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Abstract 

 

MODELLING PM2.5 CONCENTRATIONS AND SPATIAL CORRELATION WITH 

WEATHER CONDITIONS AND ADULT ASTHMA IN NORTH TEXAS IN 2014 

 

Jessica Bullock, Ph.D. 

 

The University of Texas at Arlington, 2020 

 

Supervising Professor: Jianling Li 

The questions to be answered by this study are whether weather conditions 

correlate with PM2.5 concentrations, and whether there is a correlation between asthma-

related hospital admissions and PM2.5 concentrations.  The focus is on the Dallas-Fort 

Worth area of Texas—comprised of Collin, Dallas, Denton, Ellis, Erath, Hood, Hunt, 

Johnson, Kaufman, Navarro, Palo Pinto, Parker, Rockwall, Somervell, Tarrant, and Wise 

Counties—during the year 2014.  A radial basis function neural network, via the Matlab 

Neural Network toolbox, is used to create a model to estimate the PM2.5 concentrations in 

the DFW area. Spatial statistical techniques are used to analyze the spatial 

autocorrelations among asthma-related hospital admissions.  Spatial statistical analysis 

reveals that asthma-related hospital visits are concentrated in urban centers. Further 

statistical analysis results indicate that daily average PM2.5 concentration is positively 

correlated with daily maximum temperature, daily average station pressure, daily average 

wind speed, and daily sustained wind speed.  Research indicates that the results 
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concerning wind speed may be related to drought.  The results also indicate that daily 

average PM2.5 concentration is negatively correlated with daily precipitation and daily 

average relative humidity when precipitation days are considered alone; however, when 

both precipitation and non-precipitation days combined are considered, there is no 

correlation between precipitation and PM2.5 concentration.  Daily asthma-related hospital 

visits are weakly positively correlated with daily average PM2.5 concentrations when days 

with precipitation are considered, but weakly negatively correlated when non-precipitation 

days are considered alone.   
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Chapter 1 

Introduction 

The Dallas-Fort Worth metropolitan area (DFW), located in north Texas, has a 

long history of surpassing safe levels of air pollutants and unsafe air quality.  Air quality is 

a concern for human health in that it affects people with cardiovascular and respiratory 

diseases (U.S. EPA, 2015).  When it comes to respiratory diseases, asthma is of 

particular concern due to air pollutants exacerbating asthma in known asthma patients 

and even causing the onset of asthma in others (Guarnieri & Balmes, 2014). There is 

plenty of evidence suggesting that ground level ozone plays a key role in aggravating 

asthma (Goodman et al., 2017; Guarnieri & Balmes, 2014; Khamutian et al., 2015; Lu & 

Fang, 2015; U.S. EPA, 2015), and there has been recent research which examines 

whether particulate matter, specifically PM2.5 (particulate matter with a diameter under 2.5 

µm), may play a role in the same (Baldacci et al., 2015; Guarnieri & Balmes, 2014; 

Mirabelli et al., 2016).  As Jacquemin et al. (2012) point out, research on the effect of 

chronic exposure to air pollution on asthma is quite limited.  Even more limited, based on 

the literature review for this study, is research combining those elements with the added 

layer of various weather patterns.  Out of 84 literary sources cited for this research dated 

from 2012 through 2018, only 14 combined weather, air pollution, and asthma for their 

research focus.  Further research remains to be executed on the effects that 

meteorological variables may have on air pollution and asthma (DeSario, Katsouyanni, & 

Michelozzi, 2013), though there is evidence that certain meteorological factors are 

correlated with both.   

As far as DFW is concerned, there is limited research that has been conducted 

on the possible correlations between asthma exacerbation and air pollution 
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concentrations in general, let alone research which focuses on PM2.5 and adult asthma, 

and includes weather patterns as a factor.  Out of the 84 literary sources which were 

cited in this study, 5 of them focus on north Texas or DFW.  It is important to focus on the 

DFW area for research concerning the effect of air quality on human health, as DFW is 

considered the fourth largest metropolitan area in the United States and is still growing in 

population and urbanization (Hu & Xue, 2016).  Increased populations and urbanization 

typically lead to decreased air quality (more air pollution).  For example, Dallas and Harris 

Counties, which contain the cities of Dallas and Houston, reported the highest number of 

asthma-related hospital admissions in Texas between 2007 and 2010 (Goodman et al., 

2017).  Due to the changing climate, it is also important to find out if there is a link 

between air quality and extreme weather conditions in a changing climate.     

By modeling the ambient PM2.5 concentrations, it should become clearer whether 

the PM2.5 concentrations are correlated with the reported weather variables. The 

completion of this study could be useful in prediction of asthma prevalence related to 

PM2.5 concentrations in the atmosphere for areas with similar populations or population 

growth rates.  It could provide a guideline for determining the air quality and human 

health fate of such areas, including DFW, and assess whether weather conditions can act 

to predict cases of asthma aggravation.   

There is scientific evidence showing a relationship between asthma and air 

pollution, including PM2.5.  Existing research focuses on ozone, particulate matter (which 

includes PM2.5), general air pollution (not always specified) or a combination of different 

pollutants.  Studies which examine the relationship between weather variables and air 

pollution do not always attempt to show how specific meteorological factors or events 

affect PM2.5 concentrations, but research to date suggests it is likely that higher daily 

average maximum temperatures and higher daily average station pressure are indicative 
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of higher PM2.5 concentrations and higher counts of asthma-related hospital visits.  It is 

also likely that slower daily average and sustained wind speeds, lower or higher daily 

average relative humidity, and less daily total precipitation are indicative of higher PM2.5 

concentrations.  High temperatures are often found to be associated with high 

concentrations of air pollutants, including ozone and PM (L. Li et al., 2014; Veremchuk et 

al., 2016; Kalbarczyk et al., 2015; Lai, 2012).  This is due to chemical reactions that form 

ozone and fine PM occurring faster with increasing temperature, according to basic 

chemical theory. High pressure areas are associated with inversions—sinking air which 

traps pollutants near the ground—so higher levels of PM2.5 would be expected (L. Li et 

al., 2014; Lai, 2012).  Wind typically removes pollutants from an area via dispersion, 

hence lower PM2.5 concentrations are expected when the wind speed is higher (Pesic, 

Blagojevic, & Zivkovic, 2014; Ahmadi & John, 2015; Bella et al., 2016; Zhang et al., 

2015). Relative Humidity has been found in some studies to be associated with lower PM 

concentrations as it increases (Cai et al., 2014; Li et al., 2014; Lai, 2012).  This could be 

due to the increase of humidity before the onset of precipitation events. In other cases, 

higher relative humidity leads to higher PM concentrations because more water vapor 

condenses onto the particles, increasing their weight.  Precipitation causes removal of 

pollutants due to wet deposition, which would lead to lower concentrations of PM2.5 

(Brunner et al., 2015; Zhang et al., 2015;  Zhen et al., 2013; Lai, 2013; Jacobson, 2012, 

p. 294).   

In order to estimate the likelihood of the weather effects on PM2.5 concentrations, 

an extensive review of the available literature on similar concepts has been conducted.  

The available literature has covered a wide array of geographical study areas, and each 

research article related to weather has a specific focus on certain weather conditions.  

The literature representing the most recent research conducted on the relationship 
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between weather and PM2.5 concentration, PM2.5 concentration and asthma-related 

hospitalization, and weather conditions and asthma-related hospitalization were compiled 

to assess the relevance of the proposed research. 

One aim of this research is to determine the potential spatial correlations of 

weather variables (including daily maximum dry-bulb temperature, daily average wind 

speed, daily sustained wind speed, daily average station pressure, daily average relative 

humidity, and daily total precipitation) with ambient PM2.5 concentration.  The other aim of 

this research is to determine the potential correlation between PM2.5 concentration and 

adult asthma-related hospital admissions.  The focus will be on the Dallas-Fort Worth 

area of Texas comprised of Collin, Dallas, Denton, Ellis, Erath, Hood, Hunt, Johnson, 

Kaufman, Navarro, Palo Pinto, Parker, Rockwall, Somervell, Tarrant, and Wise Counties.  

These counties were chosen based on their having asthma data available for the 

analysis.  In addition, 10 of the counties - Collin, Dallas, Denton, Ellis, Johnson, Kaufman, 

Parker, Rockwall, Tarrant, Wise – are classified as serious nonattainment for ozone 

based on the 2008 0.075 ppm 8-hour standard. Nine of them—Collin, Dallas, Denton, 

Ellis, Johnson, Kaufman, Parker, Tarrant, and Wise Counties—are classified as marginal 

nonattainment for ozone based on the 2015 0.070 ppm 8-hour standard (Texas 

Commission on Environmental Quality, 2020).   

The questions to be answered by this research are 1) does ambient PM2.5 

concentration correlate with weather conditions (the maximum dry-bulb temperature, 

average wind speed, average station pressure, sustained wind speed, average relative 

humidity, and total precipitation), and 2) what is the correlation between asthma-related 

hospital visits and PM2.5 concentrations? These questions were answered by modelling 

the ambient PM2.5 concentrations in the DFW area for the year 2014 by using the 

variables of daily meteorological factors (specifically daily maximum dry-bulb 
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temperature, daily average wind speed, daily sustained wind speed, daily station 

pressure, daily average relative humidity, and daily total precipitation), road type, average 

daily traffic counts, dominant land use, and the PM2.5 concentrations which were 

measured by the pre-existing stationary monitors in the DFW metropolitan area, and 

seeing if the modeled PM2.5 concentrations showed any significant correlation with the 

mentioned weather variables and with asthma cases.  The 2014 reported asthma cases 

were assessed as well in the spatial analyses.   

A Radial Basis Function (RBF) neural network via the Matlab Neural Network 

Toolbox was used in order to create an estimate of the PM2.5 concentrations in the DFW 

area which were not reported by PM2.5 monitors.  In the DFW area, there are very few air 

pollution monitors in the area (seven monitors which were available for the study area 

and dates) which actually reported PM2.5 concentrations, and 19 monitors in the area 

which reported all-inclusive and persistent weather data.  The RBF network model 

estimates what the PM2.5 concentrations would be in the surrounding areas, even where 

there are not PM2.5 monitors.  The RBF network was defined and run based on input of 

known daily maximum dry-bulb temperature, daily average wind speed, daily sustained 

wind speed, daily average station pressure, daily average relative humidity, daily total 

precipitation, road type, average daily traffic count (ADT), dominant land use type, and 

known PM2.5 concentrations from monitors. 

Definitions 

Particulate matter (PM) describes particles in the atmosphere, and it can be 

described as PM10 or PM2.5.  PM10 is particulate matter that is less than 10 μm in 

diameter, while PM2.5 is particulate matter that is less than 2.5 μm in diameter.  PM2.5 is 

often called fine PM or aerosols.   
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Ordinary kriging is a spatial tool that was used in this study.  Gorai et al. (2014) 

describe that “in kriging, a smooth surface is estimated from irregularly spaced data 

points based on the assumptions that the spatial variation in the feature (O3, PM2.5, and 

SO2) is homogeneous over the domain and depends only on the distance between sites” 

(p. 4854). 

An artificial neural network (ANN) consists of an input layer, a hidden layer, and 

an output layer.  The input layer acts as a set of “neurons” and are fed into the hidden 

layer (Mishra, Goyal, & Upadhyay, 2015).  The hidden layer functions as a “feature 

detector,” and the output is determined once it collects the detected features from the 

hidden layer (Mishra et al., 2015).   A radial basis function (RBF) network also has the 

input, hidden, and output layers.  Furthermore, the “radial basis version of the Gaussian 

function is employed to represent the distribution of variable values in the input layer” 

(Zou et al., 2015, p. 10398).   

Oxidative stress is the result of an “imbalance between the production of reactive 

oxygen species and reactive nitrogen species and the capacity of antioxidant defense 

mechanisms” (Jesenak, Zelieskova, & Babusikova, 2017). In asthma, oxidative stress is 

more evident in acute exacerbation situations or when induced by allergens (Jesenak et 

al., 2017). 

Wet deposition is the process of rain or snow particles forming on top of 

particulate matter in the atmosphere, and those rain or snow particles are deposited to 

the earth’s surface (Jacobson, 2012, p. 294).  Wet deposition also refers to the process 

of particulate matter being scavenged by rain or snow particles as they are falling, also 

resulting in the deposition of the particulate matter to the earth’s surface (Jacobson, 

2012, p. 294).  Dry deposition refers to the process of particulate matter falling to the 

surface due to either their own weight or the wind (Jacobson, 2012, p. 294). 
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A temperature inversion is the increase in temperature with the increase in 

atmospheric height (Jacobson, 2012, p. 50).  Air pollutants are typically trapped within or 

beneath an inversion, so if an inversion occurs closer to the ground, pollutant 

concentrations increase (Jacobson, 2012, p. 50). 

Photochemical smog refers to a mixture of pollutants (mainly ground-level ozone) 

which are the result of chemical reactions in the atmosphere (Friis, 2012, p. 254).  The 

chemical reactions include reactions among fossil fuel combustion products, i.e. VOCs 

(volatile organic compounds) (Friis, 2012, p. 254).  

A cyclone is the large-scale circulation of wind around a low-pressure center on 

the earth’s surface (Jacobson, 2012, p. 130).  An anticyclone is the large-scale circulation 

of wind around a high-pressure center on the earth’s surface (Jacobson, 2012, p. 130).  

Anticyclones are distinguished by “gently subsiding vertical motion in the troposphere” 

and typically favor clear skies (which is associated with high-pressure systems), which 

promotes strong nighttime radiative cooling on the surface of the earth (Colucci, 2015).  

Sinking air warms while radiative cooling takes place on the earth’s surface, which often 

results in an inversion in the vertical temperature profile (Colucci, 2015). 

A street canyon is an urban street lined with buildings on both sides, and these 

areas typically have high traffic density (Pesic et al., 2014). Air pollutants (i.e. PM2.5) may 

not be diluted or dispersed by wind in this setting due to winds being inhibited by the 

presence of those buildings on both sides of the street (Pesic et al., 2014).  The Urban 

heat island effect describes the phenomenon of urban areas being generally warmer than 

rural areas (Winguth & Kelp, 2013).  In the daytime, heat is stored in urban structures (i.e. 

buildings), and at night, that stored heat is released.  Thus, the intensity is generally 

increased at night (Hu & Xue, 2016). 



 

8 

The rapid population growth and urbanization of the Dallas-Fort Worth region of 

north Texas will presumably lead to increasing PM2.5 concentrations.  Due to that and the 

relative lack of information on the correlations, more research on the effects of PM2.5 on 

human health—specifically asthma—is needed.  In the following chapter, a review of 

recent literature will assess what is known about the effects of weather elements on PM2.5 

concentrations, and the effects of PM2.5 concentration on asthma. 
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Chapter 2 

Literature Review 

This chapter will focus on the recent literature pertaining to air pollutants, weather 

conditions, and asthma.  The purpose of the chapter is to assess what is currently known 

about PM2.5, weather, their effects on each other and their effects on the presence or 

exacerbation of asthma symptoms.  There will also be a focus on the methodology used 

for modelling those variables in recent literature.   

EPA Air Quality Standards 

The U.S. Environmental Protection Agency specifies National Ambient Air Quality 

Standards (NAAQS) for six criteria pollutants:  particulate matter, ground-level ozone 

(O3), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), and lead (Pb) 

(Lu & Fang, 2015).  If the NAAQS is exceeded for any one or more of these criteria 

pollutants, the air quality is considered “bad” on varying levels (Lu & Fang, 2015).  The air 

quality index is used to assess the severity of air pollutant concentrations in a given area: 

Air quality index (AQI) indicates the degree of air pollution and the 

potential health effects from air pollution. It is a tool designed to help 

the public understand the local air quality and the adverse health 

effects of ambient air…The U.S. EPA calculates AQI based the 

concentration of major air pollutants, i.e., ground-level O3, PM2.5, 

PM10, carbon monoxide (CO), nitrogen dioxide (NO2), and nitrogen 

oxide (NOx). AQI is reported following a six-color scheme from green 

to maroon, corresponding to good air quality to hazardous air 

quality, respectively. (Lu & Fang, 2015, p. 33) 

Figure 2-2 shows the color scheme of the U.S. EPA’s AQI.   AQI is calculated for each 

pollutant using the formula, 𝐼 =
𝐼ℎ−𝐼𝑙

𝐵ℎ−𝐵𝑙
(𝐶 − 𝐵𝑙) + 𝐼𝑙, “where I is the AQI value for a pollutant 

of concern, C is the air pollutant concentration, Bh is the high break point (≥C) for the 
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concentration of the pollutant, Bl is the low break point (≤C) for the concentration of the 

same pollutant, Ih is the high AQI limit corresponding to Bh, Il is the low AQI limit 

corresponding to Bl” (Lu & Fang, 2015, p. 33). The EPA has defined for each pollutant 

the threshold concentration values of Bh, Bl, Ih and Il based on the health impacts of each 

pollutant (Lu and Fang, 2015). The AQI of a given day is the highest AQI value recorded 

during that day (Lu and Fang, 2015).  The fact that PM2.5 is one of the criteria pollutants 

listed by the U.S. EPA indicates the significance of PM2.5 in relation to human health in 

general.  It is important to understand the way the AQI system works when studying the 

effects of PM2.5, or any air pollutant, on asthma.  Lu and Fang (2015) are exemplary at 

clarifying how the AQI is calculated, and their figure (Figure 2-1) is helpful in showing 

which levels are considered to be unhealthy for those with asthma (sensitive groups) and 

for those without.  Figure 2-2 shows how the AQI index translates specifically to PM2.5 

concentration. 

 

Figure 2-1.  The AQI standard for the U.S. EPA (Lu and Fang, 2015). 
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Figure 2-2. PM2.5 AQI levels in terms of health effects (Du & Varde, 2016). 

DFW Air Quality 

It is helpful to look again at the air quality index for ozone and PM2.5 for DFW in 

order to get a clear idea of the NAAQS exceedances, as DFW exceeded the National 

Ambient Air Quality Standard (NAAQS) for ozone for decades.  Figures 2-3, 2-4, 2-5, 2-6, 

and 2-7 show the air quality index levels of both ground level ozone and PM2.5 in DFW 

from the years 2010 through 2014. As mentioned earlier, PM, including PM2.5, is 

frequently strongly correlated with ozone (Guarnieri & Balmes, 2014).  As seen in Figure 

2-5, in 2012, the AQI value for PM2.5 was at an unhealthy level for at least the sensitive 

groups during November and December, being unhealthy for all at one point in 

November.  Figure 2-6 shows that the AQI value for PM2.5 was at an unhealthy level for 

sensitive groups in August 2013, and Figure 2-7 shows that the AQI value for PM2.5 was 

at an unhealthy level for sensitive groups in July 2014.       
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Figure 2-3.  Daily ozone and PM2.5 AQI values in the Dallas Fort-Worth metroplex in 

2010. 

 

 

Figure 2-4.  Daily ozone and PM2.5 AQI values in in the Dallas Fort-Worth metroplex 

2011. 
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Figure 2-5. Daily ozone and PM2.5 AQI values in the Dallas Fort-Worth metroplex in 2012. 

 

 

Figure 2-6.  Daily ozone and PM2.5 AQI values in the Dallas Fort-Worth metroplex in 

2013. 
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Figure 2-7.  Daily ozone and PM2.5 AQI values in the Dallas Fort-Worth metroplex in 

2014. 

