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Abstract 

ASSET MANAGEMENT OF WASTEWATER 

INTERCEPTORS ADJACENT TO BODIES OF WATER  

 

Mohammad Bani Fawwaz, Ph.D.  

 

The University of Texas at Arlington, 2022  

 

Supervising Professor: Mohammad Najafi 

This dissertation presents challenges of managing a pipeline network adjacent to 

bodies of water to maximize asset life by evaluating the significant factors that affect the 

condition levels of pipeline assets. Pipeline asset management derives from pipelines’ 

physical conditions, condition rating, and serviceability through investigating, monitoring, 

and analyzing rupture history. The remaining asset life and structural condition of the 

pipeline network running near and under bodies of water are often hard to predict. In case 

of a pipeline failure, major damages may occur to the surrounding environment, adding up 

to disruptions in service and repairing costs. This research develops Multinomial Logistic 

Regression (MLR) and Binary Logistic Regression models to predict how the bodies of 

water could affect the soil surrounding wastewater interceptors. The models were 

developed based on data from the City of Fort Worth, Texas. This dissertation concludes 

that pipe diameter, pipe age, location of the pipeline with reference to bodies of water (far 

or near), and the pipe material are the most significant variables that affect the surrounding 

conditions and remaining life of wastewater interceptors. In future, clearer perception 

through increased software development and machine learning for managing pipeline 

asset management would provide impacts of different parameters on pipeline expected 

life. 
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 Chapter 1 Introduction and Background 

1.1 Background and Overview 

Utility and pipeline systems form one of the most capital-intensive infrastructure 

systems, and they are aging, overused, possibly mismanaged, and neglected (Najafi, 

2022). Most wastewater systems are gravity systems; flow is transferred by natural forces 

rather than complicated pumping technology. The United States’ wastewater network 

consists of over 800,000 miles of public sewers and 500,000 miles of private lateral sewers 

that connect homes and businesses to public sewer lines. The typical lifespan expected 

for wastewater pipes is 50 to 100 years (ASCE, 2021). 

Condition assessment is an ongoing process. The biggest challenges of 

maintaining wastewater systems are that the process is out of view (EPA, 2015). The latest 

2021 infrastructure report card published by the American Society of Civil Engineering 

(ASCE) reveals incremental progress toward restoring our nation’s infrastructure. For the 

first time, our infrastructure GPA went up from D+ in 2017 to C- in 2021 (ASCE, 2021). 

Furthermore, most municipal sewer systems are at least 60 years old, and some utilities 

assume that newer pipes must be in good condition compared to older pipes, which is not 

the case since many examples show 80-year-old pipes in excellent condition and 30-years-

old pipes near failure (EPA, 2015). 

An estimation of how much pipe of each size in each region must be repaired and 

rehabbed in the coming 40 years is compiled by combining the demographically based 

pipelines inventories with the projected service lifetime for each region (AWWA, 2012). The 

effects associated with pipeline failures can be extended to impact other infrastructures, 

so many utilities have adopted new technologies in pipeline asset management to enhance 

proactive asset management strategies (Matthews et al., 2016). Moreover, the U.S. utilities 

must meet all National Pollutant Discharge Elimination System (NPDES) permit 

requirements and innovative Geographic Information System (GIS) cloud-based data 
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combined with mapping technologies within utility asset management planning to begin the 

next step of risk analysis based on condition assessment (Harris, 2017).  

Many pipelines that cross under bodies of water are buried deep underneath the 

soil must regularly be inspected and evaluated. Once the pipeline conditions are available, 

asset management, repair, and rehabilitation decisions will be made (Flynn et al., 2018).  

Asset management strategies start with reviewing the available historical pipeline 

data and understanding failure and deterioration models (EPA, 2012). Repair and 

rehabilitation decisions control the continual performance of pipeline systems. A proactive 

asset management system will overwhelm the reactive system to stay within the cost-

effective choices and keep the system at an acceptable level.  

Local municipalities use geographical information systems (GIS) for archival, 

revenue, and information retrieval purposes, but the use of GIS varies among 

municipalities within each state. Effective asset management requires evaluating pipeline 

systems and identifying pipelines with a high risk of failure. A geographic information 

system (GIS) data set consisting of pipe age, length, material, and previous repairs will 

allow municipalities to make asset management decisions while continuously updating the 

GIS data set (Nardini et al., 2013).  

1.2 Pipeline Condition Assessment  

1.2.1 Phases of Condition Assessment Projects 

Condition assessment projects typically have four phases: preliminary 

investigations, field investigations, integrity assessments, and post-processing condition 

assessments. Generally, various tools and techniques will be used since no single tool can 

provide all the required information for condition assessment. Once the main pipeline 

details such as diameter, length, age, and failure history are available, technique selection 

will be uncomplicated (Mahaffey, 2016).  
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1.2.2 Factors impacting a pipeline’s service life 

The ability of the pipeline to carry external and in-service loads forms the pipeline’s 

structural integrity. Pipeline structural integrity must be assessed in condition assessment 

to determine the level of deterioration. For example, pipeline material could react with the 

environment, causing corrosion that can vary along the pipeline. The corrosion mechanism 

could act entirely differently inside and outside the pipe (Mahaffey, 2016). Figure 1-1 

illustrates water seepage and movement of soil when the pipeline is installed by trenchless 

technology methods and is under or near bodies of water. 

 

 
Figure 1-1 Factors Impacting a Pipeline’s Service Life  

1.2.3 Asset Management Strategies 

Infrastructure asset management is the continual assessment of the operations 

and maintenance history and projected life expectancy, with a long-range plan for financing 

asset rehabilitation or replacement (R&R); it results in prioritizing infrastructure assets and 

incorporating assets into the annual capital improvement planning (AWWA, 2012).  



4  

Condition assessment will enable municipalities to understand the current 

structural condition of pipelines and implement the predictive level strategy (Ugarelli et al., 

2008). The traditional asset management strategies are operative (reactive), inspection 

(condition-based), proactive (preventive), and predictive (advanced). Each strategy has a 

specific role in the asset management methodologies series. In general, asset 

management strategies are four main categories, as shown in Table 1-1. 

Table 1-1 Asset Management Strategies (Ugarelli et al., 2010) 

Operative (reactive) 

• Municipalities often make decisions 
based on practical experience. 

• It is emergency repairs and 
rehabilitation.  

• In a simple approach, the pipe section 
will consume its full-service life.  

• It causes interruptions in traffic and 
service. 

Inspection (condition-based) 

• Municipalities monitor pipelines 
periodically. 

• Pipelines are classified based on their 
condition rating.  

• It recognizes the current pipeline 
condition without failure consequences.   

Proactive (preventive) 
• Repair and rehabilitation are done 

before failure.  

• It needs more time to choose the best 
cost-effective repair. 

Predictive (advanced) 

• Cities provide economic analysis 
support to the proactive approach.  

• It gives the availability to choose 
between regular maintenance and 
rehabilitation.  

• It indicates long-term implications on life 
cycle cost. 

1.3 Research Needs 

The focus of this dissertation is based on buried wastewater interceptors’ asset 

management adjacent to bodies of water. Wastewater assets have long life cycles. 

Furthermore, a wide assortment of studies has been done to demonstrate asset 

management of wastewater pipelines. The following recent research highlights the needs 

for inspection and monitoring of pipelines: 
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• Harris (2017) encouraged municipalities to enhance affordable resources such as 

GIS in conducting asset management planning to plan well-conceived projects 

properly. 

• Sever et al., (2017) indicated that surrounding soil condition has a vital role in the 

pipeline loads, which is more important to expose than the visible. 

• Wade (2016) recommended that wastewater utilities use timely information 

technologies to address the most critical infrastructure needs since inspecting and 

rehabilitating large-diameter wastewater systems is expensive. 

• Loganathan (2021) recommended that integrating GIS during inspection of pipe 

segment would help map the critical pipelines and condition assessment. 

1.4 Objectives 

The main objective of this dissertation is to evaluate the life of wastewater 

interceptors considering the long-term impacts of surrounding soil conditions for 

operational and maintenance tasks. 

The secondary objective is to evaluate the significant factors that affect the 

condition levels of assets. Furthermore, to compare the wastewater interceptors 

surrounding soil elevations from 2010 through 2015. The comparison will be between 

wastewater interceptors adjacent (less than 10 ft) to bodies of water and the interceptors 

away (more than 10 ft) from bodies of water. 

1.5 Scope of Work 

The scope of this study is according to Table 1-2.  
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Table 1-2 Scope of Work 

              

1.6 Methodology 

The models developed in this study will be used to link dissimilarity between 

wastewater interceptors near and away from bodies of water by considering physical and 

environmental factors.  

The following steps present an approach to developing the outcome of this 

research. Figure 1-2 presents the detailed research methodology.  

