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Abstract

A NON-CONTACT BASED SYSTEM TO MEASURE SPO2 AND SYSTOLIC/DIASTOLIC BLOOD

PRESSURE USING RGB-NIR CAMERA

Divya Saxena, MS

The University of Texas at Arlington, 2022

Supervising Professor: Manfred Huber

In recent times, people have increasingly self-assessed their health using different devices on their

bodies that monitor physiological attributes such as their oxygen level and blood pressure (BP) to monitor

their  health.  One  of  the  most  popular  health  concerns  that  became  prominent  during  the  COVID-19

pandemic was the blood oxygen saturation (SPO2) level. It became increasingly important to monitor SPO2 in

patients, time and again to determine whether the right amount of oxygen is in the blood. Low oxygen levels

usually indicate there may be an issue with oxygen circulation or supply and thus informs diagnostic and

treatment decisions such as transfer to the hospital or ICU or the application of external oxygen. 

The use of existing devices requires active interaction of the user to obtain the information about

blood flow needed for SPO2 or blood pressure measurements. However, a change in skin color could also

provide information whether a body has a healthy blood flow or not. Skin color can easily be captured with

the help of conventional cameras under different lighting conditions. However, under insufficient lighting, it is

strenuous to capture accurate images.  A digital camera with the ability to capture near Infrared (NIR) images

can help resolve this issue by allowing for better illumination control without inconveniencing the user. If

blood flow information can be effectively extracted, RGB and NIR image sequences can be used to estimate

blood oxygen level (SPO2), systolic blood pressure (SBP), and diastolic blood pressure (DBP).

In  this  study,  methods are proposed that  estimate  various health  parameters  like  blood  oxygen

saturation (SPO2), systolic blood pressure (SBP), and diastolic blood pressure (DBP) from multi-spectral

video. An RGB-NIR camera was used to record the data. Colored and near-infrared images from the camera

have  been  recorded  to  extract  blood-related  health  details.  Using  the  existing  Photoplethysmography

technology that is widely used in commercial devices for measuring oxygen saturation, and BP, we analyzed

the  photoplethysmogram  (PPG)  signals  using  an  RGB-NIR  camera.  The  camera  was  placed  at  an
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approximated distance of 3 meters from the subject. For our research, we recorded the subject’s facial area.

Furthermore, we analyzed the traditional red, green, and blue channel combination, as well as the additional

IR channel. The results were obtained using a multi-spectral camera with a frame rate of 30 Hz per second.

Preliminary results showed statistically that an RGB-NIR camera could potentially be an efficient

alternative to conventional medical devices to measure SPO2 and BP, achieving good prediction accuracy for

SPO2 and diastolic blood pressure while lacking somewhat in the prediction of systolic pressure.  The system

proposed is convenient, safe, contact-less, and cost-effective. The pandemic is still rampant and with many

companies resorting to contact-less services, it is only necessary and smart to have a contact-less method of

arterial  oxygen  saturation  and  BP  estimation.  This  technology  has  significant  potential  in  advancing

healthcare.
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Chapter 1 Introduction

Photoplethysmography (PPG) is a non-invasive method that uses changes in light reflection and

absorption to measure blood volume changes in a human body [10]. To get the desired health parameters for

health analysis, there are multitudes of medical equipment available worldwide. However, for many of them

the human body cannot be subjected to these conventional devices time and again or on a continuing basis

due to various reasons like the need for and impact of direct contact with human skin, inconvenience to use,

obesity (restriction in sizes of medical devices), etc. These devices can be uncomfortable for many patients

and, if packaged in mobile devices, often impose run-time limitations due to limited battery life. Conventional

methods are difficult to use, for example, if the patient’s skin is too sensitive or burnt and some patients

might not be very cooperative, resulting in missing or incorrect readings. Thus, a faster and more convenient

technology or device is required to obtain this valuable health information. Moreover, alternative technologies

can help address shortages in existing devices such as occurred during the covid-19 pandemic.  In this

context the ability to share devices across individuals without the risk of infection wold also be a significant

advantage, which makes it all the way more important to investigate contact-less medical devices. Similarly,

combining multiple measurement capabilities into a single device also provides advantages and makes the

system more  convenient  to  use.  A non-contact  system with  multiple  measurement  capabilities  will  help

record a patient’s profile and report the patient’s health. Due to evolving technology in cameras leading to

higher resolution, higher frame rates, and lower noise under varying illumination conditions, use of cameras

could be a very affordable solution. 

To obtain important physiological  information from optical sensors, a number of methods can be

used. Photoplethysmography is  very efficient  in measuring cardiovascular  blood volume pressure (BVP)

which allows to estimate systolic blood pressure (SBP) and diastolic blood pressure (DBP) via the light

transmitted through or reflected from the human body [1]. Cardiovascular diseases can be identified with the

help of PPG and significant health information can also be revealed with the help of devices using PPG[2],

[5], [6], [7]. 

