟩.

Also, for U = D(n) and a U -module M , we set D+(i)M = (D+i U/U) ⊗U M and D−(i)M =

(D−i U/U) ⊗U M . In the particular case, when ti (respectively, ∂i) acts injectively on M ,
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then D+(i)M ≃ D
+
iM/M (respectively, D−(i)M ≃ D

−
iM/M). Also, we set D+S =∏i∈SD

+
i and

D+(S) =∏i∈SD
+
(i).

In case (ii), we will often consider the following setting. If Σ is a set of commuting roots

(i.e. α,β ∈ Σ implies α + β ∉ Σ) and fα ∈ s−α for α ∈ Σ, then we consider DΣ =∏α∈ΣD⟨fα⟩.

Also, if Σ is a linearly independent set, and µ = ∑α µαα, then we set Dµ
Σ =∏α∈ΣD

µα
⟨fα⟩.

3.2.4 Families of differential operator presentations of sl(n + 1)

Proposition 3.2.2. Let V be a gl(n)-module and S be a subset of {1,2, ..., n}. Then the

correspondence

hk ↦ −tk∂k ⊗ 1 + 1⊗Ekk − 1⊗ 1, for k ∉ S

hk ↦ tk∂k ⊗ 1 + 1⊗Ekk, for k ∈ S

ei,j ↦ 1⊗Eij − tj∂i ⊗ 1, for i, j ∉ S

ei,j ↦ 1⊗Eij + ti∂j ⊗ 1, for i, j ∈ S

ei,j ↦ 1⊗Eij + titj ⊗ 1, for i ∈ S, j ∉ S

ei,j ↦ 1⊗Eij − ∂i∂j ⊗ 1, for i ∉ S, j ∈ S

en+1,j ↦ −tj ⊗ 1, for j ∉ S

en+1,j ↦ −∂j ⊗ 1, for j ∈ S

ei,n+1 ↦ −∑
j∉S
∂j ⊗Eij +∑

l∈S
tl ⊗Eil +∑

j∉S
tj∂j∂i ⊗ 1 −∑

l∈S
tl∂l∂i ⊗ 1 −

n

∑
j=1
∂i ⊗Ejj

+((n + 1) − ∣S∣)∂i ⊗ 1, for i ∉ S

ei,n+1 ↦ −∑
j∉S
∂j ⊗Eij +∑

l∈S
tl ⊗Eil −∑

j∉S
titj∂j ⊗ 1 +∑

l∈S
titl∂l ⊗ 1 +

n

∑
j=1
ti ⊗Ejj

−(n − ∣S∣)ti ⊗ 1, for i ∈ S.

extends to a homomorphism ωV,S ∶ sl(n + 1)→ D(n)⊗End(V ).

Proof. The case when S = JnK has been known for long time and usually is attributed to
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Rudakov, [17], and Shen, [18]. The case of arbitrary S follows from S = JnK by applying

the appropriate Fourier transform. Namely, ωV,S = (ψ3
Ŝ
⊗ 1)ωV,JnK, where Ŝ = JnK ∖ S.

The case S = ∅

We will denote ωV,∅ by ωV . In this case we have that

hk ↦ −tk∂k ⊗ 1 + 1⊗Ekk − 1⊗ 1, for all k,

ei,j ↦ 1⊗Eij − tj∂i ⊗ 1, for all i ≠ j,

en+1,j ↦ −tj ⊗ 1, for all j,

ei,n+1 ↦ −
n

∑
j=1
∂j ⊗Eij +

n

∑
j=1
tj∂j∂i ⊗ 1 −

n

∑
j=1
∂i ⊗Ejj + (n + 1)∂i ⊗ 1, for all i.

One easily checks that ωV,S = (ψS ⊗ 1)ωV . Furthermore, the above correspondence define

a homomorphism ω ∶ U(sl(n + 1)) → D(n) ⊗ U(gl(n)) that will play important role in

Section 4.2.4.

The case S = JnK

In this other “extreme” case we have the following presentation:

hk ↦ tk∂k ⊗ 1 + 1⊗Ekk, for all k,

eij ↦ 1⊗Eij + ti∂j ⊗ 1, for all i ≠ j,

en+1,j ↦ −∂j ⊗ 1, for all j,

ei,n+1 ↦
n

∑
l=1
tl ⊗Eil +

n

∑
l=1
titl∂l ⊗ 1 +

n

∑
j=1
ti ⊗Ejj, for all i.
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Chapter 4

Exponential tensor modules

For a D(n)-module P , a subset S of JnK, and a gl(n)-module V , by T (P,V ) we denote

the space P ⊗ V considered as a module over s = sl(n + 1) through the homomorphism

ωV = ωV,∅. In particular, the s-module with underlying space P ⊗ V obtained from the

homomorphism ωV,S is isomorphic to T (PψS , V ).

