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ABSTRACT

DISTRACTION DETECTION AND INTENTION RECOGNITION FOR

GESTURE-CONTROLLED UNMANNED AERIAL VEHICLE OPERATION

DEBAYAN DATTA, M.S.

The University of Texas at Arlington, 2022

Supervising Professor: Manfred Huber

Gesture Control as a way to replace more conventional remote-control opera-

tions has been pursued for a significant period of time with different levels of success.

The use of gestures to control different types of human interfaces is today predomi-

nantly seen in the multimedia sector. People perform easy and intuitive gestures to

control their televisions, to interact with multimedia, and to play games. Also, much

research has been carried out to experiment with human interfaces to numerous aug-

mented and virtual reality devices and tasks. The results of these experiments were

so exciting that researchers started to expand the use of gestures to control physical

real life objects using gestures.

One such gesture control platform is controlling an Unmanned Aerial Vehicle

(UAV) during flight using hand movements and other types of significant gestures.

While the use of gestures as an intuitive way to control such a platform is very

promising, it also brings with it a number of challenges and risks that need to be

addressed. The main challenges here arise from the versatility and universal character

of gestures which make them more susceptible to misinterpretations in terms of user
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intentions in particular in the context of real world distractions which can lead to

the unintentional generation of gestures outside the context of the control task. The

scope of hand gestures is so varied that predicting the gesture using a designated

framework could, at a point, be risky for the UAV, where a non-gesture movement

possibly generated in the context of natural or artificial distraction could be classified

as a control signature and cause a dramatic failure of the UAV. For instance, if a

human subject entitled to control the UAV using their hand movements is subjected

to an unanticipated situation that made him busy to perform any other similar-

looking gesture, and the framework misinterprets it to be a known gesture, the result

of executing the unintended command might end the life of that drone.

In the work presented here, we have mainly focused on an instance where the

human subject was considered to be subjected to different types of distraction while

controlling the UAV using hand gestures. The UAV controls are suspended to avoid

any self or collateral damage whenever any distraction from the brain or hand move-

ments is identified. Finally, once distractions abate, the UAV shifts to ready mode in

order to receive new commands.

The experimentation is performed using wearable Electromyography (EMG)

Sensor armbands and non-invasive Electroencephalography (EEG) Sensors worn on

the head. The Armband is co-fitted with both EMG and Inertial Measurement Unit

(IMU) Sensors responsible for extracting the muscle movement and the motion sensing

data. The EEG Sensor is used to get the brain data to identify the distracted brain

sequences during the operation.

An intuitive gesture set for drone operation is designed and a neural network

pipeline was set up which was used to identify the gesture performed as well as the

current state of the brain. The pipeline constituted a Long-Short Term Memory

(LSTM) network classifying the gestures and an Anomaly Detector, which identified
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periods of operation that correspond to distractions where the human was likely no

longer focusing on UAV operations. The LSTM was able to classify 99.52% of the

gesture set correctly and the anomaly detector had an accuracy of 90.0006%. The

precision of the distraction classifier was 91.86% and the recall was 93.89% for a

dataset having nearly 30% of distracted data samples. The signals were recorded

from a single human subject over 3 minutes interval and 20 repetitions with a rest

period of 5-10 minutes to avoid brain and muscle fatigue.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Since the word ’Artificial Intelligence’ was first adopted in 1956 at the Dart-

mouth Conference organized by American Computer Scientist John McCarthy, it has

grown in all possible directions and is still expanding. The past couple of decades

has seen even more research and innovation in Artificial Intelligence. A part of this

research was to develop Unmanned Vehicles that can perform operations considered

risky or impossible for human beings. Beyond that, robots or remote computers or

machines operated from a distance have paved the way for distant control applications

and multimedia. From children’s toys to military equipment, remotely controllable

devices have been adapted over the years to make the system more intuitive and

engaging. Even in the field of mass manufacturing, activities that need to be per-

formed under strict human supervision have been performed using highly efficient

semi-autonomous robots which are partially controlled by a human from a distance.

In modern days, the flexibility of remote communication and the advancement

of artificial intelligence jointly made the researchers more innovative in experimenting

with different forms of control systems, especially the ones that increase human en-

gagement to a greater extent, in order to extend the flexibility of a human being into

the mechanical world. One such model of communication is communication through

gestures performed by hand movements.

Human Beings are blessed with the most flexible forelimbs in the animal king-

dom. Whatever actions a person performs in a day involve the forelimbs to a great
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degree. In the area of the control systems, the most common ones are while we drive

a car or use the remote to change the channel on the television. We are so used to this

kind of communication that we don’t even need to concentrate entirely on doing these

activities. In other words, we are surrounded by remote communication in today’s

fast-changing world.

This motivated the present-day researchers to use gesture-based control mech-

anisms to drive or monitor a robot or unmanned vehicle system. There are different

ways to recognize a gesture known to people. The most common is by image recog-

nition using a digital or depth-sensing camera [1, 2, 3, 4, 5] . The other is by using

wearable devices that provide helpful information from muscle movement or physical

intentions. The use of a live camera is easy to set up and cleaner. But it restricts

mobility greatly by requiring to stay within the area covered by the camera. On

the other hand, while wearable sensors are generally harder to set up initially than

camera-based systems, the ability to be physically flexible and to move around pro-

vided by theses systems increases the chances of long-time communication and a

provides the potential for a more intuitive and stress-free environment.

The only way to obtain this flexibility with minimal setup is by using a smartly

built wearable device that is easy to put on and is able to recognize the muscle

movements while performing various actions. A different combination of muscle states

is used to depict a certain gesture. This will help increase the mobility of the person

as these wearable devices are mostly wireless. Typically, the sensors output a range of

electronic signal values that is similar for a specific type of gesture. And any clustering

or supervised learning algorithm can be used to classify them. a useful addition to

these types of wearable devices is by adding an Inertial Measurement Unit (IMU)

to its core so that any type of accelerometer or gyroscope value extracted from the
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sensors and pointing to a specific hand movement can be used in addition to learn

the sequence of operations.

The amount of flexibility in these types of gesture recognition is so fascinating

that even tough control systems like operating an Unmanned Vehicle System (UVS)

using intuitive gestures have been experimented with so many times in the past [6,

7, 8]. Most of these research projects used only muscle data to control the UVS and

did not include any other types of sensors. This imposes limitations on what gestures

are identifiable from a limited set of sensor locations, either dramatically reducing

the extractable movements or requiring sensor probes to be placed all over the arm,

making it more inconvenient and harder to use¿ Including other sensors such as the

sequence of information from the IMU can overcome some of this, for example by

giving us a good representation of the overall arm movements made by the person

while controlling the vehicle and thus partially replacing the need for EMG sensors

to read shoulder and elbow muscle activations and just concentrating on wrist and

finger muscles which can be extracted from a single device mounted on the lower arm.

Identifying the hand movements as time sequence data could also be useful in creating

vivid and more intuitive gestures. Recognizing these type of control signatures makes

user interaction easier to the control interface and could be used in a regular setting.

However, to introduce a plug-and-play mechanism, the proposed system should be

robust and not require any user to have significant amounts of training on the specific

modules just to control the vehicle or use it for multimedia purposes and also should

minimize sensing information. This could be incorporated by introducing the Neural

Network Classifiers which can detect the gestures in a general sense and not require

calibration to the system every time a new user tries it. But use of a neural network

or advanced learning algorithms usually requires large-scale data, which is itself a

challenge. Despite these kinds of challenges, if we are able to train the classifiers to
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understand variations and not just the trend, we will be able to open the recognition

scope to a great extent even if we have less data to train our models on [6].

If we are able to reliably classify the gestures, we will be able to send them to a

common interface to generate commands for driving an unmanned vehicle system. To

do that, we need to create a gesture vocabulary that the common interface is able to

map to certain commands to the UVS and finally send them as control signatures to

the UVS. Later, the UVS will be able to send a feedback signal before and after the

execution of the operation to make sure the command was successfully registered and

deployed. This process loop will make any control system using a hand movement

and subsequent gesture control robust and mobile at least when concentrating on

controlling the system.

Understanding the freedom of mobility of this mechanism, however, we recog-

nize that the subject which is supposed to control the UVS will no longer be required

to be in a closed and socially disconnected environment. The subject will be able to

move freely in the open world, and parallely control the UVS. As the gesture recog-

nition is also facilitated using the wearable device, the subject doesn’t have to be in

close communication with the UVS as the UVS wouldn’t need to look at the subject

for real time movement detection using the on-board camera. This, to some extent,

can be considered as a great feature.

However, in this setting, the outer world is full of distractions which the subject

controlling the UVS could fall prey to. The distractions could be any kind of visual,

audible or physical information that is foreign and unpredictable. The nature of the

distractions could be introducing a change of emotion or state of mind of the person

controlling the UVS, moving the person’s attention away from the control task. This

might let his hand engage in activities that are not gestures for the command system

but that utilize the same muscles in similar ways, such as waving to a friend or
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gesturing to an oncoming car or person. This, in turn, increases the risk that the

activity might be classified as a gesture and could be very harmful for the Unmanned

Vehicle especially if it is an aerial vehicle.

Therefore, it becomes very important to identify and monitor the state of mind

of the person concerned to control the aerial vehicle. This is particularly important

since any person who is handling an aerial vehicle (the controller) and the vehicle

might not have a line of sight. As a result, the system is already physically dis-

connected and thus has no ability to judge the state of the controller by itself. At

this point, if the controller has a change of intentions which was unpredictable or

unforeseeable once the vehicle is airborne, it might be very expensive for the vehicle

to erroneously register non-gestures as gestures.

This provides the motivation to use an Electroencephalography (EEG) Sensor

as a second sensor that would be worn on the head. This sensor would monitor the

electrical activity of certain brain regions, which will be further processed to identify

a distracted or a non-distracted brain state. The benefit of the use of this sensor is

that it is non-invasive, which increases the wearability of the sensor as part of the

overall system.

The combination of these two sensing models can be used to finally generate

the control sequences and send them to the aerial vehicle to respond while avoiding

the generation of incorrect commands due to reactions to distractions. The overall

model is given below in Figure 1.1:

1.2 Contribution

This thesis proposes, develops, and tests an integrated system for remote com-

mands to control an UVS using gestures that utilizes an EMG, IMU, and EEG data

from easy to use mobile devices to address both automatic command extraction and
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Figure 1.1: Overall Model

distraction identification to obtain a more robust and usable overall system that can

be used in more general environments. Particular contributions in this thesis are:

• Design of a Long-Short Term Memory Recurrent Neural Network that was

trained on both Electroencephalography and Electromyography Data to pro-

duce the intended gesture using the hand movements.

• Design of an anomaly detector using auto-encoders to identify the anomaly in

the Electroencephalography Sensor Information. The non-distracted brain data

was regarded as non-anomaly.

• Design of a common sequence generator from the classification sequences derived

from both the neural network models which was capable of generating real-time

command structure to be sent to the unmanned aerial vehicle.

To evaluate the system, it was implemented on a real system using a Tello

drone, for which the following additional design and implementation tasks had to be

performed:

• Design and implementation of a command sender and receiver using the Tello

SDK Tool to talk to the Unmanned Aerial Vehicle.
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• Design and implementation of an algorithm to process data in real-time to

produce a single data frequency for the model to interpret the data.

• Integration of all components to allow real time sensor fusion, classification and

command generation in a single interface.

• Calibration of the Electromyography and Electroencephalography Sensors to

produce the desired data stream using pre-defined Python Libraries, open-myo

[9] and python-emotiv [10].

• Collection of activity data from the human controller in a live setting with

sensor data streaming at different streaming frequencies.

• Pre-processing of the data stream for producing better input data for the neural

network models.

• Training and evaluation of the neural network models using the collected data.
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CHAPTER 2

RELATED WORKS

2.1 Gesture Detection using Electromyography

Controlling any semi-autonomous robot system using gestures is a commonly

researched topic. But inducing the flexibility in the entire control mechanism is very

important. The need to make it more usable and ready for people who were never ex-

posed to this kind of technology should always be a primary thought. Using different

classification strategies to incorporate this immediate thought was depicted in this

former study by Joseph DelPreto and Daniela Rus at MIT [6]. They presented a form

of clustering unlabeled streaming data performed in real-time. This was subsequently

used to adaptively threshold muscle and motion signals acquired via electromyogra-

phy (EMG) and an inertial measurement unit (IMU). They devised a plug-and-play

algorithm for detecting arm stiffening, fist-clenching, rotation gestures, and forearm

activation. They also successfully augmented a neural network pipeline trained on

carefully and logically chosen data from users who used this control architecture in the

past. This was essential to demarcate the left, right, up, and down gestures. In their

terms, they generated a gesture vocabulary suitable for controlling a robot, which was

a drone. They proposed an algorithm evaluated from data received from six subjects

by ensuring a good classifier performance and interface efficacy. They were able to

identify 97.6 % of 1200 cued gestures, and the drone was able to respond to a set

of 1535 unstructured gestures with an accuracy of 81.6 %. Their flight time for the

entire experiment was 119 minutes. As the work in this thesis also revolves around

remotely controlling a drone using gestures generated from hand movements, we de-
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ployed this central idea in our project to finally use it as our primary activity while

recognizing distraction patterns. However, we combine it with additional sensors to

address distractions and allow it to be moved to a less structured environment.

