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ABSTRACT

DISTRIBUTED OPTIMAL POLICIES FOR MULTI-AGENT SYSTEMS UNDER

UNCERTAINTIES

Mushuang Liu, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professor: Yan Wan

Multi-agent systems (MAS) have attracted increasing attention in the past years

due to their wide applications in mobile robots, sensor networks, autonomous driving

systems, etc. Along with this trend, developing distributed optimal policies for MAS

under uncertainties has become indispensable. Multi-dimensional uncertainties often

modulate system dynamics in a complicated fashion, which leads to computational

challenges for real-time control. In many practical MAS, each agent also has its

own interest to optimize beyond a global objective. Developing distributed optimal

control for agents with self-interests is needed. To address the above challenges, this

dissertation contributes in two major directions for MAS: 1) computationally-effective

real-time optimal policies under multi-dimensional uncertainties, and 2) distributed

optimal policies in networked MAS, including graphical games.

In the first direction, we develop a framework to solve optimal control prob-

lems for MAS that involve multi-dimensional uncertainties. Two types of uncertain

systems are investigated: 1) MAS subject to uncertain agent intentions, and 2) MAS

operating in uncertain environments. For the first type, we use stochastic switching
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models to capture the uncertain intentions and develop an online optimal control

solution that integrates an effective uncertainty sampling method called multivariate

probabilistic collocation method (MPCM), reinforcement learning, and random state

estimation. For the second type, we formulate and investigate two new stochastic

differential games, where the system parameters are modulated by multi-dimensional

uncertainties. Effective online learning algorithms are designed to solve these games

with computational efficiency.

In the second direction, we study the distributed control, Nash optimality, and

robustness properties of networked MAS. We point out that in existing graphical

game formulations, being global Nash and being distributed are two contradicting

properties. We then propose a new graphical game formulation, which promises the

existence of solutions that are both distributed and Nash. In addition, we develop

a new Lyapunov-based analytical framework for the robustness of networked MAS

measured by gain and phase margins. The effect of communication graph topology

on the stability margins is analyzed.

Beyond the theoretical contributions, we also apply the developed solutions

to diverse practical applications, including air-to-air unmanned aerial vehicle (UAV)

communications, UAV traffic management (UTM), and damage pattern estimations

in composite materials.
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CHAPTER 1

INTRODUCTION

1.1 Background

Multi-agent systems (MAS) have attracted increasing attention in the past years

due to their wide applications in mobile robots, sensor networks, autonomous driving

systems, etc. Along with this trend, developing distributed optimal policies for MAS

under uncertainties has become indispensable. Multi-dimensional uncertainties often

modulate system dynamics in a complicated fashion, which leads to computational

challenges for real-time control. In many practical MAS, each agent also has its own

interest to optimize beyond a global objective. Developing distributed optimal control

for agents with self-interests is needed. To address the above challenges, this disserta-

tion contributes results in two major directions for MAS: 1) computationally-effective

real-time optimal policies under multi-dimensional uncertainties, and 2) distributed

optimal policies in networked MAS, including differential graphical games. These

results are documented in the following papers [2, 4–22].

1. Computationally-Effective Real-Time Optimal Policies under Multi-Dimensional

Uncertainties

The dynamics of modern dynamical systems are often modulated by multi-

dimensional uncertainties in a complicated fashion. The uncertainties can arise ei-

ther from the agents’ uncertain intentions, or from uncertain environment conditions,

such as probabilistic weather forecasts. They lead to challenges for real-time control,

considering the significant computational load needed to evaluate these uncertain-

ties. To deal with these challenges, we developed in our previous work an effective
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uncertainty evaluation method, called multivariate probabilistic collocation method

(MPCM) [23]. The MPCM estimates accurately the mean output of a system modu-

lated by multi-dimensional uncertainties with very small computational load. In this

dissertation, we further investigate the use of MPCM in developing optimal control

solutions for MAS of multi-dimensional uncertainties. Two types of uncertain systems

are studied: 1) MAS subject to uncertain agents’ intentions, and 2) MAS operating

in uncertain environments.

MAS subject to Uncertain Intentions Driven by the emergence of internet

of-things (IOT) applications, mobile agents play increasingly important roles in op-

timal decision processes. Random mobility models (RMMs) have been widely used

to capture the uncertain intentions of mobile agents. However, decision-making for

agents of RMMs has not been explored. Motivated by this need, we develop a novel

online optimal control framework for MAS governed by RMM, based on the modules

of RL and MPCM, and the properties of random switching models. To overcome

the issues caused by unavailable state information, we also develop a novel estimator

that integrates the unscented Kalman filter (UKF) and MPCM. This work lays a

foundation to analyze the behaviors of randomly moving mobile agents, and enables

decision-making for agents with uncertain intentions.

MAS operating in Uncertain Environments Control-theoretic differential games

have been recently explored to study the interactions of multiple agents with individ-

ual payoffs. However, most existing studies on differential games assume deterministic

dynamics, which is not practical in real environments that involve uncertainties. We

propose two new stochastic differential games, including two-player zero-sum and

multi-player nonzero-sum stochastic games, the system dynamics of which are modu-

lated by multi-dimensional time-varying parameters to capture the effects of uncertain

environments. This is the first time in the literature that uncertain environments are
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considered in differential games. Effective online learning algorithms are then de-

signed to solve these games with computational efficiency, based on the modules of

on-policy and off-policy integral RL (IRL), and the MPCM. This work provides a

method to analyze the effects of uncertain environments on MAS of self-interests.

2. Distributed Optimal Policies in Networked MAS

In many practical systems, agents communicate on a graph, and determine their

policies based on limited information constrained by the network topology. We study

properties of distributed optimal policies for agents of self-interests in networked

MAS, including distributed control, Nash optimality, and robustness properties. In

this progress, new analytical frameworks for differential graphical games and stability

margins of networked MAS are developed respectively.

Differential Graphical Games To solve the distributed optimal control for net-

worked MAS of self-interests, differential graphical games have been recently explored

in the literature. We point out that in existing graphical game formulations, being

global Nash and being distributed are two contradicting properties. To address this

issue, we propose in this dissertation a novel differential graphical game formulation,

and prove that this formulation promises the existence of solutions that are both

distributed and Nash. This work provides a new perspective on distributed optimal

control of networked MAS, and makes it possible to achieve global Nash equilibrium

in networked MAS using only local information.

Stability Margins of Networked MAS Despite the abundant literature on net-

worked MAS, few work is concerned with the robustness properties of networked MAS.

We take the perspective that the robustness of a MAS is affected by communication

structure and hence the design of MAS should consider communication structure

to achieve desired robustness levels. We develop a new Lyapunov-based analytical

framework that determines the stability margins of networked MAS of local linear
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quadratic regulator (LQR) design. For the first time in the literature, we extend the

phase and gain margins analysis from single-agent systems to MAS, and show that

the directed tree communication graph promises the best stability margins among all

communication graph topology. This work lays foundations in analyzing the effects

of communication graph topology on the robustness of networked MAS, and enables

communication structure design in improving the robustness of networked MAS.

1.2 Organization of this Dissertation

The structure of this dissertation is shown in Figure 1.1. The content of each

chapter is listed as follows.

Figure 1.1. Organization of this dissertation.

In Chapter 2, we introduce some preliminaries to facilitate the analysis in this

dissertation. In particular, an effective uncertainty evaluation method, the MPCM

4



(documented in the book chapter [8]), and an effective state estimation method for

nonlinear systems, the UKF, are reviewed respectively.

In Chapter 3, we develop a novel online optimal control solution to adaptively

find the optimal policies for MAS with random switching mobility models, based on

the modules of RL and MPCM. We also develop a novel estimator that integrates the

UKF and MPCM to provide online estimation solutions for these agents. Efficiency

and accuracy of the proposed solutions are analyzed. A concrete communication

and antenna control co-design problem for a multi-unmanned aerial vehicle (UAV)

network is analyzed in the end to illustrate and validate the results. The results are

documented in paper [4] published in IEEE Control System Letters.

In Chapter 4, we study stochastic multi-player differential games, where the

players’ dynamics are modulated by randomly time-varying parameters. We first

formulate two differential games for systems of general uncertain linear dynamics,

including the two-player zero-sum and multi-player nonzero-sum games. We then

show that optimal control policies, which constitute Nash equilibrium solutions, can

be derived from the corresponding Hamiltonian functions. Stability is proved using

the Lyapunov type of analysis. In order to solve the stochastic differential games

online, we integrate RL and MPCM. Two learning algorithms, including the on-policy

and off-policy IRL, are designed for the formulated games respectively. We show that

the proposed learning algorithms can effectively find Nash equilibrium solutions for

the stochastic multi-player differential games. The results are documented in paper [6]

published in IEEE Transactions on Neural Networking and Learning Systems.

In Chapter 5, we study multi-agent differential graphical games in linear dynam-

ical networks. We prove that the best response strategy, most widely-used in solving

graphical games, can constitute Nash, but does not provide distributed solutions. On

the other hand, the minmax strategy, which is recently developed in solving graph-
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ical games, can provide distributed solutions, but prevents the agents from reaching

a global Nash equilibrium. In this chapter, we propose a novel differential graphical

game formulation, which promises the existence of solutions that 1) can constitute

global Nash equilibrium, and 2) are distributed in the sense that each agent only uses

the state information of its own and its direct neighbors. Stability and Nash equilib-

rium properties of the proposed graphical game are proven, respectively. Simulation

studies are conducted to illustrate the theoretical results. The results are documented

in paper [7] submitted to IEEE Transactions on Control of Network Systems.

In Chapter 6, we develop a theoretical framework for the analysis of stability

margins, i.e., phase margin and gain margin, of networked MAS. It is well-known that

a single-agent LQR system can guarantee 60◦ phase margin and infinite gain margin.

However, for networked MAS, there exist no theoretical results on guaranteed stability

margins, due to the complexity caused by the interplay of communication structure

and agent dynamics. In this chapter, we analyze the effect of communication graph

topology on the robustness properties of networked cooperative tracking systems with

local LQR designs. For such systems, we provide closed-form expressions of phase

and gain margins modulated by their graph topology, following a Lyapunov type of

analysis. We further derive upper bounds of phase and gain margins for MAS of

general graph topology, through a structural analysis based on the algebraic graph

theory. Results show that for networked MAS of local LQR design, the robustness

performance is upper bounded by that of a single-agent system, in terms of guaranteed

phase and gain margins. In addition, we prove that the directed tree communication

topology promises the best stability margin performance for networked MAS among

all possible communication topology, and has the same guaranteed gain and phase

margin as single-agent LQR systems. Simulation studies are conducted to validate
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the theoretical results. The results are documented in paper [9] submitted to IEEE

Transactions on Automatic Control.

In Chapter 7, we consider applying the optimal control for MAS under uncertain

intentions to the aerial communication application. The aerial communication using

directional antennas (ACDA) system is a promising solution to enable long-distance

and broad-band UAV-to-UAV networking. The automatic alignment of directional

antennas allows the transmission energy to focus in certain direction and signifi-

cantly extends the communication range and rejects interference. Robust automatic

alignment of directional antennas is not easy to achieve, considering practical issues

such as the limited on-board sensing devices due to the physical constraints of UAV

payload and power supplies, uncertain and varying UAV movement patterns, and un-

stable GPS and unknown communication environments. In this chapter, we develop

RL-based online antenna control solutions for the ACDA system to conquer these

challenges. The control solution adopts an uncertain UAV mobility modeling and in-

tention estimation framework to capture and predict the uncertain intentions of UAV

maneuvers and hence permit robust tracking. To account for an unstable GPS envi-

ronment, the control solution features a learning of communication channel models to

provide additional measurement signals in GPS-denied settings. A novel stochastic

optimal control solution for nonlinear random switching dynamics is developed that

integrates RL, MPCM, and UKF. Simulation studies are conducted to illustrate and

validate the proposed solutions. The results are documented in paper [5] published

in IEEE Transactions on Vehicle Technology.

In Chapter 8, we study the UAV traffic management(UTM) application . We

provide statistical analysis of RMMs equipped with physical sense-and-avoid proto-

cols. In particular, we propose a new modeling framework of random mobility models

equipped with physical sense-and-avoid protocols to capture the flexible, variable, and
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uncertain movement patterns of UAVs subject to the separation safety constraints.

For the random direction (RD) RMM equipped with a commonly used sense-and-

avoid (S&A) protocol, named sense-and-stop (S&S), we provide its statistical prop-

erties including stationary location distribution and stationary inter-vehicle distance

distribution, using the Markov analysis. This study provides knowledge on the im-

pact of S&A protocols to critical UAV networking statistics. In addition, we define

collision probabilities and airspace capacity concepts for UAVs based on the inter-

vehicle distance distribution, and derive their closed-form expressions. This analytical

framework mathematically bridges local autonomy with global airspace capacity, and

allows the impact analysis of local autonomy configurations for effective UAV airspace

capacity management. The results are documented in paper [10] submitted to IEEE

Transactions on Intelligent Transportation Systems.

In Chapter 9, we study damage pattern estimation in composite materials.

Composite materials play important roles in multi-functional applications, and the di-

agnosis of damage patterns in composite materials is crucial to avoid “critical events”

such as structural or functional failures. The impact of an individual damage in

composite materials has been extensively studied, however, the interaction of de-

fects/cracks, which leads to critical fracture paths, has not been understood well. In

this chapter, we develop a Bayesian estimation based statistical analysis technique

that estimates the damage pattern of a composite material, in particular, the rela-

tive positions of defects in the material, by measuring its through-thickness dielectric

properties. We first explain the fundamental dielectric principle that leads to the

detection of defect patterns. A capacitance model is then built to measure the mate-

rial permittivity, and the relationship between the dielectric permittivity and relative

positions are found using COMSOL Multiphysicsr. The interaction effects between

defects observed in the simulation are interpreted using the fundamental dielectric
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principle. A Bayesian estimation based statistical analysis model is then developed

to estimate the relative positions of defects in composite materials from the measured

global dielectric properties. The results are documented in paper [14] published in

2019 SPIE on Nondestructive Characterization and Monitoring of Advanced Materi-

als, Aerospace, and Civil Infrastructure.
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CHAPTER 2

PRELIMINARIES

In this chapter, we introduce some preliminaries to facilitate the development

in this dissertation. To prepare for the development of optimal decision under un-

certainty, we introduce an effective uncertainty evaluation method, the MPCM. To

prepare for the state estimation in nonlinear systems, we review an effective nonlinear

estimation method, the UKF.

2.1 Effective Uncertainty Evaluation Method

This section formulates the uncertainty evaluation problem and introduces

MPCM for effective uncertainty evaluation.

2.1.1 Problem Formulation

We first formulate an general uncertainty evaluation problem as follows. Con-

sider a system G(·) modulated by m-dimensional uncertainties, a1, a2, · · · , am, which

are considered as inputs to a black box (see Figure 2.1). The output of the system,

y, is the system performance of interest. The goal is to correctly estimate the mean

output of the systems, i.e., E[y], given the statistical information of the uncertain

inputs, e.g., pdfs of ap, fAp (ap).

2.1.2 The MPCM

The MPCM is an effective uncertainty evaluation method, which estimates the

mean output of a system modulated by multi-dimensional uncertainties accurately
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Figure 2.1. Estimation of mean output for a system modulated by m-dimensional
uncertainties. .

and effectively. The MPCM smartly selects a limited number of sample points ac-

cording to the Gaussian Quadrature rules, and runs simulations at these samples to

produce a reduced-order mapping, which has the same mean output as that of the

original mapping [23]. The main properties of the MPCM are summarized as follows.

Theorem 1. [23, Theorem 2] Consider a system mapping modulated by m indepen-

dent uncertain parameters:

G (a1, a2, · · · , am) =

2n1−1∑
q1=0

2n2−1∑
q2=0

· · ·
2nm−1∑
qm=0

ψq1,q2,··· ,qm

m∏
p=1

aqpp , (2.1)

where ap is an uncertain parameter with the degree up to 2np−1, p ∈ 1, 2, · · · ,m. np is

a positive integer, and ψq1,q2,··· ,qm ∈ R are the coefficients. Each uncertain parameter

ap follows an independent pdf fAp (ap). The MPCM approximates G(a1, a2, · · · , am)

with the following low-order mapping

G′ (a1, a2, · · · , am) =

n1−1∑
q1=0

n2−1∑
q2=0

· · ·
nm−1∑
qm=0

Ωq1,q2,··· ,qm

m∏
p=1

aqpp , (2.2)

and E[G (a1, a2, · · · , am)] = E [G′ (a1, a2, · · · , am)], where Ωq1,q2,··· ,qm ∈ R are coeffi-

cients.

Theorem 1 shows that the MPCM reduces the number of simulations from

2m
∏m

p=1 np to
∏m

p=1 np, where m is the number of uncertain parameters. Despite the

dramatic reduction of computation by a factor of 2m, MPCM evaluates the mean
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output of system (2.1) precisely. The MPCM design procedure is summarized as

follows [23].
Algorithm 1 MPCM

Step 1: Simulation point selection

1: Compute the orthonormal polynomials, h
np
p (ap), of degree np for the random

variable ap, for p = 1, 2, · · · ,m according to Steps 2-7:

2: For p = 1 to m

3: Initialize H−1
p (ap) = h−1

p (ap) = 0 and H0
p (ap) = h0

p(ap) = 1.

4: For qp = 1 to np

H
kp
p (ap) =aph

qp−1
p (ap)−

¨
aph

qp−1
p (ap), h

qp−1
p (ap)

∂
h
qp−1
p (ap)

−
¨
H
qp−1
p (ap), H

ap−1
p (ap)

∂ 1
2 h

qp−2
p (ap),

hqpp (ap) = Hqp
p (ap)/

〈
Hqp
p (ap), H

qp
p (ap)

〉 1
2 .

5: End

6: End

7: Find the roots of h
np
p (a) = 0 as the np PCM simulation points for ap, denoted as

ap(1), ap(2), · · · , ap(np).

Step 2: Evaluation of system outputs at selected simulation points

8: For eachm-tuple simulation point (a1(r1), a2(r2), · · · , am(rm)) found in Step 1, where

rp ∈ {1, 2, · · · , np}, run simulation and find the associated output

9: G
(
a1(r1), x2(r2), · · · , xm(rm)

)
.

Step 3: Mean output evaluation

10: Find the coefficients bq1,q2,··· ,qm in the low-order PCM mappingG′ (a1, a2, · · · , am) =∑n1−1
q1=0

∑n2−1
q2=0 · · ·

∑nm−1
qm=0 bq1,q2,··· ,qm

∏m
p=1 h

qp
p (ap) following:
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
b0,··· ,0

b0,··· ,1

...

bn1−1,··· ,nm−1

 = Γ−1


G
(
a1(1), · · · , am(1)

)
G
(
a1(1), · · · , am(2)

)
...

G
(
a1(n1), · · · , am(nm)

)

 ,

where

Γ =

h0
1(a1(1)) · · ·h0

m(am(1)) h1
1(a1(1)) · · ·h1

m(am(1)) · · · hn1−1
1 (a1(1)) · · ·hnm−1

m (am(1))

h0
1(a1(1)) · · ·h0

m(am(2)) h1
1(a1(1)) · · ·h1

m(am(2)) · · · hn1−1
1 (a1(1)) · · ·hnm−1

m (am(2))

...
...

...
...

h0
1(a1(n1)) · · ·h0

m(am(nm)) h1
1(a1(n1)) · · ·h1

m(am(nm)) · · · hn1−1
1 (a1(n1)) · · ·hnm−1

m (am(nm))



11: The predicted mean output is b0,0,··· ,0.

Here H
qp
p (a) represents the orthogonal polynomial of degree qp for the uncertain

parameter ap, h
qp
p (ap) is the normalized orthonormal polynomial, and 〈x1(ap), x2(ap)〉

denotes the integration operation
∫
x1(ap)x2(ap)fAp (ap) dap.

Note that the MPCM can accurately predict not only the mean output of the

system, but also the cross-statistics, i.e., statistics of cross input-output relationship,

up to a certain degree. The MPCM can be applied to cases where the uncertain

parameters are correlated, and where only moments, instead of pdfs, are available.

Please see [23] for all detailed solutions and properties of the MPCM.

2.2 Effective State Estimation Method

In this section, we introduce the UKF, including its principles, procedures and

properties.
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2.2.1 Unscented Transformation

Unscented transformation (UT) is the basis of UKF. UT is developed to solve

the following problem.

Consider an L−dimensional vector random variable x with mean x̄ and covari-

ance Pxx. It is desired to find the mean ȳ and covariance Pyy of a m−dimensional

vector random variable y, where y is related to x by the nonlinear transformation

y = g(x). (2.3)

2.2.1.1 Principles and procedures of UT

The UT is based on the idea that ”it is easier to approximate a probability

distribution than it is to approximate an arbitrary nonlinear function or transforma-

tion” [24]. The procedure of UT can be summarized as follows. A set of points (sigma

points) are chosen so that their sample mean and covariance are x̄ and Pxx. The non-

linear function g(.) is applied to each point to derive the transformed points. The

statistics of y, i.e., ȳ and Pyy is approximated from the mean and covariance of the

transformed sigma points. The detailed procedures are described as follows [25–27].

1. Compute the set of sigma points. The L−dimensional random variable x

with mean x̄ and covariance Pxx is approximated by 2L+ 1 weighted points by

X0 = x̄ W0 =
λ

L+ λ
, (2.4)

Xi = x̄ +
Ä√

(L+ λ)Pxx

ä
i

Wi =
1

2(L+ λ)
, (2.5)

Xi+L = x̄−
Ä√

(L+ λ)Pxx

ä
i
Wi+L =

1

2(L+ λ)
, (2.6)

which assures that

Pxx =
2L∑
l=0

Wl(Xl − x̄)(Xl − x̄)T , (2.7)
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where i = 1, ..., L, l = 0, ..., 2L, (
√

(L+ λ)Pxx)i is the ith column of the matrix square

root of (L+ λ)Pxx , Wi is the weight associated with the selected sigma points, and

λ is a scaling parameter.

2. Transform each point through the function g(.),

Yl = g(Xl). (2.8)

3. Compute ȳ and Pyy from the transformed points Yl,

ȳ =
2n∑
l=0

WlYl, (2.9)

Pyy =
2n∑
l=0

Wl(Yl − ȳ)(Yl − ȳ)T . (2.10)

2.2.1.2 Accuracy of the UT

Consider the prior variable x as the x̄ being perturbed by a zero-mean distur-

bance δx with covariance Pxx. Then the Taylor series expansion of the nonlinear

transformation g(x) about x̄ is

g(x) = g(x̄ + δx) =
∞∑
n=0

Å
(δx∇x)

ng(x)

n!

ã
x=x̄

. (2.11)

Define the operator Dn
δxg as Dn

δxg = ((δx∇x)
ng(x))x=x̄, then the Taylor series

expansion of the nonlinear transformation y = g(x) can be written as

y = g(x) = g(x̄) + Dδxg +
1

2
D2
δxg +

1

3!
D3
δxg +

1

4!
D4
δxg + · · · . (2.12)

The true mean of y is given by

ȳ = E[y] = E[g(x)] = E

ï
g(x̄) + Dδxg +

1

2
D2
δxg +

1

3!
D3
δxg +

1

4!
D4
δxg + · · ·

ò
. (2.13)
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If x is a symmetrically distributed random variable, then all odd moments are

zero. Note that E[δxδxT ] = Pxx, and as such, the third term in Equation (2.13) is

1

2
D2
δxg =

1

2

(
(δx∇x)

2g(x)
)
x=x̄

=
1

2

(
(∇T

x δx
T δx∇x)g(x)

)
x=x̄

=
1

2

(
(∇T

xPxx∇x)g(x)
)
x=x̄

.

(2.14)

Given this, the mean ȳ can be reduced to

ȳ = g(x̄) +
1

2

(
(∇T

xPxx∇x)g(x)
)
x=x̄

+ E

ï
1

4!
D4
δxg +

1

6!
D6
δxg + · · ·

ò
. (2.15)

The UT calculates the posterior mean from the propagated sigma points. The

sigma points are given by

X0 = x̄, (2.16)

Xl = x̄±
Ä√

L+ λ
ä
σi = x̄ + σl, (2.17)

where i = 1, ...2L, σi denotes the ith column of the matrix square root of Pxx. This

implies that
∑L

i=1(σiσ
T
i ) = Pxx. Using the formulation of the sigma points, we can

write the propogation of each point through the nonlinear function as a Taylor series

expansion about x̄,

Y0 = g(x̄), (2.18)

Yl = g(Xl) = g(x̄) + Dσ̃lg +
1

2
D2
σ̃l
g +

1

3!
D3
σ̃l
g +

1

4!
D4
σ̃l
g + · · · . (2.19)

As such, the UT predicted mean is derived as

ȳUT =
λ

L+ λ
g(x̄) +

1

2(L+ λ)

2L∑
l=1

Å
g(x̄) + Dσ̃lg +

1

2
D2
σ̃l
g +

1

3!
D3
σ̃l
g +

1

4!
D4
σ̃l
g + ...

ã
= g(x̄) +

1

2(L+ λ)

2L∑
l=1

Å
Dσ̃lg +

1

2
D2
σ̃l
g +

1

3!
D3
σ̃l
g +

1

4!
D4
σ̃l
g + · · ·

ã
.

(2.20)

16



Since the sigma points are symmetrically distributed around x̄, all the odd moments

are zero. As such,

ȳUT = g(x̄) +
1

2(L+ λ)

2L∑
l=1

Å
1

2
D2
σ̃l
g +

1

4!
D4
σ̃l
g +

1

6!
D6
σ̃l
g · · ·

ã
. (2.21)

Because

1

2(L+ λ)

2L∑
l=1

1

2
D2
σ̃l
g =

1

2(L+ λ)
(∇xg)T

L∑
i=1

Ä√
L+ λσiσ

T
i

√
L+ λ

ä
(∇xg)

=
L+ λ

2(L+ λ)
(∇xg)T

(
L∑
i=1

σiσ
T
i

)
(∇xg) =

1

2

(
(∇T

xPxx∇x)g(x)
)
x=x̄

,

(2.22)

the UT predicted mean can be further simplified to

ȳUT = g(x̄) +
1

2

(
(∇TPxx∇x)g(x)

)
x=x̄

+
1

2(L+ λ)

2L∑
l=1

Å
1

4!
D4
σ̃l
g +

1

6!
D6
σ̃l
g · · ·

ã
.

(2.23)

Comparing Equations (2.15) and (2.23), we can clearly see that the first three

order terms of the true posterior mean and the mean calculated by the UT are the

same, i.e., approximation errors only modulate the fourth and higher order terms. In

contrast, a linearization approach that calculates the posterior mean as ȳE = g(x̄)

only captures the true posterior mean to the first order.

2.2.2 The UKF

The UKF is a straightfoward extension of the UT. The procedure of UKF is

summarized as follows.

(a). Select Sigma Points. 2L+ 1 symmetric weighted sigma points are selected

from x̂[k], the estimator of x[k].

X0 = x̂ W0 =
λ

L+ λ
,

Xi = x̂ + (
√

(L+ λ)Pxx)i Wi =
1

2(L+ λ)
, (2.24)

Xi+L = x̂− (
√

(L+ λ)Pxx)i Wi+L =
1

2(L+ λ)
. (2.25)
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where i = 1, ..., L,
Ä√

(L+ λ)Pxx

ä
i

is the ith column of (L+λ)Pxx, Wi is the weight

associated with the selected sigma points, and λ is a scaling parameter

(b). State Prediction. The system state are predicted by instantiating each of

the sigma points through the system dynamics f(.).

Xl[k + 1|k] = f(Xl[k],u[k + 1]),

where l = 0, 1, ..., 2L. Then the priori state estimation can be approximated as a

weighted sample mean

x̂[k + 1|k] =

2n∑
l=0

Wl(Xl[k + 1|k]).

The corresponding covariance matrix is calculated as

P[k + 1|k] =
2n∑
l=0

Wl(Xl[k + 1|k]− x̂[k + 1|k])(Xl[k + 1|k]− x̂[k + 1|k])T + Q[k + 1].

(c). Measurement Prediction. 2n+ 1 sigma points are selected from x̂[k|k − 1]

with the error covariance P[k|k − 1].

X 0[k + 1|k] = x̂[k + 1|k],

X i[k + 1|k] = x̂[k + 1|k] +
»

(L+ λ)P[k + 1|k]
i
,

X i+L[k + 1|k] = x̂[k + 1|k]−
»

(L+ λ)P[k + 1|k]
i
,

with the weights W0,Wi and Wi+L respectively.

The measurement is predicted by instantiating each of the prediction points

through the measurement model h(.),

Zl[k + 1|k] = h(Xl[k + 1|k]),

ẑ[k + 1|k] =
2n∑
l=0

Wl(Zl[k + 1|k]).
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Correspondingly, the measurement covariance matrix and cross correlation ma-

trix are determined by

Pzz[k+1|k] =
2n∑
l=0

Wl(Zl[k+1|k]−ẑ[k+1|k])(Zl[k+1|k]−ẑ[k+1|k])T+R[k+1], (2.25)

Pxz[k|k − 1] =
2n∑
l=0

Wl(Xl[k + 1|k]− x̂[k + 1|k])(Zl[k + 1|k]− ẑ[k + 1|k])T . (2.26)

(d). Kalman Gain Update. The Kalman gain can be updated using the covari-

ance information,

K = Pxz[k + 1|k]P−1
zz [k + 1|k]. (2.27)

The estimated state and covariance are thus derived as

x̂[k + 1|k + 1] = x̂[k + 1|k] +K(z[k + 1]− ẑ[k + 1|k]), (2.28)

P̂[k + 1|k + 1] = P̂[k + 1|k]−KPzz[k + 1|k]KT . (2.29)

The properties of the UKF method are summarized as follows.

1. The calculated mean and covariance are correct to the second order [24].

2. The algorithm is suitable for any nonlinear system dynamics.

3. The parameter λ can be selected properly to ”fine tune” the higher order

moments of the estimation. When x is Gaussian, λ is usually set to 3−L to capture

the fourth-order moment correctly (see [25,28]).
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CHAPTER 3

ADAPTIVE OPTIMAL DECISION IN MULTI-AGENT RANDOM SWITCHING

SYSTEMS

3.1 Introduction

Random mobility models [1, 11, 29], including Random Walk, Random Direc-

tion, Gauss Markov and Smooth Turn (ST), have been widely used in diverse ar-

eas to capture the random movement patterns of mobile agents. Examples include

ad hoc networks in wireless communication, random motion of particles in physics,

and random UAV mobility in aerospace. These RMMs fall under the general ran-

dom switching modeling framework: at each randomly selected time point, an agent

randomly selects its maneuver of certain statistical properties, and moves with the

selected maneuvers until the next selected time point. Driven by the emergence

of internet-of-things applications, mobile agents play increasingly important roles in

optimal decision processes. In this chapter, we study optimal control and effective

estimation for such multi-agent random switching systems.

Optimal controller design for stochastic systems has been studied in e.g., [30].

For linear systems corrupted with additive noise, optimal controls solution that min-

imize the expected quadratic cost functions can be found analytically. For gen-

eral stochastic systems with multi-dimensional uncertainties, simulation-based un-

certainty evaluation methods need to be utilized. The Monte Carlo (MC) method

and its variants including the Markov chain MC and Sequential MC have been widely

used to explore the uncertainty space. However, they require a large amount of sample

points, and hence, are too time-consuming to be used for online decisions. To address
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this challenge, paper [23] developed an effective uncertainty evaluation method, called

multivariate probabilistic collocation method (MPCM), and paper [31] integrated it

with reinforcement learning (RL) to effectively solve the stochastic optimal control

problem online. However, the uncertainties considered in [31] do not capture complex

random switching behaviors. In this chapter, we integrate RL and MPCM to pro-

vide an online learning-based adaptive optimal control solution for random switching

systems of highly flexible, random, and uncertain agent mobility patterns.

In practice, agents’ states are not always available for controller design, and

thus, effective state estimators are needed. For linear systems with additive noise, KF

is the optimal estimator. For nonlinear systems, the sampling-based UKF [26,28] have

been used practically. In this chapter, we also describe a practical estimator for multi-

agent random switching systems by integrating UKF and MPCM. A communication

and control co-design problem for a multi-UAV network governed by ST mobility is

studied in the end to illustrate and validate the results.

3.2 Modeling and Problem Formulation

3.2.1 System Model

Consider a group of N agents, each of which moves independently with a gen-

eral random switching dynamics as follows. At randomly selected time points T i0, T i1,

T i2, ..., where 0 = T i0 < T i1 < ..., agent i randomly selects its maneuver ai[T
i
l ] (e.g.,

velocity, heading direction, or turning center, etc.), and maintains the selected ma-

neuver until the next selected time point. The time duration for agent i to maintain

its current maneuver is τi[T
i
l ], i.e., τi[T

i
l ] = T il+1 − T il . Note that such a general ran-

dom switching dynamics is constructed using two types of random variables. Type 1

random variable, ai[T
i
l ], describes the characteristics for each maneuver, and type 2
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random variable τi[T
i
l ] describes how often the switching of type 1 random variable

occurs. The agent dynamics is described as

xi[k] = f(xi[k − 1], ai[k], τi[T
i
l ]), (3.1)

where xi[k] ∈ Rn is the system state vector of agent i at time instant k, and f(.)

captures the general agent dynamics. ai[k] ∈ Rm is the agent’s maneuver at time k,

and m is the number of uncertain parameters that describe the statistic properties of

the maneuver. Each element of ai[k], ai,p[k], where p ∈ {1, ...,m}, follows the random

switching rule,

ai,p[k] =

 ai,p[T
i
l ], if ∃l ∈ [0, 1, 2, ..), k = T il ;

ai,p[k − 1], if ∀l = 0, 1, 2, .., k 6= T il ,
(3.2)

where ai,p[T
i
l ](p = 1, ...,m) is the element of the type 1 random variable ai[T

i
l ], and

ai,p[T
i
l ](p = 1, ...,m) changes independently over time with pdf fAp(ai,p[T

i
l ]). The

random variables (ai[T
i
l ], τi[T

i
l ]) are independent for each agent i to capture their

independent movement patterns.

We use a simple but widely-used UAV RMM, smooth turn RMM [1,29], to illus-

trate the random switching dynamics. In the ST RMM, each agent selects a velocity

vi[T
i
l ] and a turning center with a turning radius ri[T

i
l ] along the line perpendicular to

its current heading direction, and then circles around it until the next selected time

point. The type 1 random variables ai[T
i
l ] = [ri[T

i
l ], vi[T

i
l ]] are inversely Gaussian and

uniformly distributed respectively, and the type 2 random variable τi[T
i
l ] = T il+1− T il

is exponentially distributed. The switching behavior and sample trajectory are shown

in Figs. 3.1(a) and 3.1(b) respectively.

The communication topology among the agents is fixed and represented using

an undirected graph G = (V , E), where V is the set of agents V = 1, 2, ..., N , and

E ⊂ V × V is the set of communication links. A link (i, j)(i 6= j) means that agents
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(a)

(b)

Figure 3.1. Illustration of the ST RMM. (a) Maneuver selection and switching behav-
ior. (b) A sample trajectory (red curve). Green spots are randomly chosen turning
centers [1].
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i and j can directly communicate with each other, where j is one of the neighbors of

agent i.

Each agent has a local measurement model of a general nonlinear form

zi|j[k] = g(xi[k]) +$z,i[k], (3.3)

where zi|j[k] is the measured output of agent i by its neighbor j, g(.) is a general

nonlinear function, and $z,i[k] is the white Gaussian noise.

3.2.2 Problem Formulation

We consider the following stochastic optimal control problem defined on the

network of agents subject to the random switching dynamics. Denote the number of

agent i’s neighbors as ni. Each agent i seeks its control policies ui,j[k], j ∈ [1, ..., ni],

to optimize a performance cost with its neighbor j according to the measurement

zj|i[k]. Each agent i has at least ni controllers to optimize the cost with the ni

neighbors respectively. This formulation has practical use in a wide range of new

mobile networking applications, where the co-design of communication and control

components becomes essential. An example is illustrated in Section 8.5.

In general, the expected cost to optimize is

Ji,j = E[
∞∑
k=0

ri,j(xi[k],xj[k],ui,j[k],uj,i[k])]. (3.4)

where ri,j[k], (j = 1, ..., ni) is the cost between agent i and its neighbor j at time k.

ui,j[k] is the control vector of agent i, which seeks to minimize the communication cost

with its neighbor j, Ji,j. The value function Vi,j(x) corresponding to the performance

index is defined as

Vi,j[k] = E[
∞∑
k′=k

ri,j(xi[k
′],xj[k

′],ui,j[k
′],uj,i[k

′])]. (3.5)
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Consider the problem of finding the optimal control policies u∗i,j[k] that satisfies

u∗i,j[k] = argmin
ui,j

Ji,j[k](xi[k],xj[k],ui,j[k],uj,i[k]). (3.6)

3.3 Main Results

3.3.1 Optimal Control in Random Switching Systems

In this subsection, we assume the state information, i.e., xi[k] and xj[k], is

available, and design an adaptive optimal controller to find the optimal policies for

agents moving with random switching dynamics.

Consider the value function described in (3.5). Because the uncertain parame-

ters are independent from the system state, the following Bellman equation holds,

Vi,j[k] =E(
∞∑
k′=k

ri,j[k
′]) = E(ri,j[k] +

∞∑
k′=k+1

ri,j[k
′])

=E(ri,j[k] + Vi,j[k + 1]).

(3.7)

This Bellman equation can be solved online using RL [32]. In particular, as-

sume that a neural network weight Wi,j exists such that the value function can be

approximated as

Vi,j(xi[k],xj[k]) = WT
i,jφ(xi[k],xj[k]). (3.8)

Using the value function approximation (VFA) method, the optimal control policy can

be found from the policy iteration (PI) algorithm [33]. Two main steps are involved

in the PI algorithm: 1) policy evaluation, which evaluates the value function at each

time step, and 2) policy improvement, which finds the optimal policy based on the

current value function.

For random switching systems, the policy evaluation step involves uncertainty

evaluation to calculate the expectation of a function as shown in (3.7). This uncer-

tainty evaluation is typically obtained using the Monte Carlo method and its variants,
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too slow to be used for on-line decision algorithms. Here we use a multivariate prob-

abilistic collocation method (MPCM) [23] to effectively evaluate the uncertainty. To

map to the MPCM framework, we here denote the generic function whose expecta-

tion to be evaluated as G(a1, ..., am), which is modulated by uncertain parameters

a1, a2, ..., am with the degree of each parameter up to a certain number. The MPCM

accurately evaluates the output mean of G, by smartly selecting a limited number of

sample points according to the Gaussian Quadrature rules, evaluating these sample

points, and producing the output mean from a reduced-order mapping G′. The main

property of MPCM is described in the following lemma. Please refer to [23] for the

proof and detailed MPCM design procedures.

Lemma 1. [23, Theorem 2] Consider a generic system mapping modulated by m

independent uncertain parameters:

G(a1, ..., am) =

2n1−1∑
q1=0

2n2−1∑
q2=0

...
2nm−1∑
qm=0

ψq1,...,qm

m∏
p=1

aqpp ,

where ap (p ∈ 1, 2, ...,m) is an uncertain parameter with degree up to 2np − 1. np is

a positive integer for any p ∈ 1, 2, ...,m, and ψq1,...,qm ∈ R are the coefficients. Each

uncertain parameter ap follows an independent pdf fAp(ap). The MPCM approximates

G(a1, ...am) with the following low-order mapping

G′(a1, ..., am) =

n1−1∑
q1=0

n2−1∑
q2=0

...

nm−1∑
qm=0

Ωq1,...,qm

m∏
p=1

aqpp ,

with E[G(a1, ..., am)] = E[G′(a1, ..., am)], where Ωq1,...,qm ∈ R are coefficients.

Remark 1. Lemma 1 shows that the MPCM reduces the number of simulations from

2m
∏m

p=1 np to
∏m

p=1 np, where m is the number of uncertain parameters. Despite

the significant reduction of computation by 2m, MPCM accurately predicts the output

mean [23]. We note that the degree of an uncertain parameter in G is dependent

on specific applications. For a nonlinear system, G is a polynomial approximation

26



with properly selected maximal degree for each parameter, 2np− 1. With the increase

of maximal degree, the approximation accuracy can be improved, but at the cost of

additional computational load and the chance of overfitting.

Here we integrate RL and MPCM to provide an effective online learning-based

optimal control algorithm for random switching systems.