We will pay special attention at the case when P = (OψS)expg = eg (C[t])ψS , where g

is a polynomial in C[t]. In this case, we will call

T (g, V,S) = T (((C[t])ψS)
expg

, V,∅) = T (eg (C[t])ψS , V ).

exponential tensor module corresponding to g, V , and S. In the case when g = ∑
n
i=1 bntn,

we set T (b, V,S) = T (g, V,S) where b ∈ Cn. In the case when g = 0 the modules T (0, V, S)

can be considered as Fourier transforms of the classical tensor modules studied originally

by Rudakov, Shen, and others. The modules T (0, V, S) play important role in the clas-

sification of simple torsion free s-modules of Mathieu, [13], as they are parts of coherent

families defined in the next subsection. If g ≠ 0, the modules T (g, V,S) are not weight

modules, as the following statement shows. The proof follows directly from the definition

of ωV , see §3.2.4.
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Lemma 4.0.1. The module T (g, V,S) is a weight sl(n + 1)-module if and only if g = 0

and V is a weight gl(n)-module.

4.1 Localization of exponential tensor modules

In this section we obtain some important results on localization of the exponential tensor

modules T (g, V,S). These results will help us to establish simplicity criteria for T (g, V,S)

in some particular cases of V .

Lemma 4.1.1. If P = C[t] is the defining representations of D(n), then

egPψS ≃D+(S)(e
gP ) ≃ egD+(S)(P ).

Proof. The second isomorphism is straightforward. It is enough to show PψS ≃D+(S)(P ) as

this implies egPψS ≃ egD+(S)(P ). Let Ŝ = JnK∖S. Using the multi-index notation, we have

that the space D+(S)P has a basis consisting of all tmS t
ℓ
Ŝ
with m ∈ (Z<0)∣S∣ and ℓ ∈ (Z≥0)∣Ŝ∣.

This follows from the standard fact that t−1, t−2, ... form a basis of D⟨t⟩C[t]/C[t].

For k = (k1, ..., k∣S∣) with kj ∈ Z≥0, and p ∈ C[t] with ∂ip = 0 for all i ∈ S, consider the

map tkSp↦ ∂kS(−t
-1
S )p. It is not difficult to check that this map extends to a homomorphism

PψS →D+(S)(P ). This is an isomorphism since it maps a basis element to a nonzero scalar

multiple of the corresponding basis element.

4.1.1 The case of one-dimensional V

We now focus on the case when V is one-dimensional representation of weight a ∈ C. We

denote this representation by Va. In other words Va = a tr.

Proposition 4.1.1. Given g ∈ O0, a ∈ C, and S ⊂ JnK, we have the following.

(i) If (n + 1)(a − 1) ∉ Z, then T (g, Va, S) is simple.
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(ii) If (n + 1)(a − 1) ∈ Z≤−n−1, then T (g, Va, S) is simple if and only if S = ∅.

(iii) If (n+ 1)(a− 1) ∈ {−n,−n+ 1, ...,−1}, then T (g, Va, S) is simple if and only if S = ∅

or S = JnK.

(iv) If (n + 1)(a − 1) ∈ Z≥0, then T (g, Va, S) is simple if and only if S = JnK.

Proof. By Lemma 4.1.1, T (g, Va, S) ≃ T (egD+(S)(C[t]), Va). The module T (egD+(S)(C[t]), Va)

has a basis egtm, where mi ∈ Z<0 for i ∈ S and mi ∈ Z≥0 for i ∉ S.

We next prove the “only if” part for all (i)-(iv). First assume that (n + 1)(a − 1) ∈ Z.

The coefficient bm of egtmt−1i in the expansion of ei,n+1(egt
m) is

bm =mi (
n

∑
j=1
mj − 1 − (n + 1)(a − 1)) . (4.1.1)

From here we easily check that

T ′ = Span{egtm ∣
n

∑
j=1
mj ≥ (n + 1)(a − 1) + 1}

is a submodule of T (g, Va, S). We have that T ′ = T (g, Va, S) if and only if (n+ 1)(a− 1) ∈

Z≤−1 and S = ∅; and T ′ = 0 if and only if (n+1)(a−1) ∈ Z≥−n and S = JnK. This completes

the proof of the “only if” statements.