Figure 2-8 reveals levels of ground-level ozone in the air from the years 2000 

through 2017. The levels in DFW have been quite high for many years—over 0.070 ppm, 

with 0.071-0.085 ppm of ground level ozone being dangerous for sensitive groups (U.S. 

EPA, 2017).  The figure does show lower levels in recent years, although at unhealthy 

levels for sensitive groups. Figures 2-9 and 2-10 also show the mean concentrations of 

PM2.5 and ozone, respectively, from 2010 through 2014.  From the figures, it is seen that 

PM2.5 is not typically considered to be at extremely unhealthy levels as ozone is based on 

the mean concentrations, but it does show relatively high concentrations periodically. 
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Figure 2-8.  Number of days the 8-hr ozone daily maximum exceeded 0.070 ppm in the 

Dallas-Fort Worth area from 2000 to 2018 (U.S. EPA, 2017). 

 

 

Figure 2-9.  Daily mean PM2.5 concentrations in the Dallas-Fort Worth area from 2010 

through 2014 (U.S. EPA, 2017). 
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Figure 2-10. Daily maximum 8-hour ozone concentrations in the Dallas-Fort Worth area 

from 2010 through 2014 (U.S. EPA, 2017). 

Pollutants and Health Effects 

Because oxidative stress is associated with exposures to ozone, nitrogen 

dioxide, and PM2.5 (specifically PM2.5 which is made up of transition metals, polycyclic 

aromatic hydrocarbons, and environmentally persistent free radicals), exposure to those 

pollutants is thought to be linked to exacerbations of and likely the onset of asthma 

(Guarnieri & Balmes, 2014).  Those same pollutants are also known to induce airway 

inflammation, and ozone and nitrogen dioxide are known to induce airway hyper-

responsiveness (Guarnieri & Balmes, 2014).  Other studies have shown similar results.   

Lu and Fang (2014) stated that besides high air pollution exposure causing an increase 

in illness and mortality, accrued exposure even to low levels of PM and ground-level O3 

can result in severe illness and death.  Lu and Fang (2014) are presumably lumping all 

PM together in their article.  PM10 does not pose the same risk of adverse effects on 

health as PM2.5; PM2.5 is more detrimental to human health (Jacobson, 2012, p. 123; 

Friis, 2012, p. 253).  This is because PM2.5 particles can circumvent the body's typical 
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defenses, and they can be inhaled and deposited deep in the lungs (Friis, 2012, p. 253).  

If the particles do then dissolve, the body cannot efficiently remove them with its natural 

processes (Friis, 2012, p. 253).  Therefore, it has become important to differentiate 

between the two.  Also, unlike Guarnieri and Balmes (2014), who clearly focus on 

asthma, Lu and Fang (2014) are not specific about the illness in question.  Air pollutants 

have been associated with different illnesses (i.e. PM2.5 with both respiratory and 

cardiovascular disease) so one needs to be clear about the particular health concern in 

question.  More focused research with results pointing to effects on a particular health 

concern, i.e. asthma, is necessary in order to further solidify claims that PM2.5 has an 

adverse effect on it. 

It is the case that PM is typically strongly correlated with O3, NOx, and SOx 

(Guarnieri & Balmes, 2014).  In New York, there was a positive correlation between the 

annual mean PM2.5 concentration and the concentration of SO2 and between the annual 

mean PM2.5 concentration and the annual rate of asthma-related emergency room visits 

from 2005 to 2007 (Gorai et al., 2014).  However, the correlation between the annual 

mean concentrations of ground-level ozone and asthma discharge and emergency visits 

was negative for the same time period (Gorai et al., 2014).  PM2.5, particularly ultrafine 

particles (PM less than 100 nm in diameter) like diesel exhaust particles and residue oil 

fly ash, can infiltrate the lung deep into the alveolar regions (Huang et al., 2015).  Thus, 

short-term exposure to ambient PM2.5 and PM10 has been linked to asthma symptoms in 

both children and adults (Guarnieri & Balmes, 2014).  Research by Guarnieri and Balmes 

(2014) and Jacquemin et al. (2012) show that long-term exposure to PM is associated 

with uncontrolled adult asthma, leading to increased symptoms, reduced lung function, 

and increased hospitalization.  Jacquemin et al. (2012) refer to only PM10, whereas 

Guarnieri and Balmes (2014) refer to both PM10 and PM2.5.  According to Huang et al. 
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(2015) on page 27, PM may be shown to affect asthmatic patients because “combustion-

derived PMs are known to be highly oxidizing and are capable of generating free radicals, 

through, in part, their surface metals involved in redox cycling or the depletion of anti-

oxidant glutathione and protein-bound sulfhydryl groups.”  Huang et al. (2015) do not 

specify that they are referring to PM2.5, so it is difficult to know for certain that they mean 

PM2.5 and not PM10.  As discussed by Khamutian et al. (2015), Jacobson (2012), and 

Friis (2012), PM10 may differ in its effect on asthma, so research which clearly separates 

the two must be done in order to back up any claims that PM2.5 has an adverse effect on 

asthma, or that PM10 does not. 

Pollutants and Asthma 

When it comes to air pollution and its link to asthma cases, there is plenty of 

literature that focuses on ozone as it pertains to asthma aggravation worldwide.  The U.S. 

EPA (2015) links ozone to the aggravation of asthma and possibly to asthma 

development.   Other pollutants, including particulate matter, sulfur dioxide (SO2), and 

nitrogen dioxide (NO2), among others, have been considered for their health impacts as 

well in recent literature.  In fact, the Global Burden Study of 2010 listed outdoor air 

pollution in general among the top ten worldwide health risks (Robichaud et al., 2016). 

Particulate matter (PM) refers to particles in the atmosphere, and it can be 

derived from different sources.  Particulate matter can be described as PM10 or PM2.5, 

and as either primary or secondary.  PM10 is particulate matter that is less than 10 μm in 

diameter, while PM2.5 is particulate matter that is less than 2.5 μm in diameter.  PM2.5 is 

often called fine PM.  Fine particulate matter can be referred to as aerosols as well.  

Primary PM is emitted directly into the atmosphere by a source, while secondary PM is 

often formed via gas-to-particle conversion within the atmosphere (Zhang et al., 2015).  
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Particulate matter can be derived from natural sources or anthropogenic activities and 

sources. 

Natural sources of PM include emissions of gases and aerosols from vegetation 

(e.g. release of pollen), soil (e.g. windblown dust, dust storms, and nitrogen dioxide and 

carbon monoxide from microbial processes), ocean, wildfire, sea spray, and lightning 

(Zhang et al., 2015).  In urban areas, most PM emissions have anthropogenic origins and 

natural sources such as wildfire, sea spray, and lightning (Zare et al., 2014). Wang et al. 

(2013) suggest that PM2.5, in the form of smoke aerosols, is released from fire. Although 

the articles listed above are focused on fine PM, different PM sources may produce 

different particle size categories.  For example, certain sources produce a certain 

percentage of coarse PM versus fine PM.  Therefore, the authors could have been more 

diligent in their specification of PM sizes. 

As far as anthropogenic sources, primary PM is usually derived from industrial 

and traffic-related sources—chiefly from coal and oil fuel combustion (Guarnieri & 

Balmes, 2014), but also from diesel soot, welding fumes, black carbon, or oil fly ash 

(Huang et al., 2015).  Vehicle emissions (oil fuel combustion) are the most significant 

primary source of particulate matter in the urban environment (Ristovski et al., 2012), 

producing 31% of primary PM in Los Angeles, California (Zhang et al., 2015).  Due to 

vehicle emissions, it is suggested that proximity to busy roads plays a role in the 

concentration of certain pollutants in an area.  For example, Li et al. (2015) reports that 

areas in which there is abundant motor vehicle traffic, due to vehicle emissions, contain a 

higher concentration of air pollution, whereas areas with more green space and fewer 

vehicles passing through have less air pollution.  Unfortunately, when stating this, Li et al. 

(2015) did not specify which pollutants are higher or lower in these areas, which makes it 

difficult to discern, from their work, the relevance to people with asthma.  Huang et al. 



 

20 

(2015) were able to pinpoint multiple sources of primary PM, though their article was 

unclear in explaining the proportions of primary PM being produced by each source. The 

article by Ristovski et al. (2012) was successful in expanding on the proportion of primary 

PM produced by vehicle emissions in Los Angeles.  The article by Guarnieri and Balmes 

(2014) was not specific about the individual types of pollutants which are derived from 

these sources.  There are several pollutants that could be in question here, such as O3.  

It is not limited to PM2.5.  More details about these sources and some pollutants 

associated with them will be discussed further later in this section.   

Other anthropogenic sources of primary PM originate from domestic heating, 

meat cooking, and biomass burning (Zhang et al., 2015).  Biomass burning releases 

PM2.5 in the form of smoke aerosols (Wang et al., 2013) and ozone, and it entails 

activities such as fireplace wood burning, open wood burning, and straw burning (Zhang 

et al., 2015).  While Zhang et al. (2015) and Wang et al. (2013) were successful in 

conveying the specific processes by which PM is released by burning of materials, Wang 

et al. (2013) were more successful in expanding on the specific details of how PM2.5 is 

released.  Neither article, however, was effective in explaining where these activities 

would occur, i.e. in rural or urban settings, or in a geographic sense.  Relating this to 

DFW, a lot of biomass burning likely takes place in more rural areas, in agricultural 

settings.  This is likely true mostly of open wood burning and straw burning.  However, 

fireplace wood burning can take place all over the DFW area, in urban, suburban, and 

rural areas—wherever there are homes with fireplaces.  Even open wood burning can 

take place in urban and suburban areas—presumably, this may be associated with 

outdoor cooking. 

Secondary PM includes organic matter, sulfate, nitrate, and ammonium, the 

formation of which is caused by emissions of VOCs (volatile organic compounds), SO2, 
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NOx (nitrogen oxides), and ammonia (Zhang et al., 2015).  The formation of secondary 

PM is more complicated than the release of primary PM.  In urban settings, there can be 

high VOC emissions from both anthropogenic and natural sources.  The VOCs go 

through photochemical oxidation, which leads to the formation of semi-volatile and 

nonvolatile gases.  These gases go through gas-to-particle conversion processes, which 

results in organic particles (Zhang et al., 2015).  Gas-phase VOCs are oxidated, driven 

by reactions with different radicals (e.g. OH, NO3, or O3).  In the daytime, VOC oxidation 

initiated by OH yields “aldehyde, ketone, alcohol, carboxylic acid, hydroperoxide, 

percarboxylic acid, and peroxyacyl nitrates” (Zhang et al., 2015, p. 3809).  The resulting 

particles depend on solar radiation intensity, ambient temperature, relative humidity, VOC 

structure, and NOx levels (Zhang et al., 2015). 

In Houston, Texas, secondary inorganic aerosols represent 42% of the ambient 

fine PM, followed by vehicle emissions (31%), and because of the large amount of 

vehicles, road dust represents another significant source of PM2.5 (11%) (Zhang et al., 

2015).  Secondary PM makes up a significant amount of the total mass of urban fine PM 

in the atmosphere.  Vehicle emissions contribute to both primary and secondary PM 

concentrations.  However, an important point to note is that determining the percentages 

of pollutants emitted by a source is difficult due to the abundance of natural and 

anthropogenic sources for urban PM.  Zhang et al. (2015) includes secondary PM 

formation process as well as the proportions of PM2.5 emitted from significant sources to 

the atmosphere (Figure 2-11). 

 



 

22 

 

Figure 2-11.  Formation of atmospheric particulate matter (Zhang et al., 2015). 

Exposure of those individuals with asthma to pollutants, including PM2.5, NO2 

(nitrogen dioxide), and O3 can induce airway inflammation (a characteristic of asthma), 

and airway hyper-responsiveness (another characteristic of asthma) can be caused by 

exposure to NO2 and O3 (Guarnieri & Balmes, 2014).  Oxidative stress, a characteristic of 

severe asthma, can be caused by exposure to O3, NO2, and PM2.5 (Guarnieri & Balmes, 

2014).  Those pollutants (O3, NO2, and PM2.5) are associated with both exacerbation and 

onset of asthma, and in the case of childhood asthma in particular, researchers found 

that 15% of exacerbations were due to exposure to primary pollutants emitted directly 

(including PM2.5, NOx, and VOCs ) and the secondary pollutants (e.g. O3) that are formed 

by photochemical reactions with vehicle-emitted NOx and VOCs (Guarnieri & Balmes, 

2014).  Although they were not specific about the ways in which asthma was affected, 

their focus on hospitalization indicates that they were focused on subjects whose asthma 
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was severely aggravated.  While Guarnieri and Balmes (2014) were successful in 

showing how PM2.5, among other pollutants, can affect asthma, they left room for 

expansion on what components of traffic-related pollution could contribute to asthma 

being exacerbated. 

Even though some studies have pointed to the larger PM10 being associated with 

asthma exacerbation, a study done in Kermanshah, Iran showed that PM10 had no 

significant association with the number of asthma-related hospitalizations (Khamutian et 

al., 2015).  Instead, gaseous pollutants (CO [carbon monoxide], O3, NO [nitric oxide], 

NO2, and SO2) played an important role in asthma patients’ hospitalizations (Khamutian 

et al., 2015).  This goes along with the accepted view that PM2.5 is more detrimental to 

human respiratory health than is PM10, as explained by Jacobson (2012) and Friis (2012).  

The study by Khamutian et al. (2015) was not as descriptive about sources of PM10 or 

other pollutants.     

The pervasiveness of asthma has increased since the 1960s, especially in 

westernized countries (Baldacci et al., 2015).  In fact, as of 2015, an estimated 23 million 

people had asthma in the US (U.S. EPA, 2015).  It is suggested that this cannot be 

explained only by genetics; increased exposure of western populations to air pollution 

due to urbanization and industrialization is believed to be a contributor to the rise 

(Baldacci et al., 2015).  Baldacci et al. (2015) did not explain what urbanization and 

industrialization specifically release as far as pollutants.     

Urbanization and industrialization entail increased air pollution, such as traffic-

related air pollution.  Traffic-related air pollution includes those pollutants released due to 

fossil fuel combustion:  PM, SO2, NO2 and CO, and the greenhouse gases carbon dioxide 

(CO2), methane (CH4) and nitrous oxide (N2O) (DeSario, Katsouyanni, & Michelozzi, 

2013).  As the population of an area grows, one consequence is that there will typically 
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be more vehicles on roads, thus leading to increased air pollution.  DeSario et al. (2013) 

effectively specified what pollutants are released into the air due to fossil fuel combustion; 

however, they did not specify which particulate matter is being released (whether it is 

PM10, PM2.5, or a combination).  This is important in that, as discussed by Khamutian et 

al. (2015), PM10 may not be significant in terms of asthma, whereas other literature points 

to PM2.5 having a noticeable impact on asthma.       

Weather Elements and Pollutants 

Several meteorological variables are often shown to have combined effects on 

air pollution concentrations.  For example, in a study based in Shanghai, China, Cai et al. 

(2014) found that PM10 and black carbon concentrations decreased with increasing 

outdoor temperature and humidity (Cai et al., 2014).  However, in another study 

conducted in China, it was found that PM10 concentrations increased with increasing daily 

maximum temperatures (Li et al., 2014).  While they did include PM10 in their focus, Cai 

et al. (2014) did not explicitly mention PM2.5 in their study, though black carbon is typically 

considered to be in the category of fine particulate matter.  Li et al. (2014) actually 

included daily average temperature, relative humidity, precipitation and maximum wind 

speed as variables in their study.  Notably, Li et al. (2014) and Zhang et al. (2015) 

considered other meteorological variables in their research (i.e. solar radiation and 

precipitation, to be explained later in this section, Weather Elements and Pollutants), 

which is quite important.  There are many meteorological events and processes which 

take place daily, and as many as feasible must be considered to get a clear idea of what 

processes may affect the concentrations of ambient PM2.5 for an area.  

A study from Poland found that high ozone levels were observed with higher 

levels of radiation, air temperature, and wind speed; however, atmospheric pressure had 

unclear effects on the ozone levels (Kalbarczyk et al., 2015).  It is found that cloudiness 
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tends to also have an effect on ozone and other secondary pollutant formation, as the 

clouds can limit incoming solar radiation (Wałaszek et al., 2017).  With what is known 

about the formation of ozone (i.e. the necessity of solar radiation in order for the 

photochemical reactions to take place), one can hypothesize that the extreme heat, 

usually associated with high amounts of sunlight, may cause increased risk of 

hospitalization from asthma because of its effect on ozone.  It is interesting to again note 

the studies from Toronto, Canada (Feldman et al., 2014) and Maryland, USA (Soneja et 

al., 2016) mentioned in the Weather Elements and Asthma section, in which it was found 

that extreme heat is associated with increased asthma exacerbation. 

There are some studies which have found patterns between air pollutant 

concentrations and meteorological variables such as precipitation and wind speed, rather 

than just surface temperature and/or relative humidity alone.  Often, precipitation and 

wind are associated with removal or dispersion of air pollutants, including PM2.5.  Both 

primary and secondary PM undergo chemical and physical transformations in the 

atmosphere as well as transport, cloud processing, and removal from the atmosphere, 

according to Zhang et al. (2015) and Brunner et al. (2015).  Zhang et al. (2015) points out 

that PM formed in urban areas is transported downwind, with [primary PM] being 

transported 20 – 30 km.  Also, PM precursors (which eventually form secondary PM) are 

transported to the urban areas from areas upwind (Zhang et al., 2015). As far as further 

removal processes, Zhang et al. (2015) and Brunner et al. (2015) agree that fine PM may 

be removed by dry deposition or wet deposition (via in-cloud scavenging and below-cloud 

scavenging), with wet deposition involving fine PM being incorporated in water droplets in 

clouds or raindrops, thus being removed from the atmosphere and deposited on the 

ground.  While both Zhang et al. (2015) and Brunner et al. (2015) are aligned in their 

assessment of the processes by which PM may be removed from the atmosphere, Zhang 
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et al. (2015) go into more detail about the transport and removal processes of fine PM.  

This gives a clear picture of how natural meteorological processes may reduce the fine 

PM concentrations in the atmosphere, which is important to note when comparing the 

concentrations of fine PM in the atmosphere to the meteorological events that have taken 

place around a given time.  

There is evidence, as mentioned, that wind-induced mixing affects air pollutant 

concentrations via dispersion of the pollutants. Increase in wind speed and shear 

enhances vertical mixing as does thermal convection (Pesic et al., 2014).  In the case of 

fire pollutants, which include ozone and particulate matter, dispersion of the pollutants is 

controlled by their buoyancy in low wind velocity situations, and by the wind intensity in 

high wind velocity situations (Pesic et al., 2014).  While Pesic et al. (2014) were 

successful in shedding light on the effects of wind speed on dispersion of 

pollutants/aerosols produced from fires, a more in-depth look at the dispersion of different 

sizes of PM would have served them well.  It would be helpful to know if different particle 

sizes are affected differently by different wind speeds. 

