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by Akash LOHANI

Nowadays, smartwatches have become one of the most common wearable
gadgets as they are small and portable. As more and more personal informa-
tion is managed and processed inside smartwatches, it is important to have
a secure user authentication scheme in place. There have been many suc-
cessful authentication schemes for a smartphones such as Password/PIN,
bio-metric approach(e.g. fingerprint, face recognition), etc directly used on
smartwatches. However, these approaches are not quite suitable for smart-
watches due to its constraints in size and limited computation power. To
address this issue, we propose TaPIN that allows users to authenticate them-
selves by playing out the rhythmical tap with their thumb and forefinger.
TaPIN is a two-factor user authentication scheme that incorporates not only
the user’s knowledge-based rhythmical tapping pattern but also the corre-
sponding vibration bio-metric exhibited during finger tapping. To validate
the scheme, we built a proof-of-concept prototype, conducted extensive ex-
periments with human subjects, and demonstrated that TaPIN achieves high
accuracy and is resistant to various types of attacks. More importantly it is
convenient to perform with one hand.
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Chapter 1

Introduction

Smartwatches are now one of the most prevalent wearable devices since they

are small and portable. Due to its light weight making, it is convenient to

perform some tasks that have previously been done on smartphones. These

handy features led a huge takeoff on smartwatch applications in health, fit-

ness, and in finance. Many users keep track of their heart rates and body

metrics such as weight and height through smartwatches. Recently we also

started using it for online accounting, processing electronic payments through

apps such as Fitbit [7] and GooglePay [9] and some even use it for stock trad-

ing on a daily basis. As more and more people started using various ap-

plications and as more personal and sensitive information is aggregated and

processed inside the smartwatch, it is important to have a secure user authen-

tication scheme in place. Here the word "authentication" refers to the process

or action of proving or showing something to be true, genuine, or valid [16].

In our project, we focused on "user authentication" where we built a system

that classifies whether it is a legitimate user or not. Many successful authen-

tication schemes on a smartphone are directly used on smartwatches because

of the similarity in its interface. However, the usability between these two de-

vices are different so the system migration of an authentication scheme from

a smartphone to a smartwatch is not quite successful.

Password/PIN (e.g. text and graphical patterns), for example, is not appro-

priate for a smartwatch due to its constraints in size of the touch screen.

There are some works being done to enlarge the touch screen to avoid the
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interaction issue; however, these moves contradicts with the current trend

of designing smaller and portable devices to provide better user experience.

Password/PIN also comes with a major security issue in Smudge attacks

where the oily residue on the surface of the touch screen produces consider-

able potential for attackers to retrieve the secret [3]. Over-the-shoulder attack

occurs when an attacker tries to take a video or directly observe the victim

typing on the screen. Even a vigilant person can become a victim because

the attacker can sneak the password without being noticed. This is one of

the most common and serious consequences of password/PIN because once

the password is compromised, we do not have any choice but to change the

password to avoid further attacks.

The bio-metric approach (e.g. fingerprint and face recognition) is a widely

used authentication scheme for smartphone that provides reliable accuracy.

This approach is not quite practical for smartwatches due to its limited com-

putation power. Besides, it requires sophisticated hardware to realize the

system which is not ideal for the sake of building commercial products.

To overcome the limitation of the two above, speech recognition is one of the

substitutions. However, this approach is susceptible to replay attack where

the attacker can use sophisticated acoustic equipment to eavesdrop the se-

cret and play back the signal to bypass the system. Moreover, when using

this method the surrounding noises (i.e. cars, birds, people talking) can be-

come one of the intruding factors. There are also some cases where the user

feels certain awkwardness to speak on their phone in public.

To break down the issue, we proposed TaPIN, a novel authentication ap-

proach which enables user to authenticate their device just by performing

a rhythmical tap-gesture using their thumb and forefinger. This is essen-

tially a two factor authentication system which not only authenticates the

knowledge-based information but also the vibration bio-metric. Here in TaPIN

, knowledge-based information is the rhythm pattern designed by the user
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FIGURE 1.1: Demonstration of TaPIN

and the corresponding tapping-induced vibration can be used as a bio-metric

information which is different among people due to the variance in the body

metrics such as fat, thickness of the skin, and bone structure [10].

TaPIN is a completely one-handed authentication scheme. This novel feature

allows users to authenticate their device even while he or she is performing

another task with their other hand (i.e. grabbing grocery bags, brushing their

teeth, holding dumbbells, etc). Our approach also does not require any inter-

action with the touch screen which eliminates the concern of smudge attacks

mentioned earlier in the password/PIN section.

Our system is also resistant to password theft such as shoulder surfing be-

cause of the two factor characteristic. The input signal can hardly be repli-

cated even if the attacker has the knowledge of the secret because the sys-

tem integrates behavioral and physiological characteristic like fat and bone

structures of the user. In other words, even if the attacker tries to unlock the
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system with identical rhythmical taps, it is able to detect that he or she is an

imposter by considering the bio-metric features. This ultimately leads to a

low false positive rate.