To evaluate the value function Vi,j[k] at each time instant, one needs to cal-

culate E(Vi,j[k + 1]) according to the Bellman equation (3.7). The value function

Vi,j[k + 1] is determined uniquely by the system states xi[k + 1] and xj[k + 1], which

can be found from the current states xi[k] and xj[k], system dynamics f(.), and the

random switching behaviors. In particular, given the current states xi[k] and xj[k],

agent i can predict its future state xi[k+1] according to its current maneuver ai[k+1]

using the system dynamics f(.). However, agent i does not know agent j’s current

maneuver aj[k + 1], and as such, xj[k + 1] needs to be estimated by agent i consid-

ering its switching behaviors. Denote the switching behavior of agent j at time k

as sj[k]. sj[k] = 1 or 0 indicates if the current maneuver switches at time k or not.

Denote the value function Vi,j[k] when sj[k] = 1 (or sj[k] = 0) as V 1
i,j[k] (or V 0

i,j[k]

correspondingly). When sj[k] = 0, agent j keeps its previous maneuver aj[k], and

the system state xj[k + 1] is obtained using aj[k], i.e.,

V 0
i,j[k] = ri,j[k] + Vi,j[k + 1](xi[k + 1],xj[k], aj[k]). (3.9)

When sj[k] = 1, agent j chooses a new random maneuver from aj[T
j
l ] at

time k, and in this case, E(Vi,j[k + 1]) needs to be estimated from the charac-

teristics of the random variable aj[T
j
l ]. Define a system mapping subject to un-

certain input parameters aj[T
j
l ]: GVi,j(xi[k + 1],xj[k], aj[T

j
l ]) = ri,j[k] + Vi,j[k +

1](xi[k + 1],xj[k], aj[T
j
l ]), then the value function V 1

i,j[k] can be estimated from the

mean output of the system mapping GVi,j(xi[k + 1],xj[k], aj[T
j
l ]) using MPCM, i.e.,

27



V 1
i,j[k] = E[GVi,j(xi[k + 1],xj[k], aj[T

j
l ])]. In particular, a set of samples are selected

based on the pdfs of uncertain parameters, and simulations are run at these samples

to estimate E[GVi,j(xi[k + 1],xj[k], aj[T
j
l ])]. Under the assumption that each uncer-

tain parameter aj,p has a degree up to 2np − 1, GVi,j(xi[k + 1],xj[k], aj[T
j
l ]) has the

following form,

GVi,j(xi[k + 1],xj[k], aj[T
j
l ])

=

2n1−1∑
q1=0

2n2−1∑
q2=0

...
2nm−1∑
qm=0

ψVq1,...,qm(xi[k + 1],xj[k])
m∏
p=1

a
qp
j,p.

According to Lemma 1, the output mean of this system mapping can be es-

timated from the output of a reduced-order mapping G′Vi,j(xi[k + 1],xj[k], aj[T
j
l ])

derived from the MPCM procedure [23, Section II],

V 1
i,j[k] =E[GVi,j(xi[k + 1],xj[k], aj[T

j
l ])]

=E[G′Vi,j(xi[k + 1],xj[k], aj[T
j
l ])],

(3.10)

G′Vi,j (xi[k + 1],xj [k],aj [T
j
l ])

=

n1−1∑
q1=0

n2−1∑
q2=0

...

nm−1∑
qm=0

ΩV
q1,...,qm(xi[k + 1],xj [k])

m∏
p=1

a
qp
j,p.

(3.11)

The coefficients ΩV
q1,...,qm

(xi[k+1],xj[k]) and output mean can be obtained using

the evaluated outputs G′Vi,j(xi[k + 1],xj[k], aj[T
j
l ]) at each selected simulation point,

according to the procedures in [23, Section II-B].

Theorem 2. The value function described in (3.7) can be estimated as

Vi,j[k] = PV 0
i,j[k] + (1− P )V 1

i,j[k], (3.12)

where V 0
i,j[k] and V 1

i,j[k] are described in (3.9) and (3.10) respectively. P is the prob-

ability that agent j switches its maneuver at time k. This probability can be derived

from the distribution of τj[T
j
l ], fτ (τj[T

j
l ]).
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Proof. The value function for an agent of random switching dynamics can be derived

as

Vi,j[k] =E(Vi,j[k]|sj[k] = 0)P (sj[k] = 0)

+ E(Vi,j[k]|sj[k] = 1)P (sj[k] = 1)

=PV 0
i,j[k] + (1− P )V 1

i,j[k].

(3.13)

(3.9), (3.10) and (3.13) naturally lead to Theorem 2.

The detailed algorithm that integrates the PI learning algorithm and MPCM

is described in Algorithm 2. After initialization in Step 1, Step 2 samples aj[T
j
l ] to

prepare for the uncertainty evaluation procedures in Steps 4−6. Steps 3−7 are value

function evaluation. In particular, Step 3 evaluates V 0
i,j, Steps 4 − 6 evaluate V 1

i,j,

and Step 7 combines V 0
i,j and V 1

i,j according to Theorem 2 to find Vi,j[k]. After value

function evaluation, the approximation weights Wi,j and optimal control polices ui,j

are updated respectively in Steps 8 and 9. The detailed procedures for MPCM and

PI algorithm can be found in [23,33] respectively.
Algorithm 2 Policy iteration algorithm for random switching systems

1: Initialize the system with initial states xi[0],xj[0], and admissible control policies

ui,j[0] and uj,i[0].

2: Select
∏m

p=1 np MPCM sample points according to the pdfs fAp(aj,p[T
j
l ]) and the

MPCM procedure [23, Section II]. Denote each selected MPCM sample as Al,

where l = 1, ...,
∏m

p=1 np.

3: For each iteration s, find the value function when sj[k] = 0, V
0,(s)
i,j , using (3.9).

4: Find the value function V l,(s)i,j (xi[k],xj[k]) at each MPCM sample Al, using the

Bellman equation: V l,(s)i,j [k] = ri,j[k] + W
(s−1)
i,j

Tφ(xi[k + 1],xj[k + 1]).

5: Find the reduced polynomial mapping from aj,p to G′Vi,j(xi[k + 1],xj[k], aj[T
j
l ])

described in (3.11) according to Lemma 1. aj,p and G′Vi,j(xi[k + 1],xj[k], aj[T
j
l ])

take the value of Al and V lj[k] respectively.
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6: Find the value function when sj[k] = 1, i.e., V
1,(s)
i,j [k], by combining (3.10) and

the derived system mapping G′Vi,j(xi[k + 1],xj[k], aj[T
j
l ]).

7: Find the value function V
(s)
i,j [k] by combining Theorem 2, V

0,(s)
i,j [k] and V

1,(s)
i,j [k].

8: Update the value function coefficients W
(s)
i,j according to the estimated V

(s)
i,j [k]:

W
(s)
i,j

Tφ(xi[k],xj[k]) = V
(s)
i,j [k].

9: Update the control policy u
(s)
i,j as u

(s)
i,j = argminui,j

V
(s)
i,j [k].

10: Repeat procedures 3− 9.

Theorem 3. Consider the random switching system shown in (3.1) with the value

function described in (3.5). Assume there exists a unique optimal solution and Algo-

rithm 2 converges. Given the current system states xi[k] and xj[k], the solution found

by Algorithm 2 is the optimal control policy.

Proof. The control policy derived by evaluating the value function Vi,j[k] = PV 0
i,j[k]+

(1 − P )V 1
i,j[k] is optimal according to (3.6), Theorem 2, and the policy iteration

properties [33]. As such, to prove this theorem, we are left to show that the two

optimal solutions, which are found by evaluating the reduced-order mapping PV 0
i,j[k]+

(1−P )G′Vi,j(xi[k+1],xj[k], aj[T
j
l ]) and the original value function mapping PV 0

i,j[k]+

(1−P )GVi,j(xi[k+1],xj[k], aj[T
j
l ]) are the same. Lemma 1 proves that E[G′Vi,j(xi[k+

1],xj[k], aj[T
j
l ])] = E[GVi,j(xi[k + 1],xj[k], aj[T

j
l ])]. Therefore, the equivalence of

the two optimal solutions can be proved from a contradiction argument described

in [31, Theorem 1].

Remark 2. The convergence of Algorithm 2 depends on three numerical solutions:

the policy iteration method, the value function approximation, and the MPCM approx-

imation. The policy iteration method has been widely used in dynamic programming

and reinforcement learning fields [31, 33], with its convergence conditions provided

in [33]. The value function approximation uses neural networks to approximate the
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smooth value function. The assumptions that make this approximation hold are listed

in [34]. MPCM works well for both polynomial and non-polynomial system mappings

as guaranteed by Lemma 1, with properly selected degrees for the polynomials (see [23]

for the details).

3.3.2 State Estimation in Random Switching Systems

In many practical applications, state information xi[k] and xj[k] may not be

available for controller design. In this subsection, we provide a practical online state

estimation solution for agents of random switching systems.

Given the previous state xi[k− 1], the expected current state E(xi[k]|xi[k− 1])

can be estimated considering the two possible switching behaviors: si[k − 1] = 1

or 0. When si[k − 1] = 1, agent i chooses a new random maneuver from ai[T
i
l ]

at time k − 1. As such, the estimation of the expected conditional system state

E(xi[k]|xi[k− 1], si[k− 1] = 1) involves uncertainty evaluation, which we solve using

MPCM, instead of the Monte Carlo methods which are computationally ineffective.

In particular, we define f(xi[k− 1], ai[T
i
l ]) as a system mapping subject to uncertain

input parameters ai[T
i
l ], i.e., Gi(xi[k − 1], ai[T

i
l ]). The expected system state when

si[k − 1] = 1 is then approximated from the mean output of the system mapping

Gi(xi[k − 1], ai[T
i
l ]) using MPCM, i.e.,

E(xi[k]|xi[k − 1], si[k − 1] = 1) = E[Gi(xi[k − 1], ai[T
i
l ])]. (3.14)

Theorem 4. Given the previous system state xi[k− 1], the expected current state for

agent i is estimated as

E(xi[k]|xi[k − 1]) = PE[G′i(xi[k − 1], ai[T
i
l ])]

+ (1− P )f(xi[k − 1], ai[k − 1]),

(3.15)
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where P is the probability that agent i switches its maneuver at time k− 1. G′i(xi[k−

1], ai[T
i
l ]) is a reduced order mapping of Gi(xi[k − 1], ai[T

i
l ]) derived from MPCM.

Proof. The expected system state at time k for an agent of random switching dynam-

ics can be derived as

E(xi[k]|xi[k − 1]) (3.16)

=E(xi[k]|xi[k − 1], si[k − 1] = 0)P (si[k − 1] = 0)

+ E(xi[k]|xi[k − 1], si[k − 1] = 1)P (si[k − 1] = 1).

In the case of si[k−1] = 0, agent i keeps its previous maneuver. The conditional

expected system state E(xi[k]|xi[k− 1], si[k− 1] = 0) can be found from the previous

system state xi[k − 1] and maneuver ai[k − 1] as

E(xi[k]|xi[k − 1], s[k − 1] = 0) = f(xi[k − 1], ai[k − 1]). (3.17)

In the case of si[k − 1] = 1, agent i chooses a new maneuver from ai[T
i
l ] at

time k − 1. The expected conditional system state E(xi[k]|xi[k − 1], si[k − 1] =

1) can be estimated from the mean output of the reduced-order system mapping

G′i(xi[k − 1], ai[T
i
l ]) using MPCM according to (3.14) and Lemma 1.

Equations (3.14), (3.16) and (3.17) naturally lead to Theorem 4.

Theorem 4 provides an accurate and computationally-efficient approach to es-

timate the expected system state for random switching systems, given the previous

state. Next we integrate it with UKF to provide the state estimation solution from

the measurement signals zi|j[k]. The system is assumed to be observable. In particu-

lar, MPCM and UKF are integrated for a 5-step state estimation procedure. Steps 1

and 2 select initial conditions and MPCM points to initialize Steps 3-5. Steps 3 and

4 find the state estimator for the switching behaviors si[k− 1] = 0 and 1 respectively.

Step 5 finds the expected state by integrating the two estimators in Steps 3 and 4.
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Step 1: Initialize. Initialize x̂i[0] and Pi[0].

Step 2: Select MPCM points.
∏m

p=1 np MPCM sample points are selected

according to the pdfs fAp(ai,p[T
i
l ]) and the MPCM procedure [23, Section II]. Denote

each selected MPCM sample as Al, where l = 1, ...,
∏m

p=1 np.

Step 3: Estimate the system state when si[k− 1] = 0. The expected

system state E(xi[k]|x̂i[k − 1], zi|j[k], si[k − 1] = 0) can be estimated using UKF

through the following four sub-steps [26]: (a) select sigma points from x̂i[k − 1]; (b)

predict system state by instantiating the sigma points through the system dynamics

f(.); (c) select new sigma points from the predicted state, and predict measurement

by instantiating the sigma points through the measurement model g(.); (d) update

the Kalman gain and find the expected state E(xi[k]|x̂i[k − 1], zi|j[k], si[k − 1] = 0)

and covariance E(Pi[k]|Pi[k − 1], zi|j[k], si[k − 1] = 0).

Step 4: Estimate the system state when si[k− 1] = 1. Uncertainty

evaluation is necessary in this step, and the expected system state is derived by

integrating MPCM and UKF using the following three sub-steps (a)-(c).

(a). Estimate system state at each selected MPCM point. At each selected

MPCM point Al (l = 1, ...,
∏m

p=1 np), the system state can be estimated from the

UKF procedure shown in Step 3 , (a)-(d). Denote the estimated state from UKF at

each sample point as x̂li[k] with the covariance Pl
i[k] (l = 1, ...,

∏m
p=1 np).

(b). Find the reduced polynomial mappings. Define system mappings G′xi(x̂i[k−

1], ai[T
i
l ]) and G′Pi(x̂i[k− 1], ai[T

i
l ]) as the relationships between the expected system

state and covariance with the random variable ai[T
i
l ]. According to Lemma 1, the

reduced-order mappings can be found respectively as

G′xi(x̂i[k − 1], ai[T
i
l ]) =

n1−1∑
q1=0

n2−1∑
q2=0

...

nm−1∑
qm=0

Ωx
q1,...,qm

(x̂i[k − 1])
m∏
p=1

a
qp
i,p,
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G′Pi(x̂i[k − 1], ai[T
i
l ]) =

n1−1∑
q1=0

n2−1∑
q2=0

...
nm−1∑
qm=0

ΩP
q1,...,qm

(x̂i[k − 1])
m∏
p=1

a
qp
i,p.

(c). Find the expected system state and covariance. The expected system state

and covariance are then found from the mean output of the system mapping according

to Lemma 1 and the MPCM design procedure [23], E(xi[k]|x̂i[k−1], zi|j[k], si[k−1] =

1) = E[G′xi(x̂i[k − 1], ai[T
i
l ])], E(Pi[k]|Pi[k − 1], zi|j[k], si[k − 1] = 1) = E[G′Pi(x̂i[k −

1], ai[T
i
l ])].

Step 5: Estimate the expected system state. The estimated state and

covariance are then derived from Steps 3 and 4 according to Theorem 4 as

E(xi[k]|x̂i[k − 1], zi|j[k])

=PE(xi[k]|x̂i[k − 1], zi|j[k], si[k − 1] = 1])

+ (1− P )E(xi[k]|x̂i[k − 1], zi|j[k], si[k − 1] = 0]),

E(Pi[k]|Pi[k − 1], zi|j[k])

=PE(Pi[k]|Pi[k − 1], zi|j[k], si[k − 1] = 1])

+ (1− P )E(Pi[k]|Pi[k − 1], zi|j[k], si[k − 1] = 0]).

As such, the estimator of xi[k] is x̂i[k] = E(xi[k]|x̂i[k − 1], zi|j[k]), and the expected

error covariance is Pi[k] = E(Pi[k]|Pi[k − 1], zi|j[k]).

Remark 3. The performance of the state estimation algorithm is jointly determined

by UKF and MPCM. UKF addresses the nonlinear system dynamics and measurement

models. MPCM effectively samples the random switching behavior. The accuracy of

MPCM is guaranteed by Lemma 1. Note that UKF is not an optimal estimator. It

has been practically used to provide approximations to optimal solutions with cer-

tain accuracy. Performance analysis on UKF for general systems is limited in the

literature. When the measurement model is linear, the estimation error of UKF is

bounded when an extra positive definite matrix is added in the calculated covariance
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matrix [35]. Here we use the UKF method to address random switching system dy-

namics. The use of MPCM does not deteriorate the convergence or the optimality of

state estimation as guaranteed by Lemma 1.

3.4 Illustrative Examples

Consider a five-UAV network to support a surveillance-like mission. UAVs move

independently according to the ST RMM described in Section 3.2.1. The randomly-

generated trajectories of the UAVs are shown in Fig. 3.2(a).

A three-sector directional antenna is mounted on each UAV to communicate

with its neighbor UAVs over long distances upon an ID-based fixed communication

topology (Fig. 3.2(b)). To maximize the communication performance, each UAV

controls the heading directions of its antennas to maximize the the received signal

strength indicators (RSSI), which measure the communication channel performance.

The cost function in this example is Ji,j = −E[
∑N

k=0Ri,j[k]], where Ri,j, the RSSI

that UAV i receives from its neighbor j is Ri,j[k] = Pt|dBm+20 log10( λ
4πd[k]

)+Gl|dBi[k]

(see [2] for the details), and N is the experimental time. Here Pt|dBm is the transmit-

ted signal power, λ is the wavelength, d[k] is the distance between neighboring UAVs,

and Gl|dBi[k] is the sum of gains of the two antennas, which depends on their heading

angles. Measurements are GPS corrupted with Gaussian white noise. The perfor-

mances of the designed estimators and controllers are simulated for all five UAVs

and communication links. We here only show the performance of UAV 3, and its

communication link to UAV 2.

We first investigate the computation load reduction of the MPCM through a

comparative study. Since two type 1 random variables are involved, the number of

uncertain parameters in the system mapping G(a1, a2) is m = 2. We select n1 = 2

for the degree of a1 = vi[T
i
l ] and n2 = 3 for a2 = ri[T

i
l ]. With this parameter setting,

35



-20 -10 0 10 20

X (km)

-20

-10

0

10

20

Y
 (

k
m

)
UAV 1

UAV 2

UAV 3

UAV 4

UAV 5

(a)

(b)

Figure 3.2. (a) Sample trajectories of the UAVs, (b) Communication topology of the
five-UAV network.
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∏m
p=1 np = 6 MPCM points are selected according to the MPCM procedure [23]. For

the optimal control solution developed in 3.3.1, the Monte Carlo method requires

about 8000 sample points to converge to the output mean, while the MPCM method

only needs 6 points to converge to the correct result. The significant reduction of

computation load shows the value of MPCM to facilitate online uncertainty evalua-

tion.

We then analyze performance of the state estimator designed in Section 3.3.2

(see Fig. 3.4) . The estimated trajectory matches well with the real UAV trajectory,

and the estimation errors are much smaller than the errors of GPS signals, which

validates the effectiveness of the estimation solution.

Finally, we simulate the optimal controller designed based on the estimated

states. Fig. 3.4(a) shows the controlled heading directions of the directional antenna

mounted on UAV 3 to communicate with UAV 2, and Fig. 3.4(b) shows the errors

between the controlled and real optimal heading directions. The controlled directional

antenna heading direction is very close to the optimal solution, and the errors are

within (−0.2, 0.15) rad, which validates effectiveness of the proposed adaptive optimal

control solution.
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Figure 3.3. Estimation performance. (a) Trajectory of UAV 3. (b) Estimation errors.
.
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Figure 3.4. Control performance. (a) Optimal headings of directional antenna on
UAV 3 to communicate with UAV 2. (b) Errors between the optimal and the con-
trolled heading angles of the directional antenna.
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CHAPTER 4

ADAPTIVE OPTIMAL CONTROL FOR STOCHASTIC MULTI-PLAYER

DIFFERENTIAL GAMES USING ON-POLICY AND OFF-POLICY

REINFORCEMENT LEARNING

4.1 Introduction

Game theory has been widely used in multi-player systems to obtain decisions

that optimize individual payoffs [36–41]. In the traditional game theory, a player

finds the best strategy to minimize a static and immediate cost [36–38]. Recently,

differential games were combined with control theory to study dynamical systems that

involve the evolution of the players’ payoff functions [40–42]. Widely used differential

games include the two-player zero-sum game, which provides solutions for pursuit-

evasion games and H∞ design for disturbance attenuation [42], and the multi-player

nonzero-sum game, which finds applications in e.g., the control of transportation

networks and the cooperative control of multiple robots with individual goals [41].

Most existing studies on differential games assume deterministic dynamics. In reality,

multi-dimensional uncertainties, such as uncertain player intentions and environmen-

tal impacts often modulate system dynamics in a complicated fashion. As such, in

this chapter, we formulate and study practical Nash solutions for new stochastic two-

player zero-sum and multi-player nonzero-sum games, where the system dynamics are

modulated by muti-dimensional time-varying random parameters.

For deterministic differential games, the Nash equilibrium solutions rely on

solving Hamiltonian-Jacobi-Bellman (HJB) equations for nonlinear systems or the

game algebraic Riccati equation (GARE) for linear systems. However, solving HJB
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or GARE equations analytically is difficult or even impossible [41]. Moreover, this

method requires the full knowledge of system dynamics, and only provides an offline

solution. As such, the RL method has been developed to solve the differential games

online [43–47]. We also explore RL to develop online solutions in this paper for the

new games with dynamics modulated by uncertainties.

The RL method was developed based on the idea that successful decisions should

be remembered as a reinforcement signal, such that they are more likely to be used

in future decisions [48–54]. RL has been used to find the Nash equilibrium solutions

online for multi-player differential games. In particular, for the two-player zero-sum

game, paper [43] presented an adaptive dynamic programming (ADP) based learning

algorithm and used integral RL (IRL) to find the optimal policies online. However,

the developed method uses a two-loop iteration algorithm to update the policies

of the two players in sequence, which can be time-consuming. To deal with this

problem, paper [55] developed a single-loop iteration algorithm that updates the two

players’ control policies simultaneously. In addition, to deal with the systems with

unknown dynamics, paper [56] developed a model-free IRL for the two-player zero-

sum differential game using Q-learning. For the multi-player nonzero-sum game,

paper [46] developed an ADP algorithm that finds the Nash equilibrium online using

IRL and partial information of the system dynamics. To deal with the systems

of totally unknown dynamics, paper [47] established an off-policy IRL to solve the

nonlinear continuous-time multi-player nonzero-sum games at the cost of additional

computation. The off-policy method solves the value function and optimal control

policies simultaneously using both critic and actor neural networks (NNs), and does

not require knowledge of the system dynamics. All these aforementioned studies

assume time-invariant and deterministic system dynamics.
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To address uncertainties in differential games operating in realistic environ-

ments, practical uncertainty evaluation methods are needed to evaluate expected

costs [30, 57–60]. The most widely used simulation-based uncertainty evaluation

methods are the MC method and its variants including the Makrov Chain MC and

Sequential MC [61–63]. However, the MC-based methods require a large number

of simulations to estimate the expected cost function accurately, which make them

unrealistic for online algorithms. To improve the computational efficiency, other un-

certainty sampling methods including Latin Hypercube sampling [64], importance

sampling [65], multilevel MC [66], greedy and adaptive sampling [67, 68] have also

been developed. However, none of them can estimate expected system outputs ac-

curately with a computational load. To deal with this challenge, papers [23, 69]

developed effective uncertainty evaluation methods, named the MPCM and its vari-

ant MPCM-OFFD, which accurately estimate the expected output mean of a system

mapping by smartly selecting a small set of samples according to the uncertainties’

statistics (e.g., probability density functions). Papers [70, 71] further integrated the

MPCM with the discrete-time RL to solve optimal control problems online for un-

certain systems. Here in this chapter, we study the integrated MPCM and IRL to

effectively solve stochastic multi-player differential games online.

This chapter, for the first time in the literature per our knowledge, analyzes

multi-player differential games for systems modulated by general randomly time-

varying parameters, and develops effective online learning methods to solve such

stochastic games. The main contributions of this chapter are four-fold: 1) The for-

mulation of two-player zero-sum and multi-player nonzero-sum games for systems

modulated by time-varying random parameters, which capture stochastic environ-

mental impacts and random player intentions [4, 5, 72]; 2) The analysis of the for-

mulated differential game properties, including stability and Nash equilibrium; 3)
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A novel policy iteration algorithm that integrates IRL and an effective uncertainty

sampling method: MPCM, to provide an effective online solution for these stochas-

tic games; and 4) The integration of off-policy IRL and the MPCM to solve these

stochastic games online without knowing the system dynamics.

The rest of this chapter is organized as follows. Section 4.2 formulates the

stochastic two-player zero-sum and multi-player nonzero-sum games and presents

preliminaries to facilitate the analysis in this chapter. Sections 4.3 and 4.4 study the

properties and online solutions of these two stochastic games. Section 4.5 presents

the simulation studies that demonstrate performances of the proposed solutions.

4.2 Problem Formulation and Preliminaries

In this section, we first formulate two stochastic multi-player games with gen-

eral linear uncertain dynamics, including the two-player zero-sum and multi-player

nonzero-sum games. Preliminaries are then introduced to facilitate the analysis in

the chapter.

4.2.1 Problem Formulation

Game 1: Stochastic two-player zero-sum game. Consider a generic two-

player linear system with a randomly time-varying vector a(t) of dimension m,

ẋ = A(a)x + Bu + Cd, (4.1)

where x = x(t) ∈ Rn is the system state vector, u = u(t) ∈ Rp is the control input,

d = d(t) ∈ Rq is the adversarial control input. A(a), B, and C are the drift dynamics,

input dynamics, and adversarial input dynamics respectively. Each element of a(t),

ap(t) (p = 1, 2, · · · ,m), changes independently over time with pdf fAp(ap(t)), and the
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sample functions of ap(t) are well-behaved so that the sample equations for (4.1) are

ordinary differential equations [73,74].

This stochastic game formulation has a wide range of potential applications,

e.g., the pursuit-evasion games and H∞ design for disturbance attenuation in real

environments modulated by uncertain parameters. One specific example is the aircraft

dynamics described as v̇(t) = −Kv(t)+Fu(t)+Fd(t). Here v is the velocity, Fu(t) is

the controlled thrust force, Fd(t) is the disturbance force, and K is the air resistance

coefficient. The air resistance coefficient, related to air density and air humidity, is

a randomly time-varying parameter affected by uncertain weather conditions. The

statistics (e.g., pdfs) of such weather conditions can be obtained from probabilistic

weather forecasts.

The expected cost to optimize is

J(x(0),u,d) = E

ï∫ ∞
0

r(x,u,d)dt

ò
= E

ï∫ ∞
0

Ä
x

T

Qx + u
T

Ru− γ2‖d‖2
ä
dt

ò
,

(4.2)

where Q and R are positive semidefinite and positive definite matrices, respectively,

and γ is the amount of attenuation from the disturbance input to the defined perfor-

mance.

The value function V (x(t)) corresponding to the performance index is defined

as

V (x(t)) = E

ï∫ ∞
t

Ä
x

T

Qx + u
T

Ru− γ2‖d‖2
ä
dτ

ò
. (4.3)

Define the two-player zero-sum differential game as

V ∗(x(0)) = min
u

max
d

J(x(0),u,d), (4.4)

where V ∗(x(0)) is the optimal value function. In the two-player zero-sum game, one

player u seeks to minimize the value function, and the other d seeks to maximize it.
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Game 2: Stochastic multi-player nonzero-sum game. Consider a generic

N -player linear system with a time-varying uncertain vector a(t) of dimension m. The

system dynamics is

ẋ = A(a)x +
N∑
j=1

Buj, (4.5)

where x = x(t) ∈ Rn is the system state vector, uj = uj(t) ∈ Rp is the control input

of player j, A(a) and B are the drift dynamics and input dynamics, respectively.

Each element of a(t), ap(t) (p = 1, 2, · · · ,m), changes independently over time with

pdf fAp(ap(t)), and the sample functions of ap(t) are well-behaved so that the sample

equations (4.5) are ordinary differential equations [73,74].

The expected cost to optimize for player i is

Ji(x(0),ui,u−i) = E

ï∫ ∞
0

ri(x,ui,u−i)dt

ò
= E

[∫ ∞
0

(
x

T

Qix +
N∑
j=1

u
T

j Rijuj

)
dt

]
,

(4.6)

where u−i is the supplementary set of ui: u−i = {uj, j ∈ (1, 2, · · · , i−1, i+1, · · · , N)}.

Qi and Rij (i 6= j) are positive semidefinite matrices, and Rii is positive definite.

The value function for player i is defined as

Vi(x(t)) = E

[∫ ∞
t

(
x

T

Qix +
N∑
j=1

u
T

j Rijuj

)
dτ

]
. (4.7)

Define the multi-player differential game as

V ∗i (x(0)) = min
ui

Ji(x(0),ui,u−i), (4.8)

where V ∗i (x(0)) is the optimal value function for player i. In the multi-player game,

each player tries to minimize its cost by choosing its control policy ui based on the

full state information of the system.
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4.2.2 Preliminaries

Definition 1. [73] The equilibrium solution of a system is said to be stable in the

mean (norm) if for any ε > 0 there exists a δ(ε) > 0, such that for any initial condition

satisfying ‖x0‖ < δ(ε),

E{‖x(t)‖} < ε

for all t ≥ t0.

It is assumed that the system described in (4.1) is stabilizable in the mean, that

is, there exist control policies u = −Kux and d = −Kdx such that the closed-loop

system ẋ = (A(a)−BKu −CKd)x is stable in the mean.

Definition 2. [73] The equilibrium solution is said to be asymptotically stable in the

mean (norm) if it is stable in the mean and moreover, there exists a δ(t0) > 0 such

that for any initial condition satisfying ‖x0‖ < δ(t0),

lim
t→∞

E{‖x(t)‖} → 0.

Definition 3. [75] The system (4.1) is said to have L2-gain less than or equal to γ

if the following disturbance attenuation condition is satisfied for all T ≥ 0 and all

d ∈ L2[0,∞) with x(0) = 0, where 0 is a zero matrix with proper dimensions:∫ T
0
‖z(τ)‖2dτ∫ T

0
‖d(τ)‖2dτ

≤ γ2,

where ‖z(t)‖2 = x
T
Qx + u

T
Ru, d(t) is the disturbance input, and γ is the amount

of attenuation.

It is assumed that γ in (4.2) satisfies γ > γ∗, where γ∗ is the smallest γ that

satisfies the disturbance attenuation condition for all possible A(a), to make sure

that the system is always stabilizable.
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Definition 4. [40] Policies {u∗1,u∗2, · · · ,u∗N} are said to constitute a Nash equilibrium

solution for the N -player game if the following equation is satisfied for ∀ui,∀i ∈ N .

J∗i (u∗1,u
∗
2, · · · ,u∗i , · · · ,u∗N) ≤ Ji(u

∗
1,u

∗
2, · · · ,ui, · · · ,u∗N).

The N -tuple {J∗1 , J∗2 , · · · , J∗N} is known as a Nash equilibrium value set of the N -

player game.

Lemma 2. [73, Theorem II] Consider a system ẋ = f(x(t), a(t)), where a(t) is

a vector of time-varying random parameters. If there exists a Lyapunov function

Ṽ (x(t)) defined over the state space and satisfies the conditions listed as follows (a−d),

then the equilibrium solution of the system is asymptotically stable in the mean.

a. Ṽ (0) = 0.

b. Ṽ (x(t)) is continuous with both x and t, and the first partial derivatives in

these variables exist.

c. Ṽ (x(t)) ≥ b‖x‖ for some b > 0.

d. E
[

˙̃V (x(t))
]

is negative definite.

4.3 Stochastic Two-Player Zero-Sum Game

In this section, we study the properties and optimal solutions of the stochastic

two-player zero-sum game. Section 4.3.1 studies the stability and Nash equilibrium

of the proposed game, and Section 4.3.2 develops both on-policy and off-policy IRL

solutions to solve the game online.

4.3.1 Stability and Nash Equilibrium

With the value function defined in (4.3), the following Bellman equation can be

derived by taking derivative of V (x(t)) with respect to time t.

r(x,u,d) + E

ñ
∂V

T

∂x
(A(a)x + Bu + Cd)

ô
= 0. (4.9)
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with the Hamiltonian function

H(x,u,d,
∂V

∂x
) = r(x,u,d) + E

ñ
∂V

T

∂x
(A(a)x + Bu + Cd)

ô
. (4.10)

The optimal control policies u∗ and d∗ can be derived by employing the sta-

tionary conditions in the Hamiltonian function [40, Page 447],

∂H

∂u
= 0→ u∗ = −1

2
R−1B

T ∂V ∗

∂x
,

∂H

∂d
= 0→ d∗ =

1

2γ2
C

T ∂V ∗

∂x
.

(4.11)

Substituting (4.11) into the Bellman Equation (4.9), the following Hamilton-

Jacobi-Bellman (HJB) equation is obtained.

H(x,u∗,d∗, V ∗X) = x
T

Qx + E
[
V ∗X

T

A(a)x− 1

4
V ∗X

T

BR−1B
T

V ∗X

+
1

4γ2
V ∗X

T

CC
T

V ∗X

]
= 0, V (0) = 0,

(4.12)

where V ∗X = ∂V ∗

∂x
.

Note that the HJB Equation (4.12) contains the randomly time-varying vector,

a(t). Compared to the HJB equation defined in deterministic systems, (4.12) is harder

to solve, as it involves the evaluation of uncertainty which can be computationally

expensive. In the next subsection, we introduce an effective uncertainty evaluation

method, and show its integration with learning methods to solve the HJB Equation

(4.12) online.

Lemma 3. For any admissible control and disturbance policies u and d, let V ≥ 0 be

the corresponding solution to the Bellman Equation (4.10), then the following equation

holds [40, Lemma 10.2-1].

H(x,u,d, VX) =H(x,u∗,d∗, VX)

+ (u− u∗)T R (u− u∗)− γ2‖d− d∗‖2,

where u∗ and d∗ are described in (4.11), and VX = ∂V
∂x

.
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Proof. Combining Equations (4.10) and (4.11), the Hamiltonian function can be fur-

ther written as

H(x,u,d, VX)

= r(x,u,d) + E
î
V

T

X (A(a)x + Bu + Cd)
ó

= x
T

Qx + E
î
V

T

X (A(a)x)
ó

+ V
T

X (Bu + Cd) + u
T

Ru− γ2‖d‖2

= x
T

Qx + E
î
V

T

X (A(a)x)
ó

+

Å
1

2
V

T

XBR−1 + u
T

ã
R

Å
1

2
R−1B

T

VX + u

ã
− γ2

∥∥∥∥Åd− 1

2γ2
C

T

VX

ã∥∥∥∥2

− 1

4
V

T

XBR−1B
T

VX +
1

4γ2
V

T

XCC
T

VX

= H(x,u∗,d∗, VX) + (u− u∗)
T

R (u− u∗)− γ2‖d− d∗‖2,

which derives Lemma 3.

Theorem 5. Let V (x(t)) > 0 be a smooth function satisfying the HJB equation

described in (4.12), then the following statements hold.

1). The system (4.1) is asymptotically stable in the mean with the policies u∗

and d∗ described in (4.11).

2). The solution (i.e., policies u∗ and d∗) derived in (4.11) provides a saddle

point solution to the game, and the system is in Nash equilibrium with this solution.

Proof. 1) Stability. Choose the Lyapunov function candidate as

Ṽ (x(t)) =

∫ ∞
t

Ä
x

T

Qx + u
T

Ru− γ2‖d‖2
ä
dτ.

Since the attenuation condition is satisfied, there always exists a positive definite

matrix P such that Ṽ (x(t)) = x
T
Px [76, Page 337]. As such, one has

Ṽ (x(t)) =

∫ ∞
t

Ä
x

T
Qx + u

T
Ru− γ2‖d‖2

ä
dτ ≥ 0, (4.13)

49



and Ṽ (x(t)) = 0 if and only if x = 0. Denote the derivation of Ṽ with respect to

time t as ˙̃V , then the expectation of ˙̃V is

E
[

˙̃V (x(t))
]

= E

ñ
∂Ṽ

∂x
ẋ

ô
= E [VX(A(a)x + Bu + Cd)]

= H(x,u,d, VX)−
Ä
x

T

Qx + u
T

Ru− γ2‖d‖2
ä

= H(x,u∗,d∗, VX) + (u− u∗)
T

R (u− u∗)− γ2‖d− d∗‖2 −
Ä
x

T

Qx + u
T

Ru− γ2‖d‖2
ä
.

The last equality is obtained from Lemma 3. Selecting u = u∗ and d = d∗, one has

E
[

˙̃V (x(t))
]

= −
Ä
x

T

Qx + u
T

Ru− γ2‖d‖2
ä
≤ 0,

and E
[

˙̃V (x(t))
]

= 0 if and only if x = 0. Therefore Ṽ is a Lyapunov function for x.

According to Lemma 2, the system described in (4.1) is asymptotically stable in the

mean.

2) Nash Equilibrium. Since the system is asymptotically stable in the mean, we

have E{‖x(t)‖} = 0 holds when t→∞. Therefore the cost function can be rewritten

as

J(x(0),u,d)

= E

ï∫ ∞
0

Ä
x

T

Qx + u
T

Ru− γ2‖d‖2
ä
dt+ V (x(0)) +

∫ ∞
0

V̇ dt

ò
= E

ï∫ ∞
0

Ä
r(x,u,d) + V

T

X (A(a)x + Bu + Cd)
ä
dt

ò
+ V (x(0))

= E

ï∫ ∞
0

Ä
(u− u∗)

T

R (u− u∗)− γ2‖d− d∗‖2
ä
dt

ò
+ V (x(0)).

(4.14)

The last equality is obtained by combining (4.10) and Lemma 3.

It can be seen from (4.14) that J(x(0),u∗,d) ≤ J(x(0),u∗,d∗) ≤ J(x(0),u,d∗),

and thus, the Nash equilibrium is obtained.
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4.3.2 Approximate Solutions using On-Policy and Off-Policy IRL and The MPCM

Solving the HJB Equation (4.12) analytically is extremely difficult or even im-

possible [75]. Here we integrate IRL and the MPCM to provide effective online

algorithms to approximate the solution of the HJB equation.

The IRL Bellman equation can be written as

V (x(t)) = E

ñ∫ t+T

t
r(x(τ),u(τ),d(τ))dτ + V (x(t+ T ))

ô
, (4.15)

where T is the time interval.

It is assumed that there exists a weight W such that the value function is

approximated as

V (x) = W
T

φ(x), (4.16)

where φ(x) is the polynomial basis function vector.

4.3.2.1 On-Policy IRL

With the value function approximation (VFA), one can find the optimal so-

lution from the policy iteration (PI) algorithm by iteratively conducting two steps:

policy evaluation, which evaluates the value function V (x) using (4.15); and policy

improvement [40], which finds the optimal solution based on the current approxi-

mated value function using (4.11). For systems with uncertain system dynamics, the

policy evaluation step involves uncertainty evaluation, which is typically solved by

the Monte Carlo method, too slow to be used for online solutions.

Here we utilize an effective uncertainty evaluation method, called the mul-

tivariate probabilistic collocation method (MPCM) [23]. To map to the MPCM

framework, we denote the generic function whose expectation to be evaluated as

G(a1, a2, · · · , am), which is modulated by m uncertain parameters, i.e., a1, a2, · · · , am,
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with the degree of each parameter up to 2np− 1, where p = 1, 2, · · · ,m. The MPCM

accurately evaluates the output mean of G by conducting the following three steps:

1) Selecting a limited number of sample points according to the Gaussian Quadrature

rules and the pdfs of the uncertain parameters, i.e., fAp(ap(t)); 2) Evaluating the sys-

tem outputs at selected sample points; and 3) Finding the output mean of G from a

reduced-order mapping G′. The properties of the MPCM are briefly described in the

following lemma. For the detailed MPCM design procedure, please refer to [23].

Lemma 4. [23, Theorem 2] Consider a system mapping modulated by m independent

uncertain parameters:

G(a1, a2, · · · , am) =

2n1−1∑
q1=0

2n2−1∑
q2=0

· · ·
2nm−1∑
qm=0

ψq1,q2,··· ,qm

m∏
p=1

aqpp , (4.17)

where ap is an uncertain parameter with the degree up to 2np−1, p = 1, 2, · · · ,m. np is

a positive integer, and ψq1,q2,··· ,qm ∈ R are the coefficients. Each uncertain parameter

ap follows an independent pdf fAp(ap). The MPCM approximates G(a1, a2, · · · , am)

with the following low-order mapping

G′(a1, a2, · · · , am) =

n1−1∑
q1=0

n2−1∑
q2=0

· · ·
nm−1∑
qm=0

Ωq1,q2,··· ,qm

m∏
p=1

aqpp ,

with E [G(a1, a2, · · · , am)] = E [G′(a1, a2, · · · , am)], where Ωq1,q2,··· ,qm ∈ R are coeffi-

cients.