Wind direction is a meteorological variable that has been shown to contribute 

significantly to the dispersion of air pollutants (Contreras & Ferri, 2016).  Ahmadi and 

John (2015) and Bella et al. (2016) agree that the wind transports air pollutants such as 

ozone from one county to another.  Ahmadi and John (2015) consider that the drilling for 

natural gas in the Barnett Shale area, which is situated on the west side of DFW, is a 

major source of ozone for the rest of DFW.  Figure 2-12 shows the area that was 

referenced as Barnett Shale, as well as where the drilling takes place (Ahmadi & John, 

2015).  In addition to a few other counties to the west, some of the counties from the 

study area of this current study are at least partially situated on the Barnett Shale:  Palo 

Pinto, Erath, Somervell, Hood, Parker, Wise, Denton, Collin, Tarrant, Johnson, Hill, 
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Dallas, and Ellis Counties.  Those counties which are situated on the shale and are a part 

of the drilling activities, according to Ahmadi and John (2015), experience a higher rate of 

ozone exceedances than other nearby counties in which there is no drilling activity 

(including Collin, Rockwall, Hunt, and Kaufman Counties).  Bella et al. (2016) indicate 

that CO from fires as far away as the Pacific Northwest has made its way to the Houston, 

Texas area, as well as ozone and its precursors being transported from other distant 

locations into Texas.  However, the source location(s) of ozone and its precursors are not 

pinned down in the discussion from this study.  Also, the specific precursors are not 

explicitly stated.   

 

Figure 2-12.  Barnett Shale drilling activity in North Texas (Ahmadi & John, 2015). 

In Hong Kong, between 2000 and 2011, researchers found that changes in wind 

and emissions are two of the most important variables to consider in variations in local air 



 

28 

quality, focusing on PM10 and SO2 concentrations (Y. Li et al., 2014).  They did not 

specify which type(s) of emissions; however, there is a fair amount of evidence to back 

up this statement as far as the effects of wind on transport and dispersion of pollutants, 

as seen above.  Ahmadi and John (2015) focused on ozone being transported downwind, 

but did not mention particulate matter at all, let alone PM2.5.  Bella et al. (2016) also 

focused on O3 and CO but did not mention PM2.5 either.  Y. Li et al. (2014) focused on 

PM10 and SO2, but not PM2.5.   

Brunner et al. (2015), Zhang et al. (2015), Zhen et al. (2013), and Lai (2013) 

suggest that heavy precipitation contributes to the dispersion and removal of some water 

soluble trace gases (e.g. formaldehyde, carbon dioxide and nitrogen oxide) and aerosols 

(fine PM) via wet deposition.  Zhen et al. (2013) did report on PM10 concentrations in their 

study, but not PM2.5.  Lai (2013) further explained that in all, high humidity, low 

precipitation, and low wind speed are associated with higher concentrations of PM2.5 in 

the atmosphere, which may back up that high precipitation does cause deposition of air 

pollutants, and that it could deposit PM2.5 specifically.  Contrary to other findings 

regarding precipitation, Veremchuk et al. (2016) found that there was not a significant 

correlation found between precipitation and PM10 and PM1 (a smaller form of PM than 

PM2.5).  This is likely because of the atmospheric circulation along with the rough 

topography and suburban development of the area (Veremchuk et al., 2016).  They 

instead found that the season, actual humidity, actual temperature, actual dew point, and 

wind direction were significantly positively correlated with the PM concentrations in 

Vladivostok, Russia (Veremchuk et al., 2016).  Although it was difficult to discern exactly 

how the season and wind direction were correlated with the PM concentrations, 

Veremchuk et al. (2016) were successful in conveying that the individual meteorological 

variables of humidity, temperature, and dew point are involved in the concentrations.  It is 
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important to know which individual pollutants may be removed by the purifying nature of 

precipitation, so it is helpful that Veremchuk et al. (2016) included various gaseous 

pollutants as well as two sizes of PM in their study, covering fine PM and coarser PM.  

Due to the findings of some of the research on the correlation between precipitation (and 

other weather variables) and fine PM concentrations differing, it is necessary to gather 

more evidence through more research, and in different locations, as the conflicting 

findings are often in different locations.  

L. Li et al. (2014) state that some variables, being temperature, relative humidity, 

precipitation, and wind speed, were negatively correlated with the air pollution index for 

PM10, NO2, and SO2, and that atmospheric pressure was positively correlated with the air 

pollution index for PM10 in the annual cycle.  The study highlighted the correlation 

between the air pollution index and the atmospheric pressure.  L. Li et al. (2014) 

explained that in an area with a low atmospheric pressure system, the air in the lower 

atmosphere “converges and rises”.  During that process, pollutants from the surface 

(ground-level pollutants) rise to higher altitudes, which results in the dispersion and 

dilution of the pollutants (L. Li et al., 2014).  However, when there is a high-pressure 

system in the surrounding area, the air becomes stable.  This limits the dispersion and 

dilution of pollutants rather keeping them in place in the lower atmosphere (L. Li et al., 

2014).   That description defines what is known as an inversion as it relates to air 

pollution (in regard to high atmospheric pressure).  Low pressure systems are associated 

with stormy weather, which entails more turbulent winds, and the opposite effect from 

that of high pressure systems.   

The study in Hungary by Makra et al. (2015) indicated that thunderstorm events 

tend to increase the frequency of asthma attacks; the researchers point to the 

thunderstorms’ particular conditions circulating pollutants.    In the case of Makra et al. 
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(2015), the specific conditions referenced were an “anticyclonic ridge” (Makra et al., 

2015, p. 1284).  Another example of the effects of a low pressure system is a study done 

in Massachusetts, in which it was found that low pressure days (which included high 

precipitation) resulted in low concentrations of ozone (Austin et al., 2015).  As far as the 

effects of high pressure systems, the results of a study in Taipei revealed that 

photochemical smog days (high ground-level ozone days) took place during episodes of 

high surface air pressure, high air temperature, low relative humidity, and low wind speed 

(Lai, 2012).  Again, high surface air pressure by nature entails a sunny day with low 

winds, the opposite of a low pressure system, which is a condition for stormy weather.  

None of these articles focus on PM2.5, so more research needs to be done in order to 

determine if PM2.5 is affected by storms. 

Some studies found that a number of different meteorological factors impact air 

pollution concentrations.  A study which took place in the southeastern United States 

showed that ground level ozone in particular is affected by temperature, humidity, surface 

pressure, wind speed, and wind direction, but that correlations between ground level 

ozone and those meteorological parameters vary with region and season (Zhang & 

Wang, 2016).  Specifically, high temperatures (especially in the summer), high daytime 

relative humidity (especially in the fall), and low wind speeds are associated with high 

ozone concentrations (Zhang & Wang, 2016).  Zhang and Wang (2016) do not, however, 

go into detail about the effects of surface pressure or wind direction.  This information, 

especially since it was mentioned, would have clarified the factors which affect ozone 

concentration and how they affect it.    

Some researchers focus on synoptic scale weather types (large, regional scale 

affected by pressure systems) as the basis for meteorological conditions in their studies 

of air pollution which may be affected by weather.  Liu et al. (2017) found that in the 
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contiguous United States, the concentration of ambient PM2.5 underwent the largest 

increase when the synoptic weather type changed from dry-polar to moist-tropical air 

masses, and that a change from moist-tropical to dry-polar weather type caused the 

largest decrease in ambient PM2.5 concentrations.  It is important to note that the findings 

in the same study found that the effects of atmospheric moisture on PM2.5 tend to be 

subtle compared to the effects of air temperature such that when the temperature is 

moderate, neither dry nor moist air, in most cases, are associated with significantly high 

or low concentrations of PM2.5 (Liu et al., 2017).  While these findings are interesting, 

focusing on synoptic weather types can be problematic in that it typically leaves out 

variables such as precipitation and wind speed, among other meteorological variables.  

Considering weather data from the NCEP reanalysis (Kalnay et al., 1996) allows for a 

more detailed possible explanation for the fluctuations in PM2.5 concentrations on the 

regional scale.  Seasonal changes in weather patterns influence concentrations of air 

pollutants such as PM and O3.  The levels of PM are generally higher in summer and fall 

months when the ambient temperature is typically warmer, and lower in winter and 

spring, according to a study in Los Angeles (Delamater, Finley, & Banerjee, 2012).  On 

the outskirts of Santiago, Chile, research results showed that when the maximum 

temperature exceeds 30°C in the summer, ozone episodes tend to take place (Rubio & 

Lissi, 2014).  Rubio and Lissi (2014) do not mention PM, however.  There is much 

research done on ozone and its seasonal concentrations.  However, research which 

mentions how weather affects other pollutants, such as PM2.5, is needed.    

While scientists are beginning to provide proof of the notion that weather does 

indeed have effects on the concentrations of air pollutants in a given area, Makra et al. 

(2015) and Vanos et al. (2013) stress that further studies must be carried out in order to 

determine which specific environmental factors (e.g. weather) affect air pollutant 
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concentrations and how much those factors do affect pollutant concentrations.  In future 

research, focusing on PM2.5 in particular and how it is affected by weather variables will 

aid in the understanding of whether PM2.5 is in higher concentrations at certain times 

based on meteorological factors, and in turn what to expect during certain meteorological 

events as far as health concerns like asthma. 

Weather Elements and Asthma 

Asthma is characterized by airway inflammation (Fitzpatrick et al., 2009), airway 

smooth muscle hyper-responsiveness, and oxidative stress (Guarnieri & Balmes, 2014).  

There is research that shows that certain elements of weather aggravate asthma 

symptoms.  For example, in Toronto, Canada (Feldman et al., 2014), and in Maryland, 

USA (Soneja et al., 2016), researchers found that increasing temperatures correspond 

with increased risk for asthma-related hospital admission.  Although Feldman et al. 

(2014) do not go into detail about other weather variables, Soneja et al. (2016) found that 

exposure to extreme precipitation also corresponds with increased risk for asthma-related 

hospital admission.  DeSario et al. (2013) emphasize other weather-related variables 

such as humidity, visibility, cloud cover, air pressure and wind speed also need to be 

further examined as possible causes of respiratory disease exacerbation.     

Weather influences on asthma have been discussed in various studies.  Even 

though the study in Maryland (mentioned above) associated increased asthma-related 

hospitalization with extreme heat, there are studies which report cold temperatures are 

related to increased rates of asthma-related hospitalization.  Studies in Iran (Khamutian 

et al., 2015) and Spain (Roye et al., 2016) revealed results which showed that there were 

higher rates of asthma cases during cooler months.  Makra et al. (2015) suggest that the 

reason behind the cold air causing the aggravation of asthma is that “inhalation of cold air 

in hyper-reactive bronchi induces inflammation of the mucous membrane. Furthermore, 
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the inhalation of dry and cold air also activates the so-called cold receptors on the nasal 

mucous membrane, which contributes to the development of the respiratory hyper-

reactivity” (p. 1281).  It is useful that a possible reason for the cold air causing 

exacerbation of asthma is presented, as those previously-mentioned articles linking warm 

outdoor air to asthma do not go into such detail.  It is important to determine why certain 

weather may be causing the aggravation of asthma, but many articles do not explore the 

possible reasons; they instead simply point out the external conditions which are 

evidently present when there are outbreaks of exacerbated asthma.  Interestingly, the 

results of research conducted by Tsangari et al. (2016) in Cyprus were on both sides as 

far as warm and cold air.  Tsangari et al. (2016) highlighted that patients experienced 

increased hospital admissions due to respiratory conditions in the wake of certain 

meteorological events, namely warm, rainy days with high humidity and cold, cloudy days 

with increased precipitation.  Again, the reasons behind this, specific to the effects on the 

human respiratory system, are not explicitly stated here, so there are still questions about 

these results.  However, the article did bring up elements to consider besides 

temperature:  precipitation and humidity.  This advances their study, as there are of 

course more variables in weather than the temperature.  The Cyprus study by Tsangari et 

al. (2016) was based on weather on the synoptic scale (large, regional scale affected by 

pressure systems).  However, it is suggested that climate is more variable on a sub-

regional scale than on a hemispheric or global scale, especially in the case of 

precipitation (Ramos, Cortesi, & Trigo, 2014).  Therefore, local scale weather conditions 

(those conditions which are influenced by variables such as ground temperature and 

winds on the sub-regional scale), may be more useful in assessing the impact of weather 

on air pollutant concentrations. 
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In Hungary, researchers observed that the highest daily mortality due to asthma 

was during times of high relative humidity conditions (Makra et al., 2015). However, the 

same study cites previous research which shows that lower relative humidity is 

associated with increased emergency room visits related to asthma (Makra et al., 2015).  

Also, although heavy rain is associated with lower rates of asthma cases in Europe 

according to Makra et al. (2015), thunderstorms in particular are associated with 

increased asthma aggravation in other studies (Makra et al. 2015).  Makra et al. (2015) 

were good, in this article, about covering many bases.  They pointed out where conflicting 

results were seen between their research and previous research.  It is helpful to see that 

there are such differences, but it does beg the question of why there are such differences 

between the studies on similar subject matter. 

Influence of Weather Elements and Pollutants on Asthma 

Meteorological variables (such as surface temperature, relative humidity, wind, 

and anticyclonic storm events) and air pollution (in particular ground-level ozone) 

individually have effects on human health (Vanos et al., 2015).  This includes effects on 

asthma.  There is, however, more work to be done in determining which particular 

weather conditions and events, if any, do affect PM2.5 concentrations and how.  There is 

one study of note in which researchers found that between temperatures of 1.1 to 80.5°F, 

each 1 µg/m3 increase in PM2.5 concentration was associated with an increased asthma 

symptom pervasiveness in adult women (Mirabelli et al., 2016).  Focusing on temperature 

as the only weather variable, this suggests that the PM2.5 concentration could be the 

driving factor for asthma symptom prevalence on its own.  However, the findings are 

limited due to the testing only involving adult women and not adult men.  Studies by 

Delamater et al. (2012) and Pleijel et al. (2016) show that pollutant concentrations are 

often highly correlated with seasonal changes and climate, not just pollutant emissions 



 

35 

alone.  Makra et al. (2015) and Chen et al. (2016) found that air temperature and relative 

humidity are positively correlated with both pediatric and adult asthma-related 

hospitalizations, and that air pollution effects on human health vary with season and the 

overall weather circumstances.  Makra et al. (2015) focused on PM10 and O3, but not 

PM2.5.  Chen et al. (2016) focused on several pollutants, including O3, NO2, pollen, PM2.5 

and PM10.  However, they only included synoptic scale weather conditions in their study, 

which negates local scale weather variables such as wind speeds, precipitation events, 

and urban heat island effect.   

It is suggested that the contrasts between different circulation weather types (i.e. 

cyclones and anticyclones), in the case of human health impacts, could be more 

important than the synoptic situation (Roye et al., 2016).  Because of this, it may be time 

to examine more local scale weather patterns in terms of air pollutants which negatively 

impact human health.  Due to findings in eastern Texas being that positive correlations 

between PM2.5 and asthma discharge rates not being statistically significant, it is 

suggested that the local weather conditions be considered as another variable possibly 

affecting asthma (Gorai, Tchounwou, & Tuluri 2016).  Gorai et al. (2016) focus on what 

they call Eastern Texas for their study (Figure 2-13).  Although their definition of Eastern 

Texas includes DFW as defined by the current study, the area covered by Gorai et al. 

(2016) is too large.  There still may be differences in the weather events, PM2.5 sources 

and subsequent concentrations, and asthma exacerbation in the two areas, which can 

only be determined with more testing in the individual regions on a smaller scale.    
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Figure 2-13.  Study area (Eastern Texas) of Gorai et al. (2016).  The counties in the study 

area of the current study are highlighted in green. 

Focusing on specific weather-related variables such as humidity, visibility, cloud 

cover, air pressure, temperature, and wind speed, combined with the concentrations of 

air pollutants in areas in which variations of those factors occur, will further the 

understanding of how asthma symptoms are apparently increasing in frequency.  Most of 

the available literature on these topics focuses on large areas, or on a select few cities 

around the world.  Examples which focus on Texas are scant.  Out of the 84 literary 
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sources which were relevant enough to be cited in this study, 9 of them are from studies 

based in some part of Texas.  Only five of those focus on north Texas or DFW.  Other 

articles focus on other cities around the world, in Europe, Asia, South America, Australia, 

and other parts of North America, as seen in the literature reviewed for this research.  

Vanos et al. (2013) suggest that other cities be studied further due to the variation in 

pollutant concentrations which have already been found.   

Chen et al. (2016) suggested that the influence of weather on asthma is yet 

poorly understood other than the apparent correlations between ambient temperatures 

and asthma symptoms.  Perhaps some weather-related correlations with asthma 

symptoms, as well as air pollutant concentrations and their effect on asthma, may be 

further explained by combining pollutant concentration measurements with weather data. 

Urban-Induced Turbulence  

Something that may be important in the case of the more urbanized portions of 

DFW is the effect of buildings on wind turbulence.  The flow and turbulence of air at 

ground level and above urban areas can be disturbed by structures such as buildings and 

by rough terrain (Castelli et al., 2014).  In certain counties, such as Dallas and Tarrant 

counties (where the cities of Dallas and Fort Worth are located), this concept may be 

worth considering due to the abundance of buildings in and around the downtown areas.  

The presence of many tall buildings and other structures in these areas leads to the 

possibility of “street canyons,” which cause the phenomenon of turbulent winds.  The 

findings of Castelli et al. (2014) are very interesting and can be useful in determining the 

effects that differences in wind turbulence due to the presence of buildings may have on 

air pollutants.  However, the research was limited to only suburban areas rather than 

expanding into urban and rural areas for comparison. 
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The rapid urbanization in DFW has contributed to notable urban heat island 

effect (Winguth & Kelp, 2013), with the intensity of the effect—meaning the temperature 

difference at 2 meters between urban and rural zones—reaching 5.48°C in July of 2011 

(Hu & Xue, 2016).  With the predicted population growth and expected furthering of 

urbanization in DFW, future urban heat island circumstances are predicted to be even 

more severe (Hu & Xue, 2016).  In general, the urban heat island effect displays a diurnal 

cycle with lower intensity during daytime and higher intensity at night because of the 

stored heat being released from buildings during the night, making the urban heat island 

effect a primarily nocturnal occurrence (Hu & Xue, 2016). Urban heat island intensity 

typically increases around sunset, staying at a relatively constant level through the night 

until the convective boundary layer begins rapid development early the next morning (Hu 

& Xue, 2016).  It was found that secondary ozone peaks are reached at night due to 

vertical mixing brought on by a sea breeze reaching DFW from coastal areas of Texas on 

the Gulf of Mexico (Hu & Xue, 2016).  Notably, Hu and Xue (2016) focused heavily on 

DFW.  The origin of the ozone is not extensively discussed in the article, and the article 

lacked any mention of the possible correlation between the urban heat island effect itself 

and ambient air pollutant concentrations, i.e. PM2.5 concentrations.       

Built Environment, Weather Elements, Pollutants, and Asthma 

L. Li et al. (2014) acknowledge that the urban heat island effect exacerbates 

pollution originating from vehicle emissions due to the implied temperature inversions and 

“static wind speeds” associated with the effect.  Based on that statement, it appears that 

the urban heat island effect, which is generally known to be associated with high 

maximum temperatures, may also play a role in wind speed.  L. Li et al. (2014) are more 

successful in explaining the way the urban heat island effect may exacerbate air 

pollution, however, they are not specific about what pollutants are being discussed.       
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The static wind speeds reported by L. Li et al. (2014) are in contrast to another 

concept:  that of street canyons.  Urbanization is typically accompanied by the presence 

of tall buildings, which ties into street canyons.  Pesic et al. (2014) and Castelli et al. 

(2014) find that the presence of such buildings contribute to the mixing and dispersion of 

pollutants from vehicular, industrial, and domestic pollutant emissions (i.e. domestic 

heating).  With wind speed increasing at the roof level of a street canyon, the strong 

turbulence caused by the increased velocity causes more intensive mixing of the air at 

that level and of pollutants and in turn, lowering local concentrations of pollutants in the 

air (Pesic et al., 2014). Pesic et al. (2014) are discussing aerosols in this research.  