It remains to show the “if” parts. Assume that the conditions for S in (i)-(iv) are

satisfied and let M be a nontrivial submodule of T (g, Va, S). We first show homogeneity

of M , namely, if egf ∈ M , f = ∑m amtm, then egtm ∈ M , whenever am ≠ 0. Indeed, for

k = 1, ...., n we have that

hke
gf = −tk∂kge

gf − egtk∂kf + (1 − a)e
gf.

Thus egtk∂kf ∈M which easily implies egtm ∈M if am ≠ 0. Using the homogeneity of M
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and applying multiple actions of ei,n+1 and en+1,j if necessary, we obtain that egt-1S ∈ M .

Then using again homogeneity of M and multiple actions of ei,n+1 and en+1,j, we see

that egtm ∈ M for all m such that mi ∈ Z<0 for i ∈ S and mi ∈ Z≥0 for i ∉ S. Hence,

M = T (g, Va, S).

4.1.2 The case of V = ⋀kCn

Here we focus on the case when V is an exterior power of the natural module of gl(n).

We will use the notation V = ⋀kCn in this case. The next result gives simplicity criterion

for T (g,⋀kCn, S). The simplicity of T (g,⋀kCn, S) as modules over the Lie algebra Wn

was proven in [12].

Proposition 4.1.2. Given g ∈ O0, k ∈ {0,1, ..., n}, and S ⊂ JnK, we have the following.

(i) If 0 < k < n, then T (g,⋀kCn, S) is not simple.

(ii) If k = 0, then T (g,⋀kCn, S) is simple if and only if S = ∅.

(iii) If k = n, then T (g,⋀kCn, S) is simple if and only if S = JnK.

Proof. The cases k = 0 and k = n correspond to the cases a = 0 and a = 1 in §4.1.1.

This proves parts (ii) and (iii). Part (i) follows from Lemma 3.2 in [12], but for reader’s

convenience we outline the important parts in the proof. The crucial part is that for any

D(n)-module P , there is a differential map:

dP ∶ T (P,⋀Cn)→ T (P,⋀Cn), (4.1.2)

dP (f ⊗ v) = ∑
n
i=1(tif)⊗ (ei ∧ v), where (e1, ..., en) is the standard basis of Cn. This map

has the property that d2P = 0 and that it is an sl(n + 1)-homomorphism (in fact, it is a
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Wn-homomorphism, too). This leads to the de Rham complex

0
dP
Ð→ T (P,⋀

0Cn)
dP
Ð→ T (P,⋀

1Cn)
dP
Ð→ ⋯

dP
Ð→ T (P,⋀

nCn)
dP
Ð→ 0. (4.1.3)

Thus dP [T (P,⋀
k−1Cn)] is a nontrivial proper submodule of T (P,⋀kCn) for k =

1, ..., n−1. Letting P = eg (C[t])ψS leads to the proof of the nonsimplicity of T (g,⋀kCn, S)

for k = 1, ..., n − 1.

Remark 10. Consider the case S = JnK. Then the map dP defined in (4.1.2) is nothing

but the standard de Rham differential. In particular, if g = 0, we have that T (g,⋀kCn, JnK)

is isomorphic to the module Ωk
Cn of k-forms on Cn and dP = d is the standard differential

operator on the de Rham complex on Cn. In the case of arbitrary g, dP = dg is the

Witten deformation of the standard de Rham differential by g defined in [21]. Namely,

dP (ω) = d(ω) + dg ∧ ω.

4.2 Exponential tensor modules in the cases deg g =

0, 1

4.2.1 Tensor coherent families

Let V be a finite dimensional gl(n)-module and let S ⊂ JnK. Note that the space tλC[t±1]

has a natural structure of a D(n)-module. Moreover, tλC[t±1] and tµC[t±1] are iso-

morphic if and only if λ − µ ∈ Zn. Hence, we may define tλC[t±1] for λ ∈ Cn/Zn. Let

T (V,S) =⊕λ∈Cn/Zn T ((tλC[t±1])ψS
, V ). Then one easily checks the following.

Proposition 4.2.1. The s-module T (V,S) is a coherent family of degree dimV .
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4.2.2 The case g = 0: injective coherent families

In this subsection we consider the case when g = 0 and V is a simple finite-dimensional

gl(n)-module.

As mentioned earlier, coherent families are one of the main tools that O. Mathieu used

in the classification of all simple torsion free modules of s as the latter are submodules of

partly-irreducible coherent families. We call a coherent family partly-irreducible (or just

irreducible) if there is λ ∈ h∗ such that M[λ] = ⊕α∈ZΦM
λ+α is an irreducible s-module.