As showed in the above Lemma, the MPCM reduces the number of simulations

from 2m
∏m

p=1 np to
∏m

p=1 np. Despite the significant reduction of computation by 2m,

the MPCM accurately predicts the output mean [23]. Here we integrate the MPCM

into IRL to provide effective online learning-based solutions for differential games of

systems with randomly time-varying parameters.

Define a system mapping subject to uncertain parameters a(t), GV (t)(x,u,d, a) =∫ t+T
t

r(x(τ),u(τ),d(τ))dτ + V (x(t + T )). Given the current system state x(t) and
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admissible control and disturbance policies u(t) and d(t), the value function de-

scribed in (4.15) can be approximated by the mean output of the system mapping

GV (t)(x,u,d, a) (i.e., V (x) = E[GV (t)(x,u,d, a)]), using the MPCM. In particular,

we select a set of samples based on the pdfs of uncertain parameters, fAp(ap), and run

simulations at these samples to estimate E[GV (t)(x,u,d, a)]. Under the assumption

that each uncertain parameter ap has a degree up to 2np− 1, GV (t)(x,u,d, a) has the

following form,

GV (t)(x,u,d, a) =

2n1−1∑
q1=0

2n2−1∑
q2=0

· · ·
2nm−1∑
qm=0

ψq1,q2,··· ,qm(x,u,d)
m∏
p=1

aqpp . (4.18)

With this mapping, the value function can be estimated from the mean output

of a reduced-order mapping according to Lemma 4 as

V (x(t)) = E[GV (t)(x,u,d, a)] = E
î
G′V (t)(x,u,d, a)

ó
, (4.19)

where G′V (t)(x,u,d, a) is the reduced-order mapping derived from the MPCM proce-

dure [23],

G′V (t)(x,u,d, a) =

n1−1∑
q1=0

n2−1∑
q2=0

· · ·
nm−1∑
qm=0

Ωq1,q2,··· ,qm(x,u,d)
m∏
p=1

aqpp . (4.20)

The PI algorithm that integrates IRL and the MPCM for the two-player zero-

sum game with uncertain system dynamics is summarized in Algorithm 3.
Algorithm 3 Policy iteration algorithm for two-player zero-sum game with

uncertain system dynamics

1: Initialize the players with initial state x(0) and admissible control and disturbance

policies u(0) and d(0).

2: Apply the MPCM procedure [23, Section II] to select a set of samples for the

uncertain vector a(t).

3: For each iteration s, find the value of∫ t+T

t

r
Ä
x(τ),u(s)(τ),d(s)(τ)

ä
dτ + W(s−1)Tφ(x(t+ T ))
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at each MPCM sample.

4: Find the value function V (s)(x(t)) using the MPCM [23], which is the mean output

of the mapping GV (s)(·) subject to uncertain parameters a(t),

GV (s)

Ä
x,u(s),d(s), a

ä
= W(s−1)Tφ(x(t+ T )) +

∫ t+T

t

r
Ä
x(τ),u(s)(τ),d(s)(τ)

ä
dτ.

(4.21)

5: Update the value function weight vector W(s) according to the estimated V (s)(x(t)).

W(s)Tφ(x(t)) = V (s)(x(t)).

6: Update the control and disturbance policies u(s+1) and d(s+1) as

u(s+1) = −1

2
R−1B

T ∂V (s)

∂x
,

d(s+1) =
1

2γ2
C

T ∂V (s)

∂x
.

(4.22)

7: Repeat procedures 3− 6.

Theorem 6. Consider the stochastic two-player zero-sum game shown in (4.1)-(4.4).

The uncertainties in the system dynamics ap follow time-invariant pdfs fAp(ap). As-

sume 1) VFA in (4.16) holds, 2) the relation between the value function V (x(t)) and

the uncertain parameters a(t) can be approximated by a polynomial system mapping

(4.21) with the form of (4.17), and 3) Algorithm 3 converges. Then the policies u

and d derived from Algorithm 3 are optimal policies.

Proof. The control and disturbance policies derived by evaluating the original value

function mapping GV (t)(x,u,d, a) is optimal according to Theorem 5 and (4.19). As

such, to prove this theorem, we only need to show that the two optimal solutions,

which are found by evaluating the reduced-order mapping G′V (t)(x,u,d, a) and the

original value function mapping GV (t)(x,u,d, a), are the same. Lemma 4 proved

that E[G′V (t)(x,u,d, a)] = E[GV (t)(x,u,d, a)], and hence the equivalence of the two

optimal solutions can be proved from a contradiction method following a similar

argument as described in [70, Theorem 1].
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4.3.2.2 Off-Policy IRL

Algorithm 3 learns the optimal solution online with knowledge of the system

dynamics (i.e., matrix B and C). In addition, the on-policy learning algorithm re-

quires both control and disturbance policies to be adjustable to learn the optimal

solution.

In this subsection, we provide an off-policy IRL algorithm and use three neural

networks (NNs), including critic NN, actor NN, and disturbance NN, to learn the

optimal solution online without requiring to know the system dynamics,i.e., matrix

B and C, or manipulating the disturbance policies.

To this end, we introduce auxiliary variables u(s) and d(s), and hence the system

dynamics described in (4.1) is further written as

ẋ = A(a)x + Bu(s) + Cd(s) + B
Ä
u− u(s)

ä
+ C
Ä
d− d(s)

ä
. (4.23)

Here u and d are behavior policies applied to the system to generate data for learning,

and u(s) and d(s) are the desired policies to be updated.

Differentiating the value function V (s)(x(t)) of the system (4.23), one has

V̇ (s)(x(t)) = E
î
V

(s)
X

T
Ä
A(a)x + Bu(s) + Cd(s)

äó
+ V

(s)
X

T
Ä
B
Ä
u− u(s)

ä
+ C
Ä
d− d(s)

ää
= −
Ä
x

T

Qx + u(s)TRu(s) − γ2‖d(s)‖2
ä

− 2u(s+1)TR
Ä
u− u(s)

ä
+ 2γ2d(s+1)T

Ä
d− d(s)

ä
.

The second equality is obtained by combining the Hamiltonian function (4.10) and

(4.22).

Integrating both sides in (4.24), one has

V (s)(x(t+ T ))− V (s)(x(t))

= E

ñ∫ t+T

t

Ä
−x

T

Qx− u(s)TRu(s) + γ2‖d(s)‖2
ä
dτ

ô
+

∫ t+T

t

(
− 2u(s+1)TR

Ä
u− u(s)

ä
+ 2γ2d(s+1)T

Ä
d− d(s)

ä)
dτ.
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Note that for any fixed admissible control and disturbance behavior policies u

and d, (4.24) can be solved for the value function V (s) and the optimal control and

disturbance polices u(s+1) and d(s+1) simultaneously, using the following NNs.

V (s)(x) = W(s)Tφ(x),

u(s+1)(x) = W(s+1)
u

T

φu(x),

d(s+1)(x) = W
(s+1)
d

T

φd(x).

(4.24)

The detailed algorithm that integrates off-policy IRL and the MPCM is de-

scribed in Algorithm 4.
Algorithm 4 Off-policy IRL for two-player zero-sum game with uncertain system

dynamics

1: Initialize the players with initial state x(0) and admissible control and disturbance

policies u(0) and d(0).

2: Apply the MPCM procedure [23, Section II] to select a set of samples for the

uncertain vector a(t).

3: For each iteration s, find the value of

V (s)(x(t+ T )) +

∫ t+T

t

Ä
x

T
Qx + u(s)TRu(s) − γ2‖d(s)‖2

ä
dτ (4.25)

at each MPCM sample.

4: Find the mean output of mapping Go
V (s)(·) subject to uncertain parameters a(t)

using the MPCM [23],

Go
V (s)

Ä
x,u(s),d(s), a

ä
= V (s)(x(t+ T )) +

∫ t+T

t

Ä
x

T

Qx + u(s)TRu(s) − γ2‖d(s)‖2
ä
dτ.

(4.26)

5: Solve the following equation for V (s)(x), u(s+1), and d(s+1) simultaneously.

E
î
Go
V (s)

Ä
x,u(s),d(s), a

äó
= V (s)(x(t))−

∫ t+T

t

(
2u(s+1)TR

Ä
u− u(s)

ä
− 2γ2d(s+1)T

Ä
d− d(s)

ä)
dτ.

(4.27)
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6: Repeat procedures 3− 5.

Theorem 7. Consider the stochastic two-player zero-sum game shown in (4.1)-(4.4).

The uncertainties in the system dynamics ap follow time-invariant pdfs fAp(ap). As-

sume 1) VFA in (4.24) holds, 2) the relation between the value function V (x(t)) and

the uncertain parameters a(t) can be approximated by a polynomial system mapping

(4.26) with the form of (4.17), and 3) Algorithm 4 converges. Then the policies

derived from off-policy IRL described in Algorithm 4 are optimal policies.

Proof. It has been proved that for a deterministic system dynamics, the solutions

derived from the off-policy IRL and on-policy IRL are identical for the two-player

zero-sum game [75]. As such, for each MPCM sample point Al, l = 1, 2, · · · ,
∏m

p=1 np,

the value functions and optimal solutions derived from the on-policy and off-policy

IRL algorithms are identical. Note that the expected value function is the weighted

average of the value functions derived at each sample point (see Lemma 4 and [23]).

As such, the expected value function derived from the two algorithms is identical,

and hence the off-policy solution is the optimal control policy.

Remark 4. In both algorithms, the disturbance needs to be measurable. For the off-

policy algorithm, the disturbance policy is not required to be adjustable. In particular,

in the off-policy algorithm, the control and disturbance policies u and d that are

applied to the system, can be different from the control and disturbance policies u(s)

and d(s) that are evaluated and updated. As such, in contrast to the on-policy IRL, the

applied disturbance input d in the off-policy IRL can be the actual external disturbance

that is not adjustable.

Remark 5. Note that the admissible control and disturbance policies initialize the

first step in Algorithm 4. They refer to control and disturbance policies that can

make the system stable. In the off-policy IRL, the exact system dynamics B and
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C are unknown. However, the ranges of parameters in the system dynamics are

often available due to the system’s physical properties to obtain an estimated range of

admissible control policies to initialize the off-policy IRL algorithm. It is also often

of practice to first try a PID controller for an unknown system, which gives a range

of admissible control policies for the initialization step.

Remark 6. Algorithms 3 and 4 integrate IRL and the MPCM, for the first time

in the literature, to solve the stochastic two-player zero-sum game. The uncertainty

evaluation in such stochastic optimal control problems are typically solved by Monte

Carlo method and its variants, which are time-consuming to use for online solutions.

The proposed algorithms find the optimal solutions accurately with computational effi-

ciency, as indicated in Lemma 4 and Theorems 6 and 7. The potential applications of

the two algorithms include the pursuit-evasion games and H∞ design for disturbance

attenuation in real environments modulated by uncertain parameters.

4.4 Multi-Player Nonzero-Sum Game

This section studies the stochastic N -player nonzero-sum game. Each player

aims to find its optimal control policy to minimize its own cost function. The prop-

erties and optimal solution of this game are analyzed in Section 4.4.1, and online

learning algorithms are provided in Section 4.4.2.

4.4.1 Stability and Global Nash Equilibrium

Consider the value function described in (4.7), the differential Bellman equation

can be found by taking derivative of Vi(x(t)) with respect to time t,

ri(x,ui,u−i) + E

[
∂V

T

i

∂x

(
A(a)x +

N∑
j=1

Buj

)]
= 0. (4.28)
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The Hamiltonian function is

Hi

Ç
x,ui,u−i,

∂V
T

i

∂x

å
= ri(x,ui,u−i) + E

[
∂V

T

i

∂x

(
A(a)x +

N∑
j=1

Buj

)]
. (4.29)

The optimal control policy u∗i is derived by employing the stationary condition

in the Hamiltonian function,

∂Hi

∂ui
= 0→ u∗i = −1

2
R−1
ii B

T ∂V ∗i
∂x

. (4.30)

Substituting (4.30) into the Bellman Equation (4.28), the following Hamilton-

Jacobi-Bellman (HJB) equation is obtained.

x
T
Qix + E

[
1

4

N∑
j=1

∂V ∗
T

j

∂x
BR−

T

jj RijR
−1
jj B

T ∂V
∗
j

∂x
+
∂V ∗

T

i

∂x

Ñ
A(a)x− 1

2

N∑
j=1

BR−1
jj B

T ∂V
∗
j

∂x

é]
= 0.

(4.31)

Lemma 5. For any admissible control policy ui, let Vi ≥ 0 be the corresponding

solution to the Bellman Equation (4.28), then the following equation holds.

Hi

Å
x,ui,u−i,

∂V T
i

∂x

ã
= Hi

Å
x,u∗i ,u

∗
−i,

∂V T
i

∂x

ã
+

N∑
j=1

(
uj − u∗j

)T
Rij

(
uj − u∗j

)
+
∂V T

i

∂x

N∑
j=1

B
(
uj − u∗j

)
+ 2

N∑
j=1

(
u∗j
)T

Rij

(
uj − u∗j

)
.

Proof. Combining (4.29) and (4.30), Lemma 5 can be obtained naturally following a

similar procedure as described in Lemma 3.

Theorem 8. Let Vi be a smooth function satisfying the HJB Equation (4.31), then

the following statements hold.

1). The system (4.5) is asymptotically stable in the mean with the control policy

u∗i described in (4.30).
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2). The control policies [u∗1,u
∗
2, · · · ,u∗N ] derived in (4.30) are global Nash equi-

librium policies.

Proof. 1) Stability. Choose the Lyapunov function candidate for player i as Ṽi =∫∞
t

Ä
x

T
Qix +

∑N
j=1 u

T

j Rijuj
ä
dτ , then one has

E
î
Ṽi
ó

= E

[∫ ∞
t

(
x

T

Qix +
N∑
j=1

u
T

j Rijuj

)
dτ

]
≥ 0. (4.32)

The derivation of Ṽi with time t is derived as

E
[

˙̃V i

]
= E

ñ
∂Ṽi
∂x

ẋ

ô
= E

[
VX

(
A(a)x +

N∑
j=1

Buj

)]

= −x
T

Qix−
N∑
j=1

u
T

j Rijuj ≤ 0.

Therefore Ṽi is a Lyapunov function for x, and the system described in (4.5) is

asymptotically stable in the mean [73].

2) Nash Equilibrium. Since the system is asymptotically stable in the mean, we

have E{‖x(t)‖} = 0 holds when t→∞. Therefore the cost function can be rewritten

as

Ji(x(0),ui,u−i) = E

[∫ ∞
0

(
x

T

Qix +
N∑
j=1

u
T

i Rijui

)
dt

]
+ Vi(x(0)) + E

ï∫ ∞
0

V̇idt

ò
= Vi(x(0)) + E

[∫ ∞
0

( N∑
j=1

(
uj − u∗j

)T
Rij

(
uj − u∗j

)
+
∂V

T

i

∂x

N∑
j=1

B
(
uj − u∗j

)
+ 2

N∑
j=1

(
u∗j
)T

Rij

(
uj − u∗j

) )
dt.

The second equality is obtained by combining (4.29) and Lemma 2.

Assume all other players’ control policies are optimal, i.e., u−i = u∗−i, then we

have

Ji(x(0),ui,u
∗
−i) = Vi(x(0)) + E

ï∫ ∞
0

(ui − u∗i )
T

Rii(ui − u∗i )dt

ò
. (4.33)
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It can be seen from (4.33) that Ji(x(0),u∗i ,−u∗i ) < Ji(x(0),ui,−u∗i ) holds for every

player i, which proves the Nash equilibrium.

4.4.2 Approximate Solutions Using On-Policy and Off-Policy IRL and MPCM

The IRL Bellman equation for each player is given as [41]

Vi(x(t)) = E

ñ∫ t+T

t
ri(x(τ),ui(τ),u−i(τ))dτ + Vi(x(t+ T ))

ô
. (4.34)

where T is the time interval.

Assume there exists a weight Wi for each player i such that the value function

Vi(x) can be approximated as

Vi(x) = W
T

i φi(x), (4.35)

where φi(x) is the polynomial basis function vector for player i. Then based on this

VFA, the optimal control policy for each player can be learned iteratively from the

online learning algorithms by integrating IRL and the MPCM.

4.4.2.1 On-policy IRL

Define a system mapping GVi(t)(x,ui,u−i, a) =
∫ t+T
t

ri(x,ui,u−i)dτ + Vi(x(t+

T )). Then given any admissible control policies ui and u−i, the value function de-

scribed in (4.34) can be approximated by the expected output of GVi(t)(x,ui,u−i, a),

i.e., Vi(x) = E
[
GVi(t)(x,ui,u−i, a)

]
, using the MPCM.

Vi(x(t)) =E
[
GVi(t)(x,ui,u−i, a)

]
= E
î
G′Vi(t)(x,ui,u−i, a)

ó
, (4.36)

where G′Vi(t)(x,ui,u−i, a) is the reduced-order mapping derived from the MPCM pro-

cedure [23]. The detailed algorithm is described in Algorithm 5.
Algorithm 5 Policy iteration for multi-player nonzero-sum game with uncertain

system dynamics
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1: Initialize each player with initial state x(0) and admissible control policy ui(0),

i = 1, 2, · · · , N .

2: Apply the MPCM procedure [23, Section II] to select a set of samples for the

uncertain vector a(t).

3: For each iteration s, find the value of

∫ t+T

t
ri
Ä
x(τ),u

(s)
i (τ),u

(s)
−i (τ)

ä
dτ + W

(s−1)
i

T
φi(x(t+ T )) (4.37)

at each MPCM sample.

4: Find the value function V
(s)
i (x(t)) using the MPCM [23], which is the mean output

of the mapping G
V

(s)
i

(·) subject to uncertain parameters a(t),

G
V

(s)
i

Ä
x,u

(s)
i ,u

(s)
−i , a
ä

=

∫ t+T

t

ri
Ä
x(τ),u

(s)
i (τ),u

(s)
−i (τ)

ä
dτ + W

(s−1)
i

T

φi(x(t+ T )).
(4.38)

5: Update the value function weight vector W
(s)
i according to the estimated V

(s)
i (x(t)).

W
(s)
i

T

φi(x(t)) = V
(s)
i (x(t)).

6: Update the control policy ui using

u
(s+1)
i = −1

2
R−1
ii B

T ∂V
(s)
i

∂x
. (4.39)

7: Repeat procedures 3-6.

Theorem 9. Consider the stochastic multi-player nonzero-sum game shown in Equa-

tions (4.5)-(4.8). The uncertainties in the system dynamics ap follow time-invariant

pdfs fAp(ap). Assume 1) VFA in (4.35) holds, 2) the relation between the value func-

tion Vi(x(t)) and the uncertain parameters a(t) can be approximated by a polynomial

system mapping (4.38) with the form of (4.17), and 3) Algorithm 5 converges. Then

the solution found from Algorithm 5 is the optimal control solution.

Proof. This proof follows a similar procedure as described in Theorem 6.
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4.4.2.2 Off-Policy IRL

We introduce auxiliary variable u
(s)
j for the player j, (j = 1, 2, · · · , N), and

rewrite the system dynamics described in (4.5) as

ẋ = A(a)x +
N∑
j=1

Bu
(s)
j +

N∑
j=1

B
Ä
uj − u

(s)
j

ä
, (4.40)

where uj is the behavior policy applied to the system to generate the data for learning,

and u
(s)
j is the desired policy to be updated for the player j.

Differentiating the value function V
(s)
i (x(t)) for the system (4.40), one has

V̇
(s)
i (x(t))

= E

[
∂V

(s)
i

T

∂x

(
A(a)x +

N∑
j=1

Bu
(s)
j +

N∑
j=1

B
Ä
uj − u

(s)
j

ä)]
(4.41)

= −x
T

Qix−
N∑
j=1

u
(s)
j

T

Riju
(s)
j −

N∑
j=1

2u
(s+1)
i

T

Rii

Ä
uj − u

(s)
j

ä
.

The second equality is obtained by combining the Hamiltonian function (4.29) and

(4.39).

Integrating both sides in (4.41), one has

V
(s)
i (x(t+ T ))− V (s)

i (x(t))

= E

[∫ t+T

t

−

(
x

T

Qix +
N∑
j=1

u
(s)
j

T

Rijuj

)
dτ

]

−
∫ t+T

t

(
N∑
j=1

2u
(s+1)
i

T

Rii

Ä
uj − u

(s)
j

ä)
dτ.

(4.42)

For any fixed admissible behavior control policy uj (j = 1, 2, · · · , N), (4.42)

can be solved for the value function V
(s)
i and the optimal control policy u

(s+1)
i simul-

taneously, using the following NNs.

V
(s)
i (x) = W

(s)
i

T

φi(x),

u
(s+1)
i (x) = W

(s+1)
u,i

T

φu,i(x).

(4.43)
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The detailed algorithm that integrates off-policy IRL and the MPCM for the

multi-player nonzero-sum game is described in Algorithm 6.
Algorithm 6 Off-Policy IRL for multi-player nonzero-sum game with uncertain

system dynamics

1: Initialize the players with initial state x(0) and admissible control policies ui(0).

2: Apply the MPCM procedure [23, Section II] to select a set of samples for the

uncertain vector a(t).

3: For each iteration s, find the value of∫ t+T

t

(
x

T

Qix +
N∑
j=1

u
(s)
j

T

Rijuj

)
dτ + V

(s)
i (x(t+ T ))

at each MPCM sample.

4: Find the mean output of mapping Go

V
(s)
i

(·) subject to uncertain parameters a(t)

using the MPCM [23],

Go

V
(s)
i

Ä
x,u

(s)
i ,u

(s)
−i , a
ä

= V
(s)
i (x(t+ T )) +

∫ t+T

t

(
x

T

Qix +
N∑
j=1

u
(s)
j

T

Rijuj

)
dτ.

(4.44)

5: Solve the following equation for V
(s)
i (x) and u

(s+1)
i respectively.

V
(s)
i (x(t))−

∫ t+T

t

(
N∑
j=1

2u
(s+1)
i

T

Rii

Ä
uj − u

(s)
j

ä)
dτ = E

[
Go

V
(s)
i

Ä
x,u

(s)
i ,u

(s)
−i , a
ä]
.

6: Repeat procedures 3− 5.

Theorem 10. Consider the stochastic multi-player nonzero-sum game shown in (4.5)-

(4.8). The uncertainties in the system dynamics ap follow time-invariant pdfs fAp(ap).

Assume 1) VFA in (4.43) holds, 2) the relation between the value function Vi(x(t))

and the uncertain parameters a(t) can be approximated by a polynomial system map-

ping (4.44) with the form of (4.17), and 3) Algorithm 6 converges. Then the solution

found from off-policy IRL described in Algorithm 6 is the optimal solution.
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Proof. For the muti-player nonzero-sum game with deterministic system dynamics,

the solution derived from the off-policy IRL and on-policy IRL have been proved to be

identical [47]. The proof for the game with uncertain system dynamics then follows

a similar argument as described in Theorem 7.

Remark 7. Algorithms 5 and 6 integrate IRL and the MPCM to solve the multi-

player nonzero-sum game with uncertain parameters in the system dynamics. These

two algorithms find the Nash solutions accurately with computational efficiency. The

potential applications of the two algorithms include the control of transportation net-

works and the cooperative control of multiple robots with individual goals, in real

environments modulated by uncertain parameters.

4.5 Illustrative Examples

In this section, we conduct simulation studies to illustrate and verify the above

analysis.

4.5.1 Two-Player Zero-Sum Game

We first simulate the two-player zero-sum game with the uncertain system dy-

namics described as follows.

ẋ =

a1(t) a2(t)

a3(t) a4(t)

x +

1

0

u +

1

0

d.

where a1(t), a2(t), a3(t), and a4(t) are four random variables with time-varying values.

The four random variables follow the uniform distributions: f(a1(t)) = 1
2
, 0 < a1(t) <

2; f(a2(t)) = 2, 0 < a2(t) < 0.5; f(a3(t)) = 1, 0.5 < a3(t) < 1.5; and f(a4(t)) = 1
2
,

−1 < a4(t) < 1. The parameters in the value function are selected as Q = [ 1 0
0 1 ],

R = 1, and γ = 5. The basis function is φ = [x2
1, x1x2, x

2
2]

T
, with the weight vector
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W = [W1,W2,W3]
T
. Figures 8.1(a) and 8.1(b) show the evolution of the system states

and the derived value function weights respectively, using the on-policy PI algorithm

(Algorithm 3). It can be seen that the system states converge to 0 in the limit of

large time with the derived control policies, and the value function weights converge

quickly with the proposed algorithm.

We also conduct a comparative study to show the performance improvement of

Algorithm 3 over the MC method, typically used to address uncertainty in decision.

Here the MC method is used to evaluate the value function, i.e., the mean value E[·] in

(4.15), at each time step. The numbers of samples used by the MPCM and the MC to

estimate each value function are 16 and 10000 respectively, to obtain a converged mean

value. The NN weight derived by the MPCM is W = [3.29, 2.62, 2.00]
T
, which is close

to W = [3.16, 2.61, 2.09]
T

obtained using the MC method. The accurate estimation of

value function and significant reduction of computational load demonstrate the value

of using the proposed integrated RL and the MPCM algorithm to facilitate decision

for this game.

We then simulate the off-policy IRL algorithm described in Algorithm 4. Fig-

ures 8.2(a) and 8.2(b) show the evolution of system states and neural network weights

respectively. Note that in the off-policy IRL, three NNs, including critic NN, actor

NN, and disturbance NN, are utilized. The critic NN is W = [W1,W2,W3]
T

with

the basis function φ = [x2
1, x1x2, x

2
2]

T
, the actor NN is Wu = [Wu1,Wu2]

T
with the

basis function φu = [x1, x2]
T
, and the disturbance NN is Wd = [Wd1,Wd2] with the

basis function φd = [x1, x2]
T
. It can be seen that the system states converge to 0 in

the limit of large time, with the proposed off-policy IRL algorithm. In addition, the

derived value function weight vector [W1,W2,W3] of the two algorithms are identical,

which validates Theorem 7.
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Figure 4.1. Solution of two-player zero-sum game derived from Algorithm 3. (a) The
evolution of system states, and (b) the updates of value function weights.
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Figure 4.2. Solution of two-player zero-sum game derived from Algorithm 4. (a) The
evolution of system states, and (b) the updates of neural network weights.
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4.5.2 Multi-Player Nonzero-Sum Game

We then simulate the multi-player nonzero-sum game discussed in Section 4.4,

where the number of players N = 3. The system dynamic is described as follows,

ẋ =

a1(t) a2(t)

a3(t) a4(t)

x +

1.3

0

u1 +

1.3

0

u2 +

1.3

0

u3,

where a1(t), a2(t), a3(t), and a4(t) are four randomly time-varying variables with the

same pdfs described in Section 4.5.1. The parameters in the value function are selected

as Q1 = Q2 = Q3 = [ 1 0
0 1 ], R12 = R13 = R21 = R23 = R31 = R32 = 1, R11 = 2,

R22 = 3, and R33 = 5. The value function weight vectors for the three players

are W1 = [W11,W12,W13]
T
, W2 = [W21,W22,W23]

T
, and W3 = [W31,W32,W33]

T

respectively. Figure 4.3(a) shows the evolution of system states, and Figure 4.3(b)

shows the learned value function weights.

We also simulate the off-policy IRL algorithm described in Algorithm 6. Figures

4.4(a) and 4.4(b) show the evolution of system states and NN weights respectively.

Note that in the off-policy algorithm, each player has two NNs, one for the critic NN,

and the other for the actor NN. It can be seen from the figures that the off-policy

IRL algorithm works well for the multi-player nonzero-sum game. The system states

converge to 0 in the limit of large time, and the derived value function weights are

the same with the on-policy algorithm, validating Theorem 10.
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Figure 4.3. Solution of multi-player nonzero-sum game derived from Algorithm 5. (a)
The evolution of system states, and (b) the updates of value function weights.
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Figure 4.4. Solution of multi-player nonzero-sum game derived from Algorithm 6. (a)
The evolution of system states, and (b) the updates of neural network weights.
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CHAPTER 5

DIFFERENTIAL GRAPHICAL GAME WITH DISTRIBUTED GLOBAL NASH

SOLUTION

5.1 Introduction

Networked multi-agent systems have received extensive attention in the past

years because of their wide applications in mobile robots, sensor networks, autonomous

driving systems, and so on [77–81]. The consensus control problems in networked

MAS aim to design control protocols to make all agents reach a common value or

track a reference trajectory (or leader’s trajectory) based on the local information of

each agent and its neighbors. Consensus control studies do not necessarily impose op-

timality, and as such, their control policies can be far from being optimal. Consensus

optimal control that does not only reach consensus but also guarantees distributed

optimal solutions thus recently attracted significant attention [82, 83]. These stud-

ies assume a global objective, and agents do not have conflicts of interest among

themselves.

On the contrary, game theory provides mathematical formulations to solve op-

timal decision-making problems for networked MAS, where each agent can have its

own interest, or performance index, to optimize [36, 37, 40]. Traditional game the-

ory utilizes static and immediate costs, which cannot capture the evolution of system

dynamics [36,37]. Recently, game theory concepts have been integrated with the opti-

mal control theory to develop feedback control solutions as dynamic game strategies,

which are called multi-agent differential games [40,41,84]. Players in such games are

often assumed to have access to the full state of the system. In many applications,
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players in a system cannot obtain the complete system state information, and they

have to make their decisions based on limited sensing capabilities. In differential

graphical games, players are connected by a communication graph that captures the

information flow, and each player aims to find its optimal control policy based on

its own and its neighbors’ state information. Differential graphical games have been

studied in [41, 85–88], to solve the cooperative optimal tracking problems, and have

become one of the most interesting branches in multi-agent differential games.

Pioneering efforts have been made to develop solutions for differential graphical

games [19, 85, 86, 88–91]. In one direction, Nash solutions are sought by finding the

best response for each agent. It was proven in [85,86] that a global Nash equilibrium

can be obtained if all agents use their best response strategies. As the simulations

showed in these papers, this approach requires the state information of not only the

agents’ neighbors, but also their neighbors’ neighbors [85,88]. As such, the developed

control policies are Nash, but are not truly distributed. In the other direction, minmax

strategies have been used to achieve distributed control in differential graphical games

[19,89–91]. Minmax strategies are based on the idea that each agent prepares itself for

the worst-case behavior of its neighbors. To be more specific, each agent assumes that

its neighbors act to oppose the agent, by maximizing the agent’s cost function. From

the perspective of an individual agent, this formulation is the same as H∞ control,

which solves the optimal control problem that minimizes the impact of worse-case

disturbances

This chapter studies the distributed and Nash properties for graphical game

solutions in linear dynamical networks. The main contributions of this chapter are

three-fold. First, we analyze the existing differential graphical game formulations,

and prove that the best response strategy can constitute Nash, but does not provide

distributed solutions. In addition, the minmax strategy can provide distributed solu-
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tions, but prevent the agents to reach a global Nash equilibrium. In other words, no

solution that is both Nash and distributed exists in the literature. Second, we develop

a novel differential graphical game formulation which promises a solution that is both

distributed and can reach global Nash equilibrium. Third, we provide formal proofs

for the stability and Nash equilibrium properties of the newly proposed differential

graphical game.

This chapter is organized as follows. Section 5.2 analyzes existing graphical

games and their solutions, including best response and minmax strategies. Section

5.3 proposes a novel differential graphical game formulation. Section 5.4 analyzes the

stability and Nash equilibrium properties of the novel graphical game. Section 5.5

uses illustrative examples to validate the theoretical analysis.

5.2 Differential graphical games

5.2.1 Communication Graph

Consider a set of N agents connected by a communication graph G = (V , E),

where V is the set of agents, V = {1, 2, ..., N}, and E ⊂ V × V is the set of edges.

The graph adjacency matrix is A = [aij], where aij > 0 if (j, i) ∈ E , and aij = 0 if

(j, i) /∈ E . (j, i) ∈ E means there exists an edge starting from j to i in the directed

graph. It is assumed that the graph is simple, i.e., there are no repeated edges or

self-loops (i.e., (i, i) /∈ E for ∀i). Denote the set of neighbors of agent i as Ni, i.e.,

Ni = {j : (j, i) ∈ E}. Denote the in-degree matrix asD, i.e., D = diag(d1, d2, · · · , dN),

where di is the ith row sum of A: di =
∑

j aij. Define the graph Laplacian matrix as

L, L = D −A, which has all row sums equal to zero.
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5.2.2 Game Settings

Consider N agents with identical dynamics

ẋi = Axi +Bui, (5.1)

where xi(t) ∈ Rn and ui ∈ Rm are the state and control input vectors for agent i

respectively, where i = 1, 2, · · · , N . A and B are the drift and input matrices. The

dynamics of the leader is given by

ẋ0 = Ax0. (5.2)

The communication link between the leader and agent i is represented by the pinning

gain gi > 0. gi > 0 means that the leader node can be observed by agent i. Denote the

pinning matrix as G, then G = diag{gi} ∈ RN×N . The pair (A,B) is controllable.

The graph G is strongly connected and at least one agent can observe the leader.

The local neighborhood tracking error of agent i is defined as

δi =
∑
j∈Ni

aij(xi − xj) + gi(xi − x0). (5.3)

The error dynamics is

δ̇i =
∑
j∈Ni

aij(ẋi − ẋj) + gi(ẋi − ẋ0)

= Aδi + (di + gi)Bui −
∑
j∈Ni

aijBuj.

(5.4)

The cost function to minimize for each agent is

Ji =

∫ ∞
0

ri(δi, δ−i, ui, u−i)dt, (5.5)

where δ−i and u−i are local neighborhood tracking errors and control inputs of the

neighbors of agent i, respectively, i.e., δ−i = {δj, j ∈ Ni}, and u−i = {uj, j ∈ Ni}.
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ri(δi, δ−i, ui, u−i) > 0 is a scalar function, and ri(δi, δ−i, ui, u−i) = 0 if and only if

δi = 0 and δ−i = 0.

The value function corresponding to the performance index is

Vi =

∫ ∞
t

ri(δi, δ−i, ui, u−i)dτ. (5.6)

The control objective of agent i in the graphical game is to find the optimal

policy u∗i such that

u∗i (t) = argmin
ui

Vi(δ(t)).

Definition 5 (Best Response). Agent i’s best response to fixed policies u−i of his

neighbors is the policy u∗i such that [92, page 191]

Ji(u
∗
i , u−i) ≤ Ji(ui, u−i) (5.7)

for all possible ui of agent i.

Definition 6 (Global Nash Equilibrium). An N -tuple of policies {u∗1, u∗2, ..., u∗N} is

said to constitute a global Nash equilibrium solution for an N -player game if for all

i = 1, 2, · · · , N and ∀ui [92, page 190]

J∗i , Ji(u
∗
i , u
∗
G−i) ≤ Ji(ui, u

∗
G−i), (5.8)

where uG−i is the set of policies of all the other agents in the graph other than agent

i, i.e., uG−i = {uj : j ∈ N, j 6= i}. The corresponding N -tuple of cost functions

{J∗1 , J∗2 , · · · , J∗N} is known as a global Nash equilibrium outcome of the N -player

game.

Remark 8. Note that differential graphical games, as a branch of differential games,

are very different from the widely studied differential games in the literature. In

those widely studied differential games, players are assumed to have access to the full

state information of all agents in a network, and as a result, the control policies are
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generally not distributed [41, 93]. On the contrary, in differential graphical games,

player are linked by a time-invariant communication graph, and each player can only

have access to its own and its direct neighbors’ system states. As such, distributed

control strategies are sought to solve the differential graphical games.

5.2.3 Existing Differential Graphical Games

Existing differential graphical games assume the following cost function [41,85,

86]

Ji =

∫ ∞
0

ri(δi, ui, u−i)dt, (5.9)

where ri(δi, ui, u−i) has the quadratic form

ri(δi, ui, u−i) = δ
T

i Qiδi + u
T

i Riui +
∑
j∈Ni

aiju
T

j Rijuj, (5.10)

and Qi > 0, Ri > 0, and Rij > 0 are constant and symmetric matrices.

The corresponding value function is

Vi(t) =

∫ ∞
t

(
δ
T

i Qiδi + u
T

i Riui +
∑
j∈Ni

aiju
T

j Rijuj

)
dτ. (5.11)

To find a distributed solution, it is assumed that Vi(t) is only related to δi, i.e.,

V̇i = ∇V T

i δ̇i, where ∇Vi = ∂Vi
∂δi

. In particular, the value function is assumed to have

the quadratic form [41,85,86], i.e.,

Vi(δi) = δ
T

i Piδi, (5.12)

where Pi is a symmetric positive definite matrix, and ∇Vi = 2Piδi.

The Hamiltonian associated with this cost function is

Hi (δi, ui, u−i,∇Vi) = ∇V T

i

(
Aδi + (di + gi)Bui −

∑
j∈Ni

aijBuj

)

+ δ
T

i Qiδi + u
T

i Riui +
∑
j∈Ni

aiju
T

j Rijuj = 0.

(5.13)
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Next we study the Nash equilibrium an distributed properties of two existing solutions

to graphical games, best responses and minmax strategies.

5.2.3.1 Best responses

As proven in [85], the Nash equilibrium solution can be obtained if all agents

use their best response strategies simultaneously. For the graphical game formulated

in (5.10), the best response for agent i can be found by letting ∂Hi
∂ui

= 0 [85], where 0

is a zero matrix with proper dimensions,

u∗i = −1

2
(di + gi)R

−1
i B

T∇Vi. (5.14)

The value function Vi satisfies the following Hamilton-Jacobi (HJ) equation, which is

derived by substituting (5.14) into (5.13),

δ
T

i Qiδi +∇V T

i Aδi −
(di + gi)

2

4
∇V T

i BR
−1
i B

T∇Vi +
1

2

∑
j∈Nj

aij(dj + gj)∇V
T

i BR
−1
j B

T∇Vj

+
1

4

∑
j∈Nj

aij(dj + gj)
2∇V T

j BR
−1
j RijR

−1
j B

T∇Vj = 0.

(5.15)

Theorem 11. Consider the graphical game with the local neighborhood tracking error

dynamics (5.4), cost function (5.10) and the control policy (5.14). Then there does not

generally exist a value function Vi(δi) of the form (5.12) that solves the HJ Equation

(5.15) to provide a global Nash equilibrium solution.

Proof. Substituting Equation (5.12) into Equation (5.15), the HJ equation becomes

δ
T

i

Ä
Qi + P

T

i A+ A
T

Pi − (di + gi)
2P

T

i BR
−1
i B

T

Pi
ä
δi +

∑
j∈Ni

δ
T

i

Ä
aij(dj + gj)P

T

i BR
−1
j B

T

Pj
ä
δj

+
∑
j∈Ni

δ
T

j

Ä
aij(dj + gj)P

T

j BR
−1
j B

T

Pi
ä
δi +

∑
j∈Ni

δ
T

j

Ä
aij(dj + gj)

2P
T

j BR
−1
j RijR

−1
j B

T

Pj
ä
δj = 0.

(5.16)
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Note that in the above HJ equation, the second term (i.e.,∑
j∈Ni δ

T

i

Ä
aij(dj + gj)P

T

i BR
−1
j B

T
Pj
ä
δj) is the transpose of the third term (i.e.,∑

j∈Ni δ
T

j

Ä
aij(dj + gj)P

T

j BR
−1
j B

T
Pi
ä
δi). To make the HJ Equation hold for all pos-

sible δi and δj, the following three equations need to hold:

Qi + P
T

i A+ A
T

Pi − (di + gi)
2P

T

i BR
−1
i B

T

Pi = 0, (5.17)

aij(dj + gj)P
T

i BR
−1
j B

T

Pj = 0, (5.18)

aij(dj + gj)
2P

T

j BR
−1
j RijR

−1
j B

T

Pj = 0. (5.19)

It is clear that Equations (5.18) and (5.19) do not generally hold because aij > 0,

(dj + gj) > 0, Pi > 0, Rj > 0, and Pj > 0. As such, there does not generally exist a

distributed value function Vi(δi) of the form (5.12) that solves the HJ Equation (5.16)

to provide a global Nash equilibrium solution, where each agent only uses the state

information of its own and its neighbors.

5.2.3.2 MinMax strategies

Minmax strategies provide distributed solutions for multi-agent systems [89–91].

In minmax strategies, agent i prepares its policy by assuming that the goals of its

neighbors are to maximize Ji(δi, ui, u−i) to oppose it, i.e.,

u+
i = argmin

ui

max
u−i

Ji(δi, ui, u−i). (5.20)

where u+
i is the optimal control policy derived from the minmax strategy for agent i.

With this assumption, the coupled HJ equation becomes decoupled, which hence

guarantees a distributed solution in graphical games. However, we show in the next

theorem that a minmax strategy does not generally permit Nash in graphical games.
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Theorem 12. Consider the graphical game with the local neighborhood tracking error

dynamics (5.4) and cost function (5.9). Then the solution found by the minmax

strategy (5.20) can not constitute a global Nash equilibrium in general.

