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ABSTRACT 

LEVERAGING AI AND SUPPLY CHAIN TECHNOLOGIES WITH THERMAL IMAGING AND 

TELEMEDICINE FOR EARLY DETECTION AND PREVENTION OF COVID-19 AND 

RESPIRATORY INFECTIONS IN URM COMMUNITIES  

Gohar Azeem, PhD 

 

The University of Texas at Arlington, 2022 

 

Supervising Professor: Erick C. Jones 

The underserved population could be at risk during the times of crisis, unless there is strong 

involvement from government agencies such as local and state Health departments and federal Center 

for Disease Control (CDC). The COVID-19 pandemic was a crisis of different proportion, creating a 

different type of burden on government agencies. Vulnerable communities including the elderly 

populations and communities of color have been especially hard hit by this pandemic. This forced these 

agencies to change their strategies and supply chains to support all populations receiving therapeutics. 

The National Science Foundation (NSF Award # 2028612) funded this research to help federal 

agencies with strategies. This research is based on a NSF funded grant to help federal agencies with 

strategies by investigating supply chain strategies that would minimize the impact on underserved 

populations during pandemic and by integrating artificial intelligence and social determinants of health 

to make optimized supply chain models more robust and updated real-time. This project leverages 

Artificial Intelligence (AI) integrated with an Infrared Facial Recognition, Thermal Imaging and 
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Telemedicine tools to improve patient outcomes for those most at-risk (URM Community) for SARS-

CoV-2 (COVID-19) and other severe respiratory illnesses, how this information can be used to design 

supply chain model that ensures that vaccines can be delivered to this community to prevent and 

minimize the impacts of COVID-19.  The specific objectives of this study were; 

1) Use convergent innovation ecosystems and platforms [2] to identify Automated Data Capture (ADC) 

and Artificial Intelligence (AI) needed to automate the healthcare supply chain.   

2) Model the COVID-19 Supply Chain from manufacture to vaccine delivery that optimizes the most 

efficient manner to impact the most at risk populations and communities; and  

3) Identify the readiness and the societal cost benefit of this model for use when as vaccines become 

ready for use. 

The outputs of optimized supply chain model using different scenarios showed the prioritized 

distribution of COVID-19 vaccines to at-risk communities with much higher service levels as 

compared to non-prioritized communities and overall service levels. This study also identified the 

phenomena of last mile importance, which is missing in existing healthcare supply chain models. The 

last mile transportation concept was critical in saving lives during the pandemic for underserved 

populations. The supply chain model then maximizes social goods by sending drugs or vaccines to the 

communities that need it the most regardless of ability to pay. The outcome of this study helped us 

prioritize the communities that need the vaccines the most. This informs our supply chain model to 

shift resources to these areas showing the value in real time prioritization of the COVID-19 supply 

chain. This research provides information can be used in our healthcare supply chain model to ensure 

timely delivery of vaccines and supplies to COVID-19 patients that are the most vulnerable and hence 

the overall impact of COVID-19 can be minimized.  
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1 Chapter 1: Introduction 

1.1 Overview 

The understanding of supply chain and transportation in recent times has brought life and death to 

underserved communities in the US and other countries like India, UK, etc. The COVID-19 pandemic 

was a crisis of different proportion, creating a different type of burden on government agencies. The 

COVID-19 pandemic has severely affected the entire world with more than 464 million cases and over 

6 million deaths worldwide (John Hopkins). The US is one of those countries, which has suffered the 

most from this disease with above 79 Million confirmed cases and approximately 968,521 deaths as of 

March 17, 2022. The underserved population could be at risk during the times of crisis, unless there is 

strong involvement from government agencies such as local and state Health departments and federal 

Center for Disease Control (CDC). The COVID-19 pandemic was a crisis of different proportion, 

creating a different type of burden on government agencies. Vulnerable communities including the 

elderly populations and communities of color have been especially hard hit by this pandemic. This 

forced these agencies to change their strategies and supply chains to support all populations receiving 

therapeutics. This proposed study will help federal agencies with strategies by investigating supply 

chain strategies that would minimize the impact on underserved populations during pandemic and by 

integrating artificial intelligence and social determinants of health to make optimized supply chain 

models more robust and updated real-time. This project seeks to leverages Artificial Intelligence (AI) 

and automated data capture tools to improve patient outcomes for those most at-risk (URM 

Community) for SARS-CoV-2 (COVID-19) and other severe illnesses,  how this information can be 

used to design supply chain model that ensures that vaccines can be delivered to this community to 

prevent and minimize the impacts of COVID-19.  This study will also explore the phenomena of last 

mile importance, which is missing in existing healthcare supply chain models. The last mile 
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transportation concept is critical in saving lives during the pandemic for underserved populations. The 

supply chain model then maximizes social goods by sending drugs or vaccines to the communities that 

need it the most regardless of ability to pay. The outcome of this study will help us prioritize the 

communities that need the vaccines the most. This informs our supply chain model to shift resources 

to these areas showing the value in real time prioritization of the COVID-19 supply chain. This study 

will provide information, that can be used in our healthcare supply chain model to ensure timely 

delivery of vaccines and supplies to COVID-19 patients that are the most vulnerable and hence the 

overall impact of COVID-19 can be minimized. 

While this pandemic has affected the people of all races and origins, the African American and other 

communities of color have been specifically affected by the coronavirus pandemic (Dorn et al. 2020). 

According to a study about COVID-19 exacerbating inequalities in the US, the total number of deaths 

due to COVID-19 are disproportionately high among the African American communities as compared 

to the overall population in the US. (Dorn et al. 2020). Another study was conducted to assess 

differential impacts of COVID-19 on black communities (Millet et. al 2020). The outcome of their 

study shows that counties that have highly black population are more susceptible to contracting the 

COVID-19 virus. After accounting for county-level factors such as age, poverty, epidemic duration 

and comorbidities, death due to coronavirus was significantly higher in black rural and small metro 

counties (Millet et. al 2020). According to the Office of Behavioral Health Equity (OBHE 2020), the 

coronavirus pandemic has exposed the deep-rooted disparity in the health care setup towards the 

underserved communities and aggravated the socio-economic factors that contribute to poor health 

outcomes. Racial and ethnic minority groups are experiencing higher rates of COVID-19 infection, 

hospitalization, and death. Inequities in the social determinants of health have historically prevented 

these groups from having the same opportunities for economic, physical, and emotional health. These 

inequities are highlighted by the factors that contribute to increased risk of COVID-19 exposure, severe 
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illness from COVID-19, death, and unintended consequences of COVID-19 mitigation strategies. 

(CDC 2020).  

While the vaccines have already been developed for COVID-19, the big challenge is how to get these 

important medicines to the communities that are most at risk, especially in the underrepresented 

minority (URM) community. This challenge becomes more significant due to health disparities for 

underserved communities. An innovative and robust pandemic vaccine supply chain needs to be 

designed and developed to tackle the daunting task of mass vaccination under stringent operating 

constraints. Pandemics such as the coronavirus disease (hereafter COVID-19) exert severe pressure on 

healthcare systems, which in turn affects timely delivery and distribution of vaccines to healthcare 

centers. Most governments are responding to this distribution challenge by building or upgrading 

healthcare infrastructure to enhance geographic accessibility of health services. Nevertheless, it is 

equally important to design an optimal vaccine supply chain that supports an effective, agile, and 

responsive distribution network to maximize geographic coverage of populations at greater risk while 

keeping distribution lean. Evidence-based decision-making to help optimize and allocate vaccines in a 

timely manner is critical to protect lives during the COVID-19 pandemic. Health organizations are 

calling for novel approaches and methods to optimize immunization supply chains and meet the 

demands of an increasingly large and costly portfolio of vaccines (WHO 2020).  

Different vaccines have been created in order to help reduce the spread of the virus (Calina 2020). 

Government agencies ordered a lockdown to be put into place with social distancing and the use of 

wearing masks in order to control the COVID-19 pandemic. For long-term purposes, it is necessary to 

make sure that the vaccines are distributed evenly between the populations [12]. Given the complexity 

of global vaccine supply chains and the constraints related to supply, demand, and capacity, various 

distribution scenarios should be formulated to help optimize the system for acquiring, prioritizing, and 
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distributing vaccines to the populace (Uscher-Pines et. al 2006 and Medlock et. al 2009). Few studies 

have been developed for an effective distribution for vaccines to make certain that the vaccines are 

delivered in an effective manner to the people who are in need the most  (Medlock et. al 2009 and Lee 

et. al 2012). These studies did not fully take into consideration the constraints which affect a vaccine 

supply chain which can be optimized to mitigate the risk of the infection. As a result, a robust model 

is needed to conceptualize the process of the downstream vaccine supply chain in order to ensure 

efficient distribution of the vaccines.  

The process of the distribution of the COVID-19 vaccines is a complex task. The last mile 

transportation concept is critical in saving lives during the pandemic for underserved populations. The 

focus of this research on optimizing COVID-19 therapeutics supply chain to get these lifesaving 

therapeutics to the communities that are most at risk, especially the underserved communities. This 

becomes more significant due to health disparities for underserved communities. This National Science 

Foundation funded study (Award Abstract # 2028612) identified the phenomena of last mile 

importance and its criticality in saving lives during the pandemic for underserved populations. The 

research which has been performed previously has not incorporated the factors and constraints which 

affect a vaccine supply chain which can be optimized to reduce the risk of the infection. We have 

defined community health index as a way to identify those communities, which are most vulnerable to 

COVID-19 and using this in our MIP supply chain model to prioritize highly vulnerable communities 

with higher service levels to ensure the timely availability of therapeutics to these underserved 

community. This research develops a mathematical model to support vaccine allocation decisions 

based on exposure risk, and operational constraints including capacity of medical centers, vaccine 

stocks, and routes optimization. Using the city of Houston, Texas, the 4th largest city in US as a case 

study, we applied the proposed model to test different scenarios of vaccine allocation and distribution 

with different priority levels. In this study we assume that the vaccine is already manufactured and 
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available in the market for distribution and that limited supply and excessive demand necessitate 

optimizing the allocation of vaccine by prioritizing people with higher risk of infection and greater 

probability of social contact with others; and that the vaccine is to be administered at state-run medical 

centers. 

Our optimized healthcare supply chain and enhance Telemedicine Tools to have the greatest impact on 

improving health outcomes by early detection of illness in those most at-risk, vulnerable populations.  

Our model provides vulnerable population with convenient way to communicate with health providers 

when the healthcare is ready accessible in the home or nursing facility. We collaborated with the City 

of Houston Health Department (HHD) to capture the data needed to model a community that has these 

challenges.  The HHD is currently working with the hospital districts, the veterans’ administration, and 

neighborhood centers to create models to determine the capacity (e.g., how many beds, nurses and 

social workers) needed for these communities.  We created a COVID-19 healthcare supply chain model 

that can leverage the use of data capture technologies that already exist at some of these facilities. The 

ability of real-time data capture, robust optimization engines, and artificial intelligence represent a 

revolution in AI application to improve health disparities and healthcare delivery. Given the nature of 

the current crisis, the investigation and the development of a robust AI based Healthcare Supply Chain 

for COVID-19 medicinal delivery to underserved populations must happen quickly.  We worked with 

the HHD, nurses, and social workers to understand, investigate, and developed a supply chain model 

that can be deployed immediately. 

1.2 Research Question and Hypothesis 

As Vaccines are already developed and approved to combat COVID-19, we have witnessed that there 

was a big challenge on delivery of vaccines to the populations and to be more focused on the supply 

chain to get the vaccines from the labs and manufacturers to the elderly and underserved, and with new 
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variants and need for booster shot, immediate attention is required to tackle these challenges not only 

for COVID-19, but also for future pandemics of similar nature. Innovation and technology such as 

Artificial Intelligence will be needed to take advantage of the newest automatic data capture 

technologies that model ever-changing conditions to provide service to underserved populations.  

Developing the means and technologies to deliver the vaccines to this population is the operations 

engineering aspects that are necessary to ensure vaccine security (fake vaccines to the poor), 

shortages (drugs given to the rich; running out for underserved populations), and in-home monitoring 

system that minimize risks and exposures to the patient, the nurse, and social worker.  

1.3 Hypothesis Testing: 

Pill Confirmation: 

H0: The “Pill Consumption Confirmation” Telemedicine model will accurately verify pill confirmation 

process with accuracy of above 70%. 

H1: The “Pill Consumption Confirmation” Telemedicine model will not accurately verify pill 

confirmation process with accuracy of less than 70%. 

Sickness Detection: 

H0: The AI enabled model will accurately detect sickness through thermal imaging and facial 

recognition with accuracy of above 70% 

H1: The AI enabled model will not accurately detect sickness through thermal imaging and facial 

recognition with accuracy of less than 70% 

Supply Chain (Service Levels): 

H0: The Prioritized Supply Chain distribution model to underserved communities will results in higher 

service levels and equal cost as compared to equal distribution model. 
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H1: The Prioritized Supply Chain distribution model to underserved communities will not results in 

higher service levels as compared to equal distribution model. 

Supply Chain (Cost Analysis): 

H0: The Prioritized Supply Chain distribution model to underserved communities will results in 

significantly higher overall cost as compared to equal distribution model. 

H1: The Prioritized Supply Chain distribution model to underserved communities will not results in 

significantly higher overall cost as compared to equal distribution model. 

1.4 Research Goal and Objectives 

Our research goal is to investigate a Healthcare Supply Chain Model that leverages AI and 

Telemedicine for Early Detection and Prevention of COVID-19 and Respiratory Infections in 

URM communities by provide timely delivery of vaccines to COVID-19 patients that are most at 

risk for severe illness, defined as hospitalization, ICU admission, mechanical ventilation, or 

death.  We target the neighborhoods with underserved and underrepresented minority communities 

(UMCs) that are served by the HHD.   

Our specific objectives are to:  

1) Use convergent innovation ecosystems and platforms to identify Automated Data Capture (ADC) 

and Artificial Intelligence (AI) needed to automate the healthcare supply chain.  This includes Integrate 

AI with facial recognition and thermal imaging as a noncontact method to monitor fever, and 

potentially detect the progression and onset of respiratory illness, requiring medical intervention.    

2) Model the COVID-19 Supply Chain from manufacture to vaccine delivery that optimizes the most 

efficient manner to impact the most at risk populations and communities; and  



19 | P a g e  

 

3) Identify the readiness and the societal cost benefit of this model for use when as vaccines become 

ready for use. 

1.5 Research Approach 

We will investigate the following objectives: 

Specific Objective 1: Identify the Automated Data Capture and Develop the Artificial Intelligence (AI) 

Algorithms needed to automate the COVID-19 Healthcare vaccine Supply Chain Nodes 

Internet of thing and automatic data capture technologies 

Our model includes integrating Facial Recognition Technology (FRT), Automated Data Capture 

(ADC), and Artificial Intelligence (AI) with Deep Learning (DL), Machine Learning (ML) and natural 

language processing data from sensors and databases [8].  Data collected and processed will provide 

meaningful health insights quickly and accurately to improve diagnosis and treatment.  Our model 

improves timely delivery of medication or other medical therapeutics, and to monitor those that remain 

unvaccinated and most at-risk for disease. While this model focuses on COVID, it can be used to 

increase early detection of other respiratory diseases and illnesses that may be indicated by fever or 

monitoring vital signs remotely.  