The coherent families T (V,S) are partly-irreducible except for the case when V = Lg(λ)

and λ − 1 ∈ ∪ni=1H
i. Below we provide more details about the non-irreducible case. For

details we refer the reader to §11 in [13].

If µ ∈ H0, we have a complex

0→ T (Lg(wn ⋅ µ + 1), S)→ T (Lg(wn−1 ⋅ µ + 1), S)→ ⋯→ T (Lg(w0 ⋅ µ + 1), S)→ 0

In the case µ = 0, we have Lg(wn−i ⋅ µ + 1) = Lg(ωi) = ⋀
i(Cn), and the above complex is

the de Rham complex defined in (4.1.3). The complex for arbitrary µ is obtained from

the complex for µ = 0 after applying the translation functor from Proposition 4.2.6(iii).

Let now λ − 1 ∈ Hi for 0 ≤ i ≤ n, and let µ ∈ H0 be such that λ − 1 = wi ⋅ µ. Then

we can define the formal coherent family T ′(Lg(λ), S) = ∑
i
j=0(−1)

jT (Lg(λ[j]), S), where

λ[j] = wi−j ⋅ µ + 1. To understand how the formal coherent family, which is an element

of a suitable Grothendieck K0-group, can be considered as a genuine module, we refer

the reader to Theorem 11.4 in [13]. Set for convenience T ′(Lg(λ), S) = T (Lg(λ), S) if

λ − 1 ∉R.

Another important feature of the families T (V,S) and T ′(V,S) is their injectivity.

For a subset Σ of roots of s and an s-module M , we say that M is Σ-injective if every

nonzero α-root vector xα of s acts injectively onM for every α ∈ Σ. Here is one important
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particular case of Σ. Let S̃ be a nonempty proper subset of Jn + 1K, and let

ΣS̃ = {εi − εj ∣ i ∈ S̃, j ∉ S̃} (4.2.1)

We say that an s-module M is S̃-injective if it is ΣS̃-injective.

Proposition 4.2.2. Let V be a simple finite-dimensional gl(n)-module and let S be a

proper subset of JnK. Then T ′(V,S) is an (S ∪ {n + 1})-injective partly-irreducible coher-

ent family, and FτT ′(V,S) is (JnK ∖ S)-injective partly-irreducible coherent family.

Proof. The irreducibility of T ′(V,S), and hence of FτT ′(V,S), follows from Theorem 11.4

in [13]. Although the latter theorem concerns the case S = JnK, the case for arbitrary S

follows from the fact that the semisimplification T ′(V,S)ss of T ′(V,S) does not depend

on the choice of S. The injectivity follows by the explicit formulas defining ωV,S in

Proposition 3.2.2.

Coherent families may be constructed also via twisted localization of highest weight

modules. We outline the construction of these families below and refer the reader to §4

in [13] for details.

If Σ is a set of commuting roots that is a basis of Z∆ and M is a Σ-injective bounded

simple module, then

EΣ(M) = ⊕
λ∈h∗/ZΦ

Dλ
ΣM.

is a Σ-injective irreducible coherent family containing M as a submodule. We call EΣ(M)

the Σ-injective coherent extension of M . The injective coherent extensions are unique in

the sense of the following proposition.

Proposition 4.2.3. Let Σ be a set of commuting roots that is a basis of ZΦ and M be

a simple Σ-injective bounded s-module. Then EΣ(M) is the unique, up to isomorphism,

Σ-injective irreducible coherent family containing a submodule isomorphic to M .
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Proof. LetM be a Σ-injective irreducible coherent family containing M as a submodule

and let λ ∈ h∗. Consider the modules M1 =⊕α∈ZΦM
λ+α and M2 = Dλ

ΣM . These modules

have the property (M1)
ss ≃ (M2)

ss by the uniqueness of the semisimple coherent extension

(Proposition 4.8 in [13]). Since M1 and M2 are both Σ-injective, there is a simple Σ-

injective module L that is isomorphic to submodules of M1 and M2. On the other hand,

both M1 and M2 are dense, i.e. dimMλ+α
1 = dimMλ+α

2 = degM for all α ∈ ZΦ. Hence,

M1 ≃DΣL ≃M1, which implies the result.

