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Abstract 

Access to high quality and safe food is vital for sustainable development in 

societies. Perishable foods lose a major portion of their quality after harvesting until the 

consumption point due to poor storage and distribution conditions. Thus, improvements in 

food supply chain operations are very critical in the sustainable development of society and 

the industry. The first part of this dissertation seeks to find a cost-effective and reliable tool 

to monitor the quality loss and implementation of the least shelf life first-out inventory 

management policy in food banks. Application of the Gompertz model and Arrhenius 

equation based on time-temperature data collected from donated foods provides an 

accurate and reliable estimation for the shelf life through the inbound operations. As a 

result of applying this methodology, perishable products which have the least shelf life are 

selected first to distribute among the people in need. Furthermore, as the role of food 

distribution is highlighted in the literature, the next two sections of this dissertation discuss 

how to increase efficiency and improve sustainability in the distribution of perishable food 

products. In chapter 3, temperature abuses and long delivery routes are identified as the 

main reasons that foods lose a considerable portion of their quality during distribution. 

Energy equations are applied to predict temperature increases when the container door is 

open to unload part of the cargo in the location of a customer. These temperature estimates 

are used as the input of the Gompertz model and the Arrhenius equation to predict the 

remaining shelf life of foods when they are delivered at their destination. Loss in the shelf 

life of the delivered products can be transformed into the revenue loss and discarding cost 

which can be integrated with other distribution costs in the objective function of the 

perishable food distribution model. Simulated Annealing algorithm is developed to solve 

the proposed mathematical model. The results of comparing the proposed quality 

dependent perishable food distribution model with the conventional food distribution model 
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show that the total distribution costs in the proposed model are lower than the conventional 

model, and this gap goes up as the size of the problem increases. In chapter 4, the main 

influential elements in the sustainability of perishable food distribution networks are 

identified as distribution costs, CO2 emission which comes from the diesel engine of the 

refrigerated vehicle, and freshness of foods. A novel multi-objective mathematical model 

is developed to consider each of these impactful factors as an objective of the model. The 

freshness of the products are measured by integration of the temperature and shelf life 

prediction models, the CO2 emission is calculated based on the energy consumed to 

transport and refrigerate the perishable foods, and the distribution costs are the 

combination of the fixed dispatching costs and variable costs of transporting products 

between two locations. Non-dominated sorting genetic algorithm II is developed to solve 

the multi-objective model. The performance of the solution algorithm is verified by 

comparing it with a weighted Simulated Annealing algorithm. The analysis over the results 

illustrates that the sustainability goals are conflicting in nature, and optimizing any of these 

goals leads to the optimality gap in other objectives. The results show that the sustainability 

goals of perishable food distribution are sensible to the shelf life of the foods, and foods 

with lower shelf life imply higher distribution costs, CO2 emission, and lower freshness. 

Also, the results show that when temperature sets for higher degrees inside the container 

of refrigerated vehicles, although CO2 emission is lower the freshness of perishable foods 

is getting worse. 

  



v 

Acknowledgment 

 

I would like to thank all the people who helped and supported me in this significant 

achievement of my life. My sincere appreciation is for my supervising committee, Dr. Jamie 

Rogers, Dr. Caroline Krejci, and Dr. Jaime Cantu, for providing the incredible support and 

encouragement through this long journey. Their knowledge, expertise, and experience in 

different fields of engineering assist me to improve the quality of this dissertation in various 

aspects. I want to be grateful for their time and resources to help me making progress in 

this dissertation. I especially want to thank Dr. Caroline Krejci who introduced me to the 

challenges in the food supply chain, and her passion and perseverance is a great example 

for me to follow my curiosity, explore new ideas, and achieve my goals through my life. 

I am thankful to my father, Adel Gharehyakheh, and my deeply missed mother, 

Jila Ghorbanalizadeh, who provided their warmest and endless love and support in my 

entire life. I also appreciate my older sister, Sepideh Gharehyakheh, who always cares and 

pays attention to my education. The last but not the least, I am grateful for all dedication, 

support, friendship, and counseling of my wife, Farnoosh Sharbafi. 

  



vi 

Table of Contents 

Abstract ...............................................................................................................................iii 

Acknowledgment ................................................................................................................. v 

List of Illustrations .............................................................................................................. ix 

List of Tables ...................................................................................................................... xi 

Chapter 1 INTRODUCTION .............................................................................................. 12 

1.1. Background ............................................................................................................ 12 

1.2 Mathematical modeling in food supply chain .......................................................... 13 

1.3 Research Questions and Contribution ................................................................... 14 

1.4 Dissertation Organization ....................................................................................... 15 

References ................................................................................................................... 17 

Chapter 2 Dynamic Shelf-Life Prediction System to Improve Sustainability in 

Food Banks ....................................................................................................................... 18 

Abstract ......................................................................................................................... 18 

1. Introduction and Background .................................................................................... 18 

2. Methodology ............................................................................................................. 19 

3. Case Study Application and Results ........................................................................ 22 

4. Discussion and Conclusion ...................................................................................... 25 

References ................................................................................................................... 25 

Chapter 3 Optimizing Distribution of Perishable Food Products Considering 

Temperature Variability and Food Quality Deterioration ................................................... 27 

Abstract ......................................................................................................................... 27 

1. Introduction ............................................................................................................... 27 

2. Quality considerations in food distribution optimization ........................................... 30 



vii 

3. Predicting temperature, quality, and market value in the food distribution 

problem ......................................................................................................................... 33 

3.1 Temperature prediction in the food distribution system ......................................... 34 

3.1.1 Temperature prediction during unloading ....................................................... 35 

3.1.2 Temperature prediction during transportation ................................................. 36 

3.2 Modeling the effect of temperature on food quality ................................................ 36 

3.3 Modeling the effect of food quality on market value ............................................... 39 

4. QD-VRPTW model ................................................................................................... 41 

5. Solution approach ..................................................................................................... 43 

5.1 Proposed SA algorithm ...................................................................................... 44 

6. Results and discussion ............................................................................................. 47 

Conclusion .................................................................................................................... 51 

References: .................................................................................................................. 52 

Appendix ....................................................................................................................... 55 

Chapter 4 A Multi-Objective Model for Sustainable Perishable Food 

Distribution Considering the Impact of Temperature on Vehicle Emissions 

and Product Shelf Life ....................................................................................................... 60 

Abstract ......................................................................................................................... 60 

1. Introduction ............................................................................................................... 60 

2. Literature Review ...................................................................................................... 63 

3. Problem Statement and Model Formulation ............................................................. 68 

3.1. Temperature Prediction Based on Heat Transfer ............................................. 68 

3.1.1. Temperature Prediction in Unloading ........................................................ 69 

3.1.2. Temperature Prediction in Transportation ................................................. 70 

3.2. CO2 Emissions .................................................................................................. 71 



viii 

3.3. Food Product Freshness Based on Shelf Life Prediction.................................. 72 

3.4. Mathematical Model .......................................................................................... 74 

4. Solution Procedure ................................................................................................... 76 

4.1. Chromosome Encoding ..................................................................................... 77 

4.2. Crossover Operator ........................................................................................... 77 

4.3. Mutation Operator.............................................................................................. 78 

4.4. Non-Dominated Sorting ..................................................................................... 78 

4.5. Crowding Distance ............................................................................................ 79 

4.6. NSGA-II Main Loop ........................................................................................... 80 

5. Computational Results and Discussion .................................................................... 80 

5.1. Performance of the solution method ................................................................. 80 

5.2. Optimality Analysis ............................................................................................ 82 

5.3. Sensitivity to Shelf Life ...................................................................................... 84 

5.4. Sensitivity to Temperature Setting .................................................................... 84 

6. Conclusions and Future Research ........................................................................... 85 

References ................................................................................................................... 88 

Appendix ....................................................................................................................... 92 

Chapter 5 Conclusion ........................................................................................................ 93 

 



ix 

List of Illustrations 

Figure 2-1: The relation of quality loss and growth of SSOs in perishable foods (adapted 

from [8]). ............................................................................................................................ 21 

Figure 2-2: Effect of long staging time on the growth of SSOs and the remaining shelf-life 

of the products. ................................................................................................................. 23 

Figure 2-3: Effect of shortening staging time on the growth of SSOs and the remaining 

shelf-life of the products. ................................................................................................... 23 

Figure 2-4: Effects of an increase in temperature on the growth of SSOs and the 

remaining shelf-life of the products. .................................................................................. 24 

Figure 2-5: Effects of low steady temperature on the growth of SSOs and the remaining 

shelf-life of the products. ................................................................................................... 24 

Figure 3-1. Comparing the effects of delivery sequence on the temperature of the 

container and remaining product shelf life, (a) delivery sequence is B-A (b) delivery 

sequence A-B. ................................................................................................................... 31 

Figure 3-2. Schematic of QD-VRPTW structure ............................................................... 34 

Figure 3-3. Example of the relationship between food quality and market value over time 

(Adapted from Osvald & Stirn (2008)) ............................................................................... 40 

Figure 3-4. SA solution encoded as a vehicle routing schedule. ...................................... 44 

Figure 3-5. Proposed SA algorithm. .................................................................................. 45 

Figure 3-6. Swap, reversion, and insertion operators to create a new neighbor. ............. 46 

Figure 3-7. Comparison of delivery costs in QD-VRPTW and VRPTW for each test 

problem ............................................................................................................................. 48 

Figure 3-8. The optimal vehicle routing for 2 customers and 1 vehicle; Fig. a is VRPTW 

solution, Fig. b is QD-VRPTW solution ............................................................................. 49 



x 

Figure 3-9. The optimal vehicle routing for 3 customers and 2 vehicles; Fig. a is VRPTW 

solution, Fig. b is QD-VRPTW .......................................................................................... 50 

Figure 4-1. Integrated Structure of MO-SVRP model ....................................................... 68 

Figure 4-2. The growth rate of SSOs over time at a constant temperature. ..................... 73 

Figure 4-3. NSGA-II chromosome encoded as a MO-SVRP solution .............................. 77 

Figure 4-4. Crossover operation ....................................................................................... 78 

Figure 4-5. Repair procedure for crossover operation ...................................................... 78 

Figure 4-6. Mutation operator ........................................................................................... 78 

Figure 4-7. Rank of chromosomes in one iteration (F1 is Pareto frontier) ........................ 79 



xi 

List of Tables 

Table 1-1. Contribution of dissertation in each chapter .................................................... 15 

Table 2-1: Growth parameter predicted by applying nonlinear regression, and M values in 

temperature scenarios [15]. .............................................................................................. 20 

Table 3-1. Comparison of VRPTW and QD-VRPTW performance for frozen poultry 

distribution ......................................................................................................................... 48 

Table 3-2. Comparison of the VRPTW and QD-VRPTW optimal solutions for 2 customers 

and 1 vehicle ..................................................................................................................... 49 

Table 3-3. Comparison of VRPTW and QD-VRPTW optimal solutions for 3 customers 

and 2 vehicles ................................................................................................................... 50 

Table 3-4. Results of QD-VRPTW for different types of perishable food products........... 51 

Table 4-1. Comparing the important features of the related literature .............................. 67 

Table 4-2. Notations used in the MO-SVRP model. ............................................................... 74 

Table 4-3. Test problem and solution algorithm parameters ............................................ 81 

Table 4-4. Summary of the results of comparing the performance of w-SA and NSGA-II 82 

Table 4-5. Impact of choosing a non-dominated solution on the optimality of the 

transportation costs, freshness, and emission for R101(25) instance .............................. 83 

Table 4-6. Final solutions for transportation costs, freshness, and CO2 emissions in case 

of different shelf life for R101(25) instance ....................................................................... 84 

Table 4-7. Final solutions for transportation costs, freshness, and CO2 emissions in case 

of different temperature settings for R101(25) instance ................................................... 85 

 



 

12 

Chapter 1 INTRODUCTION 

1.1. Background 

Food quality is a major influence on a community’s health and safety, which are 

critical to sustainable development in society. Access to safe and high-quality food is 

necessary to achieve zero hunger, which is one of the United Nations' 17 Sustainable 

Development Goals (Goal 2), in support of peace and prosperity around the world (United 

Nations, 2019). 

Loss of quality in food products leads to wastage, which is a major challenge for 

sustainable development: according to the United Nations Food and Agriculture 

Organization, 1.3 billion tons of food products, accounting for one-third of the entire global 

food supply, is wasted (FAO- Food and Agriculture Organization of the United Nations, 

2011). The economic impact of food waste is estimated to be $218 billion annually in the 

US (Young, 2012).  

Food distribution is responsible for 8-23% of food quality loss (Osvald & Stirn, 

2008), which is the result of non-optimized supply chain processes (Jedermann et al., 

2014). Thus preserving food quality across the FSC is a widely accepted strategy for 

reducing food waste (Aung & Chang, 2014; Göransson et al., 2018; Huis In’t Veld, 1996). 

However, maintaining the quality of perishable foods depends on optimal temperature 

control throughout the distribution process (Mercier et al., 2017). The quality of perishable 

products degrades over time, but the rate of degradation mainly depends on their 

temperature (Bruckner et al., 2013; Kreyenschmidt et al., 2010). Lower temperature slows 

the growth rate of microorganisms inside the food, and wherefore, loss in quality happens 

at a slower rate (Bruckner et al., 2013; Kreyenschmidt et al., 2010).  In particular, the limited 

shelf life of perishable foods is significantly reduced when a distribution is delayed, or when 

storage temperatures rise, even for a short duration (Hsu et al., 2007). Reduced shelf life 
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increases the probability that perishable food is wasted, which results in wasted energy 

and money across the FSC, as well as reduced availability of high-quality food for 

consumers. 

Nonetheless, keeping the food temperature in the lowest possible level consumes 

a high level of energy since the cooling equipment needs to compensate for the heat 

exchange between the cold inside air and the hot ambient air especially when the 

refrigerated truck needs to unload a portion of its load in a delivery location. 9% and 14% 

of CO2 emissions respectively in the European Union and the US are produced by 

transportation trucks (Stellingwerf et al., 2018), in which perishable food transportation with 

vapor compression refrigeration system and an enormous volume of transportation has a 

huge share in this emission. Adekomaya et al. (2016) show that 15% of fossil fuels and 

40% of global greenhouse effects are results of food refrigeration. Even though the 

advantage of reducing the environmental impact of the food distribution network is 

promising, the relation of reducing the emission and the loss in the quality of food urge a 

deeper analysis. 

Therefore, a route with a lengthy transport time and frequent unloading stops 

challenges food temperature control (Hsu et al., 2007) and thereby food quality. Although 

dividing the route into shorter travel distances and fewer deliveries make it more possible 

to maintain a lower temperature and food quality, this routing alternative does not have the 

least cost and emission results. Consequently, the optimum balance between maintaining 

food quality, and minimizing the operation costs and emissions in food distribution networks 

can lead to an overall improvement in sustainability indices. 

1.2 Mathematical modeling in food supply chain 

The conflicting nature of sustainability goals and the necessity to accurate 

predictions urge to implementation of a proper method and tool in the planning phase. The 
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integration of the prediction and optimization mathematical modeling approach can provide 

a unique opportunity to accurately predict the impactful parameters such as food 

temperature and shelf life and to measure the sustainability objectives in a constrained 

food distribution problem. 

Mathematical modeling provides the capability to optimize a single or multi-

objective function such that the constraint of a problem is satisfied. Therefore, sustainability 

goals can be defined as the objectives of the problem, and distribution limitations are the 

constraints of the mathematical model. Gharehyakheh et al. (2017) illustrate that the 

mathematical modeling approach has been applied in sustainable supply chain problems 

more than any other approach. Furthermore, the dynamic of parameters in perishable food 

distribution network urge to have an approach to estimate their value in the model. Hence, 

the relations between the model parameters are defined in a set of equations to predict the 

value of dynamic parameters under specific conditions. Nevertheless, the predictive model 

is a proper approach to integrate with the mathematical model. 

Despite the wide application of the mathematical models in the sustainability of 

food supply chains, the proposed models often assume some constant values for the 

model dynamic parameters which are not the case in the real world. Therefore, the 

integration of predictive and mathematical models makes the results of the study closer to 

reality. Additionally, sustainability objectives are often defined as a single integrated 

objective function that blurs the consequence of a decision on each of the sustainability 

perspectives. Thus, chapter 4 of this dissertation provides a novel multi-objective model in 

which each of the sustainability goals is defined as a separate objective in the model. 

1.3 Research Questions and Contribution 

In this dissertation, finding the answers to the following questions are targeted. 

1) How can we accurately measure the shelf life of perishable food products in the 
food supply chain operations? 
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2) Which inventory management policy is suitable for managing the perishable food 
inventory, and how to implement it? 

3) How can we predict the temperature fluctuations inside the container of a 
refrigerated vehicle in the food distribution process? 

4) How can a food shelf life prediction model be integrated with a perishable food 
distribution model? 

5) How can we integrate the impact of influential elements in sustainability, including 
the freshness of food, distribution costs, and CO2 emissions, in a perishable food 
distribution model? 

Sustainability contains a wide range of subjects and challenges in a food supply 

chain. This dissertation only studies the sustainability in food banks, chapter 2, and 

distribution of perishable foods, chapters 3 and 4. The contribution of this dissertation in 

each of the following chapters is as follows, see Table 1. 

Table 1-1. Contribution of dissertation in each chapter 

C
h
a
p
te

r 
2

 

Providing a shelf life prediction model as a proper tool to implement least shelf life 
first out inventory management policy 

Providing a reliable and accurate tool to reduce food waste and improve inbound 
operations in food banks 

Verifying the results of the proposed approach over a local food bank as a case 
study 

C
h
a
p
te

r 
3

 

Extending the vehicle routing problem by integrating the shelf life prediction 
model in the objective function 

Predicting the temperature inside the container of the refrigerated vehicle using 
energy balance equations 

Adapting the simulated annealing algorithm to efficiently solve the proposed 
model 

C
h
a
p
te

r 
3

 

Extending the vehicle routing problem by integrating freshness and CO2 
emissions as the separate objectives of the model 

Predicting the energy required for food refrigeration in the refrigerated vehicles by 
applying energy balance equations 

Adapting non-dominated sorting genetic algorithm II to efficiently provide a set of 
Pareto solutions 

 

1.4 Dissertation Organization 

Chapter 2 provides a deeper overview of the food quality and safety in food banks. 

Technology limitations and dependency on volunteers challenge the capability of food 

banks to distribute high quality and safe foods. This study recommends that predicting food 

shelf life depending on time-temperature data is a cheap and reliable tool to implement a 
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proper inventory management policy based on the least shelf life first out rule. The strategy 

can improve sustainability goals such as reducing food waste and serving more people in 

need with high quality and safe foods in food banks. 

The impact of temperature fluctuations in a food distribution network on the quality 

of perishable foods is highlighted in chapter 3. A prediction of temperature dynamic using 

energy balance equations provides an opportunity to have an estimation on the quality of 

delivered foods using the predicted time-temperature data in a shelf life estimation model. 

The integration of these prediction models with vehicle routing problems with the time 

window model gives an accurate estimation of quality loss if the food delivery process 

which set to be minimized. Simulated annealing as an efficient and reliable solution 

procedure is applied to find the optimum solution to the proposed model. 

In chapter 4, the tradeoff between cost, CO2 emission, and food quality are studied 

as the main sustainability objectives in a food distribution process. The impact of 

temperature on the food shelf life and CO2 emission in refrigerated vehicles is presented 

in a novel multi-objective sustainable vehicle routing problem. Non-dominated sorting 

algorithm II is adapted to provide sustainable solutions to the proposed model over a series 

of Solomon’s test problems. 

The conclusion of this research is presented in chapter 5. 
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Chapter 2 Dynamic Shelf-Life Prediction System to Improve Sustainability in Food Banks 

Amin Gharehyakheh, Caroline Krejci, Jaime Cantu, Jamie Rogers 

The University of Texas at Arlington 

Arlington, TX, 76019, USA 

Abstract 

Because food banks receive primarily surplus foods with limited shelf-life, inaccurate quality 

monitoring can lead to increased food safety risk and waste. A lack of information about the quality and 

condition of donated food, dependence on volunteer workers, and inadequate inspection equipment can 

limit a food bank’s ability to safely distribute food to people in need. In lieu of expensive lab equipment and 

technicians, historical data and visual inspections provide a reasonable estimate of the initial quality of 

donated food, and bacterial growth models can be used to project spoilage rates during storage. Since 

spoilage rates are highly dependent on food temperature, this paper considers the effect of temperature in 

a kinetic model to estimate the number of specific spoilage organisms and to predict the remaining shelf-

life of perishable foods in food banks. This method can be integrated with warehouse management systems 

to develop a sustainable inventory management system that reduces food waste and improves food safety, 

thereby enabling food banks to serve more people in need. 