The pulse generated via PPG reveals the systolic peak, dicrotic notch, and diastolic peaks. The

systolic peak in the pulse wave is represented by the maxima which comes from the direct pressure wave

which travels from the left ventricle to the periphery of the body. The diastolic peak is generated due to the
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reflections of the pressure wave by the arteries in the lower body. The dicrotic notch marks the end of the

systole and the beginning of diastole in the pressure waveform [3].

PPG signals extracted at multiple different wavelength of light can also be used to estimate SPO 2

values as oxinated and deoxinated haemoglobin in red blood cells have different absorption properties, thus

affecting the amplitude of the PPG signal differently at different wavelengths.

While traditionally recorded with devices that  are put  in direct  contact  with the skin to void skin

reflectivity and glare, PPG measurements can also be used to derive predictions using the signals derived

from camera images. Conventional methods for SPO2 mainly utilize two separate wavelengths whereas we

will  be  using  four  wavelengths  –  red,  blue,  green,  and  NIR since  every  single  detail  is  conducive  for

diagnosis. 

In the remainder of this thesis we will first discuss related work in Chapter 2 before introducing the

background  underlying  the  estimation  of  blood  pressure  and  SPO2 from  optical  signals  in  Chapter  3.

Chapters 4 and 5 then introduce the setup and methodology used before Chapters 6 and 7 presents results

for oxygen saturation (SPO2) and blood pressure, respectively. Chapter 8 finally concludes the thesis and

discusses potential extensions and future work.
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Chapter 2 Related Work

2.1 Blood Oxygen Saturation

Blood oxygen saturation can be estimated using a smartphone rear camera [10, 14], front camera

[15], or sensors dedicated to SPO2 measurements [16]. The data are usually recorded from the finger or

face. This data is then processed into  photoplethysmogram (PPG) waveform. Using the smartphone’s built-

in accelerometer is one other device to measure the heart’s mechanical activity (the seismocardiogram or

ballisto- cardiogram) [17, 18]. These signals are filtered using Principal Component Analysis (PCA) [17],

quadratic spline decomposition, or continuous wavelet transform. Then, they are searched for peaks [19].

The SPO2 ranges from 96-100% [20] for a healthy human being. It is also measured by the Pulse

oximeter. The Principle lies the same to calculate the SPO2 level. Both depend on the PPG signal. This PPG

signal detects blood volume changes. Using a smartphone for calculation is very simple and cost-effective. It

uses Red and Green wavelengths. PPG feature extraction helps evaluate the oxygen level. A number of

mathematical approaches have been used for the estimations [21].

2.2 Blood Pressure

The arterial blood pressure is measured at two extremes. One is the highest (systolic) and the other

is   the lowest (diastolic) [22]. These values vary around 120/70 mmHg [22]. The most common restriction-

free method for estimation is by using smartphones. They measure pulse transit time (PTT) [23, 24]. PTT is

defined as the time taken for the arterial pulse pressure wave to travel from the aortic valve to a peripheral

site.   It  is directly related to the elasticity of the blood vessels.  More elasticity means less BP and less

elasticity  means more  BP [24].  The signals used  to  measure  can  be  ECG,  PCG,  or  PPG. BP can be

calculated using the equations in [23]. Some methods use one, two, or three signals with machine learning

algorithms [25, 26].   Dey [26] developed the Android application InstaBP for BP monitoring using a PPG

sensor integrated into the flagship Samsung smartphone models. The technique of Luo et al. [15] records the

video of the face,  extracts 126 features and adds 29 meta-features, and uses the multilayer perceptron

machine learning method. Chandrasekhar et al. [23] recently introduced the innovative oscillometric finger

pressing method. The authors utilized the iPhone X with a strain gauge array under the screen (3D Touch),

which measures the pressure of fingertip placement.
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2.3 Our Approach

In contrast to most of the prior approaches, the work in this thesis is aimed at a completely contact-

less way to extract both SPO2 and BP using a multi-spectral camera that permits use of colored and IR

image streams simultaneously. It does so by estimating PPG parameters and utilizing them in SPO2 and BP

prediction approaches.

PPG is based on the measurement of rapid fluctuations in light absorption in the illuminated area of  

the skin caused by the difference in absorption curves between oxygenated and de-oxygenated blood. This

principle motivated the use of digital cameras to measure the PPG signal of facial video under ambient light

conditions. Several methods have been developed over the years to estimate heart rate, SPO2 and blood

pressure from face video. In particular, [13] provides a comprehensive overview of the history of research in

this area and compares the performance of several of these approaches. Most of these methods usually

require a lighting source. We need to manipulate and control the signal acquisition process. A controlled light

source or an object that remains stationary during acquisition.