Last but not least, our solution is less expensive and has the potential of be-

ing commercially available. It can easily be deployed in commercial smart-

watches because it uses ordinary embedded accelerator sensor and does not

require installation of any expensive equipment.
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Chapter 2

Related Works

2.1 User authentication on Smartwatch

A number of traditional authentication schemes on the smartphone have

been tested in smartwatches but due to the limitation in screen size, battery

life and processing speed, they are not well adapted for smartwatches. Pass-

word/PIN [21] and gridlock [1] approach is one of the popular scheme that

are widely used in different device system. However, these approaches are

not quite popular for the users in smartwatches due to its constraints in the

touch screen. It is quite frustrating for the user with bigger fingers where

they find it almost impossible to interact with the device. There are some de-

vices which doesn’t even have a touch screen which means these approach

doesn’t work at all. These schemes are also vulnerable to several security

attacks. Smudge attacks [3] is one of the common attack that the attacker

tries to recover the secret through oily residues on the touch screen. The at-

tacker can compare the location of the smudges and widely used standards

for keyboards(i.e. QWERTY) or grids to compromise the pass-code. Shoul-

der surfing attacks [24] is also one of the serious attacks where the attacker

tries to eavesdrop the secret by taking a video of the victim typing on the

screen or directly observe them unlock the device over the shoulder. The at-

tack is quite serious because the victim needs to change their password once

it is compromised.
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Bio-metric based approach such as fingerprint [25], facial recognition [13]

and iris scans are the most widely used authentication scheme for smart de-

vices nowadays. These scheme has a higher accuracy than other methods

which users find it secure and convenient. The significant issue of these ap-

proach is that it requires sophisticated hardware and intensive computation

which is not viable for commercially available smartwatches. Besides, the

scheme typically raises questions regarding the privacy of the user, forcing

the deployment of additional hardware that do not generally appear in inex-

pensive smartwatches.

In-air gait gesture recognition [2] which only uses the embedded accelerom-

eter are also studied to cope with the hardware limitation of smartwatches,

but these approach is quite intrusive to the surrounding environment lead-

ing to low usability.

Voice recognition is one of the substitution for the approaches stated above

but it is prone to noise and the secret can be effectively replicated with so-

phisticated software. Attacker can also consider recording and playback the

voice of legitimate users onto the system. The user may also find a slight

awkwardness to the public while speaking onto the device.

2.2 Rhythm-Based Authentication

There are also some works which allows user to authenticate their device

by a rhythm. Wobrock et al. [30] has developed a singlekey authentica-

tion method called "TapSongs", allowing user authentication on one "binary"

sensor(i.e. button), leveraging the user-designed rhythmical pattern corre-

sponding to tap-down and up event. Thumbprint [6] is a group authen-

tication system introduced by Das et al. which authenticates a number of

users with the secret knock rhythm, where the knocks are different from each

users. Hutchins et al. [11] developed a rhythmic authentication scheme for
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wearable device with a touch sensor which records user taps as the hidden

pass-code. This system was novel because it allowed user to have a huge in-

put space leading to higher security but this approach which totally relies on

rhythmical information is easily be compromised by shoulder-surfing attack.

2.3 Vibration-based Authentication

Some existing efforts have been done to cope with constraints in size of the

touch screen. Vibration based authentication is one of the field which is based

on the fact that the vibration induced by the user motion varies correspond-

ing to body bio-metrics. Harrison et al. [10] developed Skinput which ex-

pands the text input medium to physical body and allows user to type by

tapping their forearm. However, this system required several sensors at-

tached onto their body which is quite intrusive to users. Zhang et al. [32]

advanced Skinput by just using the embedded accelerometer to realize the

text input system. Chen et al. [14] developed Viband which distinguishes

hand movements like flicks, clicks, taps and also has the capability of identi-

fying motor-actuated items just by grabbing the item.

On the other hand, Lin et al. [31] developed VibID which enabled the authen-

tication by leveraging the response produced by a motor actuated vibrator.

However the feature that it requires continuous physical vibration onto the

body is quite obtrusive to the user and also noisy for the surroundings. Jian

et al. [18] introduced Vibwrite which is also another example of active au-

thentication scheme that leveraged the difference in the vibration response

through physical surface such as door or table to identify users.
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Chapter 3

Design goals

3.1 Design Goals

TaPIN is developed based on the following design goals to cope with the

existing challenges.

3.1.1 Security

Security is freedom from, or resilience against, potential harm or other un-

wanted coercive change caused by others [26]. Security is kept on top prior-

ity as an authentication scheme where the system should be resilient against

widely known attacks on smartwatch to avoid attackers to authenticate vic-

tim’s device even when physically accessible. We analyzed the following

threats which may challenge our proposed authentication scheme.

• Zero-effort Attack: The attacker attempts to bypass the authentication

by performing random pinch pattern which will generate similar beat

and vibration response as the registered one.