Keywords 

Shelf-life prediction, cold chain, food bank, food waste, specific spoilage organism, time-temperature data 

1. Introduction and Background 

Fifteen million American families (nearly twelve percent of U.S. households) did not have access 

to sufficient nutritious food at some time in 2017 [1]. In the U.S., food banks alleviate hunger by collecting 

surplus food and distributing it through a network of charitable organizations [2]. Feeding America, the 

largest hunger-relief organization in the US [2], manages a nationwide network of food banks that provide 

3.5 billion pounds of food to people in need [3]. Although public funding covers some of their operational 

costs, food banks depend on donations from farms, food manufacturers, retailers, and distributors [4]. In 

most cases, food is donated to a food bank when it loses its market value due to poor storage conditions, 

manufacturing errors, damages occurring during shipping and handling, or expiration date [4]. 
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Although Feeding America has made strides in addressing hunger in the U.S., the problem persists.  

In fact, there has been a steady increase in the gap between food banks’ supply and the demand for food 

assistance [5].  One reason for this gap is spoilage. Donated food typically has a very limited shelf-life, i.e., 

the time during which it can be consumed safely by the end customer [6]. Therefore, it is important for food 

banks to monitor the condition and remaining shelf-life of perishable foods via a systematic and 

unambiguous inventory management policy. 

 

The food industry commonly uses a Least Shelf-life First Out (LSFO) inventory management 

strategy [7], where shelf-life is determined using the expiration date provided by the food manufacturers. 

The manufacturers determine expiration dates based on their expectation of the conditions under which the 

food will likely be stored. These estimates tend to be conservative [8], which increases the chance that 

buyers dispose of food that is still nutritious and safe to use.  On the other hand, if storage conditions are 

worse than expected, this method can endanger consumers’ safety.  

 

More reliable methods for estimating remaining shelf-life exist, including evaluating whether 1) the 

number of Specific Spoilage Organisms (SSOs) exceeds the standard acceptable level, and/or 2) there is 

a significant change in the sensible quality of the item such as color, texture, and/or odor [9]. While changes 

in sensible quality can be detected through observation, counting the number of SSOs requires expertise 

and expensive lab equipment. This paper proposes a dynamic shelf-life prediction model that estimates the 

number of SSOs using time-temperature data, which can be captured with an inexpensive temperature 

logger.  Model outputs can be easily integrated with a food bank’s warehouse management system to 

facilitate accurate shelf-life prediction for more effective inventory management, thereby reducing waste 

and increasing the food bank’s capacity to serve those in need. 

2. Methodology 

The most important factor affecting shelf-life of food is its temperature as it traverses the cold chain 

[10]. High temperature accelerates the growth of SSOs, which causes the quality of food to decline [11, 12]. 

Ahumada and Villalobos modeled the decline of food quality as a linear function over time [13]. Rong et al. 

predicted a non-linear quality decline for foods using the first-order reaction method [14]. These methods 

are reliable for an isothermal process, in which the temperature of the system remains constant. However, 

they will yield misleading results in a non-isothermal environment. The handling and storage of perishable 
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items in a food bank is a non-isothermal process: food is loaded and unloaded, inspected, repacked, and 

stored in different temperature zones inside the warehouse.  

Kreyenschmidt et al. [9] and Bruckner et al. [15] suggest a more appropriate method of estimating 

SSO growth over time for non-isothermal conditions, by combining the Gompertz model and the Arrhenius 

equation.  The Arrhenius equation, given in Equation (1), evaluates the influence of temperature (T) on the 

SSO growth rate (B). 

𝑙𝑛(𝐵) = ln(𝐹) −  
𝐸𝑎

𝑅
. (

1

𝑇
)         (1) 

B: relative growth rate, 
F: pre-exponential factor, 
Ea: activation energy for bacterial growth (J/mol), 
R: gas constant (8.314 J/mol K), 
T: absolute temperature (K). 

Bruckner et al. [15] used non-linear regression to estimate the value of B for five different 

temperature scenarios (Table 1), and these data points were used to fit a linear regression to predict the 

value of B (�̂�) at any temperature (Equation (2)).  

𝑙𝑛(�̂�) = 40.70 −  12361.99. (
1

𝑇
),    𝑅2 = 0.99      (2) 

Table 2-1: Growth parameter predicted by applying nonlinear regression, and M values in temperature 

scenarios [15]. 

Temperature (℉) Temperature (°K) B R2  M (h)  

36 275 0.014 0.941  65  

39 277 0.020 0.971  58  

45 280 0.033 0.940  42  

50 283 0.058 0.960  28  

59 288 0.103 0.961  18  

B=relative growth rate, R2 = adjusted coefficient of determination, M=time when maximum growth rate is 
obtained. 

Bruckner et al. derived the value of M for the first time interval (i.e., the first duration of time in which 

the temperature is recorded) in the non-isothermal temperature condition from the linear regression of M 

(h) against temperature (°K) in isothermal conditions [15], given in Equation (3). 

�̂� = 1102.71 −  3.78. (𝑇),    𝑅2 = 0.96       (3) 

Once the value of �̂� and �̂� are determined, the predicted number of SSOs at the first-time interval 

(t0) can be calculated using the Gompertz model (Equation (4)). 
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𝑁(𝑡0) = 𝐴 + 𝐶. 𝑒−𝑒−�̂�(𝑡0−�̂�)
       (4) 

N(t): microbial count (log10 cfu/g] at time t0, 
A: initial bacterial count constant value (log10 cfu/g), 
C: the difference between maximum population level and the initial bacterial count constant value (log10 
cfu/g), 

�̂�: relative growth rate, 
t0: length of the first time interval (h), 

�̂�: estimated time at which maximum growth rate is obtained (h). 
 

Microbial count at time t0 can be used to derive M from the Gompertz model using the Equation 

(5). 

𝑀 =  
ln (− ln(

𝑁(𝑡𝑒−1)−𝐴

𝐶
))

�̂�
+ 𝑡        (5) 

After the first time interval, the value of M calculated by Equation (5) replaces the M̂ in Equation (4) 

to predict the growth of SSOs in the next time intervals, given in Equation (6). 

𝑁(𝑡) = 𝐴 + 𝐶. 𝑒−𝑒−�̂�(𝑡−𝑀)
        (6) 

Figure 1 shows the relationship between SSO growth, shelf-life, and food quality. The shelf-life of 

a product begins immediately after harvest and continues until the SSO count reaches its maximum 

allowable value. Food manufacturers divide the maximum shelf-life into three zones. Products that are the 

first shelf-life zone have the highest quality level and quality of product declines as the number of SSOs 

increases over time. Food industry actors typically donate products at the lowest quality level to the food 

banks.  
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Figure 2-1: The relation of quality loss and growth of SSOs in perishable foods (adapted from [8]). 
a Bacteria are metabolically active but not dividing, b A time of exponential growth, and c Growth reaches a 

plateau. 



 

22 

 

To determine how time-temperature data could be used to improve food quality and reduce waste 

at a food bank, time-temperature data was collected and analyzed for pallets of poultry at a local food bank. 

The proposed method is employed to analyze the time-temperature data in two scenarios: 1) actual time-

temperature data collected from real food bank’s operations, and 2) proposed time-temperature data for 

the improved food bank’s operation. 

3. Case Study Application and Results 

The food assistance cold chain begins with the collection of donated items from the donor’s location 

using refrigerated vehicles, which then deliver the donated food to the food bank’s warehouse [16]. Because 

there is not any information available about the donor’s storage conditions, it is assumed that products have 

been stored in a clean storage area which is free from any sort of contamination, and the moisture and the 

temperature level have been at the standard level. The food is usually received on pallets, which are 

unloaded in the warehouse receiving area before being moved to temporary storage for quality and safety 

inspection. Typically, volunteer workers with rudimentary training on inspection procedures decide whether 

the food meets the minimum acceptable quality level for safe consumption. Food that does not pass this 

quality inspection is either composted or sent to the landfill. Food that passes the quality inspection is put 

into refrigerated storage or freezers at 0 °F based on United States Department of Agriculture (USDA) 

recommendations [17]. Each pallet is labeled with information about its contents, including the supplier, 

received date, and product name. This information, along with the appearance of the items, is used to 

determine storage locations and picking prioritization. Based on this policy, food is pulled from storage as 

needed, loaded into refrigerated vehicles, and distributed to food assistance agencies, such as churches, 

soup kitchens, and shelters, throughout the region served by the food bank [18].  

Time-temperature data for a sample of pallets containing poultry were collected from the moment 

the pallets were unloaded at the food bank’s dock, until the time that these pallets were loaded into a 

refrigerated truck for distribution. Quality Blue Cargo Data was the brand of data recorder that was used to 

collect the data, which has the capability to store temperature data in 15-minute time intervals.  

The collected data indicated that the pallets are sometimes staged in an unrefrigerated receiving 

area for a long time while waiting to be inspected or moved into storage. Exposing the poultry to these 

temperatures sharply accelerates the growth of SSOs and shelf-life is rapidly lost accordingly. The collected 
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time-temperature data for a food pallet that waited 18 hours at room temperature (280 °K, or 44 °F) to be 

stored in the freezer and a prediction of the growth of SSOs in the food is shown in Figure. 2. In this figure, 

the red line represents the time-temperature data collected from the poultry pallets, and the blue line, which 

shows the growth of SSOs inside the poultry, is predicted by a combination of the Gompertz model and 

Arrhenius equation. The blue line is a representative of the log phase and then the stationary phase of SSO 

growth that are shown in Figure 1. At first, the blue line has exponential growth while the temperature is 

high, followed by a gradual increase in the number of SSOs over the time as temperature decreases. The 

maximum allowable number of SSOs, by which food can be consumed safely, is defined by food scientists 

to be 7.5 (log10 cfu/g) for poultry [15]. As shown in Figure 1, food shelf-life ends when the SSO count 

reaches its max allowable amount. In this example, a prediction of the number of SSOs reaches 7.5 (log10 

cfu/g) after 82 hours. 

 

Figure 2-2: Effect of long staging time on the growth of SSOs and the remaining shelf-life of the products. 

The results shown in Figure 2 suggest that there is significant potential for increasing the shelf-life 

of this food by reducing the staging time of the pallets.  To determine the value of reducing staging time at 

the food bank’s warehouse, the model was applied to a hypothetical situation in which the pallets only 

waited 4 hours to be moved to the freezer. Figure 3 shows the resulting output, which indicates that reducing 

staging time from 18 to 4 hours can prolong the shelf-life by about 5 days. 

 

Figure 2-3: Effect of shortening staging time on the growth of SSOs and the remaining shelf-life of the 
products. 
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Additionally, the collected data shows an increase in the temperature of a food pallet inside the 

freezer, which can affect the remaining shelf-life of the products. Moving the food pallet to another cold 

storage with a higher temperature, malfunctioning cooling equipment, or human error in setting the 

temperature level can cause this sort of undesirable change in temperature. The red line in Figure 4 shows 

the actual temperature of a food pallet inside a freezer over time, which rose sharply from 250 °K (-10 °F) 

to 260 °K (8 °F) after 60 hours of storage. The impact of this temperature increase is shown by the rapid 

growth of SSOs inside the food pallet (represented by the blue line). The shelf-life of the poultry food pallet 

under this time-temperature condition is approximately 79 hours. 

 

Figure 2-4: Effects of an increase in temperature on the growth of SSOs and the remaining shelf-life of 
the products. 

To determine the impact of holding the freezer temperature steady, the model was applied to a 

simulated time-temperature dataset in which the temperature fluctuates slightly around 250 °K (-10 °F).  

Figure 5 shows that the rate of growth in SSOs will be nearly constant when the temperature inside the 

freezer remains around 250 °K (-10 °F). A comparison of the two time-temperature data sets given in 

Figures 4 and 5 shows that poultry can lose 3 days of shelf-life if the temperature of the freezer increases 

10 °K for 20 hours.  

 

Figure 2-5: Effects of low steady temperature on the growth of SSOs and the remaining shelf-life of the 
products. 
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4. Discussion and Conclusion 

The combination of the kinetic equation and growth model can deliver a reliable estimation of the 

dynamic shelf-life of perishable food products in a non-isothermal environment by predicting the growth of 

SSOs in food products. This approach helps to more effectively implement an LSFO inventory management 

strategy and find potential improvements in inbound logistics activities, particularly receiving and cold 

storage operations, to increase shelf-life and reduce waste. 

Food banks’ inbound logistics activities are highly dependent on volunteer workers, which adds 

uncertainty and complexity to labor scheduling. The analysis presented in this paper suggests that better 

labor management in the staging area has the potential to expand the shelf-life of the products by 5 days. 

Additionally, the analysis indicates that a 10 °K increase in the storage temperature for 20 hours can result 

in 3 days of shelf-life loss. Computational analysis of available data can help to identify and prevent such 

quality loss in a food bank’s warehouse. 

Food banks are struggling to preserve the quality of the donated foods. A simple, reliable, and 

inexpensive method to control and monitor the quality of products in the food bank’s warehouse is essential. 

Integrating the method presented in this paper with a food bank’s WMS can potentially prevent tons of 

foods from being wasted every year, and thereby reducing the number of people who are suffering from 

food insecurity. 

One of the biggest obstacles to accurately predicting the shelf-life of perishable foods in food banks 

is the lack of information about the temperature and conditions in which the donated foods are stored in the 

previous stages of the cold chain. Food donors should take more responsibility on recording and sharing 

the information about their donations. Presenting a framework, a tool, or a strategy which can build a 

structure for sharing data between food donors and food banks is a promising area of research. Additionally, 

before making a major decision at any level of the cold chain, it is recommended to couple the dynamic 

shelf-life prediction model with simulation or mathematical models to obtain more reliable results [19]. 
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Abstract 

Perishable products lose a considerable part of their quality during distribution. As a result, the 

narrow profit margin of food supply chain actors is cut, and the environmental problems associated with 

food waste emerge. Thus, the need for measuring and minimizing the quality loss in the distribution of 

products is inevitable. In this paper, the dependency of the distribution problem to the quality loss of 

perishable products is integrated with Vehicle Routing Problem with Time Window (VRPTW). In the 

presented approach, energy balance equation is formulated to estimate the temperature of the products 

when the container door is open to deliver part of the load, and when the products are maintained in the 

isolated container during the transportation, which then is used to predict the quality loss in the distribution 

of the products. The integrated mathematical model is solved by an efficient simulated annealing algorithm. 

The results compare the application of Quality Dependent (QD)-VRPTW and conventional VRPTW to 

demonstrate that this new approach improves distribution costs up to 16% especially when the size of the 

problem increases. Optimizing the delivery sequence and vehicle routing decisions integrally can 

significantly increase the quality of delivered products, and accordingly, reduce costs and environmental 

effects associated with quality loss in the distribution of perishable products. 

Keywords: Perishable food; Vehicle Routing Problem; Quality Prediction; Food Waste; 

Temperature Prediction; Food Supply Chain 

1. Introduction 

The Food and Agriculture Organization of the United Nations estimates that as much as 60% of 

perishable food produced worldwide is wasted because of quality degradation (FAO, 2011). Loss of quality 

decreases the likelihood that a food product will be sold, due to consumer preference for freshness and 

concerns about safety (Tekin & Erol, 2017). Unsold products become part of the waste stream and 

represent lost revenue for the food supply chain (FSC) actors, cutting into their already narrow profit 
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margins (Goodman, 2004). Food waste is also a serious environmental concern; it is the largest component 

of all landfilled municipal solid waste in the U.S. and accounts for nearly 18% percent of anthropogenic 

methane emissions in the U.S. (U.S. EPA, 2017). 

A significant percentage (8-23%) of quality loss in food products occurs during distribution (Osvald 

& Stirn, 2008), due to non-optimized supply chain processes (Jedermann, Nicometo, Uysal, & Lang, 2014), 

and is therefore a major contributor to FSC distribution cost (Blackburn & Scudder, 2009; Rong, Akkerman, 

& Grunow, 2011; Yu & Nagurney, 2013). Factors that impact the quality of food products during distribution 

include temperature, humidity, packaging, and handling (Novaes, Lima Jr, Carvalho, & Bez, 2015). 

However, the temperature is the primary contributor to food quality degradation and safety issues (James, 

James, & Evans, 2006;   & Kiranoudis, 2002). Thus, refrigerated vehicles are used to deliver perishable 

food products to retailers. The products are stored in an isolated container that maintains a pre-specified 

temperature while traversing the supply chain (S. Wang, Tao, & Shi, 2018).  

However, even with refrigeration, the quality of products in transit begins to degrade as soon as 

the load is dispatched from the point of origin. In particular, the temperature inside the refrigerated container 

is highly dependent on the frequency with which the container door is opened. Because customer demand 

is usually less than a full truckload and delivering multiple orders in a single route is cost-effective, each 

route typically includes multiple deliveries to different locations. These delivery points are critical to 

temperature control: when the doors of a refrigerated container are opened to unload a customer’s order, 

the hot outside air causes a rapid temperature increase inside the container (James et al., 2006; Novaes 

et al., 2015). The food products degrade over time at any temperature, and temperature fluctuations only 

affect the rate of degradation. Therefore, lengthy transport times and frequent delivery stops in hot weather 

make temperature control particularly challenging (Hsu, Hung, & Li, 2007). By contrast, a route with few 

deliveries and shorter travel distance is more capable of maintaining pre-specified food product 

temperatures during distribution, thereby maintaining product shelf life and retailer revenues. However, 

reducing the number of delivery points and traveling distances in each route will necessitate an increase in 

the number of routes, which increases transportation costs (Hsu et al., 2007).  

 Designing optimal distribution systems for perishable foods is, therefore, a complex task that 

requires consideration of multiple interdependent factors.  Distribution cost is not only a function of transport 
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distances but is also a function of food quality degradation during transport. The rate of perishable food 

product degradation mostly depends on the temperature in which they are stored during the distribution. 

Although cooling equipment tries to keep the temperature at the desired level, the routing decisions such 

as the vehicles’ sequence of delivery and frequency of stops highly impact the temperature variations inside 

the container. While many existing models of perishable food distribution incorporate shelf-life prediction 

models, most assume a linear relationship between shelf-life and transport time, which neglects the 

significant nonlinear impacts of refrigerated container door opening on temperature increase and therefore 

shelf life loss during deliveries. Furthermore, to the best of our knowledge, none of the perishable food 

distribution models are integrated with a temperature prediction model to accurately predict the shelf life of 

the delivered products. 

This paper describes a modeling approach in which the Vehicle Routing Problem with Time 

Windows (VRPTW) is integrated with a food quality degradation prediction model in order to consider and 

accurately account for the cost of quality loss when planning distribution for perishable food products. 

Determining the cost of quality loss for a given routing requires an estimate of the cargo’s remaining shelf 

life upon delivery to retailers, which is highly impacted by variations of temperature. The integrated model 

described in this paper uses the Arrhenius equation and the Gompertz model to precisely predict the 

remaining shelf life of food products. In addition, a set of energy balance equations are developed to 

estimate the temperature inside the container based on the refrigerated vehicles cooling unit performance 

and convective heat transfer between the ambient hot air and cold air inside the container when the 

container door is open. Dependency on quality loss makes Quality Dependent Vehicle Routing Problem 

with Time Window (QD-VRPTW) very difficult to solve. Thus, a Simulated Annealing (SA) algorithm is used 

to evaluate the assignment of loads and routes to vehicles, such that overall transportation cost, including 

food quality degradation costs, is minimized. 

The paper is organized as follows: Section 2 describes the importance of considering the quality 

loss in perishable food distribution network which follows with a summary of the literature. Section 3 

demonstrates the application of energy balance equations to predict the temperature inside a vehicle’s 

refrigerated container while the vehicle is in transit and during unloading. In addition, this section explains 

the mathematical model used to predict the remaining shelf life of perishable products under dynamic 
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temperature conditions and describes a method of translating quality loss into the cost. Section 4 and 

section 5 respectively present the integrated QD-VRPTW model and the SA algorithm as a solution method. 

Section 6 demonstrates an application of the model, and the results are discussed. Section 7 concludes 

the paper with a summary of key findings, as well as a discussion of the model’s limitations and future work. 