Castelli et al. (2014) focus exclusively on suburban areas in this research, which limits 

the scope of their findings to that particular setting, negating rural and urban settings. 

Because the Dallas-Fort Worth area (the focus of the proposed study) is growing 

rapidly in population (Hu & Xue, 2016) and, in turn, vehicular traffic, air pollutant 

concentrations could be exacerbated (including PM2.5).  This could lead to possible 

increased symptoms of respiratory illnesses, including asthma symptoms, which are 

typically associated with traffic-related air pollutant concentration increases (Guarnieri & 

Balmes, 2014).  When it comes to the DFW area, there is some literature on air pollution 

in general as well as on asthma in relation to air pollution concentrations.  The DFW area 

is presently the fourth largest metropolitan area in the United States due to rapid 

urbanization and industrialization (Hu & Xue, 2016).  The area is expected to grow more 

populated and urbanized in the future, with the projection being that DFW will have a 

population of 15 million by 2050, making it a “megacity” (Hu & Xue, 2016).  It is important 

that Hu and Xue (2016) brought this up, as discussing the projected future of DFW in 

terms of population helps put into perspective how much air pollution, including PM2.5, 

may increase (as population growth leads to increased air pollution).  This demonstrates 
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the need to further research the formation and dispersion of PM2.5 among the other 

pollutants being produced (i.e. O3).   

In 2014, when the eight-hour ozone standard set by the Environmental Protection 

Agency was 75 ppb, a ten-county area in DFW was classified by the EPA as a moderate 

non-attainment area for ozone—Wise, Denton, Collin, Parker, Tarrant, Dallas, Rockwall, 

Kaufman, Johnson, and Ellis Counties were the ten counties (Hudak, 2014).  This means 

the daily maximum eight-hour ozone concentrations for each county, averaged over three 

years (so approximately 2011 through 2013), exceeded 75 ppb (Hudak, 2014).  In fact, 

DFW notably exceeded the National Ambient Air Quality Standard (NAAQS) from 2003 to 

2011 as well (Goodman et al., 2017).  Between 2007 and 2010, Dallas and Harris 

Counties reported the highest number of asthma-related hospital admissions in Texas 

(Goodman et al., 2017).  It is helpful to look again at the air quality index for ozone and 

PM2.5 for DFW in order to get a clear idea of the NAAQS exceedances from 2010 through 

2014, shown in Figures 2-3 through 2-7.  Orange (unhealthy for sensitive groups), red 

(unhealthy), and violet (very unhealthy) represent exceedances in the figures.    

The future of DFW—and other places which are similar in population and 

urbanization—is of concern due to global climate change.  DeSario et al. (2013) and 

Guarnieri and Balmes (2014) found that due to climate change, among other variables, 

air pollution patterns have been changing in many urbanized areas like DFW.  DeSario et 

al. (2013) and Guarnieri and Balmes (2014) explain that climate change will lead to 

increasing atmospheric concentrations of pollutants including O3, PM (e.g. PM2.5), SO2, 

NO2, and CO.  This will be due to higher temperatures and less precipitation as well as 

an increase in frequency of extreme weather events like heatwaves, wildfires, and dust 

storms (DeSario et al., 2013).  DeSario et al. (2013) are not specific about the PM size, 

however.  As has been covered previously, it has become important to differentiate as 
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PM2.5 and PM10 tend to have different connotations associated with health effects.  

Guarnieri and Balmes (2014) specify that PM2.5 will increase due to climate change.  The 

effects of climate change, such as on air pollutant concentrations and asthma 

exacerbations, should be explored more in future research (Guarnieri & Balmes, 2014).  

Other research also shows that climate change could cause an increase in regional 

summer ozone-related asthma exacerbation and hospital visits—the projected increase is 

7.3% for children between 0 and 17 years of age in the New York City metropolitan area 

alone by the 2020s (Sheffield, Knowlton, Carr, & Kinney, 2011). Guarnieri and Balmes 

(2014), as well as Sheffield et al. (2011), are successful in indicating what the future may 

hold in terms of pollutant concentrations due to climate change.  Sheffield et al. (2011) 

took it a step further by projecting the effects on asthma; however, the focus for their 

research was ozone rather than PM2.5.  Projections remain to be shown for the fate of 

DFW in terms of asthma, and in terms of PM2.5, in the coming years marked by climate 

change. 

Tools for Modeling and Analysis 

It has been suggested that determining the percentages of pollutants emitted by 

given sources is difficult, in part, due to the limitations of current technology in efficiency 

and accuracy (Zhang et al., 2015).  In this study, we apply geographic information 

systems (GIS) tools, as main analysis tools. Ordinary kriging is one tool that can be used 

for determining spatial relationships and to properly understand and resolve issues that 

are complex in relationships (Gorai et al., 2014).  However, for ordinary kriging to be truly 

useful, there must be uniformly distributed data (e.g. PM2.5 monitors) (Gorai et al., 2014). 

Ahmadi and John (2015) used spatial interpolation of ozone concentration data 

from TCEQ’s air quality monitoring sites from GIS analysis tools.  While their data came 

from the same place as that from which the PM2.5 concentration data for this current 
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study was derived (TCEQ), TCEQ’s ozone monitoring sites are more abundant than 

PM2.5 monitoring sites.  This leads to more reliable results.  Since there are fewer sites for 

PM2.5 in the DFW Metropolitan area an interpolation method must be selected that 

adequately interpolate the data in space and time. 

An ArcGIS space-time extension toolset named Activity Pattern Analyst (APA) 

may be also suitable to map air pollutant concentrations (ozone, in this case) is described 

by Lu and Fang (2014).  Lue and Fang (2014) enlisted an adult volunteer to travel 

through Houston, Texas, using GPS to track his trajectory, and using an ozone monitor to 

track ozone concentrations along his trajectory.  APA was developed previously by other 

scientists to visualize and analyze individual space-time behavior, aiming at exploring the 

hidden aggregate patterns in large spatiotemporal datasets.  ArcScene (from the ArcGIS 

software package) was used to process space-time travel data. While this is an 

innovative way to use GIS in order to test air pollution concentrations, it may be more 

useful in a smaller area.  It may also have been a more reliable method if more than one 

person was enlisted in order to gather data.  Because it was not done that way, Lu and 

Fang (2014) missed the possibility of more extensive data.  The study by Ahmadi and 

John (2015), mentioned before, was able to report data from a more spread-out area 

since they used stationary sites which were located throughout the study area.  So, 

although there were spaces in between monitors for which data would not have been 

reported, the spread of the data was wider than the straight-line trajectory of the Lu and 

Fang (2014) study.  Given the amount of space which would need to be covered for this 

current study, for example (16 counties), this technique is not feasible due to cost and 

time constraints. 

Machine learning, the study of algorithms and statistical tasks that is performed 

by a computer system without using explicit instructions, has been applied for 
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assessment of PM2.5 concentrations (e.g.  Kleine-Deters et al., 2017). G. Zhang, Rui, & 

Fan (2018) suggested that machine learning may be well-suited approach to predicting 

PM2.5 concentrations and is comparable to other spatial interpolation, remote sensing, 

and dynamic air quality model approaches.  Kleine-Deters et al. (2017) were able to use 

an artificial neural network tool in order show that wind speed, wind direction, and 

precipitation data were able to successfully predict PM2.5 concentrations in Ecuador.  

They also found that PM2.5 concentration predictions are better when extreme climatic 

conditions are input (i.e. strong winds and high levels of precipitation) (Kleine-Deters et 

al., 2017). This type of modelling can be further tested with additional weather variables 

as well as traffic-related and land-use variables, and its use can be expanded to other 

parts of the world.   

Another example of machine learning, using a neural network tool, is the 

research done by Zou et al. (2015).  The neural network toolbox in Matlab was used in 

their study, and they focused on the state of Texas.  The weather variables on which they 

focused were annual precipitation, temperature, humidity, and wind speed, and they also 

input road length, road distance, land use type, and population density (Zou et al., 2015).  

The predictions of their model were consistent with the actual PM2.5 concentrations in the 

state at the times for which the predictions were made (Zou et al., 2015).  However, it is 

necessary to focus on a smaller study area, as weather conditions can differ on a small 

scale such as the block level.  Focusing on a smaller study area on a more disaggregate 

scale would account for the intricate differences from block group to block group in 

weather conditions, land use, and air pollutant-releasing human activities in the prediction 

of ambient PM2.5 concentrations.  

In all, much of the existing literature points to PM2.5 having adverse effects on 

those diagnosed with asthma, and to meteorological factors of various kinds having an 
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effect on PM2.5 concentrations and on asthma as well.  There is not much research that 

has been done of the proposed kind in the Dallas-Fort Worth area, although the closest-

related research by Zou et al. (2015) focuses on Texas as a whole.  A more populated 

and urban area such as DFW or Houston will likely have different levels of air pollution, 

different land cover, etc. from a more rural and less populated area such as Amarillo.  

Focusing on a smaller study area within Texas can pinpoint how these differences may 

affect air pollution as well as human health.  Different regions have different weather 

patterns and seasonal variation as well. A study from the U.S. reported that the effects of 

the synoptic weather type on PM2.5 concentrations indeed tend to vary based on season 

and geographical area (Liu et al., 2017).  Therefore, the current study focuses on the 

DFW area as a smaller study area than similar preceding research.  The study tested the 

hypothesis that PM2.5 concentrations in DFW in 2014 were positively correlated with 

maximum temperatures and average station pressure, and that they were negatively 

correlated with average relative humidity, average and sustained wind speed, and total 

precipitation.  It also tested the hypothesis that the PM2.5 concentrations and asthma-

related hospital admissions were positively correlated.   

There is scientific evidence showing a relationship between asthma and air 

pollution, including PM2.5.  High temperatures are often found to be associated with high 

concentrations of air pollutants, including ozone and PM (L. Li et al., 2014; Veremchuk et 

al., 2016; Kalbarczyk et al., 2015; Lai, 2012).  This is due to chemical reactions that form 

ozone and fine PM occurring faster with temperature, according to basic chemical theory. 

High pressure areas are associated with inversions—sinking air, which traps pollutants 

near the ground, so higher levels of PM2.5 would be expected (L. Li et al., 2014; Lai, 

2012).  Wind typically removes pollutants from an area via dispersion, hence lower PM2.5 

concentrations are expected when the wind speed is higher (Pesic et al., 2014; Ahmadi & 
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John, 2015; Bella et al., 2016; Zhang et al., 2015). Relative Humidity has been found in 

some studies to be associated with lower PM concentrations as it increases (Cai et al., 

2014; L. Li et al., 2014; Lai, 2012).  This could be due to the increase of humidity before 

the onset of precipitation events. In other cases, higher relative humidity leads to higher 

PM concentrations, because more water vapor condenses onto the particles, increasing 

their weight.  Precipitation causes removal of pollutants due to wet deposition, which 

would lead to lower concentrations of PM2.5 (Brunner et al., 2015; Zhang et al., 2015;  

Zhen et al., 2013; Lai, 2013; Jacobson, 2012, p. 294). 
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Chapter 3 

Methodology 

Instead of another aggregate-scale study on the topic at hand (i.e. on the county 

or state level), research needs to be conducted on a more disaggregate scale.  A study at 

the block group level, for example, will account for the intricacies which are more 

apparent when looking at an area from this smaller scale.  Such intricacies include how 

populations are concentrated and how traffic is spread, which are some of the variables 

which can be used determine the ambient PM2.5 concentration. Other complexities 

include how weather events such as thunderstorms are spread through an area of 

interest, which may have an effect on PM2.5 concentrations.  This is part of what the study 

aims to determine.   

As far as asthma being affected by PM2.5 exposure, more research is needed on 

a more disaggregate scale as well.  Many existing studies of the kind cover a large area 

comprising dozens of counties or even entire states.  This only allows for data to be 

examined from a large-scale perspective, such as on the county-level scale.  Because 

PM2.5 concentrations, as well as weather variables, will be looked at on the block group 

level for the current study, this allows for the asthma-related hospital admission data to 

be examined on the same scale.  This allows for the intricacies associated with weather 

and PM2.5 concentration on the block level to be considered in relation to the asthma-

related hospital admissions on the same level.   

The main reason for testing whether asthma is exacerbated by PM2.5 is that there 

is still recent research which suggests that it may not be.  For example, Gorai et al. 

(2016) found that in eastern Texas, positive correlations between PM2.5 and asthma 

discharge rates were not statistically significant.  This research has served to test the 
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hypothesis that PM2.5 concentrations in DFW in 2014 were positively correlated with 

maximum temperatures and average station pressure, and that they were negatively 

correlated with average relative humidity, average and sustained wind speed, and total 

precipitation.  It has also served to test the hypothesis that the PM2.5 concentrations and 

asthma-related hospital admissions were positively correlated. 

Study Area and Data 

The study area for this research is the Dallas-Fort Worth metropolitan area of 

north Texas, which includes Collin, Dallas, Denton, Ellis, Erath, Hood, Hunt, Johnson, 

Kaufman, Navarro, Palo Pinto, Parker, Rockwall, Somervell, Tarrant, and Wise Counties.  

These counties were the extent of the available asthma data, hence their inclusion in this 

study.  The boundaries were determined by the North Central Texas Council of 

Governments (NCTCOG), the agency from which county boundary spatial data was 

obtained.  The time period on which the research was focused is the year 2014, using 

daily air quality data and daily weather data.  This year was chosen because of the years 

of asthma data provided (2010 – 2014), the weather data was most complete for 2014 for 

the study area.  The hospital visit data used for this research was sourced from the 

Dallas-Fort Worth Hospital Council Foundation (DFWHCF).  It was based on the reported 

home address for each patient.  The patients represented in this study are adults.   

The daily PM2.5 concentration and weather data were used for this study.  Known 

PM2.5 concentration data for the Dallas-Fort Worth area, which was used as input data for 

the RBF, was obtained from the Texas Council on Environmental Quality (TCEQ) 

database online.  This database contains the daily air pollution concentration 

measurements from monitors throughout the DFW area, seven of which specifically 

displayed PM2.5 data throughout 2014.  Those monitoring sites are named CAMS 52 (at 

Midlothian OFW, C52/A137), CAMS 56 (at Denton Airport South, C56/A163/X157), 
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CAMS 3002 (at Dallas Hinton St., C401/C60/AH161), CAMS 61 (at Arlington Municipal 

Airport, C61), CAMS 71 (at Kaufman, C71/A304/X071), CAMS 1044 (at Italy, 

C1044/A323), and CAMS 1051 (at Corsicana Airport, C1051).  The data from those 

seven sites was used for this study.  In Table 3-1, the coordinates of each station are 

listed. 

 

Table 3-1. Locations of PM2.5 monitoring sites 

Weather and climate variability and change effects can exacerbate air pollution. 

However, it is suggested that the local weather conditions be considered (Gorai et al., 

2016), in part because the contrasts between different circulation weather types, in the 

case of human health impacts, could be more important than the synoptic situation (Roye 

et al., 2016).   

In this study, only local meteorological measurement stations from the National 

Oceanic and Atmospheric Administration (NOAA) database (NOAA National Centers for 

Environmental Information, 2020) are considered including daily maximum temperature, 

average wind speed, sustained wind speed, average station pressure, average relative 

humidity, and total precipitation.  The daily sustained wind speed and daily total 

precipitation were included due to their association with storms.  Sustained winds are 

surface winds which are typically measured at a height of 10 m (33 ft) with no 

obstructions (i.e. trees or buildings) and averaged for either 1- or 2-minute intervals 

STATION STATION NAME LATITUDE LONGITUDE

CAMS 52 Midlothian OFW C52/A137  32.482083 -97.026899

CAMS 56 Denton Airport South C56/A163/X157  33.219069 -97.196284

CAMS 3002 Dallas Hinton St. C401/C60/AH161  32.820061 -96.860117

CAMS 61 Arlington Municipal Airport C61  32.656357 -97.088585

CAMS 71 Kaufman C71/A304/X071  32.564968 -96.317687

CAMS 1044 Italy C1044/A323  32.175417 -96.870189

CAMS 1051 Corsicana Airport C1051  32.031934 -96.399141
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(NOAA Hurricane Research Division, 2006).  It must be noted that the DFW airport 

measures at a height of 6.7 m rather than the 10 m defined by NOAA.  According to the 

NOAA Hurricane Research Division (2006), the 1- and 2-minute averages are essentially 

interchangeable.  High sustained wind speeds, high precipitation, and low pressure 

typically indicate storm activity.  However, it is due to the complications of inversion, 

which is caused by high pressure systems, that the hypothesis includes that average 

station pressure would be positively correlated with PM2.5 concentrations. 

Nineteen meteorological stations have been selected, the data from which were 

used as input data for the RBF neural network prediction, were chosen for this study 

based on their location within the study area.  Those were located at the Arlington 

Municipal Airport, Fort Worth Alliance Airport, Fort Worth Meacham Field, Cleburne 

Municipal Airport, Dallas-Fort Worth WSCMO Airport, Denton Municipal Airport, Fort 

Worth NAS, Dallas FAA Airport, Dallas Redbird Airport, McKinney Municipal Airport, 

Terrell Municipal Airport, Mid Way Regional Airport Midlothian Waxahachie, Stephenville 

Clark Field, Granbury Municipal Airport, Greenville Municipal Airport Majors Field, 

Corsicana Campbell Field, Mineral Wells Airport, Bridgeport Municipal Airport, and 

Decatur Municipal Airport.  These were chosen as they represent the extent of the study 

area in which the seven air quality monitors are located, as well as the hospital patients.  

They include all the weather monitoring sites within the specified counties, with the 

exception of those which did not report the specified weather data during 2014.  In Table 

3-2, each weather station’s coordinates are displayed. 
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Table 3-2. Locations of weather monitoring sites 

The weather monitoring site for Rockwall County was not included due to having 

collected no data for 2014, and the sites at Dallas Hensley Field (Dallas County), Dallas 

Fort Worth Spinks Airport (Tarrant County), Grand Prairie Municipal Airport (Dallas 

County), Dallas Addison Airport (Dallas County), and Lancaster Airport (Dallas County) 

were not included for the same reason.  The only county which was examined for this 

study that did not physically have a weather monitoring site (as of 2014) is Somervell.  

Palo Pinto and Parker Counties share the same single monitoring site.  Figure 3-1 shows 

the locations of the air quality and weather monitors from which data were acquired for 

2014.   