• Over-the-shoulder Attack: The attacker not only has the knowledge of

the credential (i.e. beat length, rhythm pattern) sequence but also try to

mimic the behavior of the legitimate user by shoulder surfing.

We aim to build a system which is resilient against the attacks stated above

through two factor authentication scheme.
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3.1.2 Usability

Usability can be described as the capacity of a system to provide a condition

for its users to perform the tasks safely, effectively, and efficiently while en-

joying the experience [29]. TaPIN aims higher usability through developing a

one-handed authentication system which does not require any interaction on

the touch screen. This eliminates a frustration interacting with small screen

and allows users to perform other tasks (i.e. grabbing grocery bags, brushing

teeth, carrying dumbbells) while using the system. We also further analyzed

the usability as means of efficiency such as time consumption and login at-

tempts during the usage of our system.
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Chapter 4

Characterization of TaPIN and

Background Theory

4.1 Definition of TaPIN

TaPIN is a system that allows users to unlock their devices by playing out the

rhythmical tap with their thumb and forefinger as shown in Figure 4.1. This

motion is also called a "pinch" which is a common activity we as a human

beings perform in daily lives to grab or squeeze some objects. The motion al-

ways comes with a "Contact" and "Separation" between fingers and produces

a certain vibration through our body. We observed that this vibration can be

captured by the embedded accelerometer as shown in Figure 4.2.

TaPIN consists of unique features based upon the sequence of the pinch mo-

tion. It is a two-factor authentication scheme that incorporates not only the

user’s knowledge-based rhythmical tapping pattern but also the correspond-

ing vibration bio-metrics exhibited during finger tapping. Imagine that you

have an instrument and you play a rhythmical beat with that. The beat is

confidential and original so that no one but only you knows how to play the

rhythm. Besides, since every people carries different instruments, the noise

that this beat produces differs from person to person. Here in TaPIN, the

instrument is your body and you play your own rhythm through pinching
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FIGURE 4.1: How to unlock TaPIN

FIGURE 4.2: Realization of two factor scheme in TaPIN

your fingers. Since these two features (e.g rhythm and body structure) are

different among users, we are able to achieve a two factor user authentication

scheme for smartwatches. Figure 4.3 demonstrates some of the examples of

TaPIN enrolled by different users. Note that we can observe a different beat

pattern from each signal and each user has a different shape of vibration dur-

ing finger tapping. For example, User A has 7 beats in total and each finger

taps are distributed (2-2-1-2) in time domain. On the other hand, User B has

different rhythm pattern compared to User A with 8 beats distributed as (5-3)

in time domain. We can also observe that User C has higher attenuation mak-

ing each vibration signal sharper than other two users. These difference in

the signal can effectively be used as a factor for authentication since there are

number of designs for rhythm pattern and body bio-metric cannot be easily

replicated to make the same shape of the vibration produced by legitimate

user.



4.1. Definition of TaPIN 13

(A) UserA

(B) UserB

(C) UserC

FIGURE 4.3: TaPIN signal from different users
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FIGURE 4.4: Rhythm Design

4.2 Rhythm pattern

TaPIN is rhythm based authentication scheme. Morse code is a one of the fa-

mous rhythm based code system which codes letters and numbers into uni-

form sequences of "dots" and "dashes". This system has a potential of being

used as a secret but it is quite complicated and not user friendly for the nor-

mal users. TaPIN utilizes the rhythm generated by user’s pinching motion.

When we pinch our fingers, we will experience contact and separation be-

tween our thumb and forefinger. Here in our problem set, we defined the

contact between two fingers as "Onset", whereas the separation as "Offset".

The interval between "Onset" and "Offset" is called a "Beat" and the interval

between "Offset" and "Onset" is called a "Space". Therefore, the rhythm de-

sign for our problem set looks like as shown in Figure 4.4. By combining the

"Beat" and "Space", a lot of combination of rhythm can be designed by users.

4.3 Body Vibration

As mentioned earlier, pinching motion consists of "Contact" and "Separation"

between thumb and forefinger. These two motion produces specific vibra-

tion signal which propagates through our body. Typically, the mathematical

model of the complex vibration systems such as human body is difficult to

analyze. To keep it simple, we built a single degree-of-freedom model to
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FIGURE 4.5: The vibration model of a tap

demonstrate the basic structure as shown in Figure 4.5. This model is called

spring mass damper system [28] where, mass is represented by m, spring

constant is k, and a damping coefficient is c. These constants represents body

bio-metric such as body mass, thickness of the skin, bone and fat structure.

When an external force is applied through the body, vertical displacement

take into place. From the equilibrium of forces, we can derive the following

equation.