2. Quality considerations in food distribution optimization 

The quality dependent food distribution system allocates customer orders for perishable food 

products to multiple refrigerated vehicles and then creates delivery sequences for each vehicle. The model 

described in this paper optimizes the distribution plan by minimizing costs associated with both operations 

and quality loss. An example of the relationship between the delivery sequence and product quality is 

illustrated in Fig. 1. In this simplified example, customer B’s demand is twice that of customer A. A single 

refrigerated vehicle is loaded with both customers’ orders at the depot. In Fig. 1a, customer B’s order is 

delivered before customer A’s order, while in Fig. 1b the delivery sequence is reversed. In both scenarios, 

the vehicle’s cooling system maintains a temperature of 273 °K in the storage container during 

transportation from the depot to the first customer, such that the products’ shelf life decreases very 

gradually. Assuming that the ambient temperature and travel time are the same for the first delivery, at this 

stage, the products have 278 days of remaining shelf life for both scenarios. However, when the cooling 

system is turned off and the container door is opened for unloading at the first stop, ambient air enters the 

container. The resulting energy exchange causes the temperature inside the container to rise above 280 

°K, which corresponds to a nonlinear sharp decline in product shelf life. The container door is then closed, 

and the cooling system is turned on, such that the container returns to 273 °K during travel between the 

first and the second deliveries.  

The important difference between these two scenarios is the unloading time for the first delivery. 

Since the demand for customer B is twice that of customer A, the unloading time for customer B is assumed 

to also be twice the time required for customer A. Hence, the duration of the second delivery’s exposure to 

increased temperatures is longer in Fig. 1a, which results in a greater loss of shelf life for customer A’s 

order (236 days remaining), compared with customer B’s order in Fig. 1b (259 days remaining). This 

example demonstrates the importance of delivery sequence in the shelf life of delivered products. The 



 

31 

 

sequence changes the duration in which the rest of the cargo faces the higher temperature when the 

container door is open. 

Depot Customer B Customer A Depot Customer A Customer B

Shelf life: 278 Shelf life: 236
Shelf life: 278 Shelf life: 259

(a) (b)

 

Figure 3-1. Comparing the effects of delivery sequence on the temperature of the container and 
remaining product shelf life, (a) delivery sequence is B-A (b) delivery sequence A-B. 

A wide range of models has been developed to address food perishability and quality loss during 

distribution. Estimating quality loss in models of perishable food distribution is challenging. For simplicity, 

most models assume linear degradation of product quality over time and disregard the effect of temperature 

fluctuations on the rate of quality loss. For example, Osvald and Stirn (2008) included the impact of linear 

quality degradation during transport as a component of food distribution cost in their VRPTW model. Chen, 

Hsueh, and Chang (2009) developed a mathematical model that integrates linear deterioration of product 

quality with production and distribution decisions to determine optimal production quantities, production 

start times, and vehicle routes. Rahbari, Nasiri, Werner, Musavi, and Jolai (2019) developed a routing and 

scheduling model in which product quality is assumed to degrade linearly during unloading and 

transportation. Ghezavati, Hooshyar, and Tavakkoli-Moghaddam (2017) incorporated a triangular ripeness 

function in their model, in which product value increases linearly over time, reaches a maximum level, and 

then decreases at a constant rate. Haass, Dittmer, Veigt, and Lütjen (2015) conducted a simulation study 

in which intelligent containers select routes and customers to minimize food losses and transportation costs. 

The rate of product ripening during transport is assumed to occur linearly over time, with a slope that 

increases at higher temperatures. Rong and Grunow (2010) developed a production and distribution model 

to minimize the operation costs and to determine a constraint in which the product quality level which 

degrades linearly after production does not exceed customers’ minimum quality threshold. Devapriya, 

Ferrell, and Geismar (2017) and Nakandala et al. (2016) used the same approach to present a cost 



 

32 

 

optimization model that guarantees the delivery of food products at or above a minimum acceptable level 

of quality. They both used a linear quality degradation function and prohibit solutions that do not satisfy 

customers’ quality requirements. Although simplifying the degradation of quality enables food quality loss 

considerations in more complicated problems, but it can result in a huge economic and environmental loss 

in food distribution network. Therefore, Blackburn & Scudder (2009) studied the nonlinearity of the effect of 

temperature on quality loss. They developed a model to optimize the size of batches, subject to the tradeoff 

between batch size and loss of product value. They assumed that product value decays exponentially over 

time, and the rate of decay depends on storage temperature. 

Researchers took different approaches on how to integrate the effect of quality loss in the food 

distribution network. Quality loss leads to lost revenue and increased lateral costs associated with food 

waste; therefore, deterioration of food quality is sometimes translated into the cost (Hsiao, Chen, & Chin, 

2017; S. Wang et al., 2018; Yan, Banerjee, & Yang, 2011). Because minimizing delivery time always 

improves the quality of the delivered products, minimizing delivery time is equivalent to maximizing product 

freshness. Thus, Bortolini et al. (2016) included three objective functions in their distribution model to 

minimize delivery time, operating cost, and carbon footprint. In another study, Albrecht and Steinrücke 

(2018) modeled the tradeoff between reducing the delivery lead time and the associated increase in 

distribution cost. In their model, product quality is represented by discrete quality grades (low, medium, and 

high), which deteriorate during distribution after exceeding specific shelf life thresholds. Therefore, they 

were seeking to find a solution in which the combination of revenue from sales of more fresh products and 

its associated operating costs is optimized. Other models seek to directly maximize freshness or minimize 

quality loss (Ahumada & Villalobos, 2011; Amorim & Almada-Lobo, 2014; Amorim, Günther, & Almada-

Lobo, 2012; Farahani, Grunow, & Günther, 2012; X. Wang, Wang, Ruan, & Zhan, 2016). Gallo, Accorsi, 

Baruffaldi, & Manzini (2017) developed a model that minimizes total energy consumption across the entire 

food distribution network, including the energy required to maintain a certain temperature level, the required 

energy to process, package, and transport products, and energy associated with any food waste that results 

from quality loss during distribution. The results show that delivering food products with a longer shelf life 

saves energy overall. Regardless of the modeling approach, the results of all the studies show that 

combining the food quality loss in modeling food distribution problems is inevitable. 
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Most of the studies fail to address the effect of temperature variations which are a result of 

transferring heat from hot ambient air to inside the container when the door is open to unload part of the 

load in a customer’s location. Hsu et al. (2007) considered the effect of opening container doors on 

increased product temperature and spoilage rate. They assumed that spoilage occurs at a constant rate 

during distribution, which then changes during unloading based on differences in temperatures inside and 

outside the container. Novaes et al. (2015) used commercial software to predict the temperature inside the 

container for feasible routes in a traveling salesman problem model. They demonstrated that having an 

estimation of the temperature inside the container provides the capability to increase the quality of delivered 

products. 

Perishable food distribution is a complex problem since several interdependent factors impact the 

quality of the products and the operating cost of the distribution. Even though it is difficult to estimate and 

integrate the effects temperature dynamics and quality loss in distribution problem, this research presents 

a simple and accurate method to predict temperature increases as a result of the door opening and 

temperature decrease based on the capacity of cooling equipment which is then used to predict the 

nonlinear loss of quality. A combination of the distribution model with the prediction of the quality loss 

accounts for a more accurate representation of the real cost in the food distribution problem. 

3. Predicting temperature, quality, and market value in the food distribution problem 

  The presented QD-VRPTW consists of two main connected modules, see Fig. 2. VRPTW module 

generates a feasible routing option with the associated transportation costs. The quality dependent module 

uses the routing information to predict the temperature inside the container. An accurate estimation of the 

temperature is used to estimate the shelf life of the delivered products which then transformed into the 

quality cost of the distribution. The quality cost and transportation cost add up at the end to calculate the 

total distribution costs. 



 

34 

 

Temperature 

Prediction Model

Shelf Life 

Prediction Model

Calculate Quality 

Cost

Quality Dependent Module

Generate New Route

Calculate 

Transportation Cost

VRPTW Module

Calculate  

Distribution Cost

 

Figure 3-2. Schematic of QD-VRPTW structure 

3.1 Temperature prediction in the food distribution system 

Increases in food product temperature during distribution can sharply raise the rate of microbial 

growth, leading to quality loss and increased food safety risk (Zhou, Xu, & Liu, 2010). Thus, the ability to 

predict product temperature during distribution, which enables the prediction of remaining product shelf life 

upon delivery to the customer, is critical to effective distribution planning. Most existing studies of time-

temperature behavior in refrigerated vehicles have focused on predicting temperature fluctuations when 

the container door is open since the heat exchange through cracks and gaps in the walls, floor, and roof of 

a closed shipping container is comparatively negligible. Survey results indicate that the container door can 

be opened as many as 50 times a day, whereupon heat enters the container via airflow from the higher-

temperature exterior, as well as material handling activities during unloading (James et al., 2006). A single 

opening of the container door in eight hours of delivery requires 25% more cooling capacity, and this number 

increases to 200% when the refrigerated vehicle needs to stop and open the container door 31-35 times 

(Novaes et al., 2015). As a result, maintaining the temperature of refrigerated food is very difficult for a 

delivery route with frequent stops (James et al., 2006). 

The time-temperature behavior of a refrigerated vehicle during distribution can be evaluated using 

information collected from lab experiments; however, this is expensive and time-consuming. By contrast, 

implementing thermodynamic models in a steady-state environment can provide rapid and reliable 

temperature prediction (Moureh, Menia, & Flick, 2002; Spence, Doran, & Artt, 2004). Thermodynamic 

models, such as computational fluid dynamics simulations, have been used to evaluate the effect of door 

opening on the air temperature inside refrigerated vehicles  (Artuso et al., 2019; Lafaye De Micheaux, 
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Ducoulombier, Moureh, Sartre, & Bonjour, 2015; Moureh et al., 2002; Rai, Sun, & Tassou, 2019; Tso, Yu, 

Poh, & Jolly, 2002). In the model described in this paper, mathematical equations derived from the energy 

balance equation are used to predict the temperature inside the container during distribution.  

The temperature of a vehicle’s refrigerated container is predicted for two distinct delivery phases: 

unloading, and transportation. During the unloading phase, the container door is open, and heat is 

transferred through the open door into the container. It is assumed that the vehicle’s cooling system is 

turned off during the unloading phase to protect the engine and to avoid polluting the air around unloading 

docks. During the transportation phase, the container door is closed, and the vehicle’s cooling system is 

running to maintain the container temperature at a predetermined level (Td). A thermostat turns the cooling 

system off when the container temperature reaches Td. 

 3.1.1 Temperature prediction during unloading 

The amount of energy transferred into the container while unloading product at customer j (𝑇𝐸𝑗, in 

joules) is a function of the air mass inside the container (𝑚𝑎, in kg), the air transfer ratio (𝑟𝑜), the specific 

heat of the air (𝑐𝑎, in J/kg K), the temperature difference between the inside of the container and the ambient 

external temperature (∆𝑇𝑗, in degrees K), and the duration of unloading time (𝑢𝑗): 

𝑇𝐸𝑗 =  𝑚𝑎. 𝑟𝑜 . 𝑐𝑎. ∆𝑇𝑗 . 𝑢𝑗          (1) 

The accumulated heat inside the container while unloading at customer j (𝐴𝐸𝑗, in joules) is a 

function of the air mass (𝑚𝑎), the specific heat of air (𝑐𝑎), cargo mass (𝑚𝑐𝑗
, in kg), the specific heat of the 

cargo (𝑐𝑐 in J/kg K), and the rate of change in temperature (
𝑑𝑇

𝑑𝑡
): 

𝐴𝐸𝑗 = (𝑚𝑐𝑗
𝑐𝑐 + 𝑚𝑎𝑐𝑎)

𝑑𝑇

𝑑𝑡
         (2) 

The overall rate of heat transfer into the container is equal to the rate of accumulation of heat inside 

the container (Holdsworth, Simpson, & Barbosa-Cánovas, 2008). The energy balance model is established 

by equating the overall rate of heat transferred into the container (𝑇𝐸𝑗) with the rate of accumulation of heat 

inside the container (𝐴𝐸𝑗). This relationship can be used to predict the temperature inside the container at 

customer j (𝑇𝑗) when the door is open for duration t (t ≤ 𝑢𝑗), given an initial temperature 𝑇0, and an outside 

temperature 𝑇𝑜𝑢𝑡. 

𝑚𝑎. 𝑟𝑜 . 𝑐𝑎 . ∆𝑇𝑗. 𝑡 = (𝑚𝑐𝑗
𝑐𝑐 + 𝑚𝑎𝑐𝑎)

𝑑𝑇

𝑑𝑡
        (3) 
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∫
𝑚𝑎.𝑟𝑜.𝑐𝑎

(𝑚𝑐𝑗𝑐𝑐+𝑚𝑎𝑐𝑎)
𝑑𝑡

𝑡

0
= ∫

𝑑𝑇

(𝑇𝑜𝑢𝑡−𝑇)

𝑇𝑗

𝑇0
          (4) 

𝑚𝑎.𝑟𝑜.𝑐𝑎

(𝑚𝑐𝑗𝑐𝑐+𝑚𝑎𝑐𝑎)
(𝑡 − 0) = −(ln(𝑇𝑜𝑢𝑡 − 𝑇𝑗) − 𝑙𝑛(𝑇𝑜𝑢𝑡 − 𝑇0)) )       (5) 

−
𝑚𝑎.𝑟𝑜.𝑐𝑎

(𝑚𝑐𝑗𝑐𝑐+𝑚𝑎𝑐𝑎)
. 𝑡 = ln

(𝑇𝑜𝑢𝑡−𝑇𝑗)

(𝑇𝑜𝑢𝑡−𝑇0)
          (6) 

𝑇𝑗 = 𝑇𝑜𝑢𝑡 − (𝑇𝑜𝑢𝑡 − 𝑇0). 𝑒
− 

𝑚𝑎.𝑟𝑜.𝑐𝑎

(𝑚𝑐𝑗𝑐𝑐+𝑚𝑎𝑐𝑎)
.𝑡

         (7) 

3.1.2 Temperature prediction during transportation 

The heat absorbed by the container during unloading must be removed during the transportation 

phase. The vehicle’s cooling equipment compensates for the transferred heat by blowing cold air inside the 

container during transportation, which lowers the temperature. The amount of heat that can be removed 

from the inside of the container by the cooling equipment is denoted by 𝑄𝐶. Again, the energy balance 

model can be used to predict the temperature drop (𝑇𝑝) inside the container during transportation by 

equating the rate of heat that can be removed by the cooling equipment to the rate of accumulation of heat 

inside the container: 

𝑄𝐶 =  𝐴𝐸           (8) 

𝑄𝐶 = (𝑚𝑐𝑐𝑐 + 𝑚𝑎𝑐𝑎)
𝑑𝑇

𝑑𝑡
          (9) 

∫
Q𝑐

(𝑚𝑐𝑐𝑐+𝑚𝑎𝑐𝑎)
𝑑𝑡

𝑡

0
 = ∫ 𝑑𝑇

𝑇𝑝

𝑇0
          (10) 

Q𝑐

(𝑚𝑐𝑐𝑐+𝑚𝑎𝑐𝑎)
(𝑡 − 0) = (𝑇𝑝 − 𝑇0)          (11) 

𝑇𝑝 =
𝑄𝑐

(𝑚𝑐𝑐𝑐+𝑚𝑎𝑐𝑎)
. 𝑡 + 𝑇0           (12) 

Eq. 12 shows that the cooling equipment removes 
𝑄𝑐

(𝑚𝑐𝑐𝑐+𝑚𝑎𝑐𝑎)
 heat in each unit of time. However, 

because the cooling system does not operate while the temperature is at or below the desired temperature 

(𝑇𝑑), the actual temperature during transportation is: 

𝑇 = 𝑀𝑎𝑥{𝑇𝑝  , 𝑇𝑑}          (13) 

 3.2 Modeling the effect of temperature on food quality 

To deliver high-quality and safe products to customers, a refrigerated vehicle’s storage must 

maintain a low-temperature environment during distribution. Microbial growth, which is a primary contributor 
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to perishable food spoilage and quality loss, is inhibited at low temperatures (Jedermann, Ruiz-Garcia, & 

Lang, 2009). Food scientists have defined specific temperature ranges at which food products can be stored 

to minimize food safety risks and maximize product shelf life (Aung & Chang, 2014). Any temperature 

fluctuation outside the target range can stimulate the growth of pathogens and Specific Spoilage Organisms 

(SSOs) in perishable food products (Mercier, Villeneuve, Mondor, & Uysal, 2017). The growth rate of SSOs 

is a function of storage temperature and time, where higher temperatures result in more rapid quality 

degradation (Bruckner, Albrecht, Petersen, & Kreyenschmidt, 2013), and temperature abuses over 

extended periods of time can cause considerable quality loss (Ashby & of Agriculture. Office of 

Transportation, 2004). A perishable food product reaches the end of its shelf-life when the number of SSOs 

reaches a maximum acceptable level, or when major changes in the texture, odor, color, and/or shape of 

the product occur (Borch, Kant-Muermans, & Blixt, 1996; Huis In’t Veld, 1996; Kreyenschmidt et al., 2010; 

Nychas, Marshall, & Sofos, 2007). At this point, the products should no longer be consumed. Almonacid-

Merino & Torres (1993) described a model that predicts the effects of temperature abuses and packaging 

characteristics on product shelf life. They demonstrated that even small deviations in temperature can result 

in a significant loss of shelf life during distribution. Gill & Phillips (1993) collected temperature data from the 

surface of hanging beef in refrigerated railway wagons and road trailers. They used this data to model the 

growth of bacteria during distribution, demonstrating that refrigerated railway wagons’ cooling capabilities 

result in longer shelf life.  

In most existing studies, quality loss is assumed to decline linearly over time (Gram et al., 2002; 

Nychas, Skandamis, Tassou, & Koutsoumanis, 2008). Several studies combine temperature history and 

kinetic spoilage models to predict microbial growth in food products. The kinetic modeling approach aims 

to predict the spoilage of the food products based on an understanding of chemical reactions within the 

products. In these studies, food product temperature is continuously monitored to ensure that it remains in 

the desired range, and the resulting time-temperature data are used to predict the products’ remaining shelf 

life (Giannakourou, Koutsoumanis, Nychas, & Taoukis, 2001; Taoukis, 2010). Zanoni & Zavanella (2012) 

used the kinetic model to determine optimal FSC temperatures for different constant temperature scenarios, 

given the tradeoff between maintaining product quality and saving energy. To relax the assumption of 

constant temperature, Van Impe, Nicolai, Martens, De Baerdemaeker, and Vandewalle (1992) applied a 
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first-order differential equation over the entire biokinetic temperature range of bacterial growth and 

inactivation to predict bacterial population as a function of time and temperature.  

Since the temperature of the refrigerated vehicle’s storage container dynamically changes 

throughout a delivery route with frequent stops, it is more accurate to use a model that captures nonlinear 

quality degradation for non-isothermal conditions. Therefore, the approach described in this paper applies 

the modeling methods of Bruckner et al. (2013) and Kreyenschmidt et al. (2010) which is also used by 

Gharehyakheh, Krejci, Cantu, & Rogers (2019) to provide a shelf life prediction model as a reliable and 

non-expensive tool to manage the perishable inventory of the food banks, in which the growth of SSOs 

over time is estimated using the Gompertz model (Gibson, Bratchell, & Roberts, 1987), and temperature-

dependent parameters of the model are predicted by the Arrhenius equation (Arrhenius, 1889) at each time 

step. 

The Gompertz model is used to describe the growth of SSOs with time (Eq. 14): 

𝑁(𝑡) = 𝐴 + 𝐶 ∗ 𝑒−𝑒−𝐵(𝑡−𝑀)
         (14) 

N(t): SSO count (log10 cfu/g) at time t, 
A: initial SSO count of the food product at the time it is loaded into a refrigerated vehicle (log10 cfu/g) 
C: the difference between the maximum SSO population level (a constant defined for each type of food 
product) and the initial SSO count A (log10 cfu/g) 
M: time at which the maximum growth rate is obtained (h) 
B: relative growth rate at time M (h-1) 

The Arrhenius equation (Eq. 15) assesses the impact of temperature (T) on the relative SSO growth 

rate (B): 

𝑙𝑛(𝐵) = ln(𝐹) −  
𝐸𝑎

𝑅
. (

1

𝑇
)           (15) 

F: pre-exponential factor describing the number of times two molecules collide 
Ea: activation energy for growth of SSOs (J/mol) 
R: gas constant (8.314 J/mol K) 
T: absolute temperature (K)  

The growth rate B for any temperature value can be estimated as �̂� by evaluating the Gompertz 

model for different temperature scenarios. The accuracy of the estimated values has been demonstrated 

for many different types of food products (for pork and poultry, see Bruckner et al. (2013), and for ham, see 

Kreyenschmidt et al. (2010)).  