The motivation for using gestures for real-time classification purposes was also

generated from a former study by Beau Crawford, Kai Miller, Pradeep Shenoy, and

Rajesh Rao [11], where they proposed a technique to use the EMG Signals that were

recorded from arm surfaces and in a completely non-invasive setting for controlling

a robotic arm. This was mainly focused on advancing bioengineering for the sophis-

tication of prosthetic devices for amputees and paralyzed individuals. They started

their study by a physiologically informed selection of the forearm muscles for record-

ing the Electromyography Signals. They considered the usage of intact muscles that

amputees could exercise with varying degrees of control. They recorded the activation

patterns from the muscles in the forearm and classified them to formulate a control

strategy. They experimented with their work on different 3-dimensional goal-directed

movements like obstacle avoidance and picking up or accurately placing objects in

their proper place. They used a simple and sparse feature representation that can

be computed in real-time and passed onto a well-designed linear Support Vector Ma-

chine to classify the data. They achieved a classification accuracy of over 90% with

an 8-class classification problem. The sampling rate of the EMG Signals was 2048 Hz.

As they classified the steady-state signals from the hand gestures, they had to select

windows of EMG data from all channels. They had a sliding window of 128 samples

for each channel and computed the amplitude of each channel over that window. The

final feature vector would then consist of 7 values per channel. This classification

method proved to have 16 commands/sec, allowing them for excellent control of the

robotic arm. They aimed to work on discriminating the finger movements as a part
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of their future study. They also thought to incorporate an EEG segment into their

research to understand motor patterns.

The above studies concentrated on the electric signals extracted from the mus-

cles, known as Electromyography. But the movement of the hand in the 3-dimensional

space doesn’t uniquely define a gesture as the activation on the muscles could be sim-

ilar in nature and hence not be able to be classified as a unique sample. As the

electric potentials might look similar due to the similar activation of muscles. There-

fore, using an Inertial Measurement Unit that keeps a record of the had movement

by throwing values from its accelerometer and gyroscope. A study using IMU in-

formation for gesture recognition was performed by Ari Y. Benbasat and Joseph A.

Paradiso at the MIT Media Laboratory [12]. They describe an inertial gesture recog-

nition framework that consists of three segments. The first was a wireless six-axis

inertial measurement unit to fully capture the three-dimensional motion. The other

was a gesture recognition algorithm used to analyze the data and categorize it on

an axis-by-axis basis as simple motions that depicted magnitude and direction. Fi-

nally, an application designer would combine recognized gestures on a concurrent

and consecutive basis to define a range of composite gestures which would trigger

output routines. Their proposed system required a lot of custom hardware and soft-

ware development for each application framework. The necessity of the system to

be compact and wireless was huge, so they designed their hardware architecture very

carefully. They divided the gesture framework into different components identifying

them as atomic and activity gestures. The atomic gestures referred to a small action

performed by the hand. And on the other hand, an activity gesture is any type of

movement cause due to performing an activity. They researched goals that would

conceptualize precise hand movements into a classification environment. They de-

signed an algorithm that took advantage of a priori knowledge of human arm muscle
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motion structure. ’Since the velocity of the arm is zero at the ends of the gesture, the

integral of the acceleration across it must be zero as well’ [12]. They only recorded the

peak activity moments that would be significant in the classification problem. Later

they used this framework to develop a software application that uses this principle to

identify hand movements.

Another study on the comparison of control strategies was published, which

focused on EMG controlled exoskeleton for the hand, by Mathew DiCicco, Lenny

Lucas, and Yoky Matsuoka [13]. The main focus of this paper was to ensure a control

mechanism to restore dexterity to paralyzed hands. This was performed by extracting

the user’s residual non-invasive electromyography signals of a quadriplegic subject.

They validated that the EMG signals coming in from the ipsilateral biceps could

be used to develop a reliable natural reaching and pinching algorithm. They had

another segment to the project: a voice-activated sensing and control strategy. The

voice triggers were verbal commands like ’grasp’ and ’grip’ to trigger the opening

and closing of the actuated clasping mechanism at the location where the user has

their hand. They proposed three different strategies for achieving their goal. One

is a binary algorithm, the other is a variable control algorithm, and the final one is

a natural reaching algorithm. They did not implement any learning algorithm but

were actually able to achieve some excellent outcomes. The pinching motion that

they targeted mainly was very effective for those who lack mobility regardless of the

control algorithms used. The hardware was successful in being comfortable and had

minimal materials on the palmer side of the hand and also never interfered with the

manipulated objects weighing only 6.67 oz. Among their approaches, their binary

algorithm had the fastest outcomes. However, much of their success had to do with

the ability of the human controller to adapt to the behavior of the system and their

ability to target specific muscles. In our application where we are aiming for intuitive
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gestures to control an external UAS and where we are aiming at easy to deploy

sensors, a robust and adaptive gesture classification system will be necessary as users

should not modify the signals (and thus gestures) in order to improve recognition

rates.

EMG-based robot control is a fascinating topic, and works related to this kind

of control mechanism never lack efficiency. But only limited research focused on the

time-varying EMG signal features. Artemiadis et al. have researched a new concept

of focusing on the time-varying components of EMG signals. They have used these

signals from muscles of the human upper limb and used them for the control interface

between an anthropomorphic robot arm and the user. The proposed interface focuses

on the time-based changes caused by muscle fatigue or adjustments of contraction

levels. The data recorded from the muscle activity was then transformed into kine-

matic variables that were finally used to control the robot arm [14]. The user could

be unaware or have never seen the robotic arm (as it was anthropomorphic). Natural

arm motions were enough to control the robot arm with the interface mapping. Ac-

cording to a former study, the relationship between the EMG signals and arm motion

is highly non-linear; to overcome this, they used a discrete form of control. All the

former studies in this research never realized the time-varying component. Thus, they

claimed to have performed a good experiment even if that was not investigated the

implications in a real-life scenario until then. The time relative data was needed here

not necessarily to capture movement but rather to address dynamic changes even in

static settings as the muscle could be exposed to fatigue, changes in the level of force

production, heat at the recording site, or smaller electrode movements relative to its

initial position. The duration of the training phase was decided to be 4 min [14] as the

user would prefer to rest his arm before the next training phase. They deployed four

decoding models: a switching model, a stationary model, a linear filter, and finally, a
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Support Vector Machine. The effectiveness of VM for CC was 0.82 ± 0.03, Ccy was

0.84 ± 0.02 an 0.82 ± 0.05 for CCz. The proposed method to compensate for EMG

Changes through time is quite important for the field [14].

One of the former studies by Rong Song Di Ao on EMG-driven Hill-type move-

ment performance of Human-Robot Cooperation Control and Propositional models

for an ankle power-assist was an enlightening piece of work. . He was successful in

designing an EMG-driven hill-type neuromusculoskeletal model (HNM) and a linear

proportional model (LPM) that were calibrated through maximum isometric volun-

tary dorsiflexion (MIVD). The action of the two models used for control efficiently

measured the real-time ankle joint torque, and the collaborative HNM model ac-

curately accounted for changes in the joint angles and muscle dynamics. For this

study, the author had eight volunteers who were asked to wear the ankle exoskeleton

robot, and they completed a series of sinusoidal tracking tasks in the vertical plane

based on the two calibrated models. The subjects were then asked to track the tar-

get displayed on the screen as perfectly as possible by performing ankle dorsiflexion

and plantarflexion. He used two measurement techniques, root means square error

(RMSE) and root means square jerk (RMSJ), in the assistant torque and kinematic

signals to categorize the movement performance. Also, the amplitudes of the recorded

EMG signals collected from the tibialis anterior and the gastrocnemius were obtained

to show the muscular efforts. His results depicted a scenario where the increase of the

assistant ratio would cause the decrease of any firm action or smoothness of tracking

movement. This study mainly focused on the EMG signals that could be derived

from the lower limbs for performing communication with a robotic exoskeleton fitted

on the lower limb itself. The author designed a multi-channel EMG amplifier for

performing the power-assist exoskeleton robot experiment. Also, the recorded end

signals were amplified 5000 times, and a fourth-order Butterworth filter was used for
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band filtering, which had a band of 10-400 Hz. During the experimentation, they also

took care of the safety factor of the subjects that were involved in the experiment

by implementing two mechanical stops, which, when applied to limit the rotational

range of the motor and the software program, would stop the operations if an output

torque exceeded the present range of negative 12 to 12 newtonmeters or the ankle

joint angle exceeded a preset range of -35 to 30 deg [6]. They concluded by saying

that HNM exhibits significantly less error than LPM at ankle joint angles of 60, 75,

105, and 120 deg.

The use of low dimensional embeddings for generating EMG- based control of

a robot arm was another research performed by Artemiadis et al. [15]. They have

used a mathematical model to decode upper limb motions from EMG recordings.

Their proposed method uses a dimensionality reduction technique represented by

muscle synergies and motion primitives. This method shows a 2D embedding of

muscle activations that can be decoded to perform a continuous arm motion profile

and described in a 3D cartesian space. The curse of dimensionality is a significant

factor when dealing with vector data shown in a high-dimensional area. This could

be overcome by efficiently reducing the dimension of the data. The data that they

have collected shows a high dimensionality for the muscle activations and joint angles.

They implemented the most commonly used dimension reduction technique known as

principal component analysis to perform their research. They propose implementing

this algorithm twice, once for finding a new representation of muscle activation data

and then for the joint angles. Using the PCA algorithm would return a new coordinate

system of lower dimensions using the first eigenvectors of the original data as axes.

Their research was a pioneering study for a continuous profile of 3D-arm motion using

only EMG signals. The previous works extracted only the discrete information about

the arm motion while they would estimate the constant arm motion. However, they
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are constrained to isometric movements with a single degree of freedom or subjected to

very smooth moves. The methodologies that were being proposed in the paper would

take little time to build the decoding model and have a very low computational load

during the real-time operation [15].

2.2 Distraction Detection using Electroencephalography Signals

In a study based on distraction detection in motor rehabilitation using a high

variable EEG sensor performed by Apicella et al. [16], a precise identification of dis-

traction was proposed. The authors have used a wireless cap that had dry electrodes

and a deficient number of channels and collected data sequences for experimental

validation from 17 volunteers. They had a relatively elementary study based on

supervised classifiers. As a part of the feature extraction, they implemented a 12

band-pass filter bank (FB) and a typical spatial pattern (CSP) algorithm. They had

a segment that removed the artifacts from the EEG signal during their data collection

and then passed it on to the filter bank. Their study implemented a set of five su-

pervised classifiers, where they tuned different hyperparameters and variation ranges

to derive their results. The classifiers used in their study were k-nearest neighbor

(k-NN), a support vector machine (SVM), an artificial neural network with hidden

layers ranging from 25 to 200 units, linear discriminant analysis (LDA) that had a

gamma range from zero to one and a delta parameter. Their study implemented two

domains of analysis; frequency domain and time domain and finally concluded that

the results from the state-of-the-art classifiers had a mean accuracy of 92.8 ± 1.6 %

and a mean recall of 92.6 % using the k-NN classifier.

Another research that was carried out to detect the temporal impact on cog-

nitive distraction detection for car drivers using EEG was performed by Schneiders

et al. [17]. Their research presented a self-designed model named DeCiDED, which
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incorporates electroencephalography and machine learning techniques to detect cog-

nitive distraction in car drivers. The results that they concluded with indicated that

if the training and evaluation data had originated from the same driving session, their

proposed models would have performed with the highest accuracy. In this paper, the

authors focused on the temporal impact, which refers to the effect of the time inter-

val between the collection of training and evaluation data on distraction detection

accuracy. The authors conventionalized the data collection process by using the data

collected from the same subject for the training and validation. This step would make

the system reliable for individual participants even after tuning parameters separately

for that specific individual. The sensors used to collect the EEG signals have a sam-

pling rate of up to 200 Hz. The experimentation was done in a virtual setting where

a real-time driving scenario was augmented for the driver. The temporal impact was

identified from the training data collected on day one, and subsequently, the evalua-

tion data that was collected after seven days. Once the data was collected, it went

through segmentation, cleaning and extraction, selection. To identify the channels of

EEG, they used a binary mode of classification with classes depicting distraction or

focus in their study. Their algorithm correctly identified 76.77 % of all cognitive dis-

traction samples, corresponding to about 5594 out of 7287 two-second time windows

across all test subjects [17]. They concluded by saying that if the data was collected

on the same day, it yielded better results than between days.