The integration of modern infrared (IR) cameras into many traditional devices, makes it particularly

attractive for remote monitoring related to iHR, SPO2 and BP detection. Their use has only been investigated

in detecting HR and SPO2 using infrared facial video [27], but so far these approaches have been used for a

considerable period of time (more than 30 seconds) and it was limited to estimating average heart rate. This

thesis shows that under moderately controlled conditions, blood oxygen saturation and even blood pressure

can be extracted from multi-spectral cameras using both infrared and colored images.

We will  discuss this  approach and show performance in  color  and  IR video recorded by  multi-

spectral cameras from five healthy volunteers. The extracted SPO2 and BP values are compared with the

oximeter and spyganometer measurements obtained at the same time.

4



Chapter 3 Background

In  this  section,  we  briefly  review the  PPG signal  and  its  key  features  used  for  SPO 2 and  BP

estimation in this paper:

3.1 Photoplethysmogram (PPG)

A Photoplethysmogram (PPG) contains a few key points like maximum slope point, inflection point,

dicrotic notch, and diastolic peak. When the blood travels from the left ventricle towards the face, we can

detect a systolic peak; while a diastolic peak is obtained from blood pressure reflected from small blood

vessels. The  Photoplethysmogram (PPG) is a popular monitoring method since it is easy to measure and

provides multiple vital measurements from a single signal. Since we aim to measure BP and SPO2 we are

looking to maximize the utility of the signals we receive from the RGB-NIR camera.  Figure 1 shows the

sample PPG signal.

3.2 PPG signal and absorption of light

Smartwatches  and  fitness  bands  have  increasingly  become popular  due  to  their  simplicity  and

affordability. The PPG technology is very simple. It works based on the light passed through the skin. PPG

relies on measuring the rapid variations in light  absorption in an illuminated skin  region caused by the

difference in absorption curves for oxygenated and non-oxygenated blood. The amount of absorbed light is

proportional to the blood volume flow in the exposed area. The volume of the blood is related to the speed

with which blood flow and pressure are exerted on the arteries, it is prominently used for the measurement of
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SPO2 and BP. PPG signals can also be effectively used to determine the absorption of oxygen in the blood.

The waveforms generated from PPG have a good correlation with the BP waveform. It is also established

that PPG alone can be used to monitor blood pressure for a long period [19].

PPG signals are easier to capture than, for example constrictive blood pressure measurement or

electric ECG measurements, and the technology is a low-cost technology. There could be other applications

of PPG than just cardiovascular assessments. The PPG waveforms generated from the application can also

be utilized for varied purposes to detect other pertaining issues in humans like hypertension, lung function,

etc. 
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Chapter 4 System Overview

In this section, we elaborate on the setup used to create the dataset. We use an AD-080-GE multi-

spectral camera to record videos for each subject. We record videos each of 30 seconds, where the resulting

video is recorded as two synchronized files, one colored, and the other near-infrared. Figure 2 shows the

system  setup.   We  need  multi-spectral  camera,  LED  lamp,  IR  Illuminator,  Oximeter  and

Sphygmomanometer. After this, we detect the face and divide it into different region of interest (ROIs) to

extract signals which are then processed to estimate SPO2 and blood pressure values

4.1 RGB-NIR Camera

We use AD-080-GE camera to record videos for each subject. We record videos each of 30 seconds,

one is colored, and the other is near-infrared synchronously. We will save the videos in .raw format to save

data loss while saving in compressed format.
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4.2 LED lamp

A good light source is needed to capture colored images. A led light has been used to maintain same

brightness throughout the recording.

4.3 Illuminator for IR 

Here  we propose  to  use  a camera-based remote  PPG application  that  requires  sensing  in  the

colored and NIR spectrum [20]. On this data we conduct multi-wavelength processing for signal extraction.

Both color and IR channels in the camera enable contactless measurement of the cardiac pulse depending

on the subtle color and intensity changes on the skin surface that result from changes in absorption and

reflection in the blood vessels directly below the skin [20]. As a normal indoor environment contains very

limited amounts of NIR light, an IR illuminator tool is used to emit light in the infrared spectrum. While this

adds an additional element, it allows much more detailed elimination control in the IR spectrum than in the

color spectrum without inconveniencing the user (since the IR light  is not  visible).   To obtain good and

uniform illumination, it is important to choose the right kind of angle to match the lens field of view (FOV). For

an effective range, it is important to have the IR illuminator set at a specified angle for our proposed work.

For  blood oxygen saturation and blood pressure estimation,  we need to  measure at  least  one infrared

wavelength. Illumination using an illuminator is essential for the accuracy in the measurement of the key

features of PPG waves. 