The parameter M, which is the time at which the maximum SSO growth rate occurs, changes 

according to changes in temperature. The value of M can be calculated by rearranging Eq. 14 and can be 
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initialized using values derived from an empirically defined linear regression model of M against 

temperature (Bruckner et al., 2013). The value of M at current time te depends on the SSO count at the 

previous time, N(te-1), and the estimated value of relative growth rate at the current temperature, �̂�. 

𝑀 =  
ln (− ln(

𝑁(𝑡𝑒−1)−𝐴

𝐶
))

�̂�
+ 𝑡𝑒          (16) 

Eq. 14 and Eq. 15 can be integrated to predict the growth of SSOs under non-isothermal conditions 

(Kreyenschmidt et al., 2010). 

3.3 Modeling the effect of food quality on market value 

Because consumers prefer to purchase fresh products, quality loss reduces the likelihood that a 

retailer will be able to sell a product. Therefore, if distribution times are long, or if products face frequent 

temperature abuses during distribution, they are less likely to be sold and more likely to become waste. 

The loss of market value due to quality loss in food products has been incorporated into existing 

models of food distribution. Mirzaei and Seifi (2015) considered the impact of perishable inventory age on 

lost sales when optimizing inventory and routing plans for perishable products. Hsiao, Chen, and Chin 

(2017) assumed that the market values for different levels of quality are known, such that temperature 

during distribution and routing can be optimized to meet customers’ expectations as closely as possible. In 

their model, the difference between the actual value of the delivered products and customers’ expected 

value is considered as a cost in the objective function. 

The model described in this paper incorporates the effect of food quality on its market value by 

using the concept of a Quality Reduction Point (QRP). Bortolini, Faccio, Ferrari, Gamberi, and Pilati (2016) 

and Osvald and Stirn (2008) define the QRP for a particular product as the percentage of its shelf life at 

which the retailer no longer expects to sell it at its full price, because observable changes in product shape, 

color, texture, or odor discourage customers from purchasing it at full price. It is assumed that consumers 

are willing to pay full price for products that have not passed their QRP because their observable quality is 

still acceptable. Beyond the QRP, the retailer will discount the price of the product according to its loss in 

quality. If the product surpasses its maximum shelf life, the retailer will discard it (i.e., it becomes food 

waste), which incurs a disposal cost.   

An example of the relationship between food quality and market value over time with respect to the 

QRP and maximum shelf life is illustrated in Fig. 3. While the loss of quality for perishable products is often 
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modeled as a linear function of time (Osvald & Stirn 2008), in reality, the functions are nonlinear. Applying 

the Gompertz model and Arrhenius equation (as described below) to more accurately estimate SSO growth 

rate and quality loss yields a more realistic nonlinear pattern of quality loss.  

Full Price

Maximum 

Shelf Life

A
c
tu

a
l 

F
o

o
d

 Q
u

a
li

ty
 (

%
)

Observable Quality
Actual Quality

O
b

se
rv

ab
le

 F
o

o
d

 Q
u

a
lity

 (%
)

100%

0%

100%

0%

Quality 

Reduction Point

0% 100%40%

Discounted Price Food Waste

Shelf Life (%)

 

Figure 3-3. Example of the relationship between food quality and market value over time (Adapted from 

Osvald & Stirn (2008)) 

The model described in this paper evaluates the cost of quality loss for an item by first quantifying 

its purchase probability ∅ when it arrives at a retailer’s location with a known shelf life, using the method of 

Osvald & Stirn (2008):  

∅ = 𝑀𝑖𝑛 {
1−𝑆𝐿

1−𝑄𝑅𝑃
, 1}           (17) 

If the product’s shelf life loss (SL) is less than its QRP, it is assumed that the delivered products 

will be sold at the highest possible price, Pr. If the loss in the shelf life is greater than the QRP, there is a 

probability ∅ that the retailer will be able to sell the product; otherwise, with probability 1-∅, it will reach the 

end of its shelf life before it is sold and therefore must be discarded. Hence, the retailer loses the potential 

revenue of selling the product and must also pay for disposal with probability 1-∅: 

(1 − ∅). (𝑃𝑟 + 𝐷𝑖𝑠)           (18) 

1-∅: the probability of not being able to sell the product, 

𝑃r: highest market price of the product, 

𝐷𝑖𝑠: disposal cost of the product 
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4. QD-VRPTW model 

  In this section, it is illustrated how the VRPTW module is connected to the quality dependent 

module. The quality costs represented by the Eq. 18 is added to the transportation cost of the conventional 

VRPTW in the objective function. Now, the objective function of the QD-VRPTW is an accurate 

representation of the distribution costs of perishable food products. 

The food distribution problem is defined as a directed graph, where G = (N, A) is a graph in which 

N= {0, 1, …, n} is the set of nodes, with node 0 representing the depot, C = {1, …, n} representing the set 

of customers, and A = {(i, j): i, j ∈ N, and i ≠ j} is the set of arcs representing the possible transportation 

paths between nodes. A fleet of homogenous vehicles V = {1, …, v}, each with capacity Q, deliver food 

from the depot to the customers. Customer i requests delivery of d i products in the interval between times 

ai and bi. It is assumed that each customer’s demand is less than the capacity of a vehicle to deliver with a 

single visit. Further, it is assumed that deliveries are only allowed during the customers’ requested time 

intervals; if a vehicle arrives early at the location of customer i, it must wait until time a i to begin unloading 

its cargo. For ease of reference, all notations are as follows: 

Sets 

C = {1, …, n} set of customers 

V = {1, …, v} set of vehicles 

N = {0} ∪ C set of depot and customers 

Parameters 

cij cost of traveling from node i to node j 

∅𝑖 probability of being able to sell the product   

Pr price of an item 

Dis disposal cost of an item 

tij  travel time from customer i to customer j 

Q capacity of a vehicle 

di demand of customer i 

[ai, bi] required time window for delivery to customer i 

ut average unloading time for one unit of product 

ui unloading time at customer i, where 𝑢𝑖= 
𝑑𝑖

𝑢𝑡
 and ui ≤ bi - ai 

Decision variables 

𝑦𝑖𝑘  the time that vehicle k arrives at node i 
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𝑥𝑖𝑗𝑘 equals 1 if vehicle k travels from node i to node j, 0 otherwise 

𝑙𝑖𝑗𝑘  amount of load carried by vehicle k between nodes i and j, in units of products  

The mathematical formulation of the QD-VRPTW is as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ ∑ ∑ 𝑐𝑖𝑗𝑗𝜖𝑁𝑖𝜖𝑁𝑘𝜖𝑉 𝑥𝑖𝑗𝑘 + ∑ (1 − ∅𝑖)(𝑃𝑟 + 𝐷𝑖𝑠)𝑖𝜖𝑁 𝑑𝑖   (19) 

∑ ∑ 𝑥𝑖𝑗𝑘 = 1𝑗𝜖𝑁𝑘𝜖𝑉     ∀ i ϵ C, i ≠ j     (20) 

∑ 𝑑𝑖 ∑ 𝑥𝑖𝑗𝑘𝑗𝜖𝑁𝑖𝜖𝐶 ≤ 𝑄    ∀ k ϵ V, i ≠ j     (21) 

∑ 𝑥0𝑗𝑘 ≤ 1𝑗∈𝐶      ∀ k ϵ V     (22) 

∑ 𝑥𝑖ℎ𝑘𝑖𝜖𝑁 −  ∑ 𝑥ℎ𝑗𝑘𝑗𝜖𝑁 = 0   ∀ h ϵ N, k ϵ V     (23) 

∑ ∑ 𝑙𝑗𝑖𝑘𝑘∈𝑉𝑗∈𝑁 − ∑ ∑ 𝑙𝑖𝑗𝑘𝑘∈𝑉𝑗∈𝑁 =  𝑑𝑖 ∀ i ϵ C      (24) 

𝑦𝑖𝑘 + 𝑢𝑖 + 𝑡𝑖𝑗 − 𝑀(1 − 𝑥𝑖𝑗𝑘) ≤  𝑦𝑗𝑘  ∀ i ϵ C, j ϵ N, k ϵ V    (25) 

𝑡0𝑗 ≤ 𝑦𝑗𝑘 + 𝑀(1 − 𝑥0𝑗𝑘)    ∀ j ϵ C, k ϵ V     (26) 

𝑎𝑖 ≤ 𝑦𝑖𝑘 ≤ 𝑏𝑖      ∀ i ϵ C, k ϵ V     (27) 

𝑙𝑖𝑗𝑘 ≤ (𝑄 − 𝑑𝑖)𝑥𝑖𝑗𝑘    ∀ i ϵ N, j ϵ N, k ϵ V     (28) 

𝑑𝑗𝑥𝑖𝑗𝑘 ≤ 𝑙𝑖𝑗𝑘      ∀ i ϵ N, j ϵ C, k ϵ V    (29) 

𝑦𝑖𝑘 ≥ 0      ∀ i ϵ C, k ϵ V     (30) 

𝑙𝑖𝑗𝑘 ≥ 0      ∀ i ϵ N, j ϵ C, k ϵ V    (31) 

𝑥𝑖𝑘 ϵ {0,1}      ∀ i ϵ C, k ϵ V     (32) 

The objective (19) minimizes both transportation costs and the cost of food waste (adapted from 

Eq. (5)). If customer j receives a product with a shelf life that has exceeded the quality reduction point 

(QRP), the probability that customer j will not be able to sell the product is (1 − ∅𝑖), where 0 ≤ ∅𝑖 < 1. 

Therefore, customer i loses the sales revenue for that product and must also pay for disposal. Constraint 

(20) shows that only one vehicle can visit each node. A vehicle cannot carry loads greater than its capacity, 

constraint (21). Constraint (22) implies that a vehicle can only depart from the depot at most one time. If a 

vehicle enters a node, it should leave the node to maintain the flow of delivery, constraint (23). The amount 
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of unloaded cargo at each location should be equal to the demand at that location, constraint (24). 

Constraint (25) shows that the next customer cannot be visited earlier than the arrival time at the previous 

customer plus unloading time and the time it takes to travel between those two customers. In constraint 

(26), the time that the first customer is visited cannot be earlier than the time it takes to travel between the 

depot and the customer. Customers must be visited at the time requested by the customer, constraint (27). 

The load carried by a vehicle between two nodes cannot be greater than the capacity of the vehicle, minus 

the previous customer’s demand, and it should be at least equal to the demand of the next customer, 

constraints (28-29). Constraints (30-32) provide the nonnegativity and integrality constraints on the decision 

variables. 

5. Solution approach 

With the inclusion of the quality loss component, the objective function of the QD-VRPTW model 

(Eq. 19) becomes nonlinear. Metaheuristic algorithms are appropriate and efficient search tools to find 

globally optimized solutions to nonlinear models (Gandomi, Yang, Talatahari, & Alavi, 2013). SA is a 

powerful metaheuristic search technique that is used to solve the QD-VRPTW model. The SA optimization 

algorithm is an iterative algorithm that begins each iteration by evaluating a candidate solution. The 

algorithm explores the neighborhood of this candidate solution by making small changes to its structure. If 

a neighboring solution improves the value of the objective function, it will become the new best candidate 

solution. However, even if the neighboring solution does not improve the objective function, it can still 

potentially be chosen as the new best solution, according to a probability that decreases as the number of 

SA iterations increases. The purpose of this randomness is to explore the solution space to find a globally 

optimal solution by preventing stagnation at a locally optimal solution.  

SA is based on the concept of annealing, in which metal is heated to a high temperature and is 

then slowly cooled in a controlled environment to achieve desired physical properties (e.g., strength, 

ductility). Similarly, a “temperature” parameter is used in the SA algorithm to control the rate of exploration 

and exploitation of the solution space. The value of this “temperature” parameter is set high initially (i.e., 

high rate of exploration), and it slowly decreases as the algorithm runs (i.e., less exploration and more 

exploitation of high-quality solutions). 

The elements of the SA algorithm are as follows: 
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Temperature (T): a parameter that defines the size of the search space to be explored in a given iteration. 

Fitness value (f): the value of the objective function for a given solution. 

Neighbor search: the process of randomly selecting a solution that is close to the current one. 

Best solution: the best possible neighboring solution found in each iteration. 

∆𝑓 = 𝑓(𝑥𝑛𝑒𝑤) − 𝑓(𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡): the difference between the fitness values associated with the new and current 

solutions. 

Probability (P(Δf, T)): determines whether  the new solution is selected as the new best solution, based on 

the current value of T and the difference between the new and current solutions’ fitness values: 

𝑃(∆𝑓, 𝑇) = {
1 𝑓(𝑥𝑛𝑒𝑤) ≤ 𝑓(𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

𝑒− 
∆𝑓

𝑇 𝑓(𝑥𝑛𝑒𝑤) > 𝑓(𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
        (33) 

Termination criterion: the condition that determines when the algorithm stops running.  

5.1 Proposed SA algorithm 

The key decision is how to assign n customers to v vehicles. To accomplish this, a one-dimensional 

array is first created to store the current solution.  This array is divided into v sections that are separated by 

v-1 special characters (see Fig. 5 for an example, where v = 3 and the special characters are “*”), and 

customer numbers are grouped in the array according to their assigned vehicles.  In the example shown in 

Fig. 4, the demand of seven customers is allocated to three vehicles: customers 5 and 3 are assigned to 

vehicle 1, customers 1, 4, and 2 are assigned to vehicle 2, and customers 7 and 6 are assigned to vehicle 

3.  Note that the order of the customer numbers in the array designates the order in which these customers 

are visited by their assigned vehicle, i.e., the routing. 

3 *5 1 4 2 * 7 6

C1

C4

C3

C2

C5

C6

C7

V2

V1

V3

 

Figure 3-4. SA solution encoded as a vehicle routing schedule. 
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Figure 3-5. Proposed SA algorithm. 

The main difference between the VRPTW and QD-VRPTW models is the fitness function. The 

VRPTW objective is to minimize the transportation cost, while the QD-VRPTW objective function includes 

both transportation and quality losses. In order to save computational time, the corresponding VRPTW is 

first solved using the SA algorithm to generate an initial solution to the original QD-VRPTW. A flowchart 

representing the SA algorithm is shown in Fig. 5. 

The steps of the SA algorithm to solve the VRPTW problem are summarized as follows: 

1. Generate a random initial solution. 

Randomly assign customers and v-1 special characters to a one-dimensional array. 

2. Calculate the fitness value. 

The current solution matrix is decoded as a routing schedule, and the objective function value 

associated with this schedule is calculated using Eq. (19). In addition, penalties for capacity and time 

window violations are added to the objective function value to obtain the fitness value: 
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Fitness value =  (objective value). (1 + 𝐶𝑎𝑝𝑉̅̅ ̅̅ ̅̅ ̅. 𝑀1 + 𝑇𝑊𝑉̅̅ ̅̅ ̅̅ ̅. 𝑀2)    (34) 

𝐶𝑎𝑝𝑉̅̅ ̅̅ ̅̅ ̅: average capacity violation for all vehicles. 

𝑇𝑊𝑉̅̅ ̅̅ ̅̅ ̅: average time window violation for all vehicles. 

𝑀1, 𝑀2: sufficiently large number to generate feasible solutions. 

3. Search the neighbors of the current solution. 

Either swap, reversion, or insertion operators are randomly selected to find a new neighbor for the 

current solution. Fig. 6 shows how these three operators work. 

3 *5 1 4 2 * 7 6

2 *5 1 4 3 * 7 6

a

 

3 *5 1 4 2 * 7 6

2 45 1 * 3 * 7 6

x xb

3 *5 1 4 2 * 7 6

* 15 4 2 3 * 7 6

x1 x2c

 

Figure 3-6. Swap, reversion, and insertion operators to create a new neighbor. 

Swap operator (Fig. 6a): two elements are randomly selected, and their locations are exchanged. 

Reversion operator (Fig. 6b): the order of any elements in between two randomly selected elements is 

reversed. 

Insertion operator (Fig. 6c): the first randomly selected element is moved to the right of the second randomly 

selected element. 

4. Update the best solution. 

The new solution is stored as the new best solution with a probability of P(Δf, T), per Eq. (33). 

5. Evaluate termination criterion. 
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The algorithm terminates when the fitness value stops improving. Specifically, the algorithm 

terminates when it is unable to find a better solution in 10*(v*n) consecutive iterations; otherwise, it returns 

to the third step. 

The same steps are followed to solve the QD-VRPTW, except that the corresponding VRPTW 

solution is used as the initial solution. 

6. Results and discussion 

In this section, the performance of the proposed QD-VRPTW model is compared with the VRPTW 

model, using frozen poultry distribution as an example. Both models are solved using the SA algorithm for 

small, medium, and large-scale test problems. Because VRPTW does not consider quality loss, only the 

initialization part of the algorithm is applied to find the optimal solutions for VRPTW. 

Five test problems were created for each of the three problem size categories. For each of these 

test problems, the following model parameters were defined: number of customers, customer demand, 

customer locations (i.e., x- and y-coordinates), ambient temperature at each customer location, customer 

delivery time windows, number of available vehicles, and vehicle capacity. Euclidean distance is assumed 

as the travel distance between two customers. 

Table 1 summarizes the results, which indicate that for frozen poultry, including the cost of quality 

when determining delivery vehicle routings can reduce total distribution costs by as much as 16%. 

Furthermore, the results show that the transportation costs that result from using the VRPTW model are 

always less than or equal to QD-VRPTW transportation costs. This is unsurprising, given that the objective 

of the VRPTW model focuses strictly on minimizing transportation costs. Similarly, quality costs in the QD-

VRPWT model are always less than or equal to the quality costs in the VRPTW model. However, as the 

size of the problem increases, the differences in cost of quality between these two models increase. 

Because there are more feasible alternative solutions in the search space of larger-scale problems, the 

algorithm has a greater opportunity to find better-quality solutions. As a result, QD-VRPTW performance 

always dominates VRPTW (see Fig. 7). 
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Table 3-1. Comparison of VRPTW and QD-VRPTW performance for frozen poultry distribution 

Problem 
Size 

Example 
No. of 

customers 
No. of 

vehicles 

VRPTW Costs ($) QVRPTW Costs ($) 
PD* 

Transportation Quality  Total  Transportation  Quality  Total  

S
m

a
ll 

1 3 1 766 75 841 766 75 841 0.00% 

2 4 2 527 14 541 527 14 541 0.00% 

3 5 2 710 69 779 710 69 779 0.00% 

4 7 3 776 219 995 776 219 995 0.00% 

5 8 3 930 130 1060 930 130 1060 0.00% 

M
e
d
iu

m
 

6 12 4 1141 494 1635 1141 494 1635 0.00% 

7 13 5 1233 556 1789 1242 452 1694 5.61% 

8 15 5 1457 567 2024 1468 423 1891 7.03% 

9 17 5 1553 789 2342 1594 610 2204 6.26% 

10 19 6 1711 852 2563 1723 634 2357 8.74% 

L
a
rg

e
 

11 20 6 1642 873 2515 1682 623 2305 9.11% 

12 30 5 1727 812 2539 1820 468 2288 10.97% 

13 35 7 2036 1038 3074 2120 523 2643 16.31% 

14 40 6 2098 1205 3303 2156 748 2904 13.74% 

15 50 7 2513 1426 3939 2564 852 3416 15.31% 

* Percentage Difference (PD) = (VRPTWTotal costs – QD-VRPTWTotal costs) / (VRPTWTotal costs) 

 

Figure 3-7. Comparison of delivery costs in QD-VRPTW and VRPTW for each test problem 

To demonstrate the impact of quality cost inclusion on the delivery sequence and routing decisions, 

the optimal routings generated by VRPTW and QD-VRPTW for two test problems are compared. Figs 8a 

and 8b illustrate a test problem in which a single vehicle delivers to customer 1 (c_1) and customer 2 (c_2), 

which demand 20 and 50 units of frozen poultry, respectively. Both customers are located the same 

distance from the depot. The VRPTW objective function yields the same value for either delivery sequence 

because this approach only considers transportation cost, which is the same for both sequences. Therefore, 

when VRPTW recommends that customer 2 (which has greater demand and longer unloading time) should 
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be visited first (as in Fig. 8a), customer 1’s order is exposed to higher temperatures for a longer time than 

in the alternative sequence (shown in Fig. 8b). Since QD-VRPTW differentiates the sequences based on 

the cost of quality loss, it recommends the sequence shown in Fig. 8b, in which products are first delivered 

to the customer with lower demand. Table 2 summarizes the results generated by each approach. 