 

STATION STATION NAME LATITUDE LONGITUDE

WBAN:53907 ARLINGTON MUNICIPAL AIRPORT TX US 32.66361 -97.09389

WBAN:53976 BRIDGEPORT MUNICIPAL AIRPORT TX US 33.17528 -97.82833

WBAN:53981 CLEBURNE MUNICIPAL AIRPORT TX US 32.35389 -97.43389

WBAN:53912 CORSICANA CAMPBELL FIELD TX US 32.03111 -96.39889

WBAN:03927 DAL FTW WSCMO AIRPORT TX US 32.8978 -97.0189

WBAN:13960 DALLAS FAA AIRPORT TX US 32.8519 -96.8555

WBAN:03971 DALLAS REDBIRD AIRPORT TX US 32.68083 -96.86806

WBAN:53964 DECATUR MUNICIPAL AIRPORT TX US 33.25444 -97.58056

WBAN:03991 DENTON MUNICPAL AIRPORT TX US 33.20611 -97.19889

WBAN:53909 FORT WORTH ALLIANCE AIRPORT TX US 32.97333 -97.31806

WBAN:13961 FORT WORTH MEACHAM FIELD TX US 32.81917 -97.36139

WBAN:13911 FORT WORTH NAS TX US 32.76667 -97.45

WBAN:53977 GRANBURY MUNICIPAL AIRPORT TX US 32.44444 -97.81694

WBAN:13926 GREENVILLE MUNICIPAL AIRPORT MAJORS FIELD TX US 33.06778 -96.06528

WBAN:53914 MCKINNEY MUNICIPAL AIRPORT TX US 33.19028 -96.59139

WBAN:53966 MID WAY REGIONAL AIRPORT MIDLOTHIAN WAXAHACHIE TX US 32.45611 -96.9125

WBAN:93985 MINERAL WELLS AIRPORT TX US 32.7816 -98.0602

WBAN:03969 STEPHENVILLE CLARK FIELD TX US 32.21528 -98.1775

WBAN:53911 TERRELL MUNICIPAL AIRPORT TX US 32.71 -96.26722
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Figure 3-1.  Locations of air quality monitoring and weather monitoring sites for 2014. 

The weather data and limited known PM2.5 concentration data (from the few 

monitors available) were used in creation of the RBF network to model the PM2.5 

concentrations for the whole study area, including spaces in which there were no 

monitors.  The air quality monitoring sites seen in Figure 3-1 are the following:  CAMS 52 

Midlothian OFW C52/A137, CAMS 56 Denton Airport South C56/A163/X157, CAMS 

3002 Dallas Hinton St. C401/C60/AH161, CAMS 61 Arlington Municipal Airport C61, 

CAMS 71 Kaufman C71/A304/X071, CAMS 1044 Italy C1044/A323, and CAMS 1051 

Corsicana Airport C1051. 

 Land use data was included for estimation of PM2.5 concentrations due to the 

implications of certain land use types regarding PM2.5 and PM2.5 precursor release into 
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the atmosphere.  Populated areas would include land use types such as industrial, 

commercial, and residential.  Industrial land use areas would be likely have more 

industrial emissions, which in the study area would include sources like cement kilns that 

emit NOx and power plants that emit NOx and VOCs (Zhang et al., 2015). Commercial 

areas would include many scattered area sources of VOCs, like auto body paint shops, 

bakeries, and gas stations (Zhang et al., 2015).  There would also be varying levels of 

vehicular traffic within the study area, which entails release of primary PM2.5 (Ristovski et 

al., 2012; Li et al., 2015; Zhang et al., 2015) and VOCs (Zhang et al., 2015).  Agricultural 

land (planted vegetation) would likely have ammonia emissions as well as VOCs (Zhang 

et al., 2015). Open space and natural vegetation areas would have VOCs from the 

vegetation (Zare et al., 2014; R. Zhang et al., 2015).   

Land use, road type, and average daily traffic (ADT) data was sourced from the 

North Central Texas Council of Governments.  The road data (road type and ADT) is 

from 2014.  Land use data is from 2015—the closest available year to the study time 

period.  The 2014 ecological land cover data, from the Ecological Mapping Systems of 

Texas of the Texas Parks & Wildlife Department, was also used to determine dominant 

land use.  The population data was based on the 2014 estimates from the US Census 

Bureau.     

One date per month in 2014 was tested: January 1st, February 7th, March 15th, 

April 27th, May 3rd, June 5th, July 7th, August 23rd, September 17th, October 29th, 

November 5th, and December 3rd.  After a process of eliminating dates which had missing 

data for one or more weather or PM2.5 monitors, these dates were selected so that there 

would be a mix of days with precipitation and days without.  While the dates without 

precipitation were selected randomly, those dates with precipitation, since there were 

few, were chosen intentionally in order to compare them to the non-precipitation days.  
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This is because of precipitation being an important part of the hypothesis.  Only 12 dates 

were selected (one from each month) due to time constraints. 

Modeling and Analysis Tools 

Some of the literature features new ways to mathematically and graphically 

present the correlations discussed.  Similarly, for this study, a radial basis function (RBF) 

neural network was used via the Matlab Neural Network Toolbox in order to model the 

PM2.5 concentrations in the DFW area which were not reported by PM2.5 monitors.   

A feed-forward artificial neural network—a variation of which was also used in 

this study— is comprised of an input layer, a hidden layer, and an output layer.  The input 

layer acts as a set of “neurons,” which are fed into the hidden layer (Mishra, Goyal, & 

Upadhyay, 2015).  The hidden layer acts as a “feature detector,” and the output is 

determined once it collects those detected features (Mishra, Goyal, & Upadhyay, 2015). 

Figure 3-2 illustrates how an artificial neural network works.     

 

Figure 3-2.  Artificial neural network schema (Mishra et al., 2015). 
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According to Zou et al. (2015), a radial basis function (RBF) neural network can 

interpolate in “high-dimensional spaces” (Zou et al., 2015).  Such a function contains an 

input layer, a hidden layer, and an output layer (Zou et al., 2015), just like the basic 

artificial neural network structure.  The RBF is named as such due to the part of the 

process in which a “radial basis version of the Gaussian function is employed to 

represent the distribution of variable values in the input layer” (Zou et al., 2015, p. 

10398).  Figure 3-3 shows the structure of an RBF neural network.   

 

Figure 3-3.  RBF neural network structure (Zou et al., 2015).  

The creation of an RBF neural network or any ANN consists of a training and testing 

process, during which the RBF neural network tries to replicate the target values.  Once 

that process has been completed, the model itself is ready to use and can have new 

inputs added in for estimation. 

The RBF network was created using the known daily maximum dry-bulb 

temperature, daily average wind speed, daily sustained wind speed, daily average station 
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pressure, daily average relative humidity, daily total precipitation, road types, ADT, 

dominant land use types, and known PM2.5 concentrations.  There were 100 neurons 

used in the hidden layer of the model.  A more in-depth description of how the RBF 

network was used in this study will be found in the next section of this chapter, entitled 

Procedure. 

For similar research to the current study, a tool within GIS which was used for the 

research described by Gorai et al. (2014) was the ordinary kriging tool.  It was “used to 

estimate the spatial distribution of pollutant levels in each county from 2005 to 2007 for 

each of the three pollutants: SO2, O3, and PM2.5,” according to Gorai et al. (2014) (p. 

4854).  Gorai et al., (2014) explain that “in Kriging, a smooth surface is estimated from 

irregularly spaced data points based on the assumptions that the spatial variation in the 

feature (O3, PM2.5, and SO2) is homogeneous over the domain depends only on the 

distance between sites” (p. 4854).  Given that the air quality monitoring stations which 

collect PM2.5 data in DFW are quite scarce (being that there are only 7 such monitors 

which can be used for the study area and dates), this method was very useful for the 

current study, as it filled in the gaps in the coverage of both PM2.5 and weather monitors.  

Ordinary kriging, in order to work well, requires many location points with known data.  

Therefore, it is not a reliable method to use by itself for making such estimations.  A more 

in-depth description of how ordinary kriging was used in this study will be found in the 

next section of this chapter, entitled Procedure. 

Spatial statistical analysis consisted of the Getis-Ord G Statistic and Local 

Moran’s I Coefficient.  Because the two analysis techniques interpret the data in different 

ways, both were necessary.  The Getis–Ord G Statistic is a global measure that 

summarizes the pattern of spatial autocorrelation in the area; it can be used to effectively 

define the location of hot spots and cold spots in a study area (Oyana & Margai, 2015).  
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This was useful in determining the hotspots and cold spots among the reported asthma 

cases in the study, which can show the relevance of the PM2.5 concentrations on the map 

as they relate to human health. 

Local Indicators of Spatial Autocorrelation (LISA) are measures that disaggregate 

global measures of spatial autocorrelation into location-specific measures such as the 

Local Moran’s I Coefficient (Oyana & Margai, 2015).  The Local Moran’s I Coefficient 

enables one to focus on individual spatial units and compare their data values relative to 

the neighboring units to assess the degree of similarity or dissimilarity (Oyana & Margai, 

2015). The coefficient is represented by a scatterplot or cluster map that can be used to 

effectively show spatial anomalies in the distribution (Oyana & Margai, 2015).  LISA can 

be aggregated to summarize the measures for the individual units and can be used as a 

global indicator of spatial autocorrelation (Oyana & Margai, 2015). The Local Moran’s I 

Coefficient was also useful for analyzing the asthma-related hospital visit data—it is 

helpful to see whether points are generally clustered or dispersed and if there are any 

spatial anomalies within the data.  

Procedure 

The first step taken was to determine spatial correlations.  The Getis-Ord G and 

Local Moran’s I analyses were run using ArcMap software for the point data for the 

hospital admissions.  A Kernel Density analysis tool was also used via ArcMap in order to 

visualize the density of the reported asthma cases.  After that, the process of estimating 

PM2.5 began. 

Using ordinary kriging, all weather variables were interpolated based on the daily 

weather reported by the weather monitors in the study area, thus creating a raster data 

set for each of the weather variables.  The process of ordinary kriging was repeated for 

each of the 6 weather variables and for each of the 12 dates separately.  The weather 
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variables are daily maximum temperature, daily average station pressure, daily 

precipitation, daily average relative humidity, daily average wind speed, and daily 

sustained wind speed.  Figure 3-4 shows an example of how ordinary kriging displayed 

the maximum temperatures in the study area.   

 

Figure 3-4.  July 7, 2014 maximum temperature in north Texas. 

Following the ordinary kriging process, the “zonal statistics as table” tool in 

ArcMap was used in order to pinpoint in which zone the points from the asthma case data 

fell in terms of the distribution of weather variables (i.e. maximum temperature, amount of 

precipitation, etc.).  The input layer was the asthma case points, and the zone layers 

were the raster layers (the result of ordinary kriging) for each of the weather variables for 

each date.  This process was repeated for each weather variable and for each selected 
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date.  This data was added as separate variables to the table used as the input for the 

neural network estimation. 

In order to determine the dominant land use type for each asthma case point, a 

500-meter buffer was applied to each of the asthma case points.  This distance was 

chosen based on previous research—the 500m buffer was associated with better results 

from artificial neural network models.  For example, Zou et al. (2015) used a 500m buffer 

for land use determination, and the model created for the study yielded a MAE of 0.99 

and MSE of 1.44.  When tested for the current study, smaller buffer radii caused nearly 

homogeneous land use rankings across the reported locations of each asthma patient.  

The majority of them were in residential areas, so a buffer of a smaller distance would 

show most of the patients being surrounded by nearly exclusively the populated areas 

land use type.  Without more variation, the neural network model would lose predictive 

accuracy.   

The intersect tool was next used with the buffer and the NCTCOG land use 

feature class as inputs and the area and percentage of the 500m buffer was calculated 

for each land use type in the resulting attribute table.  This table was then exported, and 

the dominant land use type within the buffer was determined based on the percentages 

of each land use type within each buffer area, as derived from the table.  The same 

process was used to find where the points from the asthma case points fell in terms of 

ecological land cover.  The ecological land cover data showed whether areas were urban 

or vegetated land cover as well as the vegetation types within vegetated areas.  The 

resulting table was used to confirm the dominant land use types for each asthma case 

point.  The land use types are populated areas, open space, planted vegetation, natural 

vegetation, and water.  They were assigned ranks as follows:  1 = water, 2 = natural 

vegetation, 3 = planted vegetation, 4 = open space, and 5 = populated areas.  These 
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ranks were based on the presence or potential for human activity in or around the land in 

question, with 5 being the highest level, and 1 being the lowest.  The ranks assigned for 

dominant land use type within the buffer of each asthma case point were added to the 

table for neural network training.   

Land use types were specifically defined as follows: “Populated areas” includes 

commercial land, industrial land, hotels, airports, utilities, offices, institutional land, 

schools, and residential land including single- and multi-family homes, mobile homes, 

and group quarters.  “Open space” includes vacant land adjacent to land categorized as 

populated areas, as well as residential acreage and improved acreage.  Vacant lots, 

according to the NCTCOG (2017), are undeveloped land and are therefore considered by 

the EPA to be “open space.”  Improved acreage is “land that is mostly undeveloped yet 

includes a non-residential structure with road access as a minor part of the use” 

(NCTCOG 2017).  Residential acreage, according to the NCTCOG (2017), is “land that is 

mostly undeveloped yet includes a mobile home, house, or other residence as a minor 

part of the use.”  Because residential and improved acreage areas are mostly 

undeveloped but also associated with human alteration, they were included in the “open 

space” category.  “Planted vegetation” includes farmland and parks.  In other words, 

these are lands that are mostly vegetation, but are planted or otherwise disturbed by 

human activity to some extent.  “Natural vegetation” includes wetlands, ranchland and 

other grasslands, and timberland. “Water” includes bodies of water (i.e. rivers, lakes, and 

ponds). 

In order to determine the ADT for each asthma case point, a 100m buffer was 

applied to each of the asthma case points.  The 100m buffer was chosen because when 

the 500m radius was used, some traffic data (i.e. road class) was the same for nearly all 

of the patient points.  When tested, this led to lower accuracy of the predictions from the 
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model.  The intersect tool was next used, with the buffers and road feature class as 

inputs.  The resulting attribute table showed the roads and their traffic count data within 

100m of each point from the asthma case feature class.  This table was then exported, 

and ADT for the road with the highest traffic count within 100m of each asthma case point 

was entered into the table for the neural network.   

The table from the above 100m buffer and intersect process was also used to 

assign the road class to each data point from the asthma case feature class.  The road 

classes were assigned as ranks based on the average traffic count for each road:  1 = 

local, 2 = collector, 3 = arterial, 4 = highway, and 5 = freeway.  These ranks for each of 

the asthma case points were entered into the table for the neural network.  The 

definitions of the roads are outlined in the next paragraph. 

Road information used for this study includes the nearest average daily traffic 

count (ADT) and nearest road class.  The road classes are “local,” “collector,” “arterial,” 

“highway,” and “freeway” (Setton, Hystad, & Keller, 2005).  “Local” roads are residential 

roads, and the mean traffic count is 3,976 (Setton et al., 2005).  “Collector” roads are 

those which connect areas to cross town, and usually have one lane each way, and the 

mean traffic count is 8,953 (Setton et al., 2005).  “Arterial” roads are those which are 

considered thoroughfares—they generally have a large traffic capacity and are multilane, 

and the mean traffic count is 18,457 (Setton et al., 2005).  A “highway” refers to a primary 

or secondary state highway, and the mean traffic count is 27,961 (Setton et al., 2005).  

They can be single or multilane (Setton et al., 2005).  A “freeway” refers to a highway 

with controlled access; these tend to be divided, and the mean traffic count is 113,789 

(Setton et al., 2005). 

Once all of the steps above were completed and the table was ready for running 

the RBF neural network, the network was put through the training and testing process.  
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After that process was completed, the RBF network was used to model the average 

PM2.5 concentration for the day for each asthma case point (a detailed description of the 

coding can be seen in Appendix 2, and sample PM2.5 estimations can be found in 

Appendix 3).  In order to test the accuracy of the created model, the Mean Absolute Error 

(MAE) was calculated.  Wang & Lu (2018) and Willmott & Matsuura (2005) show that the 

MAE—which shows the average magnitude of error of a given model—is the best model 

for assessing accuracy of models.   
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Chapter 4 

Results 

In the following sections, the results of the RBF neural network and the 

correlations between the input and output variables are reported. The correlation results 

are in three parts.  There are results which are inclusive of all 12 test dates, and results 

for test dates in with precipitation, and results for test dates in without precipitation.  The 

dates with precipitation had varying precipitation levels by location within the study area.  

In fact, on these days, some areas had no precipitation or only trace amounts, while 

others had some measurable amount of it. 

RBF Model Results 

The RBF neural network model performance from the training and testing 

process is displayed in Figure 4-1.  The regression model in figure 4-1 shows a R value 

of 0.868 for the outputs of the RBF model versus the targets.  The targets were the actual 

average PM2.5 concentrations which were measured by the PM2.5 monitors.  During the 

training and testing process, the RBF model tries to replicate the target values, and the 

regression shows the accuracy with which the model performed that task.  
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Figure 4-1.  Performance (regression) of the RBF model. 

In the case of this current study, the MAE is 1.94 µg/m3.  In other words, the 

model is accurate within 1.94 µg/m3 of PM2.5.  Table 4-1 has the comparison of the MAE 

for this created model versus previous artificial neural network models created in other 

studies. Most studies which reported a MAE did not report the MSE, which is why only 

the MAE is shown in Table 4-1.  The other studies were focused on hourly or annual 

PM2.5 concentrations, whereas this study was focused on the daily average.  That may be 

part of the cause for the large differences in MAE.  Also, some studies were focused on 

areas, i.e. Beijing, China, where the PM2.5 was hundreds of µg/m3 on some days, which 

may also contribute to relatively high MAE. 
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Model MAE (µg/m3) 

Zou et al. (2015) 0.99 

Zhou et al. (2014) 19.80 

Feng et al. (2015) 10.62 

Oprea, Mihalache, and Popescu (2016) 1.93 

Ding, Zhang, and Leung (2016) 18.5 

Current 1.94 

Table 4-1.  Comparison of MAE for PM2.5 concentration models. 

The RBF neural network that was initially created based on the example from 

Zou et al. (2015) caused repeated overfitting.  This may have been the case for Zou et al. 

(2015) as well, given the very low MAE as compared to other studies.  Because of this, 

the RBF neural network would predict very low PM2.5 concentrations on days when the 

actual concentration was in the “moderate” range.  It could also be the case that the 

difference in study area—i.e. Zou et al. (2015) focusing on the county level rather than 

the block group level—causes the difference in model performance and MAE.   When the 

final version of the RBF model was used for the current study, the model was able to 

predict PM2.5 concentrations from different datasets with the same accuracy as with the 

training dataset. 

Meteorological Variables and PM2.5 Concentration 

 Figures 4-2 – 4-7 display the relationships between the average PM2.5 

concentration for the DFW area and each weather variable for all test dates combined.  

As seen in Figure 4-2, an increase in daily maximum temperature typically coincides with 

an increase in PM2.5 concentration.  Chemical reaction rates increase with higher 
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temperatures, so reactions that form secondary PM would be faster at higher 

temperatures. The R2 value is 0.140, which means that 14% of the variance around the 

mean can be explained by the regression.  Figure 4-3 shows that there is a slight 

negative trend with regard to precipitation versus PM2.5 concentration, but it is closer to 

showing no correlation.  The R2 value is 0.006, meaning that only 0.6% of variance 

around the mean can be explained by the regression.  Figure 4-4 illustrates that an 

increase in average relative humidity typically indicates a decrease in PM2.5 

concentration, with an R2 value of 0.065, meaning that 6.5% of variance around the mean 

can be explained by the regression.  Looking at Figure 4-5, there is not as clear a trend 

as the previous figures regarding average station pressure versus PM2.5 concentration.  

Figure 4-5 displays a low R2 value of 0.008.  So only 0.8% of variance around the mean 

can be explained by the regression.  Figures 4-6 (R2 of 0.252) and 4-7 (R2 of 0.108) show 

that when there is a very pronounced increase in average wind speed and sustained 

wind speed, there is typically an increase in PM2.5 concentration.   
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Figure 4-2. Maximum temperature vs. average PM2.5 concentration for all test dates in 

2014.   