The primary motivation of this research is to detect the distraction from an

attentive mind while controlling significant semi-autonomous robots. There was con-

siderable research that was carried out on this specific area of distraction detection,

most of which concentrates on the direct control of the vehicle, i.e., by being a part of

the vehicle system. Kumar et al. [18] worked on the vulnerabilities of distraction dur-

ing driving using Electroencephalogram (EEG). They stated that textit “Data from
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10 different subjects were obtained and categorized into different frequency bands.

Distractive driving is related with the Theta band, so the Theta frequency band was

decomposed using Discrete Wavelet Transform (DWT), and 17 different features were

extracted.” – Kumar et al. [18]. Consequently, they used the Theta Band of the EEG

Signal, which was then pre-processed, and simple feature extraction was employed.

Finally, the EEG was classified as Visual and Cognitive Distraction. They had used

a 21-channel EEG Extraction Device that fitted the head like a cap and data was

collected under the supervision of a visual infrared camera interface. This was used

to timestamp the signal that was collected. The product of the feature extraction

was classified using SVM and KNN. The highest accuracy was recorded as 71.1 %.

Their research was quite astounding, but the experimental setup was too organized.

Along with the bulky design, it is hard to be replicated in a real-life scenario.

Another research carried out by Bajwa et al. [19] had the same perspective:

identifying the distraction pattern, but a slightly different goal: to pave the way for

future intelligent transportation systems. In this type of setting, the person interested

in controlling the intelligent vehicle doesn’t have to be a part of the vehicle system

by being inside it. Their approach was slightly more conclusive as they included

two phases of detection. The first one was almost similar to Kumar et al.[18], but

the distraction recording was more specific. The drivers are asked to perform the

following operations: read, text, call and use the phone camera in their first phase.

The second phase was “using a survey, comparing driver’s order/perception of the

severity of distraction with the derived distraction index from EEG bands.”- Bajwa.

et al. [19]. In this experiment, they used 14 electrodes and recorded from a set of 13

subjects. But the best part was that they used on-the-road driving, which is always

preferred to a virtual-reality driving simulator. The results were impressive as they

detected distracted driving with 91.54 ± 5.23 % mean accuracy for the detection of
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distraction and 76.99 ± 8.63 % while distinguishing the five distraction cases they

considered. .

The two research works mentioned above employ more of a manual way of

detecting the distraction where the classification was annotated by supervisors a

priory. In contrast, one of the former research works by Vuckovic et al. [20] was

more of an intuitive approach to classifying alertness and drowsiness. Their paper

“Automatic recognition of alertness and drowsiness from EEG by an artificial neural

network” mentioned the novel method of using interhemispheric and intrahemispheric

cross-spectral densities of the full spectrum EEG as the input to an artificial neural

network with the two outputs of alertness and drowsiness. They trained the ANN from

a full-spectrum EEG extracted from 17 subjects. They employed multiple algorithms

alongside the linear network, including an LVQ neural network. Their conclusion

included a statement that LVQ was the best classification in comparison to any other

ones they used. They used t-distribution to evaluate the similarity between the human

assessment and the network output, 94.37 ± 1.95 %, which is the highest among the

others . Their motivation was only to derive the classification and not trigger any

other control interfaces from this kind of environment.

A similar kind of research was carried out by Abdulhamit Subasi [21], who

analyzed the data using wavelet transformation. The main band was converted into

multiple sub-bands using wavelet transformation. Finally, different statistical mea-

sures were extracted, acting as ANN input. The signals were taken from 12 subjects

and the system could approximately classify them as alert, drowsy, and sleeping with

93.3 ± 4 % accuracy.

For the control interfaces research, some former work was being carried out for

EEG Signal classification. Nagabushanam et al. [22] classified the EEG Signals using

LSTM and other neural networks. This study was mainly concentrated on finding a
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neural network that could be used to classify the EEG signal. They primarily used

SVM and Logistic Regression. Then they added a two-layer LSTM and four-layered

improved Neural Network to improve the classification performance. While all the

other researchers used the signals with their frequency components, This specific

research concentrated on the 2D Grayscale Imagerepresentation developed from an

EEG PSD which was first seen by Leracitano et al. [23]. Describing their work

they state: “To improve the performance of NN architecture, a four-layer improved

NN and LSTM are designed. Both are implemented using Python, and comparative

analysis is carried out with statistical features. LSTM is a long short-term memory

approach which removes overfitting problems caused in basic RNN structure of deep

learning classification algorithm.” - Nagabushanam et al. [22]. They concluded that

the LSTM and improved NN boosted the performance by a considerable margin to

71.3 % and 78.9 %, respectively. In future work, they proposed a multi-stage LSTM

architecture and pooling layers in the proposed NN to increase the performance of

deep learning algorithms for EEG signal classification.

Fourier Transform was also a part of the classification of EEG, which was in-

troduced by Cecotti et al. [24]. The research switched from a time-domain to a

frequency domain analysis. They divided it into steps, stating: “The first step allows

the creation of different channels. The second step is dedicated to transforming the

signal in the frequency domain. The last step is classification. It uses a hybrid re-

jection strategy that uses a junk class for the mental transition states and thresholds

for the confidence values.” - Cecotti et al. [24]. They concluded with results with

six electrodes on two subjects for 1s. The system was reliable to almost 95 % with a

rejection criteria. As the system must be very reliable, they combined two decisions

for the rejection. First, they dedicated one class for the transition states. Then there

are two thresholds for each category. They are determined function for the validation
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database. The learning, validation, and test database comprises 6392, 2130, and 2134

patterns for each subject. The classes are equally distributed in the three databases.

It was an outstanding work with a minimum constraint on statistical measures.

Another EEG-based motor imagery classification using a support vector ma-

chine and multi-layered perceptron was performed by Chatterjee et al. [25]. They

focused on the category of motor imagery of the left-right hand movements of a

healthy subject. They incorporated the elliptic bandpass filter to discard the un-

wanted segments of the signal. For their part of the research, C3 and C4 electrodes

in the 10:20 EEG system were used mainly for left-right limb movements. They per-

formed the feature extraction based on the wavelet, band power, and average power.

However, their research was based on an experimental data set from BCI competition

II 2003 provided by the Department of Medical Informatics Institute for Biomedical

Engineering, University of Technology, Graz [26]. The data set for this research was

unique to the other researchers in this area as they used a predefined data set col-

lected from a female 25 years old. They have variable feature vectors generated from

the different feature extraction processes, resulting in a vector size of 140 x 26 to

do the classification. In the end, the classifiers were able to produce an output with

the accuracy of 85% with the SVM and 85.71% with an MLP. They concluded by

saying the energy entropy feature set gives the most promising results for both the

classifiers[25].

Most of the researchers on EEG classification mentioned above were to identify

the distraction from the EEG signals. But the following research performed by Peng et

al. [27] Depicted the attentiveness recognition system using Hilbert-Huang Transform

(HHT) and Support Vector Machine. This research did not focus on the subject’s

specific type of task. Instead, it proposed an algorithm to detect the attentiveness or

the mental state of concentration of humans performing different tasks. The study

20



mentioned the use of HHT in the analysis of nonlinear or nonstationary bio-signals,

including brain waves. So they used a single-channel EEG signal from the frontal area

acquired from participants at different levels of attentiveness and then decomposed

it into a set of intrinsic mode functions by using the empirical mode decomposition.

Later, the Hilbert transform was applied for each intrinsic mode function to obtain the

marginal frequency spectrum. Finally, the band powers and the spectral entropies

were chosen for the two-category classification task performed using the Support

Vector Machine. Their proposed algorithm used segments of alpha and beta waves

and their spectral entropies, which exceptionally classified between attentiveness and

relaxed states with the classification accuracy of 84.80 %.

2.3 Anomaly Detection from Electroencephalography Data

Anomaly detection is an unsupervised learning method that could be used on

time varied signals to identify any anomaly from the normal state of behavior. Elec-

troencephalography being a time-varying signal, could be sent to an anomaly detec-

tor to identify specific changes in the signal’s amplitude. Chen et al. [28] performed

anomaly detection on EEG data to investigate the impacts of different similarity met-

rics on anomaly EEG detection. The author considered a few potentially available

metrics for the EEG analysis. In this research, two indicators were used to evaluate

the performance after the detection algorithm. The first one reflects the measured

similarity between the two compared EEG signals, and the other quantifies the detec-

tion accuracy [28]. The experiment was performed on two datasets depicting normal

and abnormal movements. The positive impacts of different similarity metrics on an

abnormal EEG detection were demonstrated in the results. Specifically, the Hellinger

distance and the Bhattacharya distance metrics showed excellent performance over

the accuracy of 91.67 % on the live collected data set. As a part of the future work,
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they mentioned combining both the distance metrics for the similarity measure of

EEG signals.

2.4 Some more highlights on gesture control

The gesture detection and identification research can also be performed using

motion controllers. In the study, Sarkar et al. [29] used a Leap Motion Controller

to recognize the gestures using advanced algorithms for such operations. This device

uses two monochromatic infrared cameras and three infrared LEDs to track any hand

moved up to about 1 meter or about three feet directly above it [29]. As a result,

the gestures performed on top of the Leap Motion can be recorded using the infrared

cameras built inside it and later be used to send to the ground station. They used

the leap SDK on the ground station, which would translate the gestures and send

them to a ROS topic. This would send the commands to the subscriber method and

later relays them onto the twist method. Finally, the twist method interprets the

forwarded message and then commands the Drone to perform the appropriate action

based on the hand gesture [29].

There are other methods to identify gestures and use them as a control for a

designed environment. Accelerometer-based gesture control is one such supplemen-

tary interaction modality. Kela et al. [30] perform two user studies in their research.

The first study was to find gestures for controlling a design environment like a TV,

VCR, or lighting. This is where they identified that different people usually pre-

fer other gestures for the same task, and hence the algorithm needs to personalize

them. The second part of the study evaluated the usefulness of any gesture modality

compared to any other interactional modality for controlling a design environment.

In this scenario, they considered RFID-based physical, tangible objects, laser track

pens, or a PDA stylus. Finally, they concluded that gesture commands are natural,
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especially for commands with a spatial association to any design environment control.

According to their studies, any user being subjected to gesture control would prefer

intuitive gestures that are more readily understandable and interactable. They used

a discrete Hidden Markov Model to recognize gestures. The model successfully re-

turned typically high accuracy of recognition with most of the recognition rate versus

the number of training vectors above 90 %. Their research not only focused on rec-

ognizing gestures but also experimented with the usability of gestures over any other

control strategies for designing a controlled environment.
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CHAPTER 3

UNDERSTANDING THE SIGNALS

3.1 Electromyography

Electromyography (EMG) is a way to recognize the electrical activity produced

by the skeletal muscles due to the electrical or neurological activation of muscle cells

generating electric potential. This methodology is often used to evaluate and record

muscle activity. The first documented experiments dealing with EMG started with

Francesco Redi in 1666 [31]. In medical sciences, electromyography is used to diagnose

muscles’ health and the nerve cells responsible for controlling them. This technology

can identify any nervous dysfunction, muscle dysfunction, or problem triggered by

nerve-muscle signal transmission. There are two types of Electromyography: Intra-

muscular EMG and Surface EMG. The Invasive EMG uses needles to prick inside the

muscles with an electrode attached to the end of the needle. These receive the elec-

trical signals as electrode potentials, which can later be realized in a 2-Dimensional

Time Distributed Sequential Graph. The Non-Invasive EMG, often known as Surface

Electromyography or sEMG, is a non-medical technique that recognizes the surface

activation of that muscle. This type of technology is often used for non-medical pur-

poses by several bioengineers. In the field of Computing, researchers have often used

this kind of technology to set up a middleware in indemnifying hand movements and

map it to a structure of gestures for any Human-Robot or Human-Computer Collab-

oration Interfacing [31].

The electrical source is the muscle membrane potential of about -70mV. Measured

EMG potentials range between less than 50 μV and up to 20 to 30 mV, depending on
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the observed muscle. The typical repetition rate of muscle unit firing is about 7–20

Hz, depending on the size of the muscle (eye muscles versus seat (gluteal) muscles),

previous axonal damage, and other factors [32]. EMG signals are composed of super-

imposed motor unit action potentials (MUAPs) from several motor units [31].