Figure  2 shows  the  basic  setup  used  for  the  experiments  in  this  thesis.  An  illuminator  at  a

wavelength  of 940nm is  chosen to  fit  the camera  characteristics  as  well  as to  align with  properties  of
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hemoglobin absorption. The individual here sits in front of a computer and the camera while measurements

are taken. ES – IR1206U Illuminator has been used in this work.

4.4  Fingertip Oximeter

A commercial pulse oximeter FS20F Fingertip Oximeter has been used as ground truth signal in our

experiments and its values were compared to the readings obtained by the RGB-NIR camera. SPO2 is an

important bio-parameter for respiration and as such, being able to estimate it is an important capability for a

sensor system. Some diseases relating to the respiratory system may cause a decrease in oxygen in the

blood. Some other causes include damage during surgery and human body self-adjustment. Some more

symptoms resulting from a drop in SPO2 levels include vomit, vertigo, etc. These symptoms may be a danger

to the life of human beings. It’s a great help to doctors to discover potential dangers and importance in the

clinical field.
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            The principle of the oximeter is based on an experience formula making use of the Lambert -Beer

Law according to Spectrum Absorption characteristics of Reductive hemoglobin (Hb) and oxyhemoglobin

(HbO2) in the red and near-infrared zones. The wavelengths used in the fingertip oximeter are shown in Table

1:

Wavelength Radiant Power

RED 660±6nm 1.8mW

IR 905±10nm 2.0mW

Table 1: Channels, their wavelengths and radiant power

The two wavelengths are detected by a sensor that is attached on the human finger tip through a

clamp finger-type sensor. The signals are  measured by a photosensitive element, and the information will be

shown on screen using electronic circuits and a microprocessor. The sensor used is shown in Figure 6

4.5 Sphygmomanometer

An OMRON M6 sphygmomanometer  is  used  as  ground truth  and compared with  blood

pressure measurements obtained from our proposed method. It comes with an IntelliWrap cuff (22-42 cm),

an easy way to get accurate results. It reads three times in a row at 30-second intervals and displays the

average value to show blood pressure more accurately. When we press the START / STOP button, the

calibration check system lights will come on and the device will start monitoring the readings using the two

sensors. If the device is accurate and functioning properly, the calibration check system light will come on

during the measurement. If an error is detected, the calibration check system light will flash and the display

will show "ER".
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The monitor calculates the average reading based on the three most recent sets of measurement

values taken within 10 minutes of the most recent reading. The accuracy is ±3mmHgor 2% of reading.

The cuff inflates until it fits snugly on the arm, blocking blood flow. Then the valve opens to release

the air. When the cuff reaches contraction pressure, blood begins to flow around the arteries. This causes

vibrations picked up by the gauge and records systolic pressure. In a traditional analog sphygmomanometer,

a stethoscope is used by a doctor to record the sound of blood. As the cuff continues to contract, the cuff

reaches diastolic pressure, and vibration stops. The gauge recognizes this and records the pressure again.
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Chapter 5 Methods

5.1 Data Capture and Facial Landmark Extractor

A multi-spectral RGB-NIR camera (AD-080-GE) at 30 fps is used to capture videos for our tests. The

videos  are  exported  in  uncompressed  format.  One  video  is  recorded  in  color  and  the  other  in  NIR

synchronously. 

To reliably locate regions of interest in the image that have significant blood flow close to the skin (in

our case the cheeks), facial landmarks are detected by analyzing the frames of the video. Salient, reliably

identifyable  regions  of  the  face  like  eyes,  eyebrows,  nose,  mouth,  and  jawline  are  detected  from this

analysis. Key points are used for face alignment, head pose estimation, face swapping, and blink detection.

We acquire the face bounding box (i.e., the (x,y) coordinates of the face in the image). To register the face

and determine head pose, we estimate the location of 68 (x,y) coordinates which helped map to the facial

structures on the face as shown in Figure 10. From this, we determine a bounding box for the detected face

in each frame that, together with the key salient points are then used to determine the locations of the cheek

regions as areas with significant blood flow and thus ideal regions for PPG data extraction. For the right and

the left cheek, we used two bounding boxes as regions of interest [8]. 
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A spatial average of the color channel and IR channel pixel values (0-255) within the selected ROIs

were calculated framewise to form raw signals x 1 (t), x 2 (t)..., x R (t) respectively (where R is channels of

the image processed). In our case, we used four as we have considered four channels: red, blue, green, and

near-infrared.

5.2  Extract signals

Once we read data from the webcam generating digital images, the amount of light received by the

camera in a particular pixel location is represented by a numerical value. The skin consists of capillary beds

which are close to the skin surface. It is easy to identify such blood-filled capillary beds and we can derive a
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rectangular region from those areas. This area will help see the photoplethysmogram (PPG). A PPG is a

waveform corresponding to the blood pulse through the body over time. The reflected light varies with the

amount of blood in the capillary bed at any one given time. This is the origin of the PPG waveform since the

light is absorbed by the skin. Our webcam captures images at 30 frames per second. This frame rate will

help determine the noise ratio.