• Step 1: Problem definition 

 

• Step 2: Literature Review 

 

• Step 3: Data collection 

 

• Step 4: Data analysis 

 

• Step 5: Model development 

 

• Step 6: Model validation 

 

• Step 7: Model comparison 

 

• Step 8: Select the best model based on the results 

 

• Step 9: Asset management strategy recommendations 
 

1.7 Hypotheses 

Based on the available historical data, it is conceived that bodies of water have 

significant effects on the soil elevation that surrounds the wastewater interceptors. 

Included Not Included 

Wastewater interceptors within the city of Fort 
Worth service area 

The sewer force main pipes are not 
considered 

Evaluation will be based on the surrounding 
conditions 

The stormwater pipes will not be 
investigated 

Selected wastewater interceptors will be based on 
recommendations from the City of Fort Worth 
where the assets repairs and rehab are 
anticipated 

Soil type 

-- 
Pipe installation method 

Watertable 
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Moreover, pipe inspection and surrounding soil elevations for wastewater interceptors 

adjacent to bodies of water will need a different asset management strategy. 

 

 

 

 

 

 

Figure 1-2 Research Methodology 

Asset Management Strategy Recommendations 
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1.8 Timeline for Completion 

Figure 1-3 presents the timeline of the dissertation completion. 

1.9 Chapter Summary 

This chapter discussed background information about wastewater systems and 

major asset management strategies. Research needs, objectives, scope of work, 

methodology, hypotheses, and the research schedule were provided.  

 

 

 

 

Figure 1-3 Research Timeline 
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 Chapter 2 Literature Review 

2.1 Pipeline Asset Management 

The International Infrastructure Management Manual (INGENI-UM 2002) has 

defined asset management as: “The combination of management, financial, economic, 

engineering, and other practices applied to physical assets to provide the required level of 

service in the most cost-effective manner.” 

The wastewater pipeline industry continuously changes like other industries, which 

created the need for improvements in repair and rehabilitation efforts. Municipalities have 

adapted proactive pipeline asset management to reduce pipes’ failures (Matthews et al., 

2016). Figure 2-1 illustrates the main components of comprehensive asset management.  

According to the Government Accountability Office (GAO), the federal government 

spends billions of dollars to help municipalities finance wastewater infrastructure projects, 

raising concerns about the infrastructure’s conditions and asset management plans. 

Comprehensive asset management will allow utility managers to have accurate information 

about the existing assets, such as pipe age, performance, required repairs and service, 

and condition (GAO, 2004).  

Figure 2-1 Elements of Comprehensive Asset Management (GAO, 2004) 
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However, evaluating pipe management strategies with Envision pre-assessment 

checklist resulted in three main strategies as below:  

• A run-to-failure strategy is recommended only if the pipe failure 

consequences are minimal with financial shortfalls.  

• A pre-emptive replacement strategy is shared and reduces the impact of 

pipe failures. Pipe replacement should be based on the actual condition; 

otherwise, some pipes will be replaced even when they have a remaining 

useful life.  

• A balanced approach strategy, repair, and rehabilitation decisions will be 

based on the pipe condition factor (Matthews et al., 2016).  

Asset management is a comprehensive plan for managing infrastructure assets 

to deliver a satisfying service level and minimize operating and ownership costs. A 

comprehensive asset management plan can help municipalities turn from a reactive 

approach into a proactive approach while providing life cycle cost analysis based on cost-

benefit analysis (Najafi and Gokhale, 2022; EPA, 2002). 

2.1.1 Asset Management Inspection Cycle 

A stepwise asset management plan allows municipalities to follow top-down and 

bottom-up cycles, as shown in Figure 2-2. The plan will start with the assembly’s current 

condition (Tier 0), then decisions will be made to collect additional data (Tier 1). Once Tier 

1 is completed, the outcome will be post-processed in the top-down phase of the cycle. 

Assets with a high rank based on Tier 1 will be selected for Tier 2 inspection. After that, the 

bottom-up and top-down cycles will be repeated until sufficient information has been 

reached to identify the municipalities’ asset register (Wade, 2016). 

 



11  

 

Figure 2-2 Asset Management Inspection Cycle (Wade, 2016) 

2.2 Condition Assessment and Rehabilitation 

Most wastewater systems are 60 years old, and majority are out of sight 

underground. Therefore, it is valuable to invest in condition assessment to reduce 

emergency repairs and replacements (EPA, 2015).   

Condition assessment is based on the current pipe condition; a criticality score for 

pipes will be formulated based on the probability of failure, consequences of failure, and 

redundancy (Najafi, 2016). The primary parameters for consequences of failure are 

environmental and transportation impact, flow quantity, and cost of urgent repairs. 

Meanwhile, the primary parameters for the probability of failure are pipe age, hydraulic 

capacity, soil conditions, and loads (Sever et al., 2017). 

Pipeline fractures in any location will have deleterious impacts on transportation, 

level of service, and the environment. Criticality rating is assigned to the asset as a one-

time event and will help municipalities focus on high-risk and priority pipes (EPA, 2015). 
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The standard criteria categories for assessing the criticality of wastewater systems are 

shown in Figure 2-3. 

Figure 2-3 Categories for Assessing Wastewater System Criticality (EPA, 2015) 

2.2.1 City of Fort Worth Wastewater Interceptors Condition Assessment 

The City of Fort Worth, Texas, wastewater interceptor system has 262 miles of 

pipelines with diameters between 24 inches to 96 inches. The newly installed pipe materials 

are fiberglass, direct plastic burial, and liners. Meanwhile, the original pipe materials are 

vitrified clay and reinforced concrete. The City of Fort Worth Interceptor Condition 

Assessment Program (ICAP) is one of the world’s most significant multi-sensor interceptor 

condition assessment projects. The program assessment techniques used are sonar, laser 

profiling, and high-definition TV inspection (Thornhill and Crumb, 2014). 

According to EPA (2015), as for any project, condition assessment of wastewater 

system has costs and benefits. Table 2-1 presents some of the common cost parameters 

and benefits. 

  

  

Transportation 
Impact

Quantity of Flow 
Environmental 

Impact 

Public Health 
Impact 

Difficulty of 
Emergency 

Replacement and 
Repair 
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Table 2-1 Costs and Benefits of Condition Assessment Program (EPA, 2015) 

 

The three technologies used for ICAP inspection are High-Definition CCTV, sonar, 

and 3-D laser. High-Definition CCTV is an advanced technology for capturing video images 

with high-resolution quality. Sonar inspection technology is used for below the water level 

pipes; an image is created based on sonar signals that show broken pipes, deflection, and 

debris. 3-D laser inspection is a technology that creates a three-dimensional pipe model. 

The sonar technology data is combined with the laser data to develop a three-dimensional 

model for the whole pipe, then HD video is integrated to get a high-resolution pipe picture 

and a three-dimensional model for the pipe (Thornhill and Crumb, 2014).  

The City of Fort Worth has been evaluating its wastewater interceptors within the 

Interceptor Condition Assessment Program (ICAP) since 2010; the data collected has been 

compared to standard respective pipe classes until pipe corrosion extent has been 

determined. After that, a rank scale between 1 and 5 (best to worst) was assigned to pipe 

segments, as shown in Table 2-2 (Kercho and Conlon, 2019). 

 

 

 

  

Costs of Condition Assessment 
Program 

Benefits of Condition Assessment 
Program 

Equipment costs 
Less expensive repairs when identifying 
problems early 

Labor costs Reduce operating and maintenance costs 

Service distribution costs when conducting 
the inspection 

Reduce emergency consequences and 
costs 

_ 

More effective operation and 
maintenance   

Prediction of needed capital renewal 
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Table 2-2 ICAP Condition Scores and RUL (Kercho and Conlon, 2019) 

2.3 Pipelines Buried Underwater 

There are millions of miles of pipelines in the United States of America, and 

thousands of these pipelines cross under bodies of water (Flynn, et al. 2018). Assessing 

wastewater systems is challenging when the pipelines cross waterways and have a high 

risk of failure; these pipelines are usually not easy to manage since we have limited access 

(Forsyth, et al. 2018). 

2.3.1 Underwater Pipeline Inspection 

Underwater acoustic imaging (sonar) is a comprehensive concept involving 

diverse technologies that provide pipeline visual documentation. Sonar technologies are 

categorized based on the type of outcome data into two-dimensional sonar systems and 

three-dimensional sonar systems, as shown in Table 2-3 (Forsyth, et al. 2018):  

  

Score Pipe Condition Remaining Useful Life (RUL) 

 
 1 
 

A material loss of 0 to 0.5 inches 
from the original inside wall 36 to 50 years 

 
2 
 

A material loss of 0.5 inches to 
the interior face of the first row of 
reinforcement steel 

21 to 35 years 

 
 
3 

Material loss from the interior 
face of the first row of 
reinforcement steel to half the  
distance to the internal face of 
the second row of reinforcement 
steel 

11 to 20 years 

 
 

 4 

Material loss from half the 
distance to the interior face of the 
second row of  
reinforcement steel to the internal 
face of the second row of 
reinforcement steel 

3 to 10 years 

 
 5 
 

The interior face of the second 
row of reinforcement steel to the 
outer pipe wall surface 

less than two years 
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Table 2-3 Underwater Sonar Inspection Technologies (Forsyth, et al. 2018) 

Three-Dimensional Sonar Systems Two-Dimensional Sonar Systems 

Single-Beam Sonar Side-Scan Sonar 

Geophysical Sub-Bottom Profilers Sector-Scanning Sonar 

Multi-Beam Sonar LiDAR (Laser Scanning) 

Real-Time Multi-Beam Sonar -- 

2.3.2 Hydrological Surveying Technologies 

There is a remarkable difference between inspecting underground and 

underwater pipelines when the underground underwater pipeline leaks or needs 

inspection. Challenges such as restricted equipment and access to pipelines are present. 