Remark 11. Britten and Lemire introduced slightly different notion of Σ-injective co-

herent family in [6], see Definition 2.1. They imposed more restrictions on the action

of the root elements on the family and as a result established a uniqueness result for the

Σ-injective coherent families of degree d containing a Σ-injective (not necessarily simple)

bounded module M of degree d. This uniqueness result was used to show that every simple

torsion free module is a subquotient of M⊗ F where M is a coherent family of degree 1

and F is a finite-dimensional simple s-module.

Propositions 4.2.2 and 4.2.3 imply the following.

Corollary 4.2.0.1. If S̃ is a nonempty proper subset of Jn + 1K, and M is a S̃-injective

partly irreducible coherent family, then the following hold.

(i) If n + 1 ∈ S̃, then M ≃ T ′(V,S) for S = S̃ ∖ {n + 1} and some V .

(ii) If n + 1 ∉ S̃, then M ≃ FτT ′(V,S) for S = JnK ∖ S̃ and some V .

Furthermore, every simple infinite-dimensional bounded s-module is a submodule of T ′(V,S)

or FτT ′(V,S) for some V and S.

Remark 12. As mentioned in the proof of Proposition 4.2.2, T ′(V )ss = T ′(V,S)ss is

independent of the choice of S. In fact, if L is an infinite-dimensional simple submodule

of T ′(V )ss, then T ′(V )ss is the unique, up to isomorphism, semisimple partly-irreducible
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coherent family containing L as a submodule. In particular, if L is Σ-injective, then

T ′(V )ss ≃ EΣ(L)ss. Since the S̃-injective partly-irreducible coherent families are classified,

it is natural to attempt to classify all injective families M that are indecomposable, i.e.

such that all M[λ] are indecomposable modules. All T ′(V,S) and FτT ′(V,S) will be in

this classification list except two of them, T (V, JnK) and FτT (V, JnK), as they are not

S̃-injective for any S̃.

4.2.3 The case deg g = 1 and h-free modules of sl(n + 1)

In this subsection we fix g(t) = ∑
n
i=1 biti for bi ∈ C∗. If b = (b1, b2, ..., bn), we will write

T (b, V, S) for T (g, V,S) and bt for g(t) = ∑
n
i=1 biti.

Theorem 4.2.1. Let b ∈ (C∗)n. Then the following correspondence defines a homomor-

phism U(s)→ End(C[h]⊗ V ):
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hk ↦ hk ⊗ 1, for all k,

eij ↦
bj
bi
hiσiσ

−1
j ⊗ 1 −

bj
bi
σiσ

−1
j ⊗Eii + σiσ

−1
j ⊗Eij, for i, j ∈ S,

eij ↦
bi
bj
(hj + 1)σiσ

−1
j ⊗ 1 −

bi
bj
σiσ

−1
j ⊗Ejj + σiσ

−1
j ⊗Eij, for i, j ∉ S,

eij ↦ −bibjσiσ
−1
j ⊗ 1 + σiσ

−1
j ⊗Eij, for i ∉ S, j ∈ S,

eij ↦
−1

bibj
hi(hj + 1)σiσ

−1
j ⊗ 1 +

1

bibj
(hj + 1)σiσ

−1
j ⊗Eii +

1

bibj
hiσiσ

−1
j ⊗Ejj

−
1

bibj
σiσ

−1
j ⊗EiiEjj + σiσ

−1
j ⊗Eij, for i ∈ S, j ∉ S,

en+1,j ↦ −bjσ
−1
j ⊗ 1, for j ∈ S,

en+1,j ↦
1

bj
hjσ

−1
j ⊗ 1 −

1

bj
σ−1j ⊗Ejj +

1

bj
σ−1j ⊗ 1, for j ∉ S,

ei,n+1 ↦
1

bi
(
n

∑
j=1
hj − 1)hiσi ⊗ 1 −

1

bi
(
n

∑
j=1
hj)σi ⊗Eii −∑

j∉S
bjσi ⊗Eij +∑

p∈S

hp
bp
σi ⊗Eip

−∑
p∈S

1

bp
σi ⊗EipEpp +∑

p∈S

1

bp
σi ⊗Eip, for i ∈ S,

ei,n+1 ↦ −bi(
n

∑
j=1
hj − 1)σi ⊗ 1 −∑

j∉S
bjσi ⊗Eij +∑

p∈S

hp
bp
σi ⊗Eip −∑

p∈S

1

bp
σi ⊗EipEpp

+∑
p∈S

1

bp
σi ⊗Eip, for i ∉ S.

This homomorphism endows the space C[h]⊗V with an s-module structure. The resulting

module is h-free of rank dimV , and it is isomorphic to T (b, V, S).