 

Figure 3-8. The optimal vehicle routing for 2 customers and 1 vehicle; Fig. a is VRPTW solution, Fig. b is 
QD-VRPTW solution 

Table 3-2. Comparison of the VRPTW and QD-VRPTW optimal solutions for 2 customers and 1 vehicle 

Model C V Visit 
Delivered 

Quality (%) 
Quality 
Cost ($) 

Transportation 
Cost ($) 

Total 
Cost ($) 

VRPTW 
1 1 2 87 

208 618 826 
2 1 1 99 

QD-VRPTW 
1 1 1 99 

170 618 788 
2 1 2 97 

Figs 9a and 9b illustrate results generated by VRPTW and QD-VRPTW, respectively, for a test 

problem with three customers and two vehicles. VRPTW recommends the use of one vehicle, which causes 

customer 1’s order to experience longer and more frequent temperature abuses than in the QD-VRPTW 

solution, which recommends the use of two vehicles. The use of a single vehicle yields lower transportation 

costs; however, Table 3 shows that the total cost is lower for the QD-VRPTW solution since its higher 

transportation cost is compensated by reducing the quality cost. 
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Figure 3-9. The optimal vehicle routing for 3 customers and 2 vehicles; Fig. a is VRPTW solution, Fig. b is 
QD-VRPTW 

Table 3-3. Comparison of VRPTW and QD-VRPTW optimal solutions for 3 customers and 2 vehicles 

Model C V Visit Delivered 
Quality (%) 

Quality 
Cost ($) 

Transportation 
Cost ($) 

Total 
Cost ($) 

VRPTW 

1 1 3 86 

300 634 934 2 1 1 88 

3 1 2 99 

QD-VRPTW 

1 1 2 96 

80 765 845 2 2 2 99 

3 1 1 99 

Different perishable food products will have different sensitivity to temperature abuses, as well as 

different market values, which will influence the optimal delivery sequence and routing generated by QD-

VRPTW. High-value products that are highly sensitive to temperature variation (e.g., fresh produce) will be 

more likely to result in a solution in which orders are shipped directly to customers. In contrast, lower-value 

products with lower temperature sensitivity (e.g., frozen foods) will allow for greater flexibility, such that 

fewer and fuller vehicles will deliver to multiple locations. To demonstrate this, Table 4 compares the QD-

VRPTW quality costs and transportation costs of a food distribution system with 35 customers and 7 

vehicles for three different products. In this example, fresh-cut salad has the highest sensitivity to 

temperature abuses. As a result, the transportation cost for fresh-cut salad is 37% higher than for frozen 

poultry. Following the same logic, gouda cheese and frozen poultry meat have the second and the third 

highest transportation costs, respectively.  
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Table 3-4. Results of QD-VRPTW for different types of perishable food products 

Product 
Relative Level of 

Temperature Sensitivity* 
Market Price (per 

lb.) 
Quality Costs 

($) 
Transportation Costs 

($) 

Poultry frozen meat** Low $2 2035 1171 

Fresh cut salad*** High $4 2336 1610 

Gouda Cheese**** Medium $7 2036 1494 

* It is assumed that a higher SSOs growth rate and lower shelf life for a product at a specific temperature 
corresponds to a higher sensitivity to the temperature. 
** Data is collected from Bruckner et al. (2013). 
*** Data is collected from Tsironi et al. (2017). 
**** Data is collected from Weiss, Stangierski, Baranowska, & Rezler (2018). 

Conclusion 

The sensitivity of perishable food products to the temperature significantly increases the complexity 

of FSC distribution problems. The frequency and duration of vehicle stops elevate the growth rate of SSOs 

since the products frequently face temperature abuses before they are delivered to customers. The 

resulting loss of shelf life and quality can significantly reduce retailer revenue and increase food waste. 

Hence, increasing the number of vehicles and reducing the frequency of stops can improve the quality of 

perishable food products, but it can also result in higher transportation costs. Therefore, the quality loss 

must be quantified to measure its effect on the efficiency of routing decisions. 

This paper presents a new modeling approach that integrates VRPTW with a food quality prediction 

model to accurately capture the cost of quality loss in the perishable food routing problem. The cost of 

quality loss of a route is highly impacted by the temperature rises resulted from transferring the heat of hot 

ambient air to the cold environment inside the container when its door is open to unload part of the load. 

The temperature fluctuations are predicted by a set of energy balance equations which helps to provide an 

accurate prediction of quality loss using a combination of Arrhenius equation and Gompertz model. The 

integration of quality loss in the form of cost with transportation cost in the QD-VRPTW model provides a 

novel way to predict food quality based on the estimation of temperature during distribution. A metaheuristic 

SA algorithm is developed to find optimized solutions that minimize the summation of quality and 

transportation costs in the complex perishable food distribution model. 

The importance of accurately modeling the relationship between perishable food distribution 

decisions and product quality is illustrated in a set of small, medium, and large-scale test problems for 

frozen poultry meat products. Additionally, a set of descriptive examples demonstrate how the QD-VRPTW 

modeling approach can prevent quality loss in the FSC by changing the optimal delivery sequence and 
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routing solutions. To demonstrate how temperature sensitivity and market value affect optimal routing 

solutions, the proposed approach is applied to frozen poultry meat, fresh-cut salad, and gouda cheese. 

A limitation of the model described in this paper is the assumption of a single type of food product. 

This assumption ignores interactions between multiple products, as well as their different temperature 

requirements. Finding optimal temperature settings for the delivery of multiple products with interaction 

constraints is a valuable potential direction for future research. In addition, the energy balance equation 

used in this model only predicts the temperature inside the vehicle’s container. This equation could be 

modified to accurately measure the energy consumed to maintain the temperature in the desired range 

during distribution. 

The results of this study indicate that implementing QD-VRPTW in planning for perishable food 

distribution has the potential to yield significant economic and environmental savings, especially for large-

scale problems, by increasing the quality of delivered products, thereby increasing the likelihood that they 

will be sold before the end of their shelf life. This benefits actors at every level of the food supply chain. 
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Appendix 

Fictitious data to create used in creating the results in Table 3-1 

E
x
. 

1
 

No. of 
Cust. 

No. of 
Vehicles 

Customers 
demand 

Cap. of 
Vehicles 

X Coord. of 
Cust. 

Y Coord of 
Cust. 

X Coord of 
depot 

Y Coord of 
depot 

Speed of 
vehicles 

Earliest 
time 

Latest 
time 

Ambient 
Temp. 

3 1 14 65 15 51 90 52 16 4 27 286 
  22  39 65    7 31 281 
  11  198 11    6 29 284 

E
x
. 

2
 

No. of 
Cust. 

No. of 
Vehicles 

Customers 
demand 

Cap. of 
Vehicles 

X Coord. of 
Cust. 

Y Coord of 
Cust. 

X Coord of 
depot 

Y Coord of 
depot 

Speed of 
vehicles 

Earliest 
time 

Latest 
time 

Ambient 
Temp. 

4 2 13 42 88 49 100 50 15 4 22 290 

  22 39 44 76   16 5 26 283 

  14  128 93    3 29 286 
  21  180 17    5 26 287 

E
x
. 

3
 

No. of 
Cust. 

No. of 
Vehicles 

Customers 
demand 

Cap. of 
Vehicles 

X Coord. of 
Cust. 

Y Coord of 
Cust. 

X Coord of 
depot 

Y Coord of 
depot 

Speed of 
vehicles 

Earliest 
time 

Latest 
time 

Ambient 
Temp. 

5 2 24 53 114 28 84 49 15 4 28 280 
  18 58 30 92   16 3 34 294 
  13  123 57    6 22 290 

  23  49 78    3 28 286 

  11  128 31    5 33 282 

E
x
. 

4
 

No. of 
Cust. 

No. of 
Vehicles 

Customers 
demand 

Cap. of 
Vehicles 

X Coord. of 
Cust. 

Y Coord of 
Cust. 

X Coord of 
depot 

Y Coord of 
depot 

Speed of 
vehicles 

Earliest 
time 

Latest 
time 

Ambient 
Temp. 

7 3 17 89 130 3 111 57 15 5 32 291 
  23 55 194 30   16 6 32 280 
  13 63 73 68   16 4 30 286 
  19  136 11    5 31 283 

  22  181 55    6 32 294 

  24  120 52    3 30 283 
  19  129 1    4 30 290 

E
x
. 

5
 

No. of 
Cust. 

No. of 
Vehicles 

Customers 
demand 

Cap. of 
Vehicles 

X Coord. of 
Cust. 

Y Coord of 
Cust. 

X Coord of 
depot 

Y Coord of 
depot 

Speed of 
vehicles 

Earliest 
time 

Latest 
time 

Ambient 
Temp. 

8 3 12 72 129 1 119 46 15 7 33 280 
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  15 44 9 53   16 5 39 288 
  11 38 116 17   15 6 26 282 
  11  54 31    7 24 287 

  13  158 60    6 24 282 
  23  144 82    7 25 280 
  14  86 58    4 29 285 
  16  152 7    5 36 290 

E
x
. 

6
 

No. of 
Cust. 

No. of 
Vehicles 

Customers 
demand 

Cap. of 
Vehicles 

X Coord. of 
Cust. 

Y Coord of 
Cust. 

X Coord of 
depot 

Y Coord of 
depot 

Speed of 
vehicles 

Earliest 
time 

Latest 
time 

Ambient 
Temp. 

12 4 13 49 138 12 97 43 15 8 40 286 
  24 86 180 93   16 6 43 292 

  11 48 107 51   15 7 32 291 
  23 64 148 60   15 8 39 284 
  12  171 40    6 34 288 
  13  148 41    7 44 293 
  15  193 17    6 27 285 
  10  154 78    6 41 283 

  10  197 58    7 40 288 
  21  77 12    6 39 283 

  11  99 17    8 32 292 
  17  43 30    8 28 289 

E
x
. 

7
 

No. of 
Cust. 

No. of 
Vehicles 

Customers 
demand 

Cap. of 
Vehicles 

X Coord. of 
Cust. 

Y Coord of 
Cust. 

X Coord of 
depot 

Y Coord of 
depot 

Speed of 
vehicles 

Earliest 
time 

Latest 
time 

Ambient 
Temp. 

13 5 11 95 57 46 82 41 15 4 31 286 
  21 89 48 52   15 4 35 290 

  13 78 137 82   15 5 28 289 
  19 86 143 39   16 3 28 286 
  17 86 194 88   16 6 37 293 
  24  154 54    5 28 286 
  21  153 49    6 37 294 
  22  35 42    6 38 289 

  19  113 17    4 36 292 
  19  181 23    6 29 289 
  12  8 26    6 35 293 
  21  187 74    5 36 293 
  23  29 27    3 29 283 

E
x
. 

8
 

No. of 
Cust. 

No. of 
Vehicles 

Customers 
demand 

Cap. of 
Vehicles 

X Coord. of 
Cust. 

Y Coord of 
Cust. 

X Coord of 
depot 

Y Coord of 
depot 

Speed of 
vehicles 

Earliest 
time 

Latest 
time 

Ambient 
Temp. 

15 5 24 68 95 45 93 40 15 5 38 284 

  20 92 29 77   15 6 37 280 
  18 89 121 13   15 8 43 294 
  23 93 151 20   15 5 37 281 
  16 94 158 87   15 6 27 280 
  13  51 57    4 35 288 
  20  130 22    6 32 284 

  14  136 95    7 39 285 
  16  130 56    4 40 288 
  22  124 1    8 39 290 
  20  177 2    5 39 281 
  21  187 50    6 43 283 
  18  103 12    6 28 289 

  14  51 14    8 35 282 
  16  3 10    5 38 287 

E
x
. 

9
 

No. of 
Cust. 

No. of 
Vehicles 

Customers 
demand 

Cap. of 
Vehicles 

X Coord. of 
Cust. 

Y Coord of 
Cust. 

X Coord of 
depot 

Y Coord of 
depot 

Speed of 
vehicles 

Earliest 
time 

Latest 
time 

Ambient 
Temp. 

17 5 18 73 14 36 88 44 16 6 36 280 
  10 64 137 84   16 9 44 284 
  11 92 176 88   15 8 31 281 

  12 74 42 42   16 5 34 283 

  18 59 42 11   15 6 44 294 
  14  75 96    7 43 280 
  12  26 70    6 35 293 
  11  105 90    5 41 290 
  12  79 94    7 32 294 
  22  181 20    8 42 281 

  11  179 2    8 47 286 
  17  60 79    5 34 292 
  18  176 12    9 44 281 
  12  16 88    6 46 282 
  19  72 49    6 45 287 
  16       5 42 282 

  23  16 77    7 43 293 

E
x
. 

1
0
 

No. of 
Cust. 

No. of 
Vehicles 

Customers 
demand 

Cap. of 
Vehicles 

X Coord. of 
Cust. 

Y Coord of 
Cust. 

X Coord of 
depot 

Y Coord of 
depot 

Speed of 
vehicles 

Earliest 
time 

Latest 
time 

Ambient 
Temp. 

19 6 23 85 127 3 114 51 16 6 46 285 
  19 87 81 86   16 6 32 289 
  11 56 134 67   15 7 31 280 
  10 75 133 50   16 4 31 288 
  17 71 70 90   15 5 44 287 

  18 92 164 1   16 8 47 282 
  20  7 97    6 32 293 
  18  93 86    4 43 280 
  23  170 81    7 39 280 
  18  115 74    7 28 286 
  12  34 43    4 43 280 

  16  119 99    8 43 294 
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  17  116 84    8 38 290 
  22  54 55    6 33 284 
  19  122 12    4 35 292 

  15  197 60    4 47 285 
  18  179 32    6 47 283 
  15  108 15    6 29 291 
  21  48 31    6 42 284 

E
x
. 

1
1
 

No. of 
Cust. 

No. of 
Vehicles 

Customers 
demand 

Cap. of 
Vehicles 

X Coord. of 
Cust. 

Y Coord of 
Cust. 

X Coord of 
depot 

Y Coord of 
depot 

Speed of 
vehicles 

Earliest 
time 

Latest 
time 

Ambient 
Temp. 

20 6 10 65 174 35 94 50 15 8 49 287 
  13 86 181 68   16 5 30 289 

  17 73 68 54   16 7 35 291 
  20 112 161 17   16 9 43 288 
  11 96 39 34   15 5 47 282 
  21 75 34 57   16 9 38 290 
  22  77 74    9 33 287 
  20  175 40    5 37 283 

  23  191 42    8 33 287 
  10  183 66    8 43 286 

  23  152 64    6 41 283 
  24  152 15    6 45 280 
  14  44 90    7 37 285 
  16  71 36    5 42 293 

  18  194 22    6 36 283 
  20  197 31    7 49 283 
  16  12 40    6 49 286 
  23  10 26    6 47 285 
  23  20 11    7 33 285 
  10  9 47    8 33 281 

E
x
. 

1
2
 

No. of 
Cust. 

No. of 
Vehicles 

Customers 
demand 

Cap. of 
Vehicles 

X Coord. of 
Cust. 

Y Coord of 
Cust. 

X Coord of 
depot 

Y Coord of 
depot 

Speed of 
vehicles 

Earliest 
time 

Latest 
time 

Ambient 
Temp. 

30 5 22 204 68 83 89 43 16 10 80 284 
  15 155 180 66   15 9 60 280 
  15 109 165 13   15 17 80 290 
  12 172 146 26   15 11 77 288 
  23 126 140 80   15 15 62 281 
  18  82 16    12 70 287 

  12  23 36    14 82 282 
  10  186 51    15 66 290 
  16  12 63    13 71 286 
  22  136 60    11 56 284 
  17  175 82    13 88 280 
  18  128 19    9 62 280 

  16  3 21    14 72 289 
  14  98 58    12 84 287 
  21  26 61    17 89 284 
  21  152 38    10 69 290 
  19  85 85    13 80 291 
  13  187 36    9 86 291 

  15  58 35    17 65 289 
  18  130 57    16 55 285 
  10  100 13    12 81 288 
  24  130 69    14 86 288 
  16  124 87    10 73 282 
  23  195 5    14 83 285 

  22  132 63    16 75 294 
  20  40 40    14 84 283 

  12  58 9    11 88 282 
  22  107 0    11 67 283 
  19  80 20    12 83 283 
  20  96 58    13 61 283 

E
x
. 

1
3
 

No. of 
Cust. 

No. of 
Vehicles 

Customers 
demand 

Cap. of 
Vehicles 

X Coord. of 
Cust. 

Y Coord of 
Cust. 

X Coord of 
depot 

Y Coord of 
depot 

Speed of 
vehicles 

Earliest 
time 

Latest 
time 

Ambient 
Temp. 

35 7 14 166 173 17 114 49 16 7 48 294 
  22 133 190 81   15 13 58 294 
  23 160 28 28   16 11 50 287 
  12 108 65 82   15 12 45 281 
  12 102 16 68   16 12 60 287 
  18 170 65 27   15 10 48 291 

  10 133 155 52   15 11 68 288 
  22  176 98    12 46 280 
  13  120 66    14 45 283 
  18  163 67    10 71 280 
  20  89 22    12 67 286 
  24  41 57    9 59 285 

  23  68 29    13 59 282 
  15  93 87    10 64 288 
  20  72 67    8 46 287 
  19  70 95    11 65 290 
  23  93 60    14 58 290 
  16  50 60    7 54 281 

  18  170 9    8 55 290 
  16  149 44    11 51 289 
  19  25 67    7 61 282 
  17  89 14    13 53 285 
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  21  51 45    7 67 287 
  11  85 89    9 57 283 
  22  51 78    11 51 280 

  21  24 82    12 67 294 
  11  136 93    9 55 283 
  11  170 10    12 67 286 
  20  30 71    11 53 292 
  21  47 24    9 50 287 
  22  14 98    12 58 285 

  16  102 80    7 54 288 
  24  169 17    9 46 283 
  17  58 68    10 68 289 
  17  26 94    7 64 292 

E
x
. 

1
4
 

No. of 
Cust. 

No. of 
Vehicles 

Customers 
demand 

Cap. of 
Vehicles 

X Coord. of 
Cust. 

Y Coord of 
Cust. 

X Coord of 
depot 

Y Coord of 
depot 

Speed of 
vehicles 

Earliest 
time 

Latest 
time 

Ambient 
Temp. 

40 6 15 121 70 73 84 41 16 12 70 283 
  11 168 118 83   16 10 70 294 

  23 130 20 53   15 12 91 284 
  12 212 130 26   15 16 82 289 

  23 150 158 68   15 14 73 290 
  13 177 13 82   15 17 91 286 
  17  44 46    19 69 292 
  24  182 20    15 84 281 

  15  122 76    16 73 291 
  16  14 78    18 77 283 
  12  8 30    10 71 290 
  21  132 69    17 64 291 
  24  138 59    18 78 285 
  15  108 14    18 63 284 

  21  149 6    11 70 293 
  21  167 54    15 88 281 
  20  36 27    11 63 280 
  13  71 17    19 81 290 
  20  153 78    12 78 293 
  13  171 20    11 70 287 

  15  165 68    15 64 283 
  16  133 92    11 65 284 
  12  19 33    11 78 281 
  10  44 37    10 67 288 
  20  78 80    16 95 292 
  23  122 48    19 94 290 

  18  161 13    15 70 293 
  17  0 32    14 70 292 
  15  79 24    13 62 280 
  23  171 71    19 97 289 
  17  37 49    16 81 282 
  19  101 31    12 97 294 

  16  3 67    10 68 280 
  13  191 76    11 70 292 
  21  10 99    17 95 294 
  24  113 87    10 99 286 
  16  188 25    14 78 291 
  24  12 64    16 65 287 

  13  61 11    15 76 294 
  18  14 35    14 82 294 

E
x
. 

1
5
 

No. of 
Cust. 

No. of 
Vehicles 

Customers 
demand 

Cap. of 
Vehicles 

X Coord. of 
Cust. 

Y Coord of 
Cust. 

X Coord of 
depot 

Y Coord of 
depot 

Speed of 
vehicles 

Earliest 
time 

Latest 
time 

Ambient 
Temp. 