Early identification of minimally symptomatic (paucisymptomatic) or asymptomatic phases of 

COVID-19 and prompt response to infected cases is crucial. AI and machine learning (ML) can help 

determine infected patients who are more likely to suffer more severely from COVID-19 and quickly 

provide more accurate patient risk scores that will help decide when urgent treatment (and resources) 

is needed [7]. ML evaluation of complex underlying relationships between clinical variables in 

COVID-19 useful for the development of a computational diagnostic test based on signs, symptoms, 

and laboratory results, these correlations can also yield critical insights into the biological mechanisms 

of COVID-19 transmission and infection [9]. 
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We hope to distinguish COVID-19 from seasonal influenza and confirm with testing.  

Eligibility criteria and participant recruitment plan, the target population,  

• Elderly population -Residents of nursing homes, age 60 - 90 yrs. with no physical limitations 

or reduced mental capacity that would make patient unable to be screened for the study. 

A maximum of 60 participants will be selected from each cohort for this pilot study.  

The elderly vulnerable population will be drawn from residents of private nursing homes and assisted 

living facilities in the Greater New Orleans area and those HHD’s elderly care division provides care 

between the services facilities, the hospitals and homecare. In Houston, HHD has the responsibility for 

community health, particularly for the underserved population that might not have commercial 

insurance plans (Medicaid and Medicare).  HHD categorizes the epidemic zones as the medical clinics 

that diagnose and treat patients for contagious diseases. All nursing home residents are eligible unless 

physician determines health status is physically or mentally incapacitated, as determined by the 

Nursing Home physician.  

All cohorts will be selected for using the Social Vulnerability Index (SVI) which identifies 

communities as at-risk and maps neighborhoods based on potential negative effects on communities 

caused by external stresses on human health such as socioeconomic and environmental factors, lack of 

access to transportation or nutritious food [13]. The communities are points of interest and our AI 

healthcare supply chain model. All participants will be selected from underserved minority 

communities, who may have medical comorbidities resulting in an increased risk of severe COVID-19 

outcomes and more likely to be vaccine hesitant or vaccine refusal due to lack of trust in the medical 

community. 

In order for AI to support the public health decisions we will utilize the partnership with HDHHS to 

keep track of those who are highly susceptible to the virus, those who are infected by the virus, and the 



21 | P a g e  

 

location of their treatment especially those staying at home.  We seek to utilize AI to provide additional 

tracking of those receiving treatment and understanding the outcomes for cases at home and at the 

hospital.  We will seek to have the models provide feedback on how the point of care shifts from the 

hospital setting to the home.  Our additional expected outcomes for the AI component are to provide 

insights on how to address both the community and the individual patient needs.  It also can serve to 

inform on what can be collected autonomously to help address not only the individual wellness but the 

overall wellness of underserved communities.  We expect as an additional outcome that the models 

will simulate case studies for locations where COVID-19 is prevalent or not and the best practices that 

can be disseminated throughout Texas and other related US communities.  

Specific Objective 2: We seek to model the COVID-19 Vaccine Supply Chain from manufacture to 

home delivery that optimizes the most efficient manner to impact the most at-risk populations 

We are expecting to build off our previous research and parameters the previous multi-objective supply 

chain optimization models with AI Formatted Data.  We expected stochastic Markov Decision Process 

[MDP] with Q Learning for the modeling.  We will re-define the models with conventional nodes such 

as drug manufacturer, warehouse and distribution centers, and stores with nodes such as 

pharmaceutical public private partnership re-testing repackaging center, hospital, service centers and 

home and nursing home locations.  Supply Chain channels such as direct ship from manufacturer to 

home customer will be considered for ensuring that the underserved at risk populations receive priority 

on receiving drugs, ventilators, and protective masks for their healthcare provider. 

Specific Objective 3: We seek to identify the readiness and societal cost benefit of this model for use 

when medications become ready for the COVID-19 outbreak 

Finally we expect to develop a framework for developing COVID-19 Multi-Objective Supply Chain 

Optimization models that ensure that at risk patients receive the necessary vaccines to minimize the 
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spread of the disease and support quality of life.  The COVID-19 models will seek to minimize the 

tradeoff between optimizing profit and minimizing the cost of life.  Consideration action and rewards 

through a Markov Decision processes as a key to the some of the models. We expect to understand 

performance of the models (actions) with expert validation provided by the HDHHS faculty and staff 

that include infectious disease MDs, epidemiologist, and elderly care healthcare professionals.  We 

expect a feedback loop created by the automatic data capture and AI middle layer that allows for the 

ever changing conditions of the COVID-19 supply chain.   
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2 Chapter 2: Background 

An effective distribution of the vaccines is key for the risk mitigation of the community during a 

pandemic. A standard vaccine supply chain consists of the following: manufacture, packaging, storage, 

domestic and global distribution, cost-effective, and uninterrupted supply of vaccines to the population 

(U.S. Department of Health and Human Services 2005). The difference between a standard vaccine 

supply chain and a pandemic vaccine is that, previously healthcare and other vaccine providers were 

to purchase vaccines directly from the manufacturers. For government agencies, they are more 

susceptible to buy the vaccines directly from the manufacturer in order to ensure an early vaccination 

delivery. Government agencies are then able to distribute the vaccines to health centers after the 

vaccines are procured. During pandemic vaccine supply chain, the healthcare providers register their 

interest with public health programs rather than with supply chain vendors (U.S. Department of Health 

and Human Services 2005).  Brown et al. 2014 hypothesized a typical vaccine supply chain as a four-

level delivery system that incorporates the departmental stores, and one regional store.  

2.1 COVID-19 Pandemic and the Healthcare Crisis 

The SARS-COV-2 the deadliest RNA virus and pandemic in history, with over 45,235,796 cases and 

731,000 deaths in the US as of October 2021 [3]  To date the FDA issued Emergency Use 

Authorizations (EUA) for three COVID-19 vaccines available for ages 12+ with 77.2% vaccinated 

with at least one vaccine shot, and only 57.3% fully vaccinated. Merck has submitted an antiviral 

medication to the FDA for approval and there are other vaccines and medication candidates in clinical 

trials. Vaccine boosters have been approved for those over 65, immunodeficient and high-risk 

individuals and vaccines are being reviewed for use in children 5-12 years old [3].    
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The US hoping to reach herd-immunity across all populations before COVID-variants emerge with 

higher mortality rates or that evade current vaccines, making them ineffective. Vaccine administration 

sites extended beyond hospitals and healthcare facilities, to pharmacies, businesses partnerships, popup 

drive through vaccination sites, and utilize community centers and sports arenas in an effort facilitate 

access expedite the vaccination to get 70-80% of the population fully vaccinated. Efforts to increase 

vaccination rates for those over 18 years old, include Federal and employer mandates to shift more 

from vaccine-hesitant or vaccine-refusal to vaccine acceptance. 

During period of high incidence rate, hospital systems were overwhelmed, straining their capacity to 

provide routine and emergent medical care especially in communities of vaccine-hesitancy or vaccine-

refusal. Due to the overburdened hospitals and providers and fear of exposure to COVID in clinical 

settings, many hospitals and patients, even those with life-threatening diseases, postponed routine 

medical checkups and elective surgeries [4].  

We propose adoption of advanced digital technology tools for surveillance, prediction, and diagnosis 

to fight the COVID-19 pandemic.  When face-to-face patient visits were limited, telemedicine or 

telehealth tools are increasingly implemented to continue patient care, follow up, treatment and 

anticipating the patients who are more likely to get severe disease.  (AI)–powered diagnostic tools, 

voice-interface systems, and mobile sensors such as smart watches, oxygen monitors, or thermometers 

have been added to enhance telemedicine [5] [6].   

The Drug Supply Chain Security Act (DSCSA) modified the drug e-pedigree language in January 2015 

to provide uniform national standards for wholesale distribution of prescription drugs, tracing lot level 

transactions from manufacturer to pharmacies.  The DSCSA helps protect patients from receiving 

harmful counterfeit or other illegitimate drugs.  This pharmaceutical supply chain identification enables 

AI integration allows telemedicine visit real-time monitoring of patient compliance.  The capability 
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reduces medication administration errors and improper dosing, which disproportionately affects the 

elderly.  In the context of controlling chronic illnesses and communicable diseases like COVID 

pandemic, the ability to track COVID test kits and specimens combined with contactless surveillance 

methods are of particular importance. AI and machine learning (ML) can play a crucial role in ensuring 

policies, management and resource allocation like testing kits more efficient and improve our response 

to this crisis [7]. In addition, the FDA is working with drug manufacturers, developers, and researchers 

to help expedite the development and availability of additional vaccines, and medical therapeutics, 

COVID-19 antibodies, and medicines to prevent or treat COVID-19.   Tracking vaccines, doses, and 

the flow of vaccines and medicines through the supply chain during this crisis, ensuring safe and timely 

delivery to the sites of vaccination is a complex task.  This is complicated by the influx of fraudulent 

COVID-19 diagnostic, prevention, and treatment claims, making supply chain tracking paramount to 

keep public confidence in the healthcare system.    

2.2 COVID-19 Pandemic and the Healthcare Crisis 

The SARS-COV-2 the deadliest RNA virus and pandemic in history, with over 45,235,796 cases and 

731,000 deaths in the US as of October 2021 [3]  To date the FDA issued Emergency Use 

Authorizations (EUA) for three COVID-19 vaccines available for ages 12+ with 77.2% vaccinated 

with at least one vaccine shot, and only 57.3% fully vaccinated. Merck has submitted an antiviral 

medication to the FDA for approval and there are other vaccines and medication candidates in clinical 

trials. Vaccine boosters have been approved for those over 65, immunodeficient and high-risk 

individuals and vaccines are being reviewed for use in children 5-12 years old [3].    

The US hoping to reach herd-immunity across all populations before COVID-variants emerge with 

higher mortality rates or that evade current vaccines, making them ineffective. Vaccine administration 

sites extended beyond hospitals and healthcare facilities, to pharmacies, businesses partnerships, popup 
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drive through vaccination sites, and utilize community centers and sports arenas in an effort facilitate 

access expedite the vaccination to get 70-80% of the population fully vaccinated. Efforts to increase 

vaccination rates for those over 18 years old, include Federal and employer mandates to shift more 

from vaccine-hesitant or vaccine-refusal to vaccine acceptance. 

During period of high incidence rate, hospital systems were overwhelmed, straining their capacity to 

provide routine and emergent medical care especially in communities of vaccine-hesitancy or vaccine-

refusal. Due to the overburdened hospitals and providers and fear of exposure to COVID in clinical 

settings, many hospitals and patients, even those with life-threatening diseases, postponed routine 

medical checkups and elective surgeries [4].  

We propose adoption of advanced digital technology tools for surveillance, prediction, and diagnosis 

to fight the COVID-19 pandemic.  When face-to-face patient visits were limited, telemedicine or 

telehealth tools are increasingly implemented to continue patient care, follow up, treatment and 

anticipating the patients who are more likely to get severe disease.  (AI)–powered diagnostic tools have 

been added to enhance telemedicine [5] [6].   

The Drug Supply Chain Security Act (DSCSA) modified the drug e-pedigree language in January 2015 

to provide uniform national standards for wholesale distribution of prescription drugs, tracing lot level 

transactions from manufacturer to pharmacies.  The DSCSA helps protect patients from receiving 

harmful counterfeit or other illegitimate drugs.  This pharmaceutical supply chain identification enables 

AI integration allows telemedicine visit real-time monitoring of patient compliance.  The capability 

reduces medication administration errors and improper dosing, which disproportionately affects the 

elderly.  In the context of controlling chronic illnesses and communicable diseases like COVID 

pandemic, the ability to track COVID test kits and specimens combined with contactless surveillance 

methods are of particular importance. AI and machine learning (ML) can play a crucial role in ensuring 

policies, management and resource allocation like testing kits more efficient and improve our response 
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to this crisis [7]. In addition, the FDA is working with drug manufacturers, developers, and researchers 

to help expedite the development and availability of additional vaccines, and medical therapeutics, 

COVID-19 antibodies, and medicines to prevent or treat COVID-19.   Tracking vaccines, doses, and 

the flow of vaccines and medicines through the supply chain during this crisis, ensuring safe and timely 

delivery to the sites of vaccination is a complex task.  This is complicated by the influx of fraudulent 

COVID-19 diagnostic, prevention, and treatment claims, making supply chain tracking paramount to 

keep public confidence in the healthcare system.    

 

Figure 2-1: Revised from (Jones 2009 [1]) the COVID-19 Healthcare SC 

Jones (2009) [1]published a study that describes tracking the life of medications from the point of 

manufacture to ingestion utilizing upcoming FDA standards such as the E-pedigree (Electronic 

Pedigree) proposed standard.  E-pedigree is an electronic document that specifies information about 

the purchase of a drug, dispensing the drug to hospitals, and administering the drug to the patient. A 

system capable of tracking patients, all of their medications, and their prescription compliance would 
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also eliminate errors in medication administration, improper dosages, and adverse reactions to 

pharmaceuticals, which disproportionately affect the aging population. He theorizes that a wireless 

system capable of measuring and reporting physiologic data will not only facilitate current monitoring 

systems and data collection but may also create real-time methods to assess therapy and control chronic 

illnesses and communicable diseases (Jones, 2009) [1].  

(Brandeau et al. 2005) showed that the optimum resource allocation depends on population size, the 

status of the pandemic on a local level, precautionary measures such as wearing masks, and the 

transmission rate of the infection. The demand and capacity to distribute the vaccines to the population, 

as needed, is an important parameter in the distribution model. There are, however, unpredictable 

emergency situations which will cause challenges when executing strategies to resolve the vaccine 

decision issues. (Arora et al. 2010) used a cost-benefit-based model to optimize aid during public health 

emergencies. The key results of the research consisted of the following; a higher flexibility is to be 

accomplished by postponing on the decision of how to pre-allocate; smaller counties benefit more from 

mutual help, and lastly, in order for significant savings, groups should be prioritized in allotting the 

vaccines.  

In the development of an optimum COVID-19 vaccine supply, it is determined by the constraints 

imposed by the vaccination context. Approximately 5.6 billion individuals in the world need to be 

vaccinated, meaning that there needs to be a mass production in a short period of time. Vaccine supply 

is delayed by the capacity of the method of delivery and the capacity of health care centers to vaccinate 

the individuals within the time period.  