Proof. From Equation (5.20), one has

u+
i = argmin

ui

Ji(δi, ui, v
+
−i), (5.21)

where

v+
−i = {v+

j , j ∈ Ni},

and

v+
j = argmax

vj

Ji(δi, ui, v−i). (5.22)

Note that v+
j represents the worst-case policy of agent i’s neighbor j, from the minmax

strategies. v+
j is not necessarily the actual control policy employed by agent j, uj.

The Nash equilibrium solution for agent i is

u∗i = argmin
ui

Ji(δi, ui, u
∗
−i), (5.23)

where

u∗−i = {u∗j , j ∈ Ni},

and

u∗j = argmin
uj

Jj(δj, uj, u−j). (5.24)

Here we show that v+
i 6= u∗i following a contradiction method. Assume v+

i = u∗i ,

then one has v+
j = u∗j for all j ∈ Ni, by comparing (5.21) and (5.23). From the

definitions of v+
j and u∗j in (5.22) and (5.24) respectively, v+

j is the optimal policy

that maximizes the cost Ji, while u∗j is the optimal policy that minimizes the cost Jj.

As such, in general, v+
j = u∗j does not hold, which contradicts the assumption that
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v+
i = u∗i . Therefore, the solution found from the minmax strategy is generally not

Nash in graphical games.

Remark 9. Best responses and minmax strategies are the two existing approaches

to solve differential graphical games defined in (5.9) and (5.12). However, none of

them can find a solution that is both global Nash and distributed in the sense that

each agent only uses the state information of its own and its neighbors. In particular,

the solution found from best responses can constitute Nash, but it is generally not

distributed because the distributed quadratic value function (5.12) makes the coupled

HJ Equation (5.16) unsolvable. On the other hand, the minmax strategy can find

distributed solution in differential graphical games by decoupling the HJ equation.

However, it does not provide a Nash equilibrium solution because the assumptions on

the neighbors’ policies, i.e., the goals of agent i’s neighbors are to maximize Ji to

oppose it, do not generally hold in graphical games.

5.3 A Novel Differential Graphical Game

Here we propose a novel differential graphical game formulation, which admits

a distributed solution that can constitute a global Nash equilibrium. As shown in

Theorem 11, the existing graphical game formulation does not permit a distributed

solution that can constitute Nash because the coupled HJ Equation (5.16) is not

solvable with the distributed quadratic value function (5.12). In the new differential

graphical game formulation, we introduce a modified cost function, which includes

extra terms with the purpose of decoupling the HJ equation to guarantee a distributed

solution.
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In this proposed graphical game, the cost function is defined as

Ji =

∫ ∞
0

∑
j∈Ni

Ä
δ
T

ijQijδij + u
T

i Riui + aiju
T

j Rijuj
ä
dt, (5.25)

where δij =
î
δ
T

i , δ
T

j

óT
, and Qij =

î
Qi, Q̃ij; Q̃

T

ij, Q̂ij

ó
. Ri and Qij are symmetric

matrices, and Ri > 0, Qi > 0. Comparing this cost function with the existing cost

function in Equation (5.10), one can find that two extra terms for each j ∈ Ni,

i.e., 2δ
T

i Q̃ijδj and δ
T

j Q̂ijδj, are introduced in the proposed cost function for Ji. The

interpretation of the formulation (5.25) is that agent i cares not only about its own

local error δi, but also the local error of its neighbors δj. In other words, this is a

cooperative formulation of the differential graphical game. We will show the necessity

of introducing these extra terms in the next subsection.

The corresponding value function is

Vi(δi, δ−i)

=

∫ ∞
t

∑
j∈Ni

Ä
δ
T

ijQijδij + u
T

i Riui + aiju
T

j Rijuj
ä
dτ.

(5.26)

Note that the value function in (5.26) can be regarded as a summation of Ni value

functions (denoted as Ṽi(δi, δj)) for each j ∈ Ni. In particular,

Vi(δij, δ−i) =
∑
j∈Ni

Ṽi(δi, δj),

where Ṽi(δi, δj) is

Ṽi(δi, δj) =

∫ ∞
t

Ä
δ
T

ijQijδij + u
T

i Riui + aiju
T

j Rijuj
ä
dτ.

The Hamiltonian associated with the value function (5.26) is

Hi

Ç
δi, δ−i, ui, u−i,

∂Ṽi
∂δij

å
=
∑
j∈Ni

Ç
∂Ṽ

T

i

∂δij
δ̇ij + δ

T

ijQijδij + u
T

i Riui + aiju
T

j Rijuj

å
= 0.

(5.27)
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To find a distributed solution, Vi(δi, δ−i) is expected to be only related to δi,

which leads to
∂Ṽ

T

i

∂δj
= 0. As such, one has

∂Ṽ
T

i

∂δij
δ̇ij =

[
∂Ṽ

T

i

∂δi

∂Ṽ
T

i

∂δj

]δ̇i
δ̇j


=
∂Ṽ

T

i

∂δi
δ̇i

=
∂Ṽ

T

i

∂δi

(
Aδi + (di + gi)Bui −

∑
j∈Ni

aijBuj

)
.

(5.28)

Substituting Equation (5.28) into (5.27), the Hamiltonian becomes

Hi(δi, δ−i, ui, u−i,∇Ṽi)

=
∑
j∈Ni

(
∇Ṽ T

i

(
Aδi + (di + gi)Bui −

∑
j∈Ni

aijBuj
)

+ δ
T

ijQijδij + u
T

i Riui + aiju
T

j Rijuj

)
= 0.

(5.29)

The best response for agent i can be found by letting ∂Hi
∂ui

= 0 as

u∗i = −1

2
(di + gi)R

−1
i B

T∇Ṽi, (5.30)

where Ṽi solves the following HJ equation, which is derived by substituting Equation

(5.30) into (5.29).

∑
j∈Ni

(
δ
T

i Qiδi +∇Ṽ T

i Aδi −
(di + gi)

2

4
∇Ṽ T

i BR
−1
i B

T∇Ṽi + 2δ
T

i Q̃ijδj

+
1

2

∑
j∈Nj

aij(dj + gj)∇Ṽ
T

i BR
−1
j B

T∇Ṽj

+ δ
T

j Q̂ijδj +
1

4
aij(dj + gj)

2∇Ṽ T

j BR
−1
j RijR

−1
j B

T∇Ṽj

)
= 0.

(5.31)

Lemma 6. Assume the value function Ṽi(δi) have the quadratic form, i.e.,

Ṽi(δi) = δ
T

i P̃iδi. (5.32)
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Then the HJ Equation (5.31) can be rewritten as the following form∑
j∈Ni

δ
T

i

Ä
P̃

T

i A+ A
T

P̃i +Qi − (di + gi)
2P̃

T

i BR
−1
i B

T

P̃i
ä
δi

+
∑
j∈Ni

δ
T

i

Ä
Q̃ij +Niaij(dj + gj)P̃

T

i BR
−1
j B

T

P̃j
ä
δj

+
∑
j∈Ni

δ
T

j

Ä
Q̃

T

ij +Niaij(dj + gj)P̃
T

j BR
−1
j B

T

P̃i
ä
δi

+
∑
j∈Ni

δ
T

j

Ä
Q̂ij + aij(dj + gj)

2P̃
T

j BR
−1
j RijR

−1
j B

T

P̃j
ä
δj

= 0.

(5.33)

and the best response for agent i is

u∗i = −(di + gi)R
−1
i B

T

P̃iδi. (5.34)

Proof. Since Ṽi(δi) = δ
T

i P̃iδi, one has ∇Ṽi = 2P̃iδi. Substituting Ṽi(δi) and ∇Ṽi into

Equation (5.31), one has∑
j∈Ni

δ
T

i

Ä
P̃

T

i A+ A
T

P̃i +Qi − (di + gi)
2P̃

T

i BR
−1
i B

T

P̃i
ä
δi

+
∑
j∈Ni

δ
T

i Q̃ijδj +
∑
j∈Ni

∑
j∈Ni

aij(dj + gj)δ
T

i P̃
T

i BR
−1
j B

T

P̃jδj

+
∑
j∈Ni

δ
T

j Q̃
T

ijδi +
∑
j∈Ni

∑
j∈Ni

aij(dj + gj)δ
T

j P̃
T

j BR
−1
j B

T

P̃iδi

+
∑
j∈Ni

δ
T

j

Ä
Q̂ij + aij(dj + gj)

2P̃
T

j BR
−1
j RijR

−1
j B

T

P̃j
ä
δj

= 0.

(5.35)

Note that∑
j∈Ni

∑
j∈Ni

aij(dj + gj)δ
T

i P̃
T

i BR
−1
j B

T

P̃jδj = Ni

∑
j∈Ni

aij(dj + gj)δ
T

i P̃
T

i BR
−1
j B

T

P̃jδj,

(5.36)
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∑
j∈Ni

∑
j∈Ni

aij(dj + gj)δ
T

j P̃
T

j BR
−1
j B

T

P̃iδi = Ni

∑
j∈Ni

aij(dj + gj)δ
T

j P̃
T

j BR
−1
j B

T

P̃iδi.

(5.37)

Substituting (5.36) and (5.37) into (5.35), (5.33) is derived.

Moreover, substituting ∇Ṽi = 2P̃iδi into (5.30), (5.34) is derived.

Note that the derived solution u∗i in (5.34) is a distributed solution, in the sense

that each agent i only utilizes the state information of its own and its neighbors. No

other information needs to be communicated in the game.

Theorem 13. Assume that (A,
√
Qi) is observable and (A,B) is stabilizable, then

there exist positive definite matrices P̃i and P̃j satisfying the coupled HJ Equation

(5.33) for all possible δi and δj, if Q̃ij and Q̂ij satisfy the following conditions:

Q̃ij = −Niaij(dj + gj)P̃
T

i BR
−1
j B

T

P̃j, (5.38)

Q̂ij = −aij(dj + gj)
2P̃

T

j BR
−1
j RijR

−1
j B

T

P̃j. (5.39)

where P̃i and P̃j solve the following algebraic Riccati equations (ARE) respectively.

P̃
T

i A+ A
T

P̃i +Qi − (di + gi)
2P̃

T

i BR
−1
i B

T

P̃i = 0, (5.40)

P̃
T

j A+ A
T

P̃j +Qj − (dj + gj)
2P̃

T

j BR
−1
j B

T

P̃j = 0. (5.41)

Proof. It is known that if (A,
√
Qi) is observable and (A,B) is stabilizable, Equations

(5.40) and (5.41) always have positive definite solutions for P̃i and P̃j respectively. By

substituting Equations (5.38)-(5.40) into Equation (5.33) in Lemma 6, the conclusion

is derived naturally.

With the derived positive definite P̃i, the value function Ṽi(δi) can be derived

as Ṽi(δi) = δ
T

i P̃iδi. As such, we have

Vi(δi) =
∑
j∈Ni

Ṽi(δi) = Niδ
T

i P̃iδi (5.42)
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.

Remark 10. Note that Equations (5.38)-(5.41) always have solutions because Equa-

tions (5.40) and (5.41) are decoupled ARE equations, which always promise positive

definite P̃i and P̃j [40]. This is in contrast to Equations (5.17)-(5.19), which generally

never have solutions. As such, for the proposed graphical game with the performance

index defined in Equation (5.25), there always exists a positive definite value function

with the quadratic form (5.42) that solves the HJ equation (5.31), and thus promises

a distributed solution that constitutes Nash.

Remark 11. The proposed cost function (5.25) introduces extra terms (i.e., δ
T

i Q̃ijδj

and δ
T

j Q̂ijδj) compared to the commonly-used cost function in Equation (5.10). These

extra terms cancel out the coupled terms in the HJ equation (i.e.,
∑

j∈Ni 2aij(dj +

gj)P
T

i BR
−1
j B

T
Pj and aij(dj+gj)

2P
T

j BR
−1
j RijR

−1
j B

T
Pj), and thus permit a distributed

solution that is only dependent on the local error δi as shown in Equation (5.34).

There are two more points to clarify regarding the Qij matrix:

1) Not all elements in the matrix Qij can be designed arbitrarily. In particular,

the sub-matrix Qi can take arbitrary values as needed, as long as it is a positive semi-

definite matrix. However, the other two sub-matrices Q̃ij and Q̂ij need be selected

according to (5.38) and (5.39), respectively, to ensure the existence of the positive

definite solution Ṽi to the coupled HJ equation (5.31).

2) It is not necessary to restrict Qij to be a positive semi-definite matrix. Only

Qi is required to be positive semi-definite. This is because the effects of the other two

sub-matrices in Qij, i.e., Q̃ij and Q̂ij, are canceled out by the coupled terms in the

HJ equation. The value function Ṽi is guaranteed to be positive definite according to

Theorem 13, regardless of whether Qij is positive semi-definite or not.

To make the procedures of solving the proposed graphical game clearer, an

algorithm is now presented and described in Algorithm 7.
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Algorithm 7 Procedures for Solving the Novel Graphical Game
Input:

System dynamic matrices A and B;

Communication graph matrices A, D, and G;

Cost function weighting matrices Qi, Ri, and Rij, ∀j ∈ Ni, and i = 1, 2, · · · , N .

Output:

Optimal control u∗i , i = 1, 2, · · · , N .

Procedures:

1: Solve P̃i from (5.40) for all i = 1, 2, · · · , N .

2: Select Q̃ij and Q̂ij according to (5.38) and (5.39) respectively, ∀j ∈ Ni, and

i = 1, 2, · · · , N .

3: Find u∗i using (5.34) for all i = 1, 2, · · · , N .

4: return u∗i .

5.4 Stability and Global Nash Equilibrium Analysis

This section studies properties of the proposed solution for the novel graphical

game formulation. Asymptotical stability and Nash equilibrium results are proven.

The Hamiltonian in Equation (5.29) can be regarded as a summation of Ni

Hamiltonians (denote as Hij(δij, ui, u−i,∇Ṽi)) for each j ∈ Ni. In particular,

Hi

Ä
δi, δ−i, ui, u−i,∇Ṽi

ä
=
∑
j∈Ni

Hij

Ä
δij, ui, u−i,∇Ṽi

ä
, (5.43)

where

Hij

Ä
δij, ui, u−i,∇Ṽi

ä
= ∇Ṽ T

i

(
Aδi + (di + gi)Bui −

∑
j∈Ni

aijBuj

)
+ δ

T

ijQijδij + u
T

i Riui + aiju
T

j Rijuj.

(5.44)
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Lemma 7. The Hamiltonian Hij

Ä
δij, ui, u−i,∇Ṽi

ä
in Equation (5.44) can be rewrit-

ten as the following form.

Hij

Ä
δij, ui, u−i,∇Ṽi

ä
= H∗ij

Ä
δij, u

∗
i , u
∗
−i,∇Ṽi

ä
+ (ui − u∗i )

T

Ri(ui − u∗i )

+ aij(uj − u∗j)
T

Rij(uj − u∗j)

+
2

(di + gi)

∑
j∈Ni

aij(u
∗
i )

T

Ri(uj − u∗j) + 2aij(u
∗
j)

T

Rij(uj − u∗j).

(5.45)

Proof. According to Equation (5.44), the optimal Hamiltonian is

Hij

Ä
δij, u

∗
i , u
∗
−i,∇Ṽi

ä
= ∇Ṽ T

i

(
Aδi + (di + gi)Bu

∗
i −

∑
j∈Ni

aijBu
∗
j

)

+ δ
T

ijQijδij + (u∗i )
T

Riu
∗
i + aij(u

∗
j)

T

Riju
∗
j

= ∇Ṽ T

i Aδi + δ
T

ijQijδij + (di + gi)∇Ṽ
T

i Bu
∗
i + (u∗i )

T

Riu
∗
i

+ aij(u
∗
j)

T

Riju
∗
j −

∑
j∈Ni

aij∇Ṽ
T

i Bu
∗
j

= ∇Ṽ T

i Aδi + δ
T

ijQijδij − (u∗i )
T

Riu
∗
i + aij(u

∗
j)

T

Riju
∗
j

−
∑
j∈Ni

aij∇Ṽ
T

i Bu
∗
j .

(5.46)

The last equality holds because (di+gi)∇Ṽ
T

i Bu
∗
i = −2(u∗i )

T
Riu

∗
i from Equation

(5.30). The following equations also hold,

(ui − u∗i )
T

Ri(ui − u∗i ) = u
T

i Riui + (u∗i )
T

Riu
∗
i − 2(u∗i )

T

Riui, (5.47)

aij(uj − u∗j)
T

Rij(uj − u∗j) = aiju
T

j Rijuj + aij(u
∗
j)

T

Riju
∗
j − 2aij(u

∗
j)

T

Rijuj, (5.48)

2

(di + gi)

∑
j∈Ni

aij(u
∗
i )

T

Ri(uj − u∗j) = −
∑
j∈Ni

aij∇Ṽ
T

i B(uj − u∗j), (5.49)

aij(u
∗
j)

T

Rij(uj − u∗j) = aij(u
∗
j)

T

Rijuj − aij(u∗j)
T

Riju
∗
j . (5.50)
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Combining Equations (5.46)-(5.50), one has

Hij

Ä
δij, u

∗
i , u
∗
−i,∇Ṽi

ä
+ (ui − u∗i )

T

Ri(ui − u∗i ) + aij(uj − u∗j)
T

Rij(uj − u∗j)

+ 2aij(u
∗
j)

T

Rij(uj − u∗j) +
2

(di + gi)

∑
j∈Ni

aij(u
∗
i )

T

Ri(uj − u∗j)

= ∇Ṽ T

i Aδi + δ
T

ijQijδij + u
T

i Riui + aiju
T

j Rijuj − 2(u∗i )
T

Riui −
∑
j∈Ni

aij∇Ṽ
T

i Buj

= Hij

Ä
δij, ui, u−i,∇Ṽi

ä
,

(5.51)

which derives Equation (5.45).

Theorem 14. Let Assumptions 1 and 2 hold. Let Ṽi(δi) have the form (5.32) and

solve the HJ Equation (5.31). Then the control policy (5.34) makes the system (5.4)

asymptotically stable, i.e., all agents are synchronized to the leader.

Proof. Because Ṽi(δi) has the quadratic form Ṽi(δi) = δ
T

i P̃iδi as shown in Theorem 13

and Remark 10, Ṽi(δi) > 0 is a Lyapunov function candidate. Take derivative of Ṽi

with respect to time t along with the trajectory of the local neighborhood tracking

error δi, one has

dṼi
dt

= ∇Ṽ T

i δ̇i = ∇Ṽ T

i

(
Aδi + (di + gi)Bui −

∑
j∈Ni

aijBuj

)

= Hij

Ä
δij, ui, u−i,∇Ṽi

ä
−
Ä
δ
T

ijQijδij + u
T

i Riui + aiju
T

j Rijuj
ä

= Hij

Ä
δij, ui, u−i,∇Ṽi

ä
− rij (δi, δj, ui, uj) ,

(5.52)

where rij (δi, δj, ui, uj) = δ
T

ijQijδij + u
T

i Riui + aiju
T

j Rijuj.

When ui = u∗i and u−i = u∗−i, one has Hij

Ä
δij, u

∗
i , u
∗
−i,∇Ṽi

ä
= 0, and Equation

(5.52) becomes

dṼi
dt

= −rij(δi, δj, ui, uj) < 0. (5.53)
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Note that rij(δi, δj, ui, uj) > 0 always holds because Ṽi(δi) > 0 always holds according

to Theorem 13, and Ṽi =
∫∞
t
rij(δi, δj, ui, uj)dτ .

As such, Ṽi is a Lyapunov function, and the system with the optimal control

policies u∗i and u∗j is asymptotically stable.

Theorem 15. Let Assumptions 1 and 2 hold. Let Ṽi(δi) take the quadratic form

(5.32) and solve the HJ Equation (5.31). Then the control policies (u∗1, u
∗
2, ..., u

∗
N) in

(5.34) constitute a global Nash equilibrium.

Proof. Define Jij(δi, δj, ui, uj) as the cost between agents i and j, i.e.,

Jij(δi, δj, ui, uj) =

∫ ∞
0

Ä
δ
T

ijQijδij + u
T

i Riui + aiju
T

j Rijuj
ä
dt,

then according to Equation (5.25), the local cost can be written as

Ji(δi, δ−i, ui, uj) =
∑
j∈Ni

Jij(δi, δj, ui, uj).

Since the system is asymptotically stable, the local neighborhood tracking error

δi(t)→ 0 when t→∞. As such, Ṽi(δi(∞)) = 0, and Jij can be further written as

Jij(δi, δj, ui, uj) =

∫ ∞
0

(
δ
T

ijQijδij + u
T

i Riui + aiju
T

j Rijuj

)
dt+ Ṽi(δi(0)) +

∫ ∞
0

V̇idt

=

∫ ∞
0

Ä
δ
T

ijQijδij + u
T

i Riui + aiju
T

j Rijuj
ä
dt+ Ṽi(δi(0))

+

∫ ∞
0

∇Ṽ T

i

(
Aδi + (di + gi)Bui −

∑
j∈Ni

aijBuj

)
dt

=

∫ ∞
0

Hij

Ä
δij, ui, u−i,∇Ṽi

ä
dt+ Ṽi(δi(0))

=

∫ ∞
0

(ui − u∗i )
T

Ri(ui − u∗i ) + aij(uj − u∗j)
T

Rij(uj − u∗j)

+
2

(di + gi)

∑
j∈Ni

aij(u
∗
i )

T

Ri(uj − u∗j) + 2aij(u
∗
j)

T

Rij(uj − u∗j)dt+ Ṽi(δi(0)).

(5.54)
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The last equality holds because of Lemma 7.

Now select uj = u∗j , then

Jij(δi, δj, ui, u
∗
j) =

∫ ∞
0

(ui − u∗i )
T

Ri(ui − u∗i )dt+ Ṽi(δi(0)). (5.55)

It is clear that Jij(δi, δj, u
∗
i , u
∗
j) ≤ Jij(δi, δj, ui, u

∗
j) holds for ∀ui, ∀j ∈ Ni, and i =

1, 2, · · · , N , which leads to a global Nash equilibrium.

5.5 Illustrative Examples

This section develops simulation studies to illustrate the theoretical results de-

veloped in this chapter.

5.5.1 Game Settings

Consider a multi-agent system with five agents and one leader connected by a

directed graph shown in Figure 5.1. The edge weights aij are selected as 1 if (j, i) ∈ E .

The leader is pinned to agent 1, i.e., g1 = 1. The Laplacian of this graph is

L = D −A =



1 0 −1 0 0

−1 2 −1 0 0

−1 0 2 0 −1

0 −1 0 2 −1

0 0 −1 −1 2


. (5.56)

The pinning matrix is

G =



1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


. (5.57)
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Figure 5.1. The communication graph of five agents and one leader..

The system dynamics for each agent is

ẋi =

ẋi,1
ẋi,2

 =

ui,1
ui,2

 , (5.58)

where xi is a vector of size 2× 1, and i = 1, 2, 3, 4, 5.

5.5.2 Game Solutions

5.5.2.1 Best responses in existing graphical games

To illustrate the best response strategies for the existing graphical game formu-

lation, we consider the cost function (5.10), where the weighting matrices are selected

as

Ri = 10I, Rij = 20I, (5.59)

and

Qi =

0.4 0

0 0.4

 , (5.60)

for all j ∈ Ni and i = 1, 2, 3, 4, 5.

To find Pi using the best response strategies, one needs to solve the coupled

HJ Equation (5.16). In particular, to make the HJ equation hold for all δi and δj,
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Equations (5.17)-(5.19) have to hold. Substituting A, B, Qi, and Ri into Equation

(5.17), one can solve Pi as

Pi =

1 0

0 1

 , (5.61)

for all i = 1, 2, 3, 4, 5.

Substituting Pi, B, and Ri into Equations (5.18) and (5.19), one has

1

10

∑
j∈Ni

aij(dj + gj) = 0, (5.62)

1

5

∑
j∈Ni

aij(dj + gj)
2 = 0, (5.63)

which clearly do not hold, because aij > 0, dj > 0, and gj > 0 for all j ∈ Ni.

There exists no distributed value function of the form (5.12) that solves the HJ

Equation (5.16). In other words, the best response strategies generally cannot find

a distributed solution that can constitute global Nash equilibrium for the existing

differential graphical game formulation.

5.5.2.2 Minmax strategies

To use minmax strategies in a graphical game, the cost function is required to

be modified to formulate an adversarial form between agent i and its neighbors [19].

To this end, define the cost function as

Ji =

∫ ∞
0

(δ
T

i Qiδi + (di + gi)u
T

i Riui − γ2
∑
j∈Ni

aiju
T

j Rijuj)dt. (5.64)

Note that the cost function (5.64) is different from the cost function in exist-

ing graphical games (5.10). It is because the minmax strategies assume worst-case

neighbors’ control policies, which lead to an adversarial cost function naturally. This

modification ensures the asymptotically stability of the derived control policies and
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good robustness performances. Please refer to [19] for more information about the

minmax strategies in differential graphical games.

For the parameters in the cost function (5.64), we select γ = 2, and the weight-

ing matrices Ri, Rij, and Qi are selected with the same values of (5.59)-(5.60).

The Hamiltonian associated with this cost function is

Hi =δ
T

i Qiδi + (di + gi)u
T

i Riui − γ2
∑
j∈Ni

aiju
T

j Rjuj + 2δ
T

i Pi

Ñ
Aδi + (di + gi)Bui −

∑
j∈Ni

aijBuj

é
.

(5.65)

Using the minmax strategies (5.20), the optimal control policy for agent i can

be obtained by letting ∂Hi
∂ui

= 0 as

u+
i = −R−1

i B
T

Piδi. (5.66)

Similarly, the worst-case policy of agent i’s neighbors is

v+
j = − 1

γ2
R−1
j B

T

Piδi. (5.67)

With above control policies, the HJ equation can be simplified to the following

Riccati equation,

Qi + PiA+ A
T

Pi − (di + gi)PiBR
−1
i B

T

Pi +
1

γ2

N∑
j=1

aijPiBR
−1
j B

T

Pi = 0. (5.68)

Substituting A, B, Qi, Ri, and γ into Equation (5.68), one can solve Pi as

P1 =

1.633 0

0 1.633

 , (5.69)

and

Pi =

1.512 0

0 1.512

 , (5.70)
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for i = 2, 3, 4, 5.

It can be seen from Equation (5.66) that the solution derived from minmax

strategies is a distributed solution, since the control policy of agent i only depends on

the local neighborhood tracking error δi. However, this solution is not Nash because

it is derived by assuming the worst-case policy of its neighbors, i.e., Equation (5.67),

which is not the real policies of its neighbors, i.e., u∗j = −R−1
j B

T
Pjδj, where j ∈ Ni.

5.5.2.3 Solution of the proposed novel graphical game

For the proposed cost function shown in Equation (5.25), the weighting matrices

Qi Ri, and Rij are selected with the same values of (5.59) and (5.60).

Substituting A, B, Qi, and Ri into Equation (5.40), the weighting matrix P̃i in

the value function Ṽi(δi) = δ
T

i P̃iδi can be found as

P̃i =

1 0

0 1

 , (5.71)

for all i = 1, 2, 3, 4, 5.

The weighting matrices Q̃ij and Q̂ij are then computed by substituting P̃i into

Equations (5.38) and (5.39) as

Q̃ij =

−0.2 0

0 −0.2

 , (5.72)

for i = 1 and j ∈ Ni,

Q̃ij =

−0.4 0

0 −0.4

 , (5.73)

for i = 2, 3, 4, 5 and j ∈ Ni, and

Q̂ij =

−0.8 0

0 −0.8

 , (5.74)
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for all i = 1, 2, 3, 4, 5 and j ∈ Ni.

As such, the matrix Qij in the cost function (5.25) is Qij =
î
Qi, Q̃ij; Q̃

T

ij, Q̂ij

ó
,

where Qi, Q̃ij, and Q̂ij take the values of (5.60), (5.72)-(5.74), respectively. Note

that the matrix Qi can be selected arbitrarily, as long as it is a positive semi-definite

matrix. The matrices Q̃ij and Q̂ij are computed via Equations (5.38) and (5.39), by

first computing P̃i from (5.40).

Substituting P̃i and B into Equation (5.34), the optimal control policy for agent

i can be found as

u∗i = −(di + gi)R
−1
i δi. (5.75)

It can be seen that the control policy of agent i is only related to its local

neighboring tracking error δi, which verifies the distributed properties of the proposed

solution.

Substituting P̃i, Q̃ij, Q̂ij, Rj and Rij into Equation (5.33), the HJ equation can

be verified to hold for all possible δi and δj, which indicates the Nash equilibrium.

The state evolution of the five agents with the optimal policies are shown in

Figure 5.2. The initial conditions are selected as x0 =
[

0
0

]
, x1 =

[
3
1

]
, x2 =

[
10
3

]
,

x3 =
[

2
−1

]
, x4 =

[
4
0

]
, and x5 =

[
2
4

]
respectively. It can be seen that the consensus is

achieved with sufficiently long simulation time.
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Figure 5.2. Evolution of (a) state 1, and (b) state 2, for all five agents. Consensus is
achieved after long enough time..
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CHAPTER 6

On the Robustness of Networked Cooperative Tracking Systems

6.1 Introduction

Stability margins, i.e., gain margin and phase margin, describe the ability of a

control system to maintain stability in the presence of perturbation, and have been

adopted as the measures for robustness for decades [94]. Studies of stability mar-

gins largely focus on single-agent systems, including both single-input single-output

(SISO) systems and multi-input multi-output (MIMO) systems. For SISO systems,

the scalar Nyquist approach and Bode analysis have been developed to find phase

and gain margins [95,96]. Since the 1970s, a number of attempts have been directed

to extend the robustness analysis from SISO systems to MIMO systems [97–104].

In a very first effort of this direction, paper [101] introduced the concept of mul-

tiloop robustness subject to simultaneous phase and gain perturbation in multiple

loops, and showed that the LQR possesses ±60◦ phase margin, 50% gain reduction,

and infinite gain margin, following a Lypunov type of analysis. From the viewpoint

of system transfer function matrix, a generalization of the classical scalar Nyquist

approach and Bode analysis to MIMO systems was investigated in [102], by exploit-

ing the characteristics of singular values, single vectors, and the spectral norm of

the closed-loop system transfer matrix. Based on the singular value analysis, the

µ-analysis framework was then established, with the purpose of bounding the stabil-

ity margins of diagonally perturbed MIMO systems [103–108]. However, all of the

aforementioned studies assume a single-agent system, which is limited in scope con-

sidering the many networked real-world system applications. The stability margin
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analysis for networked MAS is challenging considering the complexity caused by the

interplay of communication structure and agent dynamics. In this chapter, we de-

velop a framework to analyze the phase and gain margins of networked MAS, which

is a first attempt in the literature per knowledge of the authors.

Networked MAS have attracted extensive attention due to their wide applica-

tions in mobile robots, UAVs, sensor networks, and satellite formation [109–112]. In

general, networked MAS can be classified into two categories: leaderless consensus

systems and leader follower tracking systems, depending on whether a leader ex-

ists or not [113, 114]. For the leaderless consensus problem, or commonly referred

as the cooperative regulator problem, distributed controllers have been designed for

agents to achieve consensus by utilizing the information received from their immedi-

ate neighbors in the communication network [115–118]. Consensus value is usually a

function of agents’ initial states dependent on network topology and agent dynam-

ics. For the leader follower consensus problem, or called cooperative tracking problem,

a leader communicates to at least one agent, and all agents are controlled to syn-

chronize to a desired trajectory generated by the leader [113, 114, 119, 120]. Optimal

controller design for cooperative tracking systems has been studied in [114,115,119].

In particular, reference [119] developed a local LQR design for agents with identical

linear time-invariant dynamics, and showed that the local LQR design guarantees

unbounded synchronization regions on arbitrary digraphs containing a spanning tree.

Reference [114] developed an optimality criterion that promises the existence of a

global optimal controller under certain conditions by the inverse optimality method.

Although some properties of the cooperative tracking systems, e.g., optimality and

stability, have been studied in the aforementioned works, the analysis of robustness in

the presence of perturbation is still missing. In addition, the effects of communication

graph topology on robustness properties also remain to be investigated.
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This chapter studies the robustness properties of networked cooperative tracking

systems using the Lypunov analysis and the algebraic graph theory. The contributions

of this chapter are fourfold. First, phase and gain margins of networked cooperative

tracking systems are derived in closed form, by analyzing the stability conditions

of perturbed systems. Second, graph topology characteristics relating to stability

margins are developed, through an eigen-analysis. Third, the upper bounds of phase

and gain margins for MAS of general communication graph topology are obtained, by

integrating the robustness analysis with the graph topology analysis. Fourth, we prove

that the directed tree topology is the most robust among all possible communication

graph topology, in the sense that they have the same guaranteed gain and phase

margin as those of single-agent LQR systems.

This chapter is organized as follows. Section 6.2 introduces notations and basic

definitions. Section 6.3 formulates the cooperative tracking problem, including the

system dynamics and local LQR design. Section 6.4 investigates phase and gain

margins of the cooperative tracking system. Section 6.5 analyzes the graph topology

characteristics relating to stability margins, and finds the upper bounds of stability

margins. Section 6.6 conducts simulation studies to validate the results.

6.2 Notations and Definitions

We introduce the following notations and definitions to facilitate the analysis

in this chapter [101,121].

1) The space Ln2 is defined as the set of all piecewise continuous functions

x : [0,∞)→ Rn such that

‖x‖L2 =

Å∫ ∞
0

xT (t)x(t)dt

ã 1
2

<∞, (6.1)

i.e., the space Ln2 defines the set of all square-integrable function x(t).
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2) The extension Ln2e of Ln2 is defined by

Ln2e = {x|xτ ∈ Ln2 ,∀τ > 0}, (6.2)

where xτ (t) is a truncation of x(t) defined by

xτ (t) =


x(t) 0 ≤ t ≤ τ,

0 t > τ.

(6.3)

3) Define the inner-product 〈x, y〉 for piecewise continuous functions x(t) ∈ Rn

and y(t) ∈ Rn as

〈x, y〉 =

∫ ∞
0

xT (t)y(t)dt. (6.4)

3) The term operator is reserved for the mapping from functions into functions.

For example, a dynamic system may be viewed as an operator that maps input time

functions into output time functions.

4) An operator P with P0 = 0, where 0 is a zero matrix, is said to have finite

gain if there exists a constant k <∞ such that

‖Px‖ < k‖x‖ (6.5)

for all square-integrable x.

5) For λ ∈ C, we use Re{λ} to represent the real part of λ.

6) A∗ denotes the adjoint of the matrix A, i.e., the complex-conjugate of AT .

6.3 Cooperative Tracking Systems and Problem Formulation

This section describes the cooperative tracking problem. Agent dynamics are

governed by identical continuous linear time-invariant systems defined upon a com-

munication graph. The goal of each agent is to synchronize to the leader dynamics

by using the state information of itself and its immediate neighbors.
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6.3.1 Communication Graph

Consider a group of N agents connected by a communication graph G = (V , E).

Here V is the set of agents, V = 1, 2, · · · , N , and E ⊂ V × V is the set of edges.

The graph adjacency matrix is denoted as A = [aij], where aij > 0 if (j, i) ∈ E , and

aij = 0 if (j, i) /∈ E . (j, i) ∈ E means there exists an edge starting from j to i in

the directed graph. It is assumed that the graph is simple, i.e., there is no repeated

edge or self-loop (i.e., (i, i) /∈ E ∀i). Denote the set of neighbors of agent i as Ni, i.e.,

Ni = {j : (j, i) ∈ E}. Denote the in-degree matrix asD, i.e., D = diag(d1, d2, · · · , dN),

where di is the ith row sum of A: di =
∑

j aij. Define the graph Laplacian matrix as

L, L = D −A, which has all row sums equal to zero.

The communication between the leader and agent i is captured by the pining

gain gi > 0. gi > 0 means that the leader node can be observed by agent i. Denote

the pining matrix as G, then G = diag{gi} ∈ RN×N .

The graph G contains a spanning tree and the root node can observe information

from the leader node.

Assumption 6.3.1 is a necessary condition for solving the cooperative tracking

problem [120]. Synchronization to the leader dynamics cannot be achieved without

it.

6.3.2 Agents’ Dynamics

Consider a group of N agents with identical linear dynamics,

ẋi = Axi +Bui, (6.6)

where xi ∈ Rn is the state vector, ui ∈ Rm is the control input vector, and i =

1, 2, · · · , N . A and B are the drift and input matrices, respectively.

The pair (A,B) is controllable.
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The dynamics of the leader, indexed with 0, is given by

ẋ0 = Ax0, (6.7)

where x0 ∈ Rn is the state. The leader generates the desired trajectory to which the

agents should synchronize. The trajectory of the leader can only be observed by a

small set of agents, which is described by the pinning matrix G. Note that the leader

dynamics is not required to be stable, i.e., the matrix A can be stable, marginally

stable, or even unstable.

6.3.3 Cooperative Tracking Control

The objective of the cooperative tracking problem is to design local distributed

controllers ui, where i = 1, 2, · · · , N , such that limt→∞ (xi(t)− x0(t)) = 0 for all

i = 1, 2, · · · , N , i.e., all agents synchronize to the leader dynamics [119, 120]. Define

the synchronization error of agent i as

δi = xi − x0. (6.8)

Then the global synchronization error is

δ = x− x0, (6.9)

where x is the global state, x = [xT1 , x
T
2 , · · · , xTN ]T ∈ RnN , and x0 = 1N ⊗ x0 ∈ RnN .

1N is an N -vector of ones, and ⊗ is the Kronecker product. The synchronization is

achieved if limt→∞ δ(t) = 0.

Define the neighborhood synchronization error for agent i as

εi =
∑
j∈Ni

aij(xj − xi) + gi(x0 − xi). (6.10)

The feedback controller for agent i is

ui = Kεi, (6.11)
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where K ∈ Rm×n is the feedback control gain. The control protocol (6.11) is dis-

tributed in the sense that the control of agent i, i.e., ui, depends only on its local

tracking error εi. In other words, each agent only utilizes the state information of its

own and its neighbors to synchronize to the leader dynamics.

The overall global closed-loop dynamics [119] is

ẋ = (IN ⊗ A− (L+G)⊗BK)x+ ((L+G)⊗BK)x0 (6.12)

where IN is the identity matrix, IN ∈ RN×N . Let Ac = IN ⊗A− (L+G)⊗BK, and

Bc = (L+G)⊗BK, then (6.12) becomes

ẋ = Acx+Bcx0, (6.13)

from which the global synchronization error dynamics can be derived as

δ̇ =ẋ− ẋ0

= (IN ⊗ A− (L+G)⊗BK) δ

=Acδ.

(6.14)

It can be seen from (6.12) and (6.14) that the dynamics of both global state and

global synchronization error depend on the graph structure, i.e., (L+G). This implies

that even if the local systems (6.6) and (6.7) can be stable for all i = 1, 2, · · · , N , the

global system state x and synchronization error δ may still be unstable.

6.3.4 Local LQR Design

Consider the following feedback gain for each agent from the local LQR design

K = R−1BTP. (6.15)

Here, P is the positive definite solution of the control algebratic Riccati equation

(ARE),

ATP + PA+Q− PBR−1BTP = 0, (6.16)
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where Q = QT ∈ Rn×n is a positive semi-definite matrix and R = RT ∈ Rm×m is a

positive definite matrix of a diagonal form. This feedback control gain K is the local

optimal design for the single-agent LQR problem with the following cost function

Ji =
1

2

∫ ∞
0

(
xTi Qxi + uTi Rui

)
dt (6.17)

subject to the local agent dynamics (6.6) and the state feedback controller ui = −Kxi.

For multi-agent systems, it has been shown that the control protocol (6.15) is also

an optimal solution with respect to certain global quadratic performance indices J =∫∞
0

(
δT Q̄δ + uT R̄u

)
dt (see [114, Theorem 1] for the detailed descriptions).

6.3.5 Cooperative Tracking Systems with Perturbation

In order to analyze the robustness of cooperative tracking systems in the pres-

ence of perturbation, we consider the following perturbed systems [101].

˙̂xi = Ax̂i +BPûi, (6.18)

where

ûi = Kε̂i, (6.19)

ε̂i =
∑
j∈Ni

aij(x̂i − x̂j) + gi(x̂i − x0), (6.20)

and x̂i, ûi, and ε̂ are the perturbed state, control, and local tracking error for agent i,

respectively. The perturbation P is a finite-gain operator that takes a diagonal form,

such that the perturbation in the feedback loops are noninteracting, i.e.,

Pui =


P1ui,1

P2ui,2
...