After the data components are in place, we create a graphical user interface to display the signals

from the webcam pulse-reading algorithm to be able to verify that we obtain good data and to make it easier

to analyze later processing results. Here we used a Python for its excellent data visualization capabilities and

the open-source development and sharing in the Python community. This is the area where the real-time

signal from the webcam can be seen. Using the camera, data is acquired in the following format:

 Light intensity is given as an 8-bit value in grayscale

 Intensity ranges from 0-255

 Signals update in real- time

 Intensity of “region of interest” (ROI) calculated for each image

We detect  the boundaries of  the face using the Dlib landmark detector [7]  on the average face

location. Frame-by-frame detection is performed since the subject is assumed to be mobile. An example is

shown in Figure 9. We then divide the area inside the detected face into two regions of interest. 

5.3   Pre-processing  (RGB-NIR Camera)

Facial  landmarks are detected and the skin region of interest (ROI) is segmented excluding the

region around the eyes. We can select as many ROIs as we want but we have taken only 2 ROIs. The

spatial average of each color channel in the ROI over time was calculated. Then the source signals, should

be filtered. Our first step is to process the Raw PPG signals we have. Every frame in the image consists of

RGB channels and IR channels. All  PPG signals were filtered using Butterworth high bandpass and low

bandpass with orders 2 and 4, respectively. The systolic and diastolic peaks in the contact measures could

be visually verified since there is no clinically approved ground-truth method for automatic detection of PPG

systolic and diastolic peaks. The red, green, and blue signals are already aligned having maxima and minima

at the same time (s). While the IR channel is a little shifted. So, align the IR channel with the Red channel. 
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The alignment routine named phase-spectra is used. It  uses phase correlation in Fourier

space. The only caution about this phase correlation is if we cross-correlate data at the native resolution we

can achieve integer precision. To achieve sub-pixel or fraction precision, we need to upscale the data before

doing cross-correlation. We can upscale data N times to achieve 1/N precision as far as shift value goes. For

instance, if N =100 then the smallest shift we can get is 0.01. I am interested in comparing the shift between

two signals IR and Red (being strongest signals) that happen to be astrophysical spectra at two different

wavelength regions.
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Figure 12: Aligning Red and IR channel



The strongest BVP signal is selected and inverted if inverted signals are stronger. The systolic peaks

are detected as discussed above then the second-order derivative of the BVP waveform is calculated and

used to locate the dicrotic notch and diastolic inflection point.

5.4 Feature Extraction (RGB-NIR Camera)

The systolic peaks can be detected precisely from filtered waveforms. The maxima of the signal are

considered to be the systolic peak. We use a peak detection algorithm to locate peaks for each channel.

However, the detection of diastolic peaks is very difficult due to the reason that they are not always maxima.

To find the diastolic peaks, we have to compute a second-order derivative of the waveform. As we do not

have a continuous function, the derivative calculations are approximated by difference functions on each of

the signals.  Mostly,  the largest  minima with  second-order  derivatives correspond to  systolic  peaks,  and

minima following these correspond to diastolic peaks. The locations of systolic peaks are detected and peak

detection is performed on an inverted second-order signal using a peak detection algorithm where a peak is

a maximum that is greater than the previous value. The diastolic peak timing is located as the minimum

timing after the systolic peak in each pulse. The systolic and diastolic peak-to-peak is considered to be one

beat.

In a similar way to the diastolic peak we estimate the dicrotic notch and diastolic inflection point.

From the filtered spatial average of each color channel in the ROI overtime, the second-order derivative of

the BVP waveform is calculated and used to locate the dicrotic notch and diastolic inflection point. 

16Figure 13: Signal Extraction from video images



Figure 13 shows an example of this process from identified regions of interest (ROI) through color

channel signals to filtered PPG signals and extracted points.
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Chapter 6 Extra Steps for Blood Pressure

Estimation of blood pressure values from PPG data is a slightly more involved process as there is no

simple analytic formula to translate PPG key features such as inter-peak timings to blood pressure values.

As a result, the translation from the extracted key PPG features to blood pressure estimates is learned using

a machine learning algorithm. As this generally requires a significant amount of data, we utilize a separate

dataset  with  PPG and blood pressure data collected using commercial  devices to  learn this  translation

function for the PPG feature set that we are extracting from the camera images. For this, the same features

as for the camera are extracted from the larger PPG data set and the system is trained based on those

parameters to predict the systolic and diastolic blood pressure. Once this function is trained, it is applied to

the features extracted from our multi-spectral camera and obtained estimates are evaluated.

6.1 UCI Dataset

Due to the limited dataset to train the model, we use PPG signals from UCI for training our model.