F(t) = ma(t) + kx(t) + v(t) (4.1)

where F(t) is the external force, v(t) is the velocity, x(t) is the vertical dis-

placement. By substituting acceleration and velocity with x(t), we can further

get,

F(t) = m
d2x(t)

dt2 + kx(t) + c
dx(t)

dt
(4.2)

Since pinching the fingers produces forced vibration with initial constant

force F(0), by applying Fourier Transform to the both side of 4.2, we can

derive
F(0)
jw

(1− e−jw∆t) = −w2mX(w) + kX(w) + jwcX(w) (4.3)

after solving for X(w),

X(w) =
1− e−jw∆t

− jm
F(0)w3 − c

F(0)w2 + jk
F(0)w

(4.4)
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where w is the frequency, and X(w) is the power spectrum of the vertical

vibration. The vertical vibration will be exposed to certain attenuation along

the horizontal axis until it reaches the accelerometer as described 4.5.

y(t) = x(t)e−αd (4.5)

Here x(t) is the vertical displacement where the external force was applied

(i.e. finger tips), whereas y(t) is the vertical displacement that the vibration

has propagated to, d is propagation distance, and α is an attenuation coef-

ficient. Again after applying the Fourier transform to both sides of 4.5, we

get

Y(w) = X(w)e−αd (4.6)

Note that α is dependant upon propagating medium. α is large which means

the attenuation is large when the wave is propagating through soft tissue

such as fat, whereas α is small which means the attenuation is small when

through hard structure such as bone. After putting 4.4 to 4.6, we obtain,

Y(w) =
(1− e−jwδt)e−αd

− jm
F(0)w3 − c

F(0)w2 + jk
F(0)w

(4.7)

Note that we assume initial constant force F(0) and the duration ∆t is sta-

ble due to users’ pinching habit, while α, d, m, c, k is different among peo-

ple which produces the discrepancies in vibration response among people.

Therefore, frequency analysis such as FFT will effectively give us an insight

of the user identity.
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Chapter 5

System Design

5.1 System Overview

Figure 5.1 shows an overview of the TaPIN system. The basic workflow can

be summarized as following: When a user awaken the screen, opens an app,

or triggers some function that requires the user authentication, the system

continuously monitors the accelerometer readings and when the user enters

his/her own beat pattern by performing several pinch which produces cer-

tain vibration to the readings, it performs segmentation and obtains the sig-

nal which includes consecutive TaPIN secret. Once it obtains the TaPIN sig-

nal, it performs decomposition where it extract knowledge based rhythm in-

formation and biometric based vibration information. A classifier is trained

by pre-enrolled feature vectors and when a new test sample comes it decides

whether the feature input is legitimate user or not to give the authentication

result to the user.

5.2 Capturing

We use accelerometer as a major sensing hardware to capture the tapping-

induced vibration. We used LG W150 Urbane [17] for our whole project

where the accelerometer model is MPU6515 from Inven Sense [12] which

is an embedded accelerometer sensor in a lot of smart devices. MPU 6515 is
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FIGURE 5.1: System Design

capable of capturing the data in each of 3 axis (x, y, z) with the sampling rate

over 1000Hz but in most of the smartwatches, sampling rate is suppressed

by the kernel with the maximum frequency of 200Hz. That was not an ex-

ception with LG W150 Urbane and we decided to stick with this suppressed

sampling rate to validate our idea for commercial smartwatches.

5.3 Denoising

We need to denoise our data in order to remove the signal which is irrela-

vant to our scope. We observe users’ unintentional motion in the reading

which usually falls below 5Hz. We also observe gravity acceleration as DC

component (0 Hz) in each axis of the readings. We need to remove this be-

cause this will lead to certain classification error at the end. This is because

the power spectrum we obtain from frequency analysis integrates the gravity

component which is dependant upon the angle rotation of the smartwatch.

Butter-worth high pass filter with a cut off frequency of 20 Hz can success-

fully filter out the unnecessary readings stated above.
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5.4 Segmentation

We perform segmentation to get the signal which has consecutive TaPIN se-

cret. This process is to narrow down the signal from continuous accelerome-

ter readings. According to previous works [4], Signal to Noise Ratio is used

to segment a tapping-induced vibration. SNR can be expressed by mean di-

vided by standard deviation of specific time interval as in equation 5.1 [27].

SNR =
µ

σ
(5.1)

SNR of finger taps even with slight taps are lower than that with other ac-

tions. Therefore, the signal is segmented when SNR exceeds certain thresh-

old. In our proposal, we decided to calculate the SNR with the sliding win-

dow size of 2 seconds. This means that SNR will show lower value if there

is tapping induced-vibration within 2 seconds. We observed that the off-

set which is the separation of the fingers have larger SNR than onset event

with the value ranging around 50. Therefore, we decided to set the threshold

as 75, and segment the data using the landmark as shown in the Figure 5.2.

Note that the end point was set to the 0.5 seconds after the landmark to avoid

collision with the vibration signal.