However, different technologies could be used to overcome these challenges.   

Table 2-4 Hydrological Surveying Technologies (Flynn et al., 2018) 

 

•SAA is a geotechnical sensors that records pipelines deformation, it needs 
excavation so as to be installed before backfilling. ShapeAccelArrays are made 
up of rigid segments connected by flexible joints, every rigid segment is made up 
of three orthogonally mounted tilt sensors and one microprocessor to calculate its 
position in XYZ plane according to the segment length and measurements from 
tilt sensors.

ShapeAccelArrays (SAA)

•PIG is an advance inspection technology that could be used for corrosion 
inspections, pipe mapping, and deformation inspections. PIGs consist of sealant 
disks, sensors, GPS trackers, and data canisters. PIGs have to be inserted into 

closed and sealed pipes.

Pipeline Inspection Gauges (PIG’s) 

•SmartBall is an alternative technology to PIG, it can detect leakage, pipe 
mapping, temperature, and pressure. SmartBall needs two access point for 
insertion and extraction and collect data up to 21 hours. The difference between 
PIG and SmartBall is travelling ability, SmartBall is limited for up 3,000 ft 
meanwhile, PIG can travel to greater distance up to battery life.

SmartBall
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To inspect underground underwater pipelines, diverse technologies of 

hydrological surveying could be used, such as ShapeAccelArrays (SAA), Pipeline 

Inspection Gauges (PIGs), and SmartBall technology which are briefly explained in Table 

2-4 (Flynn et al., 2018). 

2.4 GIS-Based Engineering Pipeline Management  

A geographic information system (GIS) is a platform that satisfies the core 

engineering function’s needs. Hence, most municipalities have employed GIS for general 

administrative purposes such as data archival and information diffusion (Venigalla et al., 

2007). A GIS containing water pipeline data such as pipe age, diameter, length, pipe 

material, and condition assessment contributes to asset management by aggregating data 

and promoting utilities to make risk-based statements (Nardini et al., 2013). Asset GIS-

based management will develop a comprehensive water pipeline system view to enhancing 

planning (Nardini et al., 2015). 

2.4.1 GIS Database and Asset Management 

Maps can determine the installation date to reveal the pipeline age, and reports 

will reveal pipe sections and rehabilitation location history. However, considerable 

information is needed to develop a database associated with the planning process. 

Likelihood of failure (LOF) and consequence of failure (COF) are essential to establish the 

asset GIS database condition. Through the GIS process, relevant information could be 

scanned and organized. 

The National Association of Sewer Service Companies (NASSCO) suggests that 

their Version 7 Pipeline Assessment and Certification Program (PACP) be utilized with the 

Triple Bottom Line Approach, as shown in Figure 2-5.  
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Figure 2-5 Triple Bottom Line Approach (NASSCO PACP V 7.0, 2015) 

Economic costs comprise the costs of designing and conducting repairs; hence, it 

varies based on the pipe diameter, type of pipe, depth, pipe length, and the environmental 

costs surrounding the asset. Social costs comprise the indirect costs such as: customers 

affected, road closures, and public relations. Environmental costs comprise the costs of 

waterway pollution and public health costs. The three cost structures overlap (Harris, 

2017).  

2.5 Pipes’ Soil Interactions 

Pipeline damage caused by landslides is prevalent in different areas, where a 

continual monitoring and repair efforts are planned to ensure their serviceability (Calvetti 

and Di Prisco, 2004). Soil movement and erosion can significantly affect the infrastructures’ 

service time. To analyze the pipes' resistance to such soil changes, it is necessary to 

quantify the interaction between the pipelines and the surrounding soil. 

The primary design recommendations for pipelines provide a bilinear force-

displacement relationship curve for the soil-pipeline interaction. However, Trautmann and 

O'Rourke's (1983) real experimental results indicated that the force steadily dropped when 
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the relative displacement between soil and pipe was 0.1 m in the case of thick sand for 

backfill (Yoshizaki and Sakanoue, 2004).  

2.6 Chapter Summary 

Municipalities need a comprehensive proactive asset management plan to keep 

their assets with time and cost savings. Pipelines’ location has a vital role in developing the 

management plan.  
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 Chapter 3 Logistic Regression  

3.1 Data Sets and Model Setting 

In this chapter, binary logistic regressions and multinomial logistic regressions are 

discussed. Usually, municipalities and utility management use the available statistical data 

to evaluate the current condition and predict the future of their assets. Prediction models 

play a pivotal role in providing municipalities’ asset management foundation. It is not a one-

time project; the models are continually validated to reflect the data set changes. Logistic 

regression is a model developed using statistical data sets interpreted as independent and 

dependent variables and determined to be numerical and nominal variables.  

Understanding the future of pipe networks necessitates the use of a thorough 

model (Malek Mohammadi, 2019). this dissertation develops a prediction model based on 

the statistical data set; the selection and validation for the model are influenced by several 

factors, as shown in Figure 3-1. 

Figure 3-1 Prediction Model Influencers 

 

Prediction 
Model 

Influencers  

Available 
Data 

Variables 
Type 

 

Variables 
Number 
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3.2 Logistic Regression 

Logistic regression is a statistical procedure that assists in determining the 

relationship between a dependent variable and a set of independent variables (Gall et al., 

2007).  

Logistic regression has three main categories, as shown in Figure 3-2 (Park, 

2013). This dissertation model was developed using binary and multinomial logistic 

regression since ordinal logistic regression requires the statistical data to be categorical 

(data has natural ordered categories).  

Figure 3-2 Logistic Regression Categories 

 
Fundamentally, the logistic regression model does not have any specific 

conditions for the variables other than the model to be applicable. Moreover, the model is 

significantly based on the p-value for the case.  

A logistic model gives an account of the relationship between a dependent and a 

set of variables. (Khashei and Bijari, 2010). According to Hawari, et al (2020), the statistical 

model for logistic regression is shown in Eq. 3.1.  

Logistic Regression

Binary Logistic 
Regression

Ordinal Logistic 
Regression 

Multinomial Logistic 
Rregression
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log (
π

1 − π
) 𝑌 = α +  β1𝑥1 +  β2𝑥2 + . . . +βn𝑥n    Eq. 3.1 

Where: 

Y = dependent variable 

α = intercept parameter 

βn = regression coefficients associated with p independent variables. 

Probability of (y =1) determined using exponential transformation.  

π = p (y = 1| 𝑥1 …. 𝑥n) 

The logistic regression analysis helps determine which independent variables are 

the most significant in the dependent variable. 

3.2.1 Assumptions for Logistic Regression Modeling 

Binary and multinomial logistic regression share the same assumptions. 

Comprehensively, the binary logistic regression dependent variable should be binary. 

Meanwhile, the multinomial logistic regression model is developed when the dependent 

variable has three or more values. Logistic regression assumptions are not complicated. 

According to Meyers et al. (2006), the assumptions are as follows: 

• Between independent variables, perfectly multicollinearity should not 

exist, which means independent variables are not highly correlated with 

each other.  

• The model does not have specification errors.  

• A linear relationship between continuous independent variables and the 

dependent variable transformation logit should exist. 

3.2.2 Binary Logistic Regression 

Logistic regression differentiates from linear regression when the outcome 

variable is binary (Hosmer Jr et al., 2013). The dependent variable must be only two 

different values (e.g., 0 and 1) regarding the binary logistic regression. If the dependent 
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variable is categorical or numerical, the corresponding variable must be dummy coded into 

two values before employing the binary logistic regression.   

Binary logistic regression generates a model to account for relationships between 

log odds of the dependent and independent variables (Hosmer and Lemeshow, 2000). 

According to Agresti (2007), Eq. 3.2 is the linear logistic regression model logit form:  

logit [𝜋(𝑋)]  =  log (
𝜋(𝑋)

1 − 𝜋(𝑋)
)  =  α +  βx    Eq. 3.2 

If the model has multiple independent variables, Eq. 3.3 will be used (Hawari et 

al., 2020).  