50 7 14 127 145 9 111 57 16 16 89 287 
  13 117 51 3   16 10 79 280 
  17 209 147 0   16 13 71 292 
  10 198 124 68   16 16 67 293 

  19 121 43 7   16 19 65 285 
  10 183 88 92   15 19 78 287 
  16 123 129 15   15 19 65 284 
  10  155 65    20 72 287 
  10  103 82    12 104 286 
  20  72 13    18 64 285 

  21  21 14    17 102 294 
  16  89 42    12 84 292 
  14  92 51    20 73 288 
  16  63 77    15 70 290 
  16  187 91    19 66 290 
  19  141 19    17 98 291 

  20  59 20    15 78 285 
  16  132 12    13 89 293 
  23  124 89    20 76 284 
  20  195 44    14 85 286 
  10  106 4    13 83 289 
  21  172 21    12 101 283 

  11  39 57    20 80 285 
  14  84 20    13 95 293 
  11  56 27    15 66 285 
  22  16 37    17 64 283 
  15  173 56    14 76 287 
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  17  17 85    17 73 280 
  13  50 73    13 91 291 
  17  187 94    12 76 286 

  15  63 87    11 83 286 
  23  29 97    12 83 284 
  24  19 56    15 84 281 
  16  137 95    11 98 292 
  11  52 98    10 68 285 
  15  71 53    15 100 282 

  17  20 52    18 91 290 
  21  11 0    10 92 292 
  23  38 5    16 88 282 
  14  105 84    13 103 282 
  23  180 20    20 79 292 
  10  198 61    10 95 292 

  14  109 11    13 105 282 
  16  196 23    18 82 292 
  12  79 27    18 71 289 
  21  72 33    13 101 289 
  19  82 86    18 98 285 
  11  162 76    20 82 281 

  15  112 53    19 96 280 
  12  95 3    17 97 281 
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Abstract 

The food distribution process is responsible for a huge loss in the quality of perishable products. 

However, preserving the quality is costly and it consumes lots of energy. A novel multi-objective model is 

proposed to tackle these sustainability challenges by setting transportation costs and CO2 emission 

minimization and freshness maximization objectives. The accuracy of measuring the sustainability goals is 

enhanced by integrating the multi-objective sustainable vehicle routing problem with temperature, shelf life, 

and energy consumption prediction models. Non-dominated sorting genetic algorithm II is adapted to solve 

the proposed model for the set of Solomon test data. The conflicting nature of these objectives and the 

sensitivity of the model to shelf life and temperature setting in the container are analyzed in this study. 

Keywords: Sustainable distribution; Food perishability; Multi-objective optimization; Temperature 

prediction; Shelf life; Food waste; NSGA-II 

1. Introduction 

Sustainability in food distribution operations can guarantee the flow of essential nutrients among 

human society. 14th annual Food Health and Safety Survey reveals that consumers recognized the 

necessity of sustainability in food operations and the sustainable production and distribution of food is 

important for 54% of the consumers (Meyer, 2019). In response to this demand, food distributors and 

producers are seeking new approaches to improve their sustainability goals. Achieving sustainability in any 

distribution network involves tradeoffs between multiple conflicting objectives, including minimizing 

transportation costs (e.g., fuel and vehicle maintenance costs, driver salaries), fulfilling customer 

requirements (e.g., on-time deliveries, short lead times), and limiting environmental impact (e.g., vehicle 

emissions). However, optimizing sustainability in perishable food distribution is particularly challenging, 

primarily because of temperature control requirements.  
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Temperature is a major determinant of the shelf life of a perishable product (James, James, & 

Evans, 2006; Tarantilis & Kiranoudis, 2002). Even small and/or infrequent deviations from recommended 

temperature settings can significantly reduce product shelf life (Bruckner, Albrecht, Petersen, & 

Kreyenschmidt, 2013; Gharehyakheh, Krejci, Cantu, & Rogers, 2019; Göransson, Jevinger, & Nilsson, 

2018) because increased temperature accelerates the growth rate of the microorganisms that are 

responsible for quality degradation in perishable foods (Bruckner et al., 2013; Kreyenschmidt et al., 2010). 

This loss in quality increases the likelihood that the food is wasted (Mercier, Villeneuve, Mondor, & Uysal, 

2017).  According to the United States Department of Agriculture, 30-40% of food in the U.S. is wasted 

(“Food Waste and Loss,” 2015), with 40% of these losses occur post-harvest (FAO- Food and Agriculture 

Organization of the United Nations, 2011). As a result, much of the resources consumed by the production 

and distribution of perishable food, as well as their associated environmental impacts, are in vain (FAO- 

Food and Agriculture Organization of the United Nations, 2011). It is estimated that food waste costs the 

U.S. economy $218 billion each year (Young, 2012). Moreover, as described by Mercier et al. (2017), 

quality loss due to inadequate temperature control increases food safety risk. In the U.S., the annual 

societal costs of foodborne illness are estimated to be $50 billion (Scharff, 2012), with more than 120,000 

hospitalizations and 3,000 fatalities annually (CDC, 2011). 

Therefore, it is crucial to maintain the predefined temperature range for perishable food products 

during distribution to ensure their quality and safety (Adekomaya, Jamiru, Sadiku, & Huan, 2016; 

Ketzenberg, Bloemhof, & Gaukler, 2015; Stellingwerf, Kanellopoulos, van der Vorst, & Bloemhof, 2018). 

Although refrigerated vehicles’ cargo is well-isolated, it can experience frequent exposure to increased 

temperature when the vehicle stops to make deliveries to other customers (James et al., 2006; Novaes, 

Lima Jr, Carvalho, & Bez, 2015). As a result, an estimated 8-23% loss in perishable food quality occurs 

during the distribution process (Osvald & Stirn, 2008). A distribution plan that emphasizes short transit times 

and few stops can preserve product quality and reduce waste. Food waste is not the only environmental 

impact of perishable food distribution networks.  The energy required to transport and refrigerate perishable 

products during distribution is supplied by burning fossil fuels, which releases greenhouse gases into the 

environment (Stellingwerf et al., 2018). In fact, food refrigeration during transportation accounts for 15% of 

global fossil fuel consumption and 40% of global greenhouse effect (Adekomaya et al., 2016), with up to 
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40% of refrigerated vehicles’  emissions generated by a conventional diesel engine vapor compression 

refrigeration system (Tassou, De-Lille, & Ge, 2009). Therefore, improving the efficiency of perishable food 

distribution systems can have a significant impact on energy consumption and vehicle emissions.  

However, attempts to simultaneously minimize food waste, vehicle emissions, and transportation 

costs in a perishable food distribution network involve tradeoffs. For example, delivering multiple orders 

using a single full truck is more efficient than delivering each individual order on its own dedicated route, in 

terms of cost and energy.  However, a full truckload increases orders’ transit times, as well as the frequency 

of temperature abuses during unloading, thereby reducing product quality and increasing food waste. These 

tradeoffs indicate the necessity of incorporating multiple objectives when studying the problem of perishable 

food distribution. For example, some studies consider both product perishability and distribution costs (e.g., 

X. Wang et al. (2016) and Rahbari et al. (2019)). The tradeoff between emissions and distribution costs has 

also been analyzed (see e.g. Xiao et al. (2012)). However, few studies integrate distribution costs, 

freshness, and CO2 emissions simultaneously, and the precision of existing studies has been limited by 

simplifying assumptions (e.g. Musavi & Bozorgi-Amiri (2017)).  

The research presented in this paper introduces a novel extension of the multi-objective vehicle 

routing problem for the sustainable distribution of perishable food products. In this multi-objective 

sustainable vehicle routing problem (MO-SVRP), products are dispatched from a depot and are delivered 

to a set of customers having deterministic demand. Temperature is the primary controllable element in 

preserving the quality of perishable food products. To capture this, the MO-VRP model is extended by 

integrating a method for predicting heat exchange and temperature inside the shipping container, thereby 

allowing product freshness and vehicle energy consumption to be accurately estimated. This integrated 

model considers three objectives: maximization of average product freshness, minimization of total CO2 

emissions, and minimization of total distribution costs. The MO-SVRP is solved using a non-dominated 

sorting genetic algorithm (NSGA-II), which provides schedules and routes for the efficient distribution of 

perishable products using refrigerated vehicles. 

The paper is organized as follows: Section 2 presents a review of the related literature. Section 3 

provides the problem statement and model formulation. Section 4 shows the solution procedure. In Section 
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5, computational results and a discussion of the findings are presented. Finally, the conclusion of this 

research and recommendations for future research are provided in Section 6. 

2. Literature Review 

There is a rich literature related to the distribution of perishable food. The review presented in this 

paper focuses on literature that uses mathematical modeling to optimize food distribution systems. 

As previously mentioned, transit time and temperature are the two most influential factors on the 

quality of delivered perishable food products. Integrating product transit time is straightforward for 

mathematical models that are already tracking delivery times for other purposes, such as time window 

constraints. Therefore, many studies that take perishability into account consider the reduction of transit 

time directly or indirectly in their models (Ahumada & Villalobos, 2011; Albrecht & Steinrücke, 2018; Chen, 

Hsueh, & Chang, 2009; Farahani, Grunow, & Günther, 2012; Ghezavati, Hooshyar, & Tavakkoli-

Moghaddam, 2017; Hsu, Hung, & Li, 2007; Osvald & Stirn, 2008). These models assume that the rate of 

product deterioration is constant over time, such that minimizing product time in transit is linearly equivalent 

to an increase in the quality of the delivered products (Bortolini, Faccio, Ferrari, Gamberi, & Pilati, 2016). 

Hence, transit time is used as a proxy for product quality loss, either as part of cost minimization or revenue 

maximization objective.  

However, the inherent tradeoffs between delivering high-quality products and minimizing 

distribution costs have inspired researchers to consider them as separate objectives. Bortolini et al. (2016) 

minimized delivery time as a different objective to represent the freshness of the delivered foods in their 

multi-objective study. Similarly, (Amorim & Almada-Lobo, 2014; Musavi & Bozorgi-Amiri, 2017; Rahbari et 

al., 2019) used a multi-objective approach to study product freshness maximization, where freshness is 

linearly estimated. (Amorim, Günther, & Almada-Lobo, 2012; Hsu, Chen, & Wu, 2013) integrated the effect 

of temperature into the rate of quality degradation such that the rate of quality degradation increases as the 

storage temperature goes up. Since the growth rate of microorganisms that spoil food is exponential, the 

impact of temperature variations on product shelf life can be estimated using exponential functions, which 

can then be maximized (Gallo, Accorsi, Baruffaldi, & Manzini, 2017; Hsiao, Chen, & Chin, 2017; S. Wang, 

Tao, & Shi, 2018; X. Wang et al., 2016).  
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Most models in the literature seek to maximize product quality throughout the distribution process. 

By contrast, (Devapriya, Ferrell, & Geismar, 2017; Khalili-Damghani, Abtahi, & Ghasemi, 2015; Nakandala, 

Lau, & Zhang, 2016) added a set of constraints to their model to ensure that the quality of the delivered 

products meets customers' expectations. (Hsu et al., 2007) calculated the volume of spoiled products based 

on the duration and ambient temperature of each delivery stop. (Novaes et al., 2015) used commercial 

software to predict the temperature inside the shipping container, and they used time-temperature data to 

evaluate the quality of products at each delivery location via a statistical indicator in a traveling salesman 

problem. 

Temperature-controlled transportation is energy-intensive and consequently releases a large 

volume of CO2 emissions into the environment. The energy required to carry a load between two locations 

is evaluated in (Bektaş & Laporte, 2011) with respect to traveled distance, vehicle acceleration speed, the 

slope of the road, the weight of the load, the density of air, and the frontal surface of the vehicle.  

(Stellingwerf et al., 2018) adapted this methodology to evaluate CO2 emissions for both transportation and 

refrigeration, based on the assumption of constant  energy losses during unloading and through the walls 

of the vehicle. S. Wang et al. (2018) transformed CO2 emissions and the energy required for transportation 

and refrigeration into costs, which were minimized. Accorsi, Gallo, & Manzini (2017) calculated the energy 

consumption of distribution activities, which are then minimized in the objective function. Hsu et al. (2007) 

integrated the effects of energy required for refrigeration of perishable products as a part of a cost 

minimization objective. In this study, the cost of energy is a function of the constant and predetermined 

temperature inside the container, ambient temperature, volume of the container, duration of each stop, and 

frequency of opening the container. (Hsu et al., 2013) optimized the delivery of perishable products with 

different temperature requirements, accounting for refrigeration costs as a part of distribution costs. Some 

studies include CO2 emissions in a separate objective of a multi-objective model (see e.g. (Bortolini et al., 

2016; Govindan, Jafarian, Khodaverdi, & Devika, 2014; Molina, Eguia, Racero, & Guerrero, 2014; Musavi 

& Bozorgi-Amiri, 2017; F. Wang, Lai, & Shi, 2011)), allowing decision-makers to assess the impact of 

reducing CO2 emissions on other food distribution system objectives, as well as the marginal cost of 

reducing environmental effects.  
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A diverse set of solution strategies have been used to solve the perishable food distribution 

problem. (Ghezavati et al., 2017) adapted a Benders decomposition model to solve a mixed-integer linear 

program. (Chen et al., 2009; Farahani et al., 2012) adapted a heuristic algorithm to solve the distribution 

planning problem as part of their production and distribution model. Metaheuristic approaches have also 

been widely used to find good-quality solutions in a reasonable amount of time. These approaches are also 

useful for finding a Pareto optimal frontier in multi-objective problems. Musavi & Bozorgi-Amiri (2017) 

applied NSGA-II on a multi-objective hub location scheduling problem, in which total transportation costs 

and carbon emissions were minimized and food freshness was maximized. Amorim & Almada-Lobo (2014) 

applied 𝜀-constraint method to a small-scale problem and NSGA-II to a large-scale multi-objective problem 

that aimed to minimize total routing costs and maximize average freshness in a food distribution problem. 

Khalili-Damghani et al. (2015) solved a bi-objective location-routing problem for the distribution of 

perishable products using 𝜀-constraint and NSGA-II algorithm. Their result showed that NSGA-II provided 

solutions as good as 𝜀-constraint, but the metaheuristic algorithm outperformed the exact method in solving 

time, especially for larger-scale problems. Govindan et al. (2014) used a hybrid approach that integrated 

an adapted multi-objective particle swarm optimization (MOPSO) and an adapted multi-objective variable 

neighborhood search (AMOVNS) to solve a bi-objective location routing problem for perishable products 

with economic and environmental minimization objectives. 

A summary of the important features of the related literature is shown in Table 1. Most of these 

studies either focus on food product perishability or the environmental impacts of temperature-controlled 

distribution. Only two studies cover cost, freshness, and emissions, and only (Novaes et al., 2015) and 

(Novaes et al., 2015) have considered the effect of temperature on product quality and carbon emissions.  

To the best of our knowledge, the multi-objective VRP model presented in this paper is the first to 

use an integrated temperature prediction method to estimate product quality and refrigeration energy 

consumption while accounting for cost, freshness, and emissions in a perishable food distribution system. 

Specifically, this paper extends the MO-SVRP by adding a heat exchange model to accurately estimate the 

temperature inside the refrigerated container.  This allows for a more accurate prediction of product 

freshness (i.e., shelf life) upon delivery, as well as improving the estimation of total emissions generated by 
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refrigerated trucks.  This paper also utilizes a novel adaptation of the NSGA-II metaheuristics algorithm to 

solve the MO-SVRP model. 
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Table 4-1. Comparing the important features of the related literature 
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(Hsu et al., 2007) x    The predicted amount of spoiled products are added to the shipment to ensure the right amount of delivery x  x x  x    x  

(Osvald & Stirn, 2008) x    Minimize delivery time      x    x  

(Chen et al., 2009) x    Minimize product deterioration, assuming a constant rate      x    x  

(F. Wang et al., 2011)       x    x   x x   

(Ahumada & Villalobos, 2011) x    Minimize product decay      x   x   

(Farahani et al., 2012) x    Minimize time between production and delivery      x    x  

(Amorim et al., 2012) x x   Maximize fractional remaining shelf life      x x  x   

(Hsu et al., 2013)         x   x     x 

(Govindan et al., 2014)        x    x  x   x 

(Molina et al., 2014)       x    x  x  x  

(Amorim & Almada-Lobo, 2014) x    Maximize average freshness      x x  x  x 

(Khalili-Damghani et al., 2015)  x    Constrained delivery of products before they expire      x   x  x 

(Novaes et al., 2015)   x x Temperature as a proxy for product quality x    x x     x 

(Nakandala et al., 2016)   x x Minimize devalue costs, and restrict the quality of delivered products to an acceptable level      x     x 

(Bortolini et al., 2016) x    Minimize delivery time  x    x x x x   

(X. Wang et al., 2016)   x x Maximize freshness      x x   x  

(Ghezavati et al., 2017) x    Minimize quality degradation and disposal costs      x   x   

(Devapriya et al., 2017) x    Constrained delivery of products before they expire      x    x  

(Hsiao et al., 2017)   x x Minimize loss in shelf life as product-related costs      x     x 

(Gallo et al., 2017)   x x Minimizes the energy consumed to cool down the products spoiled in transportation  x x     x x   

(Musavi & Bozorgi-Amiri, 2017)  x    Maximize purchase probability  x    x x x   x 

(Albrecht & Steinrücke, 2018)  x    Maximize revenue from the grade of quality      x   x   

(S. Wang et al., 2018)   x  Product damage costs in the objective function  x x   x     x 

(Stellingwerf et al., 2018)        x x   x  x x   

(Rahbari et al., 2019) x    Maximize freshness      x x  x   

This research   x x Maximize average freshness x x x x x x x x   x 
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3. Problem Statement and Model Formulation 

Distribution problems typically seek to consolidate the flow of goods from a depot 

to their demand destinations into fewer routes. The vehicle routing problem (VRP) is often 

utilized to formulate this problem, such that an optimal (i.e., minimum distance) route is 

determined, subject to constraints such as route connectivity, vehicle capacity limits, and 

the number of available vehicles. The model described in this paper integrates accurate 

methods into a VRP to accurately measure sustainability goals in a perishable food 

distribution problem. These methods include temperature prediction, CO2 emission 

estimation, and freshness prediction methods.  

In the proposed approach, the temperature inside the refrigerated containers of 

delivery vehicles is predicted. The predicted temperature then serves as an input to food 

quality prediction and vehicle CO2 emission estimation methods, which are components of 

the objective function of the MO-SVRP, along with the distribution cost. Figure 1 presents 

the integrated structure of the MO-SVRP model. In the remainder of this section, each of 

these methods and their mathematical relations are presented, and then the MO-SVRP 

assumptions, notations, and model are illustrated. 

Temperature Prediction

CO2 Emission Estimation

Shelf life Prediction

Delivery Sequence

Predicted Temperature

Predicted Freshness

Food Distribution Model

 

Figure 4-1. Integrated Structure of MO-SVRP model 

3.1. Temperature Prediction Based on Heat Transfer 

The cooling unit in a refrigerated vehicle is constantly trying to preserve the 

temperature inside the container by blowing cold air. However, each time the vehicle 
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makes a delivery stop and opens the container door for unloading, the heat exchange 

between the hot ambient air and cold container air raises the temperature inside the 

container. The capacity of the cooling equipment and the amount of heat exchange are the 

main factors that determine the temperature inside the container. In the MO-SVRP model, 

energy balance equations are applied to predict the temperature inside the container. 

Since heat exchange when the vehicle is in transit differs from unloading, the 

container temperature in each of these stages is predicted using different methods. 

When the vehicle is moving, the cooling system is on until the temperature inside 

the container reaches the desired level (Td), when a thermostat turns the cooling 

system off. In most cases, the vehicle’s cooling system and engine are turned off 

during unloading to protect the engine and to avoid polluting the air around the 

delivery dock. Therefore, it is assumed that the cooling system is not running during 

unloading, and therefore the temperature inside the container can only increase. 

3.1.1. Temperature Prediction in Unloading 

According to the energy balance equation, the overall heat that enters the 

container is equal to the accumulated heat inside the container (Equations 1-2; Holdsworth 

et al., 2008). The heat entering and accumulating inside the container at customer location 

j are denoted by AEj and AHj, respectively. 