In the following sub-sections, previous literature on the communities that are disproportionately 

affected by the pandemic, vaccine supply chains and pandemic supply chains is presented and explored. 
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2.3 The most at Risk Populations 

COVID-19 pandemic has caused disproportionately effects on vulnerable populations, people of color 

or those with pre- existing health conditions. The elderly and underserved communities are particularly 

at most risk. 80% deaths reported in the U.S. have been in adults 65 years old and older [28]. As seen 

in figure 2, the percentage of COVID-19 deaths reported are far higher in elderly population of color 

as compared to others. The same fact is also reflected in table 1 which shows the count and percent 

distribution of deaths involving COVID-19 with distribution of weighted and unweighted percent 

population by race and time period.  

 

Figure 2-2 Crude and age-adjusted percent of COVID-19 deaths and unweighted population 

distribution by race (CDC 2020) 
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A study of selected states and cities with data on COVID-19 deaths by race and ethnicity showed that 

34% of deaths were among non-Hispanic Black people, though this group accounts for only 12% of 

the total U.S. population (Holmes et. al. 2020). In Chicago, residents in highly segregated 

neighborhoods with higher social vulnerability, such as higher levels of poverty and lower levels of 

education, income, and employment, are disproportionately exposed to social and health risks. This 

intersection of factors was found to be associated with high death rates from COVID-19 (SJ et. al 

2020).  

Similarly, in a nationwide analysis, counties with higher population percentages of non-Hispanic Black 

people experienced higher COVID-19 confirmed case and death rates than counties with higher 

population percentages of non-Hispanic White people (Mahajan et. al 2020).  

It is also concerning that a high percentage of Americans do not want to get vaccinated. A study shows 

that 31.1% of Americans do not intend to pursue being vaccinated when a COVID-19 vaccine becomes 

available (Callaghan et. al 2020). The likelihood of refusal is higher for Blacks, women, and 

conservatives, exacerbating existing disparities in COVID-19 outcomes. Blacks were more likely to be 

hesitant than Whites because of concerns about safety and efficacy, because they lack needed financial 

resources or health insurance, and because they already had COVID-19 (Callaghan et. al 2020).  

Notably, previous research has also shown vaccine hesitancy among Blacks, with evidence that Blacks 

have refused to participate in HIV/AIDS vaccine trials and are less likely to receive annual influenza 

vaccinations (US Department of Health and Human Services Office of Minority Health 2018).  
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Table 2-1 Count and percent distribution of deaths involving COVID-19 with distribution of weighted 

and unweighted percent population by race and time period (CDC 2020). 

 

Any vaccine or treatment should target these high at risk populations first to prevent further loss of 

life. Therefore, this study looked to identify how socially and medically vulnerable populations 

overlapped, if and how much they are being underserved in the current testing paradigms, and how to 

design supply chain for vaccines or drug treatments that prioritizes the vulnerable ensuring they get 

treatments they need regardless of their income status. 

2.4 Vaccine supply chains 

The current literature on vaccine supply chain is immeasurable and hypothesized. The majority of the 

studies were driven by the vaccine effectiveness procurement, distribution and allocation to vaccinate 

a wider population. (Lee et. al 2011) investigated the impact of a new vaccine on the existing vaccine 

supply chain with a deterministic mathematical Equation-Based Model (EBM). The results illustrated 

that the distribution of the newly introduced vaccine needed additional storage and transportation 

capacity to effectively implement the program of the vaccination. Similarly, by taking into account 

scheduling preferences of patients and scheduling inconvenience, (Abrahams et. al 2015) argued that 

the distribution of vaccines presents a number of operations management challenges like, multi-dose 
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vaccine packages, rapid spoilage upon opening, high-cost of wastage, and vaccination needs of 

patients.  

Storage capacity is another factor which impacts the vaccine supply chains. (Shittu et al. 2016) 

analyzed the influence of variance in supply and demand under scenarios which enhance the supply 

chain’s capability to meet the storage requirements. In Nigeria, a simulation was developed for vaccine 

storage capacity. The study showed that there was a 55% increase in the storage capacity which was 

needed to meet the vaccination needs. With the establishment of three more vaccine delivery hubs, 

there could be a decrease of cold storage requirement of 55% to 33%. The redesign of old vaccine 

supply chains can therefore be crucial for capacity utilization.  

Hospitals and other service providers play a vital role in ensuring that the vaccines are distributed and 

dispensed effectively. (Lin et al. 2020) created a mathematical model to analyze the decision of the 

distributor to use a cold chain or non-cold chain to deliver the vaccines. Next, the model was to analyze 

the influence of a single-step or two-step standard inspection policy of the retailers on the distributor’s 

decision whether to use the cold chain or not. The results represented that the two-step policy, despite 

being stricter and more costly, was less effective in influencing the distributor to select the cold chain 

option than the single-step policy was. 

2.5 Pandemic vaccine supply chains 

In the case of pandemics, vaccine supply chains consist of their own specifics such as, scale, exposure, 

time-space levels, and constraints. Uscher-Pines et al. 2006 evaluated a sample of 45 national pandemic 

influenza prioritization plans, including 19 developed and 26 developing countries. It was found that 

28 (14 developed and 14 developing countries) out of 45 nations have provided for prioritized 

vulnerable groups of the population for vaccination. In some countries, higher prioritization of high-
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risk individuals by healthcare workers and service workers is embedded in the national pandemic 

vaccination plan (ibid). The study concluded by emphasizing the need to establish priority settings 

based on individualized modeling or impact estimates to enhance the effectiveness of large-scale 

vaccination programs to mitigate the risk of community transmission during a pandemic (Uscher-Pines 

et al. 2006).  

Araz et al. 2012 prioritized 15 counties of Arizona based on four distinct H1N1 pandemic vaccine 

distribution strategies: pro rata distribution; sequential distribution by population size; sequential 

distribution by estimated periods of pandemic peaks; and reverse sequential distribution by estimated 

order of pandemic peaks. The study demonstrated that the policies would be effective to reduce the 

pandemic’s impact by optimizing waiting times for vaccines. The results revealed that the two most 

effective policies for controlling the epidemic and reducing unmet demand are pro rata distribution and 

prioritization of communities expected to experience the latest outbreak.  

Previous research by Huang et al. 2017 and Chen et al. 2020 has investigated risk-based pro rata 

distribution and prioritization for vaccine allocation in order to reduce the spread of the virus. Medlock 

and Galvani 2009 used a parametrized model with survey-based contact and mortality data from 

influenza pandemics to determine optimum vaccine allocation minimizing five outcome measures: 

deaths, infections, years of life lost, contingent valuation, and economic costs. They found that optimal 

vaccination is feasible by prioritization of schoolchildren and adults from the ages of 30 to 39 years 

(Medlock and Galvani 2009).  Buccieri and Gaetz 2013 argued that in a pandemic outbreak, priority 

for vaccination should be given to population groups at high risk and who would experience difficulty 

reaching health centers, such as homeless people and other disadvantaged groups, to ensure equity and 

utility. During the H1N1 outbreak in Toronto, the city managed to vaccinate 38 percent of the homeless 

people via highly accessible community-based vaccine clinics. Taking New York City as a case study, 
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Chen et al. 2020 applied an age-structured simulation model to explore the optimal allocation strategy 

for the COVID-19 vaccine. They divided the population into seven compartments, and then each 

compartment was further divided into five age-groups. They analyzed the impact of both static and 

dynamic policies. The results showed that, when the objective is to minimize deaths, the optimal static 

approach is to vaccinate the oldest group first and then the younger groups. However, when the target 

is to mitigate total confirmed cases, then the optimal static policy is to allocate vaccines to younger 

people even if the supply is scarce. Sudan et. al. 2021 used the concept of Transport Intelligence and 

Logistics Systems for recovering Supply Chain Disruptions in Post-COVID-19 Pandemic. 

In recent years, with an increased focus on renewable energy and the potential reduction of 

transportation's impact on climate change and other environmental issues, the electric vehicles (EVs) 

have high importance to address these challenges. Project Drawdown describes electric vehicles as one 

of the 100 best contemporary solutions for addressing climate change [43]. Even though the emissions 

from the power plants are used to fuel the vehicles, the electric vehicles will reduce the global air 

pollution significantly Technologies for EV are increasing which include extending driving ranges and 

reducing costs [44]. The EVs are not only helping in fighting climate change, but also providing more 

economical mode of transportation as well. According to a study by Idaho National Laboratory, the 

breakdown for a gas-powered car vs. an electric car comes out to be $9.83 per 100 miles for a gas car 

and $5.27 per 100 miles for an electric vehicle. When directly compared, the cost to power an electric 

vehicle is about half of what it costs to fuel your gas-powered car. 

This project aims to create a supply chain model that prioritizes geographic sections in the cities that 

house vulnerable communities. The study identified the phenomena of last mile importance in 

achieving the objectives. The last mile transportation concept was critical in saving lives during the 

pandemic for underserved populations. Integrating the last mile concept along with an accessible 
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healthcare index (CHI) will allow for real-time strategies. The strategies are defined as mathematical 

models that could be used in real-time for these at-risk communities. The use of electric vehicles (EVs) 

for last mile transportation will help in reducing carbon emission and fighting climate change. 

2.6 Automated Data Capture (ADC) in healthcare 

The concept of automated data capture in pharmaceuticals and healthcare is not new. The PI in 

partnership in HHD published a seminal paper in 2007 [1] which describes an overview of the concept 

of an all-encompassing automated pharmaceutical tracking system (as seen in Figure 1) that begins 

with compliance documentation from the drug manufacturer and continues through the confirmation 

that the elderly or URM patient were reached and presented with an opportunity to be vaccinated or 

administered a COVID-19 medication or therapeutic, as appropriate. This system also facilitates 

compliance with Food and Drug Administration proposed e-pedigree requirements and provides data 

for healthcare decision making. As described earlier this type of approach is key to impacting the 

underserved populations as medicinals are developed for COVID-19. The real time feedback would be 

crucial to keeping elderly and underserved patients from having to go to the hospitals and taxing the 

already overburdened hospitals.  This could ultimately increase hospital capacity.  Our proposed 

models would be able to impact the issues of estimating the community needs, understanding vaccine 

hesitancy, and the timely delivery of COVID-19 medication or other medical therapeutics. 

2.7 Artificial Intelligence  

Good input metrics are essential for the optimization and implementation of the supply chain. The data 

collection system which could use IOT or other technologies acquires information from multiple 

different sources. Each source will provide a metric and observing how those metrics change over time 

and inform the optimization model is the key novel feature. We will use AI to not only interpret and 
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clean the collected data but also use it to translate a metric into an input variable for the supply chain 

optimization model. Artificial Intelligence (AI) is just beginning to crack the surface in healthcare. It 

has the potential to improve diagnosis and treatment, patient engagement and adherence, and 

administrative applications [5]. AI applications like machine learning and natural language processing 

can take data from sensors and databases and provide meaningful health insights quickly and 

accurately. The ability to provide quick and accurate insights allows for quicker and better diagnoses 

and treatment.  

Our model includes integrating Facial Recognition Technology (FRT), Automated Data Capture 

(ADC), and Artificial Intelligence (AI) with Deep Learning (DL), Machine Learning (ML) and natural 

language processing data from sensors and databases [8].  Data collected and processed will provide 

meaningful health insights quickly and accurately to improve diagnosis and treatment.  Our model 

improves timely delivery of medication or other medical therapeutics, and to monitor those that remain 

unvaccinated and most at-risk for disease. While this model focuses on COVID, it can be used to 

increase early detection of other respiratory diseases and illnesses that may be indicated by fever or 

monitoring vital signs remotely.  

Early identification of minimally symptomatic (paucisymptomatic) or asymptomatic phases of 

COVID-19 and prompt response to infected cases is crucial. AI and machine learning (ML) can help 

determine infected patients who are more likely to suffer more severely from COVID-19 and quickly 

provide more accurate patient risk scores that will help decide when urgent treatment (and resources) 

is needed [7]. ML evaluation of complex underlying relationships between clinical variables in 

COVID-19 useful for the development of a computational diagnostic test based on signs, symptoms, 

and laboratory results, these correlations can also yield critical insights into the biological mechanisms 

of COVID-19 transmission and infection [9]. 
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2.7.1 Hierarchical Sparse Learning to Investigate Demographic and Social Factors & 

Interactions 

As we discussed that in this research, we will work on optimized distribution of pandemic vaccine to 

at-risk communities. In particular, we will introduce social science research to investigate and 

understand why the URM communities make certain health decisions based on factors from the 

National Academies of Sciences, Engineering, and Medicine report, Communities in Action: Pathways 

to Health Equity (2017). At present, there is a knowledge gap to understand structural and social 

determinants of health given a large number of demographic and social factors. In this research, we 

will bridge the gap to develop a set of data-driven analysis tools and machine learning models to offer 

a deep understanding of health decisions and disparities for URM communities. 

To investigate high dimensional data with a large number of factors with complicated interactions, we 

will develop machine learning methods that care capable of learning high order variable interactions 

and identify key influencing factors and factor interactions for student study outcomes. Traditionally, 

the interaction effects are represented as the elementwise product among the variable. For example, 

the second-order interaction between two variables xi and xj is represented by their elementwise 

product xi ⊙ xj. It is noted that in most of the studies of interaction models, only second order or low-

order interactions are considered. However, higher-order interactions can be critical and important in 

many applications, such as the research problems in this project. A major challenge of high-order 

interaction modeling is the exponentially expanded interaction feature space generated from a large 

number of interactive factors. For example, when considering the kth-order interactions among a set 

of variables, the number of interactions is O(dk) with respect to the d variables. Such a large number 

of interactions make the learning model computationally demanding even when d and k are very small. 

To tackle this problem, a promising strategy is to exploit sparse structure under this scenario, since 

only a small subset of the variable and interactions are critical and relevant. Thus, we propose to 
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develop high order structured sparse learning methods to identify important variables and interactions 

from a high feature space. Moreover, to make an efficient sparse learning framework, we consider the 

higher-order interaction effects are originated from lower-order ones. Thus, we impose a logical 

heredity relationship in sparse feature learning. The heredity assumption is that for a variable, if none 

of its associated kth-order interaction effects contribute to a learning model, then all its associated 

higher-order interaction effects will also have no effects to the learning model. Based on this heredity 

structure, we developed a hierarchical sparse model (HSM) that is capable of handling arbitrary-order 

interactions among features and identifying most important variable and interactions via sparse 

regularization techniques. The proposed HSM method make it possible to explore complex variable 

relationships in a potentially extremely high dimensional feature space. Based on HSM, we will 

construct an interpretable machine learning model to reveal complex variable interactions for college 

student learning path patterns and their academic achievements. This could overcome the limit of 

traditional regression models with low order multiplicative interactions. We will employ the proposed 

HSM model to explore the high dimensional data collected from this project, including various 

medical, demographic, and social factors. The new knowledge learned from this research will enable 

us to develop novel and effective strategies to measure, reduce, and mitigate the effects and impacts of 

discrimination on health outcomes.  