Pmui,m

 . (6.21)
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The global synchronization error of the perturbed system is

˙̂
δ = ˙̂x− ẋ0

=IN ⊗ A− (L+G)⊗BPKδ̂

=Âcδ̂,

(6.22)

where Âc = IN ⊗ A− (L+G)⊗BPK, and δ̂(0) = δ(0).

Figure 6.1 shows an example of the perturbed networked MAS with local LQR

design. Four agents are connected by a directed communication graph shown in

Figure 6.3(a). The Laplacian matrix L and pining gain matrix G for this example

are shown in (6.61) and (6.63), respectively.

Figure 6.1. An example of perturbed networked MAS with local LQR design.

6.3.6 Problem Formulation

Consider the cooperative tracking problem with the local LQR design described

in (6.6)-(6.16). The goal of this chapter is to analyze the robustness performances of

the cooperative tracking system, by analyzing the stability conditions of the perturbed
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system (6.22) (see Figure 6.1). It is well-known that for a single-agent system, the

local LQR design guarantees a ±60◦ phase margin, 50% gain reduction, and infinite

gain margin [101, 122]. For networked multi-agent systems, we will show that the

phase and gain margins are functions of communication topology.

In particular, we study the following three problems.

1. Find the phase and gain margins of the networked cooperative tracking system

(6.6)-(6.16);

2. Analyze the effects of communication graph topology on stability margins;

3. Find communication graph topology that promises the best guaranteed stability

margins.

6.4 Robustness of Cooperative Tracking Systems

This section studies the robustness of cooperative tracking systems through

investigating stability conditions of the perturbed systems.

Denote the eigenvalues of L + G as λi (i = 1, 2, · · · , N), then the following

lemma holds.

Lemma 8. [120, Lemma 3.3] Under Assumption 6.3.1, the matrix L+G is nonsin-

gular. Moreover, the eigenvalues λi satisfy λi > 0, for all i = 1, 2, · · · , N .

In the next theorem, we provide a necessary and sufficient condition for the

stability of the perturbed global synchronization error δ̂.

Theorem 16. The global synchronization error of the perturbed system (6.22) is

asymptotically stable if and only if the matrices

A− λiBPK, (6.23)

are asymptotically stable for all i = 1, 2, · · · , N .
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Proof. The system (6.22) is asymptotically stable if and only if the matrix Âc is

Hurwitz, i.e., all eigenvalues of Âc have negative real parts. To find the eigenvalues

of Âc, we first put the matrix L+G in its Jordan canonical form through a similarity

transformation, i.e.,

S−1(L+G)S = J =


Jn1(λ̄1)

Jn2(λ̄2)

. . .

Jnk(λ̄k)

 , (6.24)

where S ∈ RN×N is a nonsingular matrix,
∑k

j=1 nj = N and Jnj is the Jodan block

of size nj, j = 1, · · · , k. Note that the eigenvalues λ̄j are distinct for different j.

Similarly, the matrix Âc can be transformed to a block triangular matrix Āc

through the following transformation,

Āc = (S ⊗ In)−1Âc(S ⊗ In)

= (S ⊗ In)−1 (IN ⊗ A− (L+G)⊗BPK) (S ⊗ In)

= IN ⊗ A− J ⊗BPK,

(6.25)

where In ∈ Rn×n is an identity matrix. The last equality holds because of the following

two equations (6.26)-(6.27).

(S ⊗ In)−1 (IN ⊗ A) (S ⊗ In)

= (S−1 ⊗ I−1
n ) (IN ⊗ A) (S ⊗ In)

= (S−1IN ⊗ I−1
n A)(S ⊗ In)

= (S−1INS)⊗ (I−1
n AIn)

= IN ⊗ A,

(6.26)
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(S ⊗ In)−1((L+G)⊗ (BPK))(S ⊗ In)

= (S−1 ⊗ I−1
n )((L+G)S)⊗ (BPKIn))

= (S−1(L+G)S)⊗ I−1
n BPKIn)

= (S−1(L+G)S)⊗ (BPK)

= J ⊗BPK.

(6.27)

For the block triangular matrix Âc, its eigenvalues are the union of eigenvalues

in the diagonal blocks. According to (6.25), the diagonal blocks of Āc are A−λiBPK,

where i = 1, 2, · · · , N . As such, the matrix Âc is asymptotically stable if and only if

A− λiBPK are asymptotically stable for all i = 1, 2, · · · , N .

Theorem 16 shows that the stability of the global synchronization error of the

perturbed system (6.22), i.e., δ̂, is determined by the matrices A − λiBPK, i =

1, 2, · · · , N . Different from single-agent systems whose stability is decided uniquely

by the matrix A − BK, the stability of the cooperative tracking system depends on

not only the matrices A, B and K, but also the communication graph topology L+G.

In the next theorem, we show that the stability of the matrices A − λiBPK

depends only on the real parts of λi, i.e., A−Re{λi}BPK, where i = 1, 2, · · · , N .

Theorem 17. The global synchronization error of the perturbed system (6.22) is

asymptotically stable if and only if the following systems

ζ̇i = (A−Re{λi}BPK) ζi, (6.28)

are asymptotically stable for all i = 1, 2, · · · , N .

Proof. To prove this theorem, we need to show that A− λiBPK are asymptotically

stable if and only if A−Re{λi}BPK are asymptotically stable, where i = 1, 2, · · · , N .
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Let λi = α + jβ and Ã = A−Re{λi}BPK, then one has

A− λiBPK = A− (α + jβ)BPK

= Ã− jβBPK.
(6.29)

As such, the following equation holds.

P (A− λiBPK) + (A− λiBPK)∗P

= PÃ− jβPBPK + ÃTP + jβKTPBTP.

(6.30)

Substituting (6.15) into (6.30), we have

P (A− λiBPK) + (A− λiBPK)∗P

= PÃ+ ÃTP − jβPBPR−1BTP + jβPBR−1PBTP

= PÃ+ ÃTP.

(6.31)

The last equality holds because the matrices P and R are both diagonal, which leads

to PR−1 = R−1P .

According to the Lyapunov theory, a matrix Ã is asymptotically stable if and if

there exists a positive definite matrix P such that PÃ+ Ã∗P is negative definite. As

such, according to (6.31), an asymptotically stable matrix Ã indicates that A−λiBPK

is also asymptotically stable, and vice versa. The proof is complete.

From Theorem 17, the stability of the global synchronization error of the per-

turbed system (6.22), i.e., δ̂, can be determined by checking the stability of the local

systems (6.28).

6.4.1 Phase and Gain Margins of the Cooperative Tracking System

In this subsection we first find conditions of the perturbation P that guarantees

the stability of ζi. The phase and gain margin analysis of the cooperative tracking

system (6.6)-(6.16) then follows.
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Theorem 18. Consider the cooperative tracking system (6.6)-(6.16). If the pertur-

bation P satisfies the following inequality

〈ūi, (2Re{λi}P − I)R−1ūi〉 > 0 (6.32)

for all ūi ∈ Rm and i = 1, 2, · · · , N , then

1) the following inequality holds,

ζTi (0)Pζi(0) > 〈ζi, Qζi〉; (6.33)

2) if additionally, [Q
1
2 , A] is detectable, then the systems ζi in (6.28) are asymp-

totically stable.

Proof. Denote ζiτ as a truncation of ζi, i.e.,

ζiτ (t) =


ζi(t) 0 ≤ t ≤ τ,

0 t > τ.

(6.34)

Combining (6.28) and the feedback gain K in (6.15), one has

ζTi (0)Pζi(0)

= ζTi (τ)Pζi(τ)−
∫ τ

0

d

dt

(
ζTi (t)Pζi(t)

)
dt

= ζTi (τ)Pζi(τ)−
∫ τ

0

2ζTi (t)P ζ̇i(t)dt

> −
∫ τ

0

2ζTi (t)P ζ̇i(t)dt

= −
∫ τ

0

2ζTi (t)P (A−Re{λi}BPK) ζi(t))dt

= −2〈ζiτ , P (A−Re{λi}BPR−1BTP )ζiτ 〉

= 〈ζiτ , (Q− PBR−1BTP + 2Re{λi}PBPR−1BTP )ζiτ 〉

= 〈ζiτ , Qζiτ 〉+ 〈ζiτ ,
(
PB(2Re{λi}P − I)R−1BTP

)
ζiτ 〉.

(6.35)
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Let Πi = (2Re{λi}P − I)R−1 and ūi = BTPζiτ , one has

ζTi (0)Pζi(0)− 〈ζiτ , Qζiτ 〉

> 〈ζiτ , PBΠiB
TPζiτ 〉

= 〈BTPζiτ ,ΠiB
TPζiτ 〉

= 〈ūi,Πiūi〉.

(6.36)

If P satisfies (6.32), then the following inequality holds according to (6.36),

ζTi (0)Pζi(0) > 〈ζiτ , Qζiτ 〉.

Taking the limit τ →∞, then the first statement in (6.33) follows.

Note that ζTi (0)Pζi(0) > 〈ζi, Qζi〉 implies that 〈ζi, Qζi〉 is bounded. If addi-

tionally, [Q
1
2 , A] is detectable, then ζi is square-integrable [101]. Because P has a

finite gain and ζi is square-integrable, ζ̇i is also square-integrable. Since both ζi and

ζ̇i are square-integrable, ζi is asymptotically stable [101], which proves the second

statement.

The following theorem dereives the condition on the perturbation P in the

frequency domain, for the case when P is a linear operator.

Theorem 19. Let the perturbation P be a linear time-invariant operator H with a

finite-gain and a proper transfer function H(jω). If

2Re{λi}H(jω)R−1 + 2Re{λi}R−1H∗(jω)−R−1 > 0 (6.37)

holds for all i = 1, 2, · · · , N and ω, and [Q
1
2 , A] is detectable, then the systems ζi in

(6.28) are asymptotically stable.
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Proof. From (6.37) and the Parseval’s theorem [123], we have

〈ūi, (2Re{λi}P − I)R−1ūi〉

=
1

2

(
〈ūi, (2Re{λi}P − I)R−1ūi〉+ 〈(2Re{λi}P − I)R−1ūi, ūi〉

)
=

1

2π

∫ ∞
−∞

Ū∗i (jω)
(
Re{λi}

(
H(jω)R−1 +R−1H∗(jω)

)
−R−1

)
Ūi(jω)dω

> 0,

(6.38)

where Ūi(jω) is the Fourier transform of ūi, Ū
∗
i (jω) is the Hermitian of Ūi(jω), and

H∗(jω) is the Hermitian of H(jω).

Since 〈ūi, (2Re{λi}P − I)R−1ūi〉 > 0, we know that the systems in (6.28) are

asymptotically stable from Theorem 18.

If each element of the perturbation, Pl, l = 1, 2, · · · ,m, is linear time-invariant

with proper transfer function Hl(jω), and

Re{Hl(jω)} > 1

2Re{λi}
(6.39)

holds for all i = 1, 2, · · · , N , then the systems ζi in (6.28) are asymptotically stable.

Proof. Taking H(jω) = diag(H1(jω), H2(jω), · · · , Hm(jω)), one has

2Re{λi}
(
r−1
l (Hl(jω) +H∗l (jω))

)
− r−1

l

= r−1
l (2Re{λi}Re{Hl(jω)} − 1)

> 0

(6.40)

for all l = 1, 2, · · · ,m.

As such, the condition (6.37) is satisfied. According to Theorem 19, the systems

in (6.28) are asymptotically stable.

Denote λR as the minimum value of Re{λi} for all i = 1, 2, · · · , N , i.e., λR =

mini∈NRe{λi}. A guaranteed phase margin of the cooperative tracking system (6.6)-

113



(6.16) is found in Theorem 20, and a guaranteed gain margin is found in Theorem

21.

Theorem 20. The cooperative tracking system (6.6)-(6.16) has a guaranteed phase

margin ±arccos 1
2λR

.

Proof. Express Hl(jω) in its polar form, i.e., Hl(jω) = ejφl(ω). If a phase shift φl

in the perturbed system satisfies |φl| ≤ arccos 1
2λR

for all l = 1, 2, · · · ,m, i.e., |φl| ≤

arccos 1
2Re{λi} for all l = 1, 2, · · · ,m, and i = 1, 2, · · · , N , then one has

Re{Hl(jω)} = cosφl >
1

2Re{λi}
. (6.41)

According to Corollary 6.4.1, the systems in (6.28) are asymptotically stable.

Theorem 21. The cooperative tracking system (6.6)-(6.16) has a guaranteed gain

reduction tolerance 1
2λR

and an infinite gain margin.

Proof. Consider a linear constant gain al in the perturbed systems. If al > 1
2λR

for

all l = 1, 2, · · · ,m, i.e., al > 1
2Re{λi} for all l = 1, 2, · · · ,m, and i = 1, 2, · · · , N , then

the systems in (6.28) are asymptotically stable according to Corollary 6.4.1.

Remark 12. Compared to the single-agent LQR system, which has a ±60◦ phase

margin, a 50% gain reduction, and an infinite gain margin, the stability margins of

the multi-agent cooperative tracking systems depend on characteristics of the commu-

nication graph topology, λR. In particular, larger λR leads to larger guaranteed phase

and gain margins according to Theorems 20 and 21.

In the next section, we study properties of λR to further explore guaranteed

phase and gain margins of the networked cooperative tracking system.

114



6.5 Graphical Results on Phase and Gain Margins

In this section, we first study the range of λR following an algebraic graph

theory analysis. We show that 0 < λR ≤ 1 holds for general communication graph

topology, and then prove that the directed tree graph permits the maximum λR, i.e.,

λR = 1 in this case. Finally, we provide graphical results on the guaranteed phase

and gain margins.

6.5.1 λR in General Communication Graph Topology

We denote Z as the set of all real square matrices whose off-diagonal elements

are all non-positive.

Lemma 9. [124, Theorem 4.3] Let M ∈ Z. Then the following statements are

equivalent:

1) All principles minors of M are positive;

2) The real part of each eigenvalue of M is positive;

3) The inverse M−1 exists and M−1 > 0.

The links in the communication graph G are equally weighted, i.e., aij = 1 if

(j, i) ∈ E . Similarly, gi = 1 if agent i can observer the leader.

The next theorem investigates the maximum and minimum values of λR for

general communication graph topology.

Theorem 22. For any communication graph topology satisfying Assumptions 6.3.1

and 6.5.1, the following inequality holds,

0 < λR ≤ 1. (6.42)

Proof. The lower limit λR > 0 is straightforward from Lemma 8. We now show that

λR ≤ 1 holds by using a contradiction method.
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Assume λR > 1 under contradiction. Then Re{λi} > 1 holds for all i =

1, · · · , N . With this assumption, there exists a real number β > 1, such that Re{λi}−

β > 0 holds for all i = 1, 2, · · · , N . Denote αi = λi − β. αi is then an eigenvalue of

the matrix L+G− βIN , i.e.,

(L+G− βIN)ωi = (λi − β)ωi = αiωi, (6.43)

where ωi is the ith eigenvector of L + G, i.e., (L + G)ωi = λiωi. Because λR > 1,

Re{αi} > 0 holds for all i = 1, 2, · · · , N . Next we show that there exists at least one

αi such that Re{αi} ≤ 0, which contradicts the assumption that λR > 1.

Since αi is the eigenvalue of L+G−βIN , we study characteristics of the matrix

L + G − βIN . Note that the matrix G is a diagonal matrix with gi in the diagonal.

According to Assumption 6.5.1, βIN −G has all positive diagonal elements. Denote

the minimum diagonal element of βIN − G as γ, then γ > 0, and βIN − G can

be rewritten as βIN − G = γIN + E, where E is a N × N diagonal matrix with

non-negative diagonal elements. As such, the matrix L + G − βIN can be rewritten

as

L+G− βIN = L− (βIN −G)

= L− γIN − E,
(6.44)

Note that the minimum eigenvalue of the Laplacian matrix L is 0. As such, the

minimum eigenvalue of L−γI is negative. As such, there exists at least one principal

minor of the matrix L− γI that is negative, according to Lemma 9.

Denote |M | as the negative principal minor of L− γI with the minimum order,

i.e., all principal minors of L − γI that have lower orders are positive. Denote the

order of |M | as k(k ≤ N). Assume M has the following form

M =

 m M12

M21 M22

 , (6.45)
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where m is a scalar, the row vector M12 ∈ R1×(k−1), the column vector M21 ∈ R(k−1)×1,

and the square matrix M22 ∈ R(k−1)×(k−1). Since |M | < 0, one has∣∣∣∣∣∣∣
m M12

M21 M22

∣∣∣∣∣∣∣ = (m−M12M
−1
22 M21)|M22| < 0. (6.46)

Since the matrix M22 is of k − 1 order, we have |M22| > 0. As such,

m−M12M
−1
22 M21 < 0. (6.47)

Then we consider the principal minor of L − γI − E, |M − Ē|, where Ē is a

submatrix of E. M − Ē has the following form,

M − Ē =

m− e M12

M21 M22 − E22

 , (6.48)

where e > 0 is a scalar, and E22 is a k − 1 by k − 1 square diagonal matrix with

non-negative elements. The determinant of M − Ē is

|M − Ē| =

∣∣∣∣∣∣∣
m− e M12

M21 M22 − E22

∣∣∣∣∣∣∣
=
(
(m− e)−M12(M22 − E22)−1M21

)
|M22 − E22|.

(6.49)

Since |M − Ē| is a principal minor of L− γI −E, we can determine the sign of

the eigenvalues of L− γI −E, i.e., αi, by checking the sign of |M − Ē|. To do so, we

consider two cases: 1) |M22 − E22| ≤ 0, and 2) |M22 − E22| > 0. For the first case, it

is straightforward that there exists at least one αi ≤ 0 according to Lemma 9, which

contradicts the assumption that λR > 1. For the second case, let us prove that

(m− e)−M12(M22 − E22)−1M21 < 0, (6.50)

which leads to the result that |M− Ē| < 0 according to (6.49). |M− Ē| < 0 indicates

that there exists at least one αi < 0 according to Lemma 9, which contradicts the

assumption λR > 1.
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Noticing that e is a non-negative number, it is clear that if the following equation

holds,

m−M12(M22 − E22)−1M21 < 0, (6.51)

then (6.50) holds.

Compare (6.51) and (6.47). Because (6.47) holds, to show (6.51), we only need

to show that

M−1
22 ≤ (M22 − E22)−1. (6.52)

Here ”≤” is element by element comparison. Note that M22 ∈ Z and (M22−E22) ∈ Z.

As such, M−1
22 > 0 and (M22 − E22)−1 > 0 hold according to Lemma 9.

Note that the following equality holds.

(M22 − E22)−1 = M−1
22 +M−1

22 E22(M22 − E22)−1. (6.53)

As such, one has

M−1
22 − (M22 − E22)−1 = −M−1

22 E22(M22 − E22)−1

≤ 0

(6.54)

The last inequality holds because M−1
22 > 0, E22 > 0, and (M22 − E22)−1 > 0. As

such, (6.52) holds, which leads to (6.51) and (6.50). As such, |M − Ē| < 0 is proven,

and thus the assumption λR > 1 does not hold.

The proof is complete.

Theorem 22 provides the maximum and minimum values of λR for a cooperative

tracking system of general graph topology. In the next subsection, we show that the

directed tree graph has the maximum λR among all communication graphs satisfying

Assumptions 6.3.1 and 6.5.1.
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6.5.2 λR in Directed Tree Topology

Since a larger λR leads to the increase of guaranteed phase and gain margins

according to Theorems 20 and 21, here we find classes of special graph topology that

promises the maximum λR among all possible communication graphs.

Theorem 23. For the cooperative tracking system of a directed tree topology G, λR =

1 under assumptions 6.3.1 and 6.5.1.

Proof. For a directed tree, the Laplacian matrix is a lower triangular matrix, i.e.,

L =



0 0 0 · · · 0

−a21 d2 0 · · · 0

−a31 −a32 d3 · · · 0

. . .

−aN1 −aN2 −aN3 · · · dN


, (6.55)

where aij = 1, if and only if aik = 0 ∀k 6= j. This is because in a directed tree, each

node except the root node has one and only one in-degree.

According to Assumption 6.3.1, the root node can observe the leader. The

matrix L+G is then a lower triangular matrix with the following form

L+G =



1 0 0 · · · 0

−a21 d2 0 · · · 0

−a31 −a32 d3 · · · 0

. . .

−aN1 −aN2 −aN3 · · · dN


. (6.56)

Therefore, the eigenvalues of L + G are λi = 1, d2, · · · , dN . Because di = 1 holds for

all i = 2, 3, · · · , N , we have λR = 1 for a cooperative tracking system of a directed

tree topology.
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Comparing with a general graph topology where λR ≤ 1 according to Theo-

rem 22, it is straightforward to conclude that the directed tree graph promises the

maximum λR among all possible communication graphs.

6.5.3 Graphical Results on Phase and Gain Margins

Theorem 24. For the networked cooperative tracking system defined in (6.6)-(6.16),

the guaranteed phase and gain margin performances are bounded by ±60◦ phase mar-

gin, 50% gain reduction, and infinite gain margin.

Proof. This result is derived naturally from Theorems 20-22.

Remark 13. Theorem 24 implies that for the multi-agent cooperative systems with

local LQR design, the guaranteed phase and gain margins are bounded by those of

the single-agent LQR system. Intuitively, this is understandable because agents do

not have direct access to the leader, and have to track the leader based on limited

information from their immediate neighbors. A perturbation at agent i may propagate

throughout the communication graph, potentially harm the stability of other agents in

the network.

The next theorem shows the robustness result for the cooperative tracking sys-

tem of the directed tree topology.

Theorem 25. The directed tree communication graph promises the best phase and

gain margin performances among all possible communication graph topology. In other

words, the cooperative tracking system of a directed tree topology G has guaranteed

±60◦ phase margin, 50% gain reduction, and infinite gain margin.

Proof. This theorem is derived naturally from Theorems 20, 21, and 23.

Remark 14. Theorem 25 shows that among all possible communication graphs, di-

rected tree is the special topology that promises the best phase and gain margins, which
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are the same as those of single-agent LQR systems. This result can be understood in-

tuitively as follows. In the directed tree graph, the control of each agent is uniquely

decided by its root agent, but not any other agents. Each agent synchronizes to its

root node based on the state information received from the root node. This architecture

is equivalent to that of the single-agent LQR system. All agents synchronize to the

leader as long as each agent synchronizes to its root node. As each agent behaves the

same as the single-agent LQR system, the robustness of the whole cooperative system

in terms of guaranteed phase and gain margins is also equivalent to the single-agent

LQR system.

6.6 Simulation Studies

In this section, we conduct simulation studies to illustrate and validate the

theoretical analysis. Consider a group of four agents connected by a directed com-

munication graph with the following agent dynamics

ẋi =

 2 4

−2 1

xi +

0.5 0

0 0.5

Pui, (6.57)

ẋ0 =

 2 4

−2 1

x0, (6.58)

where i = 1, 2, 3, 4, and x0 denotes the state of the leader. Select the weighting

matrices Q and R in the cost function (6.17) as identity matrices, and then the

feedback gain K can be calculated accordingly using (6.15).

We consider communication graphs of the following four cases. Cases 1 and 2 in

Figure 6.2 are both directed tree communication graphs, and cases 3 and 4 in Figure

6.3 are both non-tree general communication graphs with additional links. Only one

agent in case 3 can observe the leader while in case 4, one additional agent can also
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observe the leader. The edge weights aij are selected as 1 if (j, i) ∈ E , and the pining

gain gi is selected as 1 if agent i can observe the leader.

(a) (b)

Figure 6.2. Directed tree communication graph for (a) case 1 and (b) case 2.

The Laplacian matrix of the four graph topology are

L1 = D1 −A1 =


0 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1

 , (6.59)

L2 = D2 −A2 =


0 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1

 , (6.60)
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(a) (b)

Figure 6.3. General communication graph for (a) case 3, and (b) case 4.

L3 = D3 −A3 =


1 0 0 −1

−1 1 0 0

0 −1 1 0

0 0 −1 1

 , (6.61)

L4 = D4 −A4 =


1 0 0 −1

−1 1 0 0

0 −1 1 0

0 0 −1 1

 , (6.62)
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respectively, and the four pining gain matrices are

G1 = G2 = G3 =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , (6.63)

G4 =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 , (6.64)

respectively. The minimum real part of eigenvalues of L+G, i.e., λR, for the four cases

are λR1
= 1, λR2

= 1, λR3
= 0.2, λR4

= 0.3, respectively. According to Theorems 25,

the systems with directed tree communication graph, i.e., cases 1 and 2, should have

the best robustness performances among the four cases.

We first simulate the networked MAS with no pertubation. The synchronization

errors, i.e., δi = xi−x0, of the four cases are plotted in Figures 6.4-6.7, respectively. It

can be seen from Figures 6.4-6.7 that agents in all of the four cases can all synchronize

to the leader without perturbation.

We then add a pertubation P with gain of 0.2 and phase of 0 to the system

(6.57). The synchronization errors of the four cases are plotted in Figures 6.8-6.11,

respectively. It can be seen from Figures 6.8 and 6.9 that with this pertubation,

systems of cases 1 and 2 still achieve synchronization. However, as shown in Figures

6.10 and 6.11, agents in case 3 and 4 fail to synchronize to its leader. These observa-

tions validate the result that systems with directed tree communication graph, e.g.,

Figure 6.2, are more robust than the systems with general communication graphs,

e.g. Figure 6.3.
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Figure 6.4. Synchronization errors of cooperative tracking system with no perturba-
tion in case 1.
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Figure 6.5. Synchronization errors of cooperative tracking system with no perturba-
tion in case 2.
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Figure 6.6. Synchronization errors of cooperative tracking system with no perturba-
tion in case 3.
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Figure 6.7. Synchronization errors of cooperative tracking system with no perturba-
tion in case 4.

126



0 50 100 150 200 250

Time

-10

-5

0

5

10

S
y
n

c
h

ro
n

iz
a

ti
o

n
 e

rr
o

r

Agent 1, state 1

Agent 2, state 1

Agent 3, state 1

Agent 4, state 1

Agent 1, state 2

Agent 2, state 2

Agent 3, state 2

Agent 4, state 2

Figure 6.8. Synchronization errors of cooperative tracking system with pertubation
of gain 0.2 in case 1.

0 50 100 150 200 250

Time

-6

-4

-2

0

2

4

6

8

S
y
n

c
h

ro
n

iz
a

ti
o

n
 e

rr
o

r

Agent 1, state 1

Agent 2, state 1

Agent 3, state 1

Agent 4, state 1

Agent 1, state 2

Agent 2, state 2

Agent 3, state 2

Agent 4, state 2

Figure 6.9. Synchronization errors of cooperative tracking systemwith pertubation of
gain 0.2 in case 2.
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Figure 6.10. Synchronization errors of cooperative tracking system with pertubation
of gain 0.2 in case 3.
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Figure 6.11. Synchronization errors of cooperative tracking system with perturbation
of gain 0.2 in case 4.
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Finally, to compare the robustness performances of cases 3 and 4, we add a

perturbation P with gain of 0.5 and phase of 0. The synchronization errors of all

four cases are plotted in Figures 6.12-6.15, respectively. Figures 6.12, 6.13, and 6.15

show that with this perturbation, systems in cases 1, 2, and 4 achieve synchronization

successfully. However, as shown in Figure 6.14, agents in case 3 fail to synchronize

to the leader. These observation validate the results that the system of case 3 is less

robust than the system of case 4. This can be understood intuitively as more agents

can directly observe the leader. In all, the system in case 3 has the smallest λR and

the worst robustness performances among all four cases. We can conclude that a

larger λR results in a better robustness performance, which validates the theoretical

analysis in Section 6.4.
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Figure 6.12. Synchronization errors of cooperative tracking system with pertubation
of gain 0.5 in f case 1.
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Figure 6.13. Synchronization errors of cooperative tracking system with pertubation
of gain 0.5 in case 2.
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Figure 6.14. Synchronization errors of cooperative tracking system with pertubation
of gain 0.5 in case 3.
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Figure 6.15. Synchronization errors of cooperative tracking system pertubation of
gain 0.5 in case 4.
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CHAPTER 7

LEARNING AND UNCERTAINTY-EXPLOITED DIRECTIONAL ANTENNA

CONTROL FOR ROBUST LONG-DISTANCE AND BROAD-BAND AERIAL

COMMUNICATION

7.1 Introduction

UAVs have been widely used in civilian and commercial applications including

emergency response, connectivity service, intelligent transportation, precision agricul-

ture, among others [125–127]. Aerial communication among UAVs is expected to play

an indispensable role in these applications when multiple UAVs are involved [128–130].

In applications such as emergency response and remote infrastructure health moni-

toring, the long-distance and broad-band UAV-to-UAV communication capability is

desired.

To enable long-distance and broad-band UAV-to-UAV communication, the aerial

communication using directional antennas (ACDA) has been developed as a promising

solution [2,131–135]. Through using directional antennas that focus the transmission

energy in certain direction, ACDA significantly extends the communication distance

and rejects interference, compared to omni-drectional antenna based solutions. With

ACDA, UAVs-carried communication infrastructures can be quickly deployed to de-

liver Wi-Fi services from the air, through which high-rate data such as monitoring

streams from remote locations can be transmitted in real-time (see Figure 7.1). The

detailed design prototype and hardware components of this ACDA system are de-

scribed in [2].
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Figure 7.1. Illustration of the broadband long-distance communication infrastructure
using controllable UAV-carried directional antennas [2] .

A critical component of the ACDA system is the automatic alignment of di-

rectional antennas to maximize the communication performance. Each UAV in the

ACDA system carries a rotational plate mounted with a directional antenna [133],

which is controlled to align with the directional antenna carried by the other UAV.

Robust automatic alignment of directional antennas is not easy to achieve, consider-

ing practical issues such as the limited on-board sensing devices due to the physical

constraints of UAV payload and power supplies, uncertain and varying UAV mobility,

and unstable GPS and unknown communication environments.

There are two general design configurations of the ACDA system, depending

on whether the communication channel used for antenna control is omni or not.

The first configuration uses a directional antenna-equipped broad-band channel for

the transmission of application-oriented data (e.g., real-time video streams), and an

additional low-rate omni-directional communication channel for control and command

data. In [133], omni-directional antennas are used to transmit the GPS information

of the remote UAV for the alignment of antennas. This configuration simplifies the
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antennas controller design, as the control channel still functions even if the directional

antennas are not in alignment. However, the omni-directional control channel suffers

from practical issues such as interference and dissipation over a long communication

distance [136,137]. As such, in this chapter, we aim to design the ACDA system using

the second configuration where the high-rate application data and low-rate control

and command data share the same channel equipped with directional antennas.

Although more practical, this solution that removes the additional control and

command channel introduces more challenges to the robustness of antennas control.

As control and command data cannot be transmitted if the directional communication

channel fails, the antenna control system needs to robustly lock and track the other

directional antennas, once the communication channel is established initially. To do

that, we develop an uncertain UAV mobility modeling and intention estimation frame-

work to capture and predict the uncertain intentions of the remote UAV’s maneuvers.

Predictive intentions for robot-robot and human-robot collaborations have been stud-

ied in e.g., [138–140]. Most of these studies assume that an agent’s intention can be

described and modeled in a deterministic and predictable form [138–140]. This is not

suitable for UAVs considering their highly flexible and random movement patterns.

Probabilistic intentions and their estimation have also been studied in e.g., [141,142],

using stochastic models such as Markov chain and Baysien networks. In this chapter,

we use random mobility models (RMMs), and in particular, the smooth turn (ST)

UAV RMM [1,143] to more realistically capture the uncertain mobility intentions of

UAVs. RMMs are a class of random switching models that capture the statistics of

random moving objects. The intelligence on RMMs is exploited in this chapter to

facilitate robust tracking.

In indoor and many emergency scenarios, GPS signals may be unstable consid-

ering environmental disturbances and blockages. In GPS unstable or denied environ-
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ment, we need additional measurement signals for antenna control. Received Signal

Strength Indicator (RSSI), a communication performance indicator, is a promising

measurement signal for ACDA, as it can be measured from ACDA self-equipped di-

rectional antennas, and does not require additional localization sensors to be carried

by UAVs. In [144], we adopted the RSSI of directional antennas, to compensate

unstable GPS signals, under the assumption that the communication environment is

perfect. In particular, GPS and directional Wi-Fi RSSI based fusion algorithms were

developed to estimate the other UAV’s location, which is used to align the headings

of directional antennas. However, in an imperfect communication environment, the

effects of reflection, refraction and absorption by buildings, obstacles, and interfer-

ence sources can distort the strongest signal directions. In this case, simply aligning

directional antennas using their GPS locations may not lead to the best communica-

tion performance (see experimental studies in [2, 145]). In this chapter, we develop

a distributed antenna control solution for the goal of maximizing the communication

performance, instead of using location-based antenna heading alignment. The solu-

tion learns directional Wi-Fi channel models online and provides RSSI as not only

alternative measurement signals, but also the goal function for antenna control, in

GPS-denied settings.

Our antenna control adopts a novel stochastic optimal control approach that

integrates RL for online optimal control, MPCM for effective uncertainty evaluation,

and UKF for nonlinear state estimation. On the aspect of optimal control, RL has

been developed in [32, 146] for deterministic system dynamics. Paper [31] developed

the stochastic optimal control solution that integrates MPCM and RL for systems

modulated by uncertain parameters, and paper [147] applied this solution for an

air traffic management problem subject to uncertain weather conditions. In this

chapter, we study the stochastic optimal control problem for broad random switching
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systems. On the aspect of estimation, nonlinear system estimation methods such as

Extended Kalman Filter (EKF) and UKF have been widely used typically for known

and deterministic systems corrupted with additive noises, but not random switching

RMMs. In this chapter we develop a new stochastic optimal control solution for

systems that involve nonlinear random switching RMMs and limited measurements,

by integrating UKF, RL and MPCM.

The contributions of this chapter are summarized as follows.

1. The design configuration of the ACDA system using pure directional anten-

nas. In this ACDA system, the high-rate application data and low-rate control

and command data share the same communication channel equipped with di-

rectional antennas. This design is more practical compared to the previously

developed ACDA systems, which use both directional and omni-directional an-

tennas.

2. RL-based antenna control. This solution learns directional channel models on-

line and provides RSSI as not only alternative measurement signals, but also

the goal function for antenna control, in GPS-denied settings. In addition, this

solution does not require a known and perfect communication channel, which

was assumed in the previously developed ACDA systems.

3. Stochastic UAV intention modeling. We use RMMs to capture the highly flex-

ible and random movement patterns of UAVs, and develop an online model

estimation framework to capture and predict the uncertain intentions of the

remote UAV’s maneuvers.

4. Real-time state estimation for random switching systems. Agents’ states in

general random switching systems are usually regarded as unpredictable. This

solution makes the best prediction out of the agents’ intentions coded in the
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statistics of the agents’ random maneuvers to analyze and further predict the

agents’ future behaviors.

5. Real-time distributed optimal control for random switching systems. This solu-

tion integrates RL and MPCM to provide an effective online optimal control

solution for agents moving with random switching system models.

The remainder of this chapter is organized as follows. In Section 7.2, we de-

scribe the ACDA system shown in Figure 7.1, including both system models and

measurement models. The antenna control problem is also formulated. In Section

7.3, we develop the RL based stochastic optimal control solutions. In Section 7.4, an

uncertain intention estimation method is provided to estimate the random variables

of the remote UAV’s uncertain maneuvers. In Section 7.5, simulation studies are

conducted.

7.2 Modeling and Problem Formulation

In this section, we first describe the ACDA system model, including the UAV

RMM and directional antenna dynamics. We then describe the GPS and RSSI mea-

surement models. The antenna control problems are then formulated.

7.2.1 System Models

We consider two UAVs independently fly in a low-altitude airspace at approxi-

mately the same height to fulfill their missions such as search and rescue (see Figure

7.1). The same altitude assumption is reasonable because that 1) the range of flight

altitudes for small UAVs is very limited [148]; and 2) the optimal flight altitudes to

maximize coverage are proved to be the same for UAVs of the same type [149–151].

On each UAV, a tunable plate attached with a directional antenna is installed and

driven by a gear motor [133]. To establish a long-range air-to-air communication

137



channel to transmit both application data (e.g., surveillance videos) and control and

command data, the channel performance needs to be maximized.

7.2.1.1 UAV Random Mobility Model

We use the smooth turn (ST) mobility model ( [1,143]) to capture the uncertain

intentions of UAVs executing surveillance-like missions (see Figre 7.2). The random

maneuvers described by a ST mobility model work as follows. At randomly selected

time points T i0, T
i
1, T

i
2, · · · , where 0 = T i0 < T i1 < · · · , UAV i selects a point in

the airspace along the line perpendicular to its current heading direction, and then

circles around it until the UAV chooses another turning center. The perpendicularity

guarantees smooth trajectories [1]. The time duration for UAV i to maintain its

current maneuver τi[T
i
j ] = T ij+1 − T ij follows a memoryless exponential distribution

[152].

fτ (τi[T
i
j ]) = λie

−λiτi[T ij ], (7.1)

where 1/λi is the mean of τi[T
i
j ]. The velocity vi[T

i
j ] follows a uniform distribution

with the minimum and maximum velocity constraints vi,min < vi[T
i
j ] < vi,max,

fv(vi[T
i
j ]) =

1

vi,max − vi,min
. (7.2)

The inverse of the turning radius 1
ri[T ij ]

follows the zero-mean Gaussian distribution

with variance σ2
i ,

fr(
1

ri[T ij ]
) =

1

σi
√

2π
e
− 1

2rσ2
i . (7.3)
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(a)

(b)

Figure 7.2. Illustration of the ST RMM: (a) UAV trajectory ensemble (red curve).
Green spots are the randomly chosen turning centers [1]; (b) maneuver selection and
switching.
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Denote the position of UAV i along x and y axes at time instant k as xi[k] and

yi[k] respectively. The dynamics of UAV i (denote as fi(.)) following the ST uncertain

maneuvering intentions are described as

xi[k + 1] = xi[k] + vi[k] cos(φi[k])δ,

yi[k + 1] = yi[k] + vi[k] sin(φi[k])δ, (7.4)

φi[k + 1] = φi[k] + ωi[k]δ,

where δ is the sampling period, φi[k] and ωi[k] are the heading angle and angular

velocity at time instant k, and

ωi[k] =
vi[k]

ri[k]
. (7.5)

Note that the ST RMM is a random switching model composed of two types

of random variables [21]. Type 1 random variables, vi[k] and ri[k], describe the

characteristics for each maneuver.

vi[k] =

 vi[T
i
j ], if ∃j ∈ [0, 1, 2, ..), k = T ij

vi[k − 1], if ∀j = 0, 1, 2, .., k 6= T ij

(7.6)

ri[k] =

 ri[T
i
j ], if ∃j ∈ [0, 1, 2, ..), k = T ij

ri[k − 1], if ∀j = 0, 1, 2, .., k 6= T ij

(7.7)

The maneuvers’ random switching behavior is governed by the type 2 random variable,

τi[T
i
j ], which describes how often the switching of type 1 random variables occurs.

The two groups of uncertain maneuvers for the UAVs (v1[T 1
j ], r1[T 1

j ], τ1[T 1
j ]) and

(v2[T 2
j ], r2[T 2

j ], τ2[T 2
j ]) are independent, as UAV mobility is application-specific, and

is not constrained from the communication mission.
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7.2.1.2 Directional Antennas Dynamics

The directional antenna installed on each UAV autonomously adjusts its head-

ing angle to establish a robust communication channel between the two UAVs. For

UAV i, the heading angle dynamics of its directional antennas is described as

θi[k + 1] = θi[k] + (ω′i[k] + ωi[k])δ, (7.8)

where θi is the heading angle of antennas i, and ω′i is the angular velocity of antennas

i due to its heading control. Note that the change of θi is caused by both the control

of antennas i, ω′i, and the movement of UAV i, ωi.

7.2.2 Measurement Models

We consider two measurement signals for the ACDA system, GPS and RSSI.

7.2.2.1 GPS measurement

If GPS is available, the measured GPS signal of UAV i is denoted as zG,i(k),

zG,i[k] = HG(k)xi[k] +$G,i[k], (7.9)

where HG = [1, 0, 0, 0; 0, 1, 0, 0] is the measurement matrix, xi[k] = [xi[k], yi[k], φi[k], θi[k]]T

is the system state of UAV i, and $G,i is the white Gaussian noise with zero mean and

covariance RG,i. GPS signals can be transmitted through the air-to-air communica-

tion channel to assist with the control of directional antennas. Denote the relation

between the GPS signal and system state as hG,i, i.e., zG,i[k] = hG,i(xi[k]).