This cuff-less BP dataset used for the training of our proposed method is available in the Machine Learning

Repository of the University of California, Irvine (UCI). There are 12000 signal parts of recorded ECG, PPG,

and Arterial Blood Pressure (ABP) collected from 1000 individuals. The data is already pre-processed and

validated. PPG signals are used as input and the target values are ABP signals. For testing, we use signals

obtained from our proposed method.
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Figure 14: Training Dataset for Systolic BP



The dataset was collected from Physionet’s Multi-Parameter Intelligent Monitoring in Intensive Care

Units (ICUs). It is also named MIMIC II [11].  The sample training data for 150 randomly selected individuals

for systolic and diastolic blood pressure are shown in Figure 14 and Figure 15, respectively.

6.2 Pre-Processing (UCI Dataset)

The UCI dataset which we use for training our model is already pre-processed. Some pre-processing

and validation has previously been done by  Kachuee et al. [12].  The sampling rate is 125 Hz, which is high

enough to extract the features of the PPG signal. These PPG signals are relatively long so we have to

implement techniques to extract features by dividing signals into small parts
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Figure 15: Training Dataset for Diastolic BP

Figure 16: Pre-processing (UCI Dataset)



6.3 Feature Extraction (UCI Dataset)

All  the  key points  required  in  our  approach are basically  amplitude  related  features.  That’s  the

reason, the peak-to-peak amplitude is normalized to 1. And amplitude of diastolic peak, maximum slope

point, inflection point and dicrotic notch are to be calculated.

6.3.1 Minimum Point and the Systolic Peak Detection [9]:

Various analytical methods such as window thresholding techniques, Hilbert and wavelet transform

combinations, artificial neural networks, and Kalman filters are used to detect the maximum and minimum

points.  The  performance of  these  methods is  highly  dependent  on parameters  such as  thresholds  and

window length. Here we used the automatic multiscale base peak detection (AMPD) method. This helped

detect periodic and quasi-periodic signal peaks.

The  AMPD algorithm has  an  automatically  selected  a  window value  that  does  not  need  to  be

specified in advance. The window size is automatically changed from the minimum possible value to the

maximum possible value. The maximum value is selected as the final window size. The maximum value for

each window is selected as one of the signal peaks. We apply this method to a sample PPG signal. Short-

term fluctuations in the DC current of the signal do not affect the performance of the algorithm. It detects the

minimum point  and systolic  peak,  selects the systolic  pulse between the two consecutive minimum and

normalizes the amplitude to 1. The selected pulse is split into two sections. The first section is the minimum

point to the systolic peak, then from the systolic peak to the end, called the ascending and descending

sections, respectively.
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Figure 17: Feature Extraction (UCI Dataset)



6.3.2 Maximum Slope Point Detection [9]: 

For the maximum slope, which is the upward part of the pulse, we used the first derivative of the

PPG pulses. This is necessary to remove unwanted noise and artifacts that were not filtered out in the first

place. We fit a polynomial of order 5 (largest derivative) to the increment of the pulse to accurately detect the

point with the greatest slope. 

6.3.3 Diastolic Peak Detection:

The diastolic peak is difficult to discern in some PPG pulses, hence the second derivation if the PPG

signal is additionally extracted [4]. First, we fit the polynomial to the falling part of the waveform. We choose

a degree of on the UCI data 7 for a better fit. The diastolic peak is the point at which the first derivative of the

polynomial is zero and the second degree is negative. If such a point is not detected, the point at which the

second derivative is the local minimum is chosen as the diastolic peak.6.3.4 Dicrotic Notch Detection: The

dicrotic notch is a point where the second derivative of the filtered PPG signal is a local maximum and is

located before the diastolic peak.
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Chapter 7 Blood oxygen saturation

SPO2 is the ratio of hemoglobin carrying oxygen to the total amount of hemoglobin in the blood. The

normal value of SPO2 varies from 96% to 100%. Generally, a non-invasive pulse oximeter is estimating this

based on the absorption of light at different wavelengths by oxyhemoglobin and deoxyhemoglobin. Two Light

Emitting Diodes (LEDs), a light detector, and a microprocessor are used to detect infrared and red light

absorption.  The  infrared  and  red  light  is  absorbed  significantly  stronger  by  oxyhemoglobin  and  de-

oxyhemoglobin, respectively. The detector detects the reflected light and uses the difference in intensity at

the two wavelengths to estimate SPO2%.

Estimation of the SPO2 value relys on the fact that wavelengths in the Red part of the spectrum are

absorbed significantly more by oxyhemoglobin than the ones in the infrared part of the spectrum as indicated

in Figure 5. The wavelength for each channel in our data is different. For red, the wavelength is 660 nm, for

green 520 nm, for blue 440 nm, and for infrared 940 nm and above. In this range, the Quantum Efficiency

(QE)  is  different  for  each  channel,  but  the  difference  in  response  between  oxyhemoglobin  and

deoxyhemoglobin is largest for the infrared compared to the Red.