  

Figure 4-3. Total precipitation vs. average PM2.5 concentration for all test dates in 2014.  

R² = 0.1401

0

5

10

15

20

25

-5 0 5 10 15 20 25 30 35 40 45

P
M

2.
5

C
o

n
ce

n
tr

at
io

n
 (

µ
g/

m
3

Daily Maximum Temperature (C) 

Maximum Temperature vs. Average PM2.5

Concentration for all test dates in 2014

R² = 0.0062

0

5

10

15

20

25

0 5 10 15 20 25 30 35

P
M

2.
5

C
o

n
ce

n
tr

at
io

n
 (

µ
g/

m
3
)

Total Precipitation (mm) 

Total Precipitation vs. Average PM2.5

Concentration for all test dates in 2014



 

68 

 

Figure 4-4. Average relative humidity vs. average PM2.5 concentration for all test dates in 

2014.  

 

Figure 4-5. Average station pressure vs. average PM2.5 concentration for all test dates in 

2014.  

R² = 0.0647

0

5

10

15

20

25

0 20 40 60 80 100

P
M

2.
5

C
o

n
ce

n
tr

at
io

n
 (

µ
g/

m
3 )

Average Relative Humidity (%)

Average Relative Humidity vs. Average PM2.5

Concentration for all test dates in 2014

R² = 0.0077

0

5

10

15

20

25

700 710 720 730 740 750 760

P
M

2.
5

C
o

n
ce

n
tr

at
io

n
 (

µ
g/

m
3
)

Average Station Pressure (mm Hg)

Average Station Pressure vs. Average PM2.5

Concentration for all test dates in 2014



 

69 

 

Figure 4-6. Average wind speed vs. average PM2.5 concentration for all test dates in 

2014.  

 

Figure 4-7. Sustained wind speed vs. average PM2.5 concentration for all test dates in 

2014.  
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Table 4-2 shows the Pearson’s correlation between each weather variable and 

the PM2.5 concentration for all test dates.  The Pearson values are the square roots of the 

R2 values shown in Figures 4-3 through 4-7 above.  As seen in Table 4-2, there is a 

relatively weak positive correlation between maximum temperature and PM2.5 

concentration (0.374) and between sustained wind speed and PM2.5 concentration 

(0.328).  The Pearson correlation coefficient between average station pressure and PM2.5 

concentration is 0.088, which indicates that there is really no correlation between the two. 

There is a moderately high positive correlation between average wind speed and PM2.5 

concentration (with a Pearson correlation coefficient of 0.502).  Table 4-2 also shows that 

there is a relatively weak negative correlation between average relative humidity and 

PM2.5 concentration (-0.254).  It also shows that there is a very weak negative correlation 

between total precipitation and PM2.5 concentration (-0.079); however, this finding is the 

only one shown on the table which is not statistically significant.   

Table 4-2 also illustrates how the weather variables are correlated with each 

other.  Daily maximum temperature is negatively correlated with average station 

pressure, total precipitation, and average relative humidity, with the respective Pearson 

correlation coefficients being -0.352, -0.161, and -0.599.  Maximum temperature is 

positively correlated with average and sustained wind speed.  The Pearson correlation 

coefficients are 0.136, and 0.213, respectively.  Average station pressure is positively 

correlated with total precipitation, average relative humidity, average wind speed, and 

sustained wind speed, with Pearson correlation coefficients of 0.375, 0.174, 0.573, and 

0.699, respectively).  It is negatively correlated with maximum temperature (-0.352).  

Total precipitation has a very weak correlation with average wind speed, which is not 

significant.  However, total precipitation does have a weak negative correlation with 

maximum temperature (with a Pearson correlation coefficient of -0.161) that is significant 
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at the 0.01 level, and a positive correlation with average station pressure, average 

relative humidity, and sustained wind speed (0.375, 0.520, and 0.185, respectively).  

Average relative humidity is similar to total precipitation in its correlations with the other 

variables; it has a negative correlation with maximum temperature and average wind 

speed (-0.254 and -0.599, respectively), a very weak correlation with sustained wind 

speed which is not significant, and a positive correlation with average station pressure 

(0.174) and total precipitation (0.520).  Average wind speed has a very strong positive 

correlation with sustained wind speed, with the Pearson correlation coefficient being 

0.821. 
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** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed). 

Table 4-2. 2014 correlations between weather variables and PM2.5 concentration for all 

test dates.  N = 546. 

  
PM2.5 

Concentration 

(µg/m3) 

Maximum 

Temperature 

(degrees C) 

Average 

Station 

Pressure 

(HPa) 

Total 

Precipitation 

(mm) 

Average 

Relative 

Humidity 

(%) 

Average 

Wind 

Speed 

(km/h) 

Sustained 

Wind 

Speed 

(km/h) 

PM2.5 

Concentration 

(µg/m3) 

Pearson 

Correlation 

1 0.374** 0.088* -0.079 -0.254** 0.502** 0.328** 

 
Sig. (2-tailed) - 0 0.04 0.065 0 0 0 

Maximum 

Temperature 

(degrees C) 

Pearson 

Correlation 

0.374** 1 -0.352** -0.161** -0.599** 0.136** 0.213** 

 
Sig. (2-tailed) 0 - 0 0 0 0.001 0 

Average Station 

Pressure ( HPa) 

Pearson 

Correlation 

0.088* -0.352** 1 0.375** 0.174** 0.573** 0.699** 

 
Sig. (2-tailed) 0.04 0 - 0 0 0 0 

Total 

Precipitation 

(mm) 

Pearson 

Correlation 

-0.079 -0.161** 0.375** 1 0.520** -0.057 0.185** 

 
Sig. (2-tailed) 0.065 0 0 - 0 0.186 0 

Average Relative 

Humidity (%) 

Pearson 

Correlation 

-0.254** -0.599** 0.174** 0.520** 1 -0.102* -0.045 

 
Sig. (2-tailed) 0 0 0 0 - 0.017 0.296 

Average Wind 

Speed (km/h) 

Pearson 

Correlation 

0.502** 0.136** 0.573** -0.057 -0.102* 1 0.821** 

 
Sig. (2-tailed) 0 0.001 0 0.186 0.017 - 0 

Sustained Wind 

Speed (km/h) 

Pearson 

Correlation 

0.328** 0.213** 0.699** 0.185** -0.045 0.821** 1 

 
Sig. (2-tailed) 0 0 0 0 0.296 0 - 



 

73 

Table 4-3 shows the multiple linear regression analysis results for the daily 

average PM2.5 concentration versus all of the input variables—road ADT, road class, 

dominant land use, daily maximum temperature, daily average station pressure, daily 

total precipitation, daily average relative humidity, daily average wind speed, and daily 

sustained wind speed—with the addition of block group population.  This analysis 

pertains to all test dates.  The adjusted R square is 0.393.  The adjusted R square value 

indicates that the combined variables have a fairly weak relationship with the PM2.5 

concentration.  The p-value for this regression is <0.001, so it is statistically significant.  

Table 4-3 also displays the model coefficients for each variable.  For dominant land use 

class, the coefficient is -0.802, which means that for every unit increase in dominant land 

use class (which entails an increase in anthropogenic activity), the PM2.5 concentration 

decreases by -0.802 µg/m3.  Dominant land use class has the highest coefficient when all 

variables are considered for all test dates.  The coefficient for total precipitation (0.0764) 

shows that total precipitation has the lowest impact on PM2.5 with statistical significance.  

For every unit increase in total precipitation, the PM2.5 concentration increases by 0.0764 

µg/m3. 
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Regression Statistics:  PM2.5 Concentration vs. All Variables for All Test Dates 

Multiple R 0.638 

R Square 0.407 

Adjusted R Square 0.396 

Standard Error 3.644 

Maximum Temperature Coefficient 0.192** 

Average Station Pressure Coefficient 0.0247 

Total Precipitation Coefficient 0.0764* 

Average Relative Humidity Coefficient -0.00819 

Average Wind Speed Coefficient 0.740** 

Sustained Wind Speed Coefficient -0.240** 

ADT Coefficient -2.746 x 10-6 

Road Class Coefficient 0.180 

Dominant Land Use Class Coefficient -0.802* 

Block Group Population Coefficient  4.917 x 10-5 

Intercept -12.929 

Observations 546 

** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed). 

 Table 4-3. Regression statistics of PM2.5 concentration vs. all variables for all test dates. 

Table 4-4 shows the regression analysis results (for all test dates) for the daily 

average PM2.5 concentration versus all weather variables:  daily maximum temperature, 

daily average station pressure, daily total precipitation, daily average relative humidity, 

daily average wind speed, and daily sustained wind speed.  The adjusted R square is 

0.395.  The adjusted R square value indicates that the combined weather variables have 

a relatively weak relationship with the PM2.5 concentration.  The p-value for this 

regression is <0.001, so it is statistically significant.  The weather variables, when 

combined, have a stronger relationship with PM2.5 concentration than they have 

individually: the adjusted R2 value in Table 4-4 is greater than any of the individual R2 

values in Figures 4-3 through 4-7. When considering only the weather variables against 
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PM2.5 concentration, average wind speed has the highest coefficient (0.745).  For every 

unit increase in average wind speed, the PM2.5 concentration increases by 0.745 µg/m3.  

The coefficient for total precipitation is 0.0750, meaning that for every unit increase in 

total precipitation, the PM2.5 concentration increases by 0.0750 µg/m3. 

Regression Statistics:  PM2.5 Concentration vs. Weather Variables for All Test Dates 

Multiple R 0.634 

R Square 0.402 

Adjusted R Square 0.395 

Standard Error 3.646 

Maximum Temperature Coefficient 0.194** 

Average Station Pressure Coefficient 0.0307 

Total Precipitation Coefficient 0.0750* 

Average Relative Humidity Coefficient -0.00767 

Average Wind Speed Coefficient 0.745** 

Sustained Wind Speed Coefficient -0.245** 

Intercept -20.849 

Observations 546 

** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed). 

Table 4-4. Regression statistics of PM2.5 concentration vs. weather variables for all test 

dates. 

Figures 4-8 – 4-13 display the relationships between the average PM2.5 

concentration for the DFW area and each weather variable for the test dates with 

precipitation.  As seen in Figure 4-8, an increase in daily maximum temperature typically 

indicates an increase in PM2.5 concentration.  Figure 4-8 exhibits an R2 value of 0.248. In 

Figure 4-9, the trend is that an increase in total precipitation is indicative of a decrease in 

PM2.5 concentration—more-so than Figure 4-3 did for combined precipitation and non-

precipitation days. The R2 value in this case is 0.051.  Similarly, as seen in Figure 4-10, 

an increase in average relative humidity is shown to lead to a decrease in PM2.5 
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concentration.  Figure 4-10 indicates that this relationship is more pronounced than the 

relationship between PM2.5 concentration and precipitation; the R2 value here is 0.695.  

Figure 4-11 shows that slight increases in average station pressure are met with a 

decrease in PM2.5 concentration.  The R2 value for Figure 4-11 is 0.033.  Figures 4-12 

and 4-13 show the same basic tendency:  when average wind speed and sustained wind 

speed increase, there is typically an increase in PM2.5 concentration.  The R2 values for 

these are 0.6026 and 0.298, respectively. 

 

Figure 4-8. Maximum temperature vs. average PM2.5 concentration for precipitation days 

in 2014.  
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Figure 4-9. Total precipitation vs. average PM2.5 concentration for precipitation days in 

2014.  

 

Figure 4-10. Average relative humidity vs. average PM2.5 concentration for precipitation 

days in 2014.  
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Figure 4-11. Average station pressure vs. average PM2.5 concentration for precipitation 

days in 2014.  

 

Figure 4-12. Average wind speed vs. average PM2.5 concentration for precipitation days 

in 2014.  
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Figure 4-13. Sustained wind speed vs. average PM2.5 concentration for precipitation days 

in 2014.  

Table 4-5 shows the correlation between each weather variable and the PM2.5 

concentration on days with precipitation.  Based on Table 4-5 and the above figures, 

maximum temperature, average wind speed, sustained wind speed, and average station 

pressure are shown to be positively correlated with PM2.5 concentrations.  Precipitation 

and average relative humidity are shown to be negatively correlated with PM2.5 

concentrations.  Table 4-5 demonstrates that daily maximum temperature, daily average 

relative humidity, daily average wind speed, and daily sustained wind speed have the 

strongest correlations with PM2.5 concentration out of the weather variables tested (with 

Pearson’s correlation coefficients of 0.498, -0.834, 0.776, and 0.546, respectively).  For 

those four correlation coefficients, p < 0.001, making the correlations significant.  In all 

cases besides the average wind speeds and sustained wind speeds, results are 

consistent with the hypothesis that PM2.5 concentrations in DFW in 2014 were positively 

correlated with maximum temperatures and average station pressure, and that they were 
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negatively correlated with average relative humidity, average and sustained wind speed, 

and total precipitation.      

Table 4-5 illustrates that daily maximum temperature is negatively correlated with 

average station pressure and average relative humidity, with the respective Pearson 

correlation coefficients being -0.178 and -0.640.  Maximum temperature has an extremely 

weak correlation with total precipitation in this case, which is not significant at the 0.01 or 

0.05 level.  Maximum temperature is positively correlated with average and sustained 

wind speed.  The Pearson correlation coefficients are 0.326, and 0.602, respectively.  

Average station pressure is positively correlated with total precipitation, average relative 

humidity, average wind speed, and sustained wind speed.  The Pearson correlation 

coefficients are 0.713, 0.183, 0.495, and 0.551, respectively).  Average station pressure 

is negatively correlated with maximum temperature (-0.178).  Total precipitation has very 

weak correlations with average wind speed and maximum temperature, which are not 

significant at either the 0.01 or 0.05 level.  Total precipitation does have a positive 

correlation with average station pressure, average relative humidity, and sustained wind 

speed (0.713, 0.494, and 0.407, respectively).  Average relative humidity has a negative 

correlation with maximum temperature, sustained wind speed, and average wind speed (-

0.640, -0.397, and -0.500, respectively).  Average relative humidity has a positive 

correlation with average station pressure (0.183) and total precipitation (0.494).  Average 

wind speed has a strong positive correlation with sustained wind speed, with the Pearson 

correlation coefficient being 0.663. 
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** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed). 

Table 4-5. 2014 correlations between weather variables and PM2.5 concentration for days 

with precipitation. N = 307. 

    PM2.5 

Concentration 

(µg/m3) 

Maximum 

Temperature 

(degrees C) 

Average 

Station 

Pressure 

(HPa) 

Total 

Precipitation 

(mm) 

Average 

Relative 

Humidity 

(%) 

Average 

Wind 

Speed 

(km/h) 

Sustained 

Wind 

Speed 

(km/h) 

PM2.5 

Concentration 

(µg/m3) 

Pearson 

Correlation 

1 0.498** 0.182** -0.226** -0.834** 0.776** 0.546** 

  Sig. (2-tailed)  - 0 0.001 0 0 0 0 

Maximum 

Temperature 

(degrees C) 

Pearson 

Correlation 

0.498** 1 -0.178** -0.085 -0.640** 0.326** 0.602** 

  Sig. (2-tailed) 0  - 0.002 0.139 0 0 0 

Average Station 

Pressure (HPa) 

Pearson 

Correlation 

0.182** -0.178** 1 0.713** 0.183** 0.495** 0.551** 

  Sig. (2-tailed) 0.001 0.002 -  0 0.001 0 0 

Total Precipitation 

(mm) 

Pearson 

Correlation 

-0.226** -0.085 0.713** 1 0.494** 0.012 0.407** 

  Sig. (2-tailed) 0 0.139 0 -  0 0.834 0 

Average Relative 

Humidity (%) 

Pearson 

Correlation 

-0.834** -0.640** 0.183** 0.494** 1 -0.500** -0.397** 

  Sig. (2-tailed) 0 0 0.001 0 -  0 0 

Average Wind 

Speed (km/h) 

Pearson 

Correlation 

0.776** 0.326** 0.495** 0.012 -0.500** 1 0.663** 

  Sig. (2-tailed) 0 0 0 0.834 0  - 0 

Sustained Wind 

Speed (km/h) 

Pearson 

Correlation 

0.546** 0.602** 0.551** 0.407** -0.397** 0.663** 1 

  Sig. (2-tailed) 0 0 0 0 0 0 -  
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Table 4-6 shows the regression analysis results (for precipitation days only) for 

the daily average PM2.5 concentration versus all of the input variables:  road ADT, road 

class, dominant land use, daily maximum temperature, daily average station pressure, 

daily total precipitation, daily average relative humidity, daily average wind speed, and 

daily sustained wind speed.  Additionally, block group population is included. The 

adjusted R square is 0.881, which indicates that the combined variables have a strong 

relationship with the PM2.5 concentration on days with precipitation.  The p-value for this 

regression is <0.001, so it is statistically significant.  When considering all variables 

against PM2.5 on precipitation days, average wind speed (with a coefficient of 0.522) has 

the most impact on PM2.5.  The variable with the least impact on PM2.5 (with statistical 

significance) is the sustained wind speed, with a coefficient of -0.0823. 

Regression Statistics:  PM2.5 Concentration vs. All Variables for Precipitation Days 

Multiple R 0.941 

R Square 0.885 

Adjusted R Square 0.881 

Standard Error 1.722 

Maximum Temperature Coefficient -0.0306 

Average Station Pressure Coefficient -0.00791 

Total Precipitation Coefficient 0.121** 

Average Relative Humidity Coefficient -0.289** 

Average Wind Speed Coefficient 0.522** 

Sustained Wind Speed Coefficient -0.0823** 

ADT Coefficient 8.940 x 10-6 

Road Class Coefficient -0.0282 

Dominant Land Use Class Coefficient -0.356 

Block Group Population Coefficient  8.220 x 10-5 

Intercept 33.988 

Observations 307 

** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed). 

Table 4-6. Regression statistics of PM2.5 concentration vs. all variables for precipitation 

days. 
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Table 4-7 displays the regression analysis results (for precipitation days only) for 

the daily average PM2.5 concentration versus the weather variables:  daily maximum 

temperature, daily average station pressure, daily total precipitation, daily average 

relative humidity, daily average wind speed, and daily sustained wind speed.  The 

adjusted R square is 0.881.  The adjusted R square value indicates that the combined 

weather variables have a strong relationship with the PM2.5 concentration on days with 

precipitation.  The p-value for this regression is <0.001, so it is statistically significant.  

When considering only weather variables on precipitation days, average wind speed has 

the highest impact on PM2.5 concentration; its coefficient is 0.521.  Sustained wind speed 

has the least impact on PM2.5 concentration (with statistical significance), with a 

coefficient of -0.0830. 

Regression Statistics:  PM2.5 Concentration vs. Weather Variables for Precipitation Days 

Multiple R 0.940 

R Square 0.884 

Adjusted R Square 0.881 

Standard Error 1.723 

Maximum Temperature Coefficient  -0.0311 

Average Station Pressure Coefficient -0.00658 

Total Precipitation Coefficient 0.121** 

Average Relative Humidity Coefficient -0.291** 

Average Wind Speed Coefficient 0.521** 

Sustained Wind Speed Coefficient -0.0830** 

Intercept 31.600 

Observations 307 

** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed). 

Table 4-7. Regression statistics of PM2.5 concentration vs. weather variables for 

precipitation days. 