𝑙𝑜𝑔 (
𝜋

1 − 𝜋
)  = 𝑙𝑜𝑔 [

𝑃(𝑌=1 | 𝑥1 ....𝑥n)

1−𝑃(𝑌=1 | 𝑥1 ....𝑥n)
]  =  α +  β1𝑥1 +  β2𝑥2 + . . . +βn𝑥n  Eq. 3.3 

Where:  

α = intercept parameter 

βn= regression coefficient associated with n independent variables 

𝑃(𝑌 = 1 | 𝑥1 . . . . 𝑥n) =  
𝑒

α+∑ βj𝑥𝐣𝑛
𝑗=1

1+ 𝑒
α+∑ βj𝑥𝐣𝑛

𝑗=1
      Eq. 3.4 

𝜋(𝑋)  =  
𝑒𝑥𝑝 (𝛼 + βx)

1 + 𝑒𝑥𝑝 (𝛼 + βx)
      Eq. 3.5 

3.2.2.1 Coefficients Significance 

3.2.2.1.1 Log-Likelihood Test 

Log-likelihood is used to determine whether the binary model is significant. In this 

methodology, the model is developed by including the variable of interest. By eliminating 

that variable, followed by comparing those data sets by using a chi-square distribution 

corresponding to the degree of freedom equals the number of eliminated variables. 

Meanwhile, if the independent variable is categorical and takes on more than one value, 

the degree of freedom will be the number of categorical values minus one (Salman 2010). 

Typically, the log-likelihood test compares the predicted to observed values as in 

Eq. 3.6.  
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G  = −2 ln (
likelihood without the variable

likelihood with the variable
)    Eq. 3.6 

3.2.2.1.2 Wald Test 

Wald test is another available strategy to check if a determined coefficient of the 

developed binary logistic regression model is significant or not, using Eq. 3.7 and Eq. 3.8.  

W = (
β𝑖−β𝑜

Standard Error (β𝑖)
)      Eq. 3.7 

Usually, the parameter of interest is 0 (β𝑜=0); the formula simplifies to 

W = (
β𝑖

Standard Error (β𝑖)
)      Eq. 3.8 

Where β𝑖 presents the predictor variable coefficient.  

3.2.2.2 Classification Table and Verification   

After developing the binary logistic regression model, it must be verified, and the 

correct predicted values are calculated. Classification tables are one of the available 

techniques to verify the developed model. Table 3-1 presents a general form of the 

classification table. 

Table 3-1 Classification Table for Binary Logistic Regression (General Form)  

Observations 
Predictions 

0 1 

0 A11 A12 

1 A21 A22 

 

A cut-off value is determined and then compared to the estimated probability. If it 

is greater than the cut-off value, it is assigned to class one. Otherwise, it will get a class 

zero. Usually, the cut-off value for the binary dependent variable is 0.5.   

According to Salman (2010), the percentage of correct predictions is calculated 

based on a classification table using the formula Eq. 3.9.    
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Percentage of correct predictions =
100(A11+A22)

(A11+A12+A21+A22)
   Eq. 3.9 

3.2.3 Multinomial Logistic Regression  

Multinominal logistic regression is a statistical tool used to develop a relationship 

between dependent and independent variables. Multinomial logistic regression is used if 

the dependent variable has more than two values (Hawari et al., 2020). 

𝑙𝑜𝑔 (
𝜋

1 −  𝜋
)  = 𝑙𝑜𝑔 [

𝑃(𝑌 = 𝑖|𝑥1, … , 𝑥𝑛)

1 − 𝑃(𝑌 = 𝑘|𝑥1, … , 𝑥𝑛)
]  

=  α +  β𝑖1𝑥1 +  β𝑖2𝑥2 + . . . +β𝑖𝑛𝑥𝑛  Eq. 3.10 

Where: 

α = intercept parameter for category 𝑖 

β𝑖𝑛= regression coefficient associated with category 𝑖 

𝑖 = 1, 2, 3, …., k-1 

K = possible values associated with dependent variable  

𝑥1, … , 𝑥𝑛 = independent variables 

3.2.3.1 Coefficients Significance 

Log-likelihood test and Wald test are common in determining the significance of 

the variables (Hosmer et al., 2013). Coefficient significance for multinomial logistic 

regression could be determined using the same techniques used in binary logistic 

regression.  

Meanwhile, the multinomial logistic regression model has more than one equation, 

indicating that one variable could be significant in one equation rather than all of them. In 

other words, log-likelihood has an advantage on the Wald test.  

3.2.3.2 Classification Table and Verification   

The classification table for the multinomial logistic regression model is equivalent 

to binary logistic regression; the only difference is the number of values in the table. Since 
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multinomial logistic regression has more than one equation, the classification table values 

will be more as in Table 3-2. 

Table 3-2 Classification Table for Multinomial Logistic Regression    

Observations 
Predictions 

1 2 … … n 

1 A11 A12 … … A1𝑛 

2 A21 A22 … … A2𝑛 

… … … … … … 

… … … … … … 

n A𝑛1 A𝑛2 … … A𝑛𝑛 

 

The percentage of correct predictions is as shown in Eq. 3.11. 

Percentage of correct predictions =
100(A11+A22+...+A𝑛𝑛)

(∑ ∑ Aijn
j=1

n
i=1 Aij)

   Eq. 3.11 

3.3 Chapter Summary 

Multinominal logistic regression and binary logistic regression could be used to 

develop a prediction model based on the available historical data, and both share the 

same conditions and assumptions.    
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 Chapter 4 Case Study and Data Analysis 

4.1 Background Information of Wastewater Interceptors  

The City of Fort Worth has been systematically evaluating its sanitary sewer 

interceptors as part of the Interceptor Condition Assessment Program (ICAP) (Thornhill 

and Crumb, 2014). ICAP was based on the pipe materials and conditions; landscape and 

surrounding conditions were not considered.  

Based on condition assessment inspection data, statistical models build 

relationships between known pipe variables and wastewater pipelines conditions (Atambo, 

2021). This research considers the wastewater interceptors and surrounding landscape 

elevations. It is based on the data collected from the City of Fort Worth, Texas, United 

States. The wastewater system constitutes 3,519 miles of pipelines with different 

diameters, pipe materials, and installation dates. Based on the City of Fort Worth data 

generated from the ArcGIS layers, Table 4-1 summarizes the wastewater system in the 

City of Fort Worth.  

Table 4-1 Wastewater System in the City of Fort Worth 

 
Discipline 

 
Commentary 

Miles of the wastewater system 3,519 miles 

Range of pipe diameter 2 – 96 inches 

Majority pipe size 6 in and 8 in 

Burial depth range 0.50 – 29.64 ft 

Pipe Material 

Asbestos-cement (AC) 

Cast iron (CI) 

Corrugated metal pipe (CMP) 

Ductile iron pipe (DIP) 

Fiberglass pipe (FRP) 
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Discipline 

 
Commentary 

Prestressed concrete cylinder pipe (PCCP)  

High-density polyethylene (HDPE) 

Polyvinyl chloride (PVC) 

Reinforced concrete pipes (RCP) 

Vitrified clay (VC) 

Majority of the Pipes PVC ~ 58% 

 

 

Figure 4-1 The City of Fort Worth Wastewater Pipeline Diameters 
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The City of Fort Worth wastewater pipeline diameters of 6-inch and 8-inch pose 

for 56.41% of the entire wastewater system. Meanwhile, the wastewater interceptors with 

pipeline diameters range from 24-inch to 96-inch from around 262 miles, as shown in 

Figure 4-1.  

  In the 1990s, the City of Fort Worth started taking wastewater systems’ 

maintenance and renovation seriously under the Administrative Order (AO) from EPA. The 

City of Fort Worth has gone through various failures, especially for large wastewater 

interceptors.    

4.2 Data Collection 

The City of Fort Worth has broad dataset layers compatible with ArcGIS software 

created and periodically updated. In this research, the wastewater interceptors, and the 

surrounding elevation differences between the years 2010 and 2015 are the basis of the 

model. Table 4-2 represents the descriptive statistics for the data collected from the City of 

Fort Worth.  

Table 4-2 The City of Fort Worth Descriptive Statistics 

4.3 Data Preparation  

The first step of data preparation was combining the LiDAR layers for the two years 

and wastewater interceptors’ layers with spatial and different functions.  
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4.3.1 Elevation Differences  

Figures 4-2 and 4-3 show the elevation difference maps for 2010 and 2015. 

 

Figure 4-2 The City of Fort Worth Service Area Elevations 2010 
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Figure 4-3 The City of Fort Worth Service Area Elevations 2015 
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4.3.2 Model Variances  

The next step will be splitting the layers to get two separate datasets; one will be 

near bodies of water (rivers and lakes), and the second data set will be for wastewater 

interceptors away from the bodies of water. Then, the elevation difference between the 

years 2010 and 2015 is calculated.  

  Figure 4-4 The City of Fort Worth Pipelines Material 

Figure 4-4 shows all the pipe materials included in the City of Fort Worth GIS 

database. Moreover, the installation date for the pipelines was between the years 1948 

and 2000, and the highest percentage of overall pipeline installation date was for the year 

2000 with about 6%, as shown in Figures 4-5 and 4-6.  