EMG signals have been targeted as a control for flight systems. The Human Senses

Group at the NASA Ames Research Center at Moffett Field, CA, seeks to advance

man-machine interfaces by directly connecting a person to a computer [31]. In this

research work, we have implemented the non-invasive technique of recording the elec-

trical signals from muscles to recognize the gestures. EMG can be obtained from any

part of the body. Still, for this part of our research, as we are more concentrated on

the hand movement, we will be receiving the EMG Signals from the forearm as this

area extends to most of the muscles connected to the fingers and is ideal for gesture

recognition.

3.1.1 Muscle Anatomy

There are over 30 muscles in the hand [33] where most of the movements

of the hands use the muscles in the forearm, which are connected to thin tendons.

The placement of the forces that relate to the finger movements is generally distant

from the forearm surface skin, relatively more than that of the hand movement [34].

And that is usually the reason for the sEMG signals containing lower amplitude or a

large amount of noise for finger movements than those responsible for arm movement,

caused due to the attenuation and filtering of the forearm signals [35]. This is the

primary reason for using more electrodes which would help to determine the finger

movements [36].
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Figure 3.1: Forearm: Serial Cross Sections [37].
(A) Radial artery and superficial branch of radial neuron,(B) Radius, (C) Ulnar
artery and median neuron, (D) Superficial flexor muscles (E) Deep flexor muscle,

(F) Ulnar neuron, (G) Ulna and antebrachial facia, (H) Ulnar artery and neuron, (I)
Median neuron.

The above figure shows the different parts of the forearm and the muscles that

an sEMG sensor would be able to read at that position. As we go down the forearm,

the number of muscle data we can read using sEMG goes down. Let us divide the

three exposed parts in the above figure into Part A, Part B, and Part C.

The muscles that an sEMG sensor would be able to read in Part A are:

• Radial Artery and Superficial Branch of Radial Nerve.

• Radius.

• Ulnar Artery and Median Nerve.

• Ulnar Nerve

• Ulna and Antebrachial Fascia

In Part B:

• Superficial Flexor Muscles.
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Figure 3.2: Location of the main nerves and blood vessels in hand [38].
(A) Blood vessel and nerve cord of the fingers,(B) Thumb tendon sheath, (C) Double loop

of the hand’s two arteries, (D) Median nerve (nervus medianus), (E) Ulnar nerve (nervus

ulnaris).

• Ulnar Artery and Ulnar Nerve.

• Deep Flexor Muscles.

• Median Nerve.

In Part C:

• Median Nerve.

• Ulnar Artery and Ulnar Nerve.

Also, there are short muscles that are essential for any gesture recognition.

They usually lie between the individual metacarpal bones of the hand. Not only do

they allow us to spread our fingers, but also pull them back together. In addition,

they help us to bend and stretch our fingers too.

Muscle tendons, nerves, and the other blood vessels running from the forearm to

the hand pass through a tunnel-like passageway on the palm side of the wrist. This

is known as the carpal tunnel.

We can see from the figure above that the activity recorded in the upper forearm

encompasses most of the triggers that are received from the hand. This conceptual-

izes the placement of the Electromyography Sensor that we will discuss later.
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3.2 Electroencephalography

Electroencephalography (EEG) is a technique to recognize the electrical activity

of the human brain. This is performed by placing electrodes or electro-conductors on

the human scalp. This usually records the miniscule electrical activity on the surface

layer of the brain underneath the scalp [39]. In 1835, Richard Caton presented his

findings on the electrical phenomena of the exposed cerebral hemispheres of rabbits

and monkeys for the first time. Since then, electroencephalography has been used

in different fields for various purposes. In Medical Sciences, EEG is mainly used

to identify and diagnose epilepsy, sleep disorders, depth of anesthesia, the state of

coma, brain death, etc. Apart from that, EEG is the first-line method of diagnosis

for tumors, stroke, and other focal brain disorders [39].

EEG measures voltage fluctuations resulting from ionic current within the

brain’s neurons [39]. This data can be recorded in different ways. They are rou-

tine EEG (collected while asking you to rest quietly), sleep EEG (collected while

you’re asleep), ambulatory EEG (accumulated over a period of one or more days),

video telemetry (the user is filmed while recording the EEG signals) and invasive elec-

trocorticography (the electrodes are inserted in the brain). We have tried to record

the data following the video telemetry for our research study.

The usual scalp EEG is performed using scalp electrodes that have conducting

material used to detect the electrical activity in the brain. The placement of the

electrodes is critical as they would be considered to aid the nearby electrode to pro-

duce the potential difference between them, finally giving the EEG montages. The

locations and names of the electrodes are specifically conventionalized in this research

following the International 10-20 system (an example of this system is given below in

Figure 3.3).
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Figure 3.3: International 10-20 System to identify EEG electrode location and names
[40].

The 10 and 20 in the system refer to the actual distance between adjacent

electrodes which are either 10 % or 20 % of the total front to back or the left to right

measurement of the skull. The electrodes are named according to their placement on

the scalp and its closest lobe on the brain’s surface. The following are the conventions

for the naming of the electrodes:

1. Fp: Pre-Frontal Cortex

2. F: Frontal Lobe

3. T: Temporal Lobe

4. P: Parietal Lobe

5. O: Occipital Lobe

6. C: Central Lobe

7. Z: Refers to Zero or the Midline Sagittal Plane of the Scalp

The numbering system of the electrodes is unique to the side of the brain they

are placed. The even number of electrodes is placed on the brain’s right side, starting
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from 2 in the front and running until the back. Likewise, the left side electrodes are

given odd numbers starting from 1.

Since an EEG voltage signal represents a difference between the voltages at two

electrodes, the display of the EEG for the reading recorder may be set up in several

ways. The representation of the EEG channels is referred to as a montage [39]. The

potential difference is created by the difference in the potential of the gyrus and a

sulcus. This is better described in the image given below in Figure 3.4. We can see

that the electrode is placed on the area that corresponds to b-c-d on the brain surface,

b and d are the points on the gyrus, and c is a point on the sulcus. This is how we

can find the potential difference between the two points.

Figure 3.4: Source of EEG [41]

There are multiple bands of EEG that represent different types of activity in the

brain. The various bands are demonstrated in Figure 3.5 and Tale 4.2 given below.
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Figure 3.5: Different EEG Band Waves [42]

EEG Band Range of Frequency Corresponding Activity
Delta Band 0.1 Hz – 4 Hz Deep, Dreamless, non-REM sleep, unconscious
Theta Band 4 Hz – 7.5 Hz Light Sleep, Deep Meditation, Creative,

Recall, Fantasy
Alpha Band 7.5 Hz – 12 Hz Relaxed, Light Meditation, Creative,

Super Learning, Conscious
Beta Band 12 Hz – 30 Hz Normal waking state, Concentration, Focus,

Five Physical Sense, Integrated
Gamma Band 30 Hz – 100+ Hz Motor Functions, Higher Mental

Table 3.1: Description of different EEG Bands

From this table we can identify that for the scope of this research work, we

have to concentrate on the regions of the Gamma Band as it mainly depicts a motor

movement or a Higher Mental Activity.

3.2.1 Brain Anatomy

The brain’s cerebrum is the most significant part of the brain that initiates

and coordinates movements and regulates temperature. This region is responsible for

enabling speech, judgment, thinking and reasoning, problem-solving, emotions, and

learning [44]. This is the area that controls the activity of a human, and as of our

research, we are primarily interested in a person’s brain activity during any specific

task.
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(i) (ii)

Figure 3.6: (i)Lobes of the Brain, (ii) Cortex Structure [43]
(A) Gyrus, (B) Sulcus, (C) Grey matter, (D) White matter

In Figure 3.6, given above, we see how the cerebrum is divided into four lobes

that perform different functions. The functions of the different lobes are listed below

[44]:

1. Frontal Lobe: The lobe that is of our interest. This is the largest division of

the cerebrum. The main functions of this lobe are personality characteristics,

decision-making, and movement. Also, the front part of the frontal lobe is

specifically for identifying the concentration, attention, and distraction in the

brain.

2. Parietal Lobe: The middle of the brain helps a person recognize objects and

identify spatial relationships. This also interprets the pain and touch of the

body. It also helps the brain understand spoken language.

3. Occipital Lobe: The occipital lobe is responsible for our vision.

4. Temporal Lobe: This lobe takes care of our short-term memory, speech, music

understanding, and smell.
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From the understanding of the brain anatomy, we can identify that the pre-

frontal cortex is the area that we are interested in for the research-oriented goal of

this project.

3.3 Inertial Measurement Unit

The Inertial Measurement Unit (IMU) is an electronic device that measures

the angular rate and orientation of the body it is attached to. It uses the combined

response from a gyroscope, accelerometer, and sometimes magnetometers. The work-

ing of the IMU is organized by detecting the linear acceleration using accelerometers

and the rotational rate from the gyroscope. The use of IMU is typically in a Naviga-

tion System of a Vehicle that has a current position, initial heading, and destination.

Below is a schematic interpretation of an Apollo IMU which identifies different parts

inside it [45].

Figure 3.7: Apollo Inertial Measurement Unit [46]
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3.3.1 Accelerometer

As an accelerometer usually measures inertial acceleration. It also helps to rec-

ognize the change in velocity over time. There are different accelerometers, including

mechanical accelerometers, quartz accelerometers, and MEMS accelerometers. Usu-

ally, when an accelerometer is projected for any linear change in velocity along the

axis of sensitivity, the proof mass shifts to a side with the amount of deflection pro-

portional to the acceleration [47].

Figure 3.8: Simple Accelerometer Model [48]

3.3.2 Gyroscope

The gyroscope is responsible for measuring the angular rate of an object con-

cerning the inertial reference frame. There are different gyroscopes: mechanical gyro-

scopes, fiber-optic gyroscopes, ring laser gyroscopes, and quartz/MEMS gyroscopes

34



[47]. The stability of the gyroscopes usually ranges from 0.0001°/hour to 1°/hour.

Figure 3.9: Simple Gyroscope – Tuning Fork Configuration [49]

As an individual inertial sensor will only be able to sense a component along a

single axis, there have to be three different inertial sensors mounted in an orthogonal

cluster to recognize the measurement along with the three-dimensional environment.

Thus, 3-axis-accelerometer and a 3-axis gyroscope will finally produce a variance of

raw or filtered body-frame acceleration and angular rate.

3.3.3 Quaternions for Orientation

Quaternions for Orientation is a unique mathematical concept to visualize orien-

tation and altitude. This comprises a four-element vector that defines the orientation

of a body. This vector is an amalgamation of a scalar element and a 3-element unit

vector. The scalar value, here (w), has a direct correspondence with the angle of ro-

tation. And the 3-element vector, here (x, y, z), actually defines the axis of rotation
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about which the angle of rotation is performed [50].

Figure 3.10: Quaternion [51]

A quaternion can be described by [52]:

q = [q0 + q1 + q2 + q3]T =
h

q q qy qz

iT
(3.1)

And we can construct a quaternion by [50]:

n = |V × V| = |V|
�

�V′
�

� sinθ

θ = rcsin
�

n

|V| |V′|

� (3.2)

q = cos cos
θ

2
q = sin sin

θ

2
× n qy = sin sin

θ

2
× ny

qz = sin sin
θ

2
× nz

(3.3)
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CHAPTER 4

SYSTEM ARCHITECTURE AND CONTROL MECHANISM

4.1 System Architecture and Approach

Figure 4.1: System Overview

In Figure 4.1 given above, we show the system overview of our research. The

approach of this project was to identify the distraction through brain-sensing infor-

mation and develop a control mechanism that could drive a drone using the help

of hand gestures during a non-distracted brain state. To design such an approach,

we had to consider several factors in each stage for a robust classification and good

control mechanism.

Firstly, we extracted electrical signals from the brain and the forearm muscles

using high-performance human activity sensors. To ease the data extraction and

pre-processing, we used pre-defined python libraries [9, 10] that processed the signals

removing noise and filtering it to a certain constant frequency. But, due to the

bursting of the data signals, the signals received were stochastic in nature. Also,

the two different sensors streamed data at different frequencies. Therefore, simple

real-time signal merging algorithms couldn’t be used to merge the incoming data.
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To facilitate this issue, a server-client architecture was designed. The function

of the server was to mimic the data extraction from the sensors by receiving the data

from the sensors and reorganizing the timestamps of the received signals so that they

could be re-streamed to the client. Before streaming the data to the client, each data

sample was normalized from 0 to 1 and a new data packet was put together to be

finally sent to the client.