Proof. The homomorphism in the theorem is the composition of ωV,S ∶ U(s) → D(n) ⊗

End(V ) and the homomorphism D(n) ⊗ End(V ) → End(C[h] ⊗ V ) where the latter is

defined by the following maps:
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1⊗Eij ↦ σiσ
−1
j ⊗Eij, for all i, j,

ti ⊗ 1 ↦ −
1

bi
((hi + 1)σ

−1
i ⊗ 1 − σ−1i ⊗Eii) , for i ∉ S,

∂i ⊗ 1 ↦ biσi ⊗ 1, for i ∉ S

ti ⊗ 1 ↦
1

bi
(hiσi ⊗ 1 − σi ⊗Eii) , for i ∈ S,

∂i ⊗ 1 ↦ biσ
−1
i ⊗ 1, for i ∈ S.

To prove that the above define a homomorphism, we make a repeated use of the

identity hiσi − σihi = σi.

The isomorphism T (b, V, S)→ C[h]⊗ V is given explicitly by the formulas

ebttk ⊗ v ↦∏
i∈S
(
hi −wt(v)i

ki
)
ki!

bkii
∏
j∉S
(
−hj +wt(v)j − 1

kj
)
kj!

b
kj
j

⊗ v,

where v is a weight vector of V of weight wt(v).

Proposition 4.2.4. The following isomorphism of coherent s-families hold:

W(T (b, V, S)) ≃ T (V, JnK ∖ S).

Proof. Let dimV = N and let (v1, ..., vN) be a basis of weight vectors of V . Denote

by 1ℓ ∈ C[h]⊕N the element (0, ...,1, ...,0), where 1 is in the ℓth position. Let vλ,ℓ = 1ℓ +

ker(λ̄)T (b, V, S) for λ ∈ h∗ and 1 ≤ ℓ ≤ N . Then the explicit isomorphismW(T (b, V, S))→

T (V, JnK ∖ S) is given by the formulas

vλ,ℓ ↦∏
i∈S
(biti)

−λi+wt(vℓ)i−1∏
j∉S
(bjtj)

λj−wt(vℓ)j ⊗ vℓ.
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4.2.4 Central characters of the exponential tensor modules

For λ ∈ h∗, we set χλ to be the central character of the simple b-highest weight sl(n + 1)-

module Lb(λ) with highest weight λ. The character of the corresponding simple bg-highest

weight gn-module will be denoted by χ′λ.

We identify h∗ with Cn and set ρs = (n,n − 1, ...,1), ρg = (n − 1, n − 2, ....,0), and

1 = (1,1, ...,1). In particular, ρs = ρg+1. The elements in λ ∈ h∗ naturally extend to algebra

homomorphisms λ ∶ C[h] → C. Then there exist isomorphisms ξs ∶ Z(sl(n + 1)) → C[h]

and ξg ∶ Z(gn) → C[h] such that χλ(z) = (λ + ρs)(ξs(z)) and χ′λ(z
′) = (λ + ρg)(ξg(z′)),

respectively, for all λ ∈ h∗, z ∈ Z(sl(n + 1)), and z′ ∈ Z(gn). The maps ξs and ξg are

certainly the restrictions of the Harish-Chandra homomorphisms U(sl(n + 1))h → U(h)

and U(gn)h → U(h) to the corresponding centers, where U(a)h stands for the centralizer

of h in U(a). Let ξ ∶ Z(sl(n + 1))→ Z(gn) be the composition ξ = ξ−1g ξs.

Proposition 4.2.5. With the notation as above, ω(z) = 1⊗(ξ(z)) for all z ∈ Z(sl(n+1)).

Proof. We will prove that the identity ω(z) = 1⊗ξ(z) holds when both sides are considered

as endomorphisms on T (λ) = T (0,C[t], Lbg(λ)) for λ ∈ Cn. This is sufficient since T (λ) =

C[t] ⊗ Lbg(λ) is a faithful module over D(n) ⊗ U(gl(n)). Let v0 be a bg-highest weight

vector of Lbg(λ). Using the formulas in §3.2.4, one easily checks that 1⊗ v0 is a b-highest

weight vector of the sl(n+1)-module T (λ). Again by these formulas, the weight of 1⊗ v0

is λ − 1. Therefore, ω(z) = χλ−1(z)Id on T (λ). On the other hand, if z ∈ Z(sl(n + 1)),

then

1⊗ ξ(z) = χλ(ξ(z))Id = (λ + ρg)(ξs(z)) = (λ − 1 + ρs)(ξs(z)) = χλ−1(z)Id (4.2.2)

on T (λ). This completes the proof.