 

 

 

 

 



32  

  Figure 4-5 The City of Fort Worth Pipelines Installation Date 

  Figure 4-6 The City of Fort Worth Pipeline Age Frequencies  



33  

Some pipeline variables are continuous quantitative such as pipe age, pipe 

diameter, and surrounding elevation difference for the years 2010 and 2015. However, pipe 

material is nominal categorical, and pipe diameter is discrete quantitative. Missing and 

duplicate data were eliminated for model development.  

The wastewater interceptors were coded into 1 and 0 based on the location; 1 for 

wastewater interceptors near bodies of water and 0 for wastewater interceptors far from 

bodies of water. Moreover, the elevation difference between 2010 and 2015 was coded as 

1 if the elevation increases and 0 if the elevation decreases.  

4.4 Descriptive Statistics 

Tables 4-3 and 4-4 show the descriptive statistics based on the regression used.  

 

Table 4-3 Descriptive Statistics for Binary Logistic Regression 

 

 N Minimum Maximum Mean Std. Deviation 

Installation Date 3191 1913 2017 1983.61 19.702 

Pipe age 3191 4 108 37.39 19.702 

Elevation Difference 3191 -

.289885513633

174 

.289923677390

742 

-

.002233952010

206 

.131130433686

905 

Elevation Decrease 0 / 

Increase 1 

3191 0 1 .50 .500 

Diameter 3191 24 96 35.87 15.805 

Length 3191 1.20304038253

8900 

5009.42833573

6829000 

420.452949897

716560 

402.190348506

222450 

Far 0 / Near 1 3191 0 1 .40 .489 

Valid N (listwise) 3191 -- -- -- -- 
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Table 4-4 Descriptive Statistics for Multinomial Logistic Regression 

 

 N Minimum Maximum Mean Std. Deviation 

Installation Date 3191 1913 2017 1983.61 19.702 

Pipe age 3191 4 108 37.39 19.702 

Elevation Difference 3191 -

.289885513633

174 

.289923677390

742 

-

.002233952010

206 

.131130433686

905 

Elevation Decrease 0 / 

Increase 1 

3191 0 1 .50 .500 

Diameter 3191 24 96 35.87 15.805 

Length 3191 1.20304038253

8900 

5009.42833573

6829000 

420.452949897

716560 

402.190348506

222450 

Far 0 / Near 1 3191 0 1 .40 .489 

Surrounding Conditions 3191 1 4 2.39 1.116 

Valid N (listwise) 3191     

 

4.5 Chapter Summary 

This chapter discussed the data acquisition, collection, preparation, descriptive 

statistics, and data processing before the development of the model phase starts. The 

database was generated just from The City of Fort Worth GIS database. The logistics 

regression for developing the model will be followed using SPSS Statistics software.  
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 Chapter 5 Model Development 

5.1 Introduction 

The development of multinomial logistic regression and binary logistics regression 

models is demonstrated in this chapter. IBM SPSS Statistics was used to develop the 

models using 80% of the available data; the rest 20% of the data were used for the model 

validation phase. 

5.2 Multinominal Logistic Regression 

5.2.1 Model Clarification  

The multinomial logistic model was developed to find the relationship between a 

nominal dependent variable with multiple independent variables.  

The independent variables were pipe age, pipe diameter, pipe material (Nominal 

categorical; PVC (Polyvinyl chloride), VC (Vitrified clay), Concrete, Steel, DI (Ductile Iron), 

HDPE (High-density polyethylene), and CI (Cast Iron)). The dependent variable was 

nominal with four levels, as shown in Table 5-1. 

Table 5-1 Dependent Variable Levels 

Pipe Surrounding 

Conditions Rating 

Pipe location with reference to 

bodies of water 

Soil elevation difference over 

the years 2010 to 2015 

1 Far Decrease 

2 Near Decrease 

3 Far Increase 

4 Near Increase 

 

Equation 5.1 represents the general multinomial logistic regression formula when 

including all the model independents:   
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𝑃(𝐶 = 𝑖) 

𝑙𝑛    
𝑃 (𝐶 = 4)

   =
 

 

𝛼𝑖 + 𝛽𝑖1 × Age + 𝛽𝑖2 × Diameter + 𝛽𝑖3 × 𝐷Material=HDPE  

+ 𝛽𝑖4 × 𝐷Material=CI + 𝛽𝑖5 × 𝐷Material=DI + 𝛽𝑖6 × 𝐷Material=PVC 

 + 𝛽𝑖7 × 𝐷Material=Steel + 𝛽𝑖8 × 𝐷Material=VC + 𝛽𝑖9 × 𝐷Material=Concrete   Eq. 5.1 

 
Where: 

𝛼: intercept 

𝑖: pipe surrounding conditions rating 

𝛽𝑖1, 𝛽𝑖2,…, 𝛽𝑖9: regression coefficients 

𝐷: dummy variable used to assign values to categorical independent variables 

5.2.2 Parameters Estimation 

SPSS statistics software was used to develop the multinominal logistic regression 

model using 80% of the data. Pipe surrounding conditions rating 4 was the reference for 

the model. Figure 5-1 shows the model parameters estimation methodology with the 

variable’s significance tests, which output is indicated in Table 5-2, Table 5-3, and Table 

5-4.   

  Figure 5-1 Model Parameters  

Model 
Parameters 
Estimation 

Maximum 
Likelihood 
Estimation

Variables 
Significance

P-test with 95% 
confidence 

interval

Wald test with 
95% confidence 

interval
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Table 5-2 Surrounding Conditions - Level 1 Parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Surrounding 

Conditions 

Coefficient (𝛽) Std. Error Wald P-Value Expected 

Value 

Intercept -2.099 0.269 61.039 0.000 -- 

Pipe age -0.017 0.004 122.554 0.000 1.109 

Diameter -0.011 0.004 9.354 0.002 0.989 

[Material=C.I.] -0.584 0.569 1.054 0.305 0.558 

[Material=CONCRETE] -0.529 0.192 7.561 0.006 0.589 

[Material=D.I.] -0.750 0.252 8.818 0.003 0.472 

[Material=H.D.P.E.] -0.175 0.514 0.116 0.733 0.839 

[Material=P.V.C.] -0.645 0.228 8.021 0.005 0.525 

[Material=STEEL] -0.252 0.000 -- -- 0.777 

[Material=V.C.] 

(Ref.) 

0 -- -- -- -- 
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Table 5-3 Surrounding Conditions - Level 2 Parameters 

 

 

 

 

  

Surrounding 
Conditions 

Coefficient (𝛽) Std. Error Wald P-Value 
Expected 

Value 

Intercept -0.329 0.289 1.291 0.000 -- 

Pipe age -0.004 0.004 114.87 0.023 1.088 

Diameter 0.001 0.004 0.023 0.880 1.001 

[Material=C.I.] -0.531 0.675 0.619 0.432 0.588 

[Material=CONCRETE] -0.157 0.216 0.525 0.469 0.855 

[Material=D.I.] -0.744 0.301 6.085 0.014 0.475 

[Material=H.D.P.E.] 0.093 0.578 0.026 0.872 1.097 

[Material=P.V.C.] -0.225 0.256 0.769 0.381 0.799 

[Material=STEEL] 19.829 8111.952 0.000 0.998 409062270.35 

[Material=V.C.] 
(Ref.) 

0 -- -- -- -- 
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Table 5-4 Surrounding Conditions - Level 3 Parameters 

Surrounding 
Conditions 

Coefficient (𝛽) Std. Error Wald P-Value 
Expected 

Value 

Intercept -1.932 0.272 50.570 0.000 -- 

Pipe age -0.012 0.003 211.304 0.001 1.136 

Diameter -0.016 0.004 16.193 0.000 0.985 

[Material=C.I.] -0.216 0.539 0.161 0.689 0.806 

[Material=CONCRETE] -0.420 0.194 4.690 0.030 0.657 

[Material=D.I.] -0.580 0.254 5.219 0.022 0.560 

[Material=H.D.P.E.] -0.265 0.535 0.244 0.621 0.768 

[Material=P.V.C.] -0.402 0.229 3.093 0.079 0.669 

[Material=STEEL] 0.016 0.000 -- -- 1.016 

[Material=V.C.] 
(Ref.) 

0 -- -- -- -- 
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As we can see from the previous results, the significance of variables is different 

at each level, as in Table 5-5.  

Table 5-5 Significance of Variables  

Parameter Estimation Level Significant Variables 

Level 1 

• Pipe Age 

• Diameter 

• Material=CONCRETE 

• Material=D.I. 

• Material=P.V.C. 

Level 2 

• Pipe Age 

• Material=D.I. 

Level 3 

• Pipe Age 

• Diameter 

• Material=CONCRETE 

• Material=D.I. 

 

5.2.3 Model Significance  

A log-likelihood test was performed to determine the model significance, as in 

Table 5-6; the significance is less than the cut-off value (0.05).  