𝐴𝐸𝑗 =  𝑚𝑎. 𝑟𝑜 . 𝑠𝑎 . (𝑇𝑗 − 𝑇0). 𝑡       (1) 

𝑚𝑎: air mass (kg) 

𝑟𝑎: air transfer ratio 

𝑠𝑎: specific heat of the air (J kg-1 K-1) 

𝑇𝑗: the ambient temperature at location j (K) 

𝑇0: current temperature inside the container (K) 

𝑡: Portion of unloading time (𝑡 ≤ 𝑢𝑗) 

𝐴𝐻𝑗 = (𝑚𝑗𝑠𝑐 + 𝑚𝑎𝑠𝑎)
𝑑𝑇

𝑑𝑡
       (2) 

𝑚𝑗: cargo mass at location j (kg) 

𝑚𝑎: air mass (kg) 

𝑠𝑐: specific heat of cargo (J kg-1 K-1) 

𝑠𝑎: specific heat of the air (J kg-1 K-1) 
𝑑𝑇

𝑑𝑡
: rate of change in temperature (K) 
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Following the energy balance equation, the temperature at customer j, given an 

unloading time t, can be estimated by theorem 1, Equation 3. 

𝑇𝑗 = 𝑇𝑎 − (𝑇𝑎 − 𝑇0). 𝑒
− 

𝑚𝑎.𝑟𝑜.𝑠𝑎

(𝑚𝑗𝑠𝑐+𝑚𝑎𝑠𝑎)
.𝑡

      (3) 

𝑚𝑗: cargo mass at location j (kg) 

𝑚𝑎: air mass (kg) 

𝑠𝑐: specific heat of cargo (J kg-1 K-1) 

𝑠𝑎: specific heat of the air (J kg-1 K-1) 
𝑑𝑇

𝑑𝑡
: rate of change in temperature (K) 

3.1.2. Temperature Prediction in Transportation 

When the engine is running, the cooling equipment begins to remove the heat 

absorbed during the unloading process until the container temperature reaches Td. The 

rate of heat removal is denoted by Qc: 

𝑄𝐶 = (𝑚𝑖𝑗𝑠𝑐 + 𝑚𝑎𝑠𝑎)
𝑑𝑇

𝑑𝑡
       (4) 

𝑚𝑖𝑗: cargo mass between location i and j (kg) 

𝑚𝑎: air mass (kg) 

𝑠𝑐: specific heat of cargo (J kg-1 K-1) 

𝑠𝑎: specific heat of the air (J kg-1 K-1) 
𝑑𝑇

𝑑𝑡
: rate of change in temperature (K H-1) 

Applying the energy balance enables the prediction of container temperature 

during transportation between locations i and j (Tij): 

𝑇𝑖𝑗 =
𝑄𝑐

(𝑚𝑖𝑗𝑠𝑐+𝑚𝑎𝑠𝑎)
. 𝑡 + 𝑇0        (5) 

𝑄𝑐: the capacity of cooling equipment (J H-1) 

𝑚𝑖𝑗: cargo mass between location i and j (kg) 

𝑚𝑎: air mass (kg) 

𝑠𝑐: specific heat of cargo (J kg-1 K-1) 

𝑠𝑎: specific heat of the air (J kg-1 K-1) 

𝑡: time duration (h) 

𝑇0: current temperature inside the container (K) 

Equation 5 shows that the cooling equipment reduces the temperature at a rate of 

𝑄𝑐

(𝑚𝑖𝑗𝑠𝑐+𝑚𝑎𝑠𝑎)
. However, since the cooling equipment stops blowing cold air when the 

temperature reaches Td, the actual temperature is as follows: 
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𝑇𝑖𝑗
∗ = 𝑀𝑎𝑥{𝑇𝑖𝑗  , 𝑇𝑑}        (6) 

 
3.2. CO2 Emissions 

The main source of CO2 emissions in a perishable food distribution system is the 

fuel that is burned to provide energy for transport and refrigeration. The energy required 

for transportation, which is not specific to perishable products, depends primarily on the 

distance traveled, the weight of the vehicle and its cargo, the vehicle speed, and 

road/vehicle specifications. Bektaş & Laporte (2011) developed a widely used method that 

integrates all of these factors to predict road transportation energy consumption: 

𝑝𝑖𝑗 ≈  𝛼𝑖𝑗(𝑤 + 𝑓𝑖 𝑗)𝑑𝑖𝑗 +  𝛽𝑣𝑖𝑗
2 𝑑𝑖𝑗        (7) 

𝑤: vehicle weight 

𝑓𝑖𝑗: weight of the load between node i to j 

𝑣𝑖𝑗: vehicle velocity 

𝑑𝑖𝑗: distance between nodes i and j 

𝛼𝑖𝑗: arc constant (i.e., road specification) 

𝛽: vehicle constant 

(Bektaş & Laporte, 2011) calculated 𝛼𝑖𝑗 and 𝛽 as follows: 

 
𝛼𝑖𝑗 = 𝑎 + 𝑔𝑠𝑖𝑛𝜃𝑖𝑗 + 𝑔𝐶𝑟𝑐𝑜𝑠𝜃𝑖𝑗        (8) 

𝑎: vehicle acceleration 

𝑔: gravitational constant 
𝐶𝑟: rolling resistance 

𝜃𝑖𝑗: slope of the road between locations i and j 

 
𝛽 = 0.5𝐶𝑑𝐴𝜌         (9) 

𝐶𝑑: drag coefficient 

𝐴: vehicle frontal surface area 
𝜌: air density 

Stellingwerf et al. (2018) added a method to calculate the energy consumed by 

refrigeration in temperature-controlled distribution. They illustrated that heat exchange 

between the air in the container and the ambient air during distribution is equal to the 

energy that the cooling system requires to remove the heat to reduce the temperature 

inside the container. The MO-SVRP model presented in this paper extends their work by 

considering the air transfer ratio, air mass, unloading time, ambient air temperature, and 

predicted temperature inside the container (Section 3.1) to accurately estimate the heat 
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exchange during unloading at location j using Equation (1). It is assumed that the heat 

exchange during transportation is negligible since refrigerated containers are well-isolated. 

Considering both transportation and refrigeration energy consumption, the total energy 

consumption for a refrigerated vehicle v that is assigned to the visit a set of locations Lv is: 

𝑇𝐸𝑣 = ∑ 𝑝𝑖𝑗𝑥𝑖𝑗𝑖,𝑗 ∈ 𝐿𝑣
+ ∑ 𝐴𝐸𝑗𝑗 ∈ 𝐿𝑣

       (10) 

𝑥𝑖𝑗: equals 1 if location j is visited immediately after location i; 0 otherwise 

 
Using the approach of Stellingwerf et al. (2018), a refrigerated vehicle’s total 

energy consumption can be converted to CO2 emissions as follows: 

𝐸𝑣 =
𝑇𝐸𝑣

𝜇𝐹
. 𝑔𝑙𝑏. 𝑒         (11) 

𝐸𝑣: total CO2 emissions of vehicle v (lb) 

𝑇𝐸𝑣: total energy consumption of vehicle v (kWh) 

𝜇: the efficiency of converting the chemical energy of the fuel to vehicle energy 

consumption (dimensionless) 

𝐹: energy content of a gallon of fuel (kWh g-1) 

𝑔𝑙𝑏: conversion factor for fuel: gallons to pounds (lb g-1) 

𝑒: conversion factor: fuel to emissions (dimensionless) 

3.3. Food Product Freshness Based on Shelf Life Prediction 

Increased temperature can increase the growth rate of specific spoilage organisms 

(SSOs) in perishable food products (Mercier et al., 2017). Therefore, most shelf life 

prediction models require the temperature of the product over time, as well as product 

characteristics, to predict the remaining shelf life. Using the temperature prediction method 

explained in Section 3.1., an accurate estimate of product temperature from the time of 

vehicle departure from the depot until delivery is possible.  

While most studies assume that the remaining shelf life of a product declines at a 

constant rate over time, the shelf life prediction model provided by (Bruckner et al., 2013) 

predicts a nonlinear increase in the number of SSOs in non-isothermal conditions. A 

product reaches the end of its shelf life when the number of SSOs reaches its maximum 

acceptable level. The product is not safe for consumption beyond this point and is 
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considered spoiled. The remaining shelf life of food products can be estimated at any point 

in time, given the initial count of SSOs and characteristics of the food at presumed future 

storage temperature. Figure 2 shows the number of SSOs over time for a unit of product 

volume for constant temperature. 

Shelf Life

Maximum Acceptable Level

Time

SSOs Count

Remaining Shelf LifeDelivery Time

 

Figure 4-2. The growth rate of SSOs over time at a constant temperature. 

The Gompertz model (Gibson, Bratchell, & Roberts, 1987) predicts the number of 

SSOs over time: 

𝑁(𝑡) = 𝐴 + 𝐶 ∗ 𝑒−𝑒−𝐵(𝑡−𝑀)
       (12) 

N(t): SSO count (log10 cfu g-1) at time t, 
A: initial SSO count of the food product at the time it is loaded into a refrigerated 
vehicle (log10 cfu g-1) 
C: the difference between the maximum SSO population level (a constant defined for 
each type of food product) and the initial SSO count A (log10 cfu/g) 
M: time at which the maximum growth rate is obtained (h) 
B: relative growth rate at time M (h-1) 
 

The relative growth rate (B) is a function of temperature and is predicted by the 

Arrhenius equation (Arrhenius, 1889): 

𝑙𝑛(𝐵) = ln(𝐹) −  
𝐸𝑎

𝑅
. (

1

𝑇
)        (13) 



 

74 

 

F: pre-exponential factor describing the number of times two molecules collide 
Ea: activation energy for growth of SSOs (J/mol) 
R: gas constant (8.314 J/mol K) 
T: absolute temperature (K) 

The freshness of the delivered products at location j (frj) can be measured in Eq. 

14 by the percentage of the remaining shelf life over the maximum predicted shelf life of a 

product before distribution to location j with estimated time and temperature condition. The 

remaining shelf life is the time that the number of SSOs will take to climb from their current 

point to the maximum acceptable level. 

𝑓𝑟𝑗 =
𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑠ℎ𝑒𝑙𝑓 𝑙𝑖𝑓𝑒𝑗

𝑠ℎ𝑒𝑙𝑓 𝑙𝑖𝑓𝑒𝑗
× 100 = (1 −

𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒𝑗

𝑠ℎ𝑒𝑙𝑓 𝑙𝑖𝑓𝑒𝑗
) × 100    (14) 

3.4. Mathematical Model 

The freshness prediction and CO2 emission modules are integrated with a VRP 

model to create the MO-SVRP model. The perishable food distribution problem is defined 

as a directed graph in which a fleet of homogenous vehicles (V), each with a capacity of 

Q, deliver perishable food from a depot (node 0) to a set of customers (C) using a set of 

transportation paths (A) which connect the nodes. The order that fulfills the demand of 

customer i (di) must be delivered in the customer’s required time window ([ai, bi]). For ease 

of reference, all notations are given in Table 2. 

Table 4-2. Notations used in the MO-SVRP model. 

Sets: 
C = {1, …, n}: set of customers 
V = {1, …, v}: set of vehicles 
N = {0} ∪ C: set of depot and customers 
A = {(i, j): i, j ∈ N, and i ≠ j}: set of paths from node i to node j 

Parameters: 
cij: cost of traveling from node i to node j 
tij: travel time from node i to node j 
F: fixed dispatching cost 
Q: vehicle capacity 
di: customer I demand 
[ai, bi]: required time window for delivery to customer i 
ut: average unloading time for one unit of product 

ui: unloading time at customer i, where 𝑢𝑖= 
𝑑𝑖

𝑢𝑡
 and ui ≤ bi - ai 
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Decision variables: 

𝑦
𝑖𝑘

: time that vehicle k arrives at node i 

𝑥𝑖𝑗𝑘: equals 1 if vehicle k travels from node i to node j, 0 otherwise 

𝑙𝑖𝑗𝑘: units of product carried by vehicle k between nodes i and j 

 

The MO-SVRP model is formulated as multi-objective mixed-integer programming, 

and the mathematical formulation is as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍1 =  ∑ ∑ ∑ 𝑐𝑖𝑗𝑗𝜖𝑁𝑖𝜖𝑁𝑘𝜖𝑉 𝑥𝑖𝑗𝑘 + ∑ ∑ 𝐹𝑥0𝑗𝑘𝑘∈𝑉𝑗∈𝐶     (15) 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍2 = ∑ 𝑓𝑟𝑖𝑖𝜖𝐶
𝑑𝑖

∑ 𝑑𝑗𝑗∈𝐶
       (16) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍3 = ∑ 𝐸𝑘𝑘𝜖𝑉         (17) 
 
Subject to 
 
∑ ∑ 𝑥𝑖𝑗𝑘 = 1𝑗𝜖𝑁𝑘𝜖𝑉    ∀ i ϵ C, i ≠ j    (18) 

∑ 𝑑𝑖 ∑ 𝑥𝑖𝑗𝑘𝑗𝜖𝑁𝑖𝜖𝐶 ≤ 𝑄   ∀ k ϵ V, i ≠ j    (19) 

∑ 𝑥0𝑗𝑘 ≤ 1𝑗∈𝐶     ∀ k ϵ V     (20) 

∑ 𝑥𝑖ℎ𝑘𝑖𝜖𝑁 −  ∑ 𝑥ℎ𝑗𝑘𝑗𝜖𝑁 = 0  ∀ h ϵ N, k ϵ V    (21) 

∑ ∑ 𝑙𝑗𝑖𝑘𝑘∈𝑉𝑗∈𝑁 − ∑ ∑ 𝑙𝑖𝑗𝑘𝑘∈𝑉𝑗∈𝑁 =  𝑑𝑖 ∀ i ϵ C     (22) 

𝑦𝑖𝑘 +  𝑢𝑖 + 𝑡𝑖𝑗 − 𝑀(1 − 𝑥𝑖𝑗𝑘) ≤  𝑦𝑗𝑘 ∀ i ϵ C, j ϵ N, k ϵ V   (23) 

𝑡0𝑗 ≤ 𝑦𝑗𝑘 + 𝑀(1 − 𝑥0𝑗𝑘)    ∀ j ϵ C, k ϵ V    (24) 

𝑎𝑖 ≤ 𝑦𝑖𝑘 ≤ 𝑏𝑖     ∀ i ϵ C     (25) 

𝑙𝑖𝑗𝑘 ≤ (𝑄 − 𝑑𝑖)𝑥𝑖𝑗𝑘   ∀ i ϵ N, j ϵ N, k ϵ V    (26) 

𝑑𝑗𝑥𝑖𝑗𝑘 ≤ 𝑙𝑖𝑗𝑘     ∀ i ϵ N, j ϵ C, k ϵ V    (27) 

𝑦𝑖𝑘 ≥ 0      ∀ i ϵ C, k ϵ V    (28) 

𝑙𝑖𝑗𝑘 ≥ 0      ∀ i ϵ N, j ϵ C, k ϵ V   (29) 

𝑥𝑖𝑗𝑘  ϵ {0,1}     ∀ i ϵ C, k ϵ V    (30) 

 

The first objective (Eq. 15) minimizes transportation costs, including the cost of 

traveling between customer locations as the first term and dispatching costs associated 

with the fixed costs of using a vehicle in the distribution plan as the second term. The 

second objective (Eq. 16) maximizes the total freshness of the delivered products at each 

customer location. The third objective (Eq. 17) minimizes total CO2 emissions generated 

by refrigerated vehicles during transit and unloading. Constraint (18) ensures that each 

customer location can be visited only by one vehicle. Constraint (19) prevents the load 

carried between two locations from being greater than the capacity of the vehicles. A 
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vehicle can only leave the depot once (Eq. 20), and if a vehicle arrives at a location, it must 

also leave that location (Eq. 21). The amount of cargo unloaded at a customer location 

must equal that customer’s demand (Eq. 22). Constraint 23 ensures that a customer cannot 

be visited prior to the time that the previous customer is visited plus the unloading travel 

times between these two customers. Similarly, constraint 24 prevents the first customer 

from being visited earlier than the time required to travel from the depot to that customer’s 

location. Deliveries must occur within customers' required time windows (Eq. 25). A 

vehicle’s load after leaving a customer location must be less than the capacity of the vehicle 

minus the demand of the visited customer (Eq. 26), and constraint 27 ensures that the load 

carried between two customer locations is at least equal to the demand of the next 

customer. Constraints 28 and 29 prevent the arrival time and the load carried by a vehicle 

from taking negative values, and constraint 30 defines a vehicle’s path as a binary variable. 

4. Solution Procedure 

The MO-SVRP model presented in the previous section is difficult to solve. Even 

a VRP problem with a single objective and fewer parameters and variables is categorized 

as an NP-hard problem (Savelsbergh, 1985; Xiao et al., 2012). Consequently, a meta-

heuristic approach was applied to solve the problem in a reasonable time. NSGA-II is an 

efficient and widely applied meta-heuristic approach introduced by Deb et al. (2002) as a 

search technique for finding optimal solutions to multi-objective problems. This algorithm 

works based on iterative improvements in the pool of solutions’ quality. On each iteration, 

genetic algorithm, operators create new offsprings from the existing solutions pool of 

solutions with size p, and they create a new pool of solutions. The solutions in this new 

pool are sorted based on the non-dominated sorting algorithm and crowding distance 

index, and then, the pool of top solutions with size p is selected for the next iteration. This 
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approach has been applied to solve the MO-SVRP and the details will be described in this 

section. 

4.1. Chromosome Encoding 

In the NSGA-II algorithm, a “chromosome” represents a solution that assigns a list 

of customers to each vehicle in a particular delivery sequence. Each chromosome is an 

array consisting of n+v-1 elements, in which n represents the number of customers and v 

represents the number of vehicles. An example is given in Figure 3. There are v-1 special 

characters in the array (“*” in Figure 3), which divide the array into v sections (i.e., one 

section for each vehicle). The n remaining elements of the array are integer values from 1 

to n, each of which is assigned to a customer. Thus the sections between two special 

characters are lists of customers assigned to each vehicle, and the order of these numbers 

represents the delivery sequence. 

5 1 3 * 8 4 6 * 2 7

Vehicle No. 1 Vehicle No. 2 Vehicle No. 3

Depot 5 1 3 Depot Depot 8 4 6 Depot Depot 2 7 Depot  

Figure 4-3. NSGA-II chromosome encoded as a MO-SVRP solution 

Initially, n customers and v-1 special characters are randomly assigned to p (size 

of the pool of solutions) chromosomes. Then, crossover and mutation operators are used 

to generate new solutions as the algorithm iterates. 

4.2. Crossover Operator 

The single point crossover operator is used to generate Pc (size of the crossovered 

pool of solution) chromosomes from the previous pool of solutions. Figure 4 provides an 

example, in which the first three elements the parent chromosomes are swapped to create 

two new offsprings. 
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5 1 3 * 8 4 6 * 2 7

2 3 * 6 5 8 1 7 * 4

* 8 4 6 * 2 72 3 *

5 1 3 6 5 8 1 7 * 4

 

Figure 4-4. Crossover operation 

The crossover procedure is followed by a repair procedure (Musavi & Bozorgi-

Amiri, 2017), which is applied to fix chromosomes that have duplicated or missing 

customers or special characters. An example is shown in Figure 5. 

* 8 4 6 * 2 72 3 *

5 1 3 6 5 8 1 7 * 4

* 8 4 6 * 5 72 3 1

5 1 3 6 * 8 2 7 * 4

 

Figure 4-5. Repair procedure for crossover operation 

4.3. Mutation Operator 

Pm (size of the mutated pool of solutions) is randomly selected from the previous 

pool of solutions. The locations of two randomly selected elements from each chromosome 

are then swapped. An example is shown in Figure 6. 

5 1 3 * 8 4 6 * 2 7 5 1 4 * 8 3 6 * 2 7

 

Figure 4-6. Mutation operator 

4.4. Non-Dominated Sorting 

In the pool of solutions, the solutions are categorized based on the number of 

solutions that are dominated by. Front i (Fi, i ϵ K, K is the number of categories) includes 

the solutions with rank i dominated by i-1 other solutions. Solutions that cannot be 
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dominated by any other solutions from their pool are called Pareto frontier. Figure 7 shows 

how the pool of solutions in domains D1 and D2 is categorized in three fronts. 

Min D1

Min D2

F1

(Pareto frontier)

F2

F3

 

Figure 4-7. Rank of chromosomes in one iteration (F1 is Pareto frontier) 

4.5. Crowding Distance 

Crowding distance is an estimate of the density of solutions around a particular 

solution in a front. The value of crowding distance for a particular solution is the summation 

of distances of the solutions with the neighboring solutions of the same front. Equations 

31-32 show the mathematical equations by which crowding distance is calculated. 