5.5 Decomposition

We extract "Knowledge based information" and "Biometric Based Informa-

tion" from segmented signal. Here, Knowledge based information includes

beat information such as timestamps of onset and offset event, Intervals, and

relative intervals. Biometric based information consists of the statistical fea-

tures of the vibration response in time and frequency domain.
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FIGURE 5.2: Overview of segmentation

FIGURE 5.3: Variance (window size=0.01sec) and Onset detec-
tion

5.5.1 Knowledge based feature

Timestamps

We used variance based approach to get the beat information. Figure 5.3

shows the variance with the sliding window size of 0.01 second. We mark

the time which exceeds the threshold as "Onset", where we set the threshold

as Threshold = µ + σ.

There is always one separation between two contacts, therefore, almost sim-

ilar to detecting "Onset" event, we mark the time as "Offset" which gives

the maximum variance between two "Onset" vibration. Figure 5.4 shows the

overview of offset detection. Note that, based on the previous paper [4][5],

we knew that the vibration duration is within 0.1 second so that here the
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FIGURE 5.4: Offset detection

search space is between two "Onset" vibration which can be described as

[Onset[i] + 0.1sec, Onset[i + 1]− 0.1sec].

We obtain two vectors; α = {α2, α3, α4, ..., αn, } and β = {β1, β2, β3, ..., βn, },

where αi and βi are the ith onset and offset timestamps, respectively, and n is

the TaPIN length. Note that each time stamp is the time from the first onset

timestamp, therefore, α1 is always 0 which we remove from our feature set.

Absolute intervals

In order to express the temporal correlation between two adjacent beats we

also derive "Absolute Interval" by subtracting two adjacent "Onsets". We ob-

tain γ = {γ1, γ2, γ3, ..., γn−1, }, where γi = αi+1 − αi.

Relative intervals

The user may tap slowly or faster than the registered inputs depending on

his mood or environment. "Relative Interval" is used to cope with this tem-

poral variance of the users’ beat by dividing the "Interval" with entire signal

duration. We obtain ν = {ν1, ν2, ν3, ..., νn−1, }, where νi =
γi+1
βn .
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So to sum up if we perform n number of taps for TaPIN, the signal decom-

poses n-1 onsets, n offsets, n-1 relative intervals which results in 4n-3 features

for Knowledge based information.

5.5.2 Bio-metric based feature

Bio-metric based information includes the statistical metrics of each "Onset"

vibration in time and frequency domains. This feature helps defend against

knowledge-aware attacks such as phishing attacks.

We first segment each vibration signal based on "Onset" timestamp by setting

the end point as 0.1 second from the start point which is the duration of the

typical tapping induced vibration [4][5].

Fourier Analysis is performed to each of the onset vibration to obtain fre-

quency bio-metric. According to the previous paper [4][14], 30Hz-120Hz well

distinguishes user because the frequency response are relevant among same

user and sensitive among different user in the range. Therefore, we set the

window size as 0.03 second, abandon first bin(0Hz-33Hz) and use second

and third bin (34Hz-100Hz).

Then we derive multiple statistical features(Mean, Standard deviation, Max,

Minimum, Root Mean Square, Kurotsis, Skewness, Inter Quartile Range, En-

tropy) that have been widely adopted representing signals [15][19][14] in

Time and Frequency domain as shown in the Figure 5.5. However, some

of these statistical features may not well distinguish user from the metrics.

We perform feature selection using Fisher Scoring which is widely adopted

supervised feature selection method based on following equation.

Fr =
Σl

i=1ni(µi − µ)

Σl
i=1niδ2

(5.2)

Fisher score computes the ratio between inter-class variance and the in-class

variance of certain feature. The larger ratio means that the feature is distant
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FIGURE 5.5: Biometric based feature extraction

among other classes and close within the same class, thus suggesting that this

feature well represents the data. For the sake of simulation, we recruited 15

volunteer and collected 50 data samples from each of the the volunteers, each

time performing a consistent 7-beat TaPIN. From the dataset, after multiple

preprocessing including denoising, segmentation, feature extraction, we se-

lected top 20 features as described in the Table 5.1 for bio-metric information.

5.6 Classification

We perform classification to compare the input with pre-enrolled data points

to decide whether the input is the legitimate user or the imposter. We used

a model inspired by one class kNN classifier which is categorized as an un-

supervised learning method. kNN assumes that new samples from the same

user will be similar to the samples in the training data. This similarity is

represented by the Euclidean distance. In the training phase, a threshold is

determined by computing an average of distances between each two training
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Feature Domain axis bins Fisher Score rank
Mean Time x - 16
Mean Time y - 1
Mean Time z - 12

Standard Deviation Time z - 8
Maximum Time z - 15
Skewness Time y - 17
Entropy Time x - 13
Entropy Time y - 18

Mean Frequency x 2 11
Mean Frequency x 3 2
Mean Frequency z 2 6

Standard deviation Frequency x 2 3
Standard deviation Frequency y 2 10
Standard deviation Frequency y 3 20
Standard deviation Frequency z 3 7

RMS Frequency x 2 14
Kurtosis Frequency y 3 19

Skewness Frequency x 3 5
Skewness Frequency y 3 9
Entropy Frequency x 2 4

TABLE 5.1: Top 20 feature based of Fisher score
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samples as expressed in equation 5.3.