Table 5-6 Multinomial Logistic Regression Significance 

Model -2 Log-likelihood Chi-Square Degree of Freedom Significance 

Null 49,591.67 -- -- -- 

Full 30,293.735 17,491.2 65 0.000 
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Multinomial logistic regression for the data set resulted in three equations for pipe 

surrounding conditions rating 1, 2, and 3. 

Multinomial logistic regression equations start with parameters estimation. Below 

equations were developed based on the coefficient of variables (𝛽):  

𝑓1(𝑥) =  ln (
𝑃 (𝐶 = 1)

𝑃 (𝐶 = 4)
) 

= − 2.099 − 0.017 × Age − 0.011 × Diameter 

− 0.175 × DMaterial=HDPE − 0.584 × DMaterial=CI − 0.75 × DMaterial=DI 

+ 0.645 × DMaterial=PVC − 0.252 × DMaterial=Steel 

− 0.529 × DMaterial=Concrete      Eq. 5.2 

 

𝑓2(𝑥) =  ln (
𝑃 (𝐶 = 2)

𝑃 (𝐶 = 4)
)   

          = − 0.329 − 0.004 × Age + 0.001 × Diameter  

+ 0.093 × DMaterial=HDPE − 0.531 × DMaterial=CI − 0.744 × DMaterial=DI  

+ 0.225 × DMaterial=PVC + 19.829 × DMaterial=Steel  

− 0.157 × DMaterial=Concrete      Eq. 5.3 

 

𝑓3(𝑥) =  ln (
𝑃 (𝐶 = 3)

𝑃 (𝐶 = 4)
)   

          = − 1.932 − 0.012 × Age − 0.016 × Diameter  

− 0.265 × DMaterial=HDPE − 0.216 × DMaterial=CI − 0.580 × DMaterial=DI  

+ 0.402 × DMaterial=PVC + 0.016 × DMaterial=Steel  

− 0.42 × DMaterial=Concrete      Eq. 5.4 

The probabilities of pipe surrounding conditions rates will be estimated using the 

below equations:  

 

𝑃 (𝐶 = 1)  =  
𝑒𝑓1(𝑥)

1 +  𝑒𝑓1(𝑥)  + 𝑒𝑓2(𝑥) + 𝑒𝑓3(𝑥)     Eq. 5.5 
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𝑃 (𝐶 = 2)  =  
𝑒𝑓2(𝑥)

1 +  𝑒𝑓1(𝑥)  + 𝑒𝑓2(𝑥) + 𝑒𝑓3(𝑥)     Eq. 5.6 

 

𝑃 (𝐶 = 3)  =  
𝑒𝑓3(𝑥)

1 +  𝑒𝑓1(𝑥)  + 𝑒𝑓2(𝑥) + 𝑒𝑓3(𝑥)     Eq. 5.7 

 

𝑃 (𝐶 = 4)  =  
𝑒𝑓3(𝑥)

1 +  𝑒𝑓1(𝑥)  + 𝑒𝑓2(𝑥) + 𝑒𝑓3(𝑥)     Eq. 5.8 

Table 5-7 shows the result of testing the model, and Figure 5-2 illustrates the 

correct overall percentages, using 20% of the sample via previous equations. 

Table 5-7 Multinomial Classification  

Observed 

Predicted 

1 2 3 4 

1 100 9 15 13 

2 12 59 21 6 

3 89 25 43 7 

4 97 49 41 52 

 

 

Figure 5-2 MLR Overall Correct Percentages 

72.99%

60.20%

26.22%

21.76%

45.29%

0.00% 100.00%

1

2

3

4

Overall Percentage

Observed 

 

Percent Correct 

Predicted 
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Based on Table 5-7 and Figure 5-2 above, the overall correct predicted percent 

for multinomial logistic regression was 45.29%, which is relatively insignificant. Moreover, 

the correct predicted percent for surrounding condition ratings 4 and 3 are 21.76% and 

26.22%, respectively.  

Considering that the overall correct predicted percent is relatively low, this 

dissertation will consider binary logistic regression as another model.  

5.3 Binary Logistic Regression 

5.3.1 Model Clarification 

Binary logistic regression is a statistical modeling method to connect dichotomous 

or binary variables that take only two variables with predicator variables that may be 

categorical and numerical values (Laakso, et al. 2018).  

The dependent variable was the soil elevation difference between 2010 and 2015, 

as a binary code; decrease 0 and increase 1.  

The binary logistic regression model based on the dependent variable with two 

values is formulated as follows in equation 5.9: 

ln (
𝑃(𝐶 = 1)

1 − 𝑃(𝐶 = 1)
) = 

𝛼 + 𝛽1 × Age + 𝛽2 × Diameter + 𝛽3 × DMaterial=HDPE  

+ 𝛽4 × DMaterial=CI + 𝛽5 × DMaterial=DI + 𝛽6 × DMaterial=PVC  

+ 𝛽7 × DMaterial=Steel + 𝛽8 × DMaterial=VC  

+ 𝛽9 × DMaterial=Concrete + 𝛽10 × DFar/Near Bodies of Water  Eq. 5.9 

Where: 

𝛼: intercept 

𝛽1, 𝛽2,…, 𝛽10: regression coefficients 

D: dummy variable used to assign values to categorical independent variables 

The development of binary logistic regression was based on 80% of the data using 

the SPSS Statistics software. The model variables can be found in Table 5-8. 
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Table 5-8 Binary Logistic Regression Model Variables 

 

5.3.2 Parameters Estimation 

Two statistical tests were used to identify the significance of the variables with a 

confidence interval of 95%, the Wald test and the P-test.  

The method used for logistic regression will determine how the regression model 

will be constructed. Forward and backward are the available methods. The backward 

method removes explanatory variables from the full model. Meanwhile, the forward method 

adds explanatory variables to the basic model.  

Dependent Variable Independent Variables 

The soil elevation difference between the years 

2010 and 2015. It is coded as 0 if the elevation 

difference is negative and 1 if the elevation 

difference is positive.  

Pipe age (Continuous quantitative) 

 Pipe diameter (Discrete quantitative) 

Pipe material (Nominal categorical) 

• PVC (Polyvinyl chloride)  

• VC (Vitrified clay)  

• Concrete  

• DI (Ductile Iron)  

• HDPE (High-density polyethylene)  

• CI (Cast Iron) 

 Pipe location is coded as 0 for pipes far from 

bodies of water and 1 for the near pipes.  
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 The backward statistical method was used to develop the binary logistic model. 

It starts with all the variables mentioned above, then variables with the least effect (highest 

P-value) will be removed from the model as in Table 5-9. 

 Table 5-9 Parameters Estimation for Binary Logistic Regression Model 

 

Based on Table 5-9 results, the significant variables were the input for the 

backward stepwise. Table 5-10 presents the backward stepwise results.  

Variables Coefficient (𝛽) Standard 

Error 

Wald P-value Expected 

Value 

Intercept -5.105 0.755 33.84 0.000 -- 

Pipe age 0.004 0.003 2280.199 0.013 1.004 

Diameter -0.003 0.003 63.682 0.024 0.997 

Material = VC (Ref.) 0  -- --  --   -- 

Material (1) = Concrete 0.257 0.454 0.319 0.057 1.292 

Material (2) = HDPE 0.150 0.140 1.145 0.028 1.161 

Material (3) = CI 0.385 0.189 4.130 0.004 1.469 

Material (4) = DI -0.120 0.356 0.114 0.074 0.887 

Material (5) = PVC 0.301 0.166 3.313 0.007 1.352 

Material (6) = Steel -20.982 28420.531 0.000 0.999 0.000 

Far 0 / Near 1 0.090 0.083 1.181 0.028 1.094 
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Table 5-10 Parameters Estimation for Binary Logistic Regression Model 

(Backward Stepwise) 

5.3.3 Model Significance 

Table 5-11 Significance for Binary Logistic Regression Model 

Model -2 Log-likelihood Chi-Square Degree of Freedom Significance 

Null 29,923.7 -- -- -- 

Full 11,653 9,362.0 13 0.006 

 

Table 5-11 presents the significance of the model based on the log-likelihood test. 

The significance is 0.006, which is less than 0.05.  

5.4 Chapter Summary 

This chapter presented the model development process for the wastewater 

systems. Multinomial logistic regression and binary logistic regression were discussed in 

brief steps for developing the models. 

 

Variables Coefficient (𝛽) Standard Error Wald P-value 

Intercept -6.73 0.098 1978.843 0.000 

Pipe age 0.004 0.003 2280.199 0.013 

Diameter -0.001 0.003 63.682 0.024 

Material (1) = Concrete 0.227 0.254 0.319 0.047 

Material (2) = HDPE 0.120 0.140 1.145 0.028 

Material (3) = CI 0.185 0.109 4.130 0.004 

Material (4) = DI -0.120 0.116 0.114 0.054 

Material (5) = PVC 0.101 0.136 3.313 0.007 

Far 0 / Near 1 0.090 0.053 1.181 0.028 
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 Chapter 6 Results, Classification, and Discussion 

Planning and managing wastewater interceptors are an exceptional task to 

provide municipalities and governments with the needed resources and get the highest 

benefit-cost ratio for the plans. Therefore, this chapter considers the validation for this 

dissertation model.  