SPO2 % is evaluated by monitoring the variation of the light intensity in the Red and infrared color

channels.  As  at  the  wavelength  red  and  infrared  the  oxy-  and  the  deoxy-hemoglobin  show  greater

differences in the absorption, a suitable procedure is proposed to extract the PPG from two wavelengths red

and infrared. These wavelengths correspond to the ones used in the pulse oximeter.

7.1 Proposed Method (SPO2):

 Red and IR are used for SPO2 estimation.  The accurate evaluation of both the shape and the

amplitude of the PPG signals is essential. To estimate SPO2, we calculated the height of the systolic peak

Vpλ and the slope of the systolic peak mλ where λ is each color channel considered for calculation. Both oxy-

and deoxy-hemoglobin are correlated to shape parameters. The mean value of SPO2% is obtained by taking

into consideration all the pulses of the available PPG.
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Oxygen level was calculated for each beat according to equation (1) where  ϵ Hb , and  ϵ HbO 2 denote the

absorption coefficients of deoxyhemoglobin and oxyhemoglobin, respectively for each wavelength λ.

 

For calculation, the signals red and IR were required.

SPO2=
εHb ,IR √mR ln (VpR )−εHb,R√mIR ln (VpIR)

√mR ln (VpR ) (ϵ Hb,IR−ϵHbO2 , IR)−√mIR ln (VpIR ) (ϵHb ,R−ϵHbO2 , IR)
(1)
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Figure 18: Absorption coefficients of Oxyhemoglobin(HBO2) and 
De-Oxyhemoglobin(HB) for different channels

Figure 19: Slope of the rising edge of the systolic peak mλ

and the height of the peak Vpλ



 The result of SPO2 was calculated by Eq. (2), which was created using the signals. The constant μ is

calculated as a mean of errors between the results of the training signals and the reference value and used

to determine the final SPO2 estimate:

SPO2 (% )=SPO2∗100±μ (2)

The constant  μ   is calculated as a mean of  errors  between the results of  the signals and the

readings obtained from commercial oximeter.
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Chapter 8 Blood Pressure

8.1 Proposed Method (BP)

Arterial  BP is usually measured in two extremes, namely the highest named systolic and lowest

named diastolic. These values oscillate around 120/70 mmHg. PPG signals are very sensitive to motion and

photosensitive. They must be recorded accurately or can be easily corrupted. If the BP is abnormal, key

features won’t be detected in a PPG signal.

For our study, we used algorithms that help extract the key features of a PPG signal effectively. We used

more features to accurately present our findings. The proposed method consists of the following steps:

1) De-noising and removing baseline wandering, 

2) detecting the key features of PPG signals, 

3) feature extraction from PPG signal, 

4) training estimation model using UCI MIMIC II dataset. 

 8.2 Training and Testing Models

To train the BP estimation models, we normalized all the features to zero-mean and univariance. We

used Linear Regression, Decision Tree, Random Forest with a size of 100 trees and AdaBoost with the size

of 200 decision tree estimators to estimate each of the systolic and diastolic BPs. Additionally, we use the 10-

fold cross validation method in order to divide the UCI data for training.

Once the models were trained, they were applied to corresponding feature vectors extracted from

our multi-spectral camera and 2-fold cross validation was used in order to divide our data for testing. The

lower fold number here is a consequence of the significantly smaller dataset available.
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Figure 20: Training and Testing Models



Chapter 9 Results

9.1 Oxygen Saturation Results

To validate the proposed procedure, commercial pulse oximeter FS20F Fingertip Oximeter has been

used and compared to the readings obtained by RGB-NIR camera. The normal range for oxygen saturation

varies from 96-100%.

In the experiment, the multi-spectral camera is positioned on the face. Moreover, to get the results as

accurate as possible,  the volunteer should be in a rest position with a constant source of light both for

colored and infrared image recordings. The volunteers are seated on the chair and their arms are resting on

the desk.

The  test  results  are  compared in  table  2.  Healthy volunteers  are used in  this  investigation.The

volunteers are seated and at rest position. Both readings are calculated synchronously. Pulse oximeter on

the left forefinger and multi-spectral camera video recording at the same time. Table 2 is the comparison of

individual readings between pulse oximeter and readings estimated from our proposed method for each

volunteer.

SPO2% pulse oximeter SPO2% RGB-NIR Camera

Subject 1 98 96.4

Subject 2 97 97.4

Subject 3 99 97.5

Subject 4 98 98.5

Subject 5 99 96.5

Table 2: Comparison of results(SPO2)
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Figure 21: Pulse oximeter Reading sample



Table 2 shows the result of arterial oxygen saturation for healthy individuals varies between 96% to

99%. Mean Absolute Error calculated is 1.3 and Standard Deviation calculated is 0.85. These fluctuations

are due to monitoring of the individual from a distance of 16-30 inches. The fluctuations in readings have

been recorded both for pulse oximeter and multi-spectral camera.