Inside the client interface, the data is ordered by placing one muscle data for

every brain data. Another, stream of data was prepared for the distraction classifier

which had only the processed brain signals. Later, the sampled data was taken to

process for the classifier. We used two different classifiers for our problem. The first

one we used was a Long-Short Term Memory Recurrent Neural Network that classified

the sequences of gestures. The second one we used was an Anomaly Detector using

Autoencoders to classify the distraction in the brain.

For the LSTM Network, we prepared sequences of data packets that contained

50 combined signals. To do that a sliding window algorithm was used to glide over

the original sample size and prepare a chunk of 50 samples after every 10 samples

ensuring an overlap of 80%.

For the Anomaly Detector, we received brain signals through the client and

recorded them. We labeled the data based on the state of the mind, namely distracted

or non-distracted. Finally, an autoencoder made of dense layer networks was used to

learn the non-distracted signals and later used to test on the distracted segments.

Finally, a driver algorithm was used to receive the outputs from the classifiers

and generate control statements to be sent to the drone using a UDP connection. The

logic was implemented in order to check the state of the mind and the subsequent ges-

ture. A reverse algorithm was designed to check if there were any unknown gestures,

even with a non-distracted mind. For a given scenario, at any point, if the algorithm
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returned an unknown gesture or distracted mind, an altitude hold command would

be sent to the drone to avoid misoperation.

To confirm the execution of the command, the drone has a feedback operation.

It sends an ‘ok’ after the execution of the sent command. Along with that, the video

output of the drone was received for the user to follow and control the drone.

Individual stages of operation are described below:

• Human: The person who is responsible to control the drone using gestures. The

sensors in the next stage will detect the data from this individual.

• Human-Activity Sensors: Incorporates two human activity sensing technologies,

Electroencephalography Sensor and Electromyography Sensor having an Inertial

Measurement Unit.

Figure 4.2: Human Activity Sensor Phase

• Signal Acquisition: Includes two individual Bluetooth Data Exchange environ-

ments to receive the signals from the sensors.

Figure 4.3: Signal Acquisition Phase
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• Data Pre-processing: In this phase, the data was synchronized for modeling as

well as normalized.

Figure 4.4: Data Pre-processing Phase

• Data Modeling: This phase contains the algorithm that orders the processed

data samples and prepares them for the classifier.

Figure 4.5: Data Modelling Phase

• Classification Backend: In this stage, the two data streams were sent to the two

classifiers. The output was cleaned and prepared for the driver algorithm.

Figure 4.6: Classification Backend Phase
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• Driver Algorithm: A driver algorithm was implemented in this stage that re-

ceived output from the classification backend and processed to generate com-

mands for the drone.

Figure 4.7: Driver Algorithm Phase

• Drone Operation: In this stage, we incorporate a Drone Control SDK that

helps us to communicate with our Drone using UDP Communication. After the

command is executed, the feedback is available for the human controlling the

drone through real visuals available in closed environments and video outputs

available in outdoor settings.

Figure 4.8: Drone Operation Phase

4.2 Understanding the Gesture Vocabulary

The primary control structure of our research work is based mainly on the

gesture control module, as the drone receives the processed output of the classifier and
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then translates them into the commands it needs to operate remotely. Therefore, to

make the system more robust and user-friendly, we designed a set of intuitive gestures

for the users to control the UAV. The gestures are detected using the wearable muscle

interface and the in-built motion sensors. We have defined the basic structure of the

gesture vocabulary and expect to extend it to the user’s comfort after user research.

We have tried to discretize the gestures evenly so that they do not interfere

with each other based on their motion and orientation, as the wearable device would

receive some deceiving inputs that might later cause the classifiers to behave abnor-

mally. All of our gestures are contained using actions involving the hand and the

forearm movement. This makes it easier to detect as the wearable device we are

using for the recognition is a forearm band and will be able to mainly detect the

movements and pose differences in that area and below. The critical factor in this

gesture vocabulary design is the reference frame. When we control a drone using a

remote-control transmitter having a joystick interface, the control is sent to the drone

with reference to itself. That is, we are aware that the command that the drone will

reflect is with respect to the direction the front of the drone is facing. But during

gesture control control commands usually have to be interpreted relative to the con-

troller’s frame. The reason for this, besides it being more intuitive to the operator, is

that if a vehicle-centric frame were chosen, if the drone faces toward the controller, it

will be difficult for the brain to identify the moving instruction, which might cause a

distraction and thus make control ver difficult. Due to this, we have considered that

the drone will, by convention, face towards the direction the controller is facing. If

the drone, due to a rotation command, turns towards the controller, the video output

from the drone will help the controller not get distracted by the directional ambiguity.

To discretize and formulate the gesture definitions, we first recognized the drone

controls and later mapped all the gestures individually to the controls to mimic con-
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ventional remote-control functions but more flexible and user-oriented. The gestures

are designed so that it would be helpful to interface with any other navigation-related

application or multimedia, but we are restricting the application to co-ordinate with

our integrated system primarily. We have defined the gesture vocabulary for the

common understanding below:

Take off / Land: Marked by pointing the hand orthogonally to the body

posture and stretching the fingers. This is a toggle command used to start and stop

the drone. This is a non-frequent gesture usually performed at the beginning and the

end of the trial. It is detected by stretching arm muscles due to the flexing of fingers.

It is one of the three commands in our gesture vocabulary that doesn’t depend on the

sequential operation of the gesture. That means we do not perform it in a sequence

of tasks. The state of the muscle is constant throughout the gesture execution. A

visual representation of the gesture is given below.

Figure 4.9: Take off / Land

Hover: Marked by pointing the hand to the body posture orthogonally without

stretching the fingers. This gesture is relatively similar to the one above. It just differs

by not extending the hand. It is recognized by both the orientation, altitude, muscle
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relaxation, and no acceleration. It is another command that doesn’t follow a sequence

of operations. The state of the muscle and the armband remains constant throughout

the gesture performance.

Figure 4.10: Hover

Relax: Marked by putting down the hand, straight and relaxed. This gesture

is the last non-sequential gesture. The value registered by the wearable device doesn’t

change over time. Also, this is linked to the hover command for the drone. This was

initially designed to identify any condition when the operator has muscle fatigue and

requires resting his hand before the next instruction to be sent to the drone.

Figure 4.11: Relax
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Go Left: Marked by moving the hand and forearm from right to left, as shown

in the figure below. The plane of the palm should be facing towards the left side of the

person. This is one of the sequential gestures that require the Inertial Measurement

Unit to record the acceleration, orientation, and other positional data to recognize the

gesture. The data is recorded, keeping into consideration the range of hand movement

that is possible under different conditions. Therefore, the user will be able to move

the hand to any plausible point toward the left, and the algorithm will still be able to

recognize the gesture. The speed of the hand movement is not mapped to the drone

movement. Therefore, to keep the drone moving left, we do not perform any other

gesture after performing Go Left. To stop the drone from moving left, we make the

hover gesture.

Figure 4.12: Go Left

Go Right: Marked by moving the hand and the forearm from left to right

with the palm facing the right. This is another sequential gesture that takes the IMU

to record its data. This gesture works precisely opposite to the Go Left Command,

and hence it is designed to act as the opposite of the Go Left command. Also, the

transitions are essential, and the description is given below.
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Figure 4.13: Go Right

Go Up: Marked by moving the hand and the forearm from bottom to up with

the palm facing up. This is mapped to attain a higher altitude for the drone. It goes

up whenever this gesture is performed. This is a sequential gesture.

Figure 4.14: Go Up

Go Down: Marked by moving the hand and the forearm from up toward the

ground with the palm facing down. This is mapped to lower the flying altitude of

the drone. It goes down whenever this gesture is performed. This is also a sequential

gesture.
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Figure 4.15: Go Down

Forward: Marked by moving the hand and the forearm with the palm of the

hand facing outward and pushing it forward away from the body. This is mapped

to going forward from the current position straight for the drone. This is also a

sequential gesture.

Figure 4.16: Forward

Backward: Marked by moving the hand and the forearm facing inward towards

the controller and pulling it back towards the body. This is mapped to coming back

from the current position straight. This is also a sequential gesture.
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Figure 4.17: Backward

Rotate Clockwise: Marked by holding the hand orthogonal to the body with

a thumbs up and turning the hand clockwise 90°. This is mapped to the rotation of

the drone towards the right. It rotates clockwise whenever this gesture is performed.

This is also a sequential gesture.

Figure 4.18: Rotate Clockwise

Rotate Counter-Clockwise: Marked by holding the hand orthogonal to the

body with a thumbs up and rotating the hand counter-clockwise 90°. This is mapped

to the rotation of the drone towards the left. It turns counter-clockwise whenever

this gesture is performed. This is also a sequential gesture.
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Figure 4.19: Rotate Counter-Clockwise

Transition: This is not actually a gesture. This is the transition from one ges-

ture to the other. This is not mapped to any of the drone controls. Instead, the drone

control suspends for a split second when it is detected. This is also a sequential move.

Distracted: These are sequences of operations that do not correspond to any

gesture for the drone control. These are usually hand movements other than those

regarded for the gesture vocabulary. For example, waving a hand to a friend, etc.

4.3 Distraction: A simple overview

In general, distraction is the process of diverting the attention of an individual

or group from a desired area of focus and thereby blocking or diminishing the recep-

tion of desired information [53]. In our context, it is that point in time, during the

drone control operation, when the controller is subjected to unanticipated disruption

from his current activity of controlling the drone. This state gives a state of uncon-

scious activity which might be harmful to the drone. A scenario where the person

being inattentive to the drone control performs a gesture within the understanding

of the classifier might end the life of the remotely flying drone.
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The human brain is prone to distraction. It is just the opposite state to be-

ing attentive or concentrating. An article in Time magazine by Kevin McSpadden

[54]mentioned, “You have a shorter attention span than a goldfish”. Similar studies

by Microsoft claimed that the human attention span dropped from 12 seconds to 8

seconds [21]. And we also know there are several accidents that are caused due to

distracted driving, which is a cognitive activity and requires higher cognitive ability

related to reaction time, focus, sense of judgment, rapid decision making, and much

more. On average, distracted driving causes 3000 deaths per year, with the number

growing over time [55], which roughly make up 8.7 % of the total fatalities in a year.

In our case, the distractions might be causing damage to the drone while flying, or

it might not be a direct hazard. Instead, it might disrupt its environment, causing

chaos and resulting in an induced accident or compromising the safety of components

of the environment it is flying in.

There can be different types of distractions. They are majorly classified into

visual, audible, manual, and cognitive. They are described below:

• Visual: A form of distraction that occurs due to the introduction of an unantic-

ipated static or non-static element in the environment that could change sight.

This could be a sudden event or multimedia, especially video starting or flashing

nearby.

• Audible: This is a form of distraction that occurs due to the introduction of

sudden noise or hasty sound that could drive the controller’s attention towards

it.

• Manual: This is not an environment-induced distraction. However, it might

cause one to be utterly inattentive to the current activity to a great extent.

This could be when the person voluntarily starts engaging in any other form of

activity that refrains him from pursuing the recent activity.
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• Cognitive: This could or couldn’t be an environment-induced distraction. But

mainly it is classified as a distraction caused by the current state of mind of

the person trying to be attentive. This distraction causes a break in a person’s

cognitive thinking and alleviates the higher-order thinking skills required for

intelligent decision-making.

For the first two types of distraction, the environment is mainly responsible for

the distraction; therefore, as soon as the environment withdraws from the source of

distraction, there is a higher chance of the person returning to the attentive state.

However, the later types of distraction could be typically long enough and difficult to

withdraw from depending on the person concerned.

These distractions can cause the mind and brain to stop being attentive for a

more significant amount of time, resulting in a break in the activity cycle. As a result,

it could be difficult for the person to return to the controlled environment mentally

and resume the process. The physical importance of this comeback is precious in the

context of our work as the distraction oversees the gesture control. And if the mind

is not in an attentive state, the control process might not even start.

The distraction sequences used in our research are mainly environment triggered

or manually triggered. The reason behind this is that it is easier to introduce an

environment-triggered distraction because of its randomness and unordered activities

that continuously happen around a person. The distraction we are discussing could be

caused by a person walking by who possibly could be known to the person controlling

the drone or by a car honking or loud music being played in close proximity. Apart

from that, an unanticipated event like a sudden surprise or shock could cause him to

be distracted from his current state of mind. The manual distractions are simply any

kind of physical activity that requires his hands to perform certain gestures (that has
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a high possibility to get classified as a gesture) to which the controller of the drone

gets attached during the operation.