7.2.2.2 RSSI measurement

RSSI measures the signal power received from the transmitting antenna [153],

and hence is an important indicator of communication channel performance. In the
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ACDA system, RSSI is affected by the relative positions of two UAVs that carry these

directional antennas, headings, field radiation patterns of these antennas, and also

communication environment. Denote the measured RSSI signal as zR[k], the relation

between the RSSI signal, zR[k], and the system states, x[k] (x[k] = [xT1 [k],xT2 [k]]T ), as

hR(.), i.e., zR[k] = hR(x[k]), then zR[k] is given by the Friis free space equation [153]:

zR[k] =Pt|dBm[k] + 20 log10(λ)− 20 log10(4π)

− 20log10(d[k]) +Gl|dBi[k] +$R[k],

(7.10)

where Pt|dBm[k] is the transmitted signal power, λ is the wavelength, and d[k] is the

distance between the two UAVs at time k, i.e., d[k] =
√

(x1[k]− x2[k])2 + (y1[k]− y2[k])2.

Gl|dBi[k] is the sum of gains at both the transmitting and receiving sides [154]. The

Ubiquiti NanoStation loco M5 directional antennas [155] that we use in the ACDA

system is modeled based on the filed pattern of the end-fire array antennas [156],

Gl|dBi[k] =(Gmaxt|dBi −G
min
t|dBi) sin

π

2n

sin (n2 (kada(cos (γt[k]− θt[k]))− 1)− π
n)

sin (1
2(kada(cos (γt[k]− θt[k]))− 1)− π

n)

+ (Gmaxr|dBi −G
min
r|dBi) sin

π

2n

sin (n2 (kada(cos (γr[k]− θr[k]))− 1)− π
n)

sin (1
2(kada(cos (γr[k]− θr[k]))− 1)− π

n)

+Gmint|dBi +Gminr|dBi,

(7.11)

where Gmax
t|dBi, G

min
t|dBi, and Gmax

r|dBi, G
min
r|dBi are the maximum and minimum gains of

transmitting and receiving antennas. ka is the wave number, and ka = 2π
λ

. n and

da are design parameters of the directional antenna. θt[k] and θr[k] are the heading

angles of the transmitting and receiving antennas at time k, respectively. γt[k] and

γr[k] are the heading angles of the transmitting and receiving antennas corresponding

to the maximal Gl at time k, respectively.

The parameters Gmax
t|dBi, G

min
t|dBi,G

max
r|dBi, and Gmin

r|dBi, can be obtained from the an-

tenna’s datasheet. In ACDA, the two directional antennas are of the same type, and

hence Gmax
t|dBi = Gmax

r|dBi, and Gmin
t|dBi = Gmin

r|dBi. In an imperfect environment (e.g., where
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disturbances and interference exist), these parameters inGl|dBi[k] can be environment-

specific.

Similarly, in a perfect communication environment, γt[k] and γr[k] are achieved

when the two antennas are aligned [144]. Affected by the impact of imperfect envi-

ronment, such as blockages, the desired heading angles can be captured as

γr[k] = arctan
yt[k]− yr[k]

xt[k]− xr[k]
+ θrenv , (7.12)

γt[k] = arctan
yr[k]− yt[k]

xr[k]− xt[k]
+ θtenv , (7.13)

where (xt[k], yt[k]) and (xr[k], yr[k]) are the positions of UAVs that carry the transmit-

ting and receiving antennas respectively, and θrenv and θtenv are environment-specific

shift angles at the receiver and transmitter sides. θrenv and θtenv are zeros in a perfect

environment.

7.2.3 Problem Formulation

We aim to design the angular velocities of each directional antenna to maximize

the expected RSSI performance of ACDA over a look-ahead window. The RSSI model

(as described in Equations (7.10)-(7.13)) contains unknown environment-specific pa-

rameters (Gmax
t|dBi, G

min
t|dBi, θtenv and θrenv), and the UAV dynamics contain uncertain

parameters (v1[k], r1[k], τ1[T 1
j ], v2[k], r2[k], τ2[T 2

j ]).

Here we formulate the problem as a stochastic optimal control problem. Mathe-

matically, considering the random switching system dynamics described in Equations

(7.4)-(7.8), the optimal control policy u[k] is sought to maximize the expected value

function, which is the summation of the predicted RSSI signals over a look-ahead

window, i.e.,

V (x[k]) = E{
k+N∑
l=k

αl−kzR[l](x[l],u[k])}, (7.14)
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where x[k] is the global state, x[k] = [xT1 [k],xT2 [k]]T . u[k] is the control input, u[k] =

[u1[k], u2[k]]T , ui[k] = [ω′i[k]]. zR[l] is the RSSI signal at time l, and α ∈ (0, 1] is

a discount factor. Note that the control is decentralized, in the sense that each

antenna finds its own optimal control policy, with the assumption that the other

antenna adopts its optimal control policy. Each UAV only needs to learn its own

environment-specific parameters (Gmax
t|dBi, G

min
t|dBi, and θtenv/θrenv) to find its optimal

control policy.

In the rest of this article, we develop the control solution for one UAV, denoted

as the local UAV, or UAV 1, and the other UAV as the remote UAV, or UAV 2. The

control solution for the other UAV is designed in the same manner.

7.3 Reinforcement Learning based Stochastic Optimal Control for ACDA

In this section, we develop new online solutions to solve the stochastic optimal

control problem for the ACDA system described in Section 7.2.3. The solution inte-

grates the uncertainty sampling method MPCM, the adaptive optimal control method

RL, and the nonlinear estimation method UKF, to address the challenges including

nonlinear and random switching dynamics, unknown RSSI model, limited measure-

ments of system outputs, and online time requirement to derive optimal solutions for

random switching systems.

In Section 7.3.1, we describe the solution when GPS is available but the RSSI

model is unknown. Online stochastic optimal control solutions are derived and the

environment-specific RSSI model is learned. Section 7.3.2 further develops online

solutions in both GPS-available and GPS-denied environments, with the learned

environment-specific RSSI model.
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7.3.1 Stochastic optimal control with unknown RSSI

To develop a decentralized optimal control solution that maximizes the value

function (Equation (7.14)) for the nonlinear random switching ACDA dynamics with

unknown RSSI model and limited measurements, two main steps are involved: 1)

state estimation, and 2) adaptive optimal controller design.

7.3.1.1 State Estimation

The states of both local and remote UAVs need to be estimated. For the local

UAV, the trajectory-specific maneuvers (v1[k], r1[k], and τ1[T ij ]) are known locally,

and hence, the local-system states (x1[k], y1[k], φ1[k]) can be estimated utilizing UKF

as described in [144, Section 3.1]. We do not repeat the process here to save the

space.

For the remote UAV that has random switching dynamics, the RMM-related

maneuvers (v2[k], r2[k], and τ2[T 2
j ]) are unknown to the local UAV, and hence the re-

mote UAV’s states (x2[k], y2[k], φ2[k]) can not be directly estimated using the existing

filtering type of methods. We design a new estimation algorithm for the nonlinear and

random switching dynamics. Here, a subset of x2[k], i.e., [x2[k], y2[k], φ2[k]] is needed

for this estimation, and we use x2[k] to represent this subset to simplify presentation,

when it does not cause confusion.

Denote the switching behavior of the remote UAV at time k as s[k]. s[k] = 1

or 0 represent the current maneuver switches at time k or not. Considering the two
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possible switching behaviors, the expected conditional current state of UAV 2 given

the previous state, x2[k − 1], can be derived as

E(x2[k]|x2[k − 1])

=E(x2[k]|x2[k − 1], s[k − 1] = 0)P (s[k − 1] = 0)

+ E(x2[k]|x2[k − 1], s[k − 1] = 1)P (s[k − 1] = 1).

(7.15)

When s[k − 1] = 0, the remote UAV remains its previous maneuvers v2[k − 1]

and r2[k − 1], and thus the expected system state E(x2[k]|x2[k − 1], s[k − 1] = 0)

can be estimated from the system dynamics f(x2[k − 1], v2[k − 1], r2[k − 1]). When

s[k−1] = 1, UAV 2 selects new maneuvers from the two random variables v2[T 2
j ] and

r2[T 2
j ]. In this case, the estimation of the system state E(x2[k]|x2[k−1], s[k−1] = 1)

involves uncertainty evaluation, which is typically solved by Monte Carlo method,

too slow to be used for real-time control. Here we use a multivariate probabilistic

collocation method (MPCM) [23] to effectively evaluate the uncertainty. MPCM

accurately evaluates the output mean of a system mapping subject to uncertain input

parameters, by smartly selecting a limited number of sample points according to the

Gaussian Quadrature rules. The main property of MPCM is described in the following

lemma. Please refer to [23] for the detailed MPCM design procedure.

[23, Theorem 2] Consider a system G modulated by m independent uncertain

parameters, ai, where i ∈ {1, ..m},

G(a1, ..., am) =

2n1−1∑
j1=0

2n2−1∑
j2=0

...
2nm−1∑
jm=0

ψj1,...,jm

m∏
i=1

ajii , (7.16)

where ai is an uncertain parameter with the degree up to 2ni − 1. ni is a positive

integer for any i. ψj1,...,jm ∈ R are the coefficients. Each uncertain parameter ai
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follows an independent pdf fAi(ai). The MPCM approximates G(a1, ...am) with the

following low-order mapping

G′(a1, ..., am) =

n1−1∑
j1=0

n2−1∑
j2=0

...

nm−1∑
jm=0

Ωj1,...,jm

m∏
i=1

ajii , (7.17)

with E[G(a1, ..., am)] = E[G′(a1, ..., am)], where Ωj1,...,jm ∈ R are coefficients. MPCM

reduces the number of simulations from 2m
∏m

i=1 ni to
∏m

i=1 ni.

Define a system mapping subject to uncertain input parameters v2[T 2
j ] and

r2[T 2
j ]: G2(v2[T 2

j ], r2[T 2
j ],x2[k−1]) = f(x2[k−1], v2[T 2

j ], r2[T 2
j ]). When s[k−1] = 1, the

expected current state E(x2[k]|x2[k−1], s[k−1] = 1) can be estimated from the mean

output of the system mapping G2(v2[T 2
j ], r2[T 2

j ],x2[k−1]), i.e., E(x2[k]|x2[k−1], s[k−

1] = 1) = E[G2(v2[T 2
j ], r2[T 2

j ],x2[k − 1])], using MPCM according to Lemma 7.3.1.1

and paper [23]. Under the assumption that the two uncertain parameters v2[T 2
j ] and

r2[T 2
j ] have a degree up to 2n1−1 and 2n2−1 respectively, G2(v2[T 2

j ], r2[T 2
j ],x2[k−1])

has the following form.

G2(v2[T 2
j ], r2[T 2

j ],x2[k − 1]) =

2n1−1∑
j1=0

2n2−1∑
j2=0

ψj1,j2(x2[k − 1])vj12 [T 2
j ]rj22 [T 2

j ], (7.18)

According to Lemma 7.3.1.1, the output mean of this system mapping can

be estimated from the output of a reduced-order mapping G′2(v2[T 2
j ], r2[T 2

j ],x2[k −

1]), i.e., E[G2(v2[T 2
j ], r2[T 2

j ],x2[k − 1])] = E[G′2(v2[T 2
j ], r2[T 2

j ],x2[k − 1])], where the

reduced mapping G′2(v2[T 2
j ], r2[T 2

j ],x2[k − 1]) has the following form

G′2(v2[T 2
j ], r2[T 2

j ],x2[k − 1]) =

n1−1∑
j1=0

n2−1∑
j2=0

Ωj1,j2(x2[k − 1])vj12 [T 2
j ]rj22 [T 2

j ]. (7.19)

The coefficients Ωj1,j2(x2[k−1]) and output mean E[G′2(v2[T 2
j ], r2[T 2

j ],x2[k−1])]

are obtained using the evaluated outputs G′2(v2[T 2
j ], r2[T 2

j ],x2[k− 1]) at each selected

simulation point according to the procedures described in [23, Section II-B].
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Theorem 26. Given the previous state x2[k − 1] of the remote UAV 2, the expected

current state E(x2[k]|x2[k − 1]) is estimated by the local UAV 1 as

E(x2[k]|x2[k − 1])

= P2E[G′2(v2[T 2
j ], r2[T 2

j ],x2[k − 1])]

+ (1− P2)f(x2[k − 1], v2[k − 1], r2[k − 1]),

(7.20)

where P2 is the switching probability of the remote UAV’s maneuver at each time

instant, P2 = λ2δ.

Proof. Let us first find the switching probability Pi. Since the time duration for UAV

i to maintain its current maneuver τi[T
i
j ] follows exponential distribution as described

in Equation (7.1), Pi can be approximated from its exponential distribution as

Pi = λiδ. (7.21)

With the switching probability and the defined system mapping

G2(v2[T 2
j ], r2[T 2

j ],x2[k − 1]), Equation (7.15) can be further written as

E(x2[k]|x2[k − 1])

=P2E[G2(v2[T 2
j ], r2[T 2

j ],x2[k − 1])]

+ (1− P2)f(x2[k − 1], v2[k − 1], r2[k − 1]).

(7.22)

Since E[G2(v2[T 2
j ], r2[T 2

j ],x2[k − 1])] = E[G′2(v2[T 2
j ], r2[T 2

j ],x2[k − 1])] according to

Lemma 7.3.1.1 and Equations (7.18) and (7.19), Theorem 26 is derived naturally by

combining Equations (7.18), (7.19), (7.22) and Lemma 7.3.1.1.

Theorem 26 provides a general approach to estimate the expected system state

of a random switching system with computational efficiency, when the previous system

state is given. Here we use this state estimation approach with UKF to estimate the

state of the remote UAV from the measurement zG,2[k]. In particular, we integrate
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MPCM and UKF for a 5-step state estimation procedure. Steps 1 and 2 select

initial conditions and MPCM points to initialize Steps 3-5 ; Step 3 and 4 find the

state estimators when the switching behavior s[k− 1] = 0 and 1 respectively; Step 5

finds the expected state by integrating the two estimators found in Steps 3 and 4 .

Step 1: Initialize. Select initial conditions x̂2[0] and P[0] to initialize the

system.

Step 2: Select MPCM points. n1n2 MPCM simulation point pairs are

selected for the random variables v2[T 2
j ] and r2[T 2

j ] according to the MPCM procedure

[23, Section II]. Denote the selected MPCM point pairs as (Vj1 [T 2
j ],Rj2 [T

2
j ]), where

j1 ∈ {0, ..., n1 − 1} and j2 ∈ {0, ..., n2 − 1}).

Step 3: Estimate system state when s[k− 1] = 0. When s[k − 1] = 0,

the remote UAV does not change its maneuver, and hence the conditional expected

current state E(x2[k]|x̂2[k − 1], s[k − 1] = 0, zG,2[k]) can be estimated using UKF as

described in sub-steps (a)-(d).

(a). Select Sigma Points. 2n+ 1 symmetric weighted sigma points are selected

from x̂2[k − 1], the estimator of x2[k − 1].

X0[k − 1] = x̂2[k − 1],

and for i = 1, 2, ...n,

Xi[k − 1] = x̂2[k − 1] +
√

(n+ κ)P[k − 1]
i
,

Xi+n[k − 1] = x̂2[k − 1]−
√

(n+ κ)P[k − 1]
i
,

where P[k − 1]i is the ith column of the error covariance matrix of x̂2[k − 1], n is

the states’ dimension, and n = 3 here for the remote UAV system. The weights

associated with the selected sigma points are W0 = κ
n+κ

,Wi = 1
2(n+κ)

, and Wi+n =

1
2(n+κ)

respectively. κ is a scaling parameter usually set to 0 in the general case or set

to 3− n in the Gaussian case to capture the fourth-order moment correctly [25,28].
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(b). State Prediction. The system state can be predicted by instantiating each

of the sigma points through the system dynamics f2(.) described in Equation (7.4).

Xl[k|k − 1] = f2(Xl[k − 1], r2[k − 1], v2[k − 1]).

Then the priori state estimation can be approximated as a weighted sample mean

x̂2[k|k − 1] =
2n∑
l=0

Wl(Xl[k|k − 1]).

The corresponding covariance matrix is calculated as

P[k|k − 1] =
2n∑
l=0

Wl(Xl[k|k − 1]− x̂2[k|k − 1])

× (Xl[k|k − 1]− x̂2[k|k − 1])T .

(c). Measurement Prediction. 2n+ 1 sigma points are selected from x̂2[k|k− 1]

with the error covariance P[k|k − 1].

X 0[k|k − 1] = x̂2[k|k − 1],

X i[k|k − 1] = x̂2[k|k − 1] +
»

(n+ κ)P[k|k − 1]
i
,

X i+n[k|k − 1] = x̂2[k|k − 1]−
»

(n+ κ)P[k|k − 1]
i
,

with the weights W0,Wi and Wi+n respectively.

The GPS measurement is then predicted by instantiating each of the prediction

points through the measurement model hG,2 (described in Equation (7.9)),

Zl[k|k − 1] = hG,2(Xl[k|k − 1]),

ẑG,2[k|k − 1] =
2n∑
l=0

Wl(Zl[k|k − 1]).
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Correspondingly, the measurement covariance matrix and cross correlation ma-

trix are determined by

PZZ [k|k − 1] =
2n∑
l=0

Wl(Zl[k|k − 1]− ẑG,2[k|k − 1])

× (Zl[k|k − 1]]− ẑG,2[k|k − 1]])T + RG,2,

PXZ [k|k − 1] =
2n∑
l=0

Wl(Xl[k|k − 1]− x̂2[k|k − 1])

× (Zl[k|k − 1]− ẑG,2[k|k − 1])T .

(d). Kalman Gain Update. The Kalman gain is then updated using the covari-

ance information,

K = PZZ [k|k − 1]P−1
XZ [k|k − 1].

The estimated state and covariance are thus derived as

E(x2[k]|x̂2[k − 1], zG,2[k], s[k − 1] = 0]) = x̂2[k|k − 1] +K(zG,2[k]− ẑG,2[k|k − 1]),

E(P[k]|P[k − 1], zG,2[k], s[k − 1] = 0) = P[k|k − 1]−KPZZ [k|k − 1]KT .

Step 4: Estimate system state when s[k− 1] = 1. When s[k − 1] = 1,

the remote UAV changes its maneuvers according to the random variables v2[T 2
j ]

and r2[T 2
j ]. With the MPCM points selected in Step 2 , (Vj1 [T 2

j ],Rj2 [T
2
j ]), the ex-

pected state E(x2[k]|x̂2[k − 1], zG,2[k], s[k − 1] = 1) and covariance E(P[k]|P[k −

1], zG,2[k], s[k − 1] = 1) can be estimated using the following three sub-steps (a)-(c)

that integrate MPCM and UKF.

(a). Estimate system state at each selected MPCM point. The system state is

estimated at each selected MPCM point (Vj1 [T 2
j ],Rj2 [T

2
j ]) by conducting the UKF

procedures shown in Step 3 , (a)-(d). Denote the estimated state from UKF at each

MPCM point as x̂j1,j2 [k] with the covariance Pj1,j2 [k].

(b). Find the reduced polynomial mappings. Define the system mappings

Gx(x̂2[k − 1], v2[T 2
j ], r2[T 2

j ]) and GP (x̂2[k − 1], v2[T 2
j ], r2[T 2

j ]) as the relationships be-
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tween the expected system state and covariance with the random variables v2[T 2
j ]

and r2[T 2
j ] respectively. According to Lemma 7.3.1.1, the mean outputs of the two

system mappings can be estimated from the outputs of the reduced-order mappings

G′x(x̂2[k−1], v2[T 2
j ], r2[T 2

j ]) and G′P (x̂2[k−1], v2[T 2
j ], r2[T 2

j ]) respectively, from MPCM

procedures [23, Section II].

G′x(x̂2[k − 1], v2[T 2
j ], r2[T 2

j ]) =

n1−1∑
j1=0

n2−1∑
j2=0

ΩXj1,j2
(x̂2[k − 1])vj12 [T 2

j ]rj22 [T 2
j ],

G′P (x̂2[k − 1], v2[T 2
j ], r2[T 2

j ]) =

n1−1∑
j1=0

n2−1∑
j2=0

ΩPj1,j2
(x̂2[k − 1])vj12 [T 2

j ]rj22 [T 2
j ],

The coefficients ΩXj1,j2
and ΩPj1,j2

and mean outputs can be obtained using

the evaluated outputs G′x(x̂2[k− 1], v2[T 2
j ], r2[T 2

j ]) and G′P (x̂2[k− 1], v2[T 2
j ], r2[T 2

j ]) at

each selected MPCM point, according to the procedures in [23, Section II-B]

(c). Find the expected system state and covariance. The expected state and

covariance are then found from the system mapping according to Lemma 7.3.1.1 and

the MPCM design procedures [23] as

E(x2[k]|x̂2[k − 1], zG,2[k], s[k − 1] = 1) = E[G′x(x̂2[k − 1], v2[T 2
j ], r2[T 2

j ])],

E(P[k]|P[k − 1], zG,2[k], s[k − 1] = 1) = E[G′P (x̂2[k − 1], v2[T 2
j ], r2[T 2

j ])].

Step 5: Estimate the expected system state. The estimated state and

covariance are derived according to Theorem 26.

E(x2[k]|x̂2[k − 1], zG,2[k])

=P2E(x2[k]|x̂2[k − 1], zG,2[k], s[k − 1] = 1]) (7.23)

+ (1− P2)E(x2[k]|x̂2[k − 1], zG,2[k], s[k − 1] = 0]),

E(P[k]|P[k − 1], zG,2[k])

=P2E(P[k]|P[k − 1], zG,2[k], s[k − 1] = 1]) (7.24)

+ (1− P2)E(P[k]|P[k − 1], zG,2[k], s[k − 1] = 0]).
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As such, the estimate of x2[k] is x̂2[k] = E(x2[k]|x̂2[k − 1], zG,2[k]), and the expected

error covariance is P[k] = E(P[k]|P[k − 1], zG,2[k]).

Remark 15. The above estimation procedure integrates UKF and MPCM to provide

a novel and efficient estimation method for nonlinear random switching systems. Note

that the ST RMM involves three random variables: τi[T
i
j ], v[T ij ], and ri[T

i
j ]. In the

UKF estimation procedure, τi[T
i
j ] plays a role in determining the switching probability

Pi as described in Equations (7.21), (7.23), and (7.24). v[T ij ], and ri[T
i
j ] are random

maneuvers, and play roles in the random maneuver sampling procedure (i.e., Step

2) and future state prediction procedure when s[k − 1] = 1 (i.e., Step 4). Note that

if the remote UAV’s previous maneuver information (v2[k − 1] and ω2[k − 1]) is

unavailable, an additional estimation step is needed before processing Step 3. In

particular, v2[k− 1] and ω2[k− 1] need to be estimated from two consecutive previous

states x̂2[k − 1] and x̂2[k − 2] as

v̂2[k − 1] =
»
v̂2

2x[k − 1] + v̂2
2y[k − 1],

ω̂2[k − 1] = (θ̂2[k − 1]− θ̂2[k − 2])/δ,

where v̂2x[k − 1] and v̂2y[k − 1] are the estimated velocities along the x and y axes

respectively, v̂2x[k−1] = (x̂2[k−1]−x̂2[k−2])/δ, and v̂2y[k−1] = (ŷ2[k−1]−ŷ2[k−2])/δ.

7.3.1.2 Adaptive optimal control

An online adaptive optimal controller is designed to maximize the expected

value function (7.14) with the estimated system state. The existence and uniqueness

of the optimal control policy is guaranteed here because of properties of the RSSI

model (7.10)-(7.13) (shown in [2, Fig. 17]). In particular, to maximize zR[k], one

needs to find θt[k] and θr[k] to maximize Gl|dBi[k] as described in Equation (7.10).

Gl|dBi[k] is maximized when the heading angles of the two directional antennas are

153



selected as θt[k] = γt[k] and θr[k] = γr[k] respectively, where γt[k] and γr[k] are

uniquely determined by the positions of two UAVs and environment-related shift

angles as shown in Equations (7.12) and (7.13).

Because the uncertain parameters are independent from the system state at

time k, the value function for UAV 1 can be further rewritten as

V1(x[k]) =E[
k+N∑
l=k

αl−kzR[l](x[l], u1[k], u∗2[k])]

=E[zR[k](x[k], u1[k], u∗2[k]) +
k+N∑
l=k+1

αl−kzR[l](x[l], u1[k], u∗2[k])].

(7.25)

where u∗2[k] is the optimal control policy of UAV 2.

The above equation can be solved backward-in-time using dynamic program-

ming, or forward-in-time using RL [32,146]. Here we use RL, in particular, the policy

iteration method, to find the optimal control policy by iteratively conducting two

steps: policy evaluation and policy improvement. The policy evaluation step is de-

signed to solve the value function V1(x[k]) using Equation (7.25), given the current

control policy. The policy improvement step is designed to find the best control pol-

icy to maximize the value function. The two steps are conducted iteratively until

convergence.

Policy Evaluation

V1,j+1(x[k]) =E[zR[k](x[k], u1,j[k], u∗2[k])

+
k+N∑
l=k+1

αl−kzj,R[l](x[l], u1,j[k], u∗2[k])]
(7.26)

Policy Improvement

u1,j+1(x[k]) = arg max
u1,j [k]

E[zR[k](x[k], u1,j[k], u∗2[k])

+
k+N∑
l=k+1

αl−kzj+1,R[l](x[l], u1,j[k], u∗2[k])]

(7.27)

154



where j is the iteration step index, and zj,R[l](x[l], u1,j[k], u∗2[k]) is the RSSI model

with parameters learned in the jth iteration step.

Note that Equation (7.26) involves three unknown parameters for the environment-

specific RSSI model (Gmax
t|dBi, G

min
t|dBi, and θtenv), which need to be learned. In par-

ticular, for each iteration j, three time steps (k, k + 1 and k + 2) are needed to

come up with three equations to iteratively solve for the three parameters. To

solve the nonlinear equations, the Newton’s method [157] is utilized here. New-

ton’s method is a root-finding algorithm that iteratively finds better approximations

to the roots of a real-valued function. To calculate the value function V1,j+1(x[k])

at each time step (Equation (7.26)), the uncertainty evaluation method needs to be

utilized. To reduce the computational cost, we use the MPCM method here. In

particular, define a system mapping GV1(x[k], u1[k], u∗2[k], v2[T 2
j ], r2[T 2

j ]) as the rela-

tionship between the value function and the random variables v2[T 2
j ] and r2[T 2

j ], i.e.,

GV1(x[k], u1[k], u∗2[k], v2[T 2
j ], r2[T 2

j ]) = zR[k](x[k], u1[k], u∗2[k]) +
∑k+N

l=k+1 α
l−kzR[l](x[l],

u1[k], u∗2[k]). Then the value function V1(x[k]) can be estimated by evaluating the

mean output of the system mapping using MPCM: V1(x[k]) = E[GV1(x[k], u1[k], u∗2[k],

v2[T 2
j ], r2[T 2

j ])]. According to Lemma 7.3.1.1, the output mean of this system mapping

can be obtained using the evaluated outputs of a reduced-order mappingG′V1(x[k], u1[k],

u∗2[k], v2[T 2
j ], r2[T 2

j ]) at each selected MPCM point, according to the procedures de-

scribed in [23, Section II-B].

Theorem 27. Consider the random switching system shown in Equation (7.4), with

the value function given by Equation (7.14). Given the current system state x[k],

the solution found by applying the policy iteration of RL and approximating the value

function using MPCM as shown in Equations (7.26) and (7.27) is the optimal control

policy.
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Proof. Denote the optimal policies derived by evaluating the mean outputs of the re-

duced order mapping G′V1(x[k], u1[k], u∗2[k], v2[T 2
j ], r2[T 2

j ]) and the original value func-

tion GV1(x[k], u1[k], u∗2[k], v2[T 2
j ], r2[T 2

j ]) as u′∗1 and u∗1 respectively, i.e.,

u′∗1 = argmax
u1

E[G′V1(x[k], u1[k], u∗2[k], v2[T 2
j ], r2[T 2

j ])],

u∗1 = argmax
u1

E[GV1(x[k], u1[k], u∗2[k], v2[T 2
j ], r2[T 2

j ])].

To prove this theorem, we need to prove that u′∗1 = u∗1. This is equivalent to proving

the following two statements: a) @u′∗1 6= u∗1 such that

E[G′V1(x[k], u′∗1 [k], u∗2[k], v2[T 2
j ], r2[T 2

j ])] > E[GV1(x[k], u∗1[k], u∗2[k], v2[T 2
j ], r2[T 2

j ])],

and b) @u′∗1 6= u∗1 such that

E[G′V1(x[k], u′∗1 [k], u∗2[k], v2[T 2
j ], r2[T 2

j ])] < E[GV1(x[k], u∗1[k], u∗2[k], v2[T 2
j ], r2[T 2

j ])].

Here we use a contradiction approach to prove the above two statements. To prove

the first statement, we assume there exists u′∗1 6= u∗1 such that

E[G′V1(x[k], u′∗1 [k], u∗2[k], v2[T 2
j ], r2[T 2

j ])] > E[GV1(x[k], u∗1[k], u∗2[k], v2[T 2
j ], r2[T 2

j ])].

According to Lemma 7.3.1.1, we have

E[G′V1(x[k], u′∗1 [k], u∗2[k], v2[T 2
j ], r2[T 2

j ])] = E[GV1(x[k], u′∗1 [k], u∗2[k], v2[T 2
j ], r2[T 2

j ])]

> E[GV1(x[k], u∗1[k], u∗2[k], v2[T 2
j ], r2[T 2

j ])],

which violates the assumption u∗1 = argmaxu1 E[GV1(x[k], u1[k], u∗2[k], v2[T 2
j ], r2[T 2

j ])].

Similarly, to prove that the second statement, we assume there exists u′∗1 6= u∗1 such

that E[G′V1(x[k], u′∗1 [k], u∗2[k], v2[T 2
j ], r2[T 2

j ])] < E[GV1(x[k], u∗1[k], u∗2[k], v2[T 2
j ], r2[T 2

j ])].

According to Lemma 7.3.1.1, we have

E[GV1(x[k], u∗1[k], u∗2[k], v2[T 2
j ], r2[T 2

j ])] = E[G′V1(x[k], u∗1[k], u∗2[k], v2[T 2
j ], r2[T 2

j ])]

> E[G′V1(x[k], u′∗1 [k], u∗2[k], v2[T 2
j ], r2[T 2

j ])],
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which violates the assumption u′∗1 = argmaxu1 E[G′V1(x[k], u1[k], u∗2[k], v2[T 2
j ], r2[T 2

j ])].

As such, both statements a) and b) are true, and the results u′∗1 = u∗1 are derived

naturally.

Theorem 28. Consider the random switching system described in Equation (7.4).

Given the current system state x[k], the optimal policy found by the decentralized

control algorithm (shown in Section 7.3.1.2) maximizes the global value function de-

scribed in Equation (7.14).

Proof. Denote the global optimal control policy that maximizes the value function

described in Equation (7.14) as (u∗1,g[k], u∗2,g[k]). We need to show that u∗1[k] = u∗1,g[k]

and u∗2[k] = u∗2,g[k]. According to Theorem 27, u∗1[k] is the optimal solution to Equa-

tion (7.14) under the assumption that u2[k] = u∗2[k]. The global optimal control

policy u∗1,g[k] can be regarded as the decentralized optimal solution with the assump-

tion that u2[k] = u∗2,g[k]. We show that for each time k, the optimal solution of UAV

1 is unique for any given u2[k].

Note that given any heading angle of the transmitting antenna θt[k], the optimal

heading angle of the receiving antenna is γr[k] to maximize Gl|dBi[k] in Equation

(7.11). The desired heading angle γr[k], which is described in Equation (7.12), is

decided uniquely by the positions of the two UAVs and the environment, instead of

the transmitting antennas’ heading angle. In such case, we have

argmax
u1[k]

zR[k](x[k], u1[k], u∗2[k]) = argmax
u1[k]

zR[k](x[k], u1[k], u∗2,g[k]),

argmax
u2[k]

zR[k](x[k], u∗1[k], u2[k]) = argmax
u2[k]

zR[k](x[k], u∗1,g[k], u2[k]),

which lead to the result that u∗1[k] = u∗1,g[k] and u∗2[k] = u∗2,g[k]. The proof is com-

pleted.
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7.3.2 Using the learned RSSI model in both GPS-available and GPS-denied envi-

ronments

With the learned RSSI model, the optimal solution can then be obtained in

both GPS-available and GPS-denied environments. In a GPS-denied environment,

the RSSI is the only measurement signal. In this case, the optimal control solution

can be found following a similar procedure as shown in Section 7.3.1, by replacing

zG,2[k] and hG,2 with zR[k] and hR. In the GPS-available environment, GPS and RSSI

measurements can be fused to estimate the system states, using a fuzzy-logic based

fusion algorithm [144] to improve the reliability. The details are not repeated here.

Remark 16. Note that RSSI is often calibrated for localization, in order to correct the

environmental effects [158,159]. This calibration can be captured by a calibrated propa-

gation constant [158], which is environment-related and is usually found by conducting

experiments in the testing area prior to implementing the localization algorithm. In

our study, this calibrated propagation constant is captured by the environment-related

parameters in the RSSI model, i.e., Gmax
t|dBi, G

min
t|dBi, and θtenv/θrenv. In other words,

the learning process we proposed in this chapter, which learns the environment-related

parameters, can be regarded as an RSSI calibration process in the literature. With

the learned parameters, the RSSI model is calibrated and then used in the antenna

alignment algorithm.

Remark 17. Above distributed antenna control solution assumes a pair of UAVs in

the ACDA system. When multiple UAVs are involved, the communications among

UAVs can be realized using controllable multi-sector directional antennas or phased

array antennas [4,160]. In such case, the communication network can be regarded as

a collection of UAV pairs. As such, the study on the communication link between a

pair of UAVs developed in this chapter is an important building block for a network

of more than two UAVs.
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7.4 Remote UAV Uncertain Intention Estimation

In this section we provide an online uncertain intention estimation method

to estimate the characteristics of the remote UAV’s uncertain maneuver intentions.

The estimation procedure includes two major steps, which is adopted from [161]: 1)

estimation of the trajectory-specific maneuvers at each time instant, and 2) estimation

of the pdfs of uncertain variables: fv(v2[T 2
j ]), fr(r2[T 2

j ]), and fτ (τ2[T 2
j ]). The uncertain

intention estimation solution provided in [161] is offline. We here enhance it to an

online process to reduce computational costs.

7.4.1 Estimation of Trajectory-specific Maneuvers

We develop two estimation procedures to estimate the two types of random

variables in the ST RMM respectively.

7.4.1.1 Estimation of type 1 random variables

Type 1 random variables (i.e., velocity v2[T 2
j ] and turn radius r2[T 2

j ]) describe

the movement characteristics of each maneuver, and can be estimated from the system

states. Given two consecutive system states (x2[k−1] = (x2[k−1], y2[k−1], θ2[k−1])

and x2[k] = (x2[k], y2[k], θ2[k])), the type 1 random variables in the remote UAV

system are estimated as

v̂2[k] =
»
v̂2

2x[k] + v̂2
2y[k],

r̂2[k] =
v̂2[k]

ω̂2[k]
,

where ω̂2[k] is the estimated angular velocity, and ω̂2[k] = (θ2[k] − θ2[k − 1])/δ.

v̂2x[k] and v̂2y[k] are the estimated velocities in x and y axes respectively, v̂2x[k] =

(x[k]− x[k − 1])/δ and v̂2y[k] = (y[k]− y[k − 1])/δ.
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Figure 7.3. Illustration of the proposed algorithm .

7.4.1.2 Estimation of type 2 random variable

The type 2 random variable (i.e., travel time τ2[T 2
j ]) describes how often the

maneuvers are switched, and thus is estimated from the change of type 1 random

variables. Different from [161] which uses the change of turn radius to find the length

of each travel time, we here use the change of the angular velocity ω2[T 2
j ], which is

affected by velocity v2[T 2
j ] and turn radius r2[T 2

j ]. Therefore, to estimate τ2[T 2
j ], we

scan the angular velocity ω2[k] from k = T 2
j at each time instant, until the change

of ω2[k] exceeds a threshold ωthrd2 . The travel time interval at T 2
j is estimated as

ˆτ2[T 2
j ] = k−T 2

j . The determination of ωthrd2 has a significant impact on the estimation

performance. In general, a smaller threshold improves the estimation accuracy but

decreases the predictability of the underlining model. Please refer to [161] for the

detailed discussion about the threshold selection.
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7.4.2 Estimation of pdfs of Uncertain Intention Variables

The pdfs of uncertain intention variables in the remote UAV system can be

estimated from the trajectory-specific maneuvers. In particular, assuming that the

random variables v2[T 2
j ], 1

r2[T 2
j ]

, and τ2[T 2
j ] follow the uniform, Gaussian, and Poisson

distributions respectively, then the parameters in the distributions: v2min and v2max

(minimum and maximum velocity constraints), µ2 and σ2 (mean and variance of

1
r2[T 2

j ]
), and λ2 (expected value of τ2[T 2

j ]), can be estimated from the following three

steps.

Step 1: Estimate the velocity pdf. Denote the expectation and variance of

velocity as µv and σ2
v respectively. µv and σ2

v can be estimated recursively as

µ̂v[k] =
1

k

k∑
j=1

v̂2[j] =
1

k
(
k−1∑
j=1

v̂2[j] + v̂2[k])

=
1

k
((k − 1)µ̂v[k − 1] + v̂2[k])

=
k − 1

k
µ̂v[k − 1] +

1

k
v̂2[k],

(7.28)

σ̂2
v [k] =

1

k − 1

k∑
j=1

(v̂2[j]− µ̂v[k])2

=
1

k − 1
(
k−1∑
j=1

(v̂2[j]− µ̂v[k])2 + (v̂2[k]− µ̂v[k])2)

=
1

k − 1

(
(k − 2)σ̂2

v [k − 1] + (v̂2[k]− µ̂v[k])2
)

=
k − 2

k − 1
σ̂2
v [k − 1] +

1

k − 1
(v̂2[k]− µ̂v[k])2.

(7.29)

Remark 18. Note that the sample mean of a random variable (i.e., 1
k

∑k
j=1 v̂2[j])

is the minimum variance unbiased estimator (MVUE), and also, is the maximum

likelihood estimator to µv [162]. To estimate σ2
v, here we use the unbiased estimator

( 1
k−1

∑k
j=1(v̂2[j]− µ̂v[k])2). The performance of the online estimation algorithm is as

good as the offline proposed in [161] in terms of estimation accuracy. The equivalence

161



of the two algorithms is shown in Equations (7.28) and (7.29). Here we enhance the

offline method to an online process to reduce the computational costs. The offline

method needs to reuse all previous data in the UAV uncertain intention estimation

whenever new data arrives, while the online method only utilizes the newest data.

From the relation between v2min, v2max and µv, σ
2
v , the parameters in the ve-

locity’s pdf (v2min, v2max) can be estimated as

v̂2min[k] =µ̂v[k]−
√

3σ̂v[k]

=
k − 1

k
µ̂v[k − 1] +

1

k
v̂2[k]

−

 
3(k − 2)

k − 1
σ̂2
v [k − 1] +

3

k − 1
(v̂2[k]− µ̂v)2,

(7.30)

v̂2max[k] =µ̂v[k] +
√

3σ̂v[k]

=
k − 1

k
µ̂v[k − 1] +

1

k
v̂2[k]

+

 
3(k − 2)

k − 1
σ̂2
v [k − 1] +

3

k − 1
(v̂2[k]− µ̂v)2.

(7.31)

Step 2: Estimate the radius pdf. The parameters in the radius pdf (µ2 and

σ2
2) are estimated recursively using r̂2[k] following a similar procedure as described in

Equations (7.28) and (7.29) as

µ̂2[k] =
k − 1

k
µ̂2[k − 1] +

1

k

1

r̂2[k]
, (7.32)

σ̂2
2[k] =

k − 2

k − 1
σ̂2

2[k − 1] +
1

k − 1
(

1

r̂2

[k]− µ̂2[k])2. (7.33)

Step 3: Estimate the travel time pdf. λ2 is the only parameter in the Poisson distri-

bution, and can be estimated recursively from the mean of τ̂2[T 2
j ] as

λ̂2[j] =
jλ̂2[j − 1]

j − 1 + λ̂2[j − 1]τ̂2[T 2
j ]
. (7.34)

Remark 19. The uncertain intention estimation procedure can be implemented to-

gether with the stochastic optimal control procedure described in Section 7.3. The
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overall algorithm structure is described in Figure 7.3. We also note that because the

uncertain intention is estimated from the system states, which are estimated from the

measurements, it is suggested to conduct the uncertain intention estimation procedure

in a GPS-available environment, which helps to improve the reliability of the estimated

system states.