6.1 Binary Logistic Regression 

After developing the logistic regression model, Eq. 6.1 provides the prediction 

elevation difference over the years 2010-2015.  

𝑔(𝑥) = ln (
𝑃(𝐶 = 1)

1 − 𝑃(𝐶 = 1)
) = 

−6.73 + 0.004 × Age  −0.001  × Diameter + 0.12 × DMaterial=HDPE + 0.185 × 

DMaterial=CI  −0.12 × DMaterial=DI + 0.101 × DMaterial=PVC + 0.227 × DMaterial=Concrete 

+ 0.09 × DFar/Near Bodies of Water      Eq. 6.1 

Where: 

𝑃(𝐶 = 1)  =  
1

1+𝑒−𝑔(𝑥)      Eq. 6.2 

𝑃(𝐶 = 0)  =  1 − 𝑃(𝐶 = 1)      Eq. 6.3 

6.1.1 Classification 

The next step is to go under the validation phase by identifying the predicted 

results. The remaining 20% of the data will be used for validation. Table 6-1 presents the 

classification table for the binary logistic regression.  
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Table 6-1 Classification for Binary Logistic Regression Model 

 
 

Observed  

 
Predicted 

 

 
0  

 
1  

 
0  

 
267  

 
52  

 
1  

 
68  

 
251  

 

Based on Table 6-1, the percent of correct predictions is illustrated in Figure 6-1.  

 

Figure 6-1 Binary Logistic Overall Correct Percentages 

83.70%

78.68%

81.19%

0.00% 100.00%

0

1

Overall Percentage
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6.1.2 True vs. False and Positive vs. Negative 

 

Figure 6-2 True vs. False and Positive vs. Negative 

Table 6-2 summarizes the binary logistic regression model using the confusion 

matrix that shows the four expected outcomes, and we will evaluate our model 

classification based on these four outcomes.   

 

Table 6-2 Confusion Matrix for Binary Logistic Regression Model 

True Positive (TP): 

• Reality: Elevation Increased. 

• Model Prediction: Elevation Increased. 

• Outcome: Correct Prediction. 

False Positive (FP): 

• Reality: Elevation Decreased. 

• Model Prediction: Elevation Increased.  

• Outcome: Wrong Prediction. 

False Negative (FN): 

• Reality: Elevation Increased. 

• Model Prediction: Elevation Decreased 

• Outcome: Wrong Prediction. 

True Negative (TN): 

• Reality: Elevation Decreased. 

• Model Prediction: Elevation Decreased. 

• Outcome: Correct Prediction. 

True

Positive

When the model predict 
the positive class 

correctly. 

Negative

When the model predict 
the negative class 

correctly. 

False

Positive

When the model predict 
the positive class 

incorrectly. 

Negative

When the model predict 
the negative class 

incorrectly. 
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6.1.3 Accuracy 

One parameter for evaluating classification models is accuracy; it represents  

the percentage of correct predictions made by our model. The following equation Eq. 6.4 

is the general formula of accuracy: 

Accuracy =
Number of correct predictions

Total number of predictions
    Eq. 6.4 

Accuracy can also be assessed in terms of positives and negatives in our model, 

as shown below: 

Accuracy =
TP+TN

TP+TN+FP+FN
     Eq. 6.5 

Where:  

TP = True Positives. 

TN = True Negatives.  

FP = False Positives. 

FN = False Negatives. 

Based on the above formulas, the degree of accuracy for the binary logistic 

regression model is 0.812, or 81.2%. 

Accuracy alone does not convey the whole evaluating classification to understand 

our model’s performance better. The following section will discuss the ROC curve (receiver 

operating characteristic curve).  

6.1.4 ROC (Receiver Operating Characteristic) 

A receiver operating characteristic curve (ROC curve) is a graph that shows how 

well a classification model performs across all categorization levels. Two parameters are 

plotted on this curve: 

True Positive Rate (TPR) is a synonym for sensitivity.  

TPR =
TP

TP+FN
    Eq. 6.6 

 



51  

False Positive Rate (FPR). 

FPR =
FP

FP+TN
    Eq. 6.7 

TPR vs. FPR is plotted on a ROC curve at various categorization levels. As the 

classification threshold is lowered, more objects are classified as positive, increasing both 

False Positives and True Positives. A logistic regression model can be analysed multiple 

times with different classification criteria to compute the ROC curve points, but AUC is the 

fastest sorting-based method.  The AUC stands for “Area under the ROC Curve,” which 

refers to the complete two-dimensional area beneath the entire ROC curve from (0,0) to 

(1,1). 

6.1.5 Sensitivity and Specificity 

Other alternatives to check the model performance are sensitivity and specificity. 

Sensitivity represents how effectively the classifier predicts positive samples, whereas 

specificity expresses how well classifiers detect negative samples. 

Sensitivity is a synonym for True Positive Rate (TPR).  

Sensitvity = TPR =
TP

TP+FN
   Eq. 6.8 

Specificity. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
TN

FP+TN
    Eq. 6.9 

𝐹𝑃𝑅 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 1 −
TN

FP+TN
=

FP

FP+TN
  Eq. 6.10 

Based on the above formulas, the sensitivity and specificity for our model are as 

follows: 

Sensitvity = TPR =
TP

TP + FN
=

251

251 + 68
= 78.68% 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
TN

FP + TN
=

267

52 + 267
= 83.70% 
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Table 6-3 Binary Logistic Regression Model Performance 

 

True Positive (TP): 251 False Positive (FP): 52 

False Negative (FN): 68 True Negative (TN): 267 

TPR = Sensitvity =
TP

TP + FN
=

251

251 + 68
= 78.68% 

FPR = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
FP

FP + TN
=

52

52 + 267
= 16.30% 

AUC = 0.879 

 
The area under the ROC curve for the binary logistic regression model is 0.879, 

indicating acceptable results. As a result, the logistic regression equation can forecast the 

surrounding conditions of wastewater interceptors adjacent to bodies of water.  
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6.2 Significant Variables 

The significant variables for the final model were eight only, as in Figure 6-3 

Figure 6-3 Significant Variables 

6.3 Insignificant Variables 

According to the backward stepwise analysis, the insignificant variables for the 

binary logistic regression model were Material (VC or Steel). Several aspects must be 

addressed to assess the influence of pipe lengths, including soil type, water table, pipe 

material, and pipe diameter. 

Different materials used in wastewater interceptors react differently to the 

environment. For example, abrasion resistance is vital in concrete pipes, and acid 

resistance is high in clay pipes. Other pipes have superior resistance to acidic and alkaline 

wastes, but they can distort excessively under strain. Corrosion of steel pipes affects pipe 

strength, resulting in leaks, breaks, low water pressure, blockages, and other issues. 

Pipe Age

Pipe Diameter

Pipe Material: HDPE, CI, 
DI, PVC, and Concrete

Location of Wastewater 
Interceptors, Far or Near 

Bodies of Water  
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6.4 Soil Erosion 

Annual global soil erosion is substantially higher than annual soil replenishment 

(Favis-Mortlock, 2008). Soil erosion is the loss of the top layer of soil, which can be caused 

by various factors, including wind and water.  

Streams and rivers are avenues for soil transportation. Watersheds will become 

prone to floods when vast volumes of soil deposits accumulate in local lakes and reservoirs. 

This erosion causes valuable agriculture and infrastructures to be destroyed. 

Below are some common strategies for effective erosion control:  

• Plant Vegetation: Wind can be blocked by trees, bushes, hedgerows, and 

ground plants. Maintaining continuous ground cover, such as planting 

cover crops, also aids in binding soil to roots. 

• Matting: This ground covering, also known as an erosion control blanket, 

comprises open-weave, biodegradable materials that insulate the soil 

while also supporting growing vegetation on bare ground. This erosion 

control method is generally effective for solar farms and building sites 

where vast regions are left barren and subject to wind and water erosion. 

• Grazing: Rotational grazing involves moving cattle from one pasture plot 

to the next. Each paddock is given a break and allowed to recover 

naturally, reducing soil compaction and erosion. Installing fencing and 

stream crossings to protect pastures from degradation is also practical. 

To summarize the recommendations for the City of Fort Worth:  

• Future asset management plans must include bodies of water and erosion 

control methods as essential and influence variables of the plan. 

• ArcGIS could be the leading platform for the plan since it can help 

prioritize time and cost savings.  
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6.5 Discussions 

Wastewater systems collect sewage from different types of users. Generally, 

infrastructures are designed and constructed to serve for many years. Over its life, the 

system deteriorates, and the pipe failure likelihood and consequences increase 

significantly. The asset management plan is the central concept in performing the systems’ 

repair and rehabilitation decisions since inspection and monitoring are time- and budget-

consuming tasks. This brings the need for asset management plans developed with 

statistical tools such as SPSS statistics software based on historical data.   