4.4 Unmanned Aerial Vehicle Control and Operation

We have used a programable drone manufactured by Dji for the purpose of

research and development. The drone is branded by the name Robomaster TT. The

SDK of the drone lets the user perform control operations using a Wireless UDP

Protocol using text commands [56].

Figure 4.20: Drone Kit

4.4.1 Sending and Receiving Commands

To set up the drone to send and receive commands, we followed the following

procedure [56]:

1. Connected to Robomaster TT Wi-fi Interface.

52



2. We set up a UDP Client on the PC, which is able to communicate through Tello

IP: 192.168.10.1 and UDP Port: 8889.

3. To be able to set the drone into SDK mode, we sent “command” as the first

text command over the UDP Connection.

4.4.2 Receive Tello Video Streams

To set up the drone to send a video stream to the PC, we followed the following

procedure [56]:

1. Connected to Robomaster TT Wi-fi Interface

2. We set up a UDP server on the PC to receive messages from IP 0.0.0.0 through

UDP Port: 11111

3. After connection, we sent the “streamon” command to Tello UDP port 8889 to

start receiving the Tello Video Streams.

4.4.3 Tello Command Types and Results

1. Control Command

(a) The drone sends ‘ok’ if the command was executed successfully.

(b) The drone sends an ‘error’ if the command fails to execute.

2. Sending any command to Tello (for a command list see Table 4.1)

(a) Send any command with the format <command ><parameter >

(b) The drone sends ‘ok’ if the command was executed successfully.

(c) The drone sends an ‘error’ if the command fails to execute.
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Command Description
takeoff Auto Take off
land Auto Land

emergency Stop the motor from running
up X Fly Upward by x cm

down X Fly downward by x cm
left X Fly leftward by x cm
right X Fly rightward by x cm

forward x Fly forward by x cm
back x Fly backward by x cm
cw x Rotate clockwise by x°
scw x Rotate counter-clockwise by x°
stop Stop moving and hover immediately

speed x Set current speed to x cm/s

Table 4.1: Control Commands for Drone

4.5 Integrated Control System

This chapter discussed the system architecture and approach of our project. We

have discussed how the gesture and distraction classifier produces output and that

stream used by the driver algorithm to decide commands for the drone. This module

will elaborately discuss how the driver function determines the command using a flow

diagram.

As mentioned earlier, we used two neural network pipelines and used their

classification output later in the command generation. The first network comprises

two stacked Long-Short Term Memory (LSTM) hidden layers, which take a batch

of 32 samples as input during training. The samples are 2-dimensional arrays of

length 50 and breadth 34. The output is a probability distribution of 14 classes. On

the other side, we implemented an Anomaly Detector using autoencoders to classify

segments of distraction. Both the encoder and the decoder had three hidden dense

layers each. The input to the classifier was a one-dimensional array with 16 elements.
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So the output of the decoder was a 16-element array as well to be able to reconstruct

the signal elements.

The LSTM classifier produces streams of a binary array of length equal to the

total gesture vocabulary, later decoded to produce the type of gesture classified from

the data received. A classifier produces 50 output arrays every second in a given time.

These output arrays are considered for the algorithm to decide the command finally.

A flow diagram is demonstrated below to elaborate the understanding.

Figure 4.21: Integrated Control System

The stages in the flow diagram are explained below:

A It is the LSTM Classifier we use to classify the gesture sequences.

B It is the anomaly detector we use to classify the distraction.

C The binary array that the classifier sends as output is converted into a text

array when a gesture represents each element.
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D The text array is now processed to find the maximum repeated element, the first,

the middle, and the last element of the array, to create the gesture command

finally.

E The generated gesture is further checked and identified if it is Unknown or any

other Gesture Command.

F The binary output from the anomaly detector is checked if it is distracted or

non-distracted.

G This is the communication window used to communicate with the drone.

Is Distracted? Is Gesture ‘Unknown’? Command
Yes Yes Hover
Yes No Hover
No Yes Hover
No No <Gesture Command>

Table 4.2: Control Logic

The above logic table is considered to control the drone.
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CHAPTER 5

DATA EXTRACTION AND PRE-PROCESSING

5.1 Sensor Overview

For the system proposed here, two main sensor systems have been used, a

ThalmicLabs Myo band EMG sensor with an integrated IMU and a Emotiv Epoc

EEG headset.

5.1.1 ThalmicLabs Myo Armband for Electromyography and Inertial Measurement

Unit

ThalmicLabs produced an intelligent gadget that fits on the forearm and records

the electrical activity of the muscle as well as the orientation and acceleration of the

hand known as the Myo Armband. The features of the armband are handy as well

as it is excellent in terms of wearability and mobility.

Figure 5.1: Myo Armband [57]
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The Myo has eight channels of medical-grade stainless steel EMG sensors. The

device is designed to record the Surface EMG from the forearm of the person wearing

the sensors. The electric signals that are returned by the sensors are purely electric

potentials of the muscles, resulting from muscle activation. The electric potential of

the muscle that the myo records are minimal, possibly in millivolts, and therefore

signals are sensitive to electric noise induced by wall electricity. Myo records range of

potentials is -128 to 128 which is described in activation units. The activation units

are generally integer values that amplify the potentials measured by the sensors. The

streaming frequency of the Myo Armband is usually 200 Hz.

We used a pre-defined library coded in Python 3. x to talk to the Myo Armband.

We used the pre-processing provided in the library to convert the 200 Hz sample into

a 50 Hz sample. So, the derived signal was filtered to avoid contamination.

The Myo Armband is also fitted with a 9-axis Inertial Measurement Unit (IMU),

which contains a three-axis accelerometer, a three-axis gyroscope, and a three-axis

magnetometer. The orientation and acceleration of the forearm and the hand can be

recorded by determining and analyzing the spatial data that is provided by the band.

The orientation data usually indicates the positioning by the conventional terms of

roll, pitch, and yaw. The figure below represents the orientation/acceleration axis of

the Myo armband.

The angular velocity of the Myo armband represents the acceleration of the

Myo armband at a given time and is represented in a vector format. However, we

have understood from our experiments that the Myo armband provides the relative

position of the hand more than the absolute position. The armband streams the

IMU data at a frequency of 50 Hz. The Myo armband fits on the upper forearm

as described in the previous chapters to provide the most information to record the
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Figure 5.2: Myo Axes

activity in the arm. The diagram in Figure 5.3 below shows the placement of the

Myo concerning the hand in a cross-sectional view.

Figure 5.3: Cross-Section of the right middle forearm and Myo placement [58]
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We can see how the different muscles get covered by the comprehensive eight-

sensor sensing technology to record the muscle activity. This helped us process the

segmented data sequences to perform our classification.

5.1.2 Emotiv EPOC Electroencephalography Headset

Figure 5.4: Emotiv EPOC Headset with Universal Epoc Bluetooth Receiver [59]

The Emotiv EPOC EEG Headset is a device purposed for the recording of

Electroencephalography signals from the surface of the scalp. This is a non-invasive

EEG Data recorder with connective pods that conduct through a saline solution.

EPOC is a 14-channel EEG Headset capable of recording data at a sampling rate of

128 Hz. The EPOC also has an in-built gyroscope that records the horizontal and

vertical orientation of the head. The gyroscope data is also streamed at a frequency

of 128 Hz. One more feature of the EPOC headset is that the connectivity of the

channel ends to the scalp is also recognized by the device for quality check. The

Emotiv EPOC is designed to identify as much as facial expressions, blinks, and the

latent brain activity of the person wearing the device.
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The EPOC follows the 10:20 alignment system of the EEG channel and has

aligned the 14 channels in the following way.

Figure 5.5: EPOC Headset Channel Placement in 10:20 System

The Channels that EPOC can read are AF3, F7, F3, FC5, T7, P7, O1, O2,

P8, T8, FC6, F4, F8, and AF4. These cover most of the head and mainly the frontal

cortex, which interests us more in this research work.

Both the sensors were used in our project to record gesture and distraction

classification data.

5.2 Preparing the Gesture Data

While different phases of experimentation with the data, we recognized that

Electroencephalography also plays a vital role in identifying the intuition behind

gesture performance. And we were optimistic about finding better results after having
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the classifier learn from the phases of EEG data received to enhance the gesture

recognition. Therefore, we decided to incorporate the EEG data along with the EMG

and IMU Data for a more informative gesture classification. However, there was a

problem to be dealt with. The Myo armband streamed the processed signal at a rate

of 50 Hz for both the IMU and the EMG. And the Electroencephalography Data that

was received from the EPOC Headset was streamed at a frequency of 128 Hz. So,

technically we did not have an ordered frequency for the standard merging algorithm

to work. That is, we have three to four EEG data for every stream of EMG and

IMU. This way, we would either lose valuable information from the EEG Data or

have repeated EMG and IMU data streams in a disoriented manner.

Therefore, we designed a data preprocessing pipeline that is capable of receiving

both the signals in real-time and merging them to form a single data element at a

given time. The algorithm incorporates a server-client architecture. The reason

behind creating a server-client architecture was that we had different data extraction

methods followed by two of the sensors. EPOC followed an event-triggered loop,

and Myo used an interrupt handler to feed the data. Also, both the pe-defined

libraries were written in two python versions. So, to integrate the data, we created

two different servers for both the sensors and designed a data processing algorithm

on the server-side to process the data before sending it to the client.

The client connected to both the servers simultaneously and received data using

two multiprocessing queues. The client ran two processes that received the data from

the servers and pushed it to a queue. The architecture is given below (in Figure 5.6).

The reason behind using a server is also a different issue. This was mainly

because the Myo data received was not organized in a regular interval. This means

the data, even if streamed at 50 Hz, each data sample was not sent at a 20 ms

interval. The original data recording had a random selection of intervals, making
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Figure 5.6: Server-Client Architecture for Gesture Data

the data integration even more difficult. As the EEG samples were streamed at a

regular rate of approximately 7.8 ms interval, it was tough to map the signals that

came simultaneously. We had the intuition that even if the data was streamed at an

unordered pace, however, the generation of the signals was not unordered.

This intuition helped us create a server code that reorganizes the timestamps

to make them regular and remove burst inputs whenever we receive a signal. The

algorithm considers the current timestamp of the received signal and the previous

two timestamps to organize the new timestamp that has an order close to 20 ms.

There was another issue noticed but now with the EPOC headset. The data

streamed at a frequency of 128 Hz and approximately 7.8 ms apart; there was a 7 –

8 ms delay after every 128 data sample. This delayed the streaming mechanism too.

This is because, after 128 seconds of data collection, we might result in a 1-sec delay,

which will continue to increase every 128 seconds. Though the real-time delay was

inevitable, we used another preprocessing algorithm of like nature to the one we used

during the gesture data collection to reorganize the timestamps and aid in merging

the data samples.

We created the mock server-client architecture to address these issues, where

the server acts as a middleware between the data accumulator and the streamer. We

first organize the data samples in the server using the algorithms mentioned above
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to prepare the data for streaming to the client. We have described the algorithms

in detail [Algorithm 1, 2 in Appendix A]. These algorithms take the unprocessed

timestamps for each data sample as input and output an organized timestamp mapped

with the same data sample to reserve the information and ensure data integrity. Here

we manage the timestamps by considering the difference between the last and current

samples. And then, we send the data to the client.

We have a separate algorithm waiting for the data to be received on the client-

side. On the client-side, we sort them into a queue and finally attach them with

respect to their arrival time [Algorithm 3 in Appendix A]. The algorithm to perform

the operation is elaborated on later in the chapter.

After all the above pre-processing of the data is completed, we finally normalize

it to each data sample with respect to the homogeneity of the signals in a given

sample. The normalization is performed to perform better weight training in the

neural network pipeline.

5.3 Preparing the Distraction Data

The distraction data was not very difficult to organize. It simply uses Algorithm

2 to manage the timestamps. A significant part of the acquisition was to contain the

timestamps. This majorly impacts the processing of the distraction as the delay

in time might cause a considerable control suspension. In most of the EEG-related

studies, they have performed a time-domain analysis or a frequency-domain analysis.

Also, in some of the works, they have performed Independent Component Analysis.

But for, any of the given operations requires a different algorithm that would process

the sample in batches or create the Fast Fourier Transform (FFT) for the analysis.