2.7.2 Automatic Action Recognition using Deep Learning   

Human pose estimation accuracy was greatly improved with the help of convolutional neural networks 

(CNNs) [6],[7],[8]. However, there is a little research on compact, yet efficient pose estimation 

methods. A growing number of computer vision and machine learning applications require 2D human 

pose estimation as an input for their systems. To help the research community boost their work, we 

have investigated advanced deep learning methods for real-time multi-person system to jointly detect 

human body, foot, hand, and facial key points on single 2D images. In particular, we explored 
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OpenPose system which consists of three major blocks: body + foot detection, hand detection [9] and 

face detection. The core block is the combined body + foot key point detector. It can alternatively use 

the original body-only models [10]. To achieve automatic data capture, we will extend 2D imaging 

learning to continuous video stream monitoring and action learning. We will develop human activity 

recognition system to continuously monitor human activities that can be helpful in surveillance, health 

care, anomalous behavior detections, personal identity, knowing psychological state, elderly care. The 

activities can be human to human, independent or human to object interactions and can be monitored 

using video surveillance, wearable sensors, and human to system interactions. 
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Figure 2-3: Human Activity Recognition System for Automatic Data Collection (Current work in lab) 

The human action recognition system developed in this project is used to achieve automatic data 

collection. It is also a core component of the AI system to provide patient activity monitoring, in-time 

feedback, and improved medical outcomes. 

 

Figure 2-4: Display Output of Pill Confirmation and Sickness Detection Models (Current Work in 

Lab) 

The above figure shows the output of the model. It shows the output for both pill consumption 

confirmation as well as for thermal imaging and sickness detection. 



42 | P a g e  

 

2.8 Defining the COVID-19 Supply Chain from manufacture to hospital to home 

care; 

Why Current Supply Chains cannot support the COVID-19 Pandemic 

While the vaccines are developed and being distributed, the White House and federal administration 

has expressed their concerns on the supply chain to get the vaccines from the labs and manufacturers 

to the elderly and underserved especially with race to meet herd immunity before more lethal variants 

of COVID-19 further complicate our efforts.   

The need for supplies for the epidemic is ever changing.    The Biden administration is exploring new 

avenues to reach all communities and administer as many doses of vaccinate as possible across the 

United States, including engaging local community partners and community- based events.   Yet, the 

final mile of vaccinations will not be met if we fail to change the mindset of those that 25-30% of 

people in vulnerable populations from probably- or definitely won’t take the vaccine to probably will 

take the vaccine.  These minority populations are more likely to report the pandemic has had a major 

negative impact on their mental health and are more likely to know someone who has died from 

coronavirus compared to their counterparts.  Studies have found many of those communities fear or 

have suspicion, and general distrust of the medical community. These lack of confidence barriers and 

negative perceptions about medical interventions, in general, and COVID-19 vaccinations, have been 

overcome in these communities through community outreach and education.  In the final mile, those 

that refuse to be vaccinated will be asked to complete a survey to further understand their reluctance.   

We will design decision aids, incorporating information that serves to reduce anxiety about receiving 

vaccinations.  The decision aids will provide accurate risk expectations.  By addressing their concerns 

and the negative impacts experience as a result of the COVID-19 pandemic, we will help members of 

these vulnerable populations and family members to make choices that are consistent with their 
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intrinsic values, and ultimate provide better health outcomes and reduce health disparities in these 

communities. 

2.9 Summary of Literature Review on Vaccine Supply Chains for Pandemics 

Author Objective Priority group Methodology Variables Findings 

Uscher- 

Pines et al. 

[13] 

To review 

national 

pa nde mic  
influenza 

prioritization 

plans. 

Healthcare workers, 

essential service 

providers, people at 
high risk, children, 

elderly, key decision-

makers, influenza cases, 
hospitalized cases, and 

the unvaccinated 

Descriptive 

statistics 

Vaccine and antiviral 

priority groups, group 

rankings, goals of 
pharmaceutical 

interventions, the inclusion 

of scenarios and population 

size 

Countries 

gave top 

prioritization 
to high-risk 

individuals, 

followed by 
health care 

workers, and 

service 

workers. 

Buccieri 

and Gaetz 

[17] 

To evaluate 

e thica l   pan 
demic planning 

policies 

Homeless individuals 

in Toronto. 

Mixed 

methods 
(descriptive 

statistics and 

interviews) 

Gender, demographical 

factors, fear of infection, 
lack of concern access to 

community- based clinics, 

access to a regular doctor, 

pro- motional campaigns. 

The findings 

s h o w e d  
that the 

immunization 

rate for the 
homeless was 

higher than 

the expected 

average rate 

Govindan 

et al. [21] 

 

 

 

 

To formulate a 

decision 
support system 

to manage the 

demand and to 
control the 

outbreak of an 

epidemic 

Four categories  based 

on the risk level of 
their immune system 

(very sensitive, 

sensitive, slightly 

sensitive, and normal). 

 

Mamdani 

fuzzy 
inference 

system (FIS) 

 

Fever, tiredness, and dry 

cough as the input 
variables. The output 

variable is the classification 

of the community members 

The results 

for different 
scenarios 

confirm that 

the proposed 
decision 

support 

system is 
sound and 

reliable. 

Davila 

Payan et 

al. [18] 

To explore the 

factors related 

to a vaccination 
cover- age rates 

of priority 

groups. 

Children (6 months to 

17 years) and high-risk 

adults (25-64 years). 

Linear 

regression 

State campaign 

information, 

demographics, preventive or 
health seeking behavior, 

preparedness funding, 

providers, state 
characteristics, and 

surveillance data. 

The most   

significant  

factors of 
vaccine 

coverage rates 

are related to 
the 

distributional 

and systemic 

decisions. 

Marcello et 

al.  

To estimate 

the number of 
vaccine doses 

administered. 

None Descriptive 

statistics 

Facility type, number of 

doses administered, number 
of doses in stock, number of 

doses reported, and 

questions about the quality 

of communications. 

The reporting 

about the 
pandemic 

vaccine was 

visible across 
all vaccine 

providers. 

Lee et al. 

[15] 

To determine 
optimal 

vaccination 

allocation 
policies during 

the Spring 

6 age groups (1 = 0–5 
yrs, 2 = 6–12 yrs, 3 = 13–

19 yrs, 4= 20–39 yrs, 5= 

40–59 yrs,6= >60 yrs). 

Non-linear 
dynamic 

mathematical 

model 

Age distribution of the 
population, age- specific 

vaccine efficacy, 

hospitalization rates, 

The 
population 

group aged 20-

39 must be 
given priority, 

followed by 
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2009 H1N1 

pandemic in 

Mexico. 

  mortality rates, and contact 

rates. 

school 

children (6- 

12 years). 

 

Araz et al. 

[16] 

 

 

 

 

 

 

 

To identify the 
distribution 

policies that 

would be 
effective to 

reduce the 

pandemic’s 

impact. 

Preschool age children 
(0–4 years), school age 

children (5–19 years), 

adults (20–64 years), and 

older adults (65+ years). 

 

Mathematical 

model 

 

 

Transmission probability 

per contact, age- specific 

contact rate, force of 
infection, infectious period, 

incubation period, case 

fatality rate, vaccination rate, 
vaccine efficacy, vaccine 

pre-protection period, and 

numbers of people in each 

county and age-group. 

 

Pro rata 

distribution 

and 
prioritization 

of 

communities 
expected to 

experience the 

latest outbreak 
are the two 

most effective 

policies. 

Fitzgeral

d et al. 

[40] 

 

 

 

 

To analyze 
the    

importance 

of 
cooperation 

between 

public   
health   

agencies and 

pandemic 
vaccine 

providers. 

 

 

None 

Descriptive 

Statistics 

Data related to the public 

health program plans for 
the following: recruiting, 

enrolling, and registering 

pharmacists as pandemic 
influenza vaccine providers; 

vaccine allocation and 

distribution of pandemic 
vaccine to com- munity 

pharmacies; weekly 

allocation of pandemic 
influenza vaccine by  

provider  type; and 
immunization policies, 

formalized agreements, and 

memoranda of 
understanding be- tween 

public health departments 

and community pharmacies. 

Formalized 

agreements 
between 

public 

health 
department

s and 

pharmacies 
should be 

established

. 

 

Medlock 

and 

Galvani 

[14] 

 

To evaluate 
current 

vaccine 

allocation 
policies and to 

determine the 

optimal 

strategy. 

17 age groups (ages 

0, 1 to 

4; 5 to 9; 10 to 14; 

...; 70 to 

74; and 75 and older). 

Age-
structured 

simulation 

model 

Number of fatalities, contact 
rates,  duration of the 

infectious period, years of 

life lost, weighing deaths 
against the expected 

remaining years of life for 

different ages, contingent 
valuation, costs associated 

with vaccination, costs 

associated with illness and 

death values. 

Optimal 
vaccination is 

achieved by 

prioritization 
of 

schoolchildren 

and adults 
aged 30 to 39 

years. 

Biggerstaf

f et al. 

[19] 

To analyze 

different 
vaccination 

scenario 

 

 

People presenting to 

receive their second 
dose were prioritized 

over those receiving 

their first dose 

 

A spreadsheet 

Simulation 

model 

The number of people 

getting sick by time, the 
time difference between 

the launch of the 

vaccination program and 
emergence of the 

pandemic, the number of 

doses administered per 
week, and the allocation 

by age group, the clinical 

attack rate, 
hospitalization rate, 

Strategies 

related to 
improvements 

in timeliness 

of vaccine 
production are 

crucial for 

future 
pandemic 

vaccination 

programs. 
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vaccine effectiveness and 

case fatality ratios. 

Chen  et 

al. [22] 

 

To determine 

the optimal 
allocation 

policies for 

the COVID-19 

vaccine 

 

 

 

 

 

 

 

Seven compartments 

(susceptible,exposed, 

pre-symptomatic 
infectious, 

unascertained 

infectious, 
ascertained 

infectious, isolated, 

and   removed) and 
five age-groups (0-

17, 18-44, 45-64, 

65-74, and 75+). 

 

Age-

structured 

simulation 

model 

 

The number of 

individuals in each of 

the seven compartments, 
the population size, the 

transmission rate, the 

contact rate, the dis- 
count factor of the 

transmission rate, the 

average times (from 
exposed to infectious, 

from pre-symptomatic 

infectious to symptomatic 
infectious, from 

symptomatic infectious 

to re- covered, from 
ascertained infectious to 

isolation, from isolation 

to recovered), the fraction 

of ascertainment for each 

age group, the level of 

permitted economic 
activities, the amount of 

vaccine allocated to each 

age-group. 

 

The results 

show that 

among the 
static 

policies, the 

optimal 
approach is 

to vaccinate 

the oldest 
group first 

and then 

the younger 
group. In 

the case of 

dynamic 
policies, the 

results 

reveal that 

the best 

policies are 

myopic and 
two-day 

myopic. 

 

Huang et 

al. [20] 

 

 

 

 

To explore 

the optimal 
al- location 

of several 

vaccine 
types to 

certain 

priority 

groups.  

Pregnant women, 

infants (0-3 years 
old); people be- 

tween age 4-24; and 

adults at high risk 
and infant care- 

givers. 

Optimization   

model 

The five priority groups 

and regions were taken as 

input. 

A small 

cache of 
discretionar

y doses is 

enough to 
achieve the 

vaccine’s 

optimal 

distribution. 
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3 Chapter 3: Artificial Intelligence and Automated Data Capture 

Needed to Automate Healthcare Supply Chain 

3.1 Background 

3.1.1 The use of Artificial Intelligence and Deep Learning to Predict Diseases 

Recent developments in autonomous AI and machines learning have offered great potential in 

healthcare sector. It offers not only to improve the healthcare productivity, but also lowering the 

healthcare related costs, and improving the accessibility of quality healthcare options globally. Several 

researchers are focusing on developing algorithms to detect diseases using eyes, while others are 

focusing on facial features to detect different type of diseases. 

Even though most of the research studies related to AI and machine learning in healthcare sector are 

in trail phase, we already have seen some great systems developed already and available in the market. 

One of the biggest landmarks in this regard is FDA’s approval of artificial intelligence-based device to 

detect certain diabetes related eye problems on April 11, 2018 [1]. The approval was given by FDA to 

market a device called IDx-DR, which uses artificial intelligence to detect mild level of eye disease 

diabetic retinopathy in adults who have diabetes [1]. This device uses AI algorithm to analyze digital 

retinal images taken with retinal camera and uploaded on cloud server by the doctor. Based on the 

uploaded image, the software will give results that whether the sickness is detected or not and what 

further protocols need to be followed. FDA authorities also said that they will continue to facilitate 

such devices in future which improve access of required healthcare to patients.  

Another very recent study led by researchers predicts the risk of heart attack in patients through retinal 

scans using artificial intelligence algorithm [2]. The algorithm predicts the risk of myocardial infarction 

using just the retinal images and demographic data and results can identify patients at high risk of 
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future myocardial infarction and a risk of heart attack within the next 12 months with an accuracy 

between 70% and 80%, using the retinal imaging [2]. The deep learning approach used in this research 

is multichannel variational autoencoder (mcVAE) and a deep regression network ResNet50. 

Another study [3] used artificial intelligence-based diagnostic to detect the early signs of glaucoma 18 

month earlier than the traditional testing methods. They used the CNN-aided method (Convolutional 

Neural Networks) to predict glaucoma progression using DARC Images (Detection of Apoptosing 

Retinal Cells). The company Tesseract raised $80 Millions to develop retinal scanning systems that 

aimed to diagnose a wide range of diseases. Tesseract’s iC platform combines chemical sensors, 

imaging technology and artificial intelligence analyses to inspect the back of the eye to provide 

automated clinical diagnostics [4]. 

3.1.2 A Future of COVID-19 Treatment without Vaccine and painful Needles 

Ever since the beginning of COVID-19 Pandemic, researchers from all across the world have been 

investigating different options for the treatment of SARS-COV-2. This is really critical even after two 

years from the start of pandemic due to different variants resulting in new waves of this virus spreading 

globally. In this regard, December 22 and 23rd, 2021 are landmark days, when FDA granted 

authorization to Pfizer’s Paxlovid and Merck’s Mlnupiravir (COVID-19 Oral Antiviral products) for 

emergency use (EUA) [1]. Patrizia Cavazzoni, M.D., director of the FDA’s Center for Drug Evaluation 

and Research described this a major step forward in the fight against this global pandemic,” [1]. Ever 

since, Merck sold $952 million of its Covid-19 treatment pill molnupiravir in the fourth quarter, and 

said it’s on track for an additional $5 billion to $6 billion in sales in 2022 with most sales so far 

concentrated in the U.S., the U.K. and Japan [2].  



49 | P a g e  

 

The clinical trials of molnupiravir started in October 19, 2020 and anticipated study completion date is 

May 5, 2022 [3]. The initial results show some promise with reduced the risk of hospitalization or death 

in Covid patients by 30% but slashed the risk of dying by 90% [2]. 

Another recent invention from MIT engineers [4] provided another option of delivering mRNA vaccine 

to patients without the use of vaccine or needles. This invention is targeted for those people who are 

reluctant to take COVID-19 vaccine due to discomfort of being jabbed or inserting needles inside them. 