7.5 Simulation Studies

In this section, we conduct simulation studies to illustrate and validate the

results and algorithms developed in this chapter. Two UAVs move in a 2-D airspace

following the ST RMM independently. Two directional antennas of the same type

are mounted on the two UAVs respectively. The design parameters of the directional

antennas are selected as n = 8, and da = λ
10

.

We first simulate the case when the GPS is available but the RSSI model is

unknown. Gaussian noises are added to the GPS measurements. Estimation for UAV

1 is based on UKF with known maneuver (v1[k] and r1[k]), while the estimation for

UAV 2 is based on the integration of UKF and MPCM as described in Section 7.3.1

with unknown v2[k] and r2[k]. Figures 7.4(a) and 7.4(b) show the trajectories of UAV

1 and UAV 2 respectively in one realization with the simulation time T = 45s and

sampling period δ = 1s. To find the statistics of the estimation performance, 10 re-

alizations with randomly generated trajectories are conducted. The mean estimation

distance errors for the two UAVs are calculated over all realizations as e1 = 0.84m

and e2 = 0.89m respectively. It can be seen from the simulations that the estimated

trajectories for UAVs 1 and 2 are both close to their real trajectories, indicating that

the proposed state estimation algorithm performs well in both known and unknown

maneuver cases.
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Figure 7.4. (a) Trajectories of UAV 1, and (b) Trajectories of UAV 2. The blue solid
curves are real trajectories, red dotted curves are estimated trajectories, and green
dots are GPS measurements.
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With the estimated states, we simulate the RL-based stochastic optimal con-

trol algorithm. To simulate the long-distance communication scenario, the minimum

received signal strength is assumed to be 0, and in this case, the directional antennas’

minimum gain (Gmin
t|dBi) can be calculated accordingly. Figures 7.5(a) and 7.5(b) show

the learned environment-specific antennas’ maximum gain (Gmax
t|dBi) and the shift angle

caused by the environment (θtenv) respectively. Gaussian noises are added to the RSSI

measurements. To avoid unnecessary divergence, we limit the maximum values of the

two parameters. In particular, we assume the directional antenna’s maximum gain is

no more than the maximum gain given in the data sheet, and the environment-specific

shift angle is no more than 20 degrees. As shown in the figures, the learned parame-

ters are very close to their true values, which indicates the effectiveness of the learning

algorithm. Figures 7.6(a) and 7.6(b) show the derived optimal heading angles of the

local directional antenna and the heading angle errors between the derived and real

optimal heading angles in one realization. The small angle errors indicate the good

performance of the proposed RL-based stochastic optimal control algorithm.

With the learned RSSI model, we simulate the proposed stochastic optimal con-

trol algorithms in both GPS-denied and GPS-available environments. Note that in

the GPS-denied environment, RSSI is the only measurement signal, while in the GPS-

available case, both GPS and RSSI signals are fused. Figures 7.7 and 7.8 show the

performance of state estimation and optimal control algorithms respectively, in both

GPS-denied and GPS-available environments.We have simulated 10 realizations with

randomly generated UAV trajectories, and calculated the mean estimation errors,

RSSI signals, and heading angle errors over all 10 realizations. The system state esti-

mation performance is shown in Table 7.1 and Figure 7.9(a), where ”GPS”, ”RSSI”,

and ”Fusion” represent the UKF-based state estimation using only GPS, only RSSI,

and both GPS and RSSI signals respectively. The column “GPS signals” shows the
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Figure 7.5. Learned environment-specific (a) maximum directional antenna gain
(Gmax

t|dBm), and (b) shift angle (θenv) in the RSSI model. The blue solid lines and
red dotted curves represent the real and learned parameters respectively.
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Figure 7.6. (a) Obtained optimal heading angles with GPS signals and unknown RSSI
model. The blue solid curve is the real optimal angles, and the red dotted curve is
the obtained optimal angles. (b) Heading angle errors between the derived heading
angles and the real optimal heading angles.
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Figure 7.7. (a) Trajectories of UAV 2 in (a) GPS-denied, and (b) GPS-available
environments. The blue solid curves are the real trajectories, and the red dotted
curves are the estimated trajectories.
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Figure 7.8. Obtained optimal heading angles in (a) GPS-denied, and (b) GPS-
available environments. The blue solid and red dotted curves are the real optimal
heading angles and derived heading angels respectively.
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raw GPS measurements. The optimal control performance is shown in Table 7.2 and

Figure 7.9(b), where ”RSSI” and ”Fusion” represent the control algorithms based on

only RSSI, and both RSSI and GPS respectively. It can be seen from the tables and

plots that: 1) the estimated system states and derived heading angles are very close

to their real states and optimal heading angles in both GPS-denied and GPS-available

cases, indicating that the proposed algorithms work well in both GPS-available and

GPS-denied environments; 2) the estimation errors and heading angle errors in the

GPS-available case are much smaller than that in the GPS-denied case, indicating

that the fusion of the GPS and RSSI promises a better performance.

To provide comparative studies, we also simulate the GPS alignment-based

directional antenna control algorithm developed in [133]. In this algorithm, each

directional antenna points towards the GPS location of the other UAV to align the

directional antennas, and RSSI is not used as a measurement signal nor value function.

The control performance of this GPS alignment-based algorithm is also shown in Table

7.2. The barplots of the controlled heading angle errors are shown in Figure 7.9(b).

It can be seen from the tables and plots that the optimal control algorithm developed

in our chapter performs much better than the GPS alignment-based algorithm, with

larger RSSI signals and less heading angle errors.

Table 7.1. Estimation Performance

UKF-based
GPS signals

GPS RSSI Fusion
Mean distance error (m) 0.89 5.13 0.56 1.25

Finally we simulate the remote UAV uncertain intention estimation algorithm.

The total simulation time in this part is set as T = 10 minutes, with the sampling
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Figure 7.9. Barplots of (a) Estimation errors, and (b) Heading angle errors.
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Table 7.2. Control Performance

RL-based
GPS alignment-based

RSSI Fusion
Mean RSSI (dBm) -31 -29 -47

Mean angle error (rad) 0.09 0.07 0.3

period δ = 1s. The system states are estimated from the GPS measurements by

adopting the moving average method. Figures 7.10(a) and 7.10(b) show trajectories

of the two UAVs respectively. The performance of the uncertain intention estimation

algorithm is shown in Table 7.3. Note that v2[T 2
i ], 1

r2[T 2
i ]

, and τ2[T 2
i ] follow uniform,

Gaussian, and Possion distributions respectively. As such, the parameters to be

estimated in their pdfs are: µv and σv for v2[T 2
i ], µ2 and σ2 for 1

r2[T 2
i ]

, and λ2 for τ2[T 2
i ]

respectively. It can be seen from the table that the estimated means of v2[T 2
i ], 1

r2[T 2
i ]

,

and τ2[T 2
i ] match with their real mean values perfectly, indicating the effectiveness

of the proposed estimation algorithm. The estimated variance of v2[T 2
i ] and 1r2[T 2

i ]

show small biases to their real values, cauessed by Gaussian GPS noises.

Table 7.3. Performance of Online Intention Estimation

Random variables v2[T 2
i ] 1

r2[T 2
i ]

τ2[T 2
i ]

Parameters to be estimated µv σ2
v µ2 σ2

2 λ2

Estimated value 12.7 6.3 10−4 10−3 2.07
Real value 12.5 2.1 0 10−4 2
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Figure 7.10. Trajectories of (a) UAV 1, and (b) Trajectories of UAV 2. The blue solid
curves are real trajectories, red dotted curves are estimated trajectories, and green
dots are GPS measurements.
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CHAPTER 8

STATISTICAL PROPERTIES OF UNMANNED AERIAL VEHICLE

NETWORKS SUBJECT TO SENSE-AND-AVOID SAFETY PROTOCOLS

8.1 Introduction

UAV technology has demonstrated its value in broad commercial applications,

such as sports coverage, cargo transport, precision agriculture, public safety, on-

demand communication provision, and structure health monitoring [133, 163–167].

The global commercial UAV Market is projected to reach $52.30 Billion by 2025 [155].

With the new, small UAV rules released by the Federal Aviation Administration

(FAA) in August 2016 [168], we foresee a dense UAV use in the National Airspace

System (NAS). Along with this trend, new research directions that deal with multiple

UAVs in a dense airspace become urgent, such as UAV networking and UAV traffic

management (UTM).

RMMs have been widely used for networking studies. Examples include Ran-

dom Direction (RD), Random Walk (RW), GUAVs-Markov (GM), and Smooth Turn

(ST) developed specifically for fixed-wing UAVs [169–174]. Please refer to our sur-

vey paper [169] on the RMMs developed for different UAV applications ranging

from search, rescue, and reconnaissance, to patrolling, cargo, and AN backbone.

These RMMs capture the random mobility patterns of moving agents, and have com-

monly been used as the evaluation and design foundation of mobile ad hoc networks

(MANET), vehicular ad hoc networks (VANET), and UAV networks (or called flying

ad Hoc networks, FANET), from which important statistics can be derived, such as

node distribution, inter-vehicle distance distribution, and link/path lifetime [175,176].
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We note that all of these existing RMM studies assume the independent move-

ment of mobile agents. This assumption does not hold for UAVs. In particular, in

order to maintain airspace safety, UAVs must be equipped with sense and avoid (S&A)

capabilities. This S&A feature is a critical difference between FANET and MANET.

S&A fundamentally changes the statistics for networking, and its impact should be

explored. In this chapter, we develop an analytical framework of RD RMMs equipped

with S&A protocols, and analyze its statistical performance, such as node distribu-

tion and inter-vehicle distance distribution. We note that the analysis becomes more

complicated when the independent movement assumption is removed.

This modeling framework is further used in this chapter for UTM studies. UTM

is very different from traditional air traffic management (ATM) [177, 178]. Unlike

commercial flights which have pre-defined flight plans and rather deterministic flight

trajectories, UAVs in the low-altitude airspace are featured by their highly flexible,

variable and uncertain movement patterns. Such features, on the other hand, signif-

icantly complicate UTM. Concepts such as ”highway in the sky” are borrowed from

traditional ATM to simplify the UTM architecture, however, such “infrastructure”

constraints limit UAV flexibility and contradict their missions. Little is known about

the limitations of airspace capacity subject to highly flexible UAV operations. A ca-

pacity concept for UTM was proposed in [179], which assumes unified flow directions

for all UAVs. In [180], a phase-transition-based capacity concept was proposed based

on simulation studies of randomly generated source-to-destination UAV trajectories.

The modeling framework of RMMs equipped with physical S&A protocols is

proposed in this chapter for UAV networking and UTM studies. The modeling frame-

work, first of its kind per knowledge of the authors, succinctly captures the flexible,

variable, and uncertain movement patterns of UAVs subject to the separation safety

constraints. Further contributions of this chapter are summarized as follows. For
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the RD RMM equipped with a commonly used S&A protocol, named sense-and-stop

(S&S), we develop statistics that are critical to networking studies, such as stationary

node distribution and stationary inter-vehicle distance distribution, using the Markov

analysis. This study provides knowledge on the impact of S&A protocols to critical

UAV networking statistics. In addition, we define collision probabilities and airspace

capacity concepts for UAVs based on the inter-vehicle distance distribution, and de-

rive their expressions. This new UAV airspace capacity concept captures the flexibility

of UAV operations as it only relies on the S&A protocols to maintain airspace safety,

with no other constraints being enforced. This capacity concept provides us insight

on the limitation of airspace density for highly flexible and autonomous UAVs, which

are very different from traditional air traffic. This capacity analytical framework

mathematically bridges local autonomy with global airspace capacity, and permits

insightful impact analysis of local autonomy configurations to achieve effective UAV

airspace capacity management.

The remainder of this chapter is organized as follows. Section 8.2 describes

both the independent RD RMM and the RD RMM equipped with the S&S proto-

col. Section 8.3 analyzes the statistical properties of both RMMs in terms of node

distribution and inter-vehicle distance distribution. Section 8.4 analyzes the collision

probabilities and airspace capacity for both RMMs. Section 8.5 includes the model

configuration impact analysis. Simulation studies are included throughout the paper

to help illustrate the analytical results.

8.2 The Modeling Framework

In this section, we first describe the independent RD RMM, and then introduce

the RD RMM equipped with the S&S protocol to capture the safety constraint of

flexible UAV operations.
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8.2.1 Independent Random Direction Mobility Model

In the independent RD RMM widely used in the literature, UAVs travel in-

dependently in an airspace [0, B)2 (Figure 8.1(a)). A comprehensive description of

RMMs used for UAVs can be found in the survey paper [169]. At each time instant

1, 2, ..., k, UAV i selects a heading direction Θi[k] from [0, 2π) randomly, and moves

along that direction with a constant heading speed V . Θi[k] is uniformly distributed

in [0, 2π), ∀i, k. Xi[k] and Yi[k] denote the stochastic processes for UAV i’s location

along the x and y axes.

We use the widely adopted wrap-around boundary model to avoid the bor-

der effect [170]. When a UAV hits the boundary, it wraps around and appears

at the opposite side with the same velocity and heading direction (Figure 8.1(b)).

This wrap-around model is suitable for large simulation regions and is analysis-

friendly. With this boundary model, the inter-vehicle cyclic relative position Si,j[k] =

(∆Xi,j[k],∆Yi,j[k]) and distance Di,j[k] between two UAVs i and j at time k can be

calculated as [181]:

∆Xi,j[k] = min(|Xi[k]−Xj[k]|, B − |Xi[k]−Xj[k]|),

∆Yi,j[k] = min(|Yi[k]− Yj[k]|, B − |Yi[k]− Yj[k]|),

Di,j[k] = (∆Xi,j[k]2 + ∆Yi,j[k]2)
1
2 .

(8.1)

8.2.2 Random Direction Mobility Model Equipped with S&S Protocol

Safety constraints are critical for UAV operations. The FAA ”right-of-way”

rules state that for vehicles of the same category and operating at the same altitude,

the aircraft to the right has the right-of-way [168]. In the literature, many papers

focus on the development of S&A safety protocols when two UAVs encounter (see

e.g., [182, 183]). However, the successful collision avoidance of two UAVs may lead

to a collision that involves other UAVs. As such, it is the purpose of this chapter
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(a)

(b)

Figure 8.1. Illustration of (a) a 2-D airspace with UAV mobility captured by the
independent RD RMMs, and (b) the wrap-around boundary model.
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to exploit the relationship between local S&A protocol’s impact and global airspace

capacity.

Here, we implement a ”right-of-way” rule, named ‘sense-and-stop” (S&S), simi-

lar to the hovering strategy [184]. Denote the sensing distance (or observing distance)

as do, which is much smaller than B
2

. The RD RMM equipped with S&S protocol

works as follows: a) when the inter-vehicle distance between two UAVs is greater

than sensing distance, i.e., Di,j[k] > do, each UAV moves independently according to

the independent RD RMM; b) when Di,j[k] ≤ do, the vehicle to the left (i.e., with a

smaller x location) stops, and the other vehicle follows the independent RD RMM un-

til Di,j[k] > do. When multiple UAVs are involved, they are considered as a collection

of UAV pairs. For any UAV i, if there exists at least one UAV (denoted as j, j 6= i)

satisfying Di,j[k] ≤ do, and Xi[k] < Xj[k], then UAV i stops. In addition, for any

UAV i, if there exists at least one UAV j satisfying Di,j[k] ≤ do and Xi[k] = Xj[k],

then a small noise is added to Xi[k] to differ their locations in x coordinate. As there

always exists a UAV with the maximal x location, we can ensure that at least one

UAV moves at each time instant k in the airspace and the dead-lock phenomenon

does not occur.

8.3 Analysis of Network Statistics

In this section, we study the statistical properties of both RD RMMs critical

to the networking studies, in terms of stationary node distribution and inter-vehicle

distance distribution.
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8.3.1 Stationary Node Distribution

Theorem 29 states that the stationary joint node distribution for the indepen-

dent RD RMM is uniform, and Theorem 30 states that the stationary node distribu-

tion for each UAV following the RD RMM equipped with S&S protocol is uniform.

Theorem 29. Each of the N UAVs in an airspace [0, B)2 moves independently ac-

cording to the RD RMM. The stationary joint node distribution is uniform, regardless

of the initial node distribution.

Proof. Define a Morkov process based on the location and heading direction of UAV

i when it moves with the independent RD RMM, Ŝbi [k] = (Xi[k], Yi[k],Θi[k]). The

Markov chain Ŝbi [k] is aperiodic, Φ-irreducible, and Harris recurrent, and therefore,

there exists a unique stationary distribution. Following a similar argument as in

Paper [170], Proposition 4.2, it can be proved that the stationary node distribution

is uniform, based on the transition properties of the Markov process. The stationary

node probability distribution function (PDF) is

lim
k→∞

P (Xi[k] < x, Yi[k] < y,Θi[k] < θ) =
xyθ

2πB2
. (8.2)

Since the N UAVs move independently, the joint node distribution is a multipli-

cation of N individual node distributions. A simple argument leads to the conclusion

that the N UAVs’ stationary node distribution is uniform.

Theorem 30. Each of the N UAVs in an airspace [0, B)2 follows the RD RMM

equipped with the S&S protocol. The stationary location distribution for each UAV i

is uniform, regardless of the initial node distribution.

Proof. Define a Morkov process based on the location of UAV i when it moves ac-

cording to the RD RMM equipped with the S&S protocol, ŜSi [k] = (Xi[k], Yi[k]). The

Markov chain ŜSi [k] is aperiodic, Φ-irreducible, and Harris recurrent when N is finite,
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and therefore, there exists a unique stationary distribution. To find the stationary

location distribution of UAV i, we introduce a set Ss[k] to hold all the UAV location

pairs related to UAV i that satisfy the following condition: there exists at least one

UAV (denoted as j, j 6= i) satisfying Di,j[k] ≤ do and Xi[k] < Xj[k]. S̄s[k] is the

complement of Ss[k]. The stationary location distribution along the x axis can be

described as follows.

lim
k→∞

P (Xi[k] < xi)

= lim
k→∞

P (Xi[k] < xi|S̄s[k])P (S̄s[k]) + lim
k→∞

P (Xi[k] < xi|Ss[k])P (Ss[k]).

(8.3)

To prove lim
k→∞

Xi[k] is uniformly distributed, we only need to show that lim
k→∞

P (Xi[k] <

xi|S̄s[k]) = xi and lim
k→∞

P (Xi[k] < xi|Ss[k]) = xi. The proof of the first statement

lim
k→∞

P (Xi[k] < xi|S̄s[k]) = xi is straightforward using Theorem 29, as UAV imoves in-

dependently in this case. To prove the second statement, we note that as UAV i stops

at time k, lim
k→∞

P (Xi[k] < xi|Ss[k]) is the same as the conditional probability right be-

fore the UAV enters the stop state. As UAV i moves randomly at that time step, the

proof of the first statement leads to the conclusion that lim
k→∞

P (Xi[k] < xi|Ss[k]) = xi.

The proofs for location along y axis follow a similar argument.

Remark 20. Although the location of each individual UAV is uniformly distributed

for the RD RMM equipped with S&S protocol, the joint distribution of N UAV

locations is not uniform anymore. The introduction of the S&S protocol removes the

independence of UAV trajectories, and alters the joint distribution. This property is

studied in greater details in Section 8.3.2.

8.3.2 Stationary Inter-vehicle Distance Distribution

In this section, we study the impact of the S&S protocol to stationary inter-

vehicle distance distribution. Theorem 31 suggests that the distribution is uniform
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for the independent RD RMM, while the uniformity property does not hold for the

RD RMM equipped with S&S protocol as shown in Theorem 32.

Theorem 31. Each of the N UAVs in an airspace [0, B)2 moves independently ac-

cording to the independent RD RMM. The stationary probabilistic density function

(pdf) of the cyclic inter-vehicle distance for two UAVs i and j, Di,j[k], denoted as

f bD(d), is

f bD(d) = lim
k→∞

f(Di,j[k] = d) =


2πd
B2 0 6 d < B

2

4(π
2
−2arccos( B

2d
))d

B2
B
2
6 d <

√
2B
2

.

(8.4)

Proof. Define a Morkov process based on the cyclic relative position between the UAV

i and j when they move with the independent RD RMM, Sb[k] = (∆Xi,j[k],∆Yi,j[k]).

As the deadlock phenomon does not occur, the Markov chain Sb[k] is aperiodic,

Φ-irreducible, and Harris recurrent, and therefore, there exists a unique stationary

distribution. We first calculate the pdfs for the stationary cyclic relative positions

along the x and y axes, lim
k→∞

f(∆Xi,j[k] = ∆x) and lim
k→∞

f(∆Yi,j[k] = ∆y). We remove

the subscript i, j for the simplicity of presentation when it does not cause confusion.

Equation (8.1) leads to

∆X[k] =


|Xi[k]−Xj [k]| |Xi[k]−Xj [k]| 6 B

2

B − |Xi[k]−Xj [k]| |Xi[k]−Xj [k]| > B
2

=


|∆XE [k]| |∆XE [k]| 6 B

2

B − |∆XE [k]| |∆XE [k]| > B
2 ,

(8.5)
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where ∆XE[k] is the Euclidean relative position between UAVs i and j along the x

axis, i.e., ∆XE[k] = Xi[k] − Xj[k]. Now we find the pdf of |∆XE[k]|. Theorem 29

leads to

lim
k→∞

f(Xi[k] = x) =
1

B
(0 6 x < B). (8.6)

As UAVs i and j move independently, the stationary pdf of |∆XE[k]| can thus be

derived from Equation (8.6) as follows:

lim
k→∞

f(|∆XE[k]| = ∆x)

= 2

∫ B−∆x

0

lim
k→∞

f(Xi[k] = x+ ∆x,Xj[k] = x)dx

= 2

∫ B−∆x

0

lim
k→∞

f(Xi[k] = x+ ∆x)f(Xj[k] = x)dx

= 2

∫ B−∆x

0

1

B

1

B
dx

=
2(B −∆x)

B2
(0 6 ∆x < B).

(8.7)

Equation (8.7) leads to the stationary pdf of ∆X[k], according to the relation-

ship between cyclic distance and Euclidean distance (see Equation (8.5) and Figure

8.2(a)):

lim
k→∞

f(∆X[k] = ∆x)

= lim
k→∞

f(|∆XE[k]| = ∆x) + f(|∆XE[k]| = B −∆x)

=
2

B
(0 6 ∆x <

B

2
).

(8.8)

The same argument leads to the uniform stationary distribution of ∆Y [k].

lim
k→∞

f(∆Y [k] = ∆y) =
2

B
(0 6 ∆y <

B

2
). (8.9)

Since ∆X[k] and ∆Y [k] are independent, lim
k→∞

f(D[k] = d) in Equation (8.4)

can be easily derived through integration according to Figure 8.2(b).
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Theorem 32. Two UAVs in an airspace [0, B)2 follow the RD RMM equipped with

the S&S protocol. The stationary pdf of the cyclic inter-vehicle distance, D[k], denoted

as fS&S
D (d), is bounded as follows.



π

2
dp1min < fS&S

D (d) <
π

2
dp1max, (0 6 d 6 do − V )

π

4
dp1max < fS&S

D (d)) <
π

2
dp1min, (do − V < d 6 do + V )

π

4
dp1min < fS&S

D (d) <
π

4
dp1max, (do + V < d 6

B

2
)Å

π

4
− arccos

Å
B

2d

ãã
dp1 min < fS&S

D (d)

<

Å
π

4
− arccos

Å
B

2d

ãã
dp1 max, (

B

2
< d 6

√
2B

2
)

(8.10)

where the constants p1 min and p1 max are

p1 min =
8

π(do + V )2 +B2

p1 max =
8

π(do − V )2 +B2

Proof. We construct a Markov process with states Ss[k] = (∆X[k],∆Y [k]) when the

two UAVs move with RD RMM equipped with S&S protocol. The Markov chain Ss[k]

is aperiodic, Φ-irreducible, and Harris recurrent, and therefore, there exists a unique

stationary distribution. To facilitate the analysis, we further partition the state space

into five regions according to their different states transition characteristics (Figure

8.3(a)): Region 1 (d 6 do − 2V ), Region 2 (do − 2V < d 6 do − V ), Region 3

(do − V < d 6 do), Region 4 (do < d 6 do + V ) and Region 5 (do + V < d < B
2

).

The five regions form two clusters. In Cluster A (d 6 do, including Regions 1, 2 and

3), one UAV moves and the other stops. In Cluster B (d > do, including Regions 4

and 5), two UAVs move independently according to the independent RD RMM. We

further note that states in Region 1 can only transition from Cluster A, and states

in Region 5 can only transition from Cluster B. States in Regions 2, 3 and 4 can

transition from both clusters.
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Let us first summarize the proof idea. Denote f iS(s) as the stationary pdf of the

cyclic relative position along the x and y axes in Region i, i.e., f iS(s) = lim
k→∞

f(∆X[k] =

∆x,∆Y [k] = ∆y). We analyze f iS(s) in each region respectively. To do that, we first

prove that the pdfs for the states in Regions 1 and 5 (f 1
S(s) and f 5

S(s)) are uniform,

and also identify their relation. The bounds for the pdfs f 2
S(s), f 3

S(s) and f 4
S(s) are

then all derived using f 1
S(s). Finally, utilizing the axiom that the sum of pdfs for all

parts is 1, the lower and upper bounds of f 1
S(s) are derived. The stationary inter-

vehicle distance pdf and probability in Region i, denoted as f iD(d) and P i, can then

be found through integration.

In Region 1, one UAV stops and the other moves according to the independent

RD RMM. For any position (x0, y0) that UAV i stops at, the relative positions between

two UAVs along the x and y axes are then ∆X[k] = min(|Xj[k]−x0|, B−|Xj[k]−x0|)

and ∆Y [k] = min(|Yj[k] − y0|, B − |Yj[k] − y0|), respectively. Since Xj[k] and Yj[k]

are both uniformly distributed in the limit of large time (according to Theorem 29),

∆X[k] and ∆Y [k] can be easily proved to be also uniformly distributed in the limit,

following a similar argument as in the proof of Theorem 31. Hence, f 1
S(s) is uniform

with value denoted as p1. The stationary inter-vehicle distance pdf f 1
D(d) and its

probability in Region 1, P 1, can be represented as

f 1
D(d) =

1

2
πdp1

P 1 =
1

4
π(do − 2V )2p1

(8.11)

In Region 5, since the two UAVs follow the RD RMM independently, the sta-

tionary inter-vehicle relative positions along the x and y axes are also uniformly

distributed according to Theorem 31. Denote the value of f 5
S(s) as p2. The station-
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ary inter-vehicle distance pdf f 5
D(d) and its probability, P 5, can then be represented

as

f 5
D(d) =

1

2
πdp2

P 5 = (
B2

4
− 1

4
π(do + V )2)p2

(8.12)

Next we find the relationship between p1 and p2, or f 1
S(s) and f 5

S(s). The most

direct method is to solve the pdf fS(s) from the following equation.

fS(s) =

∫
f(s′, s)fS(s′)ds′ (8.13)

where f(s′, s) is the state transition density kernel, representing the transition prob-

ability from states s′ to s. f(s′, s) in the RD RMM equipped with S&S protocol

is a piecewise function. f(s′, s) is a constant c when (∆x2 + ∆y2)
1
2 6 do, and

s′ = (∆x′,∆y′) and s = (∆x,∆y) satisfy ((∆x−∆x′)2 + (∆y −∆y′)2)
1
2 = V . When

(∆x2 + ∆y2)
1
2 > do, f(s′, s) is contributed by the movements of both UAVs, and can

be derived using the intersection area of two circles of radius V centered at the two

UAVs, which is complicated to find.

We here use a numerical approach named stationary density look ahead es-

timator (SDLAE) [185, 186] to find the relationship between p1 and p2. For the

discrete-time Markov process representation of relative position S[k], the marginal

pdf of S[k], represented by Φk, satisfies

Φk+1(s) =

∫
f(s′, s)Φk(s

′)ds′ (8.14)

Using the marginal density look ahead estimator (MDLAE) [185, 186], Φk(s) can be

approximated as

Φn
k(s) :=

1

n

n∑
j=1

f(Sj[k − 1], s) (8.15)
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where Sj[k − 1], j ∈ {1, 2, ..., n} are n independent samples drawn from the lagged

state S[k−1] with the pdf Φn
k−1(s). Similarly, the stationary pdf Φ∞ is approximated

as

Φn
∞(s) = lim

k→∞

1

n

n∑
j=1

f(Sj[k], s′) (8.16)

where (S[k])∞k=1 is a time series simulated from f(s′, s) and an arbitrary S[1]. Notice

that lim
n→∞

Φn
∞(s) = fS(s) holds with probability 1. Using this SDLAE approach, the

relation between p1 and p2 converges to (as shown in Figure 8.3(b))

p1 = 2p2 (8.17)

Note that f iS(s) is determined uniquely by the transition density kernel f(s′, s)

as stated in Equation (8.13), and the relation between p1 and p2 is determined

uniquely by the relation between the two transition kernels in Region 1 and 5. The

transition kernels in Region 1 and 5 can be regarded as a ”one-step” transition and

a ”two-steps” transition respectively, and is not a function of any parameters (e.g.,

the airspace size B, and the sensing distance do). As such, the relation between p1

and p2 is also fixed (i.e., not a function of parameters B and do), and would not be

changed with the parameters.

Then we derive the upper and lower bounds for the stationary inter-vehicle

distance distribution in Regions 2, 3, and 4 using the following steps. Step 1: we

prove that f 2
S(s) is uniform with density p1 based on the Markov transition properties.

Step 2: through analyzing the source states in Region 3 that transition to Region 2,

we express the upper bound of f 3
S(s) using p1. Steps 3 and 4: following a similar

approach, we prove that p2 and p1 are the lower and upper bounds of f 4
S(s). In Step

5, utilizing the bounds in Region 4, we prove that p2 is the lower bound for f 3
S(s).
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Step 1: Find f 2
S(s). Consider all the points s′ = (∆x′,∆y′) of distance V

to a point s = (∆x,∆y) that satisfies d ∈ [do − 3V, do − 2V ) in Region 1, i.e.,

((∆x−∆x′)2 + (∆y −∆y′)2)
1
2 = V (marked as the circle in Figure 8.4(a)). As s is

uniformly distributed in Region 1 with pdf p1, at the steady-state

p1 =

∫
ãob

f(s′, s)p1ds
′ +

∫ıab f(s′, s)f 2
S′(s

′)ds′

=f(s′, s)

Å∫
ãob

p1ds
′ +

∫ıab f 2
S′(s

′)ds′
ã
,

(8.18)

where âob represents the superior arc in Region 1 (solid curve in Figure 8.4(a)), andÙab represents the inferior arc in Region 2 (dotted curve in Figure 8.4(a)). Equation

8.18 holds because for any states s′, s in Cluster A, f(s′, s) is a constant.

Similarly, for states s located in [0, do− 3V ) (e.g.,
√

∆x2 + ∆y2 ∈ [0, do− 3V ))

in Region 1, we have

p1 =

∮
f(s′, s)p1ds

′ = f(s′, s)

∮
p1ds

′ (8.19)

where
∮

is the integration sign over the whole circle satisfying

((∆x−∆x′)2 + (∆y −∆y′)2)
1
2 = V . As Equation (8.18) holds for any angle φ ∈

[0, φmax) (shown in Figure 8.4(a)), where φmax = 2arccos −V
2(do−2V )

, and any state s =

(∆x,∆y) satisfying
√

∆x2 + ∆y2 ∈ [do−3V, do−2V ). The term-to-term comparison

between Equations (8.18) and (8.19) leads to

f 2
S(s) = p1 (8.20)

Step 2: Find the upper bound of f 3
S(s). Consider all the points that can tran-

sition to s = (∆x,∆y) in Region 2. Since f 2
S(s) = p1, f 2

S(s) satisfies the following

equation, based on the Markov transition properties (Figure 8.4(b)),

p1 =
2π − φ2

2π
p1 +

∫ıcd f(s′, s)f 3
S′(s

′)

+

∫
S4

f(s′, s)f 4
S′(s

′)ds′
(8.21)

188



where φ2 is the central angle decided by the state and V as shown in Figure 8.4(b).

The last part in Equation (8.21) represents the transition probability from Region

4 (shaded region in Figure 8.4(b)), which is non-negative. This is because states in

Region 4 can change a maximum distance of 2V at each time instance to reach s. As

this equation holds for any φ2 and any s in Region 2, a comparison between Equations

(8.19) and (8.21) leads to

f 3
S(s) < p1 (8.22)

Steps 3 − 5 prove that f 3
S(s) is lowered bounded by p2 and f 4

S(s) is lowered

bounded by p2 and upper bounded by p2. The proofs are documented in the Appendix.

To summarize, f iS(s) in all regions satisfy
f iS(s) = p1 0 6 d < do − V

p2 < f iS(s) < p1 do − V 6 d < do + V

f iS(s) = p2 do + V 6 d < B
2

(8.23)

The stationary probability P i in each region can thus be derived through inte-

gration. Utilizing p1 = 2p2 and the axiom that
∑

i P
i = 1, the bounds for p1 can be

found as

8

π(do + V )2 +B2
< p1 <

8

π(do − V )2 +B2
(8.24)

The stationary inter-vehicle distance distribution fS&S
D (d) can be derived by

integrating f iS(s) in Equations (8.23) and (8.24). Simple algebra leads to Equation

(8.10).

Remark 21. Theorems 31 and 32 suggest that the S&S protocol impacts the UAV

inter-vehicle distance distribution. When the S&S protocol is in place, the inter-

vehicle distance distribution is no more uniform.
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8.3.3 Numerical Illustration

We conduct simulation studies to illustrate and validate the above theoretical

results. Two UAVs follow the independent and the RD RMM equipped S&S protocol,

respectively. The airspace size is 100× 100m2, and UAV velocity is 1m/s. UAVs are

initially randomly distributed, and choose their heading directions uniformly from

[0, 2π) at every time point 1s, 2s, 3s, .... The sensing distance is set as 10m. The

airspace is divided into 100× 100 grids, and we count the number of aircarft in each

grid for the entire 100000 seconds to approximate the node distribution. Both cases

are uniform as shown in Figures 8.5(a) and 8.5(b).

We then simulate the inter-vehicle relative position distribution along the x

and y axes for both cases. The results are shown in Figure 8.6. The distribution of

inter-vehicle relative position for the independent RD RMM is uniform, while the RD

RMM equipped with the S&S protocol is not uniform any more.

Finally, we simulate the inter-vehicle distance distribution. For the independent

RD RMM, f bD(d) increases in proportion to the distance below B
2

(Figure 8.7(a)), as

captured in Theorem 31. For the RD RMM equipped with the S&S protocol (Figure

8.7(b)), fS&S
D (d) increases in proportion to the distance in Regions 1, 2, and 5 below

B
2

, but fluctuates in Regions 3 and 4 between the upper bound (red line) and lower

bound (purple line), in accordance to Theorem 32. In addition, the slope in Region

5 is half of that in Region 1, which verifies p1 = 2p2.

8.4 Collision probabilities and Airspace Capacity

In this section, we first define collisions and stationary collision probabilities

between a pair of UAVs and then among an arbitrary number of UAVs. The concpet

of airspace capacity follows. Based on the stationary inter-vehicle distance distribu-
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tions derived in Section 8.3.2, we analyze the stationary collision probabilities for the

independent RD RMM and the RD RMM equipped with the S&S protocol. We also

find the closed-form airspace capacities for both RMMs.

8.4.1 Definitions

Denote the collision distance as dc, where 0 ≤ dc < do−V . For a pair of UAVs,

the collision and stationary collision probability are defined as follows.

Definition 7. Collision occurs between a pair of UAVs i and j at time k, if Di,j[k] ≤

dc. The stationary collision probability between the two UAVs is defined as

lim
k→∞

P̂i,j[k] = lim
k→∞

P (Di,j[k] 6 dc) (8.25)

To facilitate the comparative analysis in the rest of this sequel, we use lim
k→∞

P̂ b
2,i,j[k]

and lim
k→∞

P̂ S&S
2,i,j [k] to represent the stationary collision probabilities between a pair of

UAVs following the independent RD RMM and the RD RMM equipped with the S&S

protocol, respectively.

Similarly, we define collision and stationary collision collision probability for

multiple UAVs.

Definition 8. Collision occurs among N UAVs at time k, if and only if there exists

at least one pair of UAVs (denoted as i and j) satisfying Di,j[k] 6 dc. The stationary

collision probability for the N UAVs is thus defined as

lim
k→∞

P̂N [k]

= lim
k→∞

P (∃Di,j[k] 6 dc, i, j ∈ [1, N ], i 6= j)

(8.26)

We use lim
k→∞

P̂ b
N [k] and lim

k→∞
P̂ S&S
N [k] to represent the stationary collision proba-

bilities for N UAVs following the independent RD RMM and the RD RMM equipped

with the S&S protocol, respectively.

We define airspace capacity based on collision probability as follows.
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Definition 9. The airspace capacity NC is defined as the maximum number of UAVs

with collision probability not exceeding a pre-defined collision probability threshold

P̂t:

NC = arg max
N
{ lim
k→∞

P̂N [k] 6 P̂t} (8.27)

8.4.2 Analysis

We first study the stationary collision probabilities when the UAVs follow inde-

pendent RD RMM, and then the RM RMM equipped with S&S protocol. We derive

the results for a pair of UAVs, and then multiple UAVs respectively. The analysis of

airspace capacity follows.

Theorem 33. Two UAVs in an airspace [0, B)2 follow the independent RD RMM.

The stationary collision probability between the two UAVs is

lim
k→∞

P̂ b
2,i,j[k] =

πd2
c

B2
(8.28)

Proof. According to Definition 7, the stationary collision probability between two

UAVs can be derived by integrating the stationary inter-vehicle distance distribution

with Di,j[k] < dc.

lim
k→∞

P̂ b
2,i,j[k] =

∫ dc

0

f bD(r)dr

=

∫ dc

0

2πr

B2
dr =

πd2
c

B2

(8.29)

Theorem 34. Each of the N (N > 2) UAVs in an airspace [0, B)2 follows the RD

RMM independently. The stationary collision probability among the N UAVs is

lim
k→∞

P̂ b
N [k] = 1− (1− πd2

c

B2
)
N(N−1)

2 (8.30)

where dc satisfies dc � B.
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Proof. First we consider the case of three UAVs i, j, and l moving independently

according to the independent RD RMM. The collision probability among the three

UAVs is described according to Definition 8 as

lim
k→∞

P̂ b
3 [k]

= lim
k→∞

P (Di,j[k] 6 dc ∪Di,l[k] 6 dc ∪Dj,l[k] 6 dc)

= 1− lim
k→∞

P (Di,j[k] > dc, Di,l[k] > dc, Dj,l[k] > dc)

= 1− lim
k→∞

P (Dj,l[k] > dc|Di,j[k] > dc, Di,l[k] > dc)

× lim
k→∞

P (Di,j[k] > dc, Di,l[k] > dc)

(8.31)

Note that any two of the three distances are independent, i.e., f(Di,j[k] =

d1, Di,l[k] = d2) = f(Di,j[k] = d1)f(Di,l[k] = d2), and the third UAV distance Dj,l[k]

can be determined by the other two distances. Therefore, Equation (8.31) is further

written as

lim
k→∞

P̂ b
3 [k]

= 1− lim
k→∞

P (Dj,l[k] > dc|Di,j[k] > dc, Di,l[k] > dc)

× lim
k→∞

P (Di,j[k] > dc) lim
k→∞

P (Di,l[k] > dc)

(8.32)

where lim
k→∞

P (Di,j[k] > dc) and lim
k→∞

P (Di,l[k] > dc) can be derived from the integra-

tion of the stationary pdf (f bD(d)) shown in Equation (8.4), according to Theorem

31.

Then let us find the conditional probability lim
k→∞

P (Dj,l[k] > dc|Di,j[k] > dc, Di,l[k] >

dc).
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Since the three UAVs move independently with RD RMM, the relative positions

of the two independent UAV pairs (∆Xi,j[k], ∆Yi,j[k]), and (∆Xi,l[k], ∆Yi,l[k]) are

both uniformly distributed in [0, B
2

)2 according to Theorem 8.3.

lim
k→∞

f(∆Xi,j[k] = ∆x1,∆Yi,j = ∆y1) =
4

B2

lim
k→∞

f(∆Xi,l[k] = ∆x2,∆Yi,l = ∆y2) =
4

B2

(8.33)

where ∆x1, ∆y1, ∆x2, and ∆y2 ∈ [0, B
2

). With the relative positions, the conditional

probability lim
k→∞

P (Dj,l[k] > dc|Di,j[k] > dc, Di,l[k] > dc) can be rewritten as

lim
k→∞

P (Dj,l[k] > dc|Di,j [k] > dc, Di,l[k] > dc)

= lim
k→∞

P (
»

∆Xj,l[k]2 + ∆Yj,l[k]2 > dc|»
∆Xi,j [k]2 + ∆Yi,j [k]2 > dc,

»
∆Xi,l[k]2 + ∆Yi,l[k]2 > dc)

(8.34)

where ∆Xj,l[k] is determined by ∆Xi,j[k] and ∆Xi,l[k], and ∆Yj,l[k] is determined

by ∆Yi,j[k] and ∆Yi,l[k] considering the following four cases.
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Case 1, UAVs j and l are on the same side of i along both x and y axes.