But, for our project, we were classifying the distraction using an Anomaly Detector,

which needed non-distracted samples to identify the distracted pieces using the clas-
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sifier. Therefore, we experimented with the dataset to find out the non-distracted

triggers. To perform the experimentation, we recorded data samples of a regular

person controlling the drone, unaware that he would be subjected to repeated dis-

tractions during the operation. We subjected him to multiple distraction events and

recorded the timestamps of the sequence of distractions. After annotating the dataset

with binary results, we performed specific visualizations to identify the distraction

patterns in the dataset. The time-driven data visualization is given below:

Figure 5.7: Time-Driven EEG Visualization of 4 Channels in the Frontal Cortex

We have concluded that even if there are distraction patterns in the data, it is

hard to distinguish the length of distraction in mind. We are more interested in the

length of distraction that is cased in the humans and the intensity, if possible, for our

scenario, which is difficult to be interpreted using this kind of data visualization.

So, we developed a new technique to identify any possible distractions in the

sequence and the length of the distraction. So, we visualized each sample after re-

ceiving the normalized data. We found that any normalized data could be plotted in
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an XY coordinates system with the x-axis representing the signals received and the

y-axis representing 0 to 1. The following is a representation of a Non-Distracted EEG

Sample after normalization.

Figure 5.8: Non-Distracted EEG Sample

Also, a distracted sample looks utterly different from a non-distracted as shown

below.

Figure 5.9: Distracted EEG Sample

This can be easily identified from the graph. It starts to change shape as the

person enters the distraction phase. This would help us to identify the length of
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distraction. Also, the benefit of using an Anomaly Detector is that we can find

how different the anomaly is from the standard graph. This way, we can grade the

distraction of a human during a particular sequence. This method is independent of

any sequence information, making it more reliable in identifying the distraction as

early as possible to suspend the control operation. As we look into each sample, we

do not need a sliding window algorithm which will be discussed in the chapters later,

to facilitate the classification.

It is fascinating to understand that there is a beautiful transition that takes

place in the EEG when a person approaches towards distraction sequence. This

phenomenon aided our purpose in identifying the intention of the person controlling

the drone. We have also seen significant randomness in the data when determining

the length of the distraction. In no instance were we able to find a non-distracted

EEG sequence during the distraction, which says, even if the person tries to put

attention in any kind of distracted sequence to the source of distraction, the drone

will not receive any ambiguous command.

Finally, after performing all the preprocessing techniques, the data was now

ready to be classified. Not only the recorded data was processed, but also, using the

same processing pipeline, we created a segment where the live data can be subjected to

the same algorithm to behave like the recorded data. The server-client architecture

was incorporated in the live setting to process the incoming data in real-time and

produce no time mismatch for the client to recognize the data with proper time

entries.

We created a pointer in the algorithm that collected the data that always

pointed to the new data received and treated it as a new line for the algorithm

to process. The data was sent to the classifier after a specific interval to maintain the

input shape of the data that was previously used to train the classifiers.
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CHAPTER 6

ALGORITHMS, IMPLEMENTATIONS AND RESULTS

6.1 Gesture Classification

The gesture classifier is the driver in our research work. The drone would

receive controls to fly, and the control generator would receive classified gestures to

decide the final command to be sent to the drone. In this section, we will discuss

the different algorithms that led to the training of the classifier and the experimental

setup required to process the data for this classifier.

6.1.1 Experimental Setup

There were two phases of data recording for this classifier. The first phase

was a simple iterative process to record only gestures. A human subject was chosen

and given the responsibility to perform gestures pre-discussed in the earlier chapters.

Before the training, the subject was trained on the gesture vocabulary to perform

the gestures as required. The data was recorded for the duration of approximately

three minutes. The time of recording each iteration for the gestures was kept low

because as the gestures were performed using hand movement, they caused stress in

the arm after a specific time. This time is not constant and varies between different

people. These three-minute iterations were performed 20 times, giving us a full data

recording of 60 minutes. Each sample had the first 14 elements corresponding to the

14 channels of the EEG Data, two elements from the EEG Device Gyroscope, eight

elements from the eight channels of EMG, four elements from the Quaternion from

the IMU, three elements from the Gyroscope of the IMU and three elements from
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the Accelerometer of the IMU. Each sample of this recording has 34 features for the

classifier to learn from. This set of 34 features was sequential data and each sample

corresponded to a part of gesture execution.

This means each sample was necessary for the classifier to recognize a gesture

signature but was insufficient. Therefore, we conducted experiments to find the mini-

mum number of samples required to fulfill the sufficient condition for recognizing the

gesture. We understood that a regular gesture requires, on average, 2 seconds from

the start to the end of the gesture. The execution time of each gesture could be 2

seconds on average. But, if we have to wait for the gesture until its completed, there

will be a significant delay in recognizing the gestures and sending the command to

the drone. A two-second delay for every control could be tormenting. So, we divided

two-second data into four pieces to find the difference each phase creates for at least

understanding the result manually.

So, we understood that every gesture had four phases of execution. The first

and the last phases are more about entering and leaving the phase. The two phases

in the middle were the actual activation that was caused by the muscles due to the

unique hand and forearm movement. So, now we had 500 ms of the gesture phases

labeled as the gesture class for the classifier to start predicting the output right

at the beginning of execution. The figure below describes the total data samples

received in each iteration. The best part about choosing a four-phase strategy was,

that the transitions had an average execution time of 500 ms, equivalent to every

phase. So, they did not have different phase structures which might have increased

the computational complexity of the algorithm.
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Figure 6.1: Total Data Samples recorded for each iteration

The recorded data was timed and labeled from a cross-referencing video shot

during the gesture recording. The video was layered by a UNIX timestamp likewise

the data. From the video, the start time, and the end time of a gesture along with the

gesture it referred to, were entered into a pool file. And from the pool file, the dataset

was labeled using a simple algorithm [Algorithm 4 in Appendix A]. This algorithm

takes the start and the end time from the pool file along with the corresponding class

of gestures. Then it iterates over that sequence of the dataset that has a timestamp

greater than the start and less than or equal to the end time from the pool file. For

all the satisfying rows, the label is entered corresponding to the activated label from

the pool file. Once the dataset was labeled and ready, we had to prepare segments

of the data for the Long-Short Term Memory (LSTM) Recurrent Neural Network

Algorithm to recognize, train, and predict.

6.1.2 Sliding Window Algorithm

To prepare segments of data, we designed a sliding window algorithm [Algorithm

5 in Appendix A]. This algorithm performs like a window that slides over the data

and prepares segments of data samples treated as one sample by the LSTM Classifier.
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The algorithm takes the whole dataset as input. Along with that, it defines the size

of the window (which in our case was the length of each phase of execution) and

the offset for the overlap. Here, the offset is initially decided, and it depends on

the amount of overlap we decide to segment the dataset samples. This offset is very

important as a higher amount of overlap will help to identify the sequential changes

that happen when we move along the gesture to perform operations.

In the sliding algorithm, the pointer loops for a certain period of time depending

on the size of the window and the length of the dataset. Every loop is subjected to

another iterating loop of samples that is equal to the window length. It selects that

chunk of samples and ushes it to the final array. The main loop progresses at a

step corresponding to the offset to perform the segmentation. The sliding window

algorithm [Algorithm 5] is also used to segment the class labels corresponding to the

samples.

After the application of the sliding window algorithm, the dataset looks like

a three-dimensional NumPy array of sample size depending on the length of the

dataset, 50 rows, and 34 feature columns. Similarly, the mapped class labels take the

dimension of 50 x 1.

We will discuss later in this chapter the loss function used in the classification,

but for the data pre-processing we had to create binary arrays of the classes using one-

hot encoding for the loss function to recognize the labels well. As this is a multi-class

multi-modal classification, we used Categorical Cross Entropy as the loss function for

the classifier which will be discussed later in detail. Finally, we converted the class

labels into a shape of 50 x 14 corresponding to each feature set in the input data.

We had 14 gesture and non-gesture class labels. They were organized as: 0:

Start/Stop (This is a toggle gesture), 1: hover, 2: left, 3: right, 4: up, 5: down,
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6 forward, 7: backward, 8: rotate left, 9: rotate right, 10: relax, 11: to hover, 12:

to relax, 13: unknown (This is when a person performs a non-gesture).

After performing the one-hot encoding of the class labels, they took the shape

of binary arrays as shown in the figure below.

Figure 6.2: Classes after One-Hot Encoding

6.1.3 Stacked Long-Short Term Memory Classifier

A stacked LSTM is not very different from the original LSTM model. Usually,

an original LSTM model has a single hidden LSTM layer followed by a standard

feedforward output layer. However, the stacked LSTM differs by an extension of the

model that has multiple hidden LSTM layers containing numerous memory cells. The

reason for increasing the network’s depth is majorly credited to the efficiency of the

approach of a complexified prediction. This arrangement is faster in terms of a single

layer LSTM which is layered by multiple nodes in a single hidden layer. And also,
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the level of attention the stacked LSTM can put on a sequence of data to learn the

occurrence of patterns is much higher because of the depth of the network. It adds to

the level of abstraction of input observation over a time frame. This can be enhanced

by our method of using the sliding window to prepare the data sample and create a

pattern.

We have used a Stacked Long-Short Term Memory Recurrent Neural Network

to classify gesture sequences. Our model contains two hidden LSTM Layers with

increased memory cells on the second layer. The layers are separated by dropout

layers. The visual representation of the stacked-lstm network is described in the

figure given below.

Figure 6.3: LSTM Model Architecture

The first LSTM Layer has 50 memory cells and passes the output to an LSTM

layer with 200 memory cells. The dropout between the transitions is 0.2. Finally,

the output of the LSTM is sent to a Time Distributed Dense layer with 14 nodes

corresponding to the 14 classes of gesture. And then, a SoftMax activation is used to

predict the probability of the classes. The architecture proved to be highly efficient

in terms of the accuracy and precision of the model.
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6.1.4 Results of Gesture Classification

We have performed multiple training sessions with different seed values of the

random data shuffling. The results were fascinating as they performed well in pre-

dicting the gestures correctly. The confusion matrix for the LSTM classifier is given

below. The training of the model was performed over an Epoch length of 200. The

training performance is shown below with the loss and accuracy trends.

(i) (ii)

Figure 6.4: (i)Gesture Loss Trend, (ii) Gesture Accuracy Trend

From the confusion matrix, we can really say that the model performed really

well even with the test data. The stacked nature of the model aided the classification

process not only by looking for the patterns in the data but also the ambiguous

sequences that might take place during unknown gesture recognition.
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Figure 6.5: Confusion Matrix for LSTM Classifier

The model returned an excellent accuracy for the range of experiments per-

formed (Number of Trials = 10) as shown in the figure given below.

Figure 6.6: Accuracy over Trials for LSTM Classifier
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From the confusion matrix, we derived the recall, precision, and f1-score of the

model, and even here, we observed a promising trend in the scores of different classes.

The figure given below is the average metrics over the trials.

Figure 6.7: Recall, Precision, and F1-Score for LSTM Classifier

6.2 Distraction Classification

Experimental Setup

The experiment was set up after we had classified the LSTM Classifier and then

used it to fly the drone while recording the data for the distraction classifier. The

data was again recorded from a single subject over a time period of 4 min and iterated

10 times. In this scenario, the subject was not aware of the process of distraction that

was going to be sourced to record sequences of distraction. The subject performed

different gestures to fly the drone. The basic motions took place while the mind was

concentrated. And hence the data received was later labeled as one as we were more

interested in training the model over the non-distracted data.
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Once the recording started, the subject was asked to start flying the drone.

Once the drone was in the air and was controlled by the subject, a third person

was appointed the duty to create distraction triggers during the flight. The types of

distraction that were recorded are listed below:

Visual Distraction: The subject was shown a video sample on the screen while

controlling the drone. This was a completely unanticipated step performed without

prior notice to the subject. The video was played for a duration of about 20 sec.

Audio Distraction: The experimentation with the audio distraction was per-

formed with different types of audio. The first was plain noise which did not have

any vocal or music. The second was high-volume music. The third was the sound

involved in an everyday operation like the horns of buses and cars, things falling with

noise, phone ringing, etc.

During the distractions, the person concerned was allowed to perform anything

he felt to while responding to the distraction source. The distraction sequence was

marked by timestamps similar to the gestures. Later, these timestamps would be

made available to the labeling algorithm [Algorithm 4] to set the label to the file.

The full recording of the distraction experiment was 40 minutes. This had a

70:30 ratio with 70 % data available from non-distracted sequences.

6.2.1 Annotation and Modelling

Annotating the data was more straightforward as the label was binary in this

classification task. Although we labeled all the data, we used only the non-distracted

data to train the classifier. The labeling was performed using the pool file, where a

video corresponding to the recording was used with a UNIX timestamp to map the

timing of the video to the actual recording. This was the first level of intuition which

was derived to facilitate the second phase to mark the label. In the second phase, the
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normalized graph of individual data samples was generated for every sample over a

period of time. The animation was then created to find the point where the distraction

started and ended. Firstly, we divided the distraction phase into three. The first was

the part that showed the entry to the distraction phase, and the third was the exit

from the distraction phase. It was the second phase which was stable enough to be

classified as a distraction. But for the perspective of our research, we labeled the

entire sequence as distracted data.