Thres = α
ΣN−1

i=1 ΣN
j=i+1dij

C2
N

(5.3)

On the other hand, in the testing phase, a classification score is assigned

based on the average distances calculated between the test sample and the

nearest training samples as shown in equation 5.4.

Score =
Σk

i=1dij
k

(5.4)

If the score is below the threshold, this test sample is considered as a legiti-

mate input. If not, then it will fail the authentication.

Note here that the value of alpha and k decided the trade-off between "Us-

ability" and "Security". Larger alpha and smaller k leads to larger thresh-

old and smaller score which leads to higher acceptance rate for user inputs.

This contributes to the “Usability” of the legitimate user. On the other hand,

smaller alpha and larger k leads to smaller threshold and larger score which

lead to higher rejection rate. This contributes to the “Security” against at-

tacks. Therefore, we need to find alpha and k which gives the best balance

between “Usability” and “Security”. We evaluated our classifier using fol-

lowing four metrics.

• False Rejection Rate (FRR): The rate that the legitimate user is denied

by the system. It is calculated as the ratio of the number of incorrect

classification result of legitimate user input to the total number of at-

tempts by legitimate user.

• False Acceptance Rate (FAR): The rate that the imposter is classified

as the legitimate user. It is calculated as the ratio of the number of

accepted classification result of imposter input to the total number of

attempts by imposter.
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FIGURE 5.6: EER under different training sample size

• Equal Error Rate (EER): The rate when the FAR and FRR provides same

value based on parameter decision.

The same dataset described in "Decomposition" section was used to decide

the parameter for the classification model.

Training size

Training sample size plays an important role to system accuracy. We will get

better performance result if we have larger training size. Based on the result

shown in Figure 5.6, we obtain the stable EER once after the size of 10, thus

we adopt 10 as configured training sample size for our prototype.

Parameter Decision

We further analyzed the system using training size of 10 to find the alpha and

k which gives the best balance between “Usability” and “Security.” The Table
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5.2 displays the “False Acceptance Rate” which is the rate that an attacker is

detected as the legitimate user. So when alpha is 1.82 and when k is 2, there is

a 5.3% chance that an attacker enrolls into the system. On the other hand, the

Table 5.3 displays “False Rejection Rate” which is the rate that the legitimate

user is denied by the system. So when alpha is 1.82 and k=2 there is 4.0%

chance that the legitimate user will experience an issue enrolling into the

system.

FAR α

1.75 1.76 1.77 1.78 1.79 1.80 1.81 1.82

k

1 4.7 4.8 4.9 5.1 5.3 5.4 5.6 5.8
2 4.0 4.1 4.3 4.5 4.7 4.8 5.1 5.3
3 3.0 3.2 3.4 3.6 3.8 3.9 4.1 4.2
4 3.0 3.2 3.4 3.5 3.7 3.9 4.1 4.2
5 2.9 3.0 3.2 3.4 3.6 3.8 4.0 4.3
6 3.1 3.4 3.6 3.7 3.9 4.2 4.3 4.5
7 3.1 3.3 3.5 3.6 3.8 3.9 4.2 4.4
8 2.6 2.8 2.9 3.1 3.2 3.3 3.6 3.9
9 2.7 2.9 3.1 3.2 3.3 3.6 3.8 4.0

10 2.8 3.0 3.1 3.2 3.4 3.6 3.9 4.1

TABLE 5.2: FAR at different parameter values

FRR α

1.75 1.76 1.77 1.78 1.79 1.80 1.81 1.82

k

1 5.5 5.0 5.0 4.5 4.3 4.3 4.0 4.0
2 5.0 4.8 4.7 4.3 4.3 4.3 4.2 4.0
3 4.0 3.8 3.7 3.3 3.2 2.8 2.7 2.5
4 3.2 3.2 3.2 3.2 3.0 3.0 2.7 2.3
5 3.3 3.0 2.7 2.5 2.3 2.3 2.2 2.2
6 3.0 2.8 2.7 2.5 2.5 2.3 2.3 2.3
7 3.2 3.2 3.2 3.2 3.2 3.0 2.8 2.5
8 3.7 3.3 3.3 3.3 3.3 3.2 3.2 2.8
9 3.7 3.7 3.7 3.5 3.3 3.0 3.8 2.5

10 3.7 3.70 3.5 3.3 3.2 3.2 2.7 2.3

TABLE 5.3: FRR at different parameter values

So as explained earlier, the left table refers to “Security” and the right

table refers to “Usability”. We need to find alpha and k which gives the best
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balance between these 2 goals. From this tables we chose alpha as 1.79 and k

as 9 so that it gives 3.3% rate for both goals.