They have invented a tiny device, “the size of a large pill, encased in gelatine and shaped like the shell 

of a tortoise. It carries a needle that is engineered to only lance out when the device’s flat section sits 

flush with the lining of the stomach [4].” So far the study is in initial phase with some trails conducted 

on animals, but the results are so far inconclusive. 

Despite these significant developments in recent months, neither Paxlovid nor molnupiravir is 

authorized for pre-exposure or post-exposure prevention of COVID-19, and neither can substitute the 

need for vaccination. Despite the availability of these medications for some people, it's critical for 

everyone who can get vaccinated to get vaccinated against COVID-19 [5]. Even with all of this, it is 

extremely essential that scientists and researcher should come up with alternate treatment of COVID-

19, which are less painful and effective against all variants, and the developments like oral antiviral 

pills or needleless administration of vaccines provide a lot of optimism. 

3.2 Sickness Detection Model  

3.2.1 Approach 

In this section, we will discuss the approach that we used to train the model for predicting sick vs 

healthy based on facial features and thermal imaging. We will discuss the dataset that we have used 

to train and test the model, how the data was processed, which deep learning model did we use and 

results and discussion on outcomes vs expected results.. 



50 | P a g e  

 

3.2.1.1 Dataset 

In the study, we have considered the dataset that had images of people with different facial orientations, 

sizes, backgrounds, ethnicity, and different races to make sure our model is not biased. We have 

considered an even split of both features of the model – sick (300 images) and healthy(320 images) 

people. For training and testing our model, we have considered a split of 80% training data and 20% 

testing data. 

3.2.1.2 Preprocessing Data 

The first step of the sickness detection model includes data preprocessing like normalization, face 

detection, grayscale conversion, and standardization of our data to ensure proper detection of the 

different classes of data. There are multiple face detection algorithms developed over the years that are 

used to detect faces in a single image. One of the most successful algorithms to detect visual images 

or live video is Viola-Jones Face Detection Technique, popularly known as Haar Cascades[x]. This is 

a proven object detection algorithm that gets results rapidly and with high detection rates.  The process 

involves converting the image to grayscale and resizing the image to focus on the face area. The images 

are then randomized and converted to a NumPy array. 

3.2.1.3 Building the CNN architecture and training the model 

A convolutional neural network (CNN) is a type of artificial neural network used in image processing 

to process pixel data. There are 3 layers in a CNN model - an input layer, an output layer, and a hidden 

layer that has multiple convolutional layers, pooling layers, fully connected layers, and normalization 

layers. 



51 | P a g e  

 

 

Figure 3-1: Demonstration of three layers in a CNN model 

The model takes inputs as an image which is a matrix of pixels and assigns weights and biases to 

different aspects of an image to differentiate from one other. The objective of the convolutional layers 

is to extract high-level features from the input. The initial layers of the models detect the curves, edges, 

gradients, and orientations. As the model progresses further into deeper layers of the network the 

various other high-level features of the images are identified.  

 

Figure 3-2: Progression of CNN model into further deep layers 
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The performance of the model is also influenced by the activation function used. To handle the complex 

neural nets non-linear activation functions like sigmoid, hyperbolic tangent (tanh), and rectifiedlinear 

unit (ReLU) are used. We have used the ReLu activation function for our research 

 

We used two ConvNet layers each layer followed by ReLu and max-pooling layers followed by 

flattening and dense layers. The output layer has 2 nodes which the model predicts as sick vs healthy 

patients 

3.2.2 Data Collection 

In the study, We have collected the data of about 620 images of both sick (300 images) and healthy(320 

images).  All images were converted to grayscale, face detected, and standardized. A CNN model was 

trained with multiple layers to detect the patient's health status. We have trained the model for 50 

epochs to attain the desired accuracy. We also ran the model by adding more layers to the architecture 

to predict the depth of the image and identify more features.  

Table 3-1: Details of dataset used to train the model 

Status of 

patient 

Gender Age groups 

 Male Female Kids Adults Elders 

Sick 30% 70%  25% 55% 20% 

Healthy 25% 75% 20% 45% 35% 
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Figure 3-3 shows some images of sick people used for training our model 

(https://github.com/J1C4F8/deep_learning_acute_illness ) 

Figure 3-3 shows the images of sick people that were used to train the CNN model for predicting 

sickness. As we can observe, the facial features of sick people are clearly different than the images 

taken when they were healthy. The facial features like lips color, eye dilation, eye color, paleness, 

redness of nose and lowered cheekbones were some of the features that were learnt by the model. 

     

https://github.com/J1C4F8/deep_learning_acute_illness
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Figure 3-4 shows some images of healthy people used for training our model 

(https://github.com/J1C4F8/deep_learning_acute_illness ) 

     

3.2.3 Results and Discussion 

In order to predict sick vs healthy using deep learning algorithm, we need a huge dataset for model to 

accurately make predictions. Based on the dataset that we used to train our model ran the test 

implementation of our model, we were able to achieve high training accuracy and the model was able 

https://github.com/J1C4F8/deep_learning_acute_illness
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to predict during the live video stream. Below are the images that show the distinction between sick 

and healthy patients. 

 

Figure 3-5: Sample Output 1 of Sickness detection model predicting sick and healthy 

 

Figure 3-6: Sample Output 2 of Sickness detection model predicting sick and healthy 
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Figure 3-7: Graph showing Training loss and validation loss 

 

Figure 3-8: Graph showing Training accuracy and validation accuracy 

 

In the graphs, the training loss is decreasing gradually over the epochs which is an indication that the 

model is fitting well with the training data but since the dataset is small the validation loss is higher. 

Based on the output, we were successfully able to get the training accuracy of above 70%. The 

validation accuracy is still between 60%-70% which can be further improved as we use more dataset 

of images to train the model. 
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As stated in chapter 1, the hypothesis for sickness detection is given below. 

H0: The AI enabled model will accurately detect sickness through thermal imaging and facial 

recognition with accuracy of above 70% 

H1: The AI enabled model will not accurately detect sickness through thermal imaging and facial 

recognition with accuracy of less than 70% 

Based on the accuracy of output we have achieved so far, we were successfully able to get the training 

accuracy of above 70%. The validation accuracy is still between 60%-70% which can be further 

improved as we use more dataset of images to train the model. We are quite hopeful that validation 

accuracy of the model will eventually improve to above 80% as we use more dataset to train the model 

in future. 

3.2.4 Conclusion: 

The study presents a system that can detect if a person is sick or healthy using facial characteristics. 

Experiments show that the system can predict between sick and healthy individuals with high training 

accuracy of above 80%. Due to limitations of data in practical deployment, we were not able to achieve 

higher validation accuracy for our model. This is due to the requirement of a large dataset of images to 

train the deep learning algorithm. However, we hope this system would be the first step towards 

detecting sickness we plan to implement further on this and detect deep features like the color of skin, 

redness of the nose, and eye shapes to classify and detect diseases. 
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3.3 Pill Consumption Confirmation Model 

Drug monitoring accurately and collecting the data can help us to better understand the results of 

therapeutic trials. Our proposed system will help the user to take their medicines on time without much 

cost. Our application will help users to take their medicines at the required time. The application will 

check whether the patient has taken the pill or not. Computer-aided diagnosis enables us to carry out 

the check-up quickly and easily. Therefore, if diagnosis can be proved effective with an acceptable 

error rate, it will be with enormous potential. With the help of artificial intelligence, we could explore 

the relationship between pill consumption and disease with a quantitative approach. The present report 

describes medication adherence results from an exploratory pilot sub study, using the AI platform using 

Mobile Application that was evaluated for treatment of cognitive impairment in patients with 

Alzheimer. The objectives of this exploratory pilot sub study were to evaluate the AI platform as a 

real‑time monitoring method for study drug adherence, and to examine the feasibility of using the 

platform Alzheimer study. 

3.3.1 Approach: 

In our application to monitor the Pill consumption, we are using a single Shot detector takes only one 

shot to detect multiple objects present in an image using a multi-box. MobileNet is a lightweight Neural 

Network architecture designed for mobiles and embedded vision applications. 

3.3.1.1 Data Collection:  

For the purpose of training the model, videos were captured with iPhones of several participants 

consuming the pill and also pretending to consume the pill which should also be identified as Pill not 

consumed. Videos were captured with people of different backgrounds and colors to ensure minimal 

biasness in model prediction. People from the lab volunteered to record videos for training and testing 

of the model. The videos were also recorded in different environments such as consuming pill in rooms 
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with enough light vs consuming pill in darker rooms. The videos were converted into images and the 

data was split into train and test where training images were 200 and test images were 60 (70-30 Spilt). 

For Data Annotation, labelImg  tool was used to annotate the images. We have defined four classes 

namely  

 Tablet_Presence,  

 Tablet_Absence,  

 Pill_Consumed,  

 Pill_Not_Consumed.. 

Table 3-2: Split of Training Data vs Testing Data 

Training Data (Images) Test Data (Images) 

200 Images (70%) 60 Images (30%) 

 

3.3.1.2 Preparing and Training model:  

Now that we have images and their corresponding .XML files and the TensorFlow model accepts the 

input in terms of .tfrecords, so to get that first, we needed to convert .xml files to .csv and once the 

conversion was done, the train.csv and test.csv files are proofread for any wrong naming of classes 

apart from defined classes. Post that we ran the generate_tfrecord.py file to generate train.record and 

test.record files. For training the model we have used Tensorflow 2.4. which is trained for 14k steps 

using CUDA GPU in Windows 10 and model architecture used was SSD MobileNet V2. 

Testing: The model was tested on 15 unseen data setting the min_threshold_score =0.95 which means 

the model should detect only the classes which have confident scores equal to or more than 95% 

accurate. We also built an web application using Node JS which captures the video of patients and 
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predicts whether tablet is present, absent,  consumed or not consumed. We have also integrated IBM 

Cloud to store and access our data.(In detail will be explained in next draft) 

3.3.2 Results: 

Below are some of the Graphs which show the results of model training and testing and depicting the 

model training rate and loss rate. 

 

 

Figure 3-9: Graphs showing Loss Rate of Pill Consumption Confirmation Model 

 

The loss value given is a sum of the classification loss and the localization loss. The optimization 

algorithms are trying to reduce these loss values until your loss sum reaches a point where you are 

happy with the results and consider your network 'trained'. We can generally think of loss as a score 

where 'lower score equals better model'. We can see in Fig 3-10, loss rate is decreasing which shows 

ours model is predicting accurately. 
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Figure 3-10: Graphs showing Learning Rate of Pill Consumption Confirmation Model 

 

In this graph, the training rate is increasing over the epochs which is an indication that the model is 

fitting well with the training data. As seen in the graph, an accuracy of above 80% was achieved for 

predicting that whether or not the pill has been consumed by patient. Accuracy can further be improved 

by tuning the data. The increase in the number of data values will help the system to predict more 

accurately in future.  

3.3.3 Conclusion: 

As stated in chapter 1, we stated the hypothesis for pill consumption confirmation. 

H0: The “Pill Consumption Confirmation” Telemedicine model will accurately verify pill confirmation 

process with accuracy of above 70%. 

H1: The “Pill Consumption Confirmation” Telemedicine model will not accurately verify pill 

confirmation process with accuracy of less than 70%. 
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As we were able to achieve accuracy of above 80% for successfully verifying the pill consumption 

process, we reject H1: The “Pill Consumption Confirmation” Telemedicine model will not accurately 

verify pill confirmation process with accuracy of less than 70%. Hence we have met our objective. 

3.3.4 Model Outputs: 

As seen in figures 3-12 and 3-13, we can see that our model is accurately predicting the pill 

consumption activity with high accuracy > 80%. 

 

Figure 3-11: Output 1 of Pill Consumption model identifying pill consumption activity 

 

 

Figure 3-12: Output 2 of Pill Consumption model identifying no pill 

 



63 | P a g e  

 

 

 

 

 

 

Chapter 4: Optimized Healthcare Supply 

Chain Model for at-risk communities 
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4 Chapter 4: Optimized Healthcare Supply Chain Model for at-risk 

communities 

4.1 Background 

In addition to disruption in every field of life, COVID-19 has also brought to light the inequity of 

access to health care, treatments, and diagnostic testing. This inequity will also impact vaccine 

distribution and administration, particularly among low and middle-income families. As WHO director 

Dr. Tedros said, “The world is on the brink of a catastrophic moral failure, and it will be paid with lives 

and livelihoods in the world’s poorest countries.” This model is aimed to acknowledge the barriers to 

an equitable vaccine distribution system, inspire us to protect our most vulnerable populations, and 

emerge from this global pandemic stronger together. 

Vaccines are a crucial drug during times such as these, the supply chain distribution of it is highly 

sensitive and access of vaccination centers are often skewed away from underserved communities. 

Optimizing COVID-19 vaccine distribution can help plan around the limited production and 

distribution of vaccines, particularly in early stages of the pandemic. One of the ways for equitable 

distribution of vaccines is prioritizing the underserved communities. During the pandemic, the last mile 

transportation concept was crucial for saving lives for underserved populations. The supply chain 

model then maximizes social welfare benefits by sending drugs to underserved communities regardless 

of their ability to pay. 

In previous research referred before, most of them focused on studying vaccine distribution, designing 

cold chain networks, using machine learning for demand forecasting. Despite the substantial published 

research on vaccine hesitancy among the underserved communities, very few related studies are 
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concerned with problems related to the vaccine distribution and the supply chain network optimized to 

prioritize the underserved communities.  

The process of designing and setting up a vaccine distribution network for the underserved 

communities is a difficult task. In the development of an optimized supply chain network, we must 

introduce the constraints of vaccine production at the manufacturer side and vaccine storage limits at 

the hubs. Prioritizing zip codes with a large proportion of underserved communities and higher CHI 

index is one way to develop an efficient vaccine distribution supply chain network. The final output of 

the optimization will give a set of prioritized zip codes with penalty costs added to respective zip codes. 

4.1.1 Vaccine Supply Chains 

Vaccine supply chains consist of their own performance metrics such as scale, exposure, time space 

levels and constraints such as manufacturing limits. Most of the studies done so far focuses on the 

procurement, shipping, and optimizing distribution of the vaccines to the customers. The decision at 

distributor level to use a cold chain or non-cold chain to transport the vaccines is critical for vaccine 

distribution [1]. Experimental and simulation studies of ultra-low temperature refrigeration system is 

important as Pfizer vaccine requires ultra-low temperature storage (between −80 °C and −60 °C), while 

the Moderna vaccine requires −30 °C storage, Pfizer has designed a reusable package for transportation 

and storage that can keep the vaccine at the target temperature for 10 days [2].  