Once the data was labeled, we modeled it for the classification. Here the se-

quence of input was not essential; as a result, we only sent individual samples to

the classifier for the training. But for the classifier to recognize it more precisely, we

created a different feature set—one for the EEG Data and the other for the Gyro-

scope. The gyroscope data was two-axis data. And our intuition said, if a person

is distracted, most likely he will be moving his head to a different position which

might not be the position during a proper control operation. So, we prepared the

data sample so that we could process the EEG and Gyroscope data during our train.

Since we had very few sequences of non-distracted data and the stability of the

data was more with the non-distracted phase, we segmented only the non-distracted

data for batch training of the anomaly detector. Now, the data was ready to be sent

to the training.

6.2.2 Anomaly Detector using Autoencoders

In this unpredictable world, it is tough for a person to say the mode and level

of distraction that could be caused during any operation, which makes it utterly

impossible to find enough data to train a model of classification that could identify

the difference between a distracted or a non-distracted phase of operation. The more

challenging task would be identifying the distraction when the classifier had never
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seen something of that kind before or during the training. Anomaly Detectors were

built on this principle of training data based on only one class that can be trained

and referenced. This refers to a more stable type in terms of its availability and

randomness. The other way to look into the use of Anomaly detectors is when we

have very little data to train on. This means that even if we have enough samples,

the nature of the randomness is minimal. As a result, the identification could be

dramatically tricky. There are three different types of anomaly detectors. They

have Supervised Anomaly Detection, where the classes are marked as ‘normal’ or

‘abnormal.’ But this kind of training is not practiced in a real-life scenario just by

its existence. If we have enough samples to train a classifier for both classes, we will

probably use some other models.

The second type of Anomaly Detector is Semi-Supervised Detection. This as-

sumes that some of the data are labeled. The label can be assigned to any fragment

of the dataset, both normal and anomalous. The third type is unsupervised detec-

tion which assumes the data to be unlabeled. For our project, we have used the

Unsupervised Anomaly Detection.

In our project, we implemented an Anomaly Detector using a dense autoencoder

network. The primary use of autoencoders is dimensionality reduction. But we used

it to find a reduced graph from the normal EEG samples. This reduced graph was

used to find the error percentage with a normal EEG sample and an abnormal EEG

sample. Later, the error of reproduction was identified by testing the model by re-

generating a normal EEG and abnormal EEG using the trained dense layers. Usually,

the error from generating a normal EEG would be lower than that of an abnormal

EEG. This was the intuition behind designing the model. The architecture of the

anomaly detector is described in the figure given below.
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Figure 6.8: Anomaly Detector using Autoencoder Architecture

In the architecture described above, we can find an encoder and a decoder model

to depict the autoencoder. The output of this model is a 16-element array that is

the reconstruction of the sample that is passed to the classifier for performing the

classification task.

6.2.3 Results of the Distraction Classification

For the anomaly detector, we have trained the classifier for hyper-parameter

tuning. But the training was performed once to derive the optimal solution possible.

The training of the model on the data sample was accuracy centric. So, the model

worked to improve the accuracy over epochs. The loss curve during the training on a

normal dataset is given below.

The loss indicates the training success of the model with the regular dataset.

After the training was completed, the model was tested with the normal and abnormal

data samples. The error after reconstruction has been plotted to identify the difference

between the two types of EEG Signals received. The plots below show a significant
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Figure 6.9: Loss over 70 epochs and Batch Size 20

difference from the original and reconstructed graph for the abnormal, whereas the

normal EEG doesn’t have a high loss.

(i) (ii)

Figure 6.10: (i)Difference between input and reconstructed plot for normal EEG, (ii)
Difference between input and reconstructed plot for anomalous EEG

After this experiment, we plotted the number of samples with their losses to

find out the threshold which will be used to differentiate the normal EEG from the

anomalous EEG.
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(i) (ii)

Figure 6.11: (i)Training Loss for Anomaly Detector, (ii) Testing Loss for Anomaly
Detector

After performing the mean and standard deviation operations, we derived a

threshold by adding both. The result of this operation was approximately 0.028.

But, it did not produce the optimal solution. So, we experimented by moderating

the threshold manually to derive an optimal condition. After the moderation, we

determined the new threshold as 0.0355. With this threshold, the model performed

better. The metrics shown by the model with this condition were:

Accuracy: 90.0006% Precision: 91.8653% Recall: 93.8976%

The confusion matrix was then plotted (Figure 6.13) to identify the prediction

quality on the test set. The confusion matrix is given below. The predicted class is

on the y-axis, and the actual class is on the x-axis. Here, 1 represents non-distracted

class, and 0 illustrates distracted samples.

From the confusion matrix, it wasn’t easy to identify if the misclassified exam-

ples were in a streak or randomly spread in the entire dataset. So, we segment the

dataset to show the True Positive, False Positive, False Negative, and True Negatives
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Figure 6.12: Confusion Matrix for Anomaly Detector

of our classification. The levels in the plot are arranged in the order given, with the

lowest level corresponding to True Positive and the highest level denoting True Neg-

ative. The colors of the plot are defined by the gesture classified. Black represents

the unknown gesture.

Figure 6.13: Prediction Quality
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From the above plot, we notice that the False Positives and False Negatives are

actually spread and not always in a streak. The only time it was in the bar was due

to a mislabeled classification which can be fixed during live interfacing.

From the results of both the classifiers, we can conclude saying the classifiers

perform significantly well with the given condition. The joint performance of the

classifiers can be evaluated during the live operation of the drone.
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CHAPTER 7

CONCLUSION AND FUTURE WORKS

7.1 Conclusion

The logical understanding of the work represented in this thesis was identifying

the distraction phases in a person and recognizing the intention to control a drone

using hand movements classified as gestures. This is an activity that requires process-

ing human-activity data in real-time and sequencing information for drone operation.

Therefore, the scope of the project reflected not only on distraction identification,

but it was on processing human interface data and making it available for lightweight

classifiers to recognize the difference in particular cued sequences that could be related

to a specific type of gesture. To pursue such a level of recognition and identification,

we deployed several real-time data processing algorithms that are able to organize

and attach data fragments streamed at different unorderable frequencies. After the

base model of data, extraction was available, we designed data recording sequences of

varying lengths and parsed the data on the basis of timestamps from a video record-

ing of the data recording interfaces. Once the data recording was completed, human

effort was employed to annotate the time-varying data based on the timestamps and

human understanding. Later, the same data was used to classify gestures and distrac-

tions. Two types of the classifier were used to facilitate the recognition process. The

first was a stacked LSTM Classifier which was trained to recognize fixed sequences

of gestures performed over time. Another classifier was designed to detect anomalies

in the EEG Data. The function of this classifier was to oversee the gesture classifier
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and suspend command generation at distracted segments. The algorithms performed

exceptionally to perform the specified task.

The metrics of the classifier were then discussed to compare and contrast be-

tween different hyper-parameters that led to a lightweight model capable of perform-

ing with higher accuracy and precision. Finally, we can conclude that the experimen-

tations adopted in this work were successful in creating a robust plug-and-play gesture

recognition system with a model classifier to recognize the intention and distraction

of a person controlling the drone. The models efficiently balanced the accuracy and

precision intelligently and produced commendable outcomes.

7.2 Future Work

As part of this research’s future scope and goals, we have concluded with the

following points that require attention and can be pursued to aid the performance of

the currently proposed system.

• We plan to optimise the current model training to answer more control driven

questions like, how often the classifier wrongly classifies a gesture or as a whole.

Also, the performance testing in a real world scenario will give more clarity on

the current state of training.

• We plan to design a one versus all anomaly detector to detect the gestures

individually and generate a gesture activation potential to aid the current clas-

sification algorithm.

• We plan to perform segmented experimentations to predict the state of mind

from the EEG Samples to have a better understanding of the human inten-

tion and predict plausible loss of mindfulness or attention before the absolute

occurrence.
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• Currently, the drone was provided with an Altitude Hold Command in a dis-

tracted or unknown gesture situation. But a prospective autonomous capability

of the drone could help the person controlling the drone perform the operations

better later in the distraction sequence. Also, in a looping distraction condition,

the drone can navigate back to safety. One more possible source of mindlessness

is the physical health of the controller. We plan to incorporate more human

activity data to determine the physical health of the person to aid the classifiers

and also by the mobility and the wearability of the system.

• We look forward to also try to recognize the level of attention, concentration

of a person without the need of individual calibration from brain data which

could aid in any control operation, and not only flying a drone.

87



APPENDIX A

ALGORITHMS
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Algorithm 1 This algorithm organizes the EMG and IMU timestamps

1: procedure organizer(emg ∥ m) ▷ This function is called by the interrupt

handler

Require: (emg ∥ m) ̸= 0

2: oƒ ƒset = 20ms

3: od tme← 0

4: st tme← 0

5: while true do

6: if od tme then

7: Δtme← crrent tme − od tme

8: if Δtme ≤ oƒ ƒset then

9: ne tme←mn(st tme + oƒ ƒset, crrent tme)

10: st tme← ne tme

11: else

12: ne tme← od tme + oƒ ƒset

13: st tme← ne tme

14: end if

15: send(ne tme, (emg ∥ m))

16: od tme← crrent tme

17: else

18: od tme← crrent tme

19: st tme← crrent tme

20: send(crrent tme, (emg ∥ m))

21: end if

22: end while

23: end procedure
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Algorithm 2 This algorithm organizes the EEG timestamps

1: procedure organizer(eeg) ▷ This function is called by the event handler

Require: eeg ̸= 0

2: oƒ ƒset = 7.87ms

3: od tme← 0

4: st tme← 0

5: while true do

6: if od tme then

7: Δtme← crrent tme − od tme

8: if Δtme ≤ oƒ ƒset then

9: ne tme←mn(st tme + oƒ ƒset, crrent tme)

10: st tme← ne tme

11: else

12: ne tme← od tme + oƒ ƒset

13: st tme← ne tme

14: end if

15: send(ne tme, eeg)

16: od tme← crrent tme

17: else

18: od tme← crrent tme

19: st tme← crrent tme

20: send(crrent tme, eeg)

21: end if

22: end while

23: end procedure

90



Algorithm 3 This algorithm attaches data from queues

1: procedure attacher(emgqee ∧ mqee ∧ eegqee)

2: Δtme← 100ms

3: ƒ rontemg ← emgqee.pop

4: ƒ ronteeg ← eegqee.pop

5: while true do

6: if ¬ƒ ronteeg∥ƒ ronteeg > crrent tme − Δtme then

7: ƒ ronteeg ← eegqee.pop

8: tbt(8ms)

9: else

10: ttch(eeg[ƒ ronteeg)

11: if ¬ƒ rontemg then

12: ƒ rontemg ← emgqee.pop

13: end if

14: while ƒ rontemg ∧ (ƒ rontemg < ƒronteeg) do

15: ƒ rontemg ← emgqee.pop

16: end while

17: if ƒ rontemg then

18: ttch(emg)

19: else

20: ttch(0)

21: end if

22: ƒ ronteeg ← eegqee.pop

23: end if

24: end while

25: end procedure
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Algorithm 4 This algorithm labels dataset from pool file

1: procedure organizer(dtset∧ poo)

Require: (enth(poo)) ̸= 0

2: strttme ← 0

3: endtme ← 0

4: best ← 0

5: for nde, ro n poo do

6: strttme ← ro.pop[ nde, strt]

7: endtme ← ro.pop[ nde, end]

8: best ← ro.pop[ nde, be]

9: for ro n dtset do

10: if strttme < ro[tme] ∧ endtme ≥ ro[tme] then

11: ro.psh[ be] ← betme

12: end if

13: end for

14: end for

15: end procedure
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Algorithm 5 This algorithm implements the Sliding Window Algorithm

1: procedure organizer(dtset)

Require: (enth(dtset)) ̸= 0

2: ength← ength(dtset)

3: ndo← 50

4: oƒ ƒset← 10

5: for nm n rnge(0, (ength − ndo), oƒ ƒ set do

6: dt ← st()

7: ydt ← st()

8: for nde n rnge(nm,nm + ndo) do

9: dt.psh(dtset.pop[ d,0])

10: ydt.psh(dtset.pop[ d,1])

11: end for

12: dt.psh(, y)

13: end for

14: end procedure
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