In this case, the relative positions of j, l are (∆Xj,l[k],∆Yj,l[k])1 = (|∆Xi,j[k] −

∆Xi,l[k]|, |∆Yi,j[k]−∆Yi,l[k]|). Therefore, Equation (8.34) becomes

lim
k→∞

P (Dj,l[k] > dc|Di,j[k] > dc, Di,l[k] > dc)

= lim
k→∞

P
((

(∆Xi,j[k]−∆Xi,l[k])2

+ (∆Yi,j[k]−∆Yi,l[k])2
) 1

2 > dc|
»

∆Xi,j[k]2 + ∆Yi,j[k]2 > dc,»
∆Xi,l[k]2 + ∆Yi,l[k]2 > dc

)
=

∫∫
S1C

∫∫
S2C

∫ B
2

dc

f(
»

(∆x1 −∆x2)2 + (∆y1 −∆y2)2 = r)

× f(∆Xi,j[k] = ∆x1,∆Yi,j = ∆y1)

× f(∆Xi,l[k] = ∆x2,∆Yi,l = ∆y2)drds2ds1

<

∫∫
S1

∫∫
S2

∫ B
2

dc

f(
»

(∆x1 −∆x2)2 + (∆y1 −∆y2)2 = r)

× f(∆Xi,j[k] = ∆x1,∆Yi,j = ∆y1)

× f(∆Xi,l[k] = ∆x2,∆Yi,l = ∆y2)drds2ds1

= lim
k→∞

P (Dj,l[k] > dc)

(8.35)

where s1 = (∆x1,∆y1), s2 = (∆x2,∆y2). S1C is the integral region constructed by

four lines and one curve: ∆x1 = 0, ∆x1 = B
2

, ∆y1 = 0, ∆y1 = B
2

, and
√

∆x2
1 + ∆y2

1 >

dc (marked as the shaded area in Figure 8.8(a)). The condition Di,j[k] > dc is satisfied

in S1C . Similarly, S2C is the region constructed by ∆x2 = 0, ∆x2 = B
2

, ∆y2 = 0,

∆y2 = B
2

, and
√

∆x2
2 + ∆y2

2 > dc, and the condition Di,l[k] > dc is satisfied in S2C .

S1 is the integral region constructed by four lines: ∆x1 = 0, ∆x1 = B
2

, ∆y1 = 0,

and ∆y1 = B
2

, and is shown as the shaded region in Figure 8.8(b). S2 is the region

constructed by ∆x2 = 0, ∆x2 = B
2

, ∆y2 = 0, and ∆y2 = B
2

.
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Note that with the condition dc � B, the conditional probability lim
k→∞

P (Dj,l[k] >

dc|Di,j[k] > dc, Di,l[k] > dc) can be approximated by lim
k→∞

P (Dj,l[k] > dc) from Equa-

tion (8.35).

Similar analysis can be found in Case 2, where UAVs j and l are on the same

side of i along x axis, but on different sides of i along y axis
(
(∆Xj,l[k],∆Yj,l[k])2 =

(|∆Xi,j[k]−∆Xi,l[k]|, |∆Yi,j[k]+∆Yi,l[k]|)
)
, Case 3, where UAVs j and l are on differ-

ent sides side of i along x axis, but on the same side of i along y axis
(
(∆Xj,l[k],∆Yj,l[k])3 =

(|∆Xi,j[k] + ∆Xi,l[k]|, |∆Yi,j[k]−∆Yi,l[k]|)
)
, and Case 4, where UAVs j and l are on

different sides of i along both x and y axes
(
(∆Xj,l[k],∆Yj,l[k])4 = (|∆Xi,j[k] +

∆Xi,l[k]|, |∆Yi,j[k] + ∆Yi,l[k]|)
)
.

Combining Equations (8.32) and (8.35), under the condition dc � B, the colli-

sion probability among three UAVs moving with basic RD RMM is

lim
k→∞

P̂ b
3 [k] =1− lim

k→∞
P (∀Di,j[k] > dc, i, j ∈ [1, 3], i 6= j)

=1− (1− lim
k→∞

P̂ b
2,i,j[k])3

(8.36)

For the N UAVs case, there are a total of N(N−1)
2

inter-vehicle distance pairs,

and N − 1 of them are independent. Following a similar argument, it can be proven

that under the condition dc � B, the stationary collision probability among N UAVs

with basic RD RMM is

lim
k→∞

P̂ bN [k] = lim
k→∞

P (∃Di,j [k] 6 dc, i, j ∈ [1, N ], i 6= j)

= 1− lim
k→∞

P (∀Di,j [k] > dc, i, j ∈ [1, N ], i 6= j)

= 1− (1− lim
k→∞

P̂ b2,i,j [k])
N(N−1)

2

(8.37)

Substituting Equation (8.28) into Equation (8.37), the stationary collision probability

among N UAVs is obtained.

The next two theorems state the stationary collision probabilities for UAVs that

follow the RD RMM equipped with the S&S protocol.
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Theorem 35. Two UAVs in an airspace [0, B)2 follow the RD RMM equipped with

the S&S protocol. The stationary collision probability between the two UAVs is upper

bonded by

lim
k→∞

P̂ S&S
2,i,j [k] <

2πd2
c

π(do − V )2 +B2
(8.38)

Proof. Integrating the upper bound of stationary inter-vehicle distance distribution

in Theorem 32, we obtain

lim
k→∞

P̂ S&S
2,i,j [k] =

∫ dc

0

πr

2
p1dr

<
2πd2

c

π(do − V )2 +B2

(8.39)

In the case of multiple UAVs, the independence assumption among UAV pairs is

removed when the S&A protocol is in place. Therefore, the collision probability among

multiple UAVs is not equal to the simple multiplication of the collision probabilities

between each UAV pair. In the next theorem, we derive its upper bound.

Theorem 36. N UAVs in a airspace [0, B)2 follow the RD RMM equipped with

the S&S protocol. The stationary collision probability among the N UAVs is upper

bounded by

lim
k→∞

P̂ S&S
N [k] <

N(N − 1)

2

2πd2
c

π(do − V )2 +B2
(8.40)
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Proof. According to Definition 8, collision occurs among N UAVs when there exists

at lease one pair of UAVs satisfying Di,j[k] 6 dc.

lim
k→∞

P̂ S&S
N [k] = lim

k→∞
P (∃Di,j[k] 6 dc, i, j ∈ [1, N ], i 6= j)

= lim
k→∞

P (D1,2[k] 6 dc ∪D1,3[k] 6 dc ∪ ... ∪DN−1,N [k] 6 dc)

< lim
k→∞

P (D1,2[k] 6 dc) + P (D1,3[k] 6 dc) + ...

+ P (DN−1,N [k] 6 dc)

=

Ç
N

2

å
lim
k→∞

P̂ S&S
N,i,j

(8.41)

where P̂ S&S
N,i,j is the collision probability between UAVs i and j when N (N > 3)

UAVs move in the airspace.
(
N
2

)
is a 2-combination of UAVs from a N UAV airspace,(

N
2

)
= n(n−1)

2
.

We note that P̂ S&S
N,i,j may not equal to P̂ S&S

2,i,j , i.e., the collision probability between

UAVs i and j when they move alone in the airspace, due to the existence of other

UAVs.

Here we state that P̂ S&S
N,i,j can be approximated by P̂ S&S

2,i,j . P̂ S&S
N,i,j is affected by the

other UASs in the airspace. However, using the argument similar to the five region

analysis in Theorem 32, we note that the existence of other UASs makes the UAS

i or j be more likely to ”stop” in all five regions, which extends the time duration

for UASs i and j to be in these distance regions. When the increased time duration

is approximately the same in all possible distances, the collision probability P̂ S&S
N,i,j

can well be approximated by P̂ S&S
2,i,j . This assumption holds as the triggering of the

extra ”stopping” only depends on the inter-vehicle distance between UAS i (or j)

with other UASs, regardless of the inter-vehicle distance between i and j. With

this approximation, combining Equations (8.41) and (8.38), the upper bound of the

stationary collision probability among N UASs is derived as shown in Equation (8.40).
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The airspace capacities for the independent RD RMM and the RD RMM

equipped with the S&S protocol are derived according to Definition 9, based on the

collision probabilities.

Theorem 37. Given a threshold collision probability P̂t, the airspace capacity for

the independent RD RMM (N b
C) and the RD RMM equipped with the S&S protocol

(NS&S
C ) are expressed as follows.

N b
C =

ú 
log

(1−P̂t)2

1−πd
2
c

B2

+
1

4
+

1

2

ü
(8.42)

NS&S
C >

√ P̂t(π(do − V )2 +B2)

πd2
c

+
1

4
+

1

2

 (8.43)

Where bc is the floor operation.

Proof. According to Definition 9, the airspace capacity can be derived from the col-

lision probability analysis (described in Theorems 34 and 36) naturally.

Remark 22. The analytical framework presented in this chapter provides us valuable

insights on the the effectiveness of local S&A protocols to global airspace capacity.

A comparison between Theorems 8.5 and 8.7 suggests that surprisingly the S&S

protocol is not effective for a highly variable on-demand UAV traffic. In particular,

S&S can lead to increased collision probability and hence reduced airspace capacity.

Intuitively, this is because the “stopping” protocol enlarges the collision duration if

the other vehicle moves toward it.

8.4.3 Numerical Illustration

We simulate N UAVs (N = 2, 4, 6, 8) moving in a confined square airspace

(20× 20m2) following independent RD RMM with the speed of 1m/s, and then the
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RD RMM equipped with the S&S. The sensing distance is set as do = 2m and collision

distance is dc = 1m. Figure 8.9(a) suggests that the collision probability for the

independent RD RMM converges in the limit of large time to the theoretical values.

For the RD RMM equipped with the S&S protocol, the theoretical upper bounds

characterize the collision properties (8.9(b)). The stationary collision probability

increases with the increase of the number of UAVs for both RMMs.

8.5 Impact Analysis of S&S Configurations

The above analytical framework allows us to systematically study the impact of

local S&A protocols to global airspace capability. In this section, we study the effect

of local S&S configurations, including travel time, sensing distance, collision distance.

We also compare the impact of some other S&A protocols with the S&S protocol.

8.5.1 Impact Analysis of Travel Time

Travel time, defined as the time duration for a vehicle to hold its current heading

direction [171], is one of the indicators of model randomness. UAVs of different

missions may have different travel time statistics. We have proved that in a 1-D

airspace, travel time affects the collision probability significantly [11]. Characterizing

the relationship between travel time and collision probability helps us understand the

effect of S&S protocols for UAVs of different randomness levels.

First, we note that for the independent RD RMM, the change of travel time

does not impact the joint uniform node distribution in Theorem 29, the uniform inter-

vehicle distribution in Theorem 31, or the collision probability in Theorems 33 and

34. Hence, the airspace capacity remains the same as illustrated in Equation (8.42).

For the RD RMM equipped with S&S protocol, the impact of travel time is

shown in Figures 8.10(a), obtained using the SDLAE method. For numerical example
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in this section, the parameters are set as B = 100m, do = 10/m, and V = 1m/s. Each

UAV’s node distribution is uniform as shown in Theorem 30. However, extending the

travel time reduces the slope of inter-vehicle distance distribution in Region 1, and

hence leads to reduced collision probability and larger airspace capacity.

8.5.2 Impact Analysis of Sensing Distance and Collision Distance

Sensing distance is also an important parameter. Convective weather can

shorten the sensing distance of UAVs and affect airspace capacity [187]. This ef-

fect can be captured by reducing the parameter do in the S&A protocol. We here

only analyze the impact of sensing distance to collision probability for the RD RMM

equipped with S&S protocol, as sensing distance does not affect the independent RD

RMM. It can be seen from Figure 8.10(b) that longer sensing distance leads to reduced

stationary collision probability in Region 1 and hence larger airspace capacity.

Collision distance, dc, on the other hand, does not alter the inter-vehicle distance

distributions for both RD RMMs. With reduced collision distance, airspace capacity

increases as shown in Equations (8.42) and (8.43) for both RD RMMs.

8.5.3 Comparison with other S&A Protocols

In this section, we compare the performance of the S&S protocol with the other

two S&A protocols for the highly variable UAV traffic, including sense-and-turn-left

(S&T) and sense-and-reverse (S&R).

The two protocols work as follows: when the inter-vehicle distance between

two UAVs is greater than the sensing distance, the two UAVs follow the RD RMM

independently. When the distance between them is smaller than the sensing distance,

the vehicle to the relative right continue its original movement, and the vehicle to the

relative left turns left for the S&T protocol, and reverses its direction for the S&R
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protocol, until the inter-vehicle distance is greater than the sensing distance again.

The inter-vehicle distance distributions between a UAV pair for the independent RD

and the RD with the S&S, S&T, and S&R are plotted in Figure 8.11(a). Clearly,

both the S&T and S&R protocols reduce the collision probability and lead to larger

airspace capacity compared to the independent RD model. Furthermore, the S&R

has the best collision avoidance capabilities among them all.

Now we further study the properties of S&R. In order to evaluate the local

S&R’s impact to collision probability and airspace capacity, we further plot the key

metric, P̂N,i,j with the increase of number of UAVs in the airspace, N (see Figure

8.11(b)). Clearly, with the increase of N , P̂N,i,j increases, suggesting other vehicle’s

impact to the effectiveness of the local protocol.

Appendix

Proofs of Steps 3− 5 for Theorem 32.

Step 3: Find the lower bound for f 4
S(s). Consider all the points that can transi-

tion a maximum of 2V to the point s = (∆x,∆y) that satisfies d ∈ [do + V, do + 2V )

in Region 5 (Figure 8.12(a)). As s is uniformly distributed in Region 5 with pdf p2,

the following equation holds in the limit of large time.

p2 =
2π − φ3

2π
p2 +

∫
s5

p2f(s′, s) +

∫
s4

f4
S(s)f(s′, s)ds′ (8.44)

where φ3 is the angle determined by the states’ position and the boundary of Region

4, s4 and s5 are the regions marked in different shades in Figure 8.12(a).

Similarly, for the states that are located in Region 5 and can solely transition

from Region 5, we have

p2 =

∮
f(s′, s)p2ds

′ (8.45)
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where the integration is for the whole area inside the circle, satisfying

(
(∆x−∆x′)2 + (∆y −∆y′)2

) 1
2 6 2V (8.46)

The comparison between Equations (8.44) and (8.45) leads to the conclusion that

f 4
S(s) > p2 (8.47)

Step 4: Find the upper bound for f 4
S(s). As p1 = 2p2, Equation (8.45) can be

further written as

p2 =
2π − φ3

2π
p2 +

∫
s3+s4+s5

p2f(s′, s)ds′

=
2π − φ3

2π
p2 +

∫
s5

p2f(s′, s)ds′ +

∫
s4

1

2
p1f(s′, s)ds′

+

∫
s3

1

2
p1f(s′, s)ds′

(8.48)

With the inequality that
∫
s3
p1f(s′, s)ds′ <

∫
s4
p1f(s′, s)ds′, Equation (8.48) becomes

p2 <
2π − φ3

2π
p2 +

∫
s5

p2f(s′, s)ds′ + 2

∫
s4

1

2
p1f(s′, s)ds′

=
2π − φ3

2π
p2 +

∫
s5

p2f(s′, s)ds′ +

∫
s4

p1f(s′, s)ds′
(8.49)

Comparing Equations (8.44) and (8.49), we can conclude that

f 4
S(s) < p1 (8.50)

Step 5: Find the lower bound for f 3
S(s). Revisit Equation (8.21). Denote the

region in the loose shades in Figure 8.12(b) as s3, and the region in the dense shades

as s4. Utilizing f 4
S(s) < p1 (Equation (8.50)) and the relation that p1 = 2p2, Equation

(8.21) can be further written as

p2 <
2π − φ2

2π
p2 +

1

2

∫ıcd f(s′, s)f3
S′ds

′ +

∫
s4

f(s′, s)p2ds
′ (8.51)
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With the inequality that
∫
s4
f(s′, s)p2ds

′ <
∫
s3
f(s′, s)p2ds

′, Equation (8.51)

becomes

p2 <
2π − φ2

2π
p2 +

1

2

∫ıcd f(s′, s)f3
S′ds

′ +
1

2

∫
s3+s4

f(s′, s)p2ds
′

=
2π − φ2

2π
p2 +

1

2

∫ıcd f(s′, s)f3
S′(s

′) +
1

2

φ2

2π
p2

(8.52)

Comparing Equations (8.52) and (8.19), we can easily concluded that

f 3
S(s) > p2 (8.53)
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(a)

(b)

Figure 8.2. (a). The relationship between pdfs for |∆XE[k]| and ∆X[k]. (b). The
range of cyclic distance D.
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Figure 8.3. (a) Partition of the state space into 5 regions based on the inter-vehicle
distance. Clusters A and B are marked in different shades. (b) Illustration of the
SDLAE method to find the relation between p1 and p2.
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Figure 8.4. (a) Illustration of Step 1. (b) Illustration of Step 2.
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Figure 8.5. (a) Node distribution of the independent RD RMM. (b) Node distribution
of the RD RMM equipped with the S&S protocol.
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Figure 8.6. (a) Inter-vehicle relative position distribution of independent RD RMM.
(b) Inter-vehicle distance distribution of the RD RMM equipped with the S&S pro-
tocol.

209



(a)

0 50 100 150

Distance (m)

0

0.01

0.02

0.03

0.04

p
d

f

Simulated pdf

Upper bound

Lower bound

6 8 10 12
0

0.005

0.01

0.015

Region 

1, 2

Region 

3, 4

Region

 5

(b)

Figure 8.7. Pdfs of inter-vehicle distance for (a) the independent RD RMM, (b) the
RD RMM equipped with the S&S protocol.
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(b)

Figure 8.8. The integral regions (shaded regions) of (a) S1C , and (b) S1.
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Figure 8.9. Collision probabilities among UAVs that follow (a) the independent RD
RMM, and (b) the RD RMM equipped with S&S protocol. The solid lines are simu-
lated collision probabilities. The dotted lines in (a) are theoretical values, and in (b)
are theoretical upper bounds.
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Figure 8.10. Inter-vehicle distance distribution with different (a) travel time and (b)
sensing distances.
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Figure 8.11. Inter-vehicle distance distribution when UAVs (a) follow different S&A
protocols, and (b) S&R with different number of N .
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Figure 8.12. (a) Illustration of Steps 3 and 4. (b) Illustration of Step 5.
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CHAPTER 9

BAYESIAN ESTIMATION OF DEFECT PATTERNS IN COMPOSITE

MATERIALS USING THROUGH-THICKNESS DIELECTRIC MEASUREMENTS

9.1 INTRODUCTION

Composite materials have been widely used in multifunctional applications, in-

cluding biomedical (e.g. prostheses and devices), structural (e.g., vehicles and urban

infrastructure), energy (e.g. conversion and storage), and communications (e.g. semi-

conductors and circuit boards) [188]. An effective approach that measures the defect

patterns of materials and predicts the initiation of failures becomes extremely cru-

cial to avoid “critical events” such as structural or functional failures. However, the

diagnosis of the damage pattern in composite materials is challenging, since the in-

teractions of the damage modes (e.g., matrix cracking, defects, delamination, fiber

fracture etc.) are complex and may lead to critical fracture paths and in turn final

failures. The relationship between damage development and material properties was

studied in paper [3] and shown in Figure 9.1.

The current non-destructive evaluation (NDE) methods (e.g., Ultrasonic Test-

ing (UT) and Acoustic Emission (AE)) have been used to find the area and size

of damage in composite materials [189–192]. However, most of the NDE methods

are point-to-point, and are not capable of diagnosing the overall state of the whole

material. Detecting defects using dielectric responses has gained significant interests

during the latest years [193–200], since it can find the overall state of material during

its service life by measuring global dielectric properties. The most widely used indi-

cator to test defects in composite materials is the dielectric resistivity [193–195]. The
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Figure 9.1. Relationship between damage development and material properties [3]..

electric resistance methods are capable of characterizing the damage states during the

service life of composite material, however, they do not provide quantitative informa-

tion about the specific damage modes such as the volumes of defects, orientations of

the flaws, and the density of defects [201]. Broadband dielectric spectroscopy (BbDS)

is the interaction of electromagnetic waves with matter in the frequency range from

10−6Hz to −1012 Hz [197, 202–204]. BbDS has been used to detect the damage de-

velopment in composite materials, since it can extract the material-level information,

including the generation of micro-defects, and the volumes and orientations of those

defects [197]. The BbDS method works as follows. A vector electric field is applied

through the thickness of the specimen, and the dielectric properties are then measured

to find out the current material state. Reifsnider showed that the shape, volume, and

orientation of defects in materials can be found from the measured through-thickness

dielectric permittivity [196–200]. These papers did not consider the interactions of
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different defects, which can be important indicators of critical fracture paths. Per

knowledge of the authors, there is no research work estimating the relative positions

of defects from the global dielectric properties that considers the interactions between

defects.

In this chapter, we find the relationship between the dielectric permittivity

and the relative positions of defects using COMSOLr, and develop a Bayesian es-

timation method to estimate the relative positions of the defects from the global

dielectric permittivity. The organization structure of this chapter is as follows. Sec-

tion 9.2 presents the fundamental dielectric principle that leads to the detection and

estimation method. Section 9.3 finds the relation between the relative positions of de-

fects and the dielectric properties. Section 9.4 develops a Bayesian-based estimation

method to estimate the current material state from the measured global permittivity.

9.2 The dielectric Principle and Modeling Framework

We first provide the principle of electromagnetic phenomena as the foundation

for theanalysis in this chapter. A capacitor model is built to analyze the dielectric

responses.

9.2.1 Principle of electromagnetic phenomena

In general, electromagnetic phenomena can be described by the Maxwell equa-

tions [198].

∇ · ~D = ρ (9.1)

∇× ~H = ~J +
∂ ~D

∂t
(9.2)

∇× ~E +
∂ ~B

∂t
= 0 (9.3)

∇ · ~B = 0 (9.4)
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where ~D is the dielectric displacement, ρ is the charge density, ~H is the magnetic

field, ~E is the electric field, ~B is the magnetic induction, and ~J is the ohmic current

density.

For linear materials, the interrelation between ~D and ~E is described as

~D = ε0
~E + ~P (9.5)

where ~P is polarization determined by the charge density when there is no external

source applied.

∇ · ~P = −ρ (9.6)

In addition, the relation between the dielectric displacement and electric field satisfies

~D = εε0
~E (9.7)

where ε0 is the permittivity of vacuum, and ε is the relative permittivity of the

material. Note that ε is a function of electric field frequency ω, and characterizes the

material’s dielectric behavior. In particular, the real part of ε represents the material’s

conductivity, and the imaginary part measures the material’s dielectric loss.

Combining Equations (9.5) and (9.7), the relation between polarization and

electric field is described as

~P = ε0(ε− 1) ~E = χε0
~E (9.8)

where χ is the dielectric susceptibility determined uniquely by the material’s relative

permittivity ε.

We then describe the two important electromagnetic phenomena: polarization

and interfacial polarization. In general, polarization refers to the phenomenon that

electric charges accumulate at the material’s interface when it is immersed in an

electric field, as shown in Figure 9.2. In particular, the positive charges move along
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the direction of the electric field and accumulate at one surface of the material, and

the negative charges move in the opposite direction and accumulate at the opposite

surface. The cumulative electric charges then generate a built-in electric field, which

has the opposite direction to the external electric field shown in Figure 9.2. Note

that the strength of the built-in electric field is determined by the real part of the

material’s permitivity. Larger ε leads to a stronger built-in electric field.

Figure 9.2. Illustration of interfacial polarization..

Similarly, when heterogeneous dielectric materials are immersed in an electric

field, electric charges accumulate at the interfaces between the different constituents,
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and this effect is called interfacial polarization [199]. As such, when there are defects

in a material, a different ”phases” with different conductivity and permittivity is in-

troduced. At the boundary of these newly introduced defects, interfacial polarization

occurs, and thus the global permittivity of the material changes.

9.2.2 The material modeling framework

A parallel plate capacitor model is designed to study the relation between a ma-

terial’s global dielectric permittivity and the relative positions of defects. In particu-

lar, a cylinder-shaped dielectric material is placed between two parallel metal plates,

and the dielectric material and two metal plates compose a parallel plate capacitor

as shown in Figure 9.3. The material’s permittivity can be obtained by measuring

the capacitance of the capacitor, when a direct voltage is applied on the two metal

plates. The relation between the capacitance and the permittivity is described as

ε =
C · d · 4πk
ε0 · A

(9.9)

where C is the capacitance, d and A are height and round area of the cylinder-shaped

material respectively, and k is Coulomb’s constant (k ≈ 9 × 109Nm2C2). Here we

use glass, which has the relative permittivity ε = 6, as the dielectric material. We

use conductive copper for the metal plates.

The defects distributed in the dielectric material are modeled as ellipsoids filled

with air. The model is shown in Figure 9.2.2. Here we introduce two defects in our

capacitor model with the same size and orientation. We aim to study the impact of

the two defects’ relative position to the material’s global permittivity. In particular,

two groups of simulations are designed to test the impacts of the relative positions

along the X and Z axes. In group 1, the two defects are distributed along the Z axis,

i.e., they have the same X and Y coordinates, and differ in their Z coordinates. In
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Figure 9.3. Capacitor model..

group 2, the two defects have the same X and Z coordinates, and differ in their Y

coordinates. The three-dimensional coordinate system is shown in Figure 9.4(c).

9.3 Simulations in COMSOL Multiphysicsr

In this section we study the impact of the defects’ relative positions to mate-

rials’ global permittivity. In particular, we use COMSOL Multiphysicsr to simulate

the capacitor models developed in Section 9.2.2. The material permittivity is then

calculated from the measured capacitance.

9.3.1 Simulation setup

Here we use AC/DC Electrostatics module in COMSOL Multiphysicsr to study

the stationary circuit performance with a direct current. The size of the cylinder,

which includes the dielectric material and two metal plates, is set as 10cm tall and

20cm wide, (i.e., with the radius of 10cm). The defects are modeled as ellipsoids

with the principal semi-axes 0.5cm, 0.5cm, and 3.5cm respectively. Simulations are

222



(a)

(b)

(c)

Figure 9.4. Capacitor model with two defects distributed along (a) the Z axis and
(b) the Y axis. (c) Illustration of the coordinates..
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conducted for the two groups of models described in Figure 9.4(a) and 9.4(b) re-

spectively. In group 1, one defect is placed in the middle of the material with the

coordinate (0, 0, 0), and the other defect is placed at (0, 0, 0), (0, 0, 0.2), (0, 0, 0.4),

(0, 0, 0.6), (0, 0, 0.8), (0, 0, 1), (0, 0, 1.2), (0, 0, 1.4), (0, 0, 1.6), (0, 0, 2), (0, 0, 2.5), and

(0, 0, 3) respectively. In group 2, one defect is placed in the middle with the coordi-

nate (0, 0, 0), and the other defect is placed at (0, 0, 0), (0, 0.2, 0), (0, 0.4, 0), (0, 0.6, 0),

(0, 0.8, 0), (0, 1, 0), (0, 1.2, 0), (0, 1.4, 0), (0, 1.6, 0), (0, 1.8, 0), (0, 2, 0), (0, 3, 0), and

(0, 4, 0) respectively.

9.3.2 Simulation and analysis

Figures 9.5(a) and 9.5(b) show the relationships between the material’s global

permittivity and the inter-defect distances along the Z and Y axes respectively. Note

that distance being 0cm means that the two defects coincide with their locations,

which is equivalent to the single ellipsoidal defect case. Since the defect’s radius is

set as 0.5cm, when the inter-defect distance is less than 1cm, the two defects have a

coinsident portion. The distances of 1cm are labeled with red dots in Figures 9.5(a)

and 9.5(b). Figure 9.5(c) is the contour plot of the relationships. Note that the plots

in the first quadrant (i.e., y ∈ [0, 4], and z ∈ [0, 2]) is derived from the simulation in

Comosl, and the plots in other quadrants are derived from the symmetrical charac-

teristic, i.e., the two defects located at (0, 0, 2) and (0, 0,−2) have the same materials’

permittivity.

We can draw two observations from the avoe figures. First, when the inter-

defect distance is less than 1cm, the global permittivity decreases with the increase

of distances along both the Y and Z axes. When the distance is less than 1cm, the

change of permittivity is dominated by the change of defects’ volume. As such, it

can be concluded that the increase of the defects’ volume leads to the decrease of the
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Figure 9.5. Relation between the material’s permittivity and the inter-defect distance
along the (a) Z axis, (b) Y axis, and (c) Y and Z axes of a contour plot.
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global permittivity. Second, when the inter-defect distance is greater than 1cm, in

which case the defects’ volume remains a constant, the material’s global permittivity

decreases with the increase of distance along the Z axis, or the decrease of the inter-

defect distance along the Y axis.

The above two observations can be explained from the dielectric material prop-

erties and the principle of interfacial polarization. The first observation is straight-

forward since the relative permittivity of air is much less than that of the glass.

Therefore, the increase of defect volume indicates more air in the material, and leads

to less global permittivity. To explain the second observation, let us analyze the

interfacial polarization phenomenon in the proposed capacitor models respectively.

Denote the models described in Figures 9.4(a) and 9.4(b) as model 1 and 2 respec-

tively, then when a direct voltage is added on the metal plates of the capacitor, an

electric field, which is vertical to the metal plate, is produced as shown in Figure 9.6.

With this electric field, the polarization and interfacial polarization are triggered, and

charges accumulate at the surfaces of both the material and the defects. Note that

the two defects have interations with each other because of the cumulative charges

at their surfaces. In particular, for model 1, the polarization of one defect prompts

the polarization of the other defect, as shown in Figure 9.6(a). As such, the increase

of the inter-defect distance in model 1 weakens the interfacial polarization of the two

defects, and thus results in smaller global permittivity. Similarly, for model 2, the

polarization of one defect weakens the polarization of the other, as shown in Figure

9.6(b). As such, the increase of the inter-defect distance in model 2 enhances the

global interfacial polarization, and thus leads to increased global permittivity.
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(a) (b)

Figure 9.6. Illustration of interfacial polarization in (a) model 1, and (b) model 2.

9.4 Relative position estimation

In this section we first develop a Bayesian estimation based method to estimate

the relative positions of the two defects given the permittivity measurements. Two

numerical examples are then provided to illustrate the estimation method.

9.4.1 Bayesian estimation

Assume that the two defects are initially distributed uniformly in the material.

The initial probability density function (pdf) of the defects’ positions along the Y

and Z axes are

fY (y) =


1
D1

y 6 D1

0 otherwise

(9.10)
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fZ(z) =


1
D2

z 6 D2

0 otherwise

(9.11)

respectively, where D1 and D2 are the width and height of the material respectively.

Then the inter-defect distance distributions along the Y and Z axes are [205]

f|∆Y |(∆y) =


2(D1−∆y)

D2
1

∆y 6 D1

0 otherwise

(9.12)

f|∆Z|(∆z) =


2(D2−∆z)

D2
2

∆z 6 D2

0 otherwise

(9.13)

respectively.

Consider the measurement model described as

ε̂ = g(θ) + n (9.14)

where ε̂ is the measured global permittivity, θ = [∆y,∆z]T is the inter-defect relative

position vector to be estimated. g is the relation between permittivity and the inter-

defect distance, and n is the Gaussian noise with zero mean and variance σ2, n v

N(0, σ2). Using the Bayesian estimation method, given the measured permittivity,

the conditional pdf of the inter-defect distance can be derived as

f(θ|ε̂ = ε1) =
f(ε̂ = ε1|θ) · f(θ)

f(ε̂ = ε1)
(9.15)

Since n v N(0, σ2), the conditional probability f(ε̂ = ε1|θ) can be derived as

f(ε̂ = ε1|θ) =
1

(2πσ2)1/2
e(− 1

2σ2
(ε1−g(θ))2) (9.16)
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As such, f(ε̂ = ε1) can be obtained from the integration of the conditional probability

as

f(ε̂ = ε1) =

∫
f(ε̂ = ε1|θ)f(θ)dθ

=

∫ D2

0

∫ D1

0

1

(2πσ2)1/2
e(− 1

2σ2
(ε1−g(θ))2) · f(θ)d∆yd∆z

(9.17)

Combining Equations 9.15-9.17, the probability f(θ|ε̂ = ε1) can be derived as:

f(θ|ε̂ = ε1) =

1
(2πσ2)1/2

e(− 1
2σ2

(ε1−g(θ))2)f(θ)∫ D2

0

∫ D1

0
1

(2πσ2)1/2
e(− 1

2σ2
(ε1−g(θ))2)f(θ)d∆yd∆z

(9.18)

As such, given the measured global permittivity ε̂, the distribution of the relative

positions of the defects can be estimated using Equation (9.18).

9.4.2 Numerical examples

We use numerical examples to illustrate the proposed estimation method. Con-

sider two dielectric material specimens, both of which are composed of glass and two

ellipsoid defects filled with air. The two defects’ relative positions in the two speci-

mens are (∆y1,∆z1) = (1, 0) and (∆y2,∆z2) = (0, 1) respectively. Initially, we do not

have any information concerning the defects’ locations, and as such, we assume the

two defects are distributed uniformly in the material as described in Equations (9.10)

and (9.11). The initial distributions of the two defects’ relative positions along the

Y and Z axes (described in Equations (9.12) and (9.13)) are shown in Figure 9.4.2.

Note that the “red” grid represents a “large” probability, and the “blue” grid means a

“small” probability. Using the capacitor models described in Section 9.3, the permit-

tivity of the two specimens are measured as ε̂1 = 5.8073 and ε̂2 = 5.8126 respectively.

Then with the developed Bayesian estimation method described in equation (9.18),

the probability distributions of the two defects’ relative positions can be estimated

from the measured permittivity as shown in Figures 9.8 and 9.9 for specimens 1 and

2 respectively.
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It can be seen from the figures that 1) in specimen 1, the two defects’ relative

positions are “most probably” located in (∆ŷ1,∆ẑ1) = (0.6, 0), where ∆ŷ and ∆ẑ are

the estimated relative positions with the largest probability along the Y and Z axes

respectively; 2) in specimen 2, the two defects’ relative positions are “most probably”

located in (∆ŷ1,∆ẑ1) = (0, 0.8). As such, for both specimens, the estimation error is

0% along one axis, and within 10% for the other. This simulation study validates the

effectiveness of the proposed estimation method. We leave the experimental validation

to the future work.
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Figure 9.7. Initial distribution of the defects’ relative positions.
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Figure 9.8. Estimated probability distribution of defects’ relative positions in speci-
men 1.
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CHAPTER 10

CONCLUSION AND FUTURE WORK

This dissertation studies distributed optimal policies for multi-agent systems

under uncertainties. Both theoretical developments and their practical applications

are investigated. Conclusions and future works are summarized as follows.

10.1 Theoretical Contributions

In Chapter 3, we develop optimal decision-making solutions for multi-agent

random switching systems. An optimal controller and a practical state estimator,

developed based on RMM, UKF, MPCM and RL constructs, are designed respectively.

This work provides frameworks to solve controls and estimations for multiple agents

moving with uncertain intentions or general highly flexible and uncertain movement

patterns. Efficiency and accuracy of the proposed solutions are analyzed respectively.

In Chapter 4, to explore the optimal decisions for interacting agents in un-

certain environments, we propose two novel stochastic differential games, where the

system dynamics are modulated by randomly time-varying parameters. The op-

timal control policies for the two differential games, i.e., two-player zero-sum and

multi-player nonzero-sum games, are obtained from the corresponding Hamiltonian

functions. The system properties, including stability and Nash equilibrium, are ana-

lyzed. In addition, we develop IRL-based online learning algorithms for each game to

find the optimal control solutions in real time. To evaluate the value functions with

multi-dimensional uncertainties, an efficient uncertainty evaluation method, called

the MPCM, is utilized to significantly reduce the computational cost. We integrate
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the MPCM with both on-policy and off-policy IRLs for each game, and prove that the

proposed algorithms find the correct Nash equilibrium solutions. Moreover, we show

that the solutions derived from the on-policy and off-policy algorithms are identical,

under general uncertain linear system dynamics. This study provides new effective

online learning methods to solve differential games of general uncertain linear systems.

In Chapter 5, we study multi-agent differential graphical games. We point out

that the best response policies and minmax strategies for existing differential graphical

games generally permit no global Nash equilibrium solution, where each agent only

uses the state information of its own and its neighbors. To address this problem, we

develop a novel graphical game formulation, with extra terms in the cost function to

decouple the the HJ equation and thus guarantee the existence of a distributed value

function. System properties, including stability and Nash equilibrium, are proven for

this novel graphical game.

In Chapter 6, we study the stability margins of the graph-connected cooperative

tracking systems. Unlike the single-agent system, where the phase and gain margins

are constants, the stability margins of the cooperative tracking systems depend on

the communication graph topology. In particular, both phase and gain margins are

functions of λR, which is the minimum real part of the eigenvalues of L+G. Motivated

by this connection, we further study the value ranges of λR for general communication

graphs. We find that 0 < λR ≤ 1 holds for any possible communication graphs, and

λR = 1 if the communication graph is a directed tree. Linking the robustness analysis

and the graph topology analysis, the limits of the phase and gain margins are then

analyzed. In particular, we show that the directed tree graph promises the best

phase and gain margins among all other possible communication graphs, and the

performances are as good as the single-agent LQR system.
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10.2 Application Contributions

In Chapter 7, we apply our developed decision-making solutions to antenna

controls in the ACDA system, which aims to establish a robust long-distance air-to-air

communication channel using pure directional antennas. In particular, to capture the

uncertain intentions of UAVs executing surveillance-like missions for better tracking,

we adopt a UAV ST RMM. To account for an unstable GPS environment, we apply the

developed RL-based stochastic optimal control solution, which features a learning of

communication RSSI models to provide an additional measurement that compensates

GPS signals. This solution also features an integration of RL and MPCM to learn

the environment-specific RSSI model and to provide online optimal control solutions.

With the learned RSSI model, the optimal solutions in both GPS-available and GPS-

denied environments are developed, respectively.

In Chapter 8, we propose a modeling framework of equipping RMMs with S&A

protocols to quantitatively describe the highly random movement patterns of UAVs

with safety constraints. We propose the RD RMM with the S&S protocol, and showe

that stationary node distribution remains uniform, however the inter-vehicle distance

distribution is not uniform any more. Based on the Markov analysis, we provide

theoretical bounds for the stationary inter-vehicle distance distribution. We further

define collisions between a pair of UAVs and among multiple UAVs based on the

inter-vehicle distance, and found the stationary collision probabilities for both the in-

dependent RD RMM and the RD RMM equipped with the S&S protocol. We further

define airspace capacity and derived it based on the stationary collision probabilities.

Finally, we analyze the impact of model configurations, including travel time, sensing

distance, and collision distance based on the proposed analytical framework. This

analysis links local autonomy with global capacity, and provides insights on airspace

capacity under highly flexible, variable, and uncertain mobility patterns of UAVs.
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We found that the S&S protocol is not effective for UAVs of highly variable flight

patterns. Compared to the independent RD RMM, it increases collision probability

and reduces airspace capacity. The S&R and S&T protocols are more effective in

increasing airspace capacity. The S&R performs the best among the three, however

its performance is reduced with the increase of UAVs in the airspace.

In Chapter 9, we study the estimation of damage patterns, i.e., the relative

positions of defects, in composite materials from the global dielectric response mea-

surements. The interactions of defects in materials are important, as they can be

indicators to the development of critical fracture paths. In particular, we first explain

the fundamental dielectric principle that leads to the detection of defect patterns.

Capacitor models are then built to measure the material permittivity, and the re-

lationship between the dielectric permittivity and relative positions are found using

COMSOL Multiphysicsr. To estimate the relative positions of defects from the mea-

sured global permittivity, a Bayesian based estimation method is developed. It shows

that the relative positions of defects can be estimated well from dielectric response

measurements. This study lays the foundation for the early diagnosis and smart

control of material systems to avoid potential structural or functional failures.

10.3 Future works

In the future work, we will enhance our current results to address more complex

systems, e.g., systems with heterogeneous and nonlinear dynamics. In addition, we

will continue to apply our developed solutions to real-world applications, e.g., au-

tonomous driving systems and multi-UAV communication networks, and to further

technology transfer to benefit our society.
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