Corollary 4.2.1.1. If V is a gl(n)-module of central character χλ, and P is a D(n)-

module, then T (P,V ) has central character χλ−1.
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Proof. For brevity, write T (V ) = T (P,V ). Then

χT (V )(ω(z))Id = ω(z) = 1⊗ ξ(z) = χV (ξ(z))Id = χλ(z
′)Id = χλ−1(z)Id.

The last identity follows from the identities (4.2.2) in the proof of the last proposition.

We obtain the following isomorphism theorem of T (g, V,S).

Theorem 4.2.2. If V1 and V2 are simple finite-dimensional gl(n)-modules, g1, g2 ∈ O0

and S1, S2 ⊂ JnK, then T (g1, V1, S1) ≃ T (g2, V2, S2) if and only if g1 = g2, V1 ≃ V2, and

S1 = S2.

Proof. The isomorphism V1 ≃ V2 follows from Corollary 4.2.1.1. Then after a θ−g2-twist,

we obtain T (g1−g2, V1, S1) ≃ T (0, V1, S2). From Lemma 4.0.1 we have g1 = g2. To conclude

that S1 = S2, we note for example that en+1,j acts locally nilpotently on T (0, V, S) if and

only if j ∈ S.

We note that an isomorphism theorem for tensor modules over the Lie algebra Wn is

established in [12] (Lemma 3.7).

4.2.5 Translation functors and exponential tensor modules

Recall that we have fixed h to be the Cartan subalegbra of s = sl(n+1) and g ≃ gl(n) and

bs and bg to be the corresponding Borel subalgebras. We will often write the weights of

s and g as n-tuples.

For simplicity we set Lg(λ) = Lbg(λ) and Ls(λ) = Lbs(λ). Let Λ+g (respectively, Λ+s )

denote the sets of weights in h∗ such that Lg(λ) (respectively, Ls(λ)) is finite dimensional.

In other words, (λ1, ..., λn) ∈ Λ+g (respectively, (λ1, ..., λn) ∈ Λ+s ) if and only if λi−λi+1 ∈ Z≥0

for i = 1, ..., n − 1 (respectively, (λ1, ..., λn) ∈ Λ+g and λn +∑
n
i=1 λi ∈ Z≥0).
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In view of the Weyl group action, for λ ∈ h∗, it is convenient to define λn+1 = −∑
n
i=1 λi

and λ̃ = (λ1, ..., λn, λn+1). With this definition we have that the ith simple reflection of

the Weyl group acts on λ̃ via the transposition si = (i, i + 1) for i = 1, ..., n. Let wk =

snsn−1...sn−k+1. In other words, we choose wk to be the minimal Sn-coset representative

of length k. By definition, w0 = Id. Let also, w′k be the transposition (n − k + 1, n), i.e.

w′k = snsn−1...sn−k+1...sn−1sn. As usual, for w ∈ Sn+1 and λ ∈ Cn, we set w ⋅ λ̃ = w(λ̃+ ρ̃s)− ρ̃s.

By definition, we have w(λ) = w(λ̃) and w ⋅ λ = w ⋅ λ̃. We let ωk = ∑
k
i=1 εi be the k-th

fundamental weight. In particular, ωn = 1.

We represent Λ+g as a disjoint union of three sets, Λ+g = N ⊔ S ⊔R, where:

(i) λ ∈ N , if λ ∈ Λ+g , λn +∑
n
i=1 λi ∉ Z,

(ii) λ ∈ S, if λ ∈ Λ+g , λn +∑
n
i=1 λi ∈ Z, and w′k ⋅ λ = λ for some k,

(iii) λ ∈R, if λ ∈ Λ+g , λn +∑
n
i=1 λi ∈ Z, and w′k ⋅ λ ≠ λ for all k.

The sets N , S, and R, are nothing else, but the sets of λ such that λ̃ is nonintegral,

singular, and regular integral, respectively. We further decompose S and R as follows:

S = ⊔ni=1H
i−1,i, R = ⊔ni=0H

i,

where λ ∈ Hi−1,i if w′i ⋅ λ = λ; λ ∈ H
0 if λn +∑

n
i=1 λi ∈ Z≥0; and λ ∈ Hi, i > 1, if λ = wi ⋅ µ for

some µ ∈ H0. In particular, H0 = Λ+s . Also, if λ = 0, then wk ⋅ 0 = ωn−k − 1.

The following is easy to verify and will be helpful for the simplicity criterion, i.e.

Theorem 4.2.4.