Variables that influence the surrounding conditions for wastewater interceptors 

were pipe age, pipe diameter, pipe material (HDPE, CI, DI, PVC, and Concrete), and pipes’ 

location with reference bodies of water. Future asset management plans must include 

these influence variables as an essential and practical part of the plan. 

Consequently, surrounding soil elevation for pipelines could be a valuable simple 

metric compared with a holistic view across the entire wastewater system. A benchmarking 

approach, every 5-years, could be used to predict the future condition of pipelines based 

on the condition of similar but older pipelines. 

There is no standard approach for evaluating the structural integrity of wastewater 

pipelines in sewer system asset management (Loganathan 2019). Different researchers 

have considered the deterioration of the wastewater pipelines as their model. However, the 

variables used to develop the models were different. Table 6-4 presents a comparison of 

variables among recent models.  
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Table 6-4 Comparison of Variables for Recent Models 

 

 

This dissertation developed multinomial logistic regression and binary logistic 

regression, the accuracy for the models was 45.29% and 81.20%, respectively. However, 

it was compared with different models for different authors as shown in Table 6-5.  

Table 6-5 Models’ Accuracy Comparison  
 

 

 

Based on the binary logistic regression model, the influence variables for the 

wastewater pipelines’ surrounding soil were as follows:  

• Pipe Age. The coefficient of pipe age is positive in the binary logistic 

regression equation. With Wald = 2280.199 and P-value = 0.013, the 

binary logistic regression findings revealed that pipe age has a significant 

This Dissertation 
Atambo 
(2021) 

Malek Mohammadi 
(2019) 

Loganathan 
(2021) 

Age Age Age Age 

Diameter Diameter Diameter Diameter 

Material Depth Depth Slope 

Surrounding Soil 
Elevation 

Slope Slope Length 

Location (with 
reference to 

bodies of water) 
Length Length MAPSCOGRID 

__ 

Soil pH Soil Sulfate SUBAREA 

Material Soil pH PACP 

Soil Type Watertable 

__ 
__ 

Pipe Flow 

Material 

Soil Type 

Soil Hydraulic Group 

Soil Corrosivity 

Model Model Accuracy Author 

 
 

Multinomial Logistic 
Regression 

65.8% Malek (2019) 

75% Atambo (2021) 

45.29% This Dissertation 

 
Binary Logistic 

Regression 

84.6% Malek (2019) 

81.2% This Dissertation 

KNN 83.4% Malek (2019) 

Neural Networks 85% Atambo (2021) 
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impact on the condition of the surrounding soil condition for wastewater 

interceptors as it has a positive coefficient, which indicates that an 

increase in age will probability result in the surrounding condition to be in 

a risk condition.  

• Pipe Diameter. The coefficient of pipe diameter is negative in the binary 

logistic regression equation. With Wald = 63.682 and P-value = 0.024, 

pipe diameter was also found to significantly impact soil difference 

elevation over the years for wastewater interceptors near bodies of water. 

It has a negative coefficient which means that an increase in the pipe 

diameter will probably reduce the risk of pipe surrounding conditions 

change.  

• Pipe Material. The Wald and P-values for the significant pipe materials 

were different. The results of binary logistic regression revealed a 

moderate significance in High-Density Polyethylene (HDPE), Cast iron 

(CI), Ductile Iron (DI), Polyvinyl Chloride (PVC), and Concrete materials, 

as shown in Table 6-6. 

Table 6-6 Binary Logistic Regression Variables’ Performance 

Variables Coefficient (𝛽) Wald P-value Remarks 

Material (1) = Concrete 0.227 0.319 0.047 Positive Coefficient 

Material (2) = HDPE 0.120 1.145 0.028 Positive Coefficient 

Material (3) = CI 0.185 4.130 0.004 Positive Coefficient 

Material (4) = DI -0.120 0.114 0.054 Negative Coefficient  

Material (5) = PVC 0.101 3.313 0.007 Positive Coefficient 

 

• Location of Wastewater Interceptors. In the binary logistic regression 

model, wastewater interceptors’ location with reference to bodies of water 

as far or near was also determined to be a significant variable with Wald 
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= 1.181 and P-value = 0.028. The coefficient is positive which indicates 

that as the pipe is nearest to the bodies of water, the risk of the 

surrounding pipe soil to be in poor condition and indeed the pipe failure 

likelihood will increase.  

6.6 Practical Applications 

The results of this dissertation can help municipalities in managing wastewater 

interceptors. The model developed in this dissertation may be used to create a wastewater 

interceptors inspection schedule. A cost-benefit analysis may be conducted to evaluate 

cost savings the model could save if used in place of yearly inspection programs. The 

developed model has a degree of accuracy of 81.2%. 

Moreover, the significant variables of the model could be an essential input for 

developing long-term asset management plans. On the other hand, ArcGIS could be the 

leading platform for the asset management plan since it can help prioritize time and cost 

savings. 

This dissertation was based on a 5-year span data. It is recommended to monitor 

the wastewater interceptors adjacent to bodies of water in short intervals. Frequent 

inspections (every 5 years or less)  are needed for wastewater pipelines when their 

locations are less than 10 ft away from the bodies of water. Distance from body of water 

provides a significant variable in the useful life of the pipeline irespctive of pipe material, 

such as, concrete, HDPE, CI, or PVC.Moreover, as pipeline age increases, the effect on 

the surrounding soil elevation also increases. 

However, the soil surroundings for DI pipelines were found to be more stable since 

69% of these pipelines are installed more than 10 ft away from body of water. This research 

also showed that pipe diameter variable has a negative coefficient, which means that an 

increase in the pipe diameter will probably reduce the risk of pipe surrounding conditions 

change. After inspection and analysis of, wastewater interceptors could be labeled and 

scored. The high-risk scored interceptors will have priority in the replacement and 
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rehabilitation plan. Indeed, this will limit the cost and time consumed in inspections or in 

case of unpredicted pipe failure. The model could be used for different data years, which 

can help in defining the areas where the inspection will take place to enhance asset 

management planning for municipalities. 

6.7 Chapter Summary 

This chapter presented the details of the developed model, 80% of the data were 

used to develop the model. Meanwhile, 20% of the data were used as a sample to validate 

the models. This dissertation developed multinomial logistic regression and binary logistic 

regression, the accuracy for the models was 45.29% and 81.20%, respectively. Practical 

applications for the model were discussed in the chapter. 
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 Chapter 7 Conclusions and Recommendations for Future Research 

7.1 Conclusions 

Municipalities would benefit from knowing and predicting how the asset 

management for wastewater interceptors is different with reference to the location of bodies 

of water. Two logistic regression models were used to predict how bodies of water can 

affect the soil surrounding wastewater interceptors. The models were created, verified, and 

tested. Both models were created using 80% of the dataset chosen at random. In the 

validation of the model, the remaining 20% of the data was used at random.  

According to the model’s findings, pipe diameter, age, pipe material, and location 

with reference to bodies of water were the most important parameters. The multinomial 

and binary logistic regression performances were 45.29% and 81.20%, respectively.  

The binary logistic regression results revealed that the surrounding soil elevation 

difference over the years 2010 to 2015 near water bodies has decreased compared to the 

interceptors far away from bodies of water. Therefore, the interceptors are at a higher risk 

of failure. As a result, the binary logistic regression equation is significant, indicating that 

the area under the ROC curve was 0.879, indicating that the model is reliable. 

7.2 Dissertation Limitations 

The study’s base year data were obtained for 2010 and 2015. It is natural to doubt 

that the relevance of surrounding conditions changes will be detectable enough. The 

average soil erosion is within the range of 5.6 to 7.7 tons per acre per year (Denton, 2000). 

The loss of every 5 tons per acre represents 1/32-in. of topsoil (USDA NRCS, 1996).  

This dissertation did not consider other influence factors, such as depth and slope 

of the wastewater interceptors and soil type. As a result, the lack of information on these 

factors is the main limitation of this dissertation.  
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7.3 Recommendations for Future Research 

Some of the significant prospective future development areas raised in this 

dissertation that should be addressed: 

• Other independent factors, such as soil type, pipe installation method, and 

failure history, can improve the model represented in this research.  

• Further exploration of deep learning algorithms to develop a model will be 

an important critical component of future efforts. 

• This dissertation is based on data from the City of Fort Worth. To improve 

the accuracy of models, more inspection data is needed to compare the 

results of models developed for other cities could be an essential part of 

future work. 

• Future studies should include more data for more years to distribute the 

findings over more than one five-year span, and the results should be 

compared to the findings of this study. 

• The model developed in this dissertation can be utilized to create a 

wastewater interceptors inspection schedule. A cost-benefit analysis can 

be used to determine the cost savings the model could save if used in 

place of yearly inspection programs. 
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