The light is the primary interference to be considered because it affects PPG in an unpredictable

way.  PPG’s amplitude-related feature vary non-linearly  with the change in intensity  of  light  or  shadows.

That’s the reason, in the proposed solution immobility has been considered. The person should sit still with

fix source of light. Also, estimates seem to be lower on average, potentially suggesting an offset due to side

effects of reflection or glare. However, the data set collected here is not sufficient to determine if this is the

case and a significantly larger data set would be needed in the future to answer this question.

9.2 Blood Pressure Results

To  validate  the  proposed  procedure,  the  commercial  Sphygmomanometer  has  been  used  and

compared to the readings obtained by the RGB-NIR camera.  The test  results are compared in table 3.

Healthy  volunteers are used in  this  investigation.  The volunteers  are  seated and at  rest  position.  Both

readings are calculated synchronously. Sphygmomanometer on the left arm and multi-spectral camera video

recording at the same time. 

Table  3  shows  the  result  of  systolic  and  diastolic  blood  pressure  for  healthy  individuals  varies

between  50 – 200 mmHg. These fluctuations are due to monitoring of the individual from a distance of 16-30

inches.
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Figure 22: BP reading sample



Results Systolic BP(mmHg) Diastolic BP(mmHg)

MAE STD MAE STD

Linear Regression 29.67 0.9 13.0 0.5

Decision Tree 60.75 6.6 5.5 5.0

Random Forest 47.1 5.0 5.0 4.0

AdaBoost 38.5 5.7 6.8 0.76

Table 3: Results by Different Models

We need supervised learning algorithms to estimate values of blood pressure as it allows collecting

data and gives an output from previous experiences. We have labels and features from the UCI dataset to

get output from our proposed method. We used different supervised learning models to estimate each of the

systolic and diastolic blood pressures. These models are Linear Regression, Decision Tree, Random Forest,

and Adaboost. Random forest with a size of 100 trees and Adaboost with a size of 200 decision trees have

been employed to predict values. Most of the BP values in UCI Dataset are around normal values.

In Table 3,  Mean Absolute Error (MAE) and Standard Deviation (STD) for each model used has

been shown. Based on these results in Table Decision tree and Random Forest methods have surpassed

methods like  Linear  Regression  and  Adaboost  for  diastolic  BP,  while  Linear  Regression  and  Adaboost

performed better on systolic PB as compared to Decision and Random Forest. However, Table 2 shows also

shows significant  variations.  In  particular,  the result  of  systolic  and diastolic  blood pressure for  healthy

individuals varies between 50 – 200 mmHg. Part of these fluctuations are due to monitoring of the individual

from a distance of 16-30 inches. What can be noticed here is that while the diastolic BP can be estimated

with  a  MAE of  around 5 here,  which might  be an acceptable value,  the system has significantly  more

problems extracting systolic BP values with MAEs of around 30 in the best case. This suggests that the

parameters needed for systolic blood pressure are not extracted sufficiently precisely from the camera and

thus additional work to filter the PPG signal across wavelengths needs to be performed in the future to make

the system more precise.
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Chapter 10 Conclusions and Future Work

As we conclude our  study,  we presented an automated method for  systolic  and diastolic  blood

pressure, blood oxygen saturation measurement using the PPG waveform which was captured from the

RGB and NIR images from our camera. The numbers help understand the cardiac health of the subject and

the usability of multi-wavelength lights. Using state of the art combinations of camera and algorithms for

processing the data, we have verified the proposed solution for cardiac measurements. 

Defining the operational envelope of PPG measurement using RGB-NIR camera is important and there is a

trade-off between camera lens, illuminating device and distance at which measurements were taken with

almost similar accuracy [8].

The arterial stiffness which is the root cause of arteriosclerosis can be detected with the help of PPG

of both RGD and IR images since the correlation of arterial elasticity and the reflection or the absorption of

PPG signals. For different age groups the PPG signals are different.

Current detection of SPO2 is done with the help of pulse oximetry which consists of contact-based sensors

which may cause discomfort or infection for sensitive skin.

In terms of SPO2 measurements, the experiments suggest that our proposed system displays similar

results as oximeters and is relatively cost effective. In terms of blood pressure, on the other hand, the system

achieved acceptable results for diastolic BP but struggled with estimating systolic BP. This indicates that our

system can be used partially for estimation of  SPO2, BP and HR. However, additional work is needed to

further clean the extracted PPG signal by merging more efficiently across different wavelength channels.

Also, a multi-spectral camera with a higher frame rate might help improve parameter estimation and filtering.
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