𝑑𝑖
𝑗

=  |𝑓𝑗
𝑖+1 − 𝑓𝑗

𝑖−1|        (31) 

𝑑𝑖
𝑗
: distance of solution i with its neighbors in domain j 

𝑓𝑗
𝑖: value of function f for solution i in domain j 

 

𝑑𝑖 = ∑ 𝑑𝑖
𝑗

𝑗∈𝐷          (32) 

𝑑𝑖: crowding distance of solution i 
D: set of the problem domains 
 

In each iteration, binary tournament selection is applied to sort the solutions first 

based on their ranks, and then, based on their crowding distance. 
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4.6. NSGA-II Main Loop 

The NSGA-II main loop consists of offspring generation and ranking and sorting 

modules. Algorithm 1 presents a pseudocode that illustrates an iteration of the NSGA-II 

algorithm. At the end of each iteration, solutions with rank 1 are stored as Pareto-frontier. 

Algorithm 1. NSGA-II main loop pseudocode 

p = population of randomly generated chromosomes with size pops 
for i = 1 to Max number of iterations do 
 for j =1 to (pc ÷ 2) do 
  c1 = 1st randomly chosen parent chromosome 
  c2 = 2nd randomly selected parent chromosome 
  popc = append crossover (c1, c2) 
 for k = 1 to pm do 
  m = a randomly chosen parent chromosome 
  popm = append mutate (m) 
 pop = merge (p, popc, popm) 
 function (non-dominated sorting (input: pop)) 
  return: Rank of chromosomes 
 function (crowding distance (input: pop, rank)) 
  return: crowding distance value for each chromosome 
 function (sort population (input: pop, rank, crowding distance) 
  return: sorted pop based on 1) rank, 2) crowding distance 
 pop = store only the top pop and truncate the others 
 function (non-dominated sorting (input: pop)) 
  return: Rank of chromosomes 
 function (crowding distance (input: pop, rank)) 
  return: crowding distance value for each chromosome 
 function (sort population (input: pop, rank, crowding distance) 
  return: sorted pop based on 1) rank, 2) crowding distance 
 Pareto_frontier = chromosomes with rank 1 
 Go to the next iteration if the stopping criteria are not met  

 

5. Computational Results and Discussion 

5.1. Performance of the solution method 

First, the performance of the NGSA-II solution algorithm in solving the MO-SVRP 

was tested on Solomon's datasets which are widely applied to measure the quality 

solutions for a VRP (Solomon, 1983). The geographical distribution of the visiting location 

has a substantial impact on the performance of the VRP solution algorithm. So, these 
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instances were provided in three categories: R, C, and RC, representing randomly 

generated, clustered, and mixed generated geographical data, respectively. Within these 

three categories, the MO-SVRP was solved for small instances (25 customers) and large 

instances (100 customers). However, the solutions should be compared with a competitor 

algorithm to verify the efficiency and accuracy of them. 

Weighted simulated annealing (w-SA) was used to solve the single objective 

weighted problem. According to the L1 metric method, the inverse of the optimum solution 

for each objective can be used as the weight of the objectives in a single weighted objective 

function (Rahbari et al., 2019).  

The NSGA-II and w-SA algorithms were coded in Python and run on a computer 

with 3.10 GHz Intel Core i9 CPU, 64 GB of RAM, and Windows 10 operating system. The 

parameter values that were used are given in Table 3.  NSGA-II and w-SA algorithms stop 

when respectively solutions in Pareto front or optimum solution after an iteration do not 

have improved after a certain number of iterations based on the size of the problem. 

Table 4-3. Test problem and solution algorithm parameters 

w-SA parameters value 
NSGA-II 

parameters 
value test problem parameters value 

Initial temperature 20 Population size 20 Vehicle speed (km h-1) 15 
Damping rate 0.99 Crossover rate 0.7 Product shelf life (h) 2880 
  Mutation rate 0.4 Fixed cost per vehicle ($ km-1) 1000 
    Transportation cost ($) 1.5 
    Service time (minute) 10* 90** 

    Vehicle capacity (kg) 200 

* for R and RC test problems ** for C test problems 

In Table 4, the column “w-SA” provides the values of each of the three objective 

functions for the best solution to each test problem instance. The values of the objective 

functions in the “NSGA-II” column correspond to the best solution that was found among 

the Pareto front solutions for each objective. The gap shows the difference between the 

objective values divided by the best value in these algorithms. 
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The results in Table 4 show that, on average, NSGA-II provides solutions that are 

9.2%, 4.2%, and 8.0% better than w-SA in terms of cost, freshness, and emission 

objectives, respectively. The advantage of NSGA-II over w-SA is more pronounced for the 

cost objective when the size of the problem increases, or when the customers are more 

geographically clustered (i.e., the gap is largest for the C instances).  

Table 4-4. Summary of the results of comparing the performance of w-SA and NSGA-II 

Test problem 

w-SA NSGA-II Gap 

Costs 

($) 

Freshness 

(%) 

CO2 

(lbs×103) 

Costs 

($) 

Freshness 

(%) 

CO2 

(lbs×103) 

Costs 

($) 
Freshness 

(%) 
CO2 

(lbs×103) 

R101 (25) 5,233 89% 4,164 4,886 95% 3,848 6.6% 4.8% 17.5% 
R101 (100) 13,450 90% 48,042 12,356 94% 45,026 8.1% 2.3% 6.3% 
C101 (25) 3,065 90% 2,452 2,761 96% 2,305 9.9% 6.7% 6.0% 
C101 (100) 10,655 92% 39,787 9,452 94% 38,564 11.3% 2.2% 3.1% 
RC101 (25) 3,318 90% 3,075 3,027 92% 2,684 8.8% 4.6% 12.7% 
RC101 (100) 11,569 91% 47,666 10,335 93% 42,597 10.7% 4.5% 2.4% 

 

5.2. Optimality Analysis 

Balancing cost, freshness, and emission objectives are necessary to achieve 

sustainability in perishable food distribution networks.   

The results in Table 5 demonstrate the conflicting nature of the three objectives: if 

the MO-SVRP problem is solved for a single objective, the values of the other two objective 

functions deviate significantly from optimality. Because the traveled distance is the primary 

driver of transportation cost and emissions, it is unsurprising that the emissions objective 

in the cost-optimal solution has only a 4% gap with the emission-optimal solution, and cost 

objective in the emission-optimal solution is only 14% higher than in the cost-optimal 

solution. However, keeping perishable products fresh requires faster delivery and fewer 

stops, which means that capacity of trucks is not necessarily fully filled. This increases the 

traveled distance, and consequently, transportation cost and energy consumption, such 

that a solution that preserves 95% of the product’s freshness results in 95% and 94% 

optimality gaps for cost and emissions objectives, respectively. In contrast, when a solution 

is a cost- or emissions-optimal, freshness is 42% and 41% less than optimal, respectively.  
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Table 4-5. Impact of choosing a non-dominated solution on the optimality of the 
transportation costs, freshness, and emission for R101(25) instance 

Optimality No. of Vehicles Costs ($) Freshness (%) CO2 (lbs×103) 

Cost 7 4886 (*) 55% (42% gap) 3997 (4% gap) 
Freshness 8 112123 (95% gap) 95% (*) 66413 (94% gap) 
Emission 7 5723 (14% gap) 56% (41% gap) 3848 (*) 
Final solution 7 10213 (52% gap) 75% (21% gap) 8892 (57% gap) 

* optimum 

Most likely, there is more than one non-dominated solution in the Pareto frontier. 

So, a final solution that properly reflects the impact of all the objectives is chosen from the 

non-dominated set of solutions in the Pareto frontier. To choose a final solution, the 

approach developed by Bortolini et al. (2016) was adapted.  

𝑀𝑖𝑛 𝜃𝑙          

 (33) 

𝜃𝑙 =
𝛼𝑙

𝛼𝑙
∗ .

𝛽1
∗

𝛽1
.

𝛾𝑙

𝛾𝑙
∗         

 (34) 

𝜃𝑙: represents a single calculated value for a solution l in Pareto frontier 

𝛼𝑙: value of the first objective function for solution l 

𝛼𝑙
∗: optimum value of the first objective function for solution l 

𝛽𝑙: value of the second objective function for solution l 

𝛽𝑙
∗: optimum value of the second objective function for solution l 

𝛾𝑙: value of the third objective function for solution l 

𝛾𝑙
∗: optimum value of the third objective function for solution l 

As shown in Table 5, the optimality gaps for each objective in the final solution are 

52%, 57%, and 21% for cost, emissions, freshness, respectively. When the objective of 

the problem only is the maximization of the freshness, it means that the refrigerated 

vehicles potentially carry loads far less than their capacity, and the order of the customers 

are not combined into a single vehicle as much as possible to ensure fast delivery and the 

least stops. In this scenario, the traveled distances of the vehicles are very high, and 

consequently, distribution costs and CO2 emission are at their highest level. Combining the 

orders in one single vehicle and utilizing more capacity of the vehicles provides a 

substantial improvement in the cost and emission objectives, and the gaps of these 

objectives associated with the final solution reflect this potential improvement opportunity. 



 

84 

 

5.3. Sensitivity to Shelf Life 

For the results presented in the previous sections, it was assumed that the 

products have similar characteristics and the same shelf life (i.e., 2,880 hours), but in 

reality, perishable products’ shelf life can range from 168 hours for highly perishable 

products, such as tomatoes, to 1,440 hours for moderately perishable products, such as 

oranges, and 2,880 hours for products with low perishabilities, such as apples. Therefore, 

the sensitivity of the MO-SVRP model to long, medium and short shelf life scenarios was 

analyzed. The final solutions for three objectives in these shelf life scenarios are shown in 

Table 6. The results illustrate that distributing more perishable items are more costly and 

energy-consuming, and the freshness of the delivered products decreases for the lower 

shelf life products. The results provide an insight into food distributors to invest more money 

and time on improving isolation of container and efficiency of the diesel engine to reduce 

energy consumption and preserve the quality of products when they are distributing 

products with lower shelf life. 

Table 4-6. Final solutions for transportation costs, freshness, and CO2 emissions in case 
of different shelf life for R101(25) instance 

Shelf life (h) Costs ($) Freshness (%) CO2 (lbs×103) 

168 13522 62% 12916 
1440 11390 71% 10662 
2880 10213 75% 8892 
 

5.4. Sensitivity to Temperature Setting 

Although there are recommended temperature ranges for perishable product 

storage, determining the specific temperature setting for a refrigerated shipping container 

can be challenging. Lower temperature settings preserve product quality, but this requires 

more energy. Therefore, the sensitivity of the MO-SVRP model to various temperature 



 

85 

 

settings was assessed by solving the R101(25) instance at temperature settings between 

263-269 degrees Kelvin (14o-25o F) in two-degree increments.  

Table 7 shows that the final solutions for the three sustainability objectives for 

different temperature settings inside the container. Increasing the temperature setting from 

263 oK to 269 oK causes 15% reductions in product freshness, from 75% to 60%. Because 

the MO-SVRP recommends faster delivery to compensate for the loss in quality that results 

from an increase in temperature, transportation distance, and cost increase at higher 

temperature settings. The effect of increased temperature setting on emissions is complex.  

On one hand, transportation consumes more energy due to the increase in traveled 

distance. On the other hand, energy consumption for refrigeration decreases. This leads 

to a decrease in overall energy consumption in the distribution network. Storage 

temperature range recommended by regulation and authorities does not clearly help to 

choose the temperature settings inside the container, and analyzing the tradeoff between 

the energy consumption and freshness of the products under different ambient temperature 

conditions is necessary. 

Table 4-7. Final solutions for transportation costs, freshness, and CO2 emissions in case 
of different temperature settings for R101(25) instance 

Temperature (oK) Costs ($) Freshness (%) CO2 (lbs×103) 

263 10213 75% 8892 

265 10526 72% 8556 

267 11013 68% 8436 

269 11596 60% 8301 

 
6. Conclusions and Future Research 

In this paper, VRP is extended to consider the perishability of the food products 

and refrigerated vehicles’ CO2 emissions in a multi-objective framework. The model 

combines sustainability concerns of perishable food distribution problem in a mathematical 

model with transportation costs and CO2 emission minimization and freshness 
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maximization objectives. Applying the temperature estimation model provided an accurate 

prediction for the refrigeration related emission and quality loss during the distribution.  

This research aimed to investigate the relation of the sustainability objectives and 

the behavior of these objectives under distribution scenarios. Therefore, the presented MO-

SVRP model was solved by an adapted NSGA-II algorithm, and the performance of the 

solution algorithm is tested and verified against the w-SA algorithm over the Solomon 

(1983) data sets. The results of the analysis revealed that the sustainability goals are 

conflicting, and optimality in one of the objectives can worsen the other two objectives; i.e. 

the freshness objective recommends using the available vehicles as much as possible to 

minimize delivery time and the effect of temperature abuses at the delivery locations. 

Therefore, the optimality gap in distribution costs and CO2 emission objectives are high 

when only the freshness objective is optimized. Furthermore, the MO-SVRP model 

recommends faster delivery with lesser unloading stops for the vehicles for high perishable 

products comparing to the low perishable foods which means the energy consumption and 

distribution costs associated with the increase in the total traveled distance goes higher. 

The sensitivity analysis over the temperature settings inside the container shows even 

small increments in the temperature settings can have a huge impact on CO2 emissions 

and freshness objectives. This sensitivity analysis can be a helpful tool to determine the 

best temperature setting to achieve sustainability goals. The outcomes of this research 

highlight the necessity of integration and accurate estimation of the influential factors in the 

sustainability of the perishable food distribution network which lead to finding cost-effective 

solutions, reduce food waste, and decrease the emission caused by refrigerated vehicles. 

Future studies can focus on expanding this model for multi-products in which their 

desired temperature range and perishability properties are different. In addition, The 
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framework of this research to incorporate projected temperature variation and estimation 

of product freshness in other supply chain disciplines. 
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Appendix 

Theorem 1. shows how to use the energy balance equation to predict the 

temperature when the container door is open to unload the products. 

𝑚𝑎. 𝑟𝑜 . 𝑠𝑎 . ∆𝑇𝑗 . 𝑡 = (𝑚𝑐𝑗
𝑠𝑐 + 𝑚𝑎𝑠𝑎)

𝑑𝑇

𝑑𝑡
 

∫
𝑚𝑎.𝑟𝑜.𝑠𝑎

(𝑚𝑐𝑗𝑠𝑐+𝑚𝑎𝑠𝑎)
𝑑𝑡

𝑡

0
= ∫

𝑑𝑇

(𝑇𝑜𝑢𝑡−𝑇)

𝑇𝑗

𝑇0
  

𝑚𝑎.𝑟𝑜.𝑠𝑎

(𝑚𝑐𝑗𝑠𝑐+𝑚𝑎𝑠𝑎)
(𝑡 − 0) = −(ln(𝑇𝑜𝑢𝑡 − 𝑇𝑗) − 𝑙𝑛(𝑇𝑜𝑢𝑡 − 𝑇0)) ) 

−
𝑚𝑎.𝑟𝑜.𝑠𝑎
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Theorem 2. shows implementing the energy balance equation to predict the 

temperature when the container door is closed during transportation. 
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Chapter 5 Conclusion 

This dissertation discusses a new integrated approach to modeling food supply 

chain activities with a focus on sustainability. The overarching contribution of this research 

is the integration of accurate temperature and shelf-life prediction models with perishable 

food distribution models to assist stakeholders in making decisions that support the 

economic, environmental, and social sustainability of food supply chains.  These integrated 

models were designed to provide improved inventory management policies for food banks, 

reduce transportation and quality costs associated with refrigerated vehicle routing, and 

optimize transportation cost, product freshness, and CO2 emissions for perishable food 

distribution systems.  Developing and solving such models are very challenging because 

of the tradeoffs involved in achieving multiple conflicting sustainability goals. 

The answers to the research questions posed in this dissertation are summarized 

below: 

1) How can we accurately measure the shelf life of perishable food products in 
the food supply chain operations? 

 

The Gompertz and Arrhenius models can be applied to perishable food time-
temperature data that has been collected from food supply chain operations to 
provide an accurate estimate of perishable food product shelf life. 
 

2) Which inventory management policy is suitable for managing the perishable 
food inventory in food banks, and how should it be implemented? 

 

The least shelf life first-out inventory management policy is suitable for 
managing perishable food inventory in food banks, and shelf life prediction 
models based on time-temperature data are cost-effective and reliable tools 
for implementing this policy. 

 
3) How can we predict the temperature fluctuations inside the container of a 

refrigerated vehicle in the food distribution process? 
 

Applying energy balance equations in transportation and unloading phases of 
food distribution provides an accurate estimation of the temperature inside the 
container of the refrigerated vehicles. 
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4) How can a food shelf life prediction model be integrated with a perishable food 

distribution model? 
 

The food shelf life prediction model yields estimates of lost revenue and 
disposal costs associated with quality loss, which can be added to the other 
distribution costs in a single objective function of a perishable food distribution 
model. Alternatively, the predicted shelf life can serve as a proxy for food 
product freshness, which can then be integrated as a separate objective in a 
multi-objective perishable food distribution model. 
 

5) How can we integrate multiple sustainability elements, including the freshness 
of food, distribution costs, and CO2 emissions, in a perishable food distribution 
model? 

 

Multiple sustainability elements can be integrated as separate objectives of a 
multi-objective perishable food distribution model. 
 

Chapter 2 describes a reliable shelf life prediction model based on time-

temperature data, which can serve as a cost-effective tool to help food banks implement 

the last shelf life first out inventory management policy. Improved inventory management 

will help to reduce food waste, and therefore, provide more food to people in need. The 

computational analysis performed in this study also demonstrates that improved 

warehouse labor management and proper food storage temperature settings can have a 

significant impact on reducing food quality loss. 

The effect of temperature on the perishability of foods is analyzed in the food 

distribution problem by integrating shelf life and temperature prediction models with VRP 

with time window (VRPTW) in Chapter 3. The tradeoff between costly not fully loaded truck 

delivery with the least possible stops in a route and the economic fully loaded truck delivery 

with frequent stops are analyzed to integrate quality cost in distribution cost. An adapted 

simulated annealing algorithm was used to provide optimum solutions to the NP-hard 

problem. The result of comparing the integrated quality dependent VRPTW (QD-VRPTW) 

model with the original VRPTW for a series of randomly generated test problems shows 
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that even though solutions to the QD-VRPTW have higher transportation costs, the overall 

quality and transportation costs are lower in the proposed approach. Moreover, sensitivity 

analysis illustrates that solutions generated by the QD-VRPTW model are highly 

dependent on the type of food product being shipped and its quality characteristics. 

In Chapter 4, CO2 emissions, food freshness, and transportation costs are 

recognized as the main elements of sustainability in perishable food distribution networks. 

Therefore, these sustainability goals are set as the objectives of a multi-objective mixed-

integer linear problem to provide solutions that balance the major sustainability goals in a 

perishable food distribution network. The proposed multi-objective sustainable VRP (MO-

SVRP) is solved using an adapted version of the nondominated sorting genetic algorithm 

(NGSA-II). An adapted version of an optimization algorithm is then used to find a final 

solution from a set of Pareto-optimal solutions. The sensitivity of the proposed MO-SVRP 

to the perishability of food products shows that the final solution for distributing the products 

with lower shelf life has higher cost and emission, and lower freshness comparing with the 

distribution of higher shelf life products. The results of sensitivity analysis over different 

temperature settings in the container of a refrigerated vehicle illustrates that setting the 

cooling equipment to a higher temperature causes a tremendous reduction on the quality 

of the delivered products, but although transportation cost slightly increases for higher 

temperature settings, total CO2 emissions in the food distribution network decline. 

While the consideration of sustainability goals in a single food supply chain stage 

shows promising results, it would be interesting to see the impact of these goals in the 

integrated food supply chain problems which encompasses more than one stages in the 

model; i.e. inventory routing problem, and integrated production and distribution problem. 

The third and fourth chapter of this dissertation is dedicated to investigating how to address 

sustainability concerns in a single product perishable food distribution network which is not 
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a common case in reality. It is highly recommended to expand this problem by considering 

multi-product perishable foods in the distribution model.  

The implementation of this study can help to enhance the health and safety of our 

community by distributing foods with higher quality and preserving the quality of food 

through the supply chain operations which can reduce food waste economical and 

environmental effects. Moreover, the results of this study can help food distributors to 

measure and achieve their sustainability goals. 

 