So to sum up, we used 10 training inputs and set alpha as 1.79 and k as 9 to

build the prototype.
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Chapter 6

Implementation and Experimental

setup

6.1 Implementation

To validate our idea, we built a proof-of-concept prototype on LG W150 Ur-

bane smartwatch with a 1.3” Full Circle P-OLED touchscreen, 1.2GHz Quad-

Core processer, a RAM with 512MB, 410mAh of battery and Android Wear

2.1.3. LG W150 Urbane incorporates Inven Sense MPU6515 as a embedded

accelerometer which is widely used in commercial smartwatches such as

Moto 360 [22], Samsung Gear 2 [23] and Gear Fit [8]. The prototype captures

the data through existing Android Wear API so that it is also deployable to

other Android smartwatches. Note here that for the sake of efficient data col-

lection and faster computation, we streamed the data to the server where the

signal is further processed and analyzed to provide a real-time registration

and authentication scheme.

6.2 Experimental Setup

We recruited 16 volunteers to perform extensive experiments on prototype

as means of "Usability" and "Security". The Table 6.1 shows some of statis-

tical information our volunteers. Our volunteers was 18-29 years old, with
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Gender No. Age No. BMI No. Experience No.
Female 2 18-23 7 15.00-19.99 2 None 13
Male 14 24-29 9 20.00-24.99 10 Smartwatch 2

25.00-40.00 3 Authentication 1
N/A 1

TABLE 6.1: Distribution of volunteer information

the BMI ranging from 15-40. Besides, around 80% of our volunteers used a

smartwatch for the first time. We asked the volunteers to do the registration,

authentication, and widely known security attacks. For the registration, user

is asked to enroll their self-designed TaPIN 10 times without any constraints

in beat pattern. During the process, our prototype guides the user by dis-

playing the popups showing the number of taps and total number of entries

up to now as shown in Figure 6.1a. Once the entry reaches to 10, it notifies

users that it is ready to be used as shown in Figure 6.1b.

Once the user completes the registration, they try to unlock the device

with their legitimate TaPIN. When the user is classified as a legitimate user,

the word "Success" shows up on the screen, whereas if the user is classified

as imposter the word "Fail" shows up on the screen as shown in Figure 6.1c

and Figure 6.1d.

We also asked the user to attack the system enrolled by another user. In our

proposal, we consider two types of widely known attacks; Zero-effort attack

and Over-the-shoulder attack. In Zero-effort attack, the attacker doesn’t have

any knowledge about the secret so that they try to randomly generate the pin

to bypass the system. On the other hand, in Over-the-shoulder attack, user

gets the knowledge by observing the victim performing the pinch motion.

This is considered a one of the serious attacks that has a potential to mimic

not only the rhythm pattern but also initial force which is incorporated to

vibration response.
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(A) Guide during registration (B) Ready to authenticate

(C) Success (D) Fail

FIGURE 6.1: User interface in TaPIN
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Chapter 7

Performance Evaluation

7.1 Security

The goal of the attacker is to impersonate a legitimate user by generating sim-

ilar signal with pre-registered data. This means that attacker has a physical

access to the device and tries to mimic the rhythm pattern or the behavior

such as initial tapping force, the location of the pinch, angle of the legiti-

mate users arm etc. In our experimental setup, we considered two types

of widely known security attacks; Zero-effort Attack and Over-the-shoulder

Attack. We asked the volunteers to strictly obey not to share the secret to

another volunteers so that we consider each attack to be an authentic one in

real scenario.

7.1.1 Zero-effort Attacks

Zero-effort attack is one of the most common attack we observe in different

authentication scheme and also not the exception for our model. The attacker

isn’t required to do some data collection and analysis for the secret, so that

this attacking scheme is possible for any imposter who has the physical ac-

cess to the device. During the experiment, attacker is not provided with the

secret from the victim so that we can simulate the scenario that the attacker

blindly tries to guess the TaPIN. We asked each volunteers to attack 3 times
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independently to several model and Table 7.1 shows there was 208 trials dis-

tributed in each beat length. By using our registered user model, we achieved

a success rate of 0.0 to all the beat length. Here, as a feature of rhythm based

approach, the longer the beat length is, the more difficult it is to crack the sys-

tem. The result of the success rate with 0.0 for the beat length of 3 suggests

that the system is highly resistant and robust against zero-effort attack.

Beat Length Success Total Attacks FAR
3 0 36 0.00
4 0 18 0.00
5 0 36 0.00
6 0 42 0.00
7 0 54 0.00
8 0 18 0.00

TABLE 7.1: Success rate under Zero-effort Attack

7.1.2 Over-the-shoulder Attacks

Over-the-shoulder attack is also one of the common attacking scheme to the

authentication system. The attacker tries to take a video or physically observe

the victim performing the authentication. This is considered as the most se-

rious attack for existing Password/PIN and graphical pattern authentication

scheme.