Lemma 4.2.3. Let λ ∈ Λ+g and λ0 =∞. Then the following hold.

(i) λ − 1 ∈ N , if and only if λn +∑
n
i=1 λi ∉ Z;

(ii) λ − 1 ∈ Hk,k+1 if and only if λn−k − (n − k) = −∑
n
i=1 λi, for k = 0, ..., n − 1;
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(iii) λ−1 ∈ Hk if and only if λn−k−(n−k) > −∑
n
i=1 λi > λn−k+1−(n−k+1), for k = 0, ..., n.

Proposition 4.2.6. Let λ ∈ Λ+g and P be a D(n)-module. Then the following hold.

(i) If λ−1 ∈ N , then there is a ∈ C such that (n+1)(a−1) ∉ Z and T
(a−1)1,λ−1
V T (P,Va) ≃

T (P,Lg(λ)), where V = Ls(µ) with µ = λ − a1.

(ii) If λ − 1 ∈ Hk−1,k and ak =
k
n+1 , then T

(ak−1)1,λ−1
V T (P,Vak) ≃ T (P,Lg(λ)), where

V = Ls(µ) with µ̃ = (λ1 − ak, ..., λk − ak, λk − ak, ..., λn − ak).

(iii) If λ−1 ∈ Hk, then T ωn−k−1,λ−1
V T (P,Λn−kCn) ≃ T (P,Lg(λ)), where V = Ls(µ) is such

that λ − 1 = wk ⋅ µ.

Moreover, the functors T η−1,λ−1V used in (i)-(iii) are equivalences of categories.

Proof. We first note that T (P,W ) ⊗ V ≃ T (P,W ⊗ V ), and also that an exact sequence

of g-modules

0→W1 →W →W2 → 0

leads to an exact sequence

0→ T (P,W1)→ T (W,V )→ T (P,W2)→ 0

of sl(n + 1)-modules. These two statements are written as Remarks 2.1 and 2.2 in [9] in

more restrictive setting, but the proofs are essentially the same. The idea is to observe that

the modules T (P,V ) are (s,O)-modules (i.e. s-modules and O-modules with compatible

actions of s and O). More precisely, T (P,V ) = P ⊗O Ṽ , where Ṽ = O ⊗ V . Note that Ṽ

can be treated as the module of sections of the vector bundle V induced from V on the

affine open subset of the projective space Pn consisting of [t0, t1, ..., tn] such that ti ≠ 0.

For details on the geometric interpretation, see, for example, §11 in [13] or §2 in [9].
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We next apply the tensor product invariance and the exactness of T (P,V ) together

with Corollary 4.2.1.1. It remains to show that Lg(η) ⊗ Ls(µ) has a direct summand

isomorphic to Lg(λ), and that there is no other direct summand Lg(µ) such that χµ−1 =

χλ−1. Here η = a1, ak1, ωn−k, for cases (i), (ii), (iii), respectively. This follows from the

the Gelfand-Tsetlin decomposition of Ls(µ) = ⊕pLg(µ(p)) into g-modules Lg(µ(p)) and

looking at the supports of the resulting products Lg(η)⊗Lg(µ(p)).

Remark 13. A Jordan-Hölder decomposition of T (P,Va) ⊗ V , where a ∈ C and V is a

simple finite-dimensional sl(n + 1)-module, is described explicitly in [6]. In particular,

the authors prove their old conjecture that every simple torsion-free sl(n + 1)-module is

isomorphic to a submodule of T (P,Va) ⊗ V , for particular choices of P , a, and V . One

should note that for some choices of a, the corresponding translation functors are not

equivalences of categories, and that is why it is better to work with T (P,⋀iCn).

Combining Propositions 4.1.1, 4.1.2, and 4.2.6, we obtain one of our main results.

Theorem 4.2.4. Let λ ∈ Λ+g , g ∈ O0, and S ⊂ JnK. Then the following hold.

(i) If λ − 1 ∈ N , then T (g,Lg(λ), S) is simple.

(ii) If λ − 1 ∈ S, then T (g,Lg(λ), S) is simple if and only if S = ∅ or S = JnK.

(iii) If λ − 1 ∈R, then:

(a) if λ − 1 ∈ H0, T (g,Lg(λ), S) is simple if and only if S = JnK.

(b) if λ − 1 ∈ Hi, 1 < i < n, T (g,Lg(λ), S) is not simple,

(c) if λ − 1 ∈ Hn, T (g,Lg(λ), S) is simple if and only if S = ∅.

For the explicit conditions when λ − 1 ∈ N , etc. see Lemma 4.2.3.
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