Figures 4-14 – 4-18 display the relationships between the average PM2.5 

concentration for the DFW area and each weather variable for the test dates with no 
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precipitation.  As seen in Figure 4-14, an increase in daily maximum temperature typically 

indicates an increase in PM2.5 concentration.  For figure 4-14, there is an R2 value of 

0.174. Figure 4-15 shows that an increase in average relative humidity typically to leads 

to an increase in PM2.5 concentration, and it has a low R2 value of 0.0103.  Figure 4-16 

demonstrates that any trend is quite slight regarding the relationship between average 

station pressure and PM2.5 concentration.  In fact, it is closer to indicating no correlation.  

The R2 value for Figure 4-16 is 0.0012.  Figures 4-17 and 4-18 show that when average 

wind speed and sustained wind speed increase, there is typically an increase in PM2.5 

concentration.  Figures 4-17 and 4-18 show R2 values of 0.103 and 0.051, respectively.  

Further, Figure 4-18 shows that the R2 value is much lower for sustained wind speed 

versus PM2.5 concentration than it is for average wind speed and PM2.5 concentration 

(shown in Figure 4-17). 

 

Figure 4-14. Maximum temperature vs. average PM2.5 concentration for non-precipitation 

days in 2014.  
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Figure 4-15. Average relative humidity vs. average PM2.5 concentration for non-

precipitation days in 2014. 

 

Figure 4-16. Average station pressure vs. average PM2.5 concentration for non-

precipitation days in 2014. 
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Figure 4-17. Average wind speed vs. average PM2.5 concentration for non-precipitation 

days in 2014. 

 

Figure 4-18. Sustained wind speed vs. average PM2.5 concentration for non-precipitation 

days in 2014. 
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Table 4-8 shows the correlation between each weather variable and the PM2.5 

concentration on days with no precipitation.  Based on Table 4-8 and the above figures, 

maximum temperature, average wind speed, sustained wind speed, and average relative 

humidity are all shown to be positively correlated with PM2.5 concentrations.  None of the 

variables have a very strong correlation with PM2.5, however.  In fact, average station 

pressure has a very low correlation coefficient of 0.034, which shows no correlation.  It 

also has a p-value of 0.600, which shows that the very weak correlation is not statistically 

significant, again pointing to randomness. Table 4-8 demonstrates that daily maximum 

temperature has the strongest correlation with PM2.5 concentration out of the weather 

variables tested (with a Pearson’s correlation coefficient of 0.417).  For that, p < 0.001, 

making the correlations significant.  As far as average relative humidity, average wind 

speed, and sustained wind speed, the correlations are relatively weak, being 0.101, 

0.321, and 0.227 respectively.  For average relative humidity, the p-value is 0.120, 

making the result not statistically significant.  The p-values for average and sustained 

wind speed are both <0.001, making the results statistically significant.  For non-

precipitation days, in all cases besides the maximum temperature, results are not 

consistent with the hypothesis that PM2.5 concentrations in DFW in 2014 were positively 

correlated with maximum temperatures and average station pressure, and that they were 

negatively correlated with average relative humidity, average and sustained wind speed, 

and total precipitation. 

Table 4-8 also shows how the weather variables are correlated with each other.  

Daily maximum temperature is negatively correlated with average station pressure, 

average relative humidity, average wind speed, and sustained wind speed.  The 

respective Pearson correlation coefficients are -0.805, -0.400, -0.359, and -0.490.  

Average station pressure is positively correlated average relative humidity, average wind 
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speed, and sustained wind speed, with Pearson correlation coefficients of 0.385, 0.641, 

and 0.793, respectively).  It is negatively correlated with maximum temperature (-0.805).    

Average relative humidity has a negative correlation with maximum temperature, with a 

Pearson correlation coefficient of -0.400.  It has a positive correlation with average wind 

speed, sustained wind speed, and average station pressure (with Pearson correlation 

coefficients of 0.775, 0.658, and 0.385, respectively).  Average wind speed has a very 

strong positive correlation with sustained wind speed—the Pearson correlation coefficient 

being 0.945.  All of the correlations between the weather variables are statistically 

significant.  
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** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed). 

Table 4-8. 2014 correlations between weather variables and PM2.5 concentration for non-

precipitation days. N = 239. 

Table 4-9 shows the regression analysis results (for non-precipitation days only) 

for the daily average PM2.5 concentration versus all of the input variables:  road ADT, 

  
PM2.5 

Concentration 

(µg/m3) 

Maximum 

Temperature 

(degrees C) 

Average 

Station 

Pressure 

(HPa) 

Average 

Relative 

Humidity 

(%) 

Average 

Wind 

Speed 

(km/h) 

Sustained 

Wind 

Speed 

(km/h) 

PM2.5 

Concentration 

(µg/m3) 

Pearson 

Correlation 

1 0.417** 0.034 0.101 0.321** 0.227** 

 
Sig. (2-tailed) - 0 0.596 0.118 0 0 

Maximum 

Temperature 

(degrees C) 

Pearson 

Correlation 

0.417** 1 -0.805** -0.400** -0.359** -0.490** 

 
Sig. (2-tailed) 0 - 0 0 0 0 

Average Station 

Pressure (HPa) 

Pearson 

Correlation 

0.034 -0.805** 1 0.385** 0.641** 0.793** 

 
Sig. (2-tailed) 0.596 0 - 0 0 0 

Average Relative 

Humidity (%) 

Pearson 

Correlation 

0.101 -0.400** 0.385** 1 0.775** 0.658** 

 
Sig. (2-tailed) 0.118 0 0 - 0 0 

Average Wind 

Speed (km/h) 

Pearson 

Correlation 

0.321** -0.359** 0.641** 0.775** 1 0.945** 

 
Sig. (2-tailed) 0 0 0 0 - 0 

Sustained Wind 

Speed (km/h) 

Pearson 

Correlation 

0.227** -0.490** 0.793** 0.658** 0.945** 1 

 
Sig. (2-tailed) 0 0 0 0 0 - 
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road class, dominant land use, daily maximum temperature, daily average station 

pressure, daily total precipitation, daily average relative humidity, daily average wind 

speed, and daily sustained wind speed.  Additionally, block group population is included.  

The adjusted R square is 0.677.  The adjusted R square value indicates that the 

combined variables have a relatively strong relationship with the PM2.5 concentration on 

days with precipitation.  The p-value for this regression is <0.001, so it is statistically 

significant. When considering all variables against PM2.5 on non-precipitation days, 

maximum temperature has the highest impact on PM2.5 concentration.  The coefficient is 

0.980.  Average relative humidity has the least impact on PM2.5 concentration (with 

statistical significance), with a coefficient of 0.133. 

Regression Statistics:  PM2.5 Concentration vs. All Variables for Non-Precipitation 
Days 

Multiple R 0.830 

R Square 0.689 

Adjusted R Square 0.677 

Standard Error 2.193 

Maximum Temperature Coefficient 0.980** 

Average Station Pressure Coefficient 0.500** 

Average Relative Humidity Coefficient 0.133** 

Average Wind Speed Coefficient) 0.473** 

Sustained Wind Speed Coefficient -0.421** 

ADT Coefficient -8.900 x 10-6 

Road Class Coefficient 0.185 

Dominant Land Use Class Coefficient 0.0501 

Block Group Population Coefficient 0.000106 

Intercept -385.194** 

Observations 239 
** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed). 

Table 4-9. Regression statistics of PM2.5 concentration vs. all variables for non-

precipitation days. 
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Table 4-10 displays the regression analysis results (for non-precipitation days 

only) for the daily average PM2.5 concentration versus the weather variables:  daily 

maximum temperature, daily average station pressure, daily total precipitation, daily 

average relative humidity, daily average wind speed, and daily sustained wind speed.  

The adjusted R square is 0.681.  The adjusted R square value indicates that the 

combined weather variables have a relatively strong relationship with the PM2.5 

concentration on days with precipitation.  The p-value for this regression is <0.001, so it 

is statistically significant.  When only weather variables are measured against PM2.5 on 

non-precipitation days, maximum temperature again has the highest coefficient (0.983) 

and thus the highest impact on PM2.5 concentration.  Average relative humidity has the 

least impact on PM2.5 concentration, with a coefficient of 0.135. 

Regression Statistics:  PM2.5 Concentration vs. Weather Variables for Non-
Precipitation Days 

Multiple R 0.829 

R Square 0.688 

Adjusted R Square 0.681 

Standard Error 2.180 

Maximum Temperature Coefficient 0.983** 

Average Station Pressure Coefficient 0.502** 

Average Relative Humidity Coefficient 0.135** 

Average Wind Speed Coefficient 0.468** 

Sustained Wind Speed Coefficient -0.421** 

Intercept -385.997** 

Observations 239 

** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed). 

Table 4-10. Regression statistics of PM2.5 concentration vs. weather variables for non-

precipitation days. 
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PM2.5 Concentrations and Asthma 

When all dates in the study are assessed, there is essentially no correlation 

between PM2.5 concentration and total number of asthma cases in the study area on a 

given date.  Figure 4-19 shows an R2 value of 0.0066, and as seen in Table 4-11, the 

Pearson correlation coefficient is 0.081.  However, for days with precipitation, PM2.5 

concentration and the number of asthma cases have a Pearson correlation coefficient of 

0.233 (Table 4-12).  The p-value for that correlation is <0.001, making the result 

statistically significant.  There is, therefore, a statistically significant relatively weak 

positive correlation between PM2.5 concentration and reported asthma-related hospital 

visits when considering precipitation days.  Figure 4-20, which shows PM2.5 concentration 

vs. asthma cases for precipitation days, exhibits an R2 value of 0.0541, which means that 

about 5.4% of cases can be explained by the correlation.   

 

   Figure 4-19.  Average PM2.5 concentration vs. total number of asthma cases for all test 

dates in 2014. 
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  Total Number of Asthma Cases (All Test Dates) 

PM2.5 Concentration 

(µg/m3) 

Pearson Correlation 0.081 

 Sig. (2-tailed) 0.057 

** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed). 

Table 4-11. Average PM2.5 concentration vs. total number of asthma cases for all test 

dates in 2014. 

 

Figure 4-20. Average PM2.5 concentration vs. total number of asthma cases for 

precipitation days in 2014. 
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  Total Number of Asthma Cases (Precipitation Days) 

PM2.5 Concentration 

(µg/m3) 

Pearson Correlation 0.233** 

 Sig. (2-tailed) 0 

** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed). 

Table 4-12. Average PM2.5 concentration vs. total number of asthma cases for 

precipitation days in 2014. 

Figure 4-21 shows that about 2.6% of cases can be explained by the correlation, 

with an R2 value of 0.0258. Table 4-13 demonstrates that for non-precipitation days, the 

Pearson correlation coefficient is -0.161, with a p-value of 0.014.  On non-precipitation 

days, therefore, the results indicate that there is a very weak negative correlation 

between PM2.5 concentrations and asthma cases. This is surprising because an increase 

in PM2.5 concentrations would be expected to increase asthma cases. 
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Figure 4-21. Average PM2.5 concentration vs. total number of asthma cases for non-

precipitation days in 2014. 

  Total Number of Asthma Cases (Non-Precipitation Days) 

PM2.5 Concentration 

(µg/m3) 

Pearson Correlation -0.161* 

 Sig. (2-tailed) 0.014 

** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed). 

Table 4-13. Average PM2.5 concentration vs. total number of asthma cases for non-

precipitation days in 2014. 

Figure 4-22 shows that there is no correlation between PM2.5 concentrations and 

asthma cases within the block groups for all test dates combined—the R2 value is 

0.0014.  Further, Table 4-14 shows that for daily average PM2.5 concentration versus the 

number of asthma cases within the block group, the Pearson’s correlation coefficient is 

0.037. Similar to the data for total asthma cases, there is essentially no significant 
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relationship between the number of asthma cases within the block group versus daily 

average PM2.5 concentration.   

 

Figure 4-22. Average PM2.5 concentration vs. asthma cases within the block group for all 

test dates in 2014. 

  Number of Asthma Cases in Block Group (All Test Dates) 

PM2.5 Concentration 

(µg/m3) 

Pearson 

Correlation 

0.037 

 Sig. (2-tailed) 0.386 

** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed). 

Table 4-14. Average PM2.5 concentration vs. asthma cases within the block group for all 

test dates in 2014. 

With an R2 value of 0.005, Figure 4-23 does not illustrate that there is any 

notable correlation between PM2.5 concentrations and asthma cases within the block 

groups when only considering precipitation days.  Table 4-15 displays that the daily 
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average PM2.5 concentration versus the number of asthma cases within the block group 

for precipitation days.  The Pearson’s correlation coefficient is 0.023. Similar to the data 

for total asthma cases, the relationship between the number of asthma cases within the 

block group and daily average PM2.5 concentration is a very weak positive relationship.  

However, unlike the data for total asthma cases, the finding is not statistically significant, 

as the p-value is 0.69.  Again, this shows that the result could be due to chance.   

 

Figure 4-23. Average PM2.5 concentration vs. asthma cases within the block group for 

precipitation days in 2014. 
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  Number of Asthma Cases in Block Group (Precipitation 

Days) 

PM2.5 Concentration 

(µg/m3) 

Pearson Correlation 0.023 

 Sig. (2-tailed) 0.692 

** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed). 

Table 4-15. Average PM2.5 concentration vs. asthma cases within the block group for 

precipitation days in 2014. 

Figure 4-24 also demonstrates that there is no significant correlation between 

PM2.5 concentrations and asthma cases within the block groups for non-precipitation 

days, and it shows an R2 value of 0.0081.  Table 4-16 shows a Pearson’s correlation 

coefficient is 0.090 for the relationship between the number of asthma cases within the 

block group versus daily average PM2.5 concentration for non-precipitation days.  Like the 

data for total asthma cases, the Pearson’s coefficient value indicates that there is no 

correlation.   

 

 



 

99 

 

Figure 4-24. Average PM2.5 concentration vs. asthma cases within the block group for 

non-precipitation days in 2014. 

  Number of Asthma Cases in Block Group (Non-

Precipitation Days) 

PM2.5 Concentration 

(µg/m3) 

Pearson Correlation 0.090 

 Sig. (2-tailed) 0.167 

** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed). 

Table 4-16. Average PM2.5 concentration vs. asthma cases within the block group for 

non-precipitation days in 2014. 
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The Spatial Pattern of Asthma-Related Hospital Visits  

Figure 4-25, a Kernel Density analysis image, shows how dense the asthma 

patient locations were in their respective areas.  Again, the density is increased in Dallas 

County, but it is also increased noticeably in Tarrant County.  The city of Dallas is in 

Dallas County, while Fort Worth, another major city, is located in Tarrant County.

 

Figure 4-25. Density of reported asthma-related hospital visits in 2014. 

The Anselin’s Local Moran’s analysis yielded clusters among the reported home 

locations of those admitted to hospitals due to asthma for all of 2014 (Figure 4-46).  As 

seen in Figure 4-26, the clusters of reported asthma cases were mostly seen in Tarrant, 

Denton, Collin, Hunt, and Rockwall Counties.  Tarrant county also has many outliers.  

Dallas County has many outliers, but there are still some clusters seen there.  Figure 4-
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27 shows the hot spots and cold spots of asthma cases within the study area as 

determined by the Getis-Ord G analysis.  The hot spots are mostly seen in Dallas 

County, but there are noticeable numbers of hot spots in Denton, Collin, Rockwall, and 

Ellis Counties.  There are a few in Tarrant County as well.  Based on both figures, the city 

centers and surrounding areas (namely Fort Worth, Dallas, and Denton) have a high 

concentration of asthma-related hospital visits surrounding them.   

 

Figure 4-26.  2014 Asthma case clusters and outliers in north Texas. 
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Figure 4-27.  2014 Asthma case hot spots in north Texas. 

Figure 4-28 shows the population by block group within the study area, and it 

illustrates how busy the major roads are in the area.  Areas with higher populations are 

seen in Figure 4-48 as surrounded by many roads with varying ADTs.  Many of those 

ADTs are quite high.  However, many of the highest ADTs are not in areas with high 

populations by block group.  This shows that high traffic areas are not necessarily the 

same as high population areas.  When compared to Figures 4-25, 4-26, and 4-27, it is 

apparent that most areas with higher populations (i.e. parts of Dallas and Tarrant 

Counties) are the same areas where clusters and hot spots are heavily concentrated. 
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Figure 4-28. Population by block group with roads.  The block groups are color-coded 

based on population.  The roads are color-coded based on the ADT. 
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Chapter 5 

Discussion 

This section discusses the research constraints that may have influenced the 

results.  There is also discussion of possible reasons for any results which did not go 

along with the hypotheses. 

Limitations of the Analysis 

Based on similar studies to this current one, there can be limitations based on 

the use of GIS tools (i.e. ordinary kriging).  In general, GIS based studies face the 

challenge of uniformly distributed data, which limits certain data which is used for 

analysis (Gorai et al., 2014).  This is true of this current study, as the weather and air 

quality monitoring sites are not as numerous and spatially diverse as the patient 

locations.  Even the available air quality monitoring sites are not as abundant as the 

weather data sites.  Looking at Figure 2-12, it is clear that even for Ahmadi and John 

(2015), there were relatively few TCEQ air quality monitors available for use for a very 

similar study area, although they were using monitors which reported ozone 

concentration data.   

There are only 24 weather monitors which collected data for 2014 in the study 

area, and of those, 5 of them had large amounts of missing data and could not be used.  

There are only seven PM2.5 monitors in the study area.  Seeing how much variation there 

is in the average PM2.5 concentration from station to station on the same given day, it is 

necessary to have more monitors that measure PM2.5 concentrations.  As far as weather 

monitors, there is a very noticeable difference in daily precipitation measurements in 

each given point within the study area.  Because of this, it is necessary to have more 

weather monitors and more recorded data. 
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Another limitation that this research had is that some patients may have reported 

an address which is not truly where they live or have spent much time in, and a given 

address may not even be where they were when symptoms occurred.  Some people 

experiencing asthma symptom aggravation may have gone to a private doctor rather than 

a hospital, or they may not have gone to a healthcare provider at all, which means their 

cases are not reflected in the data available (Gorai et al., 2014).  That can be assumed 

for this research that took place in DFW.  

Regarding the block-group level, one notable research constraint is that most of 

the block groups for the study area are quite small, so the number of asthma cases per 

block group did not exceed 3 for the study period.  Another constraint is that the block 

groups are quite varied in size, as is evident in Figure 4-28.  The most significant 

limitation is that not all meteorological variables were included, i.e. mixing height 

(indicates inversions) and stability (determined by solar insolation and wind speed). 

Stability is the main variable that affects dispersion of air pollutants (Jacobson, 2012, p. 

137).  Another limitation is that only 12 days were analyzed, which do not capture all 

combinations of weather conditions.  

Regarding the modelling technique for PM2.5 concentrations, a limitation is that 

the RBF neural network does not use the same dynamics as a weather forecast model 

with an atmospheric chemistry module.  There are fewer variables involved with the RBF 

neural network model.  Dynamic forecast models can be useful tools to assess the 

meteorological implications on the distribution of air pollutants (e.g. ozone and PM2.5) due 

to their use of many variables. 

Discussion of Results 

The results point to the ambient PM2.5 concentration being positively correlated 

with asthma cases when precipitation days are considered and when the total count of 
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asthma-related hospital admissions for the study area are considered.  This is consistent 

with previous studies’ results (Huang et al., 2019; Mirabelli et al., 2016; Williams et al., 

2019) and the proposed hypothesis.  However, the results also indicate that PM2.5 

concentrations are negatively correlated with asthma cases on non-precipitation days, 

and that they are not correlated with asthma cases when all test dates are combined.  