This can also be a major threat to TaPIN, since the user is focused on un-

locking the system which allows an attacker to carefully observe the secret

without noticed by a victim. Besides, TaPIN produces certain motion to the

public so that the attacker can visually check the secret so that leads to a huge

potential of replicating the same rhythm pattern with same behavior such as

initial force, angle rotation of the arm, location of the tap etc. However, the-

oretically TaPIN incorporates several bio-metric based information which is

different among people so that the system is resistant to these attacks. To

evaluate the attacking scheme, we asked the victim to show the attacker how
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FIGURE 7.1: Success rate under Zero-effort Attack and Over-
the-shoulder Attack

to perform the taps by showing them with their own hands. The victim also

provided the attacker with some knowledge of the music or rhythm which

they utilized to design the secret. We asked each of the volunteers to attack

the model enrolled by another user 3 times independently. The Table 7.2

shows there was 208 trials distributed in each beat length. By using our reg-

istered user model, we achieved a success rate below 0.3. We also observed

from Figure 7.1 that success rate can be decreased down to 0.06 if we have

the beat length over 7.

Beat Length Success Total Attacks FAR
3 10 36 0.28
4 2 18 0.11
5 0 36 0.00
6 5 42 0.12
7 2 54 0.04
8 1 18 0.06

TABLE 7.2: Success rate under Over-the-shoulder Attack
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(A) Enrollment Time (B) Login Time

7.2 Usability

Usability is also one of the important factor we need to consider if we are con-

figuring for practical implementation. We evaluated the usability of TaPIN

as aspects in Time consumption and Login attempts.

7.2.1 Time Consumption

We measured the time consumption of enrollment and authentication. Specif-

ically, time consumption of enrollment is the time it required users to register

TaPIN for 10 times and build the model. On the other hand, time consump-

tion of authentication is the time it required users to perform TaPIN and get

the result back from the server.

Enrollment Time

Figure 7.2a plots the cumulative density function of the time consumption

during enrollment. The enrollment time of TaPIN ranges from 36.3 to 134.0

seconds, with the average value as 68.2 seconds, its median value as 58.7

seconds, and its 90th percentile as 93.8 seconds.
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Authentication Time

Figure 7.2b plots the cumulative density function of the time consumption

during authentication. The authentication time of TaPIN ranges from 3.59 to

8.27 seconds, with the average value as 5.63 seconds, its median value as 5.61

seconds, and its 90th percentile as 6.72 seconds.

7.2.2 Login Attempts

The number of login attempts until success is also one of the scale we need to

consider for usability. Google applications allow user to try 5 times at most

but it is desired that we can shrink this limitation as much as possible. In our

experiment, all the 16 valid user was able to successfully unlock their system

by a single trial.

7.3 User Perception

We conducted a user study after experiment to analyze how they feel about

the "Usability" and "Security" of TaPIN compared to other existing meth-

ods(Password, PIN, Pattern). We used Likert Scale where 10 refers to "Best"

and 1 refers to "Worst".

While answering this questionnaire, volunteers tries to compare each meth-

ods with TaPIN so that the result indicate the preference and improvement

over existing methods. Figure 7.3 shows the result of our user study. We

can say that TaPIN outperformed as in aspect of Usability compared to other

existing methods. We expect this positive outcome for our design goals is

because the user was happy about not interacting with small touch screen

which exists in other existing methods. While as for the Security aspects, our
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FIGURE 7.3: User perception

volunteers thought it is as resistant as the password based approach. How-

ever, this has to be addressed in the future work for further improvement

utilizing bio-metric information to avoid credential aware attacks.
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Chapter 8

Future Works

8.1 Robustness against user motion

We observed that some of the daily activities such as walking or squatting

sometimes gives the SNR below 75 where the system starts processing ap-

proach where we set a lower threshold around 20 for the start point and if

and only if the start point is detected, we end the signal with the threshold

value of 75. This approach help the system ignore most of the daily activities

because the SNR of those activity aren’t as low as 20. Extensive experiments

has to be done to validate the scheme.

8.2 Robustness against user state

As discussed in Chapter4, the frequency response of the vibration integrates

certain bio-metric coefficient which is different among people. However,

these response also may vary within same user corresponding to the users’

wearing state. This includes different initial tapping force, variance in wear-

ing position, or the arm rotation which typically changes the force dispersion.

Further evaluation and analysis is required to validate the robustness against

these temporal variation.
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8.3 Classification Performance

Further data collection has to be done to configure the parameter which

builds a reliable authentication scheme. The volunteers has to be distributed

in different categories as in age, gender, BMI,and user experience. This en-

sures that the system has the integrity in the performance while used by a

different types of people.

We also can evaluate our performance as in different classification model.

One class SVM [20], DenID [4] are one of the model directly applicable to our

problem set. We can also think of using two class classification model such

as kNN, SVM, Neural Networks, Random Forest etc. However, two class

classification model requires huge training samples in the training phase to

obtain a better accuracy so that further analysis on computation is required.

8.4 Development of stand alone app

We streamed the captured data to the server for the sake of efficient data

collection and faster processing during experiments. We can develop a stand

alone app in smartwatch itself so that it doesn’t rely on server computation.

This development also includes some of the UI improvement by combining

some interactive effects which entertains users.
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