 

Supply chain designing for vaccine distribution is anything but an easy task as it deals with complex 

vaccine chemistry with a delicate delivery system – The challenge is to keep vaccines at a suitable 

temperature so as to not reduce its efficacy [1][10]. There are two major ways for vaccine distribution 

but considering that we are primarily focused on developing COVID-19 vaccine supply chain system 
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we base our research on the cold chain system for delivering the crucial drug. Cold chain supply system 

primarily delivers vaccines in either in generic insulated pharmaceutical box[2] or in cold chain mixes 

like domestic or absorption type fridges[11] 

4.1.2 Machine Learning Algorithms used in Supply Chain Systems  

This section discusses some of the most common used algorithms used for optimizing supply chain 

systems. 

The K-Nearest Neighbor algorithm is based on the Supervised Learning technique and is one of the 

most basic Machine Learning algorithms. The K-NN method assumes that the new case/data and 

existing cases are similar and places the new case in the category that is most similar to the existing 

categories. The K-NN method stores all available data and classifies a new data point based on its 

similarity to the existing data. This means that new data can be quickly sorted into a well-defined 

category using the K-NN method. The K-NN approach can be used for both regression and 

classification, but it is more commonly utilized for classification tasks. The K-NN algorithm is a non-

parametric algorithm, which means it makes no assumptions about the underlying data. It's also known 

as a lazy learner algorithm because it does not learn from the training set immediately instead it stores 

the dataset and at the time of classification, it performs an action on the dataset. K-NN algorithm at the 

training phase just stores the dataset and when it gets new data, then it classifies that data into a category 

that is much similar to the new data. 

K-Means Clustering is a type of Unsupervised Learning method that divides an unlabeled dataset into 

groups. K specifies the number of predefined clusters that must be produced during the process; for 

example, if K=2, two clusters will be created, and if K=3, three clusters will be created, and so on. It 

allows us to cluster data into different groups and provides a simple technique to determine the 

categories of groups in an unlabeled dataset without any training. It's a centroid-based approach, which 
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means that each cluster has its own centroid. The main goal of this technique is to reduce the sum of 

distances between data points and the clusters that they belong to. The unlabeled dataset is sent into 

the algorithm, divides the dataset into k-number of clusters and repeats the process until it does not 

find the best clusters. The value of k should be predetermined in this algorithm. 

Dijkstra's Shortest Path Algorithm - This algorithm finds the shortest path from a single source node 

to all other nodes. Nodes are represented by colored circles and edges are represented by lines 

connecting those circles. The algorithm keeps track of the shortest currently known distance from each 

node to the source node and updates these values as shorter paths are found. If the algorithm finds the 

shortest path between the source node and another node, that node is marked as "visited" and added to 

the path. This process continues until all the nodes in the diagram have been added to the path. In this 

way, there is a path that connects the source node to all other nodes and follows the shortest path to 

reach each node. Dijkstra's algorithm works only on graphs with positive weights. 

The Decision Tree algorithm is the most powerful and popular tool for classification and prediction. 

The decision tree is a flow chart-like tree structure, where each internal node specifies a test for the 

attribute, each branch represents the result of the test, and each leaf node (terminal node) contains a 

class label. 

A recurrent neural network (RNN) is a neural network used to process sequential data, including 

those with text, sentences, audio, video, or sequences. RNNs work by evaluating information before 

input and predicting information after or after. RNNs help predict contextual information such as 

incomplete sentence endings and a series of voices. 
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4.1.3 Machine Learning Models used in Vaccine Supply  

For forecasting time series data, the Auto-Regressive Integrated Moving Average (ARIMA) and 

Multilayer Perceptron Neural Network (MLPNN) models were used, and a study found that the best 

forecast model was chosen based on the lowest Root Mean Square Error (RMSE) value and the Mean 

Absolute Error (MAE) (MAE). The MLPNN model outperformed the ARIMA model in projecting 

monthly vaccine demand, according to the analysis[3] 

LSTM networks are an extension of recurrent neural networks (RNNs) in a deterministic Long Short 

Term Memory (LSTM) model, primarily created to address instances where RNNs fail. When it comes 

to RNNs, they are networks that work on current inputs while considering prior outputs (feedback) and 

storing them in memory for a brief period of time (short-term memory). The number of confirmed 

cases and the value of effective reproduction number in the next time step are the network outputs.  

Mixed Density Network (MDN) is an interesting model format built into the general framework of 

neural networks, probabilities for tackling supervised learning problems where a single standard 

probability distribution cannot easily approximate target variables. The network output in the stochastic 

MDN (Mixture Density Network) model is mixture distribution parameters rather than a direct 

prediction value. The suggested MDN model consists of a blend of LSTM layers and distributions. 

LSTM layers provide parameters for one or more distributions in this model, which are subsequently 

coupled with weighting. 

LSTM RNN is useful because more confirmed cases can lead to greater potential infection in future 

populations, therefore maintaining all relevant historical information is critical. The deterministic 

LSTM model exhibited better performance than the stochastic LSTM/MDN and linear regression 

models. However, the stochastic model was more successful in predicting the trends in the actual 

dataset[4]. 
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4.1.4 The need for vaccine supply chain optimization: 

The biggest challenge during the pandemic times other than development of therapeutics for fighting 

the virus was optimizing the supply chain for vaccine distribution. Although there are several studies 

done on optimizing the supply chain system for delivering COVID-19 vaccines safely, very few studies 

have been done in optimizing the network to prioritize the most affected in society.  

There are reports that show that the underserved in our community have been hesitant towards adopting 

new vaccines because of historic atrocities that these communities have faced in the years past. Also, 

the present disparity in health care setup, the access to which at present is skewed away from the 

underserved communities this future aggravates this socio-economic disparity that these communities 

are already facing. After accounting for the factors such as Socio-economic status, Household 

composition, Minority status and Housing type, We came up with a metric to define the vulnerability 

of these underserved communities, This metric is called CHI (Community Health Index), It’s discussed 

in detail in the coming sections. 

4.2 Approach 

The global activities during pandemic influenced the strategies real-time including testing protocols, 

ventilators distribution, and vaccine manufacturing, which impacted the strategies in real-time. Our 

research objective is to understand how the COVID-19 therapeutics (Immunizations, drugs etc.) can 

be delivered to underserved communities including the last mile transportation, to prevent and 

minimize the impacts of COVID-19. For this NSF funded study, we are focusing on the city of 

Houston, which is the fourth largest city in US. We worked with the City of Houston Health 

Department (HHD) to capture the data needed to model a community that has these challenges. The 

Houston Department of Health and Human Services HHD has the responsibility for community health, 

particularly for the underserved population that might not have commercial insurance plans (Medicaid 
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and Medicare). The HHD also has an elderly care division that distributes care between the services 

facilities, the hospitals and home care. Our research focuses initially on the most vulnerable population 

for the COVID-19 population, namely the elderly in underserved populations who receive personal 

home services from HHD. For this study, we will focus on 96 zip codes in city of Houston.  

4.3 Data Collection 

For data collection, we collaborated with City of Houston Health Department. At the time of data 

collection, we were in phase I of COVID-19 vaccine distribution where demand was far higher than 

the supply of vaccines; we considered the elderly population and healthcare workers as the actual 

demand, which is 20% of the total population as per the collected data. The number of vaccination 

administration points, including hospitals, pharmacies and other locations at the time of data collection 

was 256 in Houston with 4 major central hubs in Houston providing vaccine shipments to these 

locations. 

Table 4-1: Assumption and data collection details 

Assumptions and Data Collected Measure 

Total Zip Codes considered in Harris County 

(77002-77099) 

96 

Total Hospital/pharmacies/nursing homes in 

Harris county considered in our model 

256 

Total vaccine hubs in Houston for 

distribution 

4 

Population of all zip-codes in Harris County 3,270,360 

20% population of all zip-codes for elderly 

population 

654,072 

Cost of transportation/mile $1  

Penalty cost for any shortage $35-$70  

Total complete communities in Harris 

County 

10 

We worked with HHD to collect the COVID-19 related data in these zip codes including the total 

number of reported cases in each zone, number of active cases and total number of deaths. 
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Initially, we assume our current demand (dj) is the total number of cases reported in each zone for 

modelling supply chain. We collected the data during the first phase of COVID-19 vaccine distribution 

where demand was much higher than the availability of vaccines supply, so we will be focusing on 

elderly population above the age of 60 and healthcare workers, who were supposed to get the vaccine 

at the earliest. 

As mentioned previously, we want to highlight and prioritize the communities, which are at high risk 

or are more vulnerable to COVID-19 outbreak.  In this study, we defined a new term called 

“Community Health Index (CHI)”. The CHI is calculated using a proprietary modified health index 

that takes into account social-economic indicators and has the ability to use artificial intelligence for 

behavior patterning. The data for modified health index and other indicators for different regions has 

been provided by HHD, which is used to calculate the community health index. This CHI helps us in 

identifying those communities, which house the most vulnerable populations. We can use this 

information in our mixed integer programming (MIP) optimized supply chain model to prioritize these 

communities using the concept of higher service level. The CHI is calculated using below equation 

(Jones et. al 2020).  

Community Health Index = (Modified Health Index + Social-Economic Index + Behavior     

Index) / 3 

Health Index: (modified RTN) with heavier weighting of the HHD 8 health factors from the 

questionnaire. Our health index is based on Houston's Vulnerability Index, a mostly health focused 

indicator. However, they added some additional data so that it could be used to identify who needs help 

in an emergency like a hurricane or extreme flooding. 

Socio-Economic Index: Combination of different indicators such as education, average income etc. in 

different zones. Our Socioeconomic Index is based on the CDC's Social Vulnerability Index, which 
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takes into account socioeconomic status, household compositions and disability, minority status and 

language, and housing type and transportation.  

Behavioral Index: We are also using the COVID-19 active case information to inform our CHI. In the 

future we plan to use AI to determine who is at risk and who will need treatment soon.  

By taking all three of these indices, we produce one simple CHI score. That CHI score can be used into 

the supply chain model and prioritize treatment shipments. The higher the CHI rate, more vulnerable 

that zone is to COVID-19. 

4.4 Multi-objective optimization and supplier selection in supply chains 

The existing literature primarily focuses on optimization of one objective function viz cost or profit 

and other important factors such as customer service and vendor management are neglected. Since we 

seek to optimize off of community and to prioritize geographic regions in supply chain model on the 

basis of service levels, we will use multi-objective optimization. There are multiple techniques for 

multi-objective optimization such as Σ-constrained method, sequential optimization, weighted method, 

and distance-based model. Franca and Jones 2010 introduced a multi- objective stochastic supply chain 

model that incorporates Six Sigma approach to assess the financial risk. The model consists of design 

of four-echelon supply chain that includes identifying objectives, establishing model constraints, 

evaluating the economic risk & formulation of model by multi-objective Σ constrained method. In this 

paper, we utilize the Σ-constrained method to optimize profits and quality objective function. In the 

below figure, the four-echelon supply chain configuration is shown. The most important part of this 

supply chain is last mile transportation from hospitals or therapeutics distribution points to underserved 

communities. This last mile transportation is critical in saving lives during the pandemic for these 

underserved populations. 
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Figure 4-1: Jones and Azeem’s Echelon Supply Chain Configuration (Modified from Franca and Jones, 

2010) 

4.5 Mathematical Model 

This model is based on the supply network design problem. Given a set of producers, depots, and 

customers (zip codes), the goal is to determine how to satisfy customer demand while minimizing 

transport costs and service.   This problem can be regarded as one of finding minimum cost flow 

through a network. Our primary objective is to ensure that the immunizations and the drugs are 

delivered to required population when required, so we use higher service levels for regions that are 

highly vulnerable to COVID-19. 

4.5.1 Sets and Indices 

 𝑓 𝜖 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝑠 = { 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟} 
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 𝑑 𝜖 𝐷𝑒𝑝𝑜𝑡𝑠 = {𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5} 

 𝑐 𝜖 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶7, 𝐶8, 𝐶9, 𝐶10} 

 𝑆𝑒𝑡𝑠 = 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝑠 ∪ 𝐷𝑒𝑝𝑜𝑡𝑠 ∪ 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 

4.5.2 Parameters 

 𝑐𝑜𝑠𝑡𝑠,𝑡𝜖 ℝ+ : 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝑜𝑛𝑒 𝑡𝑜𝑛 𝑓𝑟𝑜𝑚 𝑠𝑜𝑢𝑟𝑐𝑒 𝑠 𝑡𝑜 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑡. 

 𝑠𝑢𝑝𝑝𝑙𝑦𝑓 ∈  ℝ+: Maximum possible supply from producer 𝑓 (in tons). 

 through𝑑 ∈  ℝ+ ∶  Maximum possible flow through depot 𝑑 (in tons). 

 𝑑𝑒𝑚𝑎𝑛𝑑𝑐 ∈ ℝ+: Demand for vaccines at customer 𝑐 (in tons). 

We have made several assumptions about the variables as shown in table 2. Our focus is on two major 

cost for this study. The first cost is the transportation cost from manufacturers to central hubs, registered 

providers and finally at-risk communities including the last mile component. We have assumed the 

cost per mile to be 1$/mile based on the estimates shared by city of Houston. The second cost is the 

penalty cost which shows the impact of shortages to these at-risk communities. For equal distribution, 

we have considered this amount to be $35, which was the cost two doses of Pfizer vaccine at the time 

of data collection. For prioritized distribution to at-risk communities, the penalty cost is $70 for at-risk 

communities which is double of $35 for other population. We have a total of 4 major vaccine hubs in 

Houston and 256 registered providers in 96 zip codes in Houston. 

 

We have incorporated the service level in our model using the imputed shortage cost. In the equation, 

α value will be utilized for required service level in a particular region, which will be used to calculate 

the imputed shortage cost. The higher the service level, the higher the imputed shortage cost will be, 

which reflects the main focus on those regions with higher service levels to minimize the imputed 

shortage cost. The secondary objective is to reduce the overall cost which includes transportation cost 



75 | P a g e  

 

and holding cost. We will use Mixed Integer Programming (MIP) for transportation cost along with 

Q,r Inventory Model to calculate the overall holding cost. We will use the outcome from GIS mapping 

and Community health Index to prioritize more vulnerable zones in that scenario, so that those who 

need the medicinal the most can get it on time. 

 

4.5.3 Decision Variables 

 𝑓𝑙𝑜𝑤𝑠𝑠,𝑡 ∈  Ν+: Quantity of vaccines that is shipped from source 𝑠 to destionation 𝑡 

 

4.5.4 Objective Function 

Cost: Minimize total shipping costs. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  ∑ 𝐶𝑜𝑠𝑡𝑠,𝑡 ∗  𝐹𝑙𝑜𝑤𝑠,𝑡 +  𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑐 ∗  𝑑𝑒𝑓𝑖𝑐𝑖𝑡𝑐

(𝑠,𝑡)∈𝑆𝑒𝑡𝑠 × 𝑆𝑒𝑡𝑠

 

  

4.5.5 Constraints 

Producer output: Flow of goods from a producer must respect maximum capacity. 

  

∑ 𝐹𝑙𝑜𝑤𝑓,𝑡 ≤  𝑆𝑢𝑝𝑝𝑙𝑦𝑓            

𝑡∈𝑆𝑒𝑡𝑠

 ∀𝑓 ∈ 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝑠 

 

Customer demand: Flow of goods must meet customer demand. 

  

∑ 𝑓𝑙𝑜𝑤𝑠,𝑐 + 𝑑𝑒𝑓𝑖𝑐𝑖𝑡𝑐 = 𝑑𝑒𝑚𝑎𝑛𝑑𝑐             ∀𝑐

𝑆∈𝑆𝑒𝑡𝑠

∈ 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 
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Depot flow: Flow into a depot equals flow out of the depot. 

  

∑ 𝑓𝑙𝑜𝑤𝑠,𝑑 =  ∑ 𝑓𝑙𝑜𝑤𝑑,𝑡     ∀𝑑∈ 𝐷𝑒𝑝𝑜𝑡𝑠      

𝑡∈𝑆𝑒𝑡𝑠𝑠∈𝑆𝑒𝑡𝑠

 

 

Depot capacity: Flow into a depot must respect depot capacity. 

  

∑ 𝑓𝑙𝑜𝑤𝑠,𝑑 ≤ 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑑 

𝑆∈𝐶𝑖𝑡𝑖𝑒𝑠

     ∀𝑑∈ 𝐷𝑒𝑝𝑜𝑡𝑠 

 

Table 4-2: Description of different parameters 

Tabs Description Unit Input Information 

supply The manufacturer and how many vaccines they 

have 

number of 

vaccines 

How many vaccines 

available in Houston 

through The depots / Walgreens / CVS / providers and 

how many vaccines they can hold 

number of 

vaccines 

How much capacity we 

think per place 

demand The Zip Codes demand based on population people Zip Code demographic info 

(given before) 

Penalty The CHI index the higher the more your 

prioritize (can be based on case info) 

unit less Either Case Info or CHI 

Cost The distances from a provider, depot 

(Walgreens), to customer 

miles Google maps where there 

are distances 

 

4.5.6 Scenarios 

In order to us to find the impact of different supply and demand scenarios on service levels to at-risk 

communities and the overall costs, especially when demand is much higher than supply, we have 
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created different scenarios, and we will use the data provided by Houston Health Department in our 

model to analyze and compare the output for each scenario. As listed below, we will run and analyze 

eight different scenarios for this study. The first four scenarios are considering equal distribution for 

all communities, and last four scenarios will prioritize underserved communities as highlighted by 

Community Health Index score for each region. 

 Scenario 1: 25% Supply & 25% Capacity (at the time of data collection) vs 100% Demand - 

Equal Distribution 

 Scenario 2: 50% Supply & 50% Capacity (at the time of data collection) vs 100% Demand - 

Equal Distribution 

 Scenario 3: 75% Supply & 75% Capacity (at the time of data collection) vs 100% Demand - 

Equal Distribution 

 Scenario 4: 100% Supply & 100% Capacity (at the time of data collection) vs 100% Demand - 

Equal Distribution 

In the first scenario, the actual supply of the vaccine and capacity of the registered providers was far 

less than the actual demand (20% of Houston population) consisting of elderly population above 60 

and healthcare workers. In second scenario, we doubled the actual supply of the vaccine and capacity 

of the registered providers to measure the performance variables. In third and fourth scenarios, we 

increased the supply and capacity by 3 times and 4 times to again measure the performance variables 

such as service levels and costs. As mentioned earlier, first four scenarios were used with equal 

distribution for all population without using CHI scores to prioritize underserved communities. The 

scenarios with prioritized distribution using CHI will be discussed in chapter 5. 
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4.6 Results and Discussion 

The section below discusses geographical mapping of city of Houston using the CHI scores and 

COVID-19 information as input, followed by discussion on results of different scenarios using 

optimized supply chain model. 

4.6.1 Geographical Mapping  

Using the Modified Health Index and Social-Economic Index for each zip code in Houston to calculate 

the CHI score, as well as the data for total number of reported cases and deaths for COVID-19 and 

geographical information, we created a map that overlay COVID information by zip codes with 

vulnerable communities. As seen in the figure below, the darker region shows the zip codes which 

contain the census tract with higher CHI score. 

 

Figure 4-2: The map of city of Houston with all zip codes and Prioritized regions on the basis of zip 

codes 

As discussed earlier, at the time of data collection, we were in phase I of COVID-19 vaccine 

distribution where demand was far higher than the supply of vaccines; we considered the elderly 
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population and healthcare workers as the actual demand, which is 20% of the total population as per 

the collected data. The number of vaccination administration points, including hospitals, pharmacies 

and other locations at the time of data collection was 256 in Houston with 4 major central hubs in 

Houston providing vaccine shipments to these locations. All this information was used to create a new 

map along with 86 neighbourhoods as defined by city of Houston. The blue stars in below map shows 

the vaccine administration points (Hospitals, pharmacies etc.) closest to different neighbourhoods. 

 

Figure 4-3: The map of city of Houston with 86 Neighborhoods and nearest hospitals 

 

4.7 Results for different scenarios in Equal distribution 

Using the data collected with the help of Houston Health Department, we ran our optimized supply 

chain model for the first four scenarios with equal distribution for all communities without prioritizing 
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underserved communities using community health index (CHI). As described in methodology section, 

the actual supply of the vaccine and capacity of the registered providers is far less than the actual 

demand (20% of Houston population) consisting of elderly population above 60 and healthcare workers 

in the first scenario. In scenario 2-4, we increased the supply of vaccines and capacity of registered 

providers to measure the performance variables of different costs and service level. 

4.7.1 Penalty Cost 

From our supply chain model output given in below figures for all scenarios of equal distribution to all 

communities, we can see that in the penalty cost due to shortage is very high in scenario 1. This is 

because the demand is much higher and the supply of vaccines and capacity of registered providers of 

vaccines, this resulted in majority of the target population not provided with vaccines and leading to 

very higher penalty cost or imputed shortage cost. As we double the supply and capacity in second 

scenario, the penalty cost is reduced from 17.5 Million USD to 12.44 Million USD, but even then this 

penalty cost is on much higher side as still a huge number of target population are not provided with 

vaccine. As we keep on increasing the supply of vaccine and capacity of registered providers in 

scenario 3 and 4, the penalty cost keeps on reducing, until it reaches zero at scenario 4, which means 

that supply is equal, or more than the demand and all target population is served. 

Cost 

Table 4-3: Penalty costs for four different Equal distribution Scenarios 

Type 25 % Supply & 

Capacity 

 50% Supply & 

Capacity 

75% Supply & 

Capacity 

100% supply 

& capacity 

Penalty Cost(in 

Millions) 

17.560 12.443 7.535 2.684 
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Figure 4-4: Penalty cost for four scenarios with equal distribution 

4.7.2 Transportation Cost 

Similarly, if we look at the transportation cost including the last mile from all major hubs to vaccines 

administration points (registered providers) to locations of target population, we observe that the 

transportation cost is relatively low for scenario one and as we keep on increasing supply of vaccines 

in scenario 2-4, it increases the transportation cost. This is because in scenario 1, majority of the people 

are not provided with vaccines due to vaccine shortage, so less miles of transportation are covered. As 

we cover more people in scenario 2-4, transportation cost increase and gets to maximum level at 

scenario 4, where all target population is covered. It is worth noting that the transportation cost is far 

lower than the penalty cost. This is because the primary focus of our study is to save lives of people by 

providing them with vaccines, and reducing overall cost is secondary objective by optimizing routes 

and allocating optimal inventory levels, so penalty cost is more significant for our study. 
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Table 4-4: Transportation Cost for four different Equal distribution Scenarios 

Type 25 % Supply & 

Capacity 

50% Supply & 

Capacity 

75% Supply & 

Capacity 

100% supply 

& capacity 

Transportation 

Cost(in Millions) 

1.811 3.512 5.112 6.930 

 

Figure 4-5: Transportation cost for four scenarios with equal distribution 

 

4.7.3 Total Cost 

Similarly, if we look at the total cost, we find out that as we reduce the shortages by increasing the 

supply of the vaccines, the total cost is significantly reduced as penalty costs have more significant and 

are drastically reduced by minimizing shortages.   
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Table 4-5: Total Cost for four different Equal distribution Scenarios 

Type 25 % Supply & 

Capacity 

 50% Supply & 

Capacity 

75% Supply & 

Capacity 

100% supply 

& capacity 

Total Cost(in 

Millions) 

19.371 15.955 12.647 9.614 

Table 4-6: Percentage of all Costs for four different Equal distribution Scenarios 

Type 25 % Supply & 

Capacity 

 50% Supply & 

Capacity 

75% Supply & 

Capacity 

100% supply 

& capacity 

Penalty 91% 78% 60% 28% 

Transportation 9% 22% 40% 72% 

 

 

Figure 4-6: Cost comparison for four scenarios with equal distribution 

 

17.560 M

12.443 M

7.535 M

2.684 M

1.811 M

3.512 M

5.112 M

6.930 M

19.371 M

15.955 M

12.647 M

9.614 M

0 5 10 15 20 25

25 % Supply & Capacity

 50% Supply & Capacity

75% Supply & Capacity

100% supply & capacity

Total Cost(in Millions)

Cost Camparison Including Total Cost (in Millions) 

Total Cost(in Millions)  Transportation Cost(in Millions)

Penalty Cost(in Millions)



84 | P a g e  

 

4.7.4 Service Levels  

The above cost analysis is echoed by the output of service levels as shown, in the figure below for 

equal distribution scenarios. In the first scenario, the service level is only 25.24%, which means that 

only 25% of the population is provided with the vaccine randomly. As we keep on increasing the supply 

of vaccines and capacity of registered providers from scenario 2-4, the service levels are increased and 

eventually reach 86.54% in scenario 4.  

Table 4-7: Service Levels for four different Equal distribution Scenarios  

Type 25 % Supply & 

Capacity 

 50% Supply & 

Capacity 

75% Supply & 

Capacity 

100% supply 

& capacity 

Service Level 25.24% 46.05% 66.01% 86.54% 

 

Figure 4-7: Service levels for four scenarios with equal distribution 

4.7.5 Visual Demonstration for Distribution in four scenarios with equal distribution (without 

prioritization) 

In this section, we will try to visualize how this model is distributing vaccines to different zip codes 

when we are running the model with equal distribution and without prioritizing the zip codes with at-

risk communities. We will discuss the maps with prioritized distribution in next chapter.  
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The first map that we can see below is for scenario 1 for equal distribution. The green areas are those 

where the vaccine has been distributed. As the supply and capacity are only 25% of the actual demand, 

we already expect that not all areas will be supplied with vaccines in this scenario. Though it is 

interesting to notice that even though this model is optimizing cost by minimizing transportation costs 

and penalty costs, it is not prioritizing the regions that were highlighted in previous map with higher 

CHI scores. This is because in all equal distribution scenarios, we are keeping the penalty cost the same 

for all communities, hence no zip codes are prioritized on the basis of CHI scores and only focus in 

these scenarios is minimizing costs. 

 

Figure 4-8: Distribution map for 25% Supply and 25% Capacity Scenario 
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As the supply and capacity is increased with respect to demand, more zip codes start to get green, 

meaning more zip codes receive vaccines. Again, since these are equal distribution scenarios, no zip 

codes get vaccines on priority basis. 

 

Figure 4-9: Distribution map for 50% Supply and 50% Capacity Scenario 

 



87 | P a g e  

 

 

Figure 4-10: Distribution map for 75% Supply and 75% Capacity Scenario 

 

 

Figure 4-11: Distribution map for 100% Supply and 100% Capacity Scenario 
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4.8 Conclusion: 

After we have formulated the model and ran some basic supply and capacity scenarios with equal 

distribution (without CHI prioritization, we were able to see the variation in penalty cost, transportation 

cost, total cost and service levels. As we keep on increasing the supply and capacity vs demand in 

different scenarios, we can see that the penalty cost is dropping because more people have been 

provided the vaccine and hence less deficit. Similarly, the transportation cost is going up as we increase 

the supply and capacity vs demand, because more people have been provided with vaccines including 

last mile delivery to their addresses, hence the number of miles travelled is increasing, thus resulting 

in increased transportation costs. Lastly, we can see that the service level is increasing from 25% to 

46% and eventually 86% as we keep on increasing the supply and capacity to meet the demand. In next 

chapter, we will run different supply and capacity scenarios vs demand with prioritized distribution 

using CHI, and will observe if the at-risk communities highlighted by high CHI score will get the 

vaccines on priority basis, even when the supply or capacity is not enough to meet with the demand. 

  



89 | P a g e  

 

 

 

 

 

Chapter 5: Readiness and Societal Cost Benefit 

Analysis of Optimized Supply Chain Model for 

At-risk Communities (Testing Scenarios with 

Prioritized Distribution) 

  



90 | P a g e  

 

5 Chapter 5: Readiness and Societal Cost Benefit Analysis of 

Optimized Supply Chain Model for At-risk Communities 

In this chapter, we will assess the readiness and societal cost benefit analysis of optimized supply 

chain model for at-risk communities using different supply and capacity scenarios with respect to 

demand and also ensuring prioritized distribution for zip codes containing at-risk communities using 

CHI. Below is the list of scenarios, which were tested using optimized supply chain model for at-risk 

communities. 

 Scenario 1: 25% Supply & 25% Capacity (at the time of data collection) vs 100% Demand - 

Prioritized Distribution 

 Scenario 2: 50% Supply & 50% Capacity (at the time of data collection) vs 100% Demand - 

Prioritized Distribution 

 Scenario 3: 75% Supply & 75% Capacity (at the time of data collection) vs 100% Demand - 

Prioritized Distribution 

 Scenario 4: 100% Supply & 100% Capacity (at the time of data collection) vs 100% Demand 

- Prioritized Distribution 

5.1 Results for different scenarios in prioritized distribution 

In the previous section, we discussed the results of our supply chain model for equal distribution of 

therapeutics to all communities with four different scenarios of vaccine supply and providers’ capacity 

to administer vaccine. In this section, we will discuss the results of prioritized distribution, using our 

CHI scores to prioritize underserved communities using our supply chain model. We will use imputed 

shortage cost or penalty cost and service levels as variables to prioritize these underserved communities 

in our model. 
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5.1.1 Penalty Cost 

In figure 27, we can observe the same trend that we observed with equal distribution. The imputed 

shortage cost or penalty cost is very high in scenario 1 with current supply and capacity. As we increase 

the supply of vaccine and capacity of vaccine administration points or providers to match the demand 

from scenario 2-4, the penalty cost would increase drastically, eventually falling to zero in scenario 4 

where supply is more than the demand. This figure for penalty cost for prioritized distribution looks 

similar to penalty cost chart for equal distribution in this case, but it is not always like that. The 

difference here is that the zip codes or neighborhoods that house underserved communities are 

prioritized here based on higher CHI scores and this drives our supply chain model to give higher 

service levels to these geographic regions of underserved communities. We will discuss this more when 

looking at service levels for prioritized distribution. 

Table 5-1: Penalty costs for four different Priority distribution Scenarios 

Type 100% supply & 

100% capacity 

75% supply & 

75% capacity 

50% supply & 

50% capacity 

25% supply & 

25% capacity 

Penalty Cost (in 

Millions) 

2.325 6.825 13.099 24.537 
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Figure 5-1: Penalty cost for four scenarios with prioritized distribution 

5.1.2 Transportation Cost 

Similarly, the same trend is observed for transportation cost. In scenario 1 where supply and capacity 

is much lower than the actual demand, the transportation cost is lower because a high ratio of target 

population is not provided with vaccine, so less miles covered from vaccine hub to hospitals to target 

population addresses (last mile). As the vaccine supply and capacity increases in scenario 2-4, more 

people are provided with therapeutics and hence higher transportation cost. 

Table 5-2: Transportation costs for four different Priority distribution Scenarios 

Type 100% supply & 

100% capacity 

75% supply & 

75% capacity 

50% supply & 

50% capacity 

25% supply & 25% 

capacity 
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Figure 5-2: Transportation cost for four scenarios with prioritized distribution 

  

5.1.3 Total Cost  

Similarly, we can see that overall cost is reduced in case or prioritized distribution when the supply 

and capacity gets closer to the demand. The penalty cost is again more significant as compared to 

transportation cost as saving lives by ensuring timely vaccine delivery is primary objective.  
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Figure 5-3: Cost comparison for four scenarios with prioritized distribution 

   

Table 5-3: Total costs for four different Priority distribution Scenarios 

Type 100% supply & 

100% capacity 

75% supply 

& 75% 

capacity 

50% supply & 50% 

capacity 

25% supply & 

25% capacity 

Total Cost (in 

Millions) 

9.758 13.214 18.492 27.094 
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Table 5-4: Percentage of overall costs for four different Priority distribution Scenarios 

% of total cost 100% supply & 

100% capacity 

75% supply 

& 75% 

capacity 

50% supply & 50% 

capacity 

25% supply & 

25% capacity 

Penalty 24% 52% 71% 91% 

Transportation 76% 48% 29% 9% 

 

5.1.4 Service Levels 

Now, when we look at service levels for all scenarios for prioritized distribution, we observe that 

service levels increase when we increase the therapeutics supply and providers’ capacity to match it 

with the demand. 

Table 5-5: Service Levels for four different Priority distribution Scenarios 

Type 100% supply & 

100% capacity 

75% supply 

& 75% 

capacity 

50% supply & 50% 

capacity 

25% supply & 

25% capacity 

Service Level 89.26% 68.88% 47.37% 23.76% 
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Figure 5-4: Service levels for four scenarios with prioritized distribution 

It is very important to understand the difference between the service level for equal distribution and 

service levels for prioritized distribution. In case of equal distribution, we have a collective service 

level for entire population as we do not have any priority levels for any communities, but in case of 

prioritized distribution, the underserved communities get higher priority as compared to other 

communities. This means that even when the demand is much higher than the supply of therapeutics, 

as in the case of scenario 1, the prioritized underserved communities will have a very high service rate. 

To show this, we have run 16 scenarios given in below table. 

Table 5-6: 16 different Priority distribution Scenarios to test different service levels 

Sub scenarios Supply Capacity Demand 

1A 25% 25% 100% 

2A 25% 50% 100% 

3A 25% 75% 100% 

4A 25% 100% 100% 

5A 50% 25% 100% 

6A 50% 50% 100% 

7A 50% 75% 100% 

8A 50% 100% 100% 
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9A 75% 25% 100% 

10A 75% 50% 100% 

11A 75% 75% 100% 

12A 75% 100% 100% 

13A 100% 25% 100% 

14A 100% 50% 100% 

15A 100% 75% 100% 

16A 100% 100% 100% 

Now running all these different scenarios using our model for prioritized distribution to at-risk 

communities, we get below results. 

Table 5-7: Results of 16 different Priority distribution Scenarios with different service levels 

Sub 
scenarios 

Supply Capacity Demand 

Average 
service level 

for Prioritized 
Zip codes  

Average 
service level 

for Non-
Prioritized Zip 

codes  

Overall 
service 

level 

1A 25% 25% 100% 42% 0% 24% 

2A 25% 50% 100% 45% 0% 24% 

3A 25% 75% 100% 46% 0% 25% 

4A 25% 100% 100% 46% 0% 25% 

5A 50% 25% 100% 44% 0% 24% 

6A 50% 50% 100% 87% 0% 47% 

7A 50% 75% 100% 83% 0% 45% 

8A 50% 100% 100% 87% 0% 47% 

9A 75% 25% 100% 44% 0% 24% 

10A 75% 50% 100% 87% 0% 47% 

11A 75% 75% 100% 100% 33% 69% 

12A 75% 100% 100% 100% 46% 75% 

13A 100% 25% 100% 44% 0% 24% 

14A 100% 50% 100% 87% 0% 48% 

15A 100% 75% 100% 100% 36% 71% 

16A 100% 100% 100% 100% 77% 89% 

 

As seen in table 5-7 above, with all different scenarios of supply and capacities in prioritized 

distribution, the vaccines will be distributed to at-risk communities on priority basis, resulting in much 
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higher service levels, as compared to non-prioritized communities, and service level for at-risk 

communities in prioritized zip codes is much higher than overall service level. This means that 

underserved communities will get vaccine based on priority even when there is a shortage of vaccine 

due to high difference between supply and demand. The last mile element of our model will also make 

sure that the lifesaving therapeutics are actually provided to these at-risk populations. Below figures 

confirm the same with much higher service levels for prioritized zip codes as compared to non-

prioritized zip codes and overall service levels. 

 

Figure 5-5: Comparison of Different Service levels for prioritized distribution (16 scenarios) 
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Figure 5-6: Comparison of Different Service levels for prioritized distribution (16 scenarios) 

 

5.2 Visual Demonstration for Distribution in four scenarios with Prioritized 
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supply vs capacity vs 100% demand), the vaccines will be first distributed to prioritized zip codes 
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0%

20%

40%

60%

80%

100%

120%

1A 2A 3A 4A 5A 6A 7A 8A 9A 10A 11A 12A 13A 14A 15A 16A

Camparison of Different Service levels for prioritized 
distribution (16 scenarios)

Avg service level for Prioritized Zip codes Avg service level for Non-Prioritized Zip codes

Overall service level



100 | P a g e  

 

 

Figure 5-7: Distribution map for 25% Supply and 25% Capacity Scenario 

 

Figure 5-8: Distribution map for 50% Supply and 50% Capacity Scenario 
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Figure 5-9: Distribution map for 75% Supply and 75% Capacity Scenario 

 

Figure 5-10: Distribution map for 100% Supply and 100% Capacity Scenario 

5.3 Conclusion: 

After running different supply and capacity scenarios vs demand with prioritized distribution, we have 

received the outputs and plotted these on maps as well. As we can observe that by using Community 

Health Index to prioritize at-risk communities, we are accurately ensuring that these at-risk 

communities get the vaccines on priority basis, even when the demand is much higher than the supply 

of vaccines and capacity of distribution points is not enough to meet the demand.  
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Now, as stated in chapter 1, we stated our hypothesis for service levels for prioritized distribution using 

our model as given below. 

H0: The Prioritized Supply Chain distribution model to underserved communities will results in higher 

service levels as compared to equal distribution model. 

H1: The Prioritized Supply Chain distribution model to underserved communities will not results in 

higher service levels as compared to equal distribution model. 

Based on the outputs of the model (table 5-7, figure 5-5 and figure 5-6 and figure 5-7 to 5-10 with 

maps), we have observed that the service levels for zip codes at-risk communities have been much 

higher as compared to service levels for same zip codes using equal distribution. This is due to the fact 

that we used higher penalty costs for CHI prioritized zip codes in case of any deficit, so our 

optimization model automatically allocated vaccines to CHI prioritized zip codes on priority basis, 

even in scenarios where supply and capacity are much lower than the actual demand. This can also be 

observed by looking at the distribution maps for prioritized distribution vs equal distribution scenarios 

given below. Thus we reject H1: The Prioritized Supply Chain distribution model to underserved 

communities will not results in higher service levels as compared to equal distribution model. We are 

able to achieve our objective. 

(The maps for both prioritized distribution and Equal Distribution Scenarios are given on next page). 
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Figure 5-11: Comparison of different prioritized distribution scenarios vs CHI prioritized Zip codes 
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Figure 5-12: Comparison of different equal distribution scenarios vs CHI prioritized Zip codes 
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Similarly, we stated another hypothesis in chapter 1 about impact on overall cost when we adopt the 

prioritization model. The hypothesis is given below. 

H0: The Prioritized Supply Chain distribution model to underserved communities will results in 

significantly higher overall cost as compared to equal distribution model. 

H1: The Prioritized Supply Chain distribution model to underserved communities will not results in 

significantly higher overall cost as compared to equal distribution model. 

Now, by comparing the final output costs for all scenarios for both prioritized distribution as well as 

equal distribution, we observe that for most of the scenarios, there is not significant difference in overall 

cost between equal distribution and prioritized distribution. Though it is noticeable that in case of 25% 

supply and 25% capacity vs 100% demand scenario in prioritized distribution, the penalty cost for is 

much higher (figure 5-12) as compared to 25% supply and 25% capacity vs 100% demand scenario in 

equal distribution. This is due to the fact that we doubled the penalty cost for zip codes which were 

identified as at-risk using CHI score, and in cases where supply is much lower than the demand, we 

expect the penalty cost to be much higher (due to doubling of penalty cost for at-risk communities for 

prioritization). As we increase the supply and capacity to meet demand in next scenarios, the overall 

cost for both prioritization distribution and equal distribution approximately becomes equal. Hence we 

reject the H1: The Prioritized Supply Chain distribution model to underserved communities will not 

results in significantly higher overall cost as compared to equal distribution model. Thus we have 

achieved the objective. We believe that by using this model, we can ensure that vaccines or other 

necessary therapeutics can be delivered to at-risk communities in a timely manner and on priority basis, 

even when there is shortage of vaccines. This model can be used by government and federal agencies 

to further devise strategies to ensure wellbeing of underserved minority communities. These insights 

can be used to model the COVID-19 Supply Chain which in turn can create a COVID-19 Community 
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Vulnerability Map that can inform at risk communities.  The opportunity to understand through AI 

how communities are impacted by the COVID-19 pandemic and understand best practices for the 

community through simulations and case studies is novel. This is novel concept in that it does not focus 

on profit but on human life as the driver.  

 

Figure 5-13: Cost comparison for four scenarios with prioritized distribution 
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Figure 5-14: Cost comparison for four scenarios with prioritized distribution 
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6 Chapter 6: Conclusion 

This research is based on a National Science Foundation funded grant (NSF Award Abstract # 

2028612) to work on investigating supply chain strategies that would minimize the impact on 

underserved populations during pandemic. The underserved population could be at risk during the 

times of crisis, unless there is strong involvement from government agencies such as local and state 

Health departments and federal Centre for Disease Control (CDC). These government agencies were 

designed to help all communities but historically supporting underserved populations, because they do 

not have health insurance and their background. The COVID-19 pandemic was a crisis of different 

proportion, creating a different type of burden on government agencies. Vulnerable communities 

including the elderly populations and communities of color have been especially hard hit by this 

disease. The allocation and distribution of COVID-19 vaccines in a timely manner to these at-risk 

communities is important not only to end the pandemic but to do so equitably. There is a huge need for 

these agencies to change their strategies and supply chains to support all populations receiving 

therapeutics.  

The research focused on making sure that underserved populations are not left out, especially 

considering the health disparities that exist. This project aimed to create a supply chain model that 

prioritizes geographic sections in the cities that house vulnerable communities. We collaborated with 

Houston Health & Human Services (HHS) to model supply chain for fourth largest city in US by using 

the concept of Community Health Index and COVID-19 Cases and geographical information to create 

a map that overlay COVID information by zip codes with vulnerable communities. The supply chain 

model then maximized social good by sending drugs or vaccines to the communities that need it the 

most regardless of ability to pay. The outcome of this study helped us prioritize the communities that 

need the vaccines the most. This informed our supply chain model to shift resources to these areas 
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showing the value in real time prioritization of the COVID-19 supply chain. This research provides 

information, that can be used in our healthcare supply chain model to ensure timely delivery of 

therapeutics to underserved populations that are the most vulnerable and hence the overall impact of 

COVID-19 can be minimized. 

The study identified the phenomena of last mile importance in achieving the objectives. The last mile 

transportation concept was critical in saving lives during the pandemic for underserved populations. 

Integrating the last mile concept along with an accessible healthcare index (CHI) allows for real-time 

strategies. The strategies were defined as mathematical models that could be used in real-time for these 

at-risk communities.  

6.1 Future Work 

For future work, this research can lead to collaborating with programs, such as Uber eats, Meals on 

Wheels, partnering with nurses to administer vaccinations to these populations. Data collected from 

the last mile of direct contact with members of at-risk communities to vaccinate or refusal to vaccinate 

will provide information to help predict which communities are not vaccinated due to access and which 

are vaccine hesitant. The responses from questionnaires about attitudes toward COVID vaccination 

and drug development will help future predictions of which vaccine hesitant communities are most 

likely to be persuaded to take the vaccine, increasing the efficiency of last mile efforts. 

Utilizing automated data capture in conjunction with AI will allow the models to understand the risk 

drivers for the various forms of the COVID-19 viruses that can lead to acute respiratory illness, organ 

failure, and possibly death.  
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The broader impact of this research is that this research contributes research models to the AI, Data 

Science, and supply chain engineering fields that allow for provider and patient feedback from 

underserved and social economic disadvantaged communities to minimize the negative impact on these 

communities during a pandemic.  This research also supports the importance of understanding the costs 

and nuisances of medical supply chains that can be mitigated through AI, Data Science, and public 

policy.  Also, the impact on broadening participation of several domestic researchers from Underserved 

populations, specifically African Americans who are part of and can work specifically with these 

communities.  The focus of this research in the identified underserved communities by a major health 

department supports that this research impacts the underserved populations in both computer science, 

engineering and social behaviors activities, a truly interdisciplinary and convergent research activities. 

6.2 Timeline of the study: 

 

Table 6-1: Timeline of the study 

 Tasks/Specific Objectives 2020 2021 2022 

 
Q 

1 
Q 

2 

Q 

3 

Q 

4 

Q 

1 

Q 

2 

Q 
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Q 

4 

Q 

1 

Q 

2 

Q 

3 

Q 

4 

1 Project initiation. Kickoff meetings with Houston             

2 

Identify the Automated Data capture and Artificial 

Intelligence needed to automate the COVID-19 

Healthcare vaccine Supply Chain 

            

3 

Modelling the vaccine Supply Chain from 

manufacture to home delivery that optimizes the 

most efficient manner to impact the most at risk 

populations 

            

4 

Identify the readiness and the societal cost benefit of 

this model for use when medicinal become ready for 

the COVID-19 outbreak. 

            

5 Recommendations for implementation             

6 Dissertation Writing             
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