This is not consistent with the proposed hypothesis; however, it is consistent with the 

results of Yamazaki et al. (2019), who also found no correlation between PM2.5 and 

asthma exacerbation.  Also, when just the number of asthma cases per block group are 

considered, there is not much of a correlation between asthma cases and PM2.5 

concentrations at all.   It is possible that the block group level is too small for this 

research—the number of asthma cases per day per block group never exceeded three.  

As seen in Figure 4-28, many of the block groups are quite small areas.  Perhaps the 

census tract level, which is the next step up in size, should be the next level on which to 

focus similar research. 

Regarding the slightly higher positive correlation between PM2.5 concentration 

and total asthma cases on precipitation days, it would be expected that PM2.5 

concentrations would vary between areas with little precipitation and those with more due 

to the washout effect.  It would also be expected that the areas with higher PM2.5 

concentration would have higher cases of asthma on such days.  It is also possible that 

some asthma symptoms are exacerbated from the patient remaining indoors, as indoor 

air quality may cause amplification of asthma symptoms (Habre et al., 2014; Liu et al., 

2014).  Indoor temperature and moisture levels also contribute to exacerbated asthma 

and allergy symptoms (Norbäck et al., 2019; J. Wang et al., 2017).  Exposure to indoor 

conditions, therefore, may be contributing factors to asthma-related hospital visits 

happening on cooler days and/or days with more precipitation.  Regarding the very weak 
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negative correlation between PM2.5 concentration and asthma cases on non-precipitation 

days, since other pollutants such as ozone (O3) form from NOx and VOCs like PM2.5 can, 

it may be that asthma cases could actually increase on days when PM2.5 levels are lower 

due to the presence of other pollutants that exacerbate asthma. 

Precipitation is shown to be negatively correlated with PM2.5 when considering 

precipitation days only.  This is consistent with the results of previous studies as well as 

with the proposed hypothesis.  This makes sense due to the effects of precipitation 

leading to wet deposition of PM2.5 (Brunner et al., 2015; Zhang et al., 2015;  Zhen et al., 

2013; Lai, 2013; Jacobson, 2012, p. 294).  Average relative humidity is found to be 

negatively correlated with PM2.5 on when considering all days or when considering 

precipitation days only, which is also consistent with previous studies’ results and the 

hypothesis.  Because high humidity is often associated with the onset of precipitation 

events, this makes sense if there are precipitation events (and wet deposition) 

surrounding the days with higher humidity.  On non-precipitation days, average relative 

humidity is found to be positively correlated with PM2.5 with no statistical significance.  

This indicates that the result for non-precipitation days regarding relative humidity could 

be due to chance.  However, there are some studies which reported that humidity is 

positively correlated with PM2.5 concentration (Veremchuk et al., 2016; Lai, 2013).   

Maximum temperature, average station pressure, average wind speed, and 

sustained wind speed are positively correlated with ambient PM2.5 concentration when 

days with precipitation are considered.  Besides the results for average wind speed and 

sustained wind speed, these results are consistent with the results of previous studies as 

well as with the proposed hypothesis.  In the case of the positive correlation of maximum 

temperature with PM2.5 concentration, higher temperatures also lead to greater 

evaporative emissions of VOCs, one of the precursors of PM2.5 (Zhang et al., 2015). 
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Therefore, increased PM2.5 levels with increased temperature makes sense.  Regarding 

average station pressure, higher pressure is typically associated with inversions, which 

result in high air pollution events (L. Li et al., 2014).   As for average and sustained wind 

speeds, higher wind speeds would be expected to increase dispersal of PM2.5 rather than 

increasing the concentration in a given area (Pesic et al., 2014; Ahmadi & John, 2015; 

Bella et al., 2016; Zhang et al., 2015).     

Effects of Drought   

Much of north Texas was in drought during 2014.  In fact, according to the 

National Drought Mitigation Center (2019), since the start of the U.S. Drought Monitor in 

2000, Texas had its longest bout of drought for 271 weeks from May 4, 2010 to July 7, 

2015.  A drought can be defined as “an interval of time, generally of the order of months 

or years in duration, during which the actual moisture supply at a given place rather 

consistently falls short of the climatically expected or climatically appropriate moisture 

supply” (Lloyd-Hughes, 2014, p. 607; Texas State Historical Association, 2018).  During 

2014, North Central Texas as a whole (which includes the study area) received 73% of its 

expected precipitation (Texas State Historical Association, 2018).  Texas drought maps 

from 2014 can be found in Appendix 1.   

In March, April, May, June, July, August, September, October, November, and 

December, parts of the study area, including Tarrant and Dallas Counties, were in 

severe, extreme, or exceptional drought (the three highest severities).  Appendix 1 has 

figures which feature drought maps of Texas from 2014.  The strong positive correlation 

between average and sustained wind speed and PM2.5 is the opposite of the findings of 

B. Zhang et al. (2018), which indicates that strong wind speeds are associated with 

removal of 60% of PM2.5 from the atmosphere.  The strong positive correlations between 

average and sustained wind speeds and PM2.5 concentration may be explained by the 
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drought.   Studies by Y. Wang et al. (2017) and Wang et al. (2015) found that there is an 

increase in ambient PM2.5 in the form of wind-blown dust during drought conditions.  

Similarly, Achakulwisut, Mickley, and Anenberg (2018) found that drought conditions are 

a precursor to increased fine dust (fine PM) concentrations. 

There was only one date (with complete data) within the study time period that 

exhibited heavy precipitation.  Zalakeviciute, López-Villada, and Rybarczyk (2018) found 

that in urban areas, atmospheric PM2.5 removal was significant during rainfall events with 

at least 9 mm of precipitation.  Sun et al. (2019) found the same with rainfall events of at 

least 10 mm.  Of the seven precipitation dates included in this dissertation study, there 

was one date which had greater than 10 mm of precipitation (March 15, 2014, with an 

average of 24.618 mm of precipitation among the reported asthma case locations).  The 

strong negative correlation of relative humidity with PM2.5 on rainy days is consistent with 

the research of Zalakeviciute et al. (2018), which found that PM2.5 concentration 

decreases with increasing relative humidity among the outskirts of cities.  Most of the 

asthma points were surrounding city centers in this case.  The drought conditions may 

have been the cause for the finding of a very weak negative correlation between 

precipitation and PM2.5. 

Aeroallergens 

It could be that aeroallergens, which consist of larger particles, cause 

exacerbation of asthma symptoms as well as allergic reactions, which also lead in turn to 

exacerbation of asthma symptoms (Sierra-Heredia et al., 2018).  Aeroallergens include 

pollen grains and certain fungi.  Mature pollen grains are typically released when there is 

a decrease in relative humidity, and they typically stay in the air as long as there is low 

humidity and wind speeds and high atmospheric pressure (Sierra-Heredia et al., 2018).  
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Fungi tend to grow well in wet conditions, and they produce spores in dry conditions 

(Sierra-Heredia et al., 2018).   

According to Zhang et al. (2015) and Sierra-Heredia et al. (2018), precipitation 

often temporarily washes out aeroallergens from the atmosphere.  However, according to 

Sierra-Heredia et al. (2018), it is possible that precipitation, i.e. rain, can even break 

pollen apart, thus releasing PM2.5 in the form of the smaller particles of pollen in the 

atmosphere.  Thunderstorms can carry whole and ruptured pollen grains to ground level, 

thus being distributed by the wind to areas outside of the area of the thunderstorm 

(Sierra-Heredia et al., 2018).  It may be due to the breaking of pollen grains in spring that 

precipitation during the spring months was associated with higher hospital admissions for 

asthma symptoms.  It is possible that this rupturing caused an increase in allergy 

symptoms, which could have exacerbated asthma symptoms.  However, due to the 

unavailability of aeroallergen monitors (there was one found for the DFW area which has 

the necessary historic data), the effects of pollen count on asthma could not be assessed 

in this study.  For non-precipitation days, it could be that the lack of interaction between 

the weather and pollen grains caused the slight decrease in asthma-related hospital 

admissions when PM2.5 concentrations had increased. 
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Chapter 6 

Conclusions and Recommendations for Future Work 

An objective of this research was to determine the potential spatial correlations 

between the weather variables of daily maximum dry-bulb temperature, daily average 

wind speed, daily sustained wind speed, daily average station pressure, daily average 

relative humidity, and daily total precipitation with ambient PM2.5 concentration.  The other 

objective of this research was to determine the correlation between PM2.5 concentration 

and adult asthma-related hospital admissions.  To reach those objectives, a radial basis 

function model was used to model the PM2.5 concentrations in the DFW area in the year 

2014.  The variables used within the model were weather variables—daily maximum dry-

bulb temperature, daily average wind speed, daily sustained wind speed, daily station 

pressure, daily average relative humidity, and daily precipitation—road type, average 

daily traffic counts, dominant land use, and the known PM2.5 concentrations.  The 2014 

reported asthma cases were assessed by using spatial autocorrelation analyses—the 

Getis-Ord G and Local Moran’s I statistical analyses. 

In this study, maximum temperature, average station pressure, average wind 

speed, and sustained wind speed were found to be positively correlated with ambient 

PM2.5 concentration on precipitation days.  The strong positive correlations between 

average and sustained wind speeds and PM2.5 concentration may be explained by the 

drought of 2014.  Apart from the results for average wind speed and sustained wind 

speed, those results are consistent with the results of previous studies and the 

hypothesis that the PM2.5 concentrations in DFW in 2014 were positively correlated with 

maximum temperatures and average station pressure, and that they were negatively 

correlated with average relative humidity, average and sustained wind speed, and total 
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precipitation.  Such studies include L. Li et al. (2014), Kalbarczyk et al. (2015), and 

Veremchuk et al. (2016), who found that temperature was positively correlated with air 

pollution concentrations.  L. Li et al. (2014) and Lai (2012) found that station pressure is 

positively correlated with air pollution concentrations, and that they were negatively 

correlated with average wind speed, sustained wind speed, relative humidity, and 

precipitation.   In all cases, the correlations are shown to be much stronger when 

considering only precipitation days than when considering combined precipitation and 

non-precipitation days.    

Precipitation and average relative humidity are shown to be negatively correlated 

with PM2.5 concentration on precipitation days.  This is consistent with the results of 

previous studies—i.e. Cai et al. (2014), who found that relative humidity was negatively 

correlated with air pollution concentrations; Austin et al. (2015) and Zhai et al. (2019), 

who found that precipitation was negatively correlated with air pollution concentrations; 

and Lai et al. (2012) and Li et al. (2014) who found that both precipitation and average 

relative humidity were negatively correlated with air pollution concentrations.  It is also 

consistent with the proposed hypothesis.  In both cases, the correlations are shown to be 

much stronger when considering only precipitation days than when considering combined 

precipitation and non-precipitation days.  The differences between the results on 

precipitation days versus combined precipitation and non-precipitation days indicate that 

PM2.5 concentration is sensitive to precipitation events.  Kleine-Deters et al. (2017) 

similarly found that their machine-learning-based model was sensitive to precipitation 

events.  Due to the variation in literature about whether humidity is positively or 

negatively correlated with PM2.5 concentration, more research should be done in the 

future on how humidity affects PM2.5 concentrations.  
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This research has found that there is a relatively weak positive correlation 

between PM2.5 concentration and reported asthma-related hospital visits on precipitation 

days.  This is consistent with the results of Mirabelli et al. (2016), Williams et al. (2019), 

and Huang et al. (2019), who specifically focused on PM2.5 and found that it is positively 

correlated with asthma exacerbation.  Gorai et al. (2016) also found a positive correlation 

between the two, but they found that it was not statistically significant.  It is also 

consistent with the hypothesis that PM2.5 concentrations and asthma-related hospital 

admissions were positively correlated.  The correlation for all test dates including non-

precipitation days showed a no correlation which, like the results of Gorai et al. (2016), 

was not statistically significant.  It is also consistent with Yamazaki et al., (2019), who 

found essentially no correlation between PM2.5 and asthma exacerbation.  Regression 

analyses also show that the relationship is weak, and those results were not statistically 

significant.  Due to those findings, further research is needed to determine whether PM2.5 

concentrations and asthma exacerbation are related in different study areas and/or 

different time periods. 

There is a lot of focus in the literature on ambient ozone concentration as it 

relates to asthma exacerbation.  However, as seen in this study, PM2.5 concentration is 

positively correlated with asthma exacerbation as well, although weakly, when 

precipitation is considered.  More extensive research should be done to confirm whether 

PM2.5 concentrations do exacerbate asthma.  In the future, it would be helpful for TCEQ 

and/or the EPA to place more PM2.5 monitors in the DFW region.  PM2.5 concentrations 

can fluctuate from station to station, so more PM2.5 monitors will help with future 

research.  It would also help with potentially better estimations of PM2.5 for future 

research.  More weather monitors would also be helpful for the same reasons.  Not only 

would that help to better estimate weather variables for more locations—it would also aid 
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in the estimation of PM2.5.  Perhaps with more PM2.5 and weather monitors, prediction of 

PM2.5 could be possible rather than only retrospective estimation.   

More research should also be done of the same kind as this study, in the same 

study area, but during a year that is not a drought year.  The complications of the drought 

may have impacted the results, so a year with more precipitation may show different 

results.  Further research focusing on the effects of aeroallergens on asthma and 

allergies is also needed.  North Texas does have vegetation which releases significant 

amounts of pollen, and that pollen may play a role in the exacerbation of asthma 

symptoms.   

In future research in the DFW area, it would be beneficial to study the correlation 

between highways in general—or high-traffic roads and highways—and PM2.5 

concentrations and asthma cases.  There are parts of certain roads in the metroplex that 

have very high volumes of traffic.  It is also recommended that a potential correlation 

between areas of construction and PM2.5 concentrations and asthma cases be studied.  

Windblown dust from construction could be contributing to PM2.5 concentrations and 

asthma symptom exacerbation. 

Based on the results of this study, daily maximum temperature, daily average 

station pressure, daily average wind speed, and daily sustained wind speed are positively 

correlated with ambient PM2.5 concentration on days with precipitation.  On days with 

precipitation, daily total precipitation and daily average relative humidity are negatively 

correlated with ambient PM2.5 concentration.  PM2.5 concentration is positively correlated 

with asthma-related hospital admissions among adults in the DFW region of north Texas 

on days with precipitation, and negatively correlated with the same on days without 

precipitation.  The findings of this study indicate that it is necessary to further study the 

relationships to determine whether PM2.5 is detrimental to human respiratory health.  
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Appendix 

Appendix 1:  Drought Maps 

Figures A1-1 – A1-12 show drought maps from each month in 2014, from the 

dates closest to the dates from the study.  According to the National Drought Mitigation 

Center (2019), the intensity categories entail the following: D0, or “abnormally dry,” is 

actually a “precursor to drought” and entails “short-term dry conditions that may impede 

agriculture, some water shortages, and crops may not fully recover.”  D1, or “moderate 

drought,” entails some crop damage due to dry conditions, the beginnings of water 

shortages, and requested water-use restrictions (National Drought Mitigation Center, 

2019a).  D2, or “severe drought,” means that it is likely that there will be loss of crops, 

that water shortages are common, and that there are required water restrictions (National 

Drought Mitigation Center, 2019a).  D3, or “extreme drought,” means there is a “major” 

loss of crops and extensive water restrictions due to water shortages (National Drought 

Mitigation Center, 2019a).  D4, or “exceptional drought,” entails extensive loss of crops 

and water emergencies due to water shortage (National Drought Mitigation Center, 

2019a). 

 

 



 

118 

 

Figure A1-1.  Drought areas in Texas during the week of January 1, 2014 (National 

Drought Mitigation Center, 2019b). 

 

Figure A1-2.  Drought areas in Texas during the week of February 7, 2014 (National 

Drought Mitigation Center, 2019b). 
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Figure A1-3.  Drought areas in Texas during the week of March 15, 2014 (National 

Drought Mitigation Center, 2019b). 
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Figure A1-4.  Drought areas in Texas during the week of April 27, 2014 (National Drought 

Mitigation Center, 2019b). 

 

Figure A1-5.  Drought areas in Texas during the week of May 3, 2014 (National Drought 

Mitigation Center, 2019b). 
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Figure A1-6.  Drought areas in Texas during the week of June 5, 2014 (National Drought 

Mitigation Center, 2019b). 

 

Figure A1-7.  Drought areas in Texas during the week of July 7, 2014 (National Drought 

Mitigation Center, 2019b). 



 

122 

 

Figure A1-8.  Drought areas in Texas during the week of August 23, 2014 (National 

Drought Mitigation Center, 2019b). 

 

Figure A1-9.  Drought areas in Texas during the week of September 17, 2014 (National 

Drought Mitigation Center, 2019b). 
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Figure A1-10.  Drought areas in Texas during the week of October 29, 2014 (National 

Drought Mitigation Center, 2019b). 

 

Figure A1-11.  Drought areas in Texas during the week of November 5, 2014 (National 

Drought Mitigation Center, 2019b). 
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Figure A1-12.  Drought areas in Texas during the week of December 3, 2014 (National 

Drought Mitigation Center, 2019b). 
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Appendix 2:  RBF Procedures 

This appendix shows the in-depth procedures for creating and using the RBF 

neural network.  The first portion of using an RBF neural network involves creation of the 

network.  The first step in creating an RBF network is to define the input.  In Matlab, this 

is done by using the code P = u, with u being either the matrix or the set of values which 

will be used as the input.  Next, one must define the targets.  The code for that is T = v, 

with v being either the matrix or the set of values which will be the targets.  After that, the 

input and target values must be normalized using the formulas [PN,PS] = mapminmax(P) 

and [TN,TS] = mapminmax(T), where PN is equal to the normalized input, P, and TN is 

equal to the normalized targets, T.  Lastly, the training for the network is run, using net = 

newrb(PN,TN,g,s,MN,DF).  In that formula, g is the goal (the default is 0), s is the spread 

(the default is 1), MN is the maximum number of neurons, and DF is the number of 

neurons to add between displays. 

The second portion of the process involves testing the performance of the RBF 

network by generating a regression output.  First, the RBF network must be run using 

[Y,Xf,Af] = sim(net,PN).  Then, the output must be transformed using [a] = 

postmnmx(Y,mint,maxt), where Y is the output from the previous step and a is the 

transformed output.  Finally, a regression of output versus targets is to be plotted using 

[m,b,r] = postreg(a,T), where T is target values. 

When satisfied with the RBF neural network performance, the steps for using the 

RBF network for a new dataset are the following.  First, define the input, k.  This is done 

by using k = u, just like defining the input in the creation of the RBF network (described 

above).  Next, normalize the inputs using [kn] = tramnmx(k,minp,maxp).  Note that the 

minimum and maximum are the same as the within the creation of the RBF neural 
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network.  Then run the network using [Y,Xf,Af] = sim(net,kn).  Lastly, transform the output 

using [a] = postmnmx(Y,mint,maxt). 
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Appendix 3:  Sample PM2.5 Estimations 

Once the RBF network was created, tested, and run, the output was the 

estimated PM2.5 concentrations for the locations of the asthma case points within the 

study area.  A sample of the output of the RBF network (the estimated PM2.5 

concentrations) is shown in the tables below—Tables A3-1, A3-2, and A3-3.  The tables 

also include the input material—the weather, road, and land use variables.  Please refer 

to the section entitled Procedure in Chapter 3 to define the land use and road class